
PHYS405

Advanced Computational Physics

Parallel Computing

Assignment # 9b

Due: Friday, December 11, 2009

Purpose: Learn the CUDA language.

Note: Please identify all your work.

Background: This part of the assignment asks you to adapt to CUDA a serial code that

generates a bifurcation diagram for the logistic map. The logistic map is a map of real line

to itself given by

xi+1 = a − x2

i
.

This mapping is ubiquitous in many problems of practical interest and is arguably the

simplest example of a (discrete) complex dynamical system (indeed, you’ll note its similarity

to the equation generating the complex Mandelbrot set).

The variable a is a parameter that is held constant while x is iterated from some initial

condition x0. We are interested in the long term or asymptotic behavior as x0 is iterated

for various values of a. A plot of the asymptotic values of x verses a is called a bifurcation

diagram.

The reason for this terminology is as follows. The asymptotic behavior often varies

smoothly with a. For example, for some a x0 may tend to some fixed point x∗ with the

value of x∗ varying smoothly with a. However, for another a x0 could end up in a period

two orbit, oscillating between two values x∗

1 and x∗

2. The values of these two points may

also vary smoothly with a, but there is some transition value ã where we jump from the

fixed point to the period two orbit. This non-smooth process is called a bifurcation. The

bifurcation diagram then shows all of these bifurcations on a single plot since we scan over

all values of a.

The serial code loops over a and iterates a random initial condition THRESH number

1



of times. This is to let transients “die out” and approach the asymptotic behavior. If an

iterate leaves the interval [−2, 2] during this time it will eventually escape to ∞, so the

trajectory is thrown out and another random initial condition is tried (it is known that

positive measure attracting sets exist for the a values in the program so this loop will

eventually terminate).

If a trajectory stays bounded after THRESH iterates the next MAXITER iterates are tracked.

The x-axis is binned into xRES number of bins and the binit routine is called to find which

bin the current point in the trajectory is in. This repeats until xRES number of initial

conditions have been iterated and binned. The bins are then normalized to a maximum

value of one and are then output to the screen. The values in the bins are essentially the

density of iterates around various points and plotting them shows the bifurcation structure

of the map.

Assignment: First run the serial code and gnuplot script so you can see what it is you’re

supposed to produce.

%>gcc -o logistic logistic.c -lm

%>./logistic > log.dat

%> gnuplot -persist log.p

Then adapt the serial code to run on CUDA using the skeleton file log_skel.cu included

on the assignment page. Note the differences from the serial code. Functions called from

a kernel are prefixed with __device__ and host functions cannot be called from device

functions. The random number generator rand() is a host function, so I added my own

random number generator for the kernel to use. Finally, the original binit sorting algo-

rithm was recursive, but device functions do not support recursion, so it has been rewritten

without recursion (the while loop functions as the recursion step).

Parallelize over a, so that each thread computes the future orbit for a single value of a.

Thus the block and grid need only be one dimensional (note that this allows a maximum of

29
× 216 = 225

∼ 3× 107 values of a, which should be sufficient. The kernel function should

replace the entire main loop of the serial code. This includes iterating for a value of a,

binning the trajectory, and normalizing the bin. The normalized bins should be returned

2



to the main program for output. Finally, time the CUDA code.

Note that you may keep the various #define statements intact so that these parameters

need not be explicitly passed to functions.

Extra Credit: The above implementation iterates a random initial condition followed by

another if the first escapes the region. For the parameter range given every initial condition

either escapes to ∞ or tends to a unique stable bounded attractor (a fixed point, periodic

orbit, or “chaotic” Cantor set). In principle a map xi+1 = f(xi) could have more than one

coexisting attracting set, so that different initial conditions can tend to distinct bounded

asymptotic behaviors, or (Lebesgue almost) every initial condition may excape to ∞.

Modify the CUDA program using an extra dimension of block/threads to assign initial

condtions distributed throughout the interval [−2, 2] amongst these threads. Have the

various threads bin the bounded trajectories together. Solutions that escape the interval

should not be binned.

Test this code on the map xi+1 = a − (a − x2
i
)2 and compare against the original code.

Are the results different? (Note, this example is the second iterate of the logistic map, so

period two orbits of the original become distinct period one orbits of the second iterate

map.)

3


