gpg-migrate.git
10 years agoAdd PGPPacket._serialize_string_to_key_specifier
W. Trevor King [Sat, 21 Dec 2013 02:12:12 +0000 (18:12 -0800)]
Add PGPPacket._serialize_string_to_key_specifier

This is the inverse of _parse_string_to_key_specifier.  See the
_parse_string_to_key_specifier commits for references to RFC 4880.

10 years agoAdd PGPPacket._serialize_multiprecision_integer
W. Trevor King [Sat, 21 Dec 2013 02:01:27 +0000 (18:01 -0800)]
Add PGPPacket._serialize_multiprecision_integer

This is the inverse of _parse_multiprecision_integer.  See the
_parse_multiprecision_integer commit for references to RFC 4880.

10 years agoStub out PGPPacket.to_bytes with header serialization
W. Trevor King [Sat, 21 Dec 2013 01:44:00 +0000 (17:44 -0800)]
Stub out PGPPacket.to_bytes with header serialization

Also setup a body serialization framework along the lines of the
existing packet-parsing framework in PGPPacket.from_bytes.

The header serialization in _serialize_header is just the inverse of
the parsing in _parse_header.  See the _parse_header commit for
references to RFC 4880.

10 years agoAdd PGPPacket._reverse for inverse dictionary lookup
W. Trevor King [Sat, 21 Dec 2013 00:56:03 +0000 (16:56 -0800)]
Add PGPPacket._reverse for inverse dictionary lookup

Mapping human-readable values to their binary counterparts for
serialization.

10 years agoCheck that the first secret-key packet is a 'secret-key packet'
W. Trevor King [Sat, 21 Dec 2013 00:07:00 +0000 (16:07 -0800)]
Check that the first secret-key packet is a 'secret-key packet'

From RFC 4880 [1]:

  The format of a transferable secret key is the same as a
  transferable public key except that secret-key and secret-subkey
  packets are used instead of the public key and public-subkey
  packets.

[1]: http://tools.ietf.org/search/rfc4880#section-11.2

10 years agoDescribe packet stream ordering in PGPKey.__doc__
W. Trevor King [Fri, 20 Dec 2013 23:31:29 +0000 (15:31 -0800)]
Describe packet stream ordering in PGPKey.__doc__

Using quotes from RFC 4880, as noted in the docstring itself.

10 years agoAdd key expiration time subpacket parsing to PGPPacket
W. Trevor King [Fri, 20 Dec 2013 23:05:11 +0000 (15:05 -0800)]
Add key expiration time subpacket parsing to PGPPacket

From RFC 4880 [1]:

  (4-octet time field)

  The validity period of the key.  This is the number of seconds after
  the key creation time that the key expires.  If this is not present
  or has a value of zero, the key never expires.  This is found only
  on a self-signature.

[1]: http://tools.ietf.org/search/rfc4880#section-5.2.3.6

10 years agoAdd signature creation time signature subpacket parsing to PGPPacket
W. Trevor King [Fri, 20 Dec 2013 23:02:08 +0000 (15:02 -0800)]
Add signature creation time signature subpacket parsing to PGPPacket

From RFC 4880 [1]:

  (4-octet time field)

  The time the signature was made.

  MUST be present in the hashed area.

[1]: http://tools.ietf.org/search/rfc4880#section-5.2.3.4

10 years agoAdd primary user id signature subpacket parsing to PGPPacket
W. Trevor King [Fri, 20 Dec 2013 22:58:20 +0000 (14:58 -0800)]
Add primary user id signature subpacket parsing to PGPPacket

From RFC 4880 [1]:

  (1 octet, Boolean)

  This is a flag in a User ID's self-signature that states whether
  this User ID is the main User ID for this key.  It is reasonable for
  an implementation to resolve ambiguities in preferences, etc. by
  referring to the primary User ID.  If this flag is absent, its value
  is zero.  If more than one User ID in a key is marked as primary,
  the implementation may resolve the ambiguity in any way it sees fit,
  but it is RECOMMENDED that priority be given to the User ID with the
  most recent self-signature.

  When appearing on a self-signature on a User ID packet, this
  subpacket applies only to User ID packets.  When appearing on a
  self-signature on a User Attribute packet, this subpacket applies
  only to User Attribute packets.  That is to say, there are two
  different and independent "primaries" -- one for User IDs, and one
  for User Attributes.

[1]: http://tools.ietf.org/search/rfc4880#section-5.2.3.19

10 years agoAdd key server preferences signature subpacket parsing to PGPPacket
W. Trevor King [Fri, 20 Dec 2013 22:52:57 +0000 (14:52 -0800)]
Add key server preferences signature subpacket parsing to PGPPacket

From RFC 4880 [1]:

  (N octets of flags)

  This is a list of one-bit flags that indicate preferences that the
  key holder has about how the key is handled on a key server.  All
  undefined flags MUST be zero.

  First octet: 0x80 = No-modify
    the key holder requests that this key only be modified or updated
    by the key holder or an administrator of the key server.

  This is found only on a self-signature.

[1]: http://tools.ietf.org/search/rfc4880#section-5.2.3.17

10 years agoAdd features signature subpacket parsing to PGPPacket
W. Trevor King [Fri, 20 Dec 2013 22:10:21 +0000 (14:10 -0800)]
Add features signature subpacket parsing to PGPPacket

From RFC 4880 [1]:

 (N octets of flags)

 The Features subpacket denotes which advanced OpenPGP features a
 user's implementation supports.  This is so that as features are
 added to OpenPGP that cannot be backwards-compatible, a user can
 state that they can use that feature.  The flags are single bits that
 indicate that a given feature is supported.

