Added hooke.plugin.playlist.ApplyCommandStack and related changes.
[hooke.git] / hooke / plugin / curve.py
index 7621fc79d2b2a899a7ac4f91e070722e79bcccfb..e6d5ce322d23eafcaeb24887c65783b1078f0b0c 100644 (file)
@@ -1,5 +1,5 @@
-# Copyright (C) 2008-2010 Alberto Gomez-Casado
-#                         Fabrizio Benedetti
+# Copyright (C) 2008-2010 Alberto Gomez-Kasai
+#                         Fabiano's Benedetti
 #                         Massimo Sandal <devicerandom@gmail.com>
 #                         W. Trevor King <wking@drexel.edu>
 #
@@ -24,23 +24,18 @@ associated :class:`hooke.command.Command`\s for handling
 :mod:`hooke.curve` classes.
 """
 
+import copy
+
 import numpy
 
 from ..command import Command, Argument, Failure
 from ..curve import Data
-from ..plugin import Builtin
-from ..plugin.playlist import current_playlist_callback
+from ..engine import CommandMessage
 from ..util.calculus import derivative
 from ..util.fft import unitary_avg_power_spectrum
-
-
-class CurvePlugin (Builtin):
-    def __init__(self):
-        super(CurvePlugin, self).__init__(name='curve')
-        self._commands = [
-            GetCommand(self), InfoCommand(self), ExportCommand(self),
-            DifferenceCommand(self), DerivativeCommand(self),
-            PowerSpectrumCommand(self)]
+from ..util.si import ppSI, join_data_label, split_data_label
+from . import Builtin
+from .playlist import current_playlist_callback
 
 
 # Define common or complicated arguments
@@ -61,26 +56,229 @@ CurveArgument = Argument(
 of the current playlist.
 """.strip())
 
