Remove the old multiplier plotmanip from the vclamp plugin.
[hooke.git] / hooke / plugin / vclamp.py
index 21f078a8c3bc82a8d7b14e17a17a8528662e24ba..fbd6335aec334c78950ad04a19361c1f32aad65b 100644 (file)
@@ -35,6 +35,7 @@ from ..config import Setting
 from ..curve import Data
 from ..plugin import Plugin
 from ..util.fit import PoorFit, ModelFitter
+from ..util.si import join_data_label, split_data_label
 from .curve import CurveArgument
 
 
@@ -62,20 +63,20 @@ def scale(hooke, curve, block=None):
         params = {'curve':curve, 'block':block}
         b = curve.data[block]
         if ('surface distance (m)' not in b.info['columns']
-            or 'surface adjusted deflection (m)' not in b.info['columns']):
+            or 'surface deflection (m)' not in b.info['columns']):
             try:
-                contact._run(hooke, inqueue, outqueue, params)
+                contact.run(hooke, inqueue, outqueue, **params)
             except PoorFit, e:
                 raise PoorFit('Could not fit %s %s: %s'
                               % (curve.path, block, str(e)))
         if ('deflection (N)' not in b.info['columns']):
-            force._run(hooke, inqueue, outqueue, params)
+            force.run(hooke, inqueue, outqueue, **params)
         if ('cantilever adjusted extension (m)' not in b.info['columns']):
-            cant_adjust._run(hooke, inqueue, outqueue, params)
+            cant_adjust.run(hooke, inqueue, outqueue, **params)
     return curve
 
 class SurfacePositionModel (ModelFitter):
-    """
+    """Bilinear surface position model.
 
     The bilinear model is symmetric, but the parameter guessing and
     sanity checks assume the contact region occurs for lower indicies
@@ -96,9 +97,6 @@ class SurfacePositionModel (ModelFitter):
     should be enough data in the off-surface region that interactions
     due to proteins, etc. will not seriously skew the fit in the
     off-surface region.
-
-
-    We guess
     """
     def model(self, params):
         """A continuous, bilinear model.
@@ -168,7 +166,6 @@ class SurfacePositionModel (ModelFitter):
 
         Notes
         -----
-
         We guess offset scale (:math:`p_0`) as one tenth of the total
         deflection range, the kink scale (:math:`p_2`) as one tenth of
         the total index range, the initial (contact) slope scale
@@ -234,14 +231,6 @@ class VelocityClampPlugin (Plugin):
 class SurfaceContactCommand (Command):
     """Automatically determine a block's surface contact point.
 