 This subpacket is similar to a preferences subpacket, and only
 appears in a self-signature.

 An implementation SHOULD NOT use a feature listed when sending to a
 user who does not state that they can use it.

 Defined features are as follows:

   First octet:

   0x01 - Modification Detection (packets 18 and 19)

[1]: http://tools.ietf.org/search/rfc4880#section-5.2.3.24

10 years agoAdd preferred compression algorithm signature subpacket parsing to PGPPacket
W. Trevor King [Fri, 20 Dec 2013 22:05:22 +0000 (14:05 -0800)]
Add preferred compression algorithm signature subpacket parsing to PGPPacket

From RFC 4880 [1]:

  (array of one-octet values)

  Compression algorithm numbers that indicate which algorithms the key
  holder prefers to use.  Like the preferred symmetric algorithms, the
  list is ordered.  Algorithm numbers are in Section 9.  If this
  subpacket is not included, ZIP is preferred.  A zero denotes that
  uncompressed data is preferred; the key holder's software might have
  no compression software in that implementation.  This is only found
  on a self-signature.

[1]: http://tools.ietf.org/search/rfc4880#section-5.2.3.9

10 years agoAdd preferred hash algorithm signature subpacket parsing to PGPPacket
W. Trevor King [Fri, 20 Dec 2013 22:02:51 +0000 (14:02 -0800)]
Add preferred hash algorithm signature subpacket parsing to PGPPacket

From RFC 4880 [1]:

  (array of one-octet values)

  Message digest algorithm numbers that indicate which algorithms the
  key holder prefers to receive.  Like the preferred symmetric
  algorithms, the list is ordered.  Algorithm numbers are in Section
  9.  This is only found on a self-signature.

[1]: http://tools.ietf.org/search/rfc4880#section-5.2.3.8

10 years agoAdd preferred symmetric algorithm signature subpacket parsing to PGPPacket
W. Trevor King [Fri, 20 Dec 2013 21:59:57 +0000 (13:59 -0800)]
Add preferred symmetric algorithm signature subpacket parsing to PGPPacket

From RFC 4880 [1]:

  (array of one-octet values)

  Symmetric algorithm numbers that indicate which algorithms the key
  holder prefers to use.  The subpacket body is an ordered list of
  octets with the most preferred listed first.  It is assumed that
  only algorithms listed are supported by the recipient's software.
  Algorithm numbers are in Section 9.  This is only found on a self-
  signature.

[1]: http://tools.ietf.org/search/rfc4880#section-5.2.3.7

10 years agoAdd key flags signature subpacket parsing to PGPPacket
W. Trevor King [Fri, 20 Dec 2013 21:52:10 +0000 (13:52 -0800)]
Add key flags signature subpacket parsing to PGPPacket

From RFC 4880 [1]:

  (N octets of flags)

  This subpacket contains a list of binary flags that hold information
  about a key.  It is a string of octets, and an implementation MUST
  NOT assume a fixed size.  This is so it can grow over time.  If a
  list is shorter than an implementation expects, the unstated flags
  are considered to be zero.  The defined flags are as follows:

    First octet:

    0x01 - This key may be used to certify other keys.
    0x02 - This key may be used to sign data.
    0x04 - This key may be used to encrypt communications.
    0x08 - This key may be used to encrypt storage.
    0x10 - The private component of this key may have been split by a
           secret-sharing mechanism.
    0x20 - This key may be used for authentication.
    0x80 - The private component of this key may be in the possession
           of more than one person.

[1]: http://tools.ietf.org/search/rfc4880#section-5.2.3.21

10 years agoParse and print the hashed signature subpackets too
W. Trevor King [Fri, 20 Dec 2013 21:44:39 +0000 (13:44 -0800)]
Parse and print the hashed signature subpackets too

These packets aren't encrypted, just hashed (i.e. signed).

10 years agoAdd embedded signature subpacket parsing to PGPPacket
W. Trevor King [Fri, 20 Dec 2013 21:34:42 +0000 (13:34 -0800)]
Add embedded signature subpacket parsing to PGPPacket

From RFC 4880 [1]:

  (1 signature packet body)

  This subpacket contains a complete Signature packet body as
  specified in Section 5.2 above.  It is useful when one signature
  needs to refer to, or be incorporated in, another signature.

[1]: http://tools.ietf.org/search/rfc4880#section-5.2.3.26

10 years agoAdd issuer signature subpacket parsing to PGPPacket
W. Trevor King [Fri, 20 Dec 2013 21:27:57 +0000 (13:27 -0800)]
Add issuer signature subpacket parsing to PGPPacket

From RFC 4880 [1]:

  (8-octet Key ID)

  The OpenPGP Key ID of the key issuing the signature.

[1]: http://tools.ietf.org/search/rfc4880#section-5.2.3.5

10 years agoAdd a signature subpacket parsing/display framework to PGPPacket
W. Trevor King [Fri, 20 Dec 2013 21:26:48 +0000 (13:26 -0800)]
Add a signature subpacket parsing/display framework to PGPPacket

Along the lines of the existing packet-parsing framework in
PGPPacket.from_bytes.

10 years agoAllow explicit types in PGPPacket._clean_type
W. Trevor King [Fri, 20 Dec 2013 21:13:19 +0000 (13:13 -0800)]
Allow explicit types in PGPPacket._clean_type

This will let me use it to clean the signature subpacket type for
parsing signature subpackets.