+def _name_argument(name, default, help):
+    """TODO
+    """
+    return Argument(name=name, type='string', default=default, help=help)
+
+def block_argument(*args, **kwargs):
+    """TODO
+    """
+    return _name_argument(*args, **kwargs)
+
+def column_argument(*args, **kwargs):
+    """TODO
+    """
+    return _name_argument(*args, **kwargs)
+
+
+# Define useful command subclasses
+
+class CurveCommand (Command):
+    """A :class:`~hooke.command.Command` operating on a
+    :class:`~hooke.curve.Curve`.
+    """
+    def __init__(self, **kwargs):
+        if 'arguments' in kwargs:
+            kwargs['arguments'].insert(0, CurveArgument)
+        else:
+            kwargs['arguments'] = [CurveArgument]
+        super(CurveCommand, self).__init__(**kwargs)
+
+    def _curve(self, hooke, params):
+        """Get the selected curve.
+
+        Notes
+        -----
+        `hooke` is intended to attach the selected curve to the local
+        playlist; the returned curve should not be effected by the
+        state of `hooke`.  This is important for reliable
+        :class:`~hooke.command_stack.CommandStack`\s.
+        """
+        # HACK? rely on params['curve'] being bound to the local hooke
+        # playlist (i.e. not a copy, as you would get by passing a
+        # curve through the queue).  Ugh.  Stupid queues.  As an
+        # alternative, we could pass lookup information through the
+        # queue...
+        return params['curve']
+
+    def _add_to_command_stack(self, params):
+        """Store the command name and current `params` values in the
+        curve's `.command_stack`.
+
+        If this would duplicate the command currently on top of the
+        stack, no action is taken.  Call early on, or watch out for
+        repeated param processing.
+
+        Recommended practice is to *not* lock in argument values that
+        are loaded from the plugin's :attr:`.config`.
+
+        Notes
+        -----
+        Perhaps we should subclass :meth:`_run` and use :func:`super`,
+        or embed this in :meth:`run` to avoid subclasses calling this
+        method explicitly, with all the tedium and brittality that
+        implies.  On the other hand, the current implemtnation allows
+        CurveCommands that don't effect the curve itself
+        (e.g. :class:`GetCommand`) to avoid adding themselves to the
+        stack entirely.
+        """
+        curve = self._curve(hooke=None, params=params)
+        if (len(curve.command_stack) > 0
+            and curve.command_stack[-1].command == self.name
+            and curve.command_stack[-1].arguments == params):
+            pass  # no need to place duplicate calls on the stack.
+        else:
+            curve.command_stack.append(CommandMessage(
+                    self.name, params))
+
+
+class BlockCommand (CurveCommand):
+    """A :class:`CurveCommand` operating on a :class:`~hooke.curve.Data` block.
+    """
+    def __init__(self, blocks=None, **kwargs):
+        if blocks == None:
+            blocks = [('block', None, 'Name of the data block to act on.')]
+        block_args = []
+        for name,default,help in blocks:
+            block_args.append(block_argument(name, default, help))
+        self._block_arguments = block_args
+        if 'arguments' not in kwargs:
+            kwargs['arguments'] = []
+        kwargs['arguments'] = block_args + kwargs['arguments']
+        super(BlockCommand, self).__init__(**kwargs)
+
+    def _block_names(self, hooke, params):
+        curve = self._curve(hooke, params)
+        return [b.info['name'] for b in curve.data]
+
+    def _block_index(self, hooke, params, name=None):
+        if name == None:
+            name = self._block_arguments[0].name
+        block_name = params[name]
+        if block_name == None:
+            curve = self._curve(hooke=hooke, params=params)
+            if len(curve.data) == 0:
+                raise Failure('no blocks in %s' % curve)
+            block_name = curve.data[0].info['name']
+        names = self._block_names(hooke=hooke, params=params)
+        try:
+            return names.index(block_name)
+        except ValueError, e:
+            curve = self._curve(hooke, params)
+            raise Failure('no block named %s in %s (%s): %s'
+                          % (block_name, curve, names, e))
+
+    def _block(self, hooke, params, name=None):
+        # HACK? rely on params['block'] being bound to the local hooke
+        # playlist (i.e. not a copy, as you would get by passing a
+        # block through the queue).  Ugh.  Stupid queues.  As an
+        # alternative, we could pass lookup information through the
+        # queue...
+        curve = self._curve(hooke, params)
+        index = self._block_index(hooke, params, name)
+        return curve.data[index]
+
+
+class ColumnAccessCommand (BlockCommand):
+    """A :class:`BlockCommand` accessing a :class:`~hooke.curve.Data`
+    block column.
+    """
+    def __init__(self, columns=None, **kwargs):
+        if columns == None:
+            columns = [('column', None, 'Name of the data column to act on.')]
+        column_args = []
+        for name,default,help in columns:
+            column_args.append(column_argument(name, default, help))
+        self._column_arguments = column_args
+        if 'arguments' not in kwargs:
+            kwargs['arguments'] = []
+        kwargs['arguments'] = column_args + kwargs['arguments']
+        super(ColumnAccessCommand, self).__init__(**kwargs)
+
+    def _get_column(self, hooke, params, block_name=None, column_name=None):
+        if column_name == None:
+            column_name = self._column_arguments[0].name
+        column_name = params[column_name]
+        block = self._block(hooke, params, block_name)
+        columns = block.info['columns']
+        try:
+            column_index = columns.index(column_name)
+        except ValueError, e:
+            raise Failure('%s not in %s (%s): %s'
+                          % (column_name, block.info['name'], columns, e))
+        return block[:,column_index]
+
+
+class ColumnAddingCommand (ColumnAccessCommand):
+    """A :class:`ColumnAccessCommand` that also adds columns.
+    """
+    def __init__(self, new_columns=None, **kwargs):
+        if new_columns == None:
+            new_columns = []
+        column_args = []
+        for name,default,help in new_columns:
+            column_args.append(column_argument(name, default, help))
+        self._new_column_arguments = column_args
+        if 'arguments' not in kwargs:
+            kwargs['arguments'] = []
+        kwargs['arguments'] = column_args + kwargs['arguments']
+        super(ColumnAddingCommand, self).__init__(**kwargs)
+
+    def _get_column(self, hooke, params, block_name=None, column_name=None):
+        if column_name == None and len(self._column_arguments) == 0:
+            column_name = self._new_column_arguments[0].name
+        return super(ColumnAddingCommand, self)._get_column(
+            hooke=hooke, params=params, block_name=block_name,
+            column_name=column_name)
+
+    def _set_column(self, hooke, params, block_name=None, column_name=None,
+                    values=None):
+        if column_name == None:
+            column_name = self._column_arguments[0].name
+        column_name = params[column_name]
+        block = self._block(hooke=hooke, params=params, name=block_name)
+        if column_name not in block.info['columns']:
+            new = Data((block.shape[0], block.shape[1]+1), dtype=block.dtype)
+            new.info = copy.deepcopy(block.info)
+            new[:,:-1] = block
+            new.info['columns'].append(column_name)
+            block = new
+            block_index = self._block_index(hooke, params, name=block_name)
+            self._curve(hooke, params).data[block_index] = block
+        column_index = block.info['columns'].index(column_name)
+        block[:,column_index] = values
+
+
+# The plugin itself
+
+class CurvePlugin (Builtin):
+    def __init__(self):
+        super(CurvePlugin, self).__init__(name='curve')
+        self._commands = [
+            GetCommand(self), InfoCommand(self), DeltaCommand(self),
+            ExportCommand(self), DifferenceCommand(self),
+            DerivativeCommand(self), PowerSpectrumCommand(self)]
+
 