-    Uses the block's `z piezo (m)` and `deflection (m)` arrays.
-    Stores the contact parameters in `block.info`'s `surface distance
-    offset (m)` and `surface deflection offset (m)`.  Model-specific
-    fitting information is stored in `surface detection parameters`.
-
-    The adjusted data columns `surface distance (m)` and `surface
-    adjusted deflection (m)` are also added to the block.
-
     You can select the contact point algorithm with the creatively
     named `surface contact point algorithm` configuration setting.
     Currently available options are:
@@ -260,6 +249,41 @@ class SurfaceContactCommand (Command):
 Data block for which the force should be calculated.  For an
 approach/retract force curve, `0` selects the approaching curve and `1`
 selects the retracting curve.
+""".strip()),
+                Argument(name='input distance column', type='string',
+                         default='z piezo (m)',
+                         help="""
+Name of the column to use as the surface positioning input.
+""".strip()),
+                Argument(name='input deflection column', type='string',
+                         default='deflection (m)',
+                         help="""
+Name of the column to use as the deflection input.
+""".strip()),
+                Argument(name='output distance column', type='string',
+                         default='surface distance',
+                         help="""
+Name of the column (without units) to use as the surface positioning output.
+""".strip()),
+                Argument(name='output deflection column', type='string',
+                         default='surface deflection',
+                         help="""
+Name of the column (without units) to use as the deflection output.
+""".strip()),
+                Argument(name='distance info name', type='string',
+                         default='surface distance offset',
+                         help="""
+Name (without units) for storing the distance offset in the `.info` dictionary.
+""".strip()),
+                Argument(name='deflection info name', type='string',
+                         default='surface deflection offset',
+                         help="""
+Name (without units) for storing the deflection offset in the `.info` dictionary.
+""".strip()),
+                Argument(name='fit parameters info name', type='string',
+                         default='surface deflection offset',
+                         help="""
+Name (without units) for storing the deflection offset in the `.info` dictionary.
 """.strip()),
                 ],
             help=self.__doc__, plugin=plugin)
@@ -274,18 +298,26 @@ selects the retracting curve.
         new = Data((data.shape[0], data.shape[1]+2), dtype=data.dtype)
         new.info = copy.deepcopy(data.info)
         new[:,:-2] = data
-        new.info['columns'].extend(
-            ['surface distance (m)', 'surface adjusted deflection (m)'])
-        z_data = data[:,data.info['columns'].index('z piezo (m)')]
-        d_data = data[:,data.info['columns'].index('deflection (m)')]
-        i,deflection_offset,ps = self.find_contact_point(
-            params['curve'], z_data, d_data, outqueue)
-        surface_offset = z_data[i]
-        new.info['surface distance offset (m)'] = surface_offset
-        new.info['surface deflection offset (m)'] = deflection_offset
-        new.info['surface detection parameters'] = ps
-        new[:,-2] = z_data - surface_offset
-        new[:,-1] = d_data - deflection_offset
+        name,dist_units = split_data_label(params['input distance column'])
+        name,def_units = split_data_label(params['input deflection column'])
+        new.info['columns'].extend([
+                join_data_label(params['output distance column'], dist_units),
+                join_data_label(params['output deflection column'], def_units),
+                ])
+        dist_data = data[:,data.info['columns'].index(
+                params['input distance column'])]
+        def_data = data[:,data.info['columns'].index(
+                params['input deflection column'])]
+        i,def_offset,ps = self.find_contact_point(
+            params['curve'], dist_data, def_data, outqueue)
+        dist_offset = dist_data[i]
+        new.info[join_data_label(params['distance info name'], dist_units
+                                 )] = dist_offset
+        new.info[join_data_label(params['deflection info name'], def_units
+                                 )] = def_offset
+        new.info[params['fit parameters info name']] = ps
+        new[:,-2] = dist_data - dist_offset
+        new[:,-1] = def_data - def_offset
         params['curve'].data[params['block']] = new
 
     def find_contact_point(self, curve, z_data, d_data, outqueue=None):
@@ -430,11 +462,9 @@ selects the retracting curve.
             surface_index = len(d_data)-1-surface_index
         return (numpy.round(surface_index), deflection_offset, info)
 
-class ForceCommand (Command):
-    """Calculate a block's `deflection (N)` array.
 
-    Uses the block's `deflection (m)` array and
-    `spring constant (N/m)`.
+class ForceCommand (Command):
+    """Convert a deflection column from meters to newtons.
     """
     def __init__(self, plugin):
         super(ForceCommand, self).__init__(
@@ -446,6 +476,21 @@ class ForceCommand (Command):
 Data block for which the force should be calculated.  For an
 approach/retract force curve, `0` selects the approaching curve and `1`
 selects the retracting curve.
+""".strip()),
+                Argument(name='input deflection column', type='string',
+                         default='surface deflection (m)',
+                         help="""
+Name of the column to use as the deflection input.
+""".strip()),
+                Argument(name='output deflection column', type='string',
+                         default='deflection',
+                         help="""
+Name of the column (without units) to use as the deflection output.
+""".strip()),
+                Argument(name='spring constant info name', type='string',
+                         default='spring constant (N/m)',
+                         help="""
+Name of the spring constant in the `.info` dictionary.
 """.strip()),
                 ],
             help=self.__doc__, plugin=plugin)
@@ -460,17 +505,16 @@ selects the retracting curve.
         new = Data((data.shape[0], data.shape[1]+1), dtype=data.dtype)
         new.info = copy.deepcopy(data.info)
         new[:,:-1] = data
-        new.info['columns'].append('deflection (N)')
-        d_data = data[:,data.info['columns'].index('surface adjusted deflection (m)')]
-        new[:,-1] = d_data * data.info['spring constant (N/m)']
+        new.info['columns'].append(
+            join_data_label(params['output deflection column'], 'N'))
+        d_data = data[:,data.info['columns'].index(
+                params['input deflection column'])]
+        new[:,-1] = d_data * data.info[params['spring constant info name']]
         params['curve'].data[params['block']] = new
 