10 years agoStub out signature subpacket parsing in PGPPacket
W. Trevor King [Fri, 20 Dec 2013 21:09:25 +0000 (13:09 -0800)]
Stub out signature subpacket parsing in PGPPacket

From RFC 4880 [1]:

   Each subpacket consists of a subpacket header and a body.  The
   header consists of:

     - the subpacket length (1, 2, or 5 octets),
     - the subpacket type (1 octet),

   and is followed by the subpacket-specific data.

   The length includes the type octet but not this length.  Its format
   is similar to the "new" format packet header lengths, but cannot
   have Partial Body Lengths.  That is:

       if the 1st octet <  192, then
           lengthOfLength = 1
           subpacketLen = 1st_octet

       if the 1st octet >= 192 and < 255, then
           lengthOfLength = 2
           subpacketLen = ((1st_octet - 192) << 8) + (2nd_octet) + 192

       if the 1st octet = 255, then
           lengthOfLength = 5
           subpacket length = [four-octet scalar starting at 2nd_octet]

   The value of the subpacket type octet may be:

            0 = Reserved
            1 = Reserved
            2 = Signature Creation Time
            3 = Signature Expiration Time
            4 = Exportable Certification
            5 = Trust Signature
            6 = Regular Expression
            7 = Revocable
            8 = Reserved
            9 = Key Expiration Time
           10 = Placeholder for backward compatibility
           11 = Preferred Symmetric Algorithms
           12 = Revocation Key
           13 = Reserved
           14 = Reserved
           15 = Reserved
           16 = Issuer
           17 = Reserved
           18 = Reserved
           19 = Reserved
           20 = Notation Data
           21 = Preferred Hash Algorithms
           22 = Preferred Compression Algorithms
           23 = Key Server Preferences
           24 = Preferred Key Server
           25 = Primary User ID
           26 = Policy URI
           27 = Key Flags
           28 = Signer's User ID
           29 = Reason for Revocation
           30 = Features
           31 = Signature Target
           32 = Embedded Signature
   100 To 110 = Private or experimental

[1]: http://tools.ietf.org/search/rfc4880#section-5.2.3.1

10 years agoAdd PGPPacket._str_signature_packet
W. Trevor King [Fri, 20 Dec 2013 20:19:38 +0000 (12:19 -0800)]
Add PGPPacket._str_signature_packet

This is not super useful without parsing the subpackets, but you can
usually figure out what's being bound using the context:

  $ ./gpg-migrate.py F15F5BE8 6D024CA2
  key: F15F5BE8
    public:
      public-key packet: F15F5BE8
      user id packet: William Trevor King <wking@tremily.us>
      signature packet: postitive user id and public-key packet
      signature packet: postitive user id and public-key packet
      ...
      user id packet: William Trevor King <tvrkng@gmail.com>
      signature packet: postitive user id and public-key packet
      signature packet: postitive user id and public-key packet
      signature packet: postitive user id and public-key packet
      signature packet: generic user id and public-key packet
      signature packet: postitive user id and public-key packet
      public-subkey packet: 42407C74
      signature packet: subkey binding
  ...

The user id signatures are likely between the previous user id and
F15F5BE8, with positive self-signed signatures and generic signatures
from other folks.  The subkey binding is likely between F15F5BE8 and
42407C74.  Adding subpacket parsing to make this explicit would be
nice, but it's not a priority at the moment.

10 years agoAdd PGPPacket._str_generic_key_packet and fingerprint calculation
W. Trevor King [Fri, 20 Dec 2013 19:54:13 +0000 (11:54 -0800)]
Add PGPPacket._str_generic_key_packet and fingerprint calculation

From RFC 4880 [1]:

  A V4 fingerprint is the 160-bit SHA-1 hash of the octet 0x99,
  followed by the two-octet packet length, followed by the entire
  Public-Key packet starting with the version field.  The Key ID is
  the low-order 64 bits of the fingerprint.

Since all key types (public/private and primary/subkey) have the same
generic public key portion, we can use the same stringification method
for all types.

[1]: http://tools.ietf.org/search/rfc4880#section-12.2

10 years agoAdd PGPKey with a basic key-level API
W. Trevor King [Fri, 20 Dec 2013 19:43:21 +0000 (11:43 -0800)]
Add PGPKey with a basic key-level API

This currently handles importing keys from GnuPG and stubs out a
key-stringification framework along the lines of the existing
packet-parsing framework in PGPPacket.from_bytes.

10 years agoAdd user id parsing to PGPPacket
W. Trevor King [Fri, 20 Dec 2013 19:28:42 +0000 (11:28 -0800)]
Add user id parsing to PGPPacket

From RFC 4880 [1]:

  A User ID packet consists of UTF-8 text that is intended to
  represent the name and email address of the key holder.  By
  convention, it includes an RFC 2822 [RFC2822] mail name-addr, but
  there are no restrictions on its content.  The packet length in the
  header specifies the length of the User ID.

[1]: http://tools.ietf.org/search/rfc4880#section-5.11

10 years agoAdd version-4-signature parsing to PGPPacket
W. Trevor King [Fri, 20 Dec 2013 19:17:09 +0000 (11:17 -0800)]
Add version-4-signature parsing to PGPPacket

From RFC 4880 [1]:

  The body of a version 4 Signature packet contains:

  - One-octet version number (4).
  - One-octet signature type.
  - One-octet public-key algorithm.
  - One-octet hash algorithm.
  - Two-octet scalar octet count for following hashed subpacket data.
    Note that this is the length in octets of all of the hashed
    subpackets; a pointer incremented by this number will skip over
    the hashed subpackets.
  - Hashed subpacket data set (zero or more subpackets).
  - Two-octet scalar octet count for the following unhashed subpacket
    data.  Note that this is the length in octets of all of the
    unhashed subpackets; a pointer incremented by this number will
    skip over the unhashed subpackets.
  - Unhashed subpacket data set (zero or more subpackets).
  - Two-octet field holding the left 16 bits of the signed hash value.
  - One or more multiprecision integers comprising the signature.
    This portion is algorithm specific, as described above.