 # Define commands
 
-class GetCommand (Command):
+class GetCommand (CurveCommand):
     """Return a :class:`hooke.curve.Curve`.
     """
     def __init__(self, plugin):
         super(GetCommand, self).__init__(
-            name='get curve', arguments=[CurveArgument],
-            help=self.__doc__, plugin=plugin)
+            name='get curve', help=self.__doc__, plugin=plugin)
 
     def _run(self, hooke, inqueue, outqueue, params):
-        outqueue.put(params['curve'])
+        outqueue.put(self._curve(hooke, params))
+
 
-class InfoCommand (Command):
+class InfoCommand (CurveCommand):
     """Get selected information about a :class:`hooke.curve.Curve`.
     """
     def __init__(self, plugin):
         args = [
-            CurveArgument,                    
             Argument(name='all', type='bool', default=False, count=1,
                      help='Get all curve information.'),
             ]
@@ -95,6 +293,7 @@ class InfoCommand (Command):
             help=self.__doc__, plugin=plugin)
 
     def _run(self, hooke, inqueue, outqueue, params):
+        curve = self._curve(hooke, params)
         fields = {}
         for key in self.fields:
             fields[key] = params[key]
@@ -107,7 +306,7 @@ class InfoCommand (Command):
         for key in self.fields:
             if fields[key] == True:
                 get = getattr(self, '_get_%s' % key.replace(' ', '_'))
-                lines.append('%s: %s' % (key, get(params['curve'])))
+                lines.append('%s: %s' % (key, get(curve)))
         outqueue.put('\n'.join(lines))
 
     def _get_name(self, curve):
@@ -134,7 +333,44 @@ class InfoCommand (Command):
     def _get_block_sizes(self, curve):
         return [block.shape for block in curve.data]
 
-class ExportCommand (Command):
+
+class DeltaCommand (BlockCommand):
+    """Get distance information between two points.
+
+    With two points A and B, the returned distances are A-B.
+    """
+    def __init__(self, plugin):
+        super(DeltaCommand, self).__init__(
+            name='delta',
+            arguments=[
+                Argument(name='point', type='point', optional=False, count=2,
+                         help="""
+Indicies of points bounding the selected data.
+""".strip()),
+                Argument(name='SI', type='bool', default=False,
+                         help="""
+Return distances in SI notation.
+""".strip())
+                ],
+            help=self.__doc__, plugin=plugin)
+
+    def _run(self, hooke, inqueue, outqueue, params):
+        data = self._block(hooke, params)
+        As = data[params['point'][0],:]
+        Bs = data[params['point'][1],:]
+        ds = [A-B for A,B in zip(As, Bs)]
+        if params['SI'] == False:
+            out = [(name, d) for name,d in zip(data.info['columns'], ds)]
+        else:
+            out = []
+            for name,d in zip(data.info['columns'], ds):
+                n,units = split_data_label(name)
+                out.append(
+                  (n, ppSI(value=d, unit=units, decimals=2)))
+        outqueue.put(out)
+
+
+class ExportCommand (BlockCommand):
     """Export a :class:`hooke.curve.Curve` data block as TAB-delimeted
     ASCII text.
 
