--- /dev/null
+/*
+ * Copyright (c) 1990 Dennis Ferguson. All rights reserved.
+ *
+ * Commercial use is permitted only if products which are derived from
+ * or include this software are made available for purchase and/or use
+ * in Canada. Otherwise, redistribution and use in source and binary
+ * forms are permitted.
+ */
+
+Sorry about the poor quality of installation instructions. Included
+here are replacements for the DES portions of Eric Young's kerberos
+DES library replacement. To use this you will need his distribution.
+Untar the latter and:
+
+(1) Copy all .c and .h files into the distribution directory. This will
+ overwrite some files and add others.
+
+(2) Apply the patch included here to set_key.c in the distribution directory.
+
+(3) Edit the Imakefile (or the Makefile) to include the following files
+ on the SRCS= line:
+
+ des_tables.c ecb_buffer.c make_sched.c
+
+ Add the following files to the OBJS= line:
+
+ des_tables.o ecb_buffer.o make_sched.o
+
+ Add the following file to the CODE= line:
+
+ des_tables.h
+
+Recompile and you're done.
+
+The salient differences between this DES and Eric Young's are as follows:
+
+(1) There are no dependencies on byte ordering, the ability to do
+ unaligned loads and stores, or any other machine dependencies
+ that I know of. There are no #ifdef's. The code could probably
+ be made faster by adding such things, but not enough to be worth
+ it.
+
+(2) Combined S and P tables are used for the inner loop of the cipher
+ routine and the E expansion is computed on the fly, like Eric
+ Young's code, but the computation is reordered from the standard
+ to save instructions.
+
+(3) The initial and final permutations are table driven, and take
+ about the same amount of work as a single round of the inner
+ loop (i.e. only about 12% of the work done for an ecb encryption
+ is spent in the IP and FP code).
+
+(4) Since NTP (for which this DES was originally implemented) uses
+ lots of keys to encrypt small things, the key permutation code
+ has been well worked over and is quite speedy (the amount of
+ work required to permute a key is on the order of that required
+ to do a single ECB encryption, more or less).
+
+(5) Since the code required to do an ECB encryption using the tables
+ is actually fairly compact, even with lots of inlining, it was
+ implemented as a macro and is expanded in situ where needed.
+
+On the one machine I ran a comparison on this code ran 80% faster than
+Eric's, compiled into a slightly smaller space, and did pass destest.
+I suspect this stuff is also faster, and not a lot larger, than the
+library MIT doesn't export with kerberos. You mileage may vary.
+
+The silly copyright was a (probably ineffective) afterthought. If it
+really inconveniences you give me a call.
--- /dev/null
+/*
+ * Copyright (c) 1990 Dennis Ferguson. All rights reserved.
+ *
+ * Commercial use is permitted only if products which are derived from
+ * or include this software are made available for purchase and/or use
+ * in Canada. Otherwise, redistribution and use in source and binary
+ * forms are permitted.
+ */
+
+/*
+ * des_cbc_encrypt.c - an implementation of the DES cipher function in cbc mode
+ */
+#include "des.h"
+#include "f_tables.h"
+
+/*
+ * des_cbc_encrypt - {en,de}crypt a stream in CBC mode
+ */
+int
+mit_des_cbc_encrypt(in, out, length, schedule, ivec, encrypt)
+ des_cblock *in;
+ des_cblock *out;
+ long length;
+ des_key_schedule schedule;
+ des_cblock ivec;
+ int encrypt;
+{
+ register unsigned KRB_INT32 left, right;
+ register unsigned KRB_INT32 temp;
+ register unsigned KRB_INT32 *kp;
+ register unsigned char *ip, *op;
+
+ /*
+ * Get key pointer here. This won't need to be reinitialized
+ */
+ kp = (unsigned KRB_INT32 *)schedule;
+
+ /*
+ * Deal with encryption and decryption separately.
+ */
+ if (encrypt) {
+ /*
+ * Initialize left and right with the contents of the initial
+ * vector.
+ */
+ ip = (unsigned char *)ivec;
+ GET_HALF_BLOCK(left, ip);
+ GET_HALF_BLOCK(right, ip);
+
+ /*
+ * Suitably initialized, now work the length down 8 bytes
+ * at a time.
+ */
+ ip = (unsigned char *)in;
+ op = (unsigned char *)out;
+ while (length > 0) {
+ /*
+ * Get more input, xor it in. If the length is
+ * greater than or equal to 8 this is straight
+ * forward. Otherwise we have to fart around.
+ */
+ if (length >= 8) {
+ left ^= ((*ip++) & 0xff) << 24;
+ left ^= ((*ip++) & 0xff) << 16;
+ left ^= ((*ip++) & 0xff) << 8;
+ left ^= (*ip++) & 0xff;
+ right ^= ((*ip++) & 0xff) << 24;
+ right ^= ((*ip++) & 0xff) << 16;
+ right ^= ((*ip++) & 0xff) << 8;
+ right ^= (*ip++) & 0xff;
+ length -= 8;
+ } else {
+ /*
+ * Oh, shoot. We need to pad the
+ * end with zeroes. Work backwards
+ * to do this.
+ */
+ ip += (int) length;
+ switch(length) {
+ case 7:
+ right ^= (*(--ip) & 0xff) << 8;
+ case 6:
+ right ^= (*(--ip) & 0xff) << 16;
+ case 5:
+ right ^= (*(--ip) & 0xff) << 24;
+ case 4:
+ left ^= *(--ip) & 0xff;
+ case 3:
+ left ^= (*(--ip) & 0xff) << 8;
+ case 2:
+ left ^= (*(--ip) & 0xff) << 16;
+ case 1:
+ left ^= (*(--ip) & 0xff) << 24;
+ break;
+ }
+ length = 0;
+ }
+
+ /*
+ * Encrypt what we have
+ */
+ DES_DO_ENCRYPT(left, right, temp, kp);
+
+ /*
+ * Copy the results out
+ */
+ PUT_HALF_BLOCK(left, op);
+ PUT_HALF_BLOCK(right, op);
+ }
+ } else {
+ /*
+ * Decrypting is harder than encrypting because of
+ * the necessity of remembering a lot more things.
+ * Should think about this a little more...
+ */
+ unsigned KRB_INT32 ocipherl, ocipherr;
+ unsigned KRB_INT32 cipherl, cipherr;
+
+ if (length <= 0)
+ return 0;
+
+ /*
+ * Prime the old cipher with ivec.
+ */
+ ip = (unsigned char *)ivec;
+ GET_HALF_BLOCK(ocipherl, ip);
+ GET_HALF_BLOCK(ocipherr, ip);
+
+ /*
+ * Now do this in earnest until we run out of length.
+ */
+ ip = (unsigned char *)in;
+ op = (unsigned char *)out;
+ for (;;) { /* check done inside loop */
+ /*
+ * Read a block from the input into left and
+ * right. Save this cipher block for later.
+ */
+ GET_HALF_BLOCK(left, ip);
+ GET_HALF_BLOCK(right, ip);
+ cipherl = left;
+ cipherr = right;
+
+ /*
+ * Decrypt this.
+ */
+ DES_DO_DECRYPT(left, right, temp, kp);
+
+ /*
+ * Xor with the old cipher to get plain
+ * text. Output 8 or less bytes of this.
+ */
+ left ^= ocipherl;
+ right ^= ocipherr;
+ if (length > 8) {
+ length -= 8;
+ PUT_HALF_BLOCK(left, op);
+ PUT_HALF_BLOCK(right, op);
+ /*
+ * Save current cipher block here
+ */
+ ocipherl = cipherl;
+ ocipherr = cipherr;
+ } else {
+ /*
+ * Trouble here. Start at end of output,
+ * work backwards.
+ */
+ op += (int) length;
+ switch(length) {
+ case 8:
+ *(--op) = right & 0xff;
+ case 7:
+ *(--op) = (right >> 8) & 0xff;
+ case 6:
+ *(--op) = (right >> 16) & 0xff;
+ case 5:
+ *(--op) = (right >> 24) & 0xff;
+ case 4:
+ *(--op) = left & 0xff;
+ case 3:
+ *(--op) = (left >> 8) & 0xff;
+ case 2:
+ *(--op) = (left >> 16) & 0xff;
+ case 1:
+ *(--op) = (left >> 24) & 0xff;
+ break;
+ }
+ break; /* we're done */
+ }
+ }
+ }
+
+ /*
+ * Done, return nothing.
+ */
+ return 0;
+}
--- /dev/null
+/*
+ * Copyright (c) 1990 Dennis Ferguson. All rights reserved.
+ *
+ * Commercial use is permitted only if products which are derived from
+ * or include this software are made available for purchase and/or use
+ * in Canada. Otherwise, redistribution and use in source and binary
+ * forms are permitted.
+ */
+
+/*
+ * des_cbc_cksum.c - compute an 8 byte checksum using DES in CBC mode
+ */
+#include "des.h"
+#include "f_tables.h"
+
+unsigned long
+mit_des_cbc_cksum(in, out, length, schedule, ivec)
+ des_cblock *in;
+ des_cblock *out;
+ long length;
+ des_key_schedule schedule;
+ des_cblock ivec;
+{
+ register unsigned KRB_INT32 left, right;
+ register unsigned KRB_INT32 temp;
+ register unsigned KRB_INT32 *kp;
+ register unsigned char *ip;
+ register KRB_INT32 len;
+
+ /*
+ * Initialize left and right with the contents of the initial
+ * vector.