I've stashed all of the algorithm-specific MPI values in the
'signature' field, because I don't care about verifying signatures at
the moment.

[1]: http://tools.ietf.org/search/rfc4880#section-5.2.3

10 years agoAdd PGPPacket._signature_types
W. Trevor King [Fri, 20 Dec 2013 19:06:44 +0000 (11:06 -0800)]
Add PGPPacket._signature_types

From RFC 4880 [1]:

  There are a number of possible meanings for a signature, which are
  indicated in a signature type octet in any given signature.  Please
  note that the vagueness of these meanings is not a flaw, but a
  feature of the system.  Because OpenPGP places final authority for
  validity upon the receiver of a signature, it may be that one
  signer's casual act might be more rigorous than some other
  authority's positive act.  See Section 5.2.4, "Computing
  Signatures", for detailed information on how to compute and verify
  signatures of each type.

  These meanings are as follows:

  0x00: Signature of a binary document.
    This means the signer owns it, created it, or certifies that it
    has not been modified.

  0x01: Signature of a canonical text document.
    This means the signer owns it, created it, or certifies that it
    has not been modified.  The signature is calculated over the text
    data with its line endings converted to <CR><LF>.

  0x02: Standalone signature.
    This signature is a signature of only its own subpacket contents.
    It is calculated identically to a signature over a zero-length
    binary document.  Note that it doesn't make sense to have a V3
    standalone signature.

  0x10: Generic certification of a User ID and Public-Key packet.
    The issuer of this certification does not make any particular
    assertion as to how well the certifier has checked that the owner
    of the key is in fact the person described by the User ID.

  0x11: Persona certification of a User ID and Public-Key packet.
    The issuer of this certification has not done any verification of
    the claim that the owner of this key is the User ID specified.

  0x12: Casual certification of a User ID and Public-Key packet.
    The issuer of this certification has done some casual verification
    of the claim of identity.

  0x13: Positive certification of a User ID and Public-Key packet.
    The issuer of this certification has done substantial verification
    of the claim of identity.

    Most OpenPGP implementations make their "key signatures" as 0x10
    certifications.  Some implementations can issue 0x11-0x13
    certifications, but few differentiate between the types.

  0x18: Subkey Binding Signature
    This signature is a statement by the top-level signing key that
    indicates that it owns the subkey.  This signature is calculated
    directly on the primary key and subkey, and not on any User ID or
    other packets.  A signature that binds a signing subkey MUST have
    an Embedded Signature subpacket in this binding signature that
    contains a 0x19 signature made by the signing subkey on the
    primary key and subkey.

  0x19: Primary Key Binding Signature
    This signature is a statement by a signing subkey, indicating that
    it is owned by the primary key [2].  This signature is calculated
    the same way as a 0x18 signature: directly on the primary key and
    subkey, and not on any User ID or other packets.

  0x1F: Signature directly on a key
    This signature is calculated directly on a key.  It binds the
    information in the Signature subpackets to the key, and is
    appropriate to be used for subpackets that provide information
    about the key, such as the Revocation Key subpacket.  It is also
    appropriate for statements that non-self certifiers want to make
    about the key itself, rather than the binding between a key and a
    name.

  0x20: Key revocation signature
    The signature is calculated directly on the key being revoked.  A
    revoked key is not to be used.  Only revocation signatures by the
    key being revoked, or by an authorized revocation key, should be
    considered valid revocation signatures.

  0x28: Subkey revocation signature
    The signature is calculated directly on the subkey being revoked.
    A revoked subkey is not to be used.  Only revocation signatures by
    the top-level signature key that is bound to this subkey, or by an
    authorized revocation key, should be considered valid revocation
    signatures.

  0x30: Certification revocation signature
    This signature revokes an earlier User ID certification signature
    (signature class 0x10 through 0x13) or direct-key signature
    (0x1F).  It should be issued by the same key that issued the
    revoked signature or an authorized revocation key.  The signature
    is computed over the same data as the certificate that it revokes,
    and should have a later creation date than that certificate.

  0x40: Timestamp signature.
    This signature is only meaningful for the timestamp contained in
    it.

  0x50: Third-Party Confirmation signature.
    This signature is a signature over some other OpenPGP Signature
    packet(s).  It is analogous to a notary seal on the signed data.
    A third-party signature SHOULD include Signature Target
    subpacket(s) to give easy identification.  Note that we really do
    mean SHOULD.  There are plausible uses for this (such as a blind
    party that only sees the signature, not the key or source
    document) that cannot include a target subpacket.

[1]: http://tools.ietf.org/search/rfc4880#section-5.2.1
[2]: http://www.rfc-editor.org/errata_search.php?rfc=4880
     Errata ID: 2208
     Reported By: Constantin Hagemeier
     Date Reported: 2010-04-28
     Held for Document Update by: Sean Turner
     Date Held: 2010-07-20

     Section 5.2.1. says:

       This signature is a statement by a signing subkey, indicating
       that it is owned by the primary key and subkey.

     It should say:

       This signature is a statement by a signing subkey, indicating
       that it is owned by the primary key.

     Notes:

       The subkey does not own itself.

10 years agoStub out PGPPacket._parse_signature_packet
W. Trevor King [Fri, 20 Dec 2013 18:58:13 +0000 (10:58 -0800)]
Stub out PGPPacket._parse_signature_packet

The first octet of each signature packet is it's version number.  That
means we can parse the first octet of the signature packet and use its
value to determine which version we're parsing.  From RFC 4880 [1]:

  The body of a version 3 Signature Packet contains:

  - One-octet version number (3).
  - ...