 
 class CantileverAdjustedExtensionCommand (Command):
-    """Calculate a block's `cantilever adjusted extension (m)` array.
-
-    Uses the block's `deflection (m)` and `surface distance offset (m)`
-    arrays and `spring constant (N/m)`.
+    """Remove cantilever extension from a total extension column.
     """
     def __init__(self, plugin):
         super(CantileverAdjustedExtensionCommand, self).__init__(
@@ -482,6 +526,26 @@ class CantileverAdjustedExtensionCommand (Command):
 Data block for which the adjusted extension should be calculated.  For
 an approach/retract force curve, `0` selects the approaching curve and
 `1` selects the retracting curve.
+""".strip()),
+                Argument(name='input distance column', type='string',
+                         default='surface distance (m)',
+                         help="""
+Name of the column to use as the distance input.
+""".strip()),
+                Argument(name='input deflection column', type='string',
+                         default='deflection (N)',
+                         help="""
+Name of the column to use as the deflection input.
+""".strip()),
+                Argument(name='output distance column', type='string',
+                         default='cantilever adjusted extension',
+                         help="""
+Name of the column (without units) to use as the deflection output.
+""".strip()),
+                Argument(name='spring constant info name', type='string',
+                         default='spring constant (N/m)',
+                         help="""
+Name of the spring constant in the `.info` dictionary.
 """.strip()),
                 ],
             help=self.__doc__, plugin=plugin)
@@ -496,141 +560,27 @@ an approach/retract force curve, `0` selects the approaching curve and
         new = Data((data.shape[0], data.shape[1]+1), dtype=data.dtype)
         new.info = copy.deepcopy(data.info)
         new[:,:-1] = data
-        new.info['columns'].append('cantilever adjusted extension (m)')
-        z_data = data[:,data.info['columns'].index('surface distance (m)')]
-        d_data = data[:,data.info['columns'].index('deflection (N)')]
-        new[:,-1] = z_data - d_data / data.info['spring constant (N/m)']
+        new.info['columns'].append(
+            join_data_label(params['output distance column'], 'm'))
+        z_data = data[:,data.info['columns'].index(
+                params['input distance column'])]
+        d_data = data[:,data.info['columns'].index(
+                params['input deflection column'])]
+        k = data.info[params['spring constant info name']]
+
+        z_name,z_unit = split_data_label(params['input distance column'])
+        assert z_unit == 'm', params['input distance column']
+        d_name,d_unit = split_data_label(params['input deflection column'])
+        assert d_unit == 'N', params['input deflection column']
+        k_name,k_unit = split_data_label(params['spring constant info name'])
+        assert k_unit == 'N/m', params['spring constant info name']
+
+        new[:,-1] = z_data - d_data / k
         params['curve'].data[params['block']] = new
 
 
 class generalvclampCommands(object):
 