@@ -145,12 +381,6 @@ class ExportCommand (Command):
         super(ExportCommand, self).__init__(
             name='export block',
             arguments=[
-                CurveArgument,
-                Argument(name='block', aliases=['set'], type='int', default=0,
-                         help="""
-Data block to save.  For an approach/retract force curve, `0` selects
-the approaching curve and `1` selects the retracting curve.
-""".strip()),
                 Argument(name='output', type='file', default='curve.dat',
                          help="""
 File name for the output data.  Defaults to 'curve.dat'
@@ -163,76 +393,118 @@ True if you want the column-naming header line.
             help=self.__doc__, plugin=plugin)
 
     def _run(self, hooke, inqueue, outqueue, params):
-        data = params['curve'].data[int(params['block'])] # HACK, int() should be handled by ui
+        data = self._block(hooke, params)
+
+        with open(params['output'], 'w') as f:
+            if params['header'] == True:
+                f.write('# %s \n' % ('\t'.join(data.info['columns'])))
+            numpy.savetxt(f, data, delimiter='\t')
+
+
+class DifferenceCommand (ColumnAddingCommand):
+    """Calculate the difference between two columns of data.
 
-        f = open(params['output'], 'w')
-        if params['header'] == True:
-            f.write('# %s \n' % ('\t'.join(data.info['columns'])))
-        numpy.savetxt(f, data, delimiter='\t')
-        f.close()
+    The difference is added to block A as a new column.
 
-class DifferenceCommand (Command):
-    """Calculate the difference between two blocks of data.
+    Note that the command will fail if the columns have different
+    lengths, so be careful when differencing columns from different
+    blocks.
     """
     def __init__(self, plugin):
         super(DifferenceCommand, self).__init__(
-            name='block difference',
-            arguments=[
-                CurveArgument,
-                Argument(name='block one', aliases=['set one'], type='int',
-                         default=1,
-                         help="""
-Block A in A-B.  For an approach/retract force curve, `0` selects the
-approaching curve and `1` selects the retracting curve.
+            name='difference',
+            blocks=[
+                ('block A', None,
+                 'Name of block A in A-B.  Defaults to the first block'),
+                ('block B', None,
+                 'Name of block B in A-B.  Defaults to matching `block A`.'),
+                ],
+            columns=[
+                ('column A', None,
+                 """
+Column of data from block A to difference.  Defaults to the first column.
 """.strip()),
-                Argument(name='block two', aliases=['set two'], type='int',
-                         default=0,
-                         help='Block B in A-B.'),
-                Argument(name='x column', type='int', default=0,
-                         help="""
-Column of data block to differentiate with respect to.
+                ('column B', None,
+                 """
+Column of data from block B to difference.  Defaults to matching `column A`.
 """.strip()),
-                Argument(name='f column', type='int', default=1,
-                         help="""
-Column of data block to differentiate.
+                ],
+            new_columns=[
+                ('output column', None,
+                 """
+Name of the new column for storing the difference (without units, defaults to
+`difference of <block A> <column A> and <block B> <column B>`).
 """.strip()),
                 ],
             help=self.__doc__, plugin=plugin)
 
     def _run(self, hooke, inqueue, outqueue, params):
-        a = params['curve'].data[params['block one']]
-        b = params['curve'].data[params['block two']]
-        assert a[:,params['x column']] == b[:,params['x column']]
-        out = Data((a.shape[0],2), dtype=a.dtype)
-        out[:,0] = a[:,params['x column']]
-        out[:,1] = a[:,params['f column']] - b[:,params['f column']]
-        outqueue.put(out)
-
-class DerivativeCommand (Command):
+        self._add_to_command_stack(params)
+        params = self.__setup_params(hooke=hooke, params=params)
+        data_A = self._get_column(hooke=hooke, params=params,
+                                  block_name='block A',
+                                  column_name='column A')
+        data_B = self._get_column(hooke=hooke, params=params,
+                                  block_name='block B',
+                                  column_name='column B')
+        out = data_A - data_B
+        self._set_column(hooke=hooke, params=params,
+                         block_name='block A',
+                         column_name='output column',
+                         values=out)
+
+    def __setup_params(self, hooke, params):
+        curve = self._curve(hooke, params)
+        if params['block A'] == None:
+            params['block A'] = curve.data[0].info['name']
+        if params['block B'] == None:
+            params['block B'] = params['block A']
+        block_A = self._block(hooke, params=params, name='block A')
+        block_B = self._block(hooke, params=params, name='block B')
+        if params['column A'] == None:
+            params['column A'] = block.info['columns'][0]
+        if params['column B'] == None:
+            params['column B'] = params['column A']
+        a_name,a_unit = split_data_label(params['column A'])
+        b_name,b_unit = split_data_label(params['column B'])
+        if a_unit != b_unit:
+            raise Failure('Unit missmatch: %s != %s' % (a_unit, b_unit))
+        if params['output column'] == None:
+            params['output column'] = join_data_label(
+                'difference of %s %s and %s %s' % (
+                    block_A.info['name'], a_name,
+                    block_B.info['name'], b_name),
+                a_unit)
+        else:
+            params['output column'] = join_data_label(
+                params['output column'], a_unit)
+        return params
+
+
+class DerivativeCommand (ColumnAddingCommand):
     """Calculate the derivative (actually, the discrete differentiation)
-    of a curve data block.
+    of a data column.
 
