\Part{a}
Kathy overtakes Stan when their positions match.
\begin{align}
- x_k = \frac{1}{2}a_k (t-\Delta_t)^2 &= x_s = \frac{1}{2}a_s t^2 \\
- \frac{a_k}{a_s}(t^2 - 2\Delta_t t + \Delta_t^2) &= t^2 \\
- \p({\frac{a_k}{a_s} - 1})t^2
- - 2\Delta_t\frac{a_k}{a_s} t
- + \Delta_t^2\frac{a_k}{a_s} &= 0 \\
- a t^2 + b t + c &= 0 \\
- a &= \p({\frac{a_k}{a_s} - 1}) = \p({\frac{4.90}{3.50} - 1}) = 0.400 \\
- b &= - 2\Delta_t\frac{a_k}{a_s} = - 2\cdot(1.00\U{s})\frac{4.90}{3.50}
- = -2.80\U{s} \\
- c &= \Delta_t^2\frac{a_k}{a_s} = (1.00\U{s})^2\frac{4.90}{3.50}
- = 1.40\U{s$^2$}
+ x_k = \frac{1}{2}a_k (t_p-\Delta_t)^2 &= x_s = \frac{1}{2}a_s t_p^2 \\
+ a_k (t_p-\Delta_t)^2 &= a_s t^2 \\
+ \sqrt{a_k} (t_p-\Delta_t) &= \pm\sqrt{a_s} t_p \\
+ t_p (\sqrt{a_k} \mp \sqrt{a_s}) &= \sqrt{a_k}\Delta_t \\
+ t_p &= \frac{\sqrt{a_k}\Delta_t}{\sqrt{a_k} \mp \sqrt{a_s}}
+ = \frac{\sqrt{4.90\U{m/s$^2$}} \cdot 1.00\U{s}}
+ {\sqrt{4.90\U{m/s$^2$}} \mp \sqrt{3.50\U{m/s$^2$}}}
+ = 6.46 \text{ or } 0.542 \U{s}
\end{align}
-Solving with the quadratic equation
-\begin{align}
- t &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
- = (6.46, 0.542)\U{s}
-\end{align}
-
The smaller time occurs before Kathy starts, where the quadratic
equation for $x_k(t)$ does not hold ($x_k(t < \Delta(t))=0$, as Kathy
is sitting at the starting line). Therefore, the Kathy passes Stan at
= \frac{1}{2} (3.50\U{m/s$^2$}) \cdot (6.46\U{s})^2
= \ans{73.0\U{m}}
\end{equation}
+Symbolically,
+\begin{equation}
+ x_s(t_p) = \frac{1}{2}a_s
+ \p({ \frac{\sqrt{a_k}\Delta_t}{\sqrt{a_k} \mp \sqrt{a_s}} })^2
+ = \frac{a_s a_k \Delta_t^2}{2(\sqrt{a_k} \mp \sqrt{a_s})^2}
+\end{equation}
\Part{c}
The velocities at the passing point are