X-Git-Url: http://git.tremily.us/?p=sawsim.git;a=blobdiff_plain;f=src%2Fsawsim.nw;fp=src%2Fsawsim.nw;h=2e0f0c45bdb40472d9e626db6403f81b28303521;hp=5f89121e6f23443520fdf9bdeabd19a3c47f85c2;hb=19ff30c04333ead9466575688eb3f00f0b95c03a;hpb=1994aa886096a81d2ef73aa40c97c57cded6cc35 diff --git a/src/sawsim.nw b/src/sawsim.nw index 5f89121..2e0f0c4 100644 --- a/src/sawsim.nw +++ b/src/sawsim.nw @@ -684,7 +684,7 @@ relative to the simulation timestep $dt$, so that tension is uniform along the chain. The quality of this assumption depends on your particular chain. For example, a damped spring thermalizes on a timescale of order $\tau = 1/\gamma$ where the damping ratio $\gamma -\equiv \omega_0(-\zeta \pm \sqrt{\zeta^2-1}$, the natural angular +\equiv \omega_0(-\zeta \pm \sqrt{\zeta^2-1})$, the natural angular frequency $\omega_0 \equiv \sqrt{k/m}$, $\zeta \equiv b/2\sqrt{km}$, and $b$ sets the drag $F_b = -bv$. For our cantilevers $\tau$ is on the order of milliseconds, which is longer than a timestep.