From f7c69e195aad989757ef2d987f54d330fd8ef460 Mon Sep 17 00:00:00 2001 From: "W. Trevor King" Date: Wed, 1 Jul 2009 17:25:50 -0400 Subject: [PATCH] Added week two recitation solutions. --- .../Young_and_Freedman_12/problem22.16.tex | 32 ++++++++ .../Young_and_Freedman_12/problem22.18.tex | 32 ++++++++ .../Young_and_Freedman_12/problem22.23.tex | 28 +++++++ .../Young_and_Freedman_12/problem22.25.tex | 28 +++++++ .../Young_and_Freedman_12/problem22.37.tex | 77 ++++++++++++++++++- 5 files changed, 193 insertions(+), 4 deletions(-) diff --git a/latex/problems/Young_and_Freedman_12/problem22.16.tex b/latex/problems/Young_and_Freedman_12/problem22.16.tex index d0a64b9..694a6be 100644 --- a/latex/problems/Young_and_Freedman_12/problem22.16.tex +++ b/latex/problems/Young_and_Freedman_12/problem22.16.tex @@ -6,4 +6,36 @@ point inside the sphere, $0.100\U{m}$ below the surface. \end{problem*} \begin{solution} +\Part{a} +From Gauss' law +\begin{equation} + \Phi_E=\oint_S\vect{E}\cdot\vect{dA}=\frac{q_e}{\varepsilon_0} +\end{equation} +we have (in cases of spherical symmetry) +\begin{align} + \Phi_E &= EA = 4\pi r^2 E = \frac{q_e}{\varepsilon_0} \\ + E &= \frac{q_e}{4\pi\varepsilon_0 r^2} = \frac{k q_e}{r^2} +\end{align} +which looks just like the electric field from a point charge, except +the $q_e$ is only the charge \emph{enclosed} by the gaussian sphere of +radius $r$. + +In the case of $r_a = R+0.1\U{m}$ outside the sphere, all of the +charge is enclosed ($q_e=q$), so +\begin{equation} + E_a = \frac{k q}{r_a^2} + = \frac{8.99e9\U{Nm$^2$/C$^2$} \cdot 0.250\E{-9}\U{C}}{(0.550\U{m})^2} + = \ans{7.43\U{N/C}} +\end{equation} + +\Part{b} +Inside a steady-state conductor, $\ans{E=0}$, otherwise charges would +be moving around, and the system would not actually be in a steady +state. + +Another way to think about it is that all the excess positive charges +in the sphere want to get as far away from each other as possible, so +they end up evenly distributed in a thin shell around the outside of +the sphere. This leaves no net charge inside any gaussian surface of +$r b && r < c) return 0; + else return 1/r; +} + +draw(graph(E, 0, 2*c, n=600), red); + +pen thin=linewidth(0.5*linewidth())+grey; +xaxis("$r$"); +yaxis("$E$"); + +real dy=0.15; // >= the height of the letter "b" in graph units... +label("$a$", align=N, Scale((a,-dy))); +label("$b$", align=N, Scale((b,-dy))); +label("$c$", align=N, Scale((c,-dy))); + +draw(graph(E, 0, 2*c, n=600), red); // overwrite the axis +\end{asy} +\end{center} + +\Part{d} +The inner surface of the outer cylinder must carry +$\ans{\lambda_i=-\lambda}$ so that the total charge enclosed by any +gaussian surface embedded inside the outer cylinder is $0$ (as it must +be, because $E=0$ inside a conductor). Because the outer cylinder +carries no net charge, $\ans{\lambda_o=-\lambda_i=\lambda}$. \end{solution} -- 2.26.2