-    def _plug_init(self):
-        self.basecurrent=None
-        self.basepoints=None
-        self.autofile=''
-
-    def do_distance(self,args):
-        '''
-        DISTANCE
-        (generalvclamp.py)
-        Measure the distance (in nm) between two points.
-        For a standard experiment this is the delta X distance.
-        For a force clamp experiment this is the delta Y distance (actually becomes
-        an alias of zpiezo)
-        -----------------
-        Syntax: distance
-        '''
-        if self.current.curve.experiment == 'clamp':
-            print 'You wanted to use zpiezo perhaps?'
-            return
-        else:
-            dx,unitx,dy,unity=self._delta(set=1)
-            print str(dx*(10**9))+' nm'
-            to_dump='distance '+self.current.path+' '+str(dx*(10**9))+' nm'
-            self.outlet.push(to_dump)
-
-
-    def do_force(self,args):
-        '''
-        FORCE
-        (generalvclamp.py)
-        Measure the force difference (in pN) between two points
-        ---------------
-        Syntax: force
-        '''
-        if self.current.curve.experiment == 'clamp':
-            print 'This command makes no sense for a force clamp experiment.'
-            return
-        dx,unitx,dy,unity=self._delta(set=1)
-        print str(dy*(10**12))+' pN'
-        to_dump='force '+self.current.path+' '+str(dy*(10**12))+' pN'
-        self.outlet.push(to_dump)
-
-
-    def do_forcebase(self,args):
-        '''
-        FORCEBASE
-        (generalvclamp.py)
-        Measures the difference in force (in pN) between a point and a baseline
-        took as the average between two points.
-
-        The baseline is fixed once for a given curve and different force measurements,
-        unless the user wants it to be recalculated
-        ------------
-        Syntax: forcebase [rebase]
-                rebase: Forces forcebase to ask again the baseline
-                max: Instead of asking for a point to measure, asks for two points and use
-                     the maximum peak in between
-        '''
-        rebase=False #if true=we select rebase
-        maxpoint=False #if true=we measure the maximum peak
-
-        plot=self._get_displayed_plot()
-        whatset=1 #fixme: for all sets
-        if 'rebase' in args or (self.basecurrent != self.current.path):
-            rebase=True
-        if 'max' in args:
-            maxpoint=True
-
-        if rebase:
-            print 'Select baseline'
-            self.basepoints=self._measure_N_points(N=2, whatset=whatset)
-            self.basecurrent=self.current.path
-
-        if maxpoint:
-            print 'Select two points'
-            points=self._measure_N_points(N=2, whatset=whatset)
-            boundpoints=[points[0].index, points[1].index]
-            boundpoints.sort()
-            try:
-                y=min(plot.vectors[whatset][1][boundpoints[0]:boundpoints[1]])
-            except ValueError:
-                print 'Chosen interval not valid. Try picking it again. Did you pick the same point as begin and end of interval?'
-        else:
-            print 'Select point to measure'
-            points=self._measure_N_points(N=1, whatset=whatset)
-            #whatplot=points[0].dest
-            y=points[0].graph_coords[1]
-
-        #fixme: code duplication
-        boundaries=[self.basepoints[0].index, self.basepoints[1].index]
-        boundaries.sort()
-        to_average=plot.vectors[whatset][1][boundaries[0]:boundaries[1]] #y points to average
-
-        avg=np.mean(to_average)
-        forcebase=abs(y-avg)
-        print str(forcebase*(10**12))+' pN'
-        to_dump='forcebase '+self.current.path+' '+str(forcebase*(10**12))+' pN'
-        self.outlet.push(to_dump)
-
-    def plotmanip_multiplier(self, plot, current):
-        '''
-        Multiplies all the Y values of an SMFS curve by a value stored in the 'force_multiplier'
-        configuration variable. Useful for calibrations and other stuff.
-        '''
-
-        #not a smfs curve...
-        if current.curve.experiment != 'smfs':
-            return plot
-
-        #only one set is present...
-        if len(self.plots[0].vectors) != 2:
-            return plot
-
-        #multiplier is 1...
-        if (self.config['force_multiplier']==1):
-            return plot
-
-        for i in range(len(plot.vectors[0][1])):
-            plot.vectors[0][1][i]=plot.vectors[0][1][i]*self.config['force_multiplier']        
-
-        for i in range(len(plot.vectors[1][1])):
-            plot.vectors[1][1][i]=plot.vectors[1][1][i]*self.config['force_multiplier']
-
-        return plot            
-   
-    
     def plotmanip_flatten(self, plot, current, customvalue=False):
         '''
         Subtracts a polynomial fit to the non-contact part of the curve, as to flatten it.
@@ -709,192 +659,3 @@ class generalvclampCommands(object):
 