+ */
+ ip = (unsigned char *)ivec;
+ GET_HALF_BLOCK(left, ip);
+ GET_HALF_BLOCK(right, ip);
+
+ /*
+ * Suitably initialized, now work the length down 8 bytes
+ * at a time.
+ */
+ ip = (unsigned char *)in;
+ len = length;
+ while (len > 0) {
+ /*
+ * Get more input, xor it in. If the length is
+ * greater than or equal to 8 this is straight
+ * forward. Otherwise we have to fart around.
+ */
+ if (len >= 8) {
+ left ^= ((*ip++) & 0xff) << 24;
+ left ^= ((*ip++) & 0xff) << 16;
+ left ^= ((*ip++) & 0xff) << 8;
+ left ^= (*ip++) & 0xff;
+ right ^= ((*ip++) & 0xff) << 24;
+ right ^= ((*ip++) & 0xff) << 16;
+ right ^= ((*ip++) & 0xff) << 8;
+ right ^= (*ip++) & 0xff;
+ len -= 8;
+ } else {
+ /*
+ * Oh, shoot. We need to pad the
+ * end with zeroes. Work backwards
+ * to do this.
+ */
+ ip += (int) len;
+ switch(len) {
+ case 7:
+ right ^= (*(--ip) & 0xff) << 8;
+ case 6:
+ right ^= (*(--ip) & 0xff) << 16;
+ case 5:
+ right ^= (*(--ip) & 0xff) << 24;
+ case 4:
+ left ^= *(--ip) & 0xff;
+ case 3:
+ left ^= (*(--ip) & 0xff) << 8;
+ case 2:
+ left ^= (*(--ip) & 0xff) << 16;
+ case 1:
+ left ^= (*(--ip) & 0xff) << 24;
+ break;
+ }
+ len = 0;
+ }
+
+ /*
+ * Encrypt what we have
+ */
+ kp = (unsigned KRB_INT32 *)schedule;
+ DES_DO_ENCRYPT(left, right, temp, kp);
+ }
+
+ /*
+ * Done. Left and right have the checksum. Put it into
+ * the output.
+ */
+ ip = (unsigned char *)out;
+ PUT_HALF_BLOCK(left, ip);
+ PUT_HALF_BLOCK(right, ip);
+
+ /*
+ * Return right. I'll bet the MIT code returns this
+ * inconsistantly (with the low order byte of the checksum
+ * not always in the low order byte of the KRB_INT32). We won't.
+ */
+ return right;
+}
--- /dev/null
+/*
+ * Copyright (c) 1990 Dennis Ferguson. All rights reserved.
+ *
+ * Commercial use is permitted only if products which are derived from
+ * or include this software are made available for purchase and/or use
+ * in Canada. Otherwise, redistribution and use in source and binary
+ * forms are permitted.
+ */
+
+/*
+ * des_ecb_encrypt.c - do an encryption in ECB mode
+ */
+#include "des.h"
+#include "f_tables.h"
+
+/*
+ * des_ecb_encrypt - {en,de}crypt a block in ECB mode
+ */
+int
+mit_des_ecb_encrypt(in, out, schedule, encrypt)
+ des_cblock *in;
+ des_cblock *out;
+ des_key_schedule schedule;
+ int encrypt;
+{
+ register unsigned KRB_INT32 left, right;
+ register unsigned KRB_INT32 temp;
+ register int i;
+
+ {
+ /*
+ * Need a temporary for copying the data in
+ */
+ register unsigned char *datap;
+
+ /*
+ * Copy the input block into the registers
+ */
+ datap = (unsigned char *)in;
+ GET_HALF_BLOCK(left, datap);
+ GET_HALF_BLOCK(right, datap);
+ }
+
+ /*
+ * Do the initial permutation.
+ */
+ DES_INITIAL_PERM(left, right, temp);
+
+ /*
+ * Now the rounds. Use different code depending on whether it
+ * is an encryption or a decryption (gross, should keep both
+ * sets of keys in the key schedule instead).
+ */
+ if (encrypt) {
+ register unsigned KRB_INT32 *kp;
+
+ kp = (unsigned KRB_INT32 *)schedule;
+ for (i = 0; i < 8; i++) {
+ DES_SP_ENCRYPT_ROUND(left, right, temp, kp);
+ DES_SP_ENCRYPT_ROUND(right, left, temp, kp);
+ }
+ } else {
+ register unsigned KRB_INT32 *kp;
+
+ /*
+ * Point kp past end of schedule
+ */
+ kp = ((unsigned KRB_INT32 *)schedule) + (2 * 16);;
+ for (i = 0; i < 8; i++) {
+ DES_SP_DECRYPT_ROUND(left, right, temp, kp);
+ DES_SP_DECRYPT_ROUND(right, left, temp, kp);
+ }
+ }
+
+ /*
+ * Do the final permutation
+ */
+ DES_FINAL_PERM(left, right, temp);
+
+ /*
+ * Finally, copy the result out a byte at a time
+ */
+ {
+ register unsigned char *datap;
+
+ datap = (unsigned char *)out;
+ PUT_HALF_BLOCK(left, datap);
+ PUT_HALF_BLOCK(right, datap);
+ }
+
+ /*
+ * return nothing
+ */
+ return (0);
+}
--- /dev/null
+/*
+ * These routines check and fix parity of encryption keys for the DES
+ * algorithm.
+ *
+ * They are a replacement for routines in key_parity.c, that don't require
+ * the table building that they do.
+ *
+ * Mark Eichin -- Cygnus Support
+ */
+
+#ifndef lint
+static char rcsid_f_parity_c[] =
+"$Header$";
+#endif lint
+
+#include "des.h"
+
+/*
+ * des_fixup_key_parity: Forces odd parity per byte; parity is bits
+ * 8,16,...64 in des order, implies 0, 8, 16, ...
+ * vax order.
+ */
+#define smask(step) ((1<<step)-1)
+#define pstep(x,step) (((x)&smask(step))^(((x)>>step)&smask(step)))
+#define parity_char(x) pstep(pstep(pstep((x),4),2),1)
+
+void
+mit_des_fixup_key_parity(key)
+ register des_cblock key;
+{
+ int i;
+ for (i=0; i<sizeof(des_cblock); i++)
+ {
+ key[i] &= 0xfe;
+ key[i] |= 1^parity_char(key[i]);
+ }
+
+ return;
+}
+
+/*
+ * des_check_key_parity: returns true iff key has the correct des parity.
+ * See des_fix_key_parity for the definition of
+ * correct des parity.
+ */
+int
+mit_des_check_key_parity(key)
+ register des_cblock key;
+{
+ int i;
+
+ for (i=0; i<sizeof(des_cblock); i++)
+ {
+ if((key[i] & 1) == parity_char(0xfe&key[i]))
+ {
+ return 0;
+ }
+ }
+
+ return(1);
+}
+
--- /dev/null
+/*
+ * Copyright (c) 1990 Dennis Ferguson. All rights reserved.
+ *
+ * Commercial use is permitted only if products which are derived from
+ * or include this software are made available for purchase and/or use
+ * in Canada. Otherwise, redistribution and use in source and binary
+ * forms are permitted.
+ */
+
+/*
+ * des_pcbc_encrypt.c - encrypt a string of characters in error propagation mode
+ */
+#include "des.h"
+#include "f_tables.h"
+
+/*
+ * des_pcbc_encrypt - {en,de}crypt a stream in PCBC mode
+ */
+int
+mit_des_pcbc_encrypt(in, out, length, schedule, ivec, encrypt)
+ des_cblock *in;
+ des_cblock *out;
+ long length;
+ des_key_schedule schedule;
+ des_cblock ivec;
+ int encrypt;
+{
+ register unsigned KRB_INT32 left, right;
+ register unsigned KRB_INT32 temp;
+ register unsigned KRB_INT32 *kp;
+ register unsigned char *ip, *op;
+
+ /*
+ * Copy the key pointer, just once
+ */
+ kp = (unsigned KRB_INT32 *)schedule;
+
+ /*
+ * Deal with encryption and decryption separately.
+ */
+ if (encrypt) {
+ register unsigned KRB_INT32 plainl;
+ register unsigned KRB_INT32 plainr;
+
+ /*
+ * Initialize left and right with the contents of the initial
+ * vector.
+ */
+ ip = (unsigned char *)ivec;
+ GET_HALF_BLOCK(left, ip);
+ GET_HALF_BLOCK(right, ip);
+
+ /*
+ * Suitably initialized, now work the length down 8 bytes
+ * at a time.
+ */
+ ip = (unsigned char *)in;
+ op = (unsigned char *)out;
+ while (length > 0) {
+ /*
+ * Get block of input. If the length is
+ * greater than 8 this is straight
+ * forward. Otherwise we have to fart around.
+ */
+ if (length > 8) {
+ GET_HALF_BLOCK(plainl, ip);
+ GET_HALF_BLOCK(plainr, ip);
+ left ^= plainl;
+ right ^= plainr;
+ length -= 8;
+ } else {
+ /*
+ * Oh, shoot. We need to pad the
+ * end with zeroes. Work backwards
+ * to do this. We know this is the
+ * last block, though, so we don't have
+ * to save the plain text.