And in the next section [2]:

  The body of a version 4 Signature Packet contains:

  - One-octet version number (4).
  - ...

[1]: http://tools.ietf.org/search/rfc4880#section-5.2.2
[2]: http://tools.ietf.org/search/rfc4880#section-5.2.3

10 years agoAdd CAST5 block size to PGPPacket._cipher_block_size
W. Trevor King [Fri, 20 Dec 2013 18:49:01 +0000 (10:49 -0800)]
Add CAST5 block size to PGPPacket._cipher_block_size

From RFC 4880 [1]:

  CAST5 (128 bit key, as per [RFC2144])

From RFC 2144 [2]:

  CAST-128 is a 12- or 16-round Feistel cipher that has a blocksize of
  64 bits and a keysize of up to 128 bits...

[1]: http://tools.ietf.org/search/rfc4880#section-9.2
[2]: http://tools.ietf.org/search/rfc2144#section-2.7

10 years agoAdd AES block sizes to PGPPacket._cipher_block_size
W. Trevor King [Fri, 20 Dec 2013 18:45:47 +0000 (10:45 -0800)]
Add AES block sizes to PGPPacket._cipher_block_size

From the AES spec [1]:

  This standard specifies the Rijndael algorithm (...), a symmetric
  block cipher that can process data blocks of 128 bits, using cipher
  keys with lengths of 128, 192, and 256 bits.

[1]: http://csrc.nist.gov/publications/fips/fips197/fips-197.{ps,pdf}

10 years agoAdd secret key parsing to PGPPacket
W. Trevor King [Fri, 20 Dec 2013 18:25:59 +0000 (10:25 -0800)]
Add secret key parsing to PGPPacket

Use the same parser for public-key and public-subkey packets.  From
RFC 4880 [1]:

  A Secret-Subkey packet (tag 7) is the subkey analog of the Secret
  Key packet and has exactly the same format.

The generic (sub)key parsing is specified in section 5.5.3 [2]:

  The Secret-Key and Secret-Subkey packets contain all the data of the
  Public-Key and Public-Subkey packets, with additional algorithm-
  specific secret-key data appended, usually in encrypted form.

  The packet contains:

  - A Public-Key or Public-Subkey packet, as described above.
  - One octet indicating string-to-key usage conventions.  Zero
    indicates that the secret-key data is not encrypted.  255 or 254
    indicates that a string-to-key specifier is being given.  Any
    other value is a symmetric-key encryption algorithm identifier.
  - [Optional] If string-to-key usage octet was 255 or 254, a one-
    octet symmetric encryption algorithm.
  - [Optional] If string-to-key usage octet was 255 or 254, a
    string-to-key specifier.  The length of the string-to-key
    specifier is implied by its type, as described above.
  - [Optional] If secret data is encrypted (string-to-key usage octet
    not zero), an Initial Vector (IV) of the same length as the
    cipher's block size.
  - Plain or encrypted multiprecision integers comprising the secret
    key data.  These algorithm-specific fields are as described below.
  - If the string-to-key usage octet is zero or 255, then a two-octet
    checksum of the plaintext of the algorithm-specific portion (sum
    of all octets, mod 65536).  If the string-to-key usage octet was
    254, then a 20-octet SHA-1 hash of the plaintext of the
    algorithm-specific portion.  This checksum or hash is encrypted
    together with the algorithm-specific fields (if string-to-key
    usage octet is not zero).  Note that for all other values, a
    two-octet checksum is required.

RFC 4880 claims to list block sizes (needed for the IV length) [3]:

  OpenPGP specifies a number of symmetric-key algorithms.  This
  specification creates a registry of symmetric-key algorithm
  identifiers.  The registry includes the algorithm name, its key
  sizes and block size, and a reference to the defining specification.
  The initial values for this registry can be found in Section 9.

But in section 9.2 [4], they just list key size.  It looks like the
block size is usually equal to the key size, but not always.  From
section one of the AES spec [5]:

  This standard specifies the Rijndael algorithm (...), a symmetric
  block cipher that can process data blocks of 128 bits, using cipher
  keys with lengths of 128, 192, and 256 bits.

So it looks like the block size for each cipher needs research beyond
RFC 4880.

[1]: http://tools.ietf.org/search/rfc4880#section-5.5.1.4
[2]: http://tools.ietf.org/search/rfc4880#section-5.5.3
[3]: http://tools.ietf.org/search/rfc4880#section-10.3.2
[4]: http://tools.ietf.org/search/rfc4880#section-9.2
[5]: http://csrc.nist.gov/publications/fips/fips197/fips-197.{ps,pdf}

10 years agoAdd iterated and salted S2K parsing to _parse_string_to_key_specifier
W. Trevor King [Fri, 20 Dec 2013 18:09:23 +0000 (10:09 -0800)]
Add iterated and salted S2K parsing to _parse_string_to_key_specifier

From RFC 4880 [1]:

   Octet  0:        0x03
   Octet  1:        hash algorithm
   Octets 2-9:      8-octet salt value
   Octet  10:       count, a one-octet, coded value

[1]: http://tools.ietf.org/search/rfc4880#section-3.7.1.3

10 years agoAdd salted S2K parsing to PGPPacket._parse_string_to_key_specifier
W. Trevor King [Fri, 20 Dec 2013 18:02:41 +0000 (10:02 -0800)]
Add salted S2K parsing to PGPPacket._parse_string_to_key_specifier