         return plot
 
-    #---SLOPE---
-    def do_slope(self,args):
-        '''
-        SLOPE
-        (generalvclamp.py)
-        Measures the slope of a delimited chunk on the return trace.
-        The chunk can be delimited either by two manual clicks, or have
-        a fixed width, given as an argument.
-        ---------------
-        Syntax: slope [width]
-                The facultative [width] parameter specifies how many
-                points will be considered for the fit. If [width] is
-                specified, only one click will be required.
-        (c) Marco Brucale, Massimo Sandal 2008
-        '''
-
-        # Reads the facultative width argument
-        try:
-            fitspan=int(args)
-        except:
-            fitspan=0
-
-        # Decides between the two forms of user input, as per (args)
-        if fitspan == 0:
-            # Gets the Xs of two clicked points as indexes on the current curve vector
-            print 'Click twice to delimit chunk'
-            points=self._measure_N_points(N=2,whatset=1)
-        else:
-            print 'Click once on the leftmost point of the chunk (i.e.usually the peak)'
-            points=self._measure_N_points(N=1,whatset=1)
-            
-        slope=self._slope(points,fitspan)
-
-        # Outputs the relevant slope parameter
-        print 'Slope:'
-        print str(slope)
-        to_dump='slope '+self.current.path+' '+str(slope)
-        self.outlet.push(to_dump)
-
-    def _slope(self,points,fitspan):
-        # Calls the function linefit_between
-        parameters=[0,0,[],[]]
-        try:
-            clickedpoints=[points[0].index,points[1].index]
-            clickedpoints.sort()
-        except:
-            clickedpoints=[points[0].index-fitspan,points[0].index]        
-
-        try:
-            parameters=self.linefit_between(clickedpoints[0],clickedpoints[1])
-        except:
-            print 'Cannot fit. Did you click twice the same point?'
-            return
-             
-        # Outputs the relevant slope parameter
-        print 'Slope:'
-        print str(parameters[0])
-        to_dump='slope '+self.curve.path+' '+str(parameters[0])
-        self.outlet.push(to_dump)
-
-        # Makes a vector with the fitted parameters and sends it to the GUI
-        xtoplot=parameters[2]
-        ytoplot=[]
-        x=0
-        for x in xtoplot:
-            ytoplot.append((x*parameters[0])+parameters[1])
-
-        clickvector_x, clickvector_y=[], []
-        for item in points:
-            clickvector_x.append(item.graph_coords[0])
-            clickvector_y.append(item.graph_coords[1])
-
-        lineplot=self._get_displayed_plot(0) #get topmost displayed plot
-
-        lineplot.add_set(xtoplot,ytoplot)
-        lineplot.add_set(clickvector_x, clickvector_y)
-
-
-        if lineplot.styles==[]:
-            lineplot.styles=[None,None,None,'scatter']
-        else:
-            lineplot.styles+=[None,'scatter']
-        if lineplot.colors==[]:
-            lineplot.colors=[None,None,'black',None]
-        else:
-            lineplot.colors+=['black',None]
-        
-        
-        self._send_plot([lineplot])
-
-        return parameters[0]
-
-
-    def linefit_between(self,index1,index2,whatset=1):
-        '''
-        Creates two vectors (xtofit,ytofit) slicing out from the
-        current return trace a portion delimited by the two indexes
-        given as arguments.
-        Then does a least squares linear fit on that slice.
-        Finally returns [0]=the slope, [1]=the intercept of the
-        fitted 1st grade polynomial, and [2,3]=the actual (x,y) vectors
-        used for the fit.
-        (c) Marco Brucale, Massimo Sandal 2008
-        '''