+ */
+ ip += (int) length;
+ switch(length) {
+ case 8:
+ right ^= *(--ip) & 0xff;
+ case 7:
+ right ^= (*(--ip) & 0xff) << 8;
+ case 6:
+ right ^= (*(--ip) & 0xff) << 16;
+ case 5:
+ right ^= (*(--ip) & 0xff) << 24;
+ case 4:
+ left ^= *(--ip) & 0xff;
+ case 3:
+ left ^= (*(--ip) & 0xff) << 8;
+ case 2:
+ left ^= (*(--ip) & 0xff) << 16;
+ case 1:
+ left ^= (*(--ip) & 0xff) << 24;
+ break;
+ }
+ length = 0;
+ }
+
+ /*
+ * Encrypt what we have
+ */
+ DES_DO_ENCRYPT(left, right, temp, kp);
+
+ /*
+ * Copy the results out
+ */
+ PUT_HALF_BLOCK(left, op);
+ PUT_HALF_BLOCK(right, op);
+
+ /*
+ * Xor with the old plain text
+ */
+ left ^= plainl;
+ right ^= plainr;
+ }
+ } else {
+ /*
+ * Decrypting is harder than encrypting because of
+ * the necessity of remembering a lot more things.
+ * Should think about this a little more...
+ */
+ unsigned KRB_INT32 ocipherl, ocipherr;
+ unsigned KRB_INT32 cipherl, cipherr;
+
+ if (length <= 0)
+ return 0;
+
+ /*
+ * Prime the old cipher with ivec.
+ */
+ ip = (unsigned char *)ivec;
+ GET_HALF_BLOCK(ocipherl, ip);
+ GET_HALF_BLOCK(ocipherr, ip);
+
+ /*
+ * Now do this in earnest until we run out of length.
+ */
+ ip = (unsigned char *)in;
+ op = (unsigned char *)out;
+ for (;;) { /* check done inside loop */
+ /*
+ * Read a block from the input into left and
+ * right. Save this cipher block for later.
+ */
+ GET_HALF_BLOCK(left, ip);
+ GET_HALF_BLOCK(right, ip);
+ cipherl = left;
+ cipherr = right;
+
+ /*
+ * Decrypt this.
+ */
+ DES_DO_DECRYPT(left, right, temp, kp);
+
+ /*
+ * Xor with the old cipher to get plain
+ * text. Output 8 or less bytes of this.
+ */
+ left ^= ocipherl;
+ right ^= ocipherr;
+ if (length > 8) {
+ length -= 8;
+ PUT_HALF_BLOCK(left, op);
+ PUT_HALF_BLOCK(right, op);
+ /*
+ * Save current cipher block here
+ */
+ ocipherl = cipherl ^ left;
+ ocipherr = cipherr ^ right;
+ } else {
+ /*
+ * Trouble here. Start at end of output,
+ * work backwards.
+ */
+ op += (int) length;
+ switch(length) {
+ case 8:
+ *(--op) = right & 0xff;
+ case 7:
+ *(--op) = (right >> 8) & 0xff;
+ case 6:
+ *(--op) = (right >> 16) & 0xff;
+ case 5:
+ *(--op) = (right >> 24) & 0xff;
+ case 4:
+ *(--op) = left & 0xff;
+ case 3:
+ *(--op) = (left >> 8) & 0xff;
+ case 2:
+ *(--op) = (left >> 16) & 0xff;
+ case 1:
+ *(--op) = (left >> 24) & 0xff;
+ break;
+ }
+ break; /* we're done */
+ }
+ }
+ }
+
+ /*
+ * Done, return nothing.
+ */
+ return 0;
+}
--- /dev/null
+/*
+ * Copyright (c) 1990 Dennis Ferguson. All rights reserved.
+ *
+ * Commercial use is permitted only if products which are derived from
+ * or include this software are made available for purchase and/or use
+ * in Canada. Otherwise, redistribution and use in source and binary
+ * forms are permitted.
+ */
+
+/*
+ * des_make_sched.c - permute a DES key, returning the resulting key schedule
+ */
+#include "des.h"
+#include <krb5/krb5.h>
+#include <krb5/mit-des.h>
+
+/*
+ * Permuted choice 1 tables. These are used to extract bits
+ * from the left and right parts of the key to form Ci and Di.
+ * The code that uses these tables knows which bits from which
+ * part of each key are used to form Ci and Di.
+ */
+static const unsigned KRB_INT32 PC1_CL[8] = {
+ 0x00000000, 0x00000010, 0x00001000, 0x00001010,
+ 0x00100000, 0x00100010, 0x00101000, 0x00101010
+};
+
+static const unsigned KRB_INT32 PC1_DL[16] = {
+ 0x00000000, 0x00100000, 0x00001000, 0x00101000,
+ 0x00000010, 0x00100010, 0x00001010, 0x00101010,
+ 0x00000001, 0x00100001, 0x00001001, 0x00101001,
+ 0x00000011, 0x00100011, 0x00001011, 0x00101011
+};
+
+static const unsigned KRB_INT32 PC1_CR[16] = {
+ 0x00000000, 0x00000001, 0x00000100, 0x00000101,
+ 0x00010000, 0x00010001, 0x00010100, 0x00010101,
+ 0x01000000, 0x01000001, 0x01000100, 0x01000101,
+ 0x01010000, 0x01010001, 0x01010100, 0x01010101
+};
+
+static const unsigned KRB_INT32 PC1_DR[8] = {
+ 0x00000000, 0x01000000, 0x00010000, 0x01010000,
+ 0x00000100, 0x01000100, 0x00010100, 0x01010100
+};
+
+
+/*
+ * At the start of some iterations of the key schedule we do
+ * a circular left shift by one place, while for others we do a shift by
+ * two places. This has bits set for the iterations where we do 2 bit
+ * shifts, starting at the low order bit.
+ */
+#define TWO_BIT_SHIFTS 0x7efc
+
+/*
+ * Permuted choice 2 tables. The first actually produces the low order
+ * 24 bits of the subkey Ki from the 28 bit value of Ci. The second produces
+ * the high order 24 bits from Di. The tables are indexed by six bit
+ * segments of Ci and Di respectively. The code is handcrafted to compute
+ * the appropriate 6 bit chunks.
+ *
+ * Note that for ease of computation, the 24 bit values are produced with
+ * six bits going into each byte. Note also that the table has been byte
+ * rearranged to produce keys which match the order we will apply them
+ * in in the des code.
+ */
+static const unsigned KRB_INT32 PC2_C[4][64] = {
+ 0x00000000, 0x00000004, 0x00010000, 0x00010004,
+ 0x00000400, 0x00000404, 0x00010400, 0x00010404,
+ 0x00000020, 0x00000024, 0x00010020, 0x00010024,
+ 0x00000420, 0x00000424, 0x00010420, 0x00010424,
+ 0x01000000, 0x01000004, 0x01010000, 0x01010004,
+ 0x01000400, 0x01000404, 0x01010400, 0x01010404,
+ 0x01000020, 0x01000024, 0x01010020, 0x01010024,
+ 0x01000420, 0x01000424, 0x01010420, 0x01010424,
+ 0x00020000, 0x00020004, 0x00030000, 0x00030004,
+ 0x00020400, 0x00020404, 0x00030400, 0x00030404,
+ 0x00020020, 0x00020024, 0x00030020, 0x00030024,
+ 0x00020420, 0x00020424, 0x00030420, 0x00030424,
+ 0x01020000, 0x01020004, 0x01030000, 0x01030004,
+ 0x01020400, 0x01020404, 0x01030400, 0x01030404,
+ 0x01020020, 0x01020024, 0x01030020, 0x01030024,
+ 0x01020420, 0x01020424, 0x01030420, 0x01030424,
+
+ 0x00000000, 0x02000000, 0x00000800, 0x02000800,
+ 0x00080000, 0x02080000, 0x00080800, 0x02080800,
+ 0x00000001, 0x02000001, 0x00000801, 0x02000801,
+ 0x00080001, 0x02080001, 0x00080801, 0x02080801,
+ 0x00000100, 0x02000100, 0x00000900, 0x02000900,
+ 0x00080100, 0x02080100, 0x00080900, 0x02080900,
+ 0x00000101, 0x02000101, 0x00000901, 0x02000901,
+ 0x00080101, 0x02080101, 0x00080901, 0x02080901,
+ 0x10000000, 0x12000000, 0x10000800, 0x12000800,
+ 0x10080000, 0x12080000, 0x10080800, 0x12080800,
+ 0x10000001, 0x12000001, 0x10000801, 0x12000801,
+ 0x10080001, 0x12080001, 0x10080801, 0x12080801,
+ 0x10000100, 0x12000100, 0x10000900, 0x12000900,
+ 0x10080100, 0x12080100, 0x10080900, 0x12080900,
+ 0x10000101, 0x12000101, 0x10000901, 0x12000901,
+ 0x10080101, 0x12080101, 0x10080901, 0x12080901,
+
+ 0x00000000, 0x00040000, 0x00002000, 0x00042000,
+ 0x00100000, 0x00140000, 0x00102000, 0x00142000,
+ 0x20000000, 0x20040000, 0x20002000, 0x20042000,
+ 0x20100000, 0x20140000, 0x20102000, 0x20142000,
