From f1d7ee94bf7d1446f5503fe603c3741a4ce8b1e5 Mon Sep 17 00:00:00 2001 From: "W. Trevor King" Date: Wed, 12 Jun 2013 12:05:02 -0400 Subject: [PATCH] introduction/main.tex: Rework the thesis outline Lay out the current structure. --- src/contour-space/main.tex | 4 +++- src/introduction/main.tex | 46 ++++++++++++++++++-------------------- 2 files changed, 25 insertions(+), 25 deletions(-) diff --git a/src/contour-space/main.tex b/src/contour-space/main.tex index 9111f72..7ec31f6 100644 --- a/src/contour-space/main.tex +++ b/src/contour-space/main.tex @@ -1,4 +1,6 @@ \chapter{Contour length space} \label{sec:contour-space} -TODO\citet{puchner08}. +Contour length space analysis converts force curves to unfolding +pathway fingerprints\citet{puchner08}, which is useful for +identifying and characterizing unfolding behavior. diff --git a/src/introduction/main.tex b/src/introduction/main.tex index f05959e..3e094c1 100644 --- a/src/introduction/main.tex +++ b/src/introduction/main.tex @@ -204,27 +204,25 @@ behavior. \section{Thesis Outline} \label{sec:outline} -TODO: fill in once structure has stabilized - -%\Cref{sec:unfolding} of this thesis discusses the theory of protein -%unfolding for single domains. \Cref{sec:tension} discusses linker -%tension modeling. \Cref{sec:unfolding-distributions} pulls -%\cref{sec:unfolding,sec:tension} together to discuss the theory of -%mechanical unfolding experiments. This theory makes straightforward -%analysis of unfolding results difficult, so \cref{sec:sawsim} presents -%a Monte Carlo simulation approach to fitting unfolding parameters, and -%\cref{sec:contour-space} presents the contour-length space analysis -%for converting force curves to unfolding pathway fingerprints. -%\Cref{sec:temperature-theory} wraps up the theory section by extending -%the analysis in \cref{sec:unfolding,sec:unfolding-distributions} to -%multiple temperatures. -% -%\Cref{sec:apparatus} describes our experimental apparatus and methods, -%as well as calibration procedures. With both the theory and procedure -%taken care of, \cref{sec:cantilever,sec:temperature} -%present and analyze AFM cantilever- and temperature-dependent -%unfolding behavior of the immunoglobulin-like domain 27 from human -%Titin (I27). -% -%We close with \cref{sec:future}, which presents our conclusions and -%discusses possible directions for future work. +\Cref{sec:methods} of this thesis outlines the apparatus and methods +for single molecule force spectroscopy with an atomic force +microscope. \Cref{sec:sawsim} presents my \sawsim\ Monte Carlo +simulation for modeling unfolding/refolding behavior. By comparing +model simulations with experimental measurements, we can gain insight +into the protein's kinetics. After \cref{sec:sawsim}, you should have +a pretty firm grasp of the underlying physics, so we'll move on to +\cref{sec:pyafm} and discuss my \pyafm\ experiment control software. +With both the kinetic theory and procedure taken care of, +\cref{sec:calibcant} discusses thermal cantilever calibration, +deriving the theoretical approach and presenting my +\calibcant\ automatic calibration software. + +Moving away from experiment control, \cref{sec:hooke} presents the +\Hooke\ suite for extracting unfolding force histograms (for +comparison with \sawsim\ simulations). In \cref{sec:salt}, I pull all +the pieces together (experiment control, post processing, and +simulation) to carry out unfolding experiments on the +immunoglobulin-like domain 27 from human Titin (I27) in buffers with +different ion strength. We close with \cref{sec:future}, which +summarizes my conclusions and discusses possible directions for future +work. -- 2.26.2