from numpy.testing import TestCase, run_module_suite
from numpy.testing import assert_equal, assert_almost_equal
-# WARNING: numpy also has an fft object
from aubio import fvec, fft, cvec
from numpy import array, shape
from math import pi
class aubio_fft_test_case(TestCase):
- def test_members(self):
- f = fft()
- assert_equal (f.win_s, 1024)
+ def test_members(self):
+ """ check members are set correctly """
+ win_s = 2048
+ f = fft(win_s)
+ assert_equal (f.win_s, win_s)
- def test_output_dimensions(self):
- """ check the dimensions of output """
- win_s = 1024
- timegrain = fvec(win_s)
- f = fft(win_s)
- fftgrain = f (timegrain)
- assert_equal (fftgrain.norm, 0)
- assert_equal (shape(fftgrain.norm), (win_s/2+1,))
- assert_equal (fftgrain.phas, 0)
- assert_equal (shape(fftgrain.phas), (win_s/2+1,))
+ def test_output_dimensions(self):
+ """ check the dimensions of output """
+ win_s = 1024
+ timegrain = fvec(win_s)
+ f = fft (win_s)
+ fftgrain = f (timegrain)
+ assert_equal (shape(fftgrain.norm), (win_s/2+1,))
+ assert_equal (shape(fftgrain.phas), (win_s/2+1,))
- def test_zeros(self):
- """ check the transform of zeros """
- win_s = 512
- timegrain = fvec(win_s)
- f = fft(win_s)
- fftgrain = f(timegrain)
- assert_equal ( fftgrain.norm == 0, True )
- assert_equal ( fftgrain.phas == 0, True )
+ def test_zeros(self):
+ """ check the transform of zeros is all zeros """
+ win_s = 512
+ timegrain = fvec(win_s)
+ f = fft (win_s)
+ fftgrain = f (timegrain)
+ assert_equal ( fftgrain.norm, 0 )
+ assert_equal ( fftgrain.phas, 0 )
- def test_impulse(self):
- """ check the transform of one impulse at a random place """
- from random import random
- from math import floor
- win_s = 256
- i = floor(random()*win_s)
- impulse = pi * random()
- f = fft(win_s)
- timegrain = fvec(win_s)
- timegrain[i] = impulse
- fftgrain = f ( timegrain )
- #self.plot_this ( fftgrain.phas )
- assert_almost_equal ( fftgrain.norm, impulse, decimal = 6 )
- assert_equal ( fftgrain.phas <= pi, True)
- assert_equal ( fftgrain.phas >= -pi, True)
+ def test_impulse(self):
+ """ check the transform of one impulse at a random place """
+ from random import random
+ from math import floor
+ win_s = 256
+ i = floor(random()*win_s)
+ impulse = pi * random()
+ f = fft(win_s)
+ timegrain = fvec(win_s)
+ timegrain[i] = impulse
+ fftgrain = f ( timegrain )
+ #self.plot_this ( fftgrain.phas )
+ assert_almost_equal ( fftgrain.norm, impulse, decimal = 6 )
+ assert_equal ( fftgrain.phas <= pi, True)
+ assert_equal ( fftgrain.phas >= -pi, True)
- def test_impulse_negative(self):
- """ check the transform of one impulse at a random place """
- from random import random
- from math import floor
- win_s = 256
- i = 0
- impulse = -10.
- f = fft(win_s)
- timegrain = fvec(win_s)
- timegrain[i] = impulse
- fftgrain = f ( timegrain )
- #self.plot_this ( fftgrain.phas )
- assert_almost_equal ( fftgrain.norm, abs(impulse), decimal = 6 )
- if impulse < 0:
- # phase can be pi or -pi, as it is not unwrapped
- assert_almost_equal ( abs(fftgrain.phas[1:-1]) , pi, decimal = 6 )
- assert_almost_equal ( fftgrain.phas[0], pi, decimal = 6)
- assert_almost_equal ( fftgrain.phas[-1], pi, decimal = 6)
- else:
- assert_equal ( fftgrain.phas[1:-1] == 0, True)
- assert_equal ( fftgrain.phas[0] == 0, True)
- assert_equal ( fftgrain.phas[-1] == 0, True)
- # now check the resynthesis
- synthgrain = f.rdo ( fftgrain )
- #self.plot_this ( fftgrain.phas.T )
- assert_equal ( fftgrain.phas <= pi, True)
- assert_equal ( fftgrain.phas >= -pi, True)
- #self.plot_this ( synthgrain - timegrain )
- assert_almost_equal ( synthgrain, timegrain, decimal = 6 )
+ def test_impulse_negative(self):
+ """ check the transform of one impulse at a random place """
+ from random import random
+ from math import floor
+ win_s = 256
+ i = 0
+ impulse = -10.