+ 0x00000008, 0x00040008, 0x00002008, 0x00042008,
+ 0x00100008, 0x00140008, 0x00102008, 0x00142008,
+ 0x20000008, 0x20040008, 0x20002008, 0x20042008,
+ 0x20100008, 0x20140008, 0x20102008, 0x20142008,
+ 0x00200000, 0x00240000, 0x00202000, 0x00242000,
+ 0x00300000, 0x00340000, 0x00302000, 0x00342000,
+ 0x20200000, 0x20240000, 0x20202000, 0x20242000,
+ 0x20300000, 0x20340000, 0x20302000, 0x20342000,
+ 0x00200008, 0x00240008, 0x00202008, 0x00242008,
+ 0x00300008, 0x00340008, 0x00302008, 0x00342008,
+ 0x20200008, 0x20240008, 0x20202008, 0x20242008,
+ 0x20300008, 0x20340008, 0x20302008, 0x20342008,
+
+ 0x00000000, 0x00000010, 0x08000000, 0x08000010,
+ 0x00000200, 0x00000210, 0x08000200, 0x08000210,
+ 0x00000002, 0x00000012, 0x08000002, 0x08000012,
+ 0x00000202, 0x00000212, 0x08000202, 0x08000212,
+ 0x04000000, 0x04000010, 0x0c000000, 0x0c000010,
+ 0x04000200, 0x04000210, 0x0c000200, 0x0c000210,
+ 0x04000002, 0x04000012, 0x0c000002, 0x0c000012,
+ 0x04000202, 0x04000212, 0x0c000202, 0x0c000212,
+ 0x00001000, 0x00001010, 0x08001000, 0x08001010,
+ 0x00001200, 0x00001210, 0x08001200, 0x08001210,
+ 0x00001002, 0x00001012, 0x08001002, 0x08001012,
+ 0x00001202, 0x00001212, 0x08001202, 0x08001212,
+ 0x04001000, 0x04001010, 0x0c001000, 0x0c001010,
+ 0x04001200, 0x04001210, 0x0c001200, 0x0c001210,
+ 0x04001002, 0x04001012, 0x0c001002, 0x0c001012,
+ 0x04001202, 0x04001212, 0x0c001202, 0x0c001212
+};
+
+static const unsigned KRB_INT32 PC2_D[4][64] = {
+ 0x00000000, 0x02000000, 0x00020000, 0x02020000,
+ 0x00000100, 0x02000100, 0x00020100, 0x02020100,
+ 0x00000008, 0x02000008, 0x00020008, 0x02020008,
+ 0x00000108, 0x02000108, 0x00020108, 0x02020108,
+ 0x00200000, 0x02200000, 0x00220000, 0x02220000,
+ 0x00200100, 0x02200100, 0x00220100, 0x02220100,
+ 0x00200008, 0x02200008, 0x00220008, 0x02220008,
+ 0x00200108, 0x02200108, 0x00220108, 0x02220108,
+ 0x00000200, 0x02000200, 0x00020200, 0x02020200,
+ 0x00000300, 0x02000300, 0x00020300, 0x02020300,
+ 0x00000208, 0x02000208, 0x00020208, 0x02020208,
+ 0x00000308, 0x02000308, 0x00020308, 0x02020308,
+ 0x00200200, 0x02200200, 0x00220200, 0x02220200,
+ 0x00200300, 0x02200300, 0x00220300, 0x02220300,
+ 0x00200208, 0x02200208, 0x00220208, 0x02220208,
+ 0x00200308, 0x02200308, 0x00220308, 0x02220308,
+
+ 0x00000000, 0x00001000, 0x00000020, 0x00001020,
+ 0x00100000, 0x00101000, 0x00100020, 0x00101020,
+ 0x08000000, 0x08001000, 0x08000020, 0x08001020,
+ 0x08100000, 0x08101000, 0x08100020, 0x08101020,
+ 0x00000004, 0x00001004, 0x00000024, 0x00001024,
+ 0x00100004, 0x00101004, 0x00100024, 0x00101024,
+ 0x08000004, 0x08001004, 0x08000024, 0x08001024,
+ 0x08100004, 0x08101004, 0x08100024, 0x08101024,
+ 0x00000400, 0x00001400, 0x00000420, 0x00001420,
+ 0x00100400, 0x00101400, 0x00100420, 0x00101420,
+ 0x08000400, 0x08001400, 0x08000420, 0x08001420,
+ 0x08100400, 0x08101400, 0x08100420, 0x08101420,
+ 0x00000404, 0x00001404, 0x00000424, 0x00001424,
+ 0x00100404, 0x00101404, 0x00100424, 0x00101424,
+ 0x08000404, 0x08001404, 0x08000424, 0x08001424,
+ 0x08100404, 0x08101404, 0x08100424, 0x08101424,
+
+ 0x00000000, 0x10000000, 0x00010000, 0x10010000,
+ 0x00000002, 0x10000002, 0x00010002, 0x10010002,
+ 0x00002000, 0x10002000, 0x00012000, 0x10012000,
+ 0x00002002, 0x10002002, 0x00012002, 0x10012002,
+ 0x00040000, 0x10040000, 0x00050000, 0x10050000,
+ 0x00040002, 0x10040002, 0x00050002, 0x10050002,
+ 0x00042000, 0x10042000, 0x00052000, 0x10052000,
+ 0x00042002, 0x10042002, 0x00052002, 0x10052002,
+ 0x20000000, 0x30000000, 0x20010000, 0x30010000,
+ 0x20000002, 0x30000002, 0x20010002, 0x30010002,
+ 0x20002000, 0x30002000, 0x20012000, 0x30012000,
+ 0x20002002, 0x30002002, 0x20012002, 0x30012002,
+ 0x20040000, 0x30040000, 0x20050000, 0x30050000,
+ 0x20040002, 0x30040002, 0x20050002, 0x30050002,
+ 0x20042000, 0x30042000, 0x20052000, 0x30052000,
+ 0x20042002, 0x30042002, 0x20052002, 0x30052002,
+
+ 0x00000000, 0x04000000, 0x00000001, 0x04000001,
+ 0x01000000, 0x05000000, 0x01000001, 0x05000001,
+ 0x00000010, 0x04000010, 0x00000011, 0x04000011,
+ 0x01000010, 0x05000010, 0x01000011, 0x05000011,
+ 0x00080000, 0x04080000, 0x00080001, 0x04080001,
+ 0x01080000, 0x05080000, 0x01080001, 0x05080001,
+ 0x00080010, 0x04080010, 0x00080011, 0x04080011,
+ 0x01080010, 0x05080010, 0x01080011, 0x05080011,
+ 0x00000800, 0x04000800, 0x00000801, 0x04000801,
+ 0x01000800, 0x05000800, 0x01000801, 0x05000801,
+ 0x00000810, 0x04000810, 0x00000811, 0x04000811,
+ 0x01000810, 0x05000810, 0x01000811, 0x05000811,
+ 0x00080800, 0x04080800, 0x00080801, 0x04080801,
+ 0x01080800, 0x05080800, 0x01080801, 0x05080801,
+ 0x00080810, 0x04080810, 0x00080811, 0x04080811,
+ 0x01080810, 0x05080810, 0x01080811, 0x05080811
+};
+
+
+
+/*
+ * Permute the key to give us our key schedule.
+ */
+int
+make_key_sched(key, schedule)
+ mit_des_cblock key;
+ mit_des_key_schedule schedule;
+{
+ register unsigned KRB_INT32 c, d;
+
+ {
+ /*
+ * Need a pointer for the keys and a temporary KRB_INT32
+ */
+ register unsigned char *k;
+ register unsigned KRB_INT32 tmp;
+
+ /*
+ * Fetch the key into something we can work with
+ */
+ k = (unsigned char *)key;
+
+ /*
+ * The first permutted choice gives us the 28 bits for C0 and
+ * 28 for D0. C0 gets 12 bits from the left key and 16 from
+ * the right, while D0 gets 16 from the left and 12 from the
+ * right. The code knows which bits go where.
+ */
+ tmp = ((unsigned KRB_INT32)(*(k)++)) << 24;
+ tmp |= ((unsigned KRB_INT32)(*(k)++)) << 16;
+ tmp |= ((unsigned KRB_INT32)(*(k)++)) << 8;
+ tmp |= (unsigned KRB_INT32)(*(k)++); /* left part of key */
+ c = PC1_CL[(tmp >> 29) & 0x7]
+ | (PC1_CL[(tmp >> 21) & 0x7] << 1)
+ | (PC1_CL[(tmp >> 13) & 0x7] << 2)
+ | (PC1_CL[(tmp >> 5) & 0x7] << 3);
+ d = PC1_DL[(tmp >> 25) & 0xf]
+ | (PC1_DL[(tmp >> 17) & 0xf] << 1)
+ | (PC1_DL[(tmp >> 9) & 0xf] << 2)
+ | (PC1_DL[(tmp >> 1) & 0xf] << 3);
+
+ tmp = ((unsigned KRB_INT32)(*(k)++)) << 24;
+ tmp |= ((unsigned KRB_INT32)(*(k)++)) << 16;
+ tmp |= ((unsigned KRB_INT32)(*(k)++)) << 8;
+ tmp |= (unsigned KRB_INT32)(*(k)++); /* right part of key */
+ c |= PC1_CR[(tmp >> 28) & 0xf]
+ | (PC1_CR[(tmp >> 20) & 0xf] << 1)
+ | (PC1_CR[(tmp >> 12) & 0xf] << 2)
+ | (PC1_CR[(tmp >> 4) & 0xf] << 3);
+ d |= PC1_DR[(tmp >> 25) & 0x7]
+ | (PC1_DR[(tmp >> 17) & 0x7] << 1)
+ | (PC1_DR[(tmp >> 9) & 0x7] << 2)
+ | (PC1_DR[(tmp >> 1) & 0x7] << 3);
+ }
+
+ {
+ /*
+ * Need several temporaries in here
+ */
+ register unsigned KRB_INT32 ltmp, rtmp;
+ register unsigned KRB_INT32 *k;
+ register int two_bit_shifts;
+ register int i;
+ /*
+ * Now iterate to compute the key schedule. Note that we
+ * record the entire set of subkeys in 6 bit chunks since
+ * they are used that way. At 6 bits/char, we need
+ * 48/6 char's/subkey * 16 subkeys/encryption == 128 bytes.