-        # Translates the indexes into two vectors containing the x,y data to fit
-        xtofit=self.plots[0].vectors[whatset][0][index1:index2]
-        ytofit=self.plots[0].vectors[whatset][1][index1:index2]
-
-        # Does the actual linear fitting (simple least squares with numpy.polyfit)
-        linefit=[]
-        linefit=np.polyfit(xtofit,ytofit,1)
-
-        return (linefit[0],linefit[1],xtofit,ytofit)
-
-
-    def fit_interval_nm(self,start_index,plot,nm,backwards):
-          '''
-          Calculates the number of points to fit, given a fit interval in nm
-          start_index: index of point
-          plot: plot to use
-          backwards: if true, finds a point backwards.
-          '''
-          whatset=1 #FIXME: should be decidable
-          x_vect=plot.vectors[1][0]
-          
-          c=0
-          i=start_index
-          start=x_vect[start_index]
-          maxlen=len(x_vect)
-          while abs(x_vect[i]-x_vect[start_index])*(10**9) < nm:
-              if i==0 or i==maxlen-1: #we reached boundaries of vector!
-                  return c
-              
-              if backwards:
-                  i-=1
-              else:
-                  i+=1
-              c+=1
-          return c
-
-
-
-    def find_current_peaks(self,noflatten, a=True, maxpeak=True):
-            #Find peaks.
-            if a==True:
-                  a=self.convfilt_config['mindeviation']
-            try:
-                  abs_devs=float(a)
-            except:
-                  print "Bad input, using default."
-                  abs_devs=self.convfilt_config['mindeviation']
-
-            defplot=self.current.curve.default_plots()[0]
-            if not noflatten:
-                flatten=self._find_plotmanip('flatten') #Extract flatten plotmanip
-                defplot=flatten(defplot, self.current, customvalue=1) #Flatten curve before feeding it to has_peaks
-            pk_location,peak_size=self.has_peaks(defplot, abs_devs, maxpeak)
-            return pk_location, peak_size
-
-
-    def pickup_contact_point(self,N=1,whatset=1):
-        '''macro to pick up the contact point by clicking'''
-        contact_point=self._measure_N_points(N=1, whatset=1)[0]
-        contact_point_index=contact_point.index
-        self.wlccontact_point=contact_point
-        self.wlccontact_index=contact_point.index
-        self.wlccurrent=self.current.path
-        return contact_point, contact_point_index
-
-
-    def baseline_points(self,peak_location, displayed_plot):
-        clicks=self.config['baseline_clicks']
-        if clicks==0:
-            self.basepoints=[]
-            base_index_0=peak_location[-1]+self.fit_interval_nm(peak_location[-1], displayed_plot, self.config['auto_right_baseline'],False)
-            self.basepoints.append(self._clickize(displayed_plot.vectors[1][0],displayed_plot.vectors[1][1],base_index_0))
-            base_index_1=self.basepoints[0].index+self.fit_interval_nm(self.basepoints[0].index, displayed_plot, self.config['auto_left_baseline'],False)
-            self.basepoints.append(self._clickize(displayed_plot.vectors[1][0],displayed_plot.vectors[1][1],base_index_1))
-        elif clicks>0:
-            print 'Select baseline'
-            if clicks==1:
-                self.basepoints=self._measure_N_points(N=1, whatset=1)
-                base_index_1=self.basepoints[0].index+self.fit_interval_nm(self.basepoints[0].index, displayed_plot, self.config['auto_left_baseline'], False)
-                self.basepoints.append(self._clickize(displayed_plot.vectors[1][0],displayed_plot.vectors[1][1],base_index_1))
-            else:
-                self.basepoints=self._measure_N_points(N=2, whatset=1)
-            
-        self.basecurrent=self.current.path
-        return self.basepoints