+ f = fft(win_s)
+ timegrain = fvec(win_s)
+ timegrain[i] = impulse
+ fftgrain = f ( timegrain )
+ #self.plot_this ( fftgrain.phas )
+ assert_almost_equal ( fftgrain.norm, abs(impulse), decimal = 6 )
+ if impulse < 0:
+ # phase can be pi or -pi, as it is not unwrapped
+ assert_almost_equal ( abs(fftgrain.phas[1:-1]) , pi, decimal = 6 )
+ assert_almost_equal ( fftgrain.phas[0], pi, decimal = 6)
+ assert_almost_equal ( fftgrain.phas[-1], pi, decimal = 6)
+ else:
+ assert_equal ( fftgrain.phas[1:-1] == 0, True)
+ assert_equal ( fftgrain.phas[0] == 0, True)
+ assert_equal ( fftgrain.phas[-1] == 0, True)
+ # now check the resynthesis
+ synthgrain = f.rdo ( fftgrain )
+ #self.plot_this ( fftgrain.phas.T )
+ assert_equal ( fftgrain.phas <= pi, True)
+ assert_equal ( fftgrain.phas >= -pi, True)
+ #self.plot_this ( synthgrain - timegrain )
+ assert_almost_equal ( synthgrain, timegrain, decimal = 6 )
- def test_impulse_at_zero(self):
- """ check the transform of one impulse at a index 0 """
- win_s = 1024
- impulse = pi
- f = fft(win_s)
- timegrain = fvec(win_s)
- timegrain[0] = impulse
- fftgrain = f ( timegrain )
- #self.plot_this ( fftgrain.phas )
- assert_equal ( fftgrain.phas[0], 0)
- # could be 0 or -0 depending on fft implementation (0 for fftw3, -0 for ooura)
- assert_almost_equal ( fftgrain.phas[1], 0)
- assert_almost_equal ( fftgrain.norm[0], impulse, decimal = 6 )
+ def test_impulse_at_zero(self):
+ """ check the transform of one impulse at a index 0 """
+ win_s = 1024
+ impulse = pi
+ f = fft(win_s)
+ timegrain = fvec(win_s)
+ timegrain[0] = impulse
+ fftgrain = f ( timegrain )
+ #self.plot_this ( fftgrain.phas )
+ assert_equal ( fftgrain.phas[0], 0)
+ # could be 0 or -0 depending on fft implementation (0 for fftw3, -0 for ooura)
+ assert_almost_equal ( fftgrain.phas[1], 0)
+ assert_almost_equal ( fftgrain.norm[0], impulse, decimal = 6 )
- def test_rdo_before_do(self):
- """ check running fft.rdo before fft.do works """
- win_s = 1024
- impulse = pi
- f = fft(win_s)
- fftgrain = cvec(win_s)
- t = f.rdo( fftgrain )
- assert_equal ( t, 0 )
+ def test_rdo_before_do(self):
+ """ check running fft.rdo before fft.do works """
+ win_s = 1024
+ impulse = pi
+ f = fft(win_s)
+ fftgrain = cvec(win_s)
+ t = f.rdo( fftgrain )
+ assert_equal ( t, 0 )
- def plot_this(self, this):
- from pylab import plot, show
- plot ( this )
- show ()
+ def plot_this(self, this):
+ from pylab import plot, show
+ plot ( this )
+ show ()
if __name__ == '__main__':
- from unittest import main
- main()
+ from unittest import main
+ main()