+ * The schedule must be this big.
+ */
+ k = (unsigned KRB_INT32 *)schedule;
+ two_bit_shifts = TWO_BIT_SHIFTS;
+ for (i = 16; i > 0; i--) {
+ /*
+ * Do the rotation. One bit and two bit rotations
+ * are done separately. Note C and D are 28 bits.
+ */
+ if (two_bit_shifts & 0x1) {
+ c = ((c << 2) & 0xffffffc) | (c >> 26);
+ d = ((d << 2) & 0xffffffc) | (d >> 26);
+ } else {
+ c = ((c << 1) & 0xffffffe) | (c >> 27);
+ d = ((d << 1) & 0xffffffe) | (d >> 27);
+ }
+ two_bit_shifts >>= 1;
+
+ /*
+ * Apply permutted choice 2 to C to get the first
+ * 24 bits worth of keys. Note that bits 9, 18, 22
+ * and 25 (using DES numbering) in C are unused. The
+ * shift-mask stuff is done to delete these bits from
+ * the indices, since this cuts the table size in half.
+ *
+ * The table is torqued, by the way. If the standard
+ * byte order for this (high to low order) is 1234,
+ * the table actually gives us 4132.
+ */
+ ltmp = PC2_C[0][((c >> 22) & 0x3f)]
+ | PC2_C[1][((c >> 15) & 0xf) | ((c >> 16) & 0x30)]
+ | PC2_C[2][((c >> 4) & 0x3) | ((c >> 9) & 0x3c)]
+ | PC2_C[3][((c ) & 0x7) | ((c >> 4) & 0x38)];
+ /*
+ * Apply permutted choice 2 to D to get the other half.
+ * Here, bits 7, 10, 15 and 26 go unused. The sqeezing
+ * actually turns out to be cheaper here.
+ *
+ * This table is similarly torqued. If the standard
+ * byte order is 5678, the table has the bytes permuted
+ * to give us 7685.
+ */
+ rtmp = PC2_D[0][((d >> 22) & 0x3f)]
+ | PC2_D[1][((d >> 14) & 0xf) | ((d >> 15) & 0x30)]
+ | PC2_D[2][((d >> 7) & 0x3f)]
+ | PC2_D[3][((d ) & 0x3) | ((d >> 1) & 0x3c)];
+
+ /*
+ * Make up two words of the key schedule, with a
+ * byte order which is convenient for the DES
+ * inner loop. The high order (first) word will
+ * hold bytes 7135 (high to low order) while the
+ * second holds bytes 4682.
+ */
+ *k++ = (ltmp & 0x00ffff00) | (rtmp & 0xff0000ff);
+ *k++ = (ltmp & 0xff0000ff) | (rtmp & 0x00ffff00);
+ }
+ }
+ return (0);
+}
--- /dev/null
+/*
+ * Copyright (c) 1990 Dennis Ferguson. All rights reserved.
+ *
+ * Commercial use is permitted only if products which are derived from
+ * or include this software are made available for purchase and/or use
+ * in Canada. Otherwise, redistribution and use in source and binary
+ * forms are permitted.
+ */
+
+/*
+ * des_tables.c - precomputed tables used for the DES cipher function
+ */
+
+/*
+ * Include the header file so something will complain if the
+ * declarations get out of sync
+ */
+#include "des.h"
+#include "f_tables.h"
+
+/*
+ * These tables may be declared const if you want. Many compilers
+ * don't support this, though.
+ */
+
+/*
+ * The DES algorithm which uses these is intended to be fairly speedy
+ * at the expense of some memory. All the standard hacks are used.
+ * The S boxes and the P permutation are precomputed into one table.
+ * The E box never actually appears explicitly since it is easy to apply
+ * this algorithmically as needed. The initial permutation and final
+ * (inverse initial) permutation are computed from tables designed to
+ * permute one byte at a time. This should run pretty fast on machines
+ * with 32 bit words and bit field/multiple bit shift instructions which
+ * are fast.
+ */
+
+/*
+ * The initial permutation array. This is used to compute both the
+ * left and the right halves of the initial permutation using bytes
+ * from words made from the following operations:
+ *
+ * ((left & 0x55555555) << 1) | (right & 0x55555555) for left half
+ * (left & 0xaaaaaaaa) | ((right & 0xaaaaaaaa) >> 1) for right half
+ *
+ * The scheme is that we index into the table using each byte. The
+ * result from the high order byte is or'd with the result from the
+ * next byte shifted left once is or'd with the result from the next
+ * byte shifted left twice if or'd with the result from the low order
+ * byte shifted left by three. Clear?
+ */
+
+const unsigned KRB_INT32 des_IP_table[256] = {
+ 0x00000000, 0x00000010, 0x00000001, 0x00000011,
+ 0x00001000, 0x00001010, 0x00001001, 0x00001011,
+ 0x00000100, 0x00000110, 0x00000101, 0x00000111,
+ 0x00001100, 0x00001110, 0x00001101, 0x00001111,
+ 0x00100000, 0x00100010, 0x00100001, 0x00100011,
+ 0x00101000, 0x00101010, 0x00101001, 0x00101011,
+ 0x00100100, 0x00100110, 0x00100101, 0x00100111,
+ 0x00101100, 0x00101110, 0x00101101, 0x00101111,
+ 0x00010000, 0x00010010, 0x00010001, 0x00010011,
+ 0x00011000, 0x00011010, 0x00011001, 0x00011011,
+ 0x00010100, 0x00010110, 0x00010101, 0x00010111,
+ 0x00011100, 0x00011110, 0x00011101, 0x00011111,
+ 0x00110000, 0x00110010, 0x00110001, 0x00110011,
+ 0x00111000, 0x00111010, 0x00111001, 0x00111011,
+ 0x00110100, 0x00110110, 0x00110101, 0x00110111,
+ 0x00111100, 0x00111110, 0x00111101, 0x00111111,
+ 0x10000000, 0x10000010, 0x10000001, 0x10000011,
+ 0x10001000, 0x10001010, 0x10001001, 0x10001011,
+ 0x10000100, 0x10000110, 0x10000101, 0x10000111,
+ 0x10001100, 0x10001110, 0x10001101, 0x10001111,
+ 0x10100000, 0x10100010, 0x10100001, 0x10100011,
+ 0x10101000, 0x10101010, 0x10101001, 0x10101011,
+ 0x10100100, 0x10100110, 0x10100101, 0x10100111,
+ 0x10101100, 0x10101110, 0x10101101, 0x10101111,
+ 0x10010000, 0x10010010, 0x10010001, 0x10010011,
+ 0x10011000, 0x10011010, 0x10011001, 0x10011011,
+ 0x10010100, 0x10010110, 0x10010101, 0x10010111,
+ 0x10011100, 0x10011110, 0x10011101, 0x10011111,
+ 0x10110000, 0x10110010, 0x10110001, 0x10110011,
+ 0x10111000, 0x10111010, 0x10111001, 0x10111011,
+ 0x10110100, 0x10110110, 0x10110101, 0x10110111,
+ 0x10111100, 0x10111110, 0x10111101, 0x10111111,
+ 0x01000000, 0x01000010, 0x01000001, 0x01000011,
+ 0x01001000, 0x01001010, 0x01001001, 0x01001011,
+ 0x01000100, 0x01000110, 0x01000101, 0x01000111,
+ 0x01001100, 0x01001110, 0x01001101, 0x01001111,
+ 0x01100000, 0x01100010, 0x01100001, 0x01100011,
+ 0x01101000, 0x01101010, 0x01101001, 0x01101011,
+ 0x01100100, 0x01100110, 0x01100101, 0x01100111,
+ 0x01101100, 0x01101110, 0x01101101, 0x01101111,
+ 0x01010000, 0x01010010, 0x01010001, 0x01010011,
+ 0x01011000, 0x01011010, 0x01011001, 0x01011011,
+ 0x01010100, 0x01010110, 0x01010101, 0x01010111,
+ 0x01011100, 0x01011110, 0x01011101, 0x01011111,
+ 0x01110000, 0x01110010, 0x01110001, 0x01110011,
+ 0x01111000, 0x01111010, 0x01111001, 0x01111011,
+ 0x01110100, 0x01110110, 0x01110101, 0x01110111,
+ 0x01111100, 0x01111110, 0x01111101, 0x01111111,
+ 0x11000000, 0x11000010, 0x11000001, 0x11000011,
+ 0x11001000, 0x11001010, 0x11001001, 0x11001011,
+ 0x11000100, 0x11000110, 0x11000101, 0x11000111,
+ 0x11001100, 0x11001110, 0x11001101, 0x11001111,
+ 0x11100000, 0x11100010, 0x11100001, 0x11100011,
+ 0x11101000, 0x11101010, 0x11101001, 0x11101011,
+ 0x11100100, 0x11100110, 0x11100101, 0x11100111,
+ 0x11101100, 0x11101110, 0x11101101, 0x11101111,
+ 0x11010000, 0x11010010, 0x11010001, 0x11010011,
+ 0x11011000, 0x11011010, 0x11011001, 0x11011011,
+ 0x11010100, 0x11010110, 0x11010101, 0x11010111,
+ 0x11011100, 0x11011110, 0x11011101, 0x11011111,
+ 0x11110000, 0x11110010, 0x11110001, 0x11110011,
+ 0x11111000, 0x11111010, 0x11111001, 0x11111011,
+ 0x11110100, 0x11110110, 0x11110101, 0x11110111,
+ 0x11111100, 0x11111110, 0x11111101, 0x11111111
+};
+
+/*
+ * The final permutation array. Like the IP array, used
+ * to compute both the left and right results from the bytes
+ * of words computed from:
+ *
+ * ((left & 0x0f0f0f0f) << 4) | (right & 0x0f0f0f0f) for left result
+ * (left & 0xf0f0f0f0) | ((right & 0xf0f0f0f0) >> 4) for right result
+ *
+ * The result from the high order byte is shifted left 6 bits and
+ * or'd with the result from the next byte shifted left 4 bits, which
+ * is or'd with the result from the next byte shifted left 2 bits,
+ * which is or'd with the result from the low byte.