From RFC 4880 [1]:

   Octet  0:        0x01
   Octet  1:        hash algorithm
   Octets 2-9:      8-octet salt value

[1]: http://tools.ietf.org/search/rfc4880#section-3.7.1.2

10 years agoAdd simple S2K parsing to PGPPacket._parse_string_to_key_specifier
W. Trevor King [Fri, 20 Dec 2013 17:59:58 +0000 (09:59 -0800)]
Add simple S2K parsing to PGPPacket._parse_string_to_key_specifier

From RFC 4880 [1]:

   Octet 0:        0x00
   Octet 1:        hash algorithm

[1]: http://tools.ietf.org/search/rfc4880#section-3.7.1.1

10 years agoStub out PGPPacket._parse_string_to_key_specifier
W. Trevor King [Fri, 20 Dec 2013 17:55:53 +0000 (09:55 -0800)]
Stub out PGPPacket._parse_string_to_key_specifier

From RFC 4880 [1]:

       ID          S2K Type
       --          --------
       0           Simple S2K
       1           Salted S2K
       2           Reserved value
       3           Iterated and Salted S2K
       100 to 110  Private/Experimental S2K

In the following sections (3.7.1.1 - 3.7.1.3), the first octet of each
specifier is it's type (simple starts with 0x00, salted starts with
0x01, and iterated and salted starts with 0x03).  That means we can
parse the first octet of the S2K specifier and use its value to
determine which type of specifier we're parsing.

[1]: http://tools.ietf.org/search/rfc4880#section-3.7.1

10 years agoParse algorithm-specific data in _parse_generic_public_key_packet
W. Trevor King [Fri, 20 Dec 2013 17:26:47 +0000 (09:26 -0800)]
Parse algorithm-specific data in _parse_generic_public_key_packet

From RFC 4880 [1]:

  This algorithm-specific portion is:

  Algorithm-Specific Fields for RSA public keys:

    - multiprecision integer (MPI) of RSA public modulus n;
    - MPI of RSA public encryption exponent e.

  Algorithm-Specific Fields for DSA public keys:

    - MPI of DSA prime p;
    - MPI of DSA group order q (q is a prime divisor of p-1);
    - MPI of DSA group generator g;
    - MPI of DSA public-key value y (= g**x mod p where x is secret).

  Algorithm-Specific Fields for Elgamal public keys:

    - MPI of Elgamal prime p;
    - MPI of Elgamal group generator g;
    - MPI of Elgamal public key value y (= g**x mod p where x is
      secret).

We need to parse these fields explicitly, because the secret key
packets start with public key packets.  In order to tell where the
rest of the secret key data starts, we need to know the length of the
public key packet; simply treating the rest of the packet as an opaque
public key doesn't work.

[1]: http://tools.ietf.org/search/rfc4880#section-5.5.2

10 years agoAdd PGPPacket._parse_multiprecision_integer
W. Trevor King [Fri, 20 Dec 2013 17:16:45 +0000 (09:16 -0800)]
Add PGPPacket._parse_multiprecision_integer

From RFC 4880 [1]:

  An MPI consists of two pieces: a two-octet scalar that is the length
  of the MPI in bits followed by a string of octets that contain the
  actual integer.

  These octets form a big-endian number; a big-endian number can be
  made into an MPI by prefixing it with the appropriate length.

  Examples:

  (all numbers are in hexadecimal)

  The string of octets [00 01 01] forms an MPI with the value 1.  The
  string [00 09 01 FF] forms an MPI with the value of 511.

  Additional rules:

  The size of an MPI is ((MPI.length + 7) / 8) + 2 octets.

  The length field of an MPI describes the length starting from its
  most significant non-zero bit.  Thus, the MPI [00 02 01] is not
  formed correctly.  It should be [00 01 01].

  Unused bits of an MPI MUST be zero.

  Also note that when an MPI is encrypted, the length refers to the
  plaintext MPI.  It may be ill-formed in its ciphertext.

[1]: http://tools.ietf.org/search/rfc4880#section-3.2

10 years agoDecode public key algorithm in _parse_generic_public_key_packet
W. Trevor King [Fri, 20 Dec 2013 05:27:27 +0000 (21:27 -0800)]
Decode public key algorithm in _parse_generic_public_key_packet

It's easier for humans to parse the text representation ;).

10 years agoAdd PGPPacket._hash_algorithms
W. Trevor King [Fri, 20 Dec 2013 05:18:01 +0000 (21:18 -0800)]
Add PGPPacket._hash_algorithms

From RFC 4880 [1]:

      ID           Algorithm                             Text Name
      --           ---------                             ---------
      1          - MD5 [HAC]                             "MD5"
      2          - SHA-1 [FIPS180]                       "SHA1"
      3          - RIPE-MD/160 [HAC]                     "RIPEMD160"
      4          - Reserved
      5          - Reserved
      6          - Reserved
      7          - Reserved
      8          - SHA256 [FIPS180]                      "SHA256"
      9          - SHA384 [FIPS180]                      "SHA384"
      10         - SHA512 [FIPS180]                      "SHA512"
      11         - SHA224 [FIPS180]                      "SHA224"
      100 to 110 - Private/Experimental algorithm

[1]: http://tools.ietf.org/search/rfc4880#section-9.4

10 years agoAdd PGPPacket._compression_algorithms
W. Trevor King [Fri, 20 Dec 2013 05:16:05 +0000 (21:16 -0800)]
Add PGPPacket._compression_algorithms

From RFC 4880 [1]:

       ID           Algorithm
       --           ---------
       0          - Uncompressed
       1          - ZIP [RFC1951]
       2          - ZLIB [RFC1950]
       3          - BZip2 [BZ2]
       100 to 110 - Private/Experimental algorithm

