From bbf7247da06b39dacea2a8f6e33d618146fc44b8 Mon Sep 17 00:00:00 2001 From: "W. Trevor King" Date: Tue, 29 Mar 2011 16:51:37 -0400 Subject: [PATCH] Fix (a^2-z^2)^2 typo in integrals.tex. --- tex/src/cantilever-calib/integrals.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/tex/src/cantilever-calib/integrals.tex b/tex/src/cantilever-calib/integrals.tex index 3d10bb8..afac3bc 100644 --- a/tex/src/cantilever-calib/integrals.tex +++ b/tex/src/cantilever-calib/integrals.tex @@ -22,7 +22,7 @@ There are simple poles at $u = \pm i$. We will show that, for any $(a,b > 0) \in \Reals$,% \nomenclature[aR]{\Reals}{Real numbers} \begin{equation} - I = \iInfInf{z}{\frac{1}{(a^2-z^2) + b^2 z^2}} = \frac{\pi}{b a^2} \;. + I = \iInfInf{z}{\frac{1}{(a^2-z^2)^2 + b^2 z^2}} = \frac{\pi}{b a^2} \;. \end{equation} First we note that $|f(z)| \rightarrow 0$ like $|z^{-4}|$ for $|z| \gg 1$, @@ -38,7 +38,7 @@ into $(A+iB)(A-iB)$. % thanks Prof. Yuan (a^2-z^2)^2 + b^2 z^2 = (a^2-z^2 \colA{+} ibz)(a^2-z^2 \colA{-} ibz) \end{equation} -And the roots of $z^2 \colA{\pm} ibz - a^2$ +The roots of $z^2 \colA{\pm} ibz - a^2$ are given by \begin{equation} z_{r\colB{\pm}} = \colA{\pm}\frac{ib}{2} \left( -- 2.26.2