From ced07e67f6ab146ccfb7c86dc7f58908e9ef567b Mon Sep 17 00:00:00 2001 From: "W. Trevor King" Date: Sat, 7 Aug 2010 10:18:48 -0400 Subject: [PATCH] Fixes to polymer_fit plugin. Changes: * Docstring updates to FJC_PEG_fn now that we're back to Newton's method. * Use start/stop to select relevant slices of z/d_data for fitting. * Use rescaled ModelFitter fitting. --- hooke/plugin/polymer_fit.py | 60 +++++++++++++++++++++---------------- 1 file changed, 35 insertions(+), 25 deletions(-) diff --git a/hooke/plugin/polymer_fit.py b/hooke/plugin/polymer_fit.py index 9ed2faa..09b9909 100644 --- a/hooke/plugin/polymer_fit.py +++ b/hooke/plugin/polymer_fit.py @@ -32,7 +32,7 @@ import StringIO import sys import numpy -from scipy.optimize import newton, bisect +from scipy.optimize import newton from ..command import Command, Argument, Failure from ..config import Setting @@ -454,10 +454,9 @@ def FJC_PEG_fn(x_data, T, N, k, Lp, Lh, dG, a): Notes ----- - We approximate the PEG adjusted eJPG via bisection - (:func:`scipy.optimize.bisect`) Because it is more stable than - Newton's algorithm. For the starting point, we use the standard - JPG function with an averaged contour length. + We approximate the PEG adjusted eFJC via Newton's method + (:func:`scipy.optimize.newton`). For the starting point, we use + the standard FJC function with an averaged contour length. """ kwargs = {'T':T, 'N':N, 'k':k, 'Lp':Lp, 'Lh':Lh, 'dG':dG, 'a':a} if is_iterable(x_data): @@ -474,19 +473,9 @@ def FJC_PEG_fn(x_data, T, N, k, Lp, Lh, dG, a): guess = FJC_fn(x_data, T=T, L=L, a=a) L *= 2.0 - if False: # Bisection - while inverse_FJC_PEG_fn(guess, **kwargs) < x_data: - guess *= 2.0 - lower = guess - while inverse_FJC_PEG_fn(lower, **kwargs) > x_data: - lower /= 2.0 - - fn = lambda f: inverse_FJC_PEG_fn(guess*abs(f), **kwargs) - x_data - return guess*abs(bisect(f=fn, a=lower/guess, b=1.0)) - else: # Newton - fn = lambda f: inverse_FJC_PEG_fn(guess*abs(f), **kwargs) - x_data - ret = guess*abs(newton(func=fn, x0=1.0)) - return ret + fn = lambda f: inverse_FJC_PEG_fn(guess*abs(f), **kwargs) - x_data + ret = guess*abs(newton(func=fn, x0=1.0)) + return ret class FJC_PEG (ModelFitter): """Fit the data to an poly(ethylene-glycol) adjusted extended FJC. @@ -998,16 +987,14 @@ Indicies of points bounding the selected data. outqueue=None): """Fit the data with :class:`FJC`. """ - """Fit the data with :class:`WLC`. - """ info = { 'temperature (K)': self.plugin.config['temperature'], - 'x data (m)': z_data, + 'x data (m)': z_data[start:stop], } if True: # TODO: optionally free persistence length info['Kuhn length (m)'] = ( self.plugin.config['FJC Kuhn length']) - model = FJC(d_data, info=info) + model = FJC(d_data[start:stop], info=info, rescale=True) queue = Queue.Queue() params = model.fit(outqueue=queue) if True: # TODO: if Kuhn length fixed @@ -1028,7 +1015,30 @@ Indicies of points bounding the selected data. outqueue=None): """Fit the data with :class:`FJC_PEG`. """ - pass + info = { + 'temperature (K)': self.plugin.config['temperature'], + 'x data (m)': z_data[start:stop], + # TODO: more info + } + if True: # TODO: optionally free persistence length + info['Kuhn length (m)'] = ( + self.plugin.config['FJC Kuhn length']) + model = FJC(d_data[start:stop], info=info, rescale=True) + queue = Queue.Queue() + params = model.fit(outqueue=queue) + if True: # TODO: if Kuhn length fixed + params = [params] + a = info['Kuhn length (m)'] + else: + a = params[1] + Nr = params[0] + N = model.L(Nr) + T = info['temperature (K)'] + fit_info = queue.get(block=False) + mask = numpy.zeros(z_data.shape, dtype=numpy.bool) + mask[start:stop] = True + return [FJC_PEG_fn(z_data, **kwargs) * mask, + fit_info] def fit_WLC_model(self, curve, z_data, d_data, start, stop, outqueue=None): @@ -1036,12 +1046,12 @@ Indicies of points bounding the selected data. """ info = { 'temperature (K)': self.plugin.config['temperature'], - 'x data (m)': z_data, + 'x data (m)': z_data[start:stop], } if True: # TODO: optionally free persistence length info['persistence length (m)'] = ( self.plugin.config['WLC persistence length']) - model = WLC(d_data, info=info) + model = WLC(d_data[start:stop], info=info, rescale=True) queue = Queue.Queue() params = model.fit(outqueue=queue) if True: # TODO: if persistence length fixed -- 2.26.2