[1]: http://tools.ietf.org/search/rfc4880#section-9.3

10 years agoAdd PGPPacket._symmetric_key_algorithms
W. Trevor King [Fri, 20 Dec 2013 05:13:57 +0000 (21:13 -0800)]
Add PGPPacket._symmetric_key_algorithms

From RFC 4880 [1]:

       ID           Algorithm
       --           ---------
       0          - Plaintext or unencrypted data
       1          - IDEA [IDEA]
       2          - TripleDES (DES-EDE, [SCHNEIER] [HAC] -
                    168 bit key derived from 192)
       3          - CAST5 (128 bit key, as per [RFC2144])
       4          - Blowfish (128 bit key, 16 rounds) [BLOWFISH]
       5          - Reserved
       6          - Reserved
       7          - AES with 128-bit key [AES]
       8          - AES with 192-bit key
       9          - AES with 256-bit key
       10         - Twofish with 256-bit key [TWOFISH]
       100 to 110 - Private/Experimental algorithm

[1]: http://tools.ietf.org/search/rfc4880#section-9.2

10 years agoAdd PGPPacket._public_key_algorithms
W. Trevor King [Fri, 20 Dec 2013 05:08:26 +0000 (21:08 -0800)]
Add PGPPacket._public_key_algorithms

From RFC 4880 [1]:

      ID           Algorithm
      --           ---------
      1          - RSA (Encrypt or Sign) [HAC]
      2          - RSA Encrypt-Only [HAC]
      3          - RSA Sign-Only [HAC]
      16         - Elgamal (Encrypt-Only) [ELGAMAL] [HAC]
      17         - DSA (Digital Signature Algorithm) [FIPS186] [HAC]
      18         - Reserved for Elliptic Curve
      19         - Reserved for ECDSA
      20         - Reserved (formerly Elgamal Encrypt or Sign)
      21         - Reserved for Diffie-Hellman (X9.42,
                   as defined for IETF-S/MIME)
      100 to 110 - Private/Experimental algorithm

[1]: http://tools.ietf.org/search/rfc4880#section-9.1

10 years agoAdd public key parsing to PGPPacket
W. Trevor King [Thu, 19 Dec 2013 05:52:42 +0000 (21:52 -0800)]
Add public key parsing to PGPPacket

Use the same parser for public-key and public-subkey packets.  From
RFC 4880 [1]:

  A Public-Subkey packet (tag 14) has exactly the same format as a
  Public-Key packet, but denotes a subkey.  One or more subkeys may be
  associated with a top-level key.

The generic (sub)key parsing is specified in section 5.5.2 [2]:

  OpenPGP implementations MUST create keys with version 4 format.  V3
  keys are deprecated; an implementation MUST NOT generate a V3 key,
  but MAY accept it.

  ...

  A version 4 packet contains:

  - A one-octet version number (4).
  - A four-octet number denoting the time that the key was created.
  - A one-octet number denoting the public-key algorithm of this key.
  - A series of multiprecision integers comprising the key material.

Also check that the --export packets begin with a public-key packet.
From RFC 4880 [3]:

  A Public-Key packet starts a series of packets that forms an OpenPGP
  key (sometimes called an OpenPGP certificate).

[1]: http://tools.ietf.org/search/rfc4880#section-5.5.1.2
[2]: http://tools.ietf.org/search/rfc4880#section-5.5.2
[3]: http://tools.ietf.org/search/rfc4880#section-5.5.1.1

10 years agoAdd a flexible packet-parsing framework
W. Trevor King [Thu, 19 Dec 2013 05:09:42 +0000 (21:09 -0800)]
Add a flexible packet-parsing framework

Shunting packet-type processing out to type-specific methods.  For
example, 'public-key packet' packets will be parsed by
PGPPacket._parse_public_key_packet.

From the re docs [1]:

  '+'
    Causes the resulting RE to match 1 or more repetitions of the
    preceding RE. ab+ will match 'a' followed by any non-zero number
    of 'b's; it will not match just 'a'.

  ...

  \W
    For Unicode (str) patterns:
      Matches Unicode word characters; this includes most characters
      that can be part of a word in any language, as well as numbers
      and the underscore. If the ASCII flag is used, only [a-zA-Z0-9_]
      is matched (but the flag affects the entire regular expression,
      so in such cases using an explicit [a-zA-Z0-9_] may be a better
      choice).

    For 8-bit (bytes) patterns:
      Matches characters considered alphanumeric in the ASCII
      character set; this is equivalent to [a-zA-Z0-9_].

[1]: http://docs.python.org/3/library/re.html#regular-expression-syntax

10 years agogpg-migrate.py: Convert PGPPacket 'packet-tag' key to 'type'
W. Trevor King [Thu, 19 Dec 2013 04:56:42 +0000 (20:56 -0800)]
gpg-migrate.py: Convert PGPPacket 'packet-tag' key to 'type'

And convert the integer to a string using the table from RFC 4880 [1]:

  The packet tag denotes what type of packet the body holds.  Note
  that old format headers can only have tags less than 16, whereas new
  format headers can have tags as great as 63.  The defined tags (in
  decimal) are as follows:

       0        -- Reserved - a packet tag MUST NOT have this value
       1        -- Public-Key Encrypted Session Key Packet
       2        -- Signature Packet
       3        -- Symmetric-Key Encrypted Session Key Packet
       4        -- One-Pass Signature Packet
       5        -- Secret-Key Packet
       6        -- Public-Key Packet
       7        -- Secret-Subkey Packet
       8        -- Compressed Data Packet
       9        -- Symmetrically Encrypted Data Packet
       10       -- Marker Packet
       11       -- Literal Data Packet
       12       -- Trust Packet
       13       -- User ID Packet
       14       -- Public-Subkey Packet
       17       -- User Attribute Packet
       18       -- Sym. Encrypted and Integrity Protected Data Packet
       19       -- Modification Detection Code Packet
       60 to 63 -- Private or Experimental Values

[1]: http://tools.ietf.org/search/rfc4880#section-4.3

10 years agoPull PGPPacket header parsing out into _parse_header
W. Trevor King [Thu, 19 Dec 2013 04:46:48 +0000 (20:46 -0800)]
Pull PGPPacket header parsing out into _parse_header

This parsing is distinct from the payload parsing, so stash it in a
separate method.

