Initial version of body content
[research-statement.git] / ts.tex
diff --git a/ts.tex b/ts.tex
index ec2977c9600bec767acbd93d39a4d785cd13fd01..25a6b0e106b4580ae7d080c97e2144171671e73e 100644 (file)
--- a/ts.tex
+++ b/ts.tex
@@ -5,9 +5,11 @@
 \headsep 0.0in
 \textheight 9in
 \oddsidemargin 0in
-\textwidth 6in
+\textwidth 6.5in
 \pagestyle{empty} % no room for page numbers
 
+\usepackage{amsmath}  % \text and other useful math stuff
+
 \usepackage{hyperref}
 \hypersetup{colorlinks}
 \hypersetup{linkcolor=black}
 \hypersetup{filecolor=black}
 \hypersetup{menucolor=black}
 \hypersetup{runcolor=black}
-\hypersetup{urlcolor=black}
+\hypersetup{urlcolor=blue}
+
+\usepackage[super,sort&compress,comma]{natbib}
+% super selects citations in superscript mode
+% sort&compress automatically sorts and compresses compound citations (\citep{a,b,...})
+% comma seperates multiple citations with commas rather than the default semicolons.
+\bibliographystyle{unsrtnat}  % number citations in the order referenced
 
 \title{Teaching Philosophy}
 \date{\today}
 
 \maketitle
 
-Aloha!
+In high school, I initially wanted to be a marine biologist.  The goal
+lasted until my first physics course during my senior year, when Tom
+Hoch introduced me to the idea that the kinetic behavior of the world
+around us can be described with a handful of simple laws.  How far
+will this trebuchet launch a baseball?  What would you redesign to
+make it go farther?  How should you build a wheel to win a race down a
+5 foot ramp?  Besides the joy of attacking the problems themselves, I
+enjoyed arguing about them with my classmates.  If you pull on a
+thread coming from underneath a spool sitting on the table, will the
+spool roll toward you or away from you?  Physics gives you the feeling
+that you can figure out \emph{anything} (to a first approximation),
+and if you're not sure you're right, you can usually design and build
+a simple experiment to test your understanding.  In no other
+discipline are the fundamentals of the scientific method so clearly
+laid out or so obviously powerful.
+
+Since that high school course, I have enjoyed honing my skills in
+physics and related disciplines, but no task has been as satisfying as
+introducing new students to the discipline and sharing my enthusiasm
+for the material and philosophy.  I have been lucky to have almost a
+decade of teaching experience from a range of teaching assistant-ships
+covering the classic introductory courses (with recitations and labs
+of 20 students in classes of up to 700) as well as some more advanced
+numerical methods courses (with as few as five students).  The range
+of formats allows me to experiment with a number of teaching styles,
+from modeling recitation problem solutions to more Socratic approaches
+for helping students design and troubleshoot software.
+
+While I have not yet been in a position to design my own courses, I
+have enjoyed building some supportive tools.  Over the past several
+years, I have developed an open source
+\href{http://blog.tremily.us/posts/Course_website/}{course website
+  framework} and
+\href{http://git.tremily.us/?p=course.git;a=tree;f=asymptote;hb=HEAD}{graphics
+  libraries} for illustrating
+\href{http://blog.tremily.us/posts/Course_website/Mechanics-test.svg}{mechanics},
+\href{http://blog.tremily.us/posts/Course_website/ElectroMag-test.svg}{electricity
+  and magnetism},
+\href{http://blog.tremily.us/posts/Course_website/Circ-test.svg}{circuits},
+and
+\href{http://blog.tremily.us/posts/Course_website/stickfigure-test.svg}{stick
+  figures}.  I've also designed the
+\href{https://pypi.python.org/pypi/pygrader}{pygrader} framework for
+collecting and grading homework assignments that students submit via
+email and the \href{https://pypi.python.org/pypi/quizzer}{quizzer}
+framework for managing online quizzes and surveys.  These tools will
+make it easier for me to maintain class notes, homework, tests, and
+lecture material, which gives me more time to focus on engaging
+students directly.  Downloadable class notes also give students more
+time to focus on the concepts and applications instead of focusing on
+transcription.  I look forward to tying these pieces together and
+building cohesive courses to introduce new students to physics.
+
+Earlier attempts at instructional tooling\citep{christian01} have not
+kept up with the rapid pace of software development.  Using flexible
+open source tools makes it possible to distribute maintenance costs
+across a community of teachers.  This makes it easier for existing
+teachers to share ideas and for new teachers to pick up where previous
+teachers left off, instead of having to start by recreating earlier
+work.  On the self-study side of this, Ben Crowell has already
+developed a number of open source
+textbooks\citep{crowell-light-and-matter,crowell-simple-nature,crowell-mechanics,crowell-conceptual-physics,crowell-calculus,crowell-general-relativity},
+which are freely available along with
+\href{git://lightandmatter.com/physics}{their source} under the
+\href{http://creativecommons.org/licenses/by-sa/3.0/us/}{CC BY-SA 3.0
+  US} license.  There is room for continued development along this
+front, as well as uncharted territory in open source laboratory
+materials and equipment.  My Ph.D.\ thesis focused on developing open
+source software for controlling atomic force microscopes in
+biophysical applications\citep{wking13}, and I look forward to
+leveraging this experience to develop open source software and
+procedures for undergraduate labs.  Besides making it easier for other
+teachers to collaborate on lab design, an open source platform
+(software and hardware) will enable on-the-fly student alterations.  I
+expect that replacing the magic of ``black boxes'' with well
+documented, explorable tools will encourage students to see labs as
+chances to build their theoretical and practical familiarity with the
+physical world instead of arbitrary, cookbook-style recipes.
+
+As a scientist, I feel that teaching itself can be improved through
+the scientific method.  By testing the effect of different classroom
+approaches---and by building on the research of my peers---I intend to
+gradually refine my teaching to improve student engagement, critical
+thinking, and content retention.  I am especially excited to try
+active learning approaches\citep{hake98,crouch01,prince04}, especially
+thinking-aloud pair problem solving
+(TAPPS\citep{lochhead87,felder09}), which has been shown to increase
+student performance\citep{johnson99}.  Besides improving teaching
+strategies, an experiment-based approach to teaching is a chance to
+practice what I preach, which should help convince students of the
+efficacy of the scientific method.  Of course, not \emph{everything}
+can be measured with sufficient clarity to support this approach.
+Developing quantitative evaluations of student learning is tricky,
+but---at least at a basic level---it is possible.  Mentioning these
+difficulties when discussing course organization with students will
+provide jumping-off points for discussing the limitations of the
+scientific approach and the flavor of scientific progress, while
+avoiding confusion about the well-understood fundamentals covered in
+the content of the course itself.
+
+I look forward to guiding students through the early stages of their
+exposure to physics, while at the same time engaging in higher level
+discussions about the practice and role of science in general.  I hope
+that this experience is as transformative for my students as my early
+physics courses were for me, teaching them how to break down problems
+into manageable chunks and encouraging them to make use of analytical
+reasoning and evidenced-based inquiry in their chosen profession,
+regardless of whether it is directly related to physics.
+
+{\footnotesize\bibliography{ts}}
 
 \end{document}