From fb02e1039531e21730924588fef5e42092f62c6b Mon Sep 17 00:00:00 2001 From: "W. Trevor King" Date: Fri, 7 Jan 2011 11:51:31 -0500 Subject: [PATCH] Add week 1 problems for Winter 2011 edition of Physics 101. --- .../Serway_and_Jewett_8/problem01.10.tex | 19 +++++++++++++ .../Serway_and_Jewett_8/problem01.11.tex | 28 +++++++++++++++++++ .../Serway_and_Jewett_8/problem01.13.tex | 11 ++++++++ .../Serway_and_Jewett_8/problem01.15.tex | 15 ++++++++++ 4 files changed, 73 insertions(+) create mode 100644 latex/problems/Serway_and_Jewett_8/problem01.10.tex create mode 100644 latex/problems/Serway_and_Jewett_8/problem01.11.tex create mode 100644 latex/problems/Serway_and_Jewett_8/problem01.13.tex create mode 100644 latex/problems/Serway_and_Jewett_8/problem01.15.tex diff --git a/latex/problems/Serway_and_Jewett_8/problem01.10.tex b/latex/problems/Serway_and_Jewett_8/problem01.10.tex new file mode 100644 index 0000000..3cf0c87 --- /dev/null +++ b/latex/problems/Serway_and_Jewett_8/problem01.10.tex @@ -0,0 +1,19 @@ +\begin{problem*}{1.10} +Newton's law of universal gravitation is represented by +\begin{equation} +F = \frac{GMm}{r^2} +\end{equation} +where $F$ is the magnitude of the gravitational force exerted by one +small object on another, $M$ and $m$ are the masses of the objects, +and $r$ is a distance. Force has the SI units +$\bareU{kg$\cdot$m/s$^2$}$. What are the SI units of the +proportionality constant $G$? +\end{problem*} % Probem 1.10 + +\begin{solution} +\begin{align} + F &= \frac{GMm}{r^2} \\ + \bareU{kg$\cdot$m/s$^2$} &= G\frac{\bareU{kg$^2$}}{\bareU{m$^2$}} \\ + G &= \ans{\bareU{m$^3$/kg$\cdot$s$^2$}} +\end{align} +\end{solution} diff --git a/latex/problems/Serway_and_Jewett_8/problem01.11.tex b/latex/problems/Serway_and_Jewett_8/problem01.11.tex new file mode 100644 index 0000000..9dff725 --- /dev/null +++ b/latex/problems/Serway_and_Jewett_8/problem01.11.tex @@ -0,0 +1,28 @@ +\begin{problem*}{1.11} +Kinetic energy $K$ (Chapter 7) has dimensions +$\bareU{kg$\cdot$m$^2$/s$^2$}$. It can be written in terms of the +momentum $p$ (Chapter 9) and mass $m$ as +\begin{equation} +K = \frac{p^2}{2m} +\end{equation} +\Part{a} Determine the proper units for momentum using dimensional +analysis. \Part{b} The unit of force is the newton $\bareU{N}$, where +$1\U{N} = 1\U{kg$\cdot$m/s$^2$}$. What are the units of momentum $p$ +in terms of a newton and another fundamental SI unit? +\end{problem*} % Probem 1.11 + +\begin{solution} +\Part{a} +\begin{align} + K &= \frac{p^2}{2m} \\ + \bareU{kg$\cdot$m$^2$/s$^2$} &= \frac{p^2}{\bareU{kg}} \\ + p^2 &= \frac{\bareU{kg$^2\cdot$m$^2$}}{\bareU{s$^2$}} \\ + p &= \ans{\bareU{kg$\cdot$m/s}} +\end{align} + +\Part{b} +\begin{equation} + p = \bareU{kg$\cdot$m/s} = \bareU{kg$\cdot$m/s$^2$}\cdot\bareU{s} + = \ans{\bareU{N$\cdot$s}} +\end{equation} +\end{solution} diff --git a/latex/problems/Serway_and_Jewett_8/problem01.13.tex b/latex/problems/Serway_and_Jewett_8/problem01.13.tex new file mode 100644 index 0000000..945b23b --- /dev/null +++ b/latex/problems/Serway_and_Jewett_8/problem01.13.tex @@ -0,0 +1,11 @@ +\begin{problem*}{1.13} +A rectangular building lot has a width of $75.0\U{ft}$ and a length of +$125\U{ft}$. Determine the area of this lot in square meters. +\end{problem*} % Probem 1.13 + +\begin{solution} +\begin{equation} +A = 75.0\U{ft} \cdot 125\U{ft} \cdot \p({\frac{1\U{m}}{3.28\U{ft}}})^2 + = \ans{871\U{m$^2$}} +\end{equation} +\end{solution} diff --git a/latex/problems/Serway_and_Jewett_8/problem01.15.tex b/latex/problems/Serway_and_Jewett_8/problem01.15.tex new file mode 100644 index 0000000..07882f1 --- /dev/null +++ b/latex/problems/Serway_and_Jewett_8/problem01.15.tex @@ -0,0 +1,15 @@ +\begin{problem*}{1.15} +A solid piece of led has a mass of $23.94\U{g}$ and a volume of +$2.10\U{cm$^3$}$. From these data, calculate the density of lead in +SI units (kilograms per cubic meter). +\end{problem*} % Probem 1.15 + +\begin{solution} +\begin{equation} + \rho = \frac{m}{V} + = \frac{23.94\U{g}}{2.10\U{cm$^3$}} + \cdot\frac{1\U{kg}}{10^3\U{g}} + \cdot\p({\frac{10^2\U{cm}}{1\U{m}}})^3 + = \ans{11,400\U{kg/m$^3$}} +\end{equation} +\end{solution} -- 2.26.2