     See :func:`hooke.util.calculus.derivative` for implementation
     details.
     """
     def __init__(self, plugin):
         super(DerivativeCommand, self).__init__(
-            name='block derivative',
-            arguments=[
-                CurveArgument,
-                Argument(name='block', aliases=['set'], type='int', default=0,
-                         help="""
-Data block to differentiate.  For an approach/retract force curve, `0`
-selects the approaching curve and `1` selects the retracting curve.
-""".strip()),
-                Argument(name='x column', type='int', default=0,
-                         help="""
-Column of data block to differentiate with respect to.
-""".strip()),
-                Argument(name='f column', type='int', default=1,
-                         help="""
-Column of data block to differentiate.
+            name='derivative',
+            columns=[
+                ('x column', None,
+                 'Column of data block to differentiate with respect to.'),
+                ('f column', None,
+                 'Column of data block to differentiate.'),
+                ],
+            new_columns=[
+                ('output column', None,
+                 """
+Name of the new column for storing the derivative (without units, defaults to
+`derivative of <f column> with respect to <x column>`).
 """.strip()),
+                ],
+            arguments=[
                 Argument(name='weights', type='dict', default={-1:-0.5, 1:0.5},
                          help="""
 Weighting scheme dictionary for finite differencing.  Defaults to
@@ -242,31 +514,57 @@ central differencing.
             help=self.__doc__, plugin=plugin)
 
     def _run(self, hooke, inqueue, outqueue, params):
-        data = params['curve'].data[params['block']]
-        outqueue.put(derivative(
-                block, x_col=params['x column'], f_col=params['f column'],
-                weights=params['weights']))
-
-class PowerSpectrumCommand (Command):
-    """Calculate the power spectrum of a data block.
+        self._add_to_command_stack(params)
+        params = self.__setup_params(hooke=hooke, params=params)
+        x_data = self._get_column(hooke=hooke, params=params,
+                                  column_name='x column')
+        f_data = self._get_column(hooke=hooke, params=params,
+                                  column_name='f column')
+        d = derivative(
+            x_data=x_data, f_data=f_data, weights=params['weights'])
+        self._set_column(hooke=hooke, params=params,
+                         column_name='output column',
+                         values=d)
+
+    def __setup_params(self, hooke, params):
+        curve = self._curve(hooke, params)
+        x_name,x_unit = split_data_label(params['x column'])
+        f_name,f_unit = split_data_label(params['f column'])
+        d_unit = '%s/%s' % (f_unit, x_unit)
+        if params['output column'] == None:
+            params['output column'] = join_data_label(
+                'derivative of %s with respect to %s' % (
+                    f_name, x_name),
+                d_unit)
+        else:
+            params['output column'] = join_data_label(
+                params['output column'], d_unit)
+        return params
+
+
+class PowerSpectrumCommand (ColumnAddingCommand):
+    """Calculate the power spectrum of a data column.
     """
     def __init__(self, plugin):
         super(PowerSpectrumCommand, self).__init__(
-            name='block power spectrum',
+            name='power spectrum',
             arguments=[
-                CurveArgument,
-                Argument(name='block', aliases=['set'], type='int', default=0,
+                Argument(name='output block', type='string',
                          help="""
-Data block to act on.  For an approach/retract force curve, `0`
-selects the approaching curve and `1` selects the retracting curve.
+Name of the new data block for storing the power spectrum (defaults to
+`power spectrum of <source block name> <source column name>`).
 """.strip()),
-                Argument(name='f column', type='int', default=1,
+                Argument(name='bounds', type='point', optional=True, count=2,
                          help="""
-Column of data block to differentiate with respect to.
+Indicies of points bounding the selected data.
 """.strip()),
                 Argument(name='freq', type='float', default=1.0,
                          help="""
 Sampling frequency.
+""".strip()),
+                Argument(name='freq units', type='string', default='Hz',
+                         help="""
+Units for the sampling frequency.
 """.strip()),
                 Argument(name='chunk size', type='int', default=2048,
                          help="""
@@ -281,8 +579,216 @@ Otherwise, the chunks are end-to-end, and not overlapping.
             help=self.__doc__, plugin=plugin)
 
