From f97a59c9f5a5d13d166c6307081e0a6fcc006a69 Mon Sep 17 00:00:00 2001 From: "W. Trevor King" Date: Fri, 21 Jan 2011 13:36:31 -0500 Subject: [PATCH] Cleaner solution for S&J 8, prob. 2.61. --- .../Serway_and_Jewett_8/problem02.61.tex | 31 +++++++++---------- 1 file changed, 14 insertions(+), 17 deletions(-) diff --git a/latex/problems/Serway_and_Jewett_8/problem02.61.tex b/latex/problems/Serway_and_Jewett_8/problem02.61.tex index 13c3c3e..8dd8976 100644 --- a/latex/problems/Serway_and_Jewett_8/problem02.61.tex +++ b/latex/problems/Serway_and_Jewett_8/problem02.61.tex @@ -52,24 +52,15 @@ yaxis("$x\U{m}$", 0, LeftTicks); \Part{a} Kathy overtakes Stan when their positions match. \begin{align} - x_k = \frac{1}{2}a_k (t-\Delta_t)^2 &= x_s = \frac{1}{2}a_s t^2 \\ - \frac{a_k}{a_s}(t^2 - 2\Delta_t t + \Delta_t^2) &= t^2 \\ - \p({\frac{a_k}{a_s} - 1})t^2 - - 2\Delta_t\frac{a_k}{a_s} t - + \Delta_t^2\frac{a_k}{a_s} &= 0 \\ - a t^2 + b t + c &= 0 \\ - a &= \p({\frac{a_k}{a_s} - 1}) = \p({\frac{4.90}{3.50} - 1}) = 0.400 \\ - b &= - 2\Delta_t\frac{a_k}{a_s} = - 2\cdot(1.00\U{s})\frac{4.90}{3.50} - = -2.80\U{s} \\ - c &= \Delta_t^2\frac{a_k}{a_s} = (1.00\U{s})^2\frac{4.90}{3.50} - = 1.40\U{s$^2$} + x_k = \frac{1}{2}a_k (t_p-\Delta_t)^2 &= x_s = \frac{1}{2}a_s t_p^2 \\ + a_k (t_p-\Delta_t)^2 &= a_s t^2 \\ + \sqrt{a_k} (t_p-\Delta_t) &= \pm\sqrt{a_s} t_p \\ + t_p (\sqrt{a_k} \mp \sqrt{a_s}) &= \sqrt{a_k}\Delta_t \\ + t_p &= \frac{\sqrt{a_k}\Delta_t}{\sqrt{a_k} \mp \sqrt{a_s}} + = \frac{\sqrt{4.90\U{m/s$^2$}} \cdot 1.00\U{s}} + {\sqrt{4.90\U{m/s$^2$}} \mp \sqrt{3.50\U{m/s$^2$}}} + = 6.46 \text{ or } 0.542 \U{s} \end{align} -Solving with the quadratic equation -\begin{align} - t &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} - = (6.46, 0.542)\U{s} -\end{align} - The smaller time occurs before Kathy starts, where the quadratic equation for $x_k(t)$ does not hold ($x_k(t < \Delta(t))=0$, as Kathy is sitting at the starting line). Therefore, the Kathy passes Stan at @@ -83,6 +74,12 @@ Kathy travels the same distance as Stan = \frac{1}{2} (3.50\U{m/s$^2$}) \cdot (6.46\U{s})^2 = \ans{73.0\U{m}} \end{equation} +Symbolically, +\begin{equation} + x_s(t_p) = \frac{1}{2}a_s + \p({ \frac{\sqrt{a_k}\Delta_t}{\sqrt{a_k} \mp \sqrt{a_s}} })^2 + = \frac{a_s a_k \Delta_t^2}{2(\sqrt{a_k} \mp \sqrt{a_s})^2} +\end{equation} \Part{c} The velocities at the passing point are -- 2.26.2