+ */
+const unsigned KRB_INT32 des_FP_table[256] = {
+ 0x00000000, 0x02000000, 0x00020000, 0x02020000,
+ 0x00000200, 0x02000200, 0x00020200, 0x02020200,
+ 0x00000002, 0x02000002, 0x00020002, 0x02020002,
+ 0x00000202, 0x02000202, 0x00020202, 0x02020202,
+ 0x01000000, 0x03000000, 0x01020000, 0x03020000,
+ 0x01000200, 0x03000200, 0x01020200, 0x03020200,
+ 0x01000002, 0x03000002, 0x01020002, 0x03020002,
+ 0x01000202, 0x03000202, 0x01020202, 0x03020202,
+ 0x00010000, 0x02010000, 0x00030000, 0x02030000,
+ 0x00010200, 0x02010200, 0x00030200, 0x02030200,
+ 0x00010002, 0x02010002, 0x00030002, 0x02030002,
+ 0x00010202, 0x02010202, 0x00030202, 0x02030202,
+ 0x01010000, 0x03010000, 0x01030000, 0x03030000,
+ 0x01010200, 0x03010200, 0x01030200, 0x03030200,
+ 0x01010002, 0x03010002, 0x01030002, 0x03030002,
+ 0x01010202, 0x03010202, 0x01030202, 0x03030202,
+ 0x00000100, 0x02000100, 0x00020100, 0x02020100,
+ 0x00000300, 0x02000300, 0x00020300, 0x02020300,
+ 0x00000102, 0x02000102, 0x00020102, 0x02020102,
+ 0x00000302, 0x02000302, 0x00020302, 0x02020302,
+ 0x01000100, 0x03000100, 0x01020100, 0x03020100,
+ 0x01000300, 0x03000300, 0x01020300, 0x03020300,
+ 0x01000102, 0x03000102, 0x01020102, 0x03020102,
+ 0x01000302, 0x03000302, 0x01020302, 0x03020302,
+ 0x00010100, 0x02010100, 0x00030100, 0x02030100,
+ 0x00010300, 0x02010300, 0x00030300, 0x02030300,
+ 0x00010102, 0x02010102, 0x00030102, 0x02030102,
+ 0x00010302, 0x02010302, 0x00030302, 0x02030302,
+ 0x01010100, 0x03010100, 0x01030100, 0x03030100,
+ 0x01010300, 0x03010300, 0x01030300, 0x03030300,
+ 0x01010102, 0x03010102, 0x01030102, 0x03030102,
+ 0x01010302, 0x03010302, 0x01030302, 0x03030302,
+ 0x00000001, 0x02000001, 0x00020001, 0x02020001,
+ 0x00000201, 0x02000201, 0x00020201, 0x02020201,
+ 0x00000003, 0x02000003, 0x00020003, 0x02020003,
+ 0x00000203, 0x02000203, 0x00020203, 0x02020203,
+ 0x01000001, 0x03000001, 0x01020001, 0x03020001,
+ 0x01000201, 0x03000201, 0x01020201, 0x03020201,
+ 0x01000003, 0x03000003, 0x01020003, 0x03020003,
+ 0x01000203, 0x03000203, 0x01020203, 0x03020203,
+ 0x00010001, 0x02010001, 0x00030001, 0x02030001,
+ 0x00010201, 0x02010201, 0x00030201, 0x02030201,
+ 0x00010003, 0x02010003, 0x00030003, 0x02030003,
+ 0x00010203, 0x02010203, 0x00030203, 0x02030203,
+ 0x01010001, 0x03010001, 0x01030001, 0x03030001,
+ 0x01010201, 0x03010201, 0x01030201, 0x03030201,
+ 0x01010003, 0x03010003, 0x01030003, 0x03030003,
+ 0x01010203, 0x03010203, 0x01030203, 0x03030203,
+ 0x00000101, 0x02000101, 0x00020101, 0x02020101,
+ 0x00000301, 0x02000301, 0x00020301, 0x02020301,
+ 0x00000103, 0x02000103, 0x00020103, 0x02020103,
+ 0x00000303, 0x02000303, 0x00020303, 0x02020303,
+ 0x01000101, 0x03000101, 0x01020101, 0x03020101,
+ 0x01000301, 0x03000301, 0x01020301, 0x03020301,
+ 0x01000103, 0x03000103, 0x01020103, 0x03020103,
+ 0x01000303, 0x03000303, 0x01020303, 0x03020303,
+ 0x00010101, 0x02010101, 0x00030101, 0x02030101,
+ 0x00010301, 0x02010301, 0x00030301, 0x02030301,
+ 0x00010103, 0x02010103, 0x00030103, 0x02030103,
+ 0x00010303, 0x02010303, 0x00030303, 0x02030303,
+ 0x01010101, 0x03010101, 0x01030101, 0x03030101,
+ 0x01010301, 0x03010301, 0x01030301, 0x03030301,
+ 0x01010103, 0x03010103, 0x01030103, 0x03030103,
+ 0x01010303, 0x03010303, 0x01030303, 0x03030303
+};
+
+
+/*
+ * The SP table is actually the S boxes and the P permutation
+ * table combined. This table is actually reordered from the
+ * spec, to match the order of key application we follow.