     def _run(self, hooke, inqueue, outqueue, params):
-        data = params['curve'].data[params['block']]
-        outqueue.put(unitary_avg_power_spectrum(
-                data[:,params['f column']], freq=params['freq'],
-                chunk_size=params['chunk size'],
-                overlap=params['overlap']))
+        self._add_to_command_stack(params)
+        params = self.__setup_params(hooke=hooke, params=params)
+        data = self._get_column(hooke=hooke, params=params)
+        bounds = params['bounds']
+        if bounds != None:
+            data = data[bounds[0]:bounds[1]]
+        freq_axis,power = unitary_avg_power_spectrum(
+            data, freq=params['freq'],
+            chunk_size=params['chunk size'],
+            overlap=params['overlap'])
+        b = Data((len(freq_axis),2), dtype=data.dtype)
+        b.info['name'] = params['output block']
+        b.info['columns'] = [
+            params['output freq column'],
+            params['output power column'],
+            ]
+        self._curve(hooke, params).data.append(b)
+        self._set_column(hooke, params, block_name='output block',
+                         column_name='output freq column',
+                         values=freq_axis)
+        self._set_column(hooke, params, block_name='output block',
+                         column_name='output power column',
+                         values=power)
+        outqueue.put(b)
+
+    def __setup_params(self, hooke, params):
+        if params['output block'] in self._block_names(hooke, params):
+            raise Failure('output block %s already exists in %s.'
+                          % (params['output block'],
+                             self._curve(hooke, params)))
+        data = self._get_column(hooke=hooke, params=params)
+        d_name,d_unit = split_data_label(data.info['name'])
+        if params['output block'] == None:
+            params['output block'] = 'power spectrum of %s %s' % (
+                data.info['name'], params['column'])
+        self.params['output freq column'] = join_data_label(
+            'frequency axis', params['freq units'])
+        self.params['output power column'] = join_data_label(
+            'power density', '%s^2/%s' % (data_units, params['freq units']))
+        return params
+
+
+class OldCruft (object):
+
+    def do_forcebase(self,args):
+        '''
+        FORCEBASE
+        (generalvclamp.py)
+        Measures the difference in force (in pN) between a point and a baseline
+        took as the average between two points.
+
+        The baseline is fixed once for a given curve and different force measurements,
+        unless the user wants it to be recalculated
+        ------------
+        Syntax: forcebase [rebase]
+                rebase: Forces forcebase to ask again the baseline
+                max: Instead of asking for a point to measure, asks for two points and use
+                     the maximum peak in between
+        '''
+        rebase=False #if true=we select rebase
+        maxpoint=False #if true=we measure the maximum peak
+
+        plot=self._get_displayed_plot()
+        whatset=1 #fixme: for all sets
+        if 'rebase' in args or (self.basecurrent != self.current.path):
+            rebase=True
+        if 'max' in args:
+            maxpoint=True
+
+        if rebase:
+            print 'Select baseline'
+            self.basepoints=self._measure_N_points(N=2, whatset=whatset)
+            self.basecurrent=self.current.path
+
+        if maxpoint:
+            print 'Select two points'
+            points=self._measure_N_points(N=2, whatset=whatset)
+            boundpoints=[points[0].index, points[1].index]
+            boundpoints.sort()
+            try:
+                y=min(plot.vectors[whatset][1][boundpoints[0]:boundpoints[1]])
+            except ValueError:
+                print 'Chosen interval not valid. Try picking it again. Did you pick the same point as begin and end of interval?'
+        else:
+            print 'Select point to measure'
+            points=self._measure_N_points(N=1, whatset=whatset)
+            #whatplot=points[0].dest
+            y=points[0].graph_coords[1]
+
+        #fixme: code duplication
+        boundaries=[self.basepoints[0].index, self.basepoints[1].index]
+        boundaries.sort()
+        to_average=plot.vectors[whatset][1][boundaries[0]:boundaries[1]] #y points to average
