return mylist
-class taskparams:
+class taskparams(object):
""" default parameters for task classes """
def __init__(self,input=None,output=None):
self.silence = -70
def gettruth(self):
""" big hack to extract midi note from /path/to/file.<midinote>.wav """
- return float(self.input.split('.')[-2])
-
+ floatpit = self.input.split('.')[-2]
+ try:
+ return float(floatpit)
+ except ValueError:
+ print "ERR: no truth file found"
+ return 0
def eval(self,results):
from median import short_find
self.d,self.d2 = [],[]
self.maxofunc = 0
if self.params.localmin:
- ovalist = [0., 0., 0., 0., 0.]
+ self.ovalist = [0., 0., 0., 0., 0.]
def __call__(self):
task.__call__(self)
if self.params.storefunc:
self.ofunc.append(val)
if self.params.localmin:
- if val > 0: ovalist.append(val)
- else: ovalist.append(0)
- ovalist.pop(0)
+ if val > 0: self.ovalist.append(val)
+ else: self.ovalist.append(0)
+ self.ovalist.pop(0)
if (isonset == 1):
if self.params.localmin:
i=len(self.ovalist)-1
now = 0
return now, val
+ def gettruth(self):
+ from os.path import isfile
+ ftru = '.'.join(self.input.split('.')[:-1])
+ ftru = '.'.join((ftru,'txt'))
+ if isfile(ftru): return ftru
+ else: return
+
def eval(self,lres):
from txtfile import read_datafile
from onsetcompare import onset_roc
amode = 'roc'
vmode = 'verbose'
vmode = ''
+ ftru = self.gettruth()
+ if not ftru:
+ print "ERR: no truth file found"
+ return
+ ltru = read_datafile(ftru,depth=0)
for i in range(len(lres)): lres[i] = lres[i][0]*self.params.step
- ltru = read_datafile(self.input.replace('.wav','.txt'),depth=0)
if vmode=='verbose':
print "Running with mode %s" % self.params.mode,
print " and threshold %f" % self.params.threshold,
writesize = self.fileo.write(fromcross,self.mycopy)
else:
writesize = self.fileo.write(self.readsize,self.myvec)
+
+class taskbeat(taskonset):
+ def __init__(self,input,params=None,output=None):
+ """ open the input file and initialize arguments
+ parameters should be set *before* calling this method.
+ """
+ taskonset.__init__(self,input,output=None,params=params)
+ self.btwinlen = 512**2/self.params.hopsize
+ self.btstep = self.btwinlen/4
+ self.btoutput = fvec(self.btstep,self.channels)
+ self.dfframe = fvec(self.btwinlen,self.channels)
+ self.bt = beattracking(self.btwinlen,self.channels)
+ self.pos2 = 0
+
+ def __call__(self):
+ taskonset.__call__(self)
+ # write to current file
+ if self.pos2 == self.btstep - 1 :
+ self.bt.do(self.dfframe,self.btoutput)
+ for i in range (self.btwinlen - self.btstep):
+ self.dfframe.set(self.dfframe.get(i+self.btstep,0),i,0)
+ for i in range(self.btwinlen - self.btstep, self.btwinlen):
+ self.dfframe.set(0,i,0)
+ self.pos2 = -1;
+ self.pos2 += 1
+ val = self.opick.pp.getval()
+ self.dfframe.set(val,self.btwinlen - self.btstep + self.pos2,0)
+ i=0
+ for i in range(1,int( self.btoutput.get(0,0) ) ):
+ if self.pos2 == self.btoutput.get(i,0) and \
+ aubio_silence_detection(self.myvec(),
+ self.params.silence)!=1:
+ return self.frameread, 0
+
+ def eval(self,results):
+ pass