From b0f406c6c078cf7e2192072a7261ce9740187a09 Mon Sep 17 00:00:00 2001 From: "W. Trevor King" Date: Wed, 4 Apr 2012 14:51:45 -0400 Subject: [PATCH] Add solution for Serway and Jewett v8's problem 24.11. --- latex/problems/Serway_and_Jewett_8/problem24.11.tex | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/latex/problems/Serway_and_Jewett_8/problem24.11.tex b/latex/problems/Serway_and_Jewett_8/problem24.11.tex index e2b4390..c9109cf 100644 --- a/latex/problems/Serway_and_Jewett_8/problem24.11.tex +++ b/latex/problems/Serway_and_Jewett_8/problem24.11.tex @@ -16,4 +16,17 @@ electric flux through each surface. \end{problem*} \begin{solution} +The flux through any surface is given by Gauss's law: +\begin{equation} + \Phi_E = \frac{q_\text{in}}{\varepsilon_0} \;, +\end{equation} +so +\begin{align} + \Phi_{E1} &= \frac{-2Q + Q}{\varepsilon_0} + = \ans{\frac{-Q}{\varepsilon_0}} \\ + \Phi_{E2} &= \frac{Q - Q}{\varepsilon_0} = \ans{0} \\ + \Phi_{E1} &= \frac{-2Q + Q - Q}{\varepsilon_0} + = \ans{\frac{-2Q}{\varepsilon_0}} \\ + \Phi_{E1} &= \frac{0}{\varepsilon_0} = \ans{0} \;. +\end{align} \end{solution} -- 2.26.2