+
+        avg=np.mean(to_average)
+        forcebase=abs(y-avg)
+        print str(forcebase*(10**12))+' pN'
+        to_dump='forcebase '+self.current.path+' '+str(forcebase*(10**12))+' pN'
+        self.outlet.push(to_dump)
+
+    #---SLOPE---
+    def do_slope(self,args):
+        '''
+        SLOPE
+        (generalvclamp.py)
+        Measures the slope of a delimited chunk on the return trace.
+        The chunk can be delimited either by two manual clicks, or have
+        a fixed width, given as an argument.
+        ---------------
+        Syntax: slope [width]
+                The facultative [width] parameter specifies how many
+                points will be considered for the fit. If [width] is
+                specified, only one click will be required.
+        (c) Marco Brucale, Massimo Sandal 2008
+        '''
+
+        # Reads the facultative width argument
+        try:
+            fitspan=int(args)
+        except:
+            fitspan=0
+
+        # Decides between the two forms of user input, as per (args)
+        if fitspan == 0:
+            # Gets the Xs of two clicked points as indexes on the current curve vector
+            print 'Click twice to delimit chunk'
+            points=self._measure_N_points(N=2,whatset=1)
+        else:
+            print 'Click once on the leftmost point of the chunk (i.e.usually the peak)'
+            points=self._measure_N_points(N=1,whatset=1)
+            
+        slope=self._slope(points,fitspan)
+
+        # Outputs the relevant slope parameter
+        print 'Slope:'
+        print str(slope)
+        to_dump='slope '+self.current.path+' '+str(slope)
+        self.outlet.push(to_dump)
+
+    def _slope(self,points,fitspan):
+        # Calls the function linefit_between
+        parameters=[0,0,[],[]]
+        try:
+            clickedpoints=[points[0].index,points[1].index]
+            clickedpoints.sort()
+        except:
+            clickedpoints=[points[0].index-fitspan,points[0].index]        
+
+        try:
+            parameters=self.linefit_between(clickedpoints[0],clickedpoints[1])
+        except:
+            print 'Cannot fit. Did you click twice the same point?'
+            return
+             
+        # Outputs the relevant slope parameter
+        print 'Slope:'
+        print str(parameters[0])
+        to_dump='slope '+self.curve.path+' '+str(parameters[0])
+        self.outlet.push(to_dump)
+
+        # Makes a vector with the fitted parameters and sends it to the GUI
+        xtoplot=parameters[2]
+        ytoplot=[]
+        x=0
+        for x in xtoplot:
+            ytoplot.append((x*parameters[0])+parameters[1])
+
+        clickvector_x, clickvector_y=[], []
+        for item in points:
+            clickvector_x.append(item.graph_coords[0])
+            clickvector_y.append(item.graph_coords[1])
+
+        lineplot=self._get_displayed_plot(0) #get topmost displayed plot
+
+        lineplot.add_set(xtoplot,ytoplot)
+        lineplot.add_set(clickvector_x, clickvector_y)
+
+
+        if lineplot.styles==[]:
+            lineplot.styles=[None,None,None,'scatter']
+        else:
+            lineplot.styles+=[None,'scatter']
+        if lineplot.colors==[]:
+            lineplot.colors=[None,None,'black',None]
+        else:
+            lineplot.colors+=['black',None]
+        
+        
+        self._send_plot([lineplot])
+
+        return parameters[0]
+
+
+    def linefit_between(self,index1,index2,whatset=1):
+        '''
+        Creates two vectors (xtofit,ytofit) slicing out from the
+        current return trace a portion delimited by the two indexes
+        given as arguments.
+        Then does a least squares linear fit on that slice.
+        Finally returns [0]=the slope, [1]=the intercept of the
+        fitted 1st grade polynomial, and [2,3]=the actual (x,y) vectors
+        used for the fit.
+        (c) Marco Brucale, Massimo Sandal 2008
+        '''
+        # Translates the indexes into two vectors containing the x,y data to fit
+        xtofit=self.plots[0].vectors[whatset][0][index1:index2]
+        ytofit=self.plots[0].vectors[whatset][1][index1:index2]
+
+        # Does the actual linear fitting (simple least squares with numpy.polyfit)
+        linefit=[]
+        linefit=np.polyfit(xtofit,ytofit,1)
+
+        return (linefit[0],linefit[1],xtofit,ytofit)