+ */
+const unsigned KRB_INT32 des_SP_table[8][64] = {
+ 0x00100000, 0x02100001, 0x02000401, 0x00000000, /* 7 */
+ 0x00000400, 0x02000401, 0x00100401, 0x02100400,
+ 0x02100401, 0x00100000, 0x00000000, 0x02000001,
+ 0x00000001, 0x02000000, 0x02100001, 0x00000401,
+ 0x02000400, 0x00100401, 0x00100001, 0x02000400,
+ 0x02000001, 0x02100000, 0x02100400, 0x00100001,
+ 0x02100000, 0x00000400, 0x00000401, 0x02100401,
+ 0x00100400, 0x00000001, 0x02000000, 0x00100400,
+ 0x02000000, 0x00100400, 0x00100000, 0x02000401,
+ 0x02000401, 0x02100001, 0x02100001, 0x00000001,
+ 0x00100001, 0x02000000, 0x02000400, 0x00100000,
+ 0x02100400, 0x00000401, 0x00100401, 0x02100400,
+ 0x00000401, 0x02000001, 0x02100401, 0x02100000,
+ 0x00100400, 0x00000000, 0x00000001, 0x02100401,
+ 0x00000000, 0x00100401, 0x02100000, 0x00000400,
+ 0x02000001, 0x02000400, 0x00000400, 0x00100001,
+
+ 0x00808200, 0x00000000, 0x00008000, 0x00808202, /* 1 */
+ 0x00808002, 0x00008202, 0x00000002, 0x00008000,
+ 0x00000200, 0x00808200, 0x00808202, 0x00000200,
+ 0x00800202, 0x00808002, 0x00800000, 0x00000002,
+ 0x00000202, 0x00800200, 0x00800200, 0x00008200,
+ 0x00008200, 0x00808000, 0x00808000, 0x00800202,
+ 0x00008002, 0x00800002, 0x00800002, 0x00008002,
+ 0x00000000, 0x00000202, 0x00008202, 0x00800000,
+ 0x00008000, 0x00808202, 0x00000002, 0x00808000,
+ 0x00808200, 0x00800000, 0x00800000, 0x00000200,
+ 0x00808002, 0x00008000, 0x00008200, 0x00800002,
+ 0x00000200, 0x00000002, 0x00800202, 0x00008202,
+ 0x00808202, 0x00008002, 0x00808000, 0x00800202,
+ 0x00800002, 0x00000202, 0x00008202, 0x00808200,
+ 0x00000202, 0x00800200, 0x00800200, 0x00000000,
+ 0x00008002, 0x00008200, 0x00000000, 0x00808002,
+
+ 0x00000104, 0x04010100, 0x00000000, 0x04010004, /* 3 */
+ 0x04000100, 0x00000000, 0x00010104, 0x04000100,
+ 0x00010004, 0x04000004, 0x04000004, 0x00010000,
+ 0x04010104, 0x00010004, 0x04010000, 0x00000104,
+ 0x04000000, 0x00000004, 0x04010100, 0x00000100,
+ 0x00010100, 0x04010000, 0x04010004, 0x00010104,
+ 0x04000104, 0x00010100, 0x00010000, 0x04000104,
+ 0x00000004, 0x04010104, 0x00000100, 0x04000000,
+ 0x04010100, 0x04000000, 0x00010004, 0x00000104,
+ 0x00010000, 0x04010100, 0x04000100, 0x00000000,
+ 0x00000100, 0x00010004, 0x04010104, 0x04000100,
+ 0x04000004, 0x00000100, 0x00000000, 0x04010004,
+ 0x04000104, 0x00010000, 0x04000000, 0x04010104,
+ 0x00000004, 0x00010104, 0x00010100, 0x04000004,
+ 0x04010000, 0x04000104, 0x00000104, 0x04010000,
+ 0x00010104, 0x00000004, 0x04010004, 0x00010100,
+
+ 0x00000080, 0x01040080, 0x01040000, 0x21000080, /* 5 */
+ 0x00040000, 0x00000080, 0x20000000, 0x01040000,
+ 0x20040080, 0x00040000, 0x01000080, 0x20040080,
+ 0x21000080, 0x21040000, 0x00040080, 0x20000000,
+ 0x01000000, 0x20040000, 0x20040000, 0x00000000,
+ 0x20000080, 0x21040080, 0x21040080, 0x01000080,
+ 0x21040000, 0x20000080, 0x00000000, 0x21000000,
+ 0x01040080, 0x01000000, 0x21000000, 0x00040080,
+ 0x00040000, 0x21000080, 0x00000080, 0x01000000,
+ 0x20000000, 0x01040000, 0x21000080, 0x20040080,
+ 0x01000080, 0x20000000, 0x21040000, 0x01040080,
+ 0x20040080, 0x00000080, 0x01000000, 0x21040000,
+ 0x21040080, 0x00040080, 0x21000000, 0x21040080,
+ 0x01040000, 0x00000000, 0x20040000, 0x21000000,
+ 0x00040080, 0x01000080, 0x20000080, 0x00040000,
+ 0x00000000, 0x20040000, 0x01040080, 0x20000080,
+
+ 0x80401000, 0x80001040, 0x80001040, 0x00000040, /* 4 */
+ 0x00401040, 0x80400040, 0x80400000, 0x80001000,
+ 0x00000000, 0x00401000, 0x00401000, 0x80401040,
+ 0x80000040, 0x00000000, 0x00400040, 0x80400000,
+ 0x80000000, 0x00001000, 0x00400000, 0x80401000,
+ 0x00000040, 0x00400000, 0x80001000, 0x00001040,
+ 0x80400040, 0x80000000, 0x00001040, 0x00400040,
+ 0x00001000, 0x00401040, 0x80401040, 0x80000040,
+ 0x00400040, 0x80400000, 0x00401000, 0x80401040,
+ 0x80000040, 0x00000000, 0x00000000, 0x00401000,
+ 0x00001040, 0x00400040, 0x80400040, 0x80000000,
+ 0x80401000, 0x80001040, 0x80001040, 0x00000040,
+ 0x80401040, 0x80000040, 0x80000000, 0x00001000,
+ 0x80400000, 0x80001000, 0x00401040, 0x80400040,
+ 0x80001000, 0x00001040, 0x00400000, 0x80401000,
+ 0x00000040, 0x00400000, 0x00001000, 0x00401040,
+
+ 0x10000008, 0x10200000, 0x00002000, 0x10202008, /* 6 */
+ 0x10200000, 0x00000008, 0x10202008, 0x00200000,
+ 0x10002000, 0x00202008, 0x00200000, 0x10000008,
+ 0x00200008, 0x10002000, 0x10000000, 0x00002008,
+ 0x00000000, 0x00200008, 0x10002008, 0x00002000,
+ 0x00202000, 0x10002008, 0x00000008, 0x10200008,
+ 0x10200008, 0x00000000, 0x00202008, 0x10202000,
+ 0x00002008, 0x00202000, 0x10202000, 0x10000000,
+ 0x10002000, 0x00000008, 0x10200008, 0x00202000,
+ 0x10202008, 0x00200000, 0x00002008, 0x10000008,
+ 0x00200000, 0x10002000, 0x10000000, 0x00002008,
+ 0x10000008, 0x10202008, 0x00202000, 0x10200000,
+ 0x00202008, 0x10202000, 0x00000000, 0x10200008,
+ 0x00000008, 0x00002000, 0x10200000, 0x00202008,
+ 0x00002000, 0x00200008, 0x10002008, 0x00000000,
+ 0x10202000, 0x10000000, 0x00200008, 0x10002008,
+
+ 0x08000820, 0x00000800, 0x00020000, 0x08020820, /* 8 */
+ 0x08000000, 0x08000820, 0x00000020, 0x08000000,
+ 0x00020020, 0x08020000, 0x08020820, 0x00020800,
+ 0x08020800, 0x00020820, 0x00000800, 0x00000020,
+ 0x08020000, 0x08000020, 0x08000800, 0x00000820,
+ 0x00020800, 0x00020020, 0x08020020, 0x08020800,
+ 0x00000820, 0x00000000, 0x00000000, 0x08020020,
+ 0x08000020, 0x08000800, 0x00020820, 0x00020000,
+ 0x00020820, 0x00020000, 0x08020800, 0x00000800,
+ 0x00000020, 0x08020020, 0x00000800, 0x00020820,
+ 0x08000800, 0x00000020, 0x08000020, 0x08020000,
+ 0x08020020, 0x08000000, 0x00020000, 0x08000820,
+ 0x00000000, 0x08020820, 0x00020020, 0x08000020,
+ 0x08020000, 0x08000800, 0x08000820, 0x00000000,
+ 0x08020820, 0x00020800, 0x00020800, 0x00000820,
+ 0x00000820, 0x00020020, 0x08000000, 0x08020800,
+
+ 0x40084010, 0x40004000, 0x00004000, 0x00084010, /* 2 */
+ 0x00080000, 0x00000010, 0x40080010, 0x40004010,
+ 0x40000010, 0x40084010, 0x40084000, 0x40000000,
+ 0x40004000, 0x00080000, 0x00000010, 0x40080010,
+ 0x00084000, 0x00080010, 0x40004010, 0x00000000,
+ 0x40000000, 0x00004000, 0x00084010, 0x40080000,
+ 0x00080010, 0x40000010, 0x00000000, 0x00084000,
+ 0x00004010, 0x40084000, 0x40080000, 0x00004010,
+ 0x00000000, 0x00084010, 0x40080010, 0x00080000,
+ 0x40004010, 0x40080000, 0x40084000, 0x00004000,
+ 0x40080000, 0x40004000, 0x00000010, 0x40084010,
+ 0x00084010, 0x00000010, 0x00004000, 0x40000000,
+ 0x00004010, 0x40084000, 0x00080000, 0x40000010,
+ 0x00080010, 0x40004010, 0x40000010, 0x00080010,
+ 0x00084000, 0x00000000, 0x40004000, 0x00004010,
+ 0x40000000, 0x40080010, 0x40084010, 0x00084000
+};
--- /dev/null
+/*
+ * Copyright (c) 1990 Dennis Ferguson. All rights reserved.
+ *
+ * Commercial use is permitted only if products which are derived from
+ * or include this software are made available for purchase and/or use
+ * in Canada. Otherwise, redistribution and use in source and binary
+ * forms are permitted.
+ */
+
+/*
+ * des_tables.h - declarations to import the DES tables, used internally
+ * by some of the library routines.
+ */
+#ifndef __DES_TABLES_H__
+#define __DES_TABLES_H__ /* nothing */
+
+#ifndef const
+#ifndef __STDC__
+#define const /* nothing */
+#endif
+#endif
+
+/*
+ * These may be declared const if you wish. Be sure to change the
+ * declarations in des_tables.c as well.
+ */
+extern const unsigned KRB_INT32 des_IP_table[256];
+extern const unsigned KRB_INT32 des_FP_table[256];
+extern const unsigned KRB_INT32 des_SP_table[8][64];
+
+/*
+ * Use standard shortforms to reference these to save typing
+ */
+#define IP des_IP_table
+#define FP des_FP_table
+#define SP des_SP_table
+
+/*
+ * Code to do a DES round using the tables. Note that the E expansion
+ * is easy to compute algorithmically, especially if done out-of-order.
+ * Take a look at its form and compare it to everything involving temp
+ * below. Since SP[0-7] don't have any bits in common set it is okay
+ * to do the successive xor's.