10 years agoAdd packets_from_bytes to help parse multi-packet streams
W. Trevor King [Thu, 19 Dec 2013 04:45:21 +0000 (20:45 -0800)]
Add packets_from_bytes to help parse multi-packet streams

10 years agoCheck for short packets in PGPPacket.from_bytes
W. Trevor King [Thu, 19 Dec 2013 04:44:30 +0000 (20:44 -0800)]
Check for short packets in PGPPacket.from_bytes

When the data is longer than expected, the packet may just be part of
a stream.

10 years agoTrack data offset in bytes, and extract the packet payload
W. Trevor King [Thu, 19 Dec 2013 04:37:33 +0000 (20:37 -0800)]
Track data offset in bytes, and extract the packet payload

Return the offset when we're done, because there may be multiple
packets in a stream.

10 years agoExtract the packet length from the old-format length header
W. Trevor King [Thu, 19 Dec 2013 04:31:15 +0000 (20:31 -0800)]
Extract the packet length from the old-format length header

From RFC 4880 [1]:

  Scalar numbers are unsigned and are always stored in big-endian
  format.  Using n[k] to refer to the kth octet being interpreted, the
  value of a two-octet scalar is ((n[0] << 8) + n[1]).  The value of a
  four-octet scalar is ((n[0] << 24) + (n[1] << 16) + (n[2] << 8) +
  n[3]).

The struct big-endian byte-order character is '>' [2].

[1]: http://tools.ietf.org/search/rfc4880#section-3.1
[2]: http://docs.python.org/3/library/struct.html#byte-order-size-and-alignment

10 years agoAdd PGPPacket._old_format_packet_lengths
W. Trevor King [Thu, 19 Dec 2013 04:05:25 +0000 (20:05 -0800)]
Add PGPPacket._old_format_packet_lengths

From RFC 4880 [1]:

   The meaning of the length-type in old format packets is:

   0 - The packet has a one-octet length.  The header is 2 octets long.

   1 - The packet has a two-octet length.  The header is 3 octets long.

   2 - The packet has a four-octet length.  The header is 5 octets long.

   3 - The packet is of indeterminate length.  The header is 1 octet
       long, and the implementation must determine how long the packet
       is.  If the packet is in a file, this means that the packet
       extends until the end of the file.  In general, an implementation
       SHOULD NOT use indeterminate-length packets except where the end
       of the data will be clear from the context, and even then it is
       better to use a definite length, or a new format header.  The new
       format headers described below have a mechanism for precisely
       encoding data of indeterminate length.

The struct format characters are [2]:

  Format   C Type           Python type   Standard size   Notes
  B        unsigned char    integer       1               (3)
  H        unsigned short   integer       2               (3)
  I        unsigned int     integer       4               (3)

  3. When attempting to pack a non-integer using any of the integer
     conversion codes, if the non-integer has a __index__() method
     then that method is called to convert the argument to an integer
     before packing.

     Changed in version 3.2: Use of the __index__() method for
     non-integers is new in 3.2.

[1]: http://tools.ietf.org/search/rfc4880#section-4.2.1
[2]: http://docs.python.org/3/library/struct.html#format-characters

10 years agoExtract the packet tag
W. Trevor King [Thu, 19 Dec 2013 03:51:10 +0000 (19:51 -0800)]
Extract the packet tag

From RFC 4880 [1]:

  The first octet of the packet header is called the "Packet Tag".  It
  determines the format of the header and denotes the packet contents.
  The remainder of the packet header is the length of the packet.

  Note that the most significant bit is the leftmost bit, called bit
  7.  A mask for this bit is 0x80 in hexadecimal.

              +---------------+
         PTag |7 6 5 4 3 2 1 0|
              +---------------+
         Bit 7 -- Always one
         Bit 6 -- New packet format if set

  PGP 2.6.x only uses old format packets.  Thus, software that
  interoperates with those versions of PGP must only use old format
  packets.  If interoperability is not an issue, the new packet format
  is RECOMMENDED.  Note that old format packets have four bits of
  packet tags, and new format packets have six; some features cannot
  be used and still be backward-compatible.

  Also note that packets with a tag greater than or equal to 16 MUST
  use new format packets.  The old format packets can only express
  tags less than or equal to 15.

  Old format packets contain:

         Bits 5-2 -- packet tag
         Bits 1-0 -- length-type

  New format packets contain:

         Bits 5-0 -- packet tag

[1]: http://tools.ietf.org/search/rfc4880#section-4.2

10 years agoStub out gpg-migrate.py
W. Trevor King [Thu, 19 Dec 2013 03:49:08 +0000 (19:49 -0800)]
Stub out gpg-migrate.py

Following the general approach outlined by Atom Smasher [1], but I'll
just parse the packets directly in Python.

[1]: http://atom.smasher.org/gpg/gpg-migrate.txt