+ *
+ * Note too that the SP table has been reordered to match the order of
+ * the keys (if the original order of SP was 12345678, the reordered
+ * table is 71354682). This is unnecessary, but was done since some
+ * compilers seem to like you going through the matrix from beginning
+ * to end.
+ *
+ * There is a difference in the best way to do this depending on whether
+ * one is encrypting or decrypting. If encrypting we move forward through
+ * the keys and hence should move forward through the table. If decrypting
+ * we go back. Part of the need for this comes from trying to emulate
+ * existing software which generates a single key schedule and uses it
+ * both for encrypting and decrypting. Generating separate encryption
+ * and decryption key schedules would allow one to use the same code
+ * for both.
+ *
+ * left, right and temp should be unsigned KRB_INT32 values. left and right
+ * should be the high and low order parts of the cipher block at the
+ * current stage of processing (this makes sense if you read the spec).
+ * kp should be an unsigned KRB_INT32 pointer which points at the current
+ * set of subkeys in the key schedule. It is advanced to the next set
+ * (i.e. by 8 bytes) when this is done.
+ *
+ * This occurs in the innermost loop of the DES function. The four
+ * variables should really be in registers.
+ *
+ * When using this, the inner loop of the DES function might look like:
+ *
+ * for (i = 0; i < 8; i++) {
+ * DES_SP_{EN,DE}CRYPT_ROUND(left, right, temp, kp);
+ * DES_SP_{EN,DE}CRYPT_ROUND(right, left, temp, kp);
+ * }
+ *
+ * Note the trick above. You are supposed to do 16 rounds, swapping
+ * left and right at the end of each round. By doing two rounds at
+ * a time and swapping left and right in the code we can avoid the
+ * swaps altogether.
+ */
+#define DES_SP_ENCRYPT_ROUND(left, right, temp, kp) \
+ (temp) = (((right) >> 11) | ((right) << 21)) ^ *(kp)++; \
+ (left) ^= SP[0][((temp) >> 24) & 0x3f] \
+ | SP[1][((temp) >> 16) & 0x3f] \
+ | SP[2][((temp) >> 8) & 0x3f] \
+ | SP[3][((temp) ) & 0x3f]; \
+ (temp) = (((right) >> 23) | ((right) << 9)) ^ *(kp)++; \
+ (left) ^= SP[4][((temp) >> 24) & 0x3f] \
+ | SP[5][((temp) >> 16) & 0x3f] \
+ | SP[6][((temp) >> 8) & 0x3f] \
+ | SP[7][((temp) ) & 0x3f]
+
+#define DES_SP_DECRYPT_ROUND(left, right, temp, kp) \
+ (temp) = (((right) >> 23) | ((right) << 9)) ^ *(--(kp)); \
+ (left) ^= SP[7][((temp) ) & 0x3f] \
+ | SP[6][((temp) >> 8) & 0x3f] \
+ | SP[5][((temp) >> 16) & 0x3f] \
+ | SP[4][((temp) >> 24) & 0x3f]; \
+ (temp) = (((right) >> 11) | ((right) << 21)) ^ *(--(kp)); \
+ (left) ^= SP[3][((temp) ) & 0x3f] \
+ | SP[2][((temp) >> 8) & 0x3f] \
+ | SP[1][((temp) >> 16) & 0x3f] \
+ | SP[0][((temp) >> 24) & 0x3f]
+
+/*
+ * Macros to help deal with the initial permutation table. Note
+ * the IP table only deals with 32 bits at a time, allowing us to
+ * collect the bits we need to deal with each half into an unsigned
+ * KRB_INT32. By carefully selecting how the bits are ordered we also
+ * take advantages of symmetries in the table so that we can use a
+ * single table to compute the permutation of all bytes. This sounds
+ * complicated, but if you go through the process of designing the
+ * table you'll find the symmetries fall right out.
+ *
+ * The follow macros compute the set of bits used to index the
+ * table for produce the left and right permuted result.
+ */
+#define DES_IP_LEFT_BITS(left, right) \
+ ((((left) & 0x55555555) << 1) | ((right) & 0x55555555))
+#define DES_IP_RIGHT_BITS(left, right) \
+ (((left) & 0xaaaaaaaa) | (((right) & 0xaaaaaaaa) >> 1))
+
+/*
+ * The following macro does an in-place initial permutation given
+ * the current left and right parts of the block and a single
+ * temporary. Use this more as a guide for rolling your own, though.
+ * The best way to do the IP depends on the form of the data you
+ * are dealing with. If you use this, though, try to make left,
+ * right and temp register unsigned KRB_INT32s.
+ */
+#define DES_INITIAL_PERM(left, right, temp) \
+ (temp) = DES_IP_RIGHT_BITS((left), (right)); \
+ (right) = DES_IP_LEFT_BITS((left), (right)); \
+ (left) = IP[((right) >> 24) & 0xff] \
+ | (IP[((right) >> 16) & 0xff] << 1) \
+ | (IP[((right) >> 8) & 0xff] << 2) \
+ | (IP[(right) & 0xff] << 3); \
+ (right) = IP[((temp) >> 24) & 0xff] \
+ | (IP[((temp) >> 16) & 0xff] << 1) \
+ | (IP[((temp) >> 8) & 0xff] << 2) \
+ | (IP[(temp) & 0xff] << 3)
+
+
+/*
+ * Now the final permutation stuff. The same comments apply to
+ * this as to the initial permutation, except that we use different
+ * bits and shifts.
+ */
+#define DES_FP_LEFT_BITS(left, right) \
+ ((((left) & 0x0f0f0f0f) << 4) | ((right) & 0x0f0f0f0f))
+#define DES_FP_RIGHT_BITS(left, right) \
+ (((left) & 0xf0f0f0f0) | (((right) & 0xf0f0f0f0) >> 4))
+
+
+/*
+ * Here is a sample final permutation. Note that there is a trick
+ * here. DES requires swapping the left and right parts after the
+ * last cipher round but before the final permutation. We do this
+ * swapping internally, which is why left and right are confused
+ * at the beginning.
+ */
+#define DES_FINAL_PERM(left, right, temp) \
+ (temp) = DES_FP_RIGHT_BITS((right), (left)); \
+ (right) = DES_FP_LEFT_BITS((right), (left)); \
+ (left) = (FP[((right) >> 24) & 0xff] << 6) \
+ | (FP[((right) >> 16) & 0xff] << 4) \
+ | (FP[((right) >> 8) & 0xff] << 2) \
+ | FP[(right) & 0xff]; \
+ (right) = (FP[((temp) >> 24) & 0xff] << 6) \
+ | (FP[((temp) >> 16) & 0xff] << 4) \
+ | (FP[((temp) >> 8) & 0xff] << 2) \
+ | FP[temp & 0xff]
+
+
+/*
+ * Finally, as a sample of how all this might be held together, the
+ * following two macros do in-place encryptions and decryptions. left
+ * and right are two unsigned KRB_INT32 variables which at the beginning
+ * are expected to hold the clear (encrypted) block in host byte order
+ * (left the high order four bytes, right the low order). At the end
+ * they will contain the encrypted (clear) block. temp is an unsigned KRB_INT32
+ * used as a temporary. kp is an unsigned KRB_INT32 pointer pointing at
+ * the start of the key schedule. All these should be in registers.
+ *
+ * You can probably do better than these by rewriting for particular
+ * situations. These aren't bad, though.
+ */
+#define DES_DO_ENCRYPT(left, right, temp, kp) \
+ do { \
+ register int i; \
+ DES_INITIAL_PERM((left), (right), (temp)); \
+ for (i = 0; i < 8; i++) { \
+ DES_SP_ENCRYPT_ROUND((left), (right), (temp), (kp)); \
+ DES_SP_ENCRYPT_ROUND((right), (left), (temp), (kp)); \
+ } \
+ DES_FINAL_PERM((left), (right), (temp)); \
+ (kp) -= (2 * 16); \
+ } while (0)
+
+#define DES_DO_DECRYPT(left, right, temp, kp) \
+ do { \
+ register int i; \
+ DES_INITIAL_PERM((left), (right), (temp)); \
+ (kp) += (2 * 16); \
+ for (i = 0; i < 8; i++) { \
+ DES_SP_DECRYPT_ROUND((left), (right), (temp), (kp)); \
+ DES_SP_DECRYPT_ROUND((right), (left), (temp), (kp)); \
+ } \
+ DES_FINAL_PERM((left), (right), (temp)); \
+ } while (0)
+
+/*
+ * These are handy dandy utility thingies for straightening out bytes.
+ * Included here because they're used a couple of places.
+ */
+#define GET_HALF_BLOCK(lr, ip) \
+ (lr) = ((unsigned KRB_INT32)(*(ip)++)) << 24; \
+ (lr) |= ((unsigned KRB_INT32)(*(ip)++)) << 16; \
+ (lr) |= ((unsigned KRB_INT32)(*(ip)++)) << 8; \
+ (lr) |= (unsigned KRB_INT32)(*(ip)++)
+
+#define PUT_HALF_BLOCK(lr, op) \
+ *(op)++ = ((lr) >> 24) & 0xff; \
+ *(op)++ = ((lr) >> 16) & 0xff; \
+ *(op)++ = ((lr) >> 8) & 0xff; \
+ *(op)++ = (lr) & 0xff
+
+#endif /* __DES_TABLES_H__ */