From 65d32ad227affcf75d7094e74a36414357f9e49a Mon Sep 17 00:00:00 2001 From: "W. Trevor King" Date: Mon, 8 Jun 2009 14:12:57 -0400 Subject: [PATCH] Began versioning. This course-website framework developed over the first half of 2009 while TAing for Phys201 (Modern physics for engineers) at Drexel University. After a few false starts at versioning, I'm starting this new repository because I think I've figured out a stable scheme. When you start a new course, clone this repository to create a working copy. Seperate your commits on the clone into course-specific commits (e.g. Makefile changes when adding homework 2, atom.xml updates, etc.) and general commits (corrections to README files, additional problem source in /latex/problems/, etc.). Then, cherry pick the course-specific commits back into this repo with git remote add phys201 /home/bob/phys201 git fetch phys201 git cherry-pick 1d8fb1fe41dfc1b1eb38c7b5d574577c4b341c58 git remote rm phys201 git remote prune phys201 The benefit of cloning an independent repo over just starting up a new branch is that most people don't care about the particular per-course details, but lots of people may want the framework, and not want to worry about the disk space needed for all the per-course cruft. From a more philosophical perspective, this repo will track the history of 'what you want for building a course website', while the per-course repos track the history of a particular course's website (and student grades, TA emails, etc.). --- Makefile | 28 ++ README | 27 ++ announcements/Makefile | 9 + announcements/README | 26 ++ announcements/addresses.txt.examples | 6 + announcements/script/course-details.sh | 9 + announcements/script/initial-post.sh | 19 ++ announcements/script/post.sh | 57 ++++ html/.htaccess | 1 + html/Makefile | 45 +++ html/README | 76 +++++ html/announcements.shtml | 9 + html/homeworks.shtml | 10 + html/inactive/contact.shtml | 21 ++ html/inactive/exams.shtml | 10 + html/inactive/labs.shtml | 30 ++ html/inactive/lectures.shtml | 10 + html/index.shtml | 27 ++ html/php/atom.php | 43 +++ html/php/people.php | 62 +++++ html/php/quarter.php | 4 + html/php/section_docs.php | 44 +++ html/php/webmaster.php | 15 + html/recitations.shtml | 10 + html/shared/favicon.ico | Bin 0 -> 3638 bytes html/shared/feed-icon-14x14.png | Bin 0 -> 689 bytes html/shared/footer.shtml | 25 ++ html/shared/header.shtml | 63 +++++ html/shared/style.css | 120 ++++++++ html/xml/TAs.xml | 75 +++++ html/xml/admin_mailing_list.py | 27 ++ html/xml/department_xml_to_people.py | 60 ++++ html/xml/profs.xml | 12 + html/xml/webmaster.xml | 5 + latex/Makefile | 11 + latex/README | 14 + latex/hwk/Makefile | 21 ++ latex/hwk/hwk1/Makefile | 41 +++ latex/hwk/hwk1/all_problems.tex | 19 ++ latex/hwk/hwk1/problem1.tex | 1 + latex/hwk/hwk1/problem2.tex | 1 + latex/hwk/hwk1/problem3.tex | 1 + latex/hwk/hwk1/probs.tex | 5 + latex/hwk/hwk1/sols.tex | 5 + latex/old-source/s09-phys201-syllabus.tex | 141 ++++++++++ latex/problems/README | 4 + latex/problems/equation27.07.tex | 69 +++++ latex/problems/example13.06.T.tex | 25 ++ latex/problems/figure27.03.T.tex | 120 ++++++++ latex/problems/problem01.60.tex | 44 +++ latex/problems/problem01.62.tex | 37 +++ latex/problems/problem02.10.tex | 20 ++ latex/problems/problem02.16.tex | 16 ++ latex/problems/problem02.40.tex | 72 +++++ latex/problems/problem02.49.tex | 76 +++++ latex/problems/problem03.09.tex | 63 +++++ latex/problems/problem03.19.tex | 78 ++++++ latex/problems/problem03.24.tex | 52 ++++ latex/problems/problem03.43.tex | 55 ++++ latex/problems/problem04.08.tex | 67 +++++ latex/problems/problem04.22.tex | 82 ++++++ latex/problems/problem04.24.tex | 70 +++++ latex/problems/problem04.51.tex | 62 +++++ latex/problems/problem05.16.tex | 24 ++ latex/problems/problem05.18.tex | 33 +++ latex/problems/problem05.23.tex | 18 ++ latex/problems/problem05.24.tex | 55 ++++ latex/problems/problem05.32.tex | 31 +++ latex/problems/problem05.34.tex | 24 ++ latex/problems/problem05.45.tex | 77 +++++ latex/problems/problem05.47.tex | 41 +++ latex/problems/problem05.50.tex | 38 +++ latex/problems/problem05.52.tex | 107 +++++++ latex/problems/problem06.09.tex | 39 +++ latex/problems/problem06.24.tex | 31 +++ latex/problems/problem06.29.tex | 51 ++++ latex/problems/problem06.30.tex | 70 +++++ latex/problems/problem06.43.tex | 18 ++ latex/problems/problem06.57.tex | 50 ++++ latex/problems/problem07.02.tex | 38 +++ latex/problems/problem07.04.tex | 48 ++++ latex/problems/problem07.10.tex | 55 ++++ latex/problems/problem07.16.tex | 20 ++ latex/problems/problem07.22.tex | 60 ++++ latex/problems/problem07.28.tex | 43 +++ latex/problems/problem07.47.tex | 39 +++ latex/problems/problem07.50.tex | 69 +++++ latex/problems/problem07.54.tex | 46 +++ latex/problems/problem07.55.tex | 47 ++++ latex/problems/problem07.61.tex | 41 +++ latex/problems/problem07.62.tex | 47 ++++ latex/problems/problem08.05.tex | 27 ++ latex/problems/problem08.06.tex | 18 ++ latex/problems/problem08.17.tex | 29 ++ latex/problems/problem08.18.tex | 31 +++ latex/problems/problem08.24.tex | 33 +++ latex/problems/problem08.25.tex | 47 ++++ latex/problems/problem08.26.tex | 25 ++ latex/problems/problem08.28.tex | 47 ++++ latex/problems/problem08.43.tex | 31 +++ latex/problems/problem08.45.tex | 26 ++ latex/problems/problem08.48.tex | 31 +++ latex/problems/problem08.51.tex | 35 +++ latex/problems/problem09.18.tex | 33 +++ latex/problems/problem09.19.tex | 41 +++ latex/problems/problem09.22.tex | 46 +++ latex/problems/problem09.23.tex | 59 ++++ latex/problems/problem09.30.tex | 41 +++ latex/problems/problem09.31.tex | 24 ++ latex/problems/problem09.35.tex | 49 ++++ latex/problems/problem09.50.tex | 68 +++++ latex/problems/problem09.V12.tex | 39 +++ latex/problems/problem09.V13.tex | 21 ++ latex/problems/problem09.V17.tex | 75 +++++ latex/problems/problem09.V3.tex | 76 +++++ latex/problems/problem09.clock-orbit.T.tex | 30 ++ latex/problems/problem09.doppler.T.tex | 50 ++++ latex/problems/problem09.limo.T.limo.py | 92 ++++++ latex/problems/problem09.limo.T.tex | 59 ++++ latex/problems/problem10.13.tex | 36 +++ latex/problems/problem10.21.tex | 25 ++ latex/problems/problem10.44.tex | 56 ++++ latex/problems/problem10.72.tex | 44 +++ latex/problems/problem11.34.tex | 39 +++ latex/problems/problem11.35.tex | 34 +++ latex/problems/problem11.36.tex | 35 +++ latex/problems/problem11.37.tex | 45 +++ latex/problems/problem11.38.tex | 18 ++ latex/problems/problem11.41.tex | 29 ++ latex/problems/problem11.V1.tex | 191 +++++++++++++ latex/problems/problem11.V2.tex | 37 +++ latex/problems/problem12.01.tex | 10 + latex/problems/problem12.02.tex | 40 +++ latex/problems/problem12.05.tex | 72 +++++ latex/problems/problem12.06.T.tex | 85 ++++++ latex/problems/problem12.07.tex | 17 ++ latex/problems/problem12.12.tex | 41 +++ latex/problems/problem12.15.tex | 35 +++ latex/problems/problem12.18.tex | 98 +++++++ latex/problems/problem12.20.tex | 163 +++++++++++ latex/problems/problem12.31.tex | 8 + latex/problems/problem12.33.tex | 10 + latex/problems/problem12.38.tex | 14 + latex/problems/problem12.42.tex | 100 +++++++ latex/problems/problem12.47.T.tex | 98 +++++++ latex/problems/problem12.T.bombardier.jpg | Bin 0 -> 11296 bytes latex/problems/problem12.T.tex | 45 +++ latex/problems/problem12.V1.tex | 126 +++++++++ latex/problems/problem12.V2.tex | 182 ++++++++++++ latex/problems/problem12.V3.tex | 72 +++++ latex/problems/problem13.05.tex | 50 ++++ latex/problems/problem13.07.tex | 47 ++++ latex/problems/problem13.10.tex | 28 ++ latex/problems/problem13.11.tex | 88 ++++++ latex/problems/problem13.12.T.tex | 42 +++ latex/problems/problem13.16.tex | 44 +++ latex/problems/problem13.18.tex | 24 ++ latex/problems/problem13.27.tex | 42 +++ latex/problems/problem13.40.tex | 61 ++++ latex/problems/problem14.05.tex | 61 ++++ latex/problems/problem14.06.tex | 27 ++ latex/problems/problem14.08.tex | 74 +++++ latex/problems/problem14.09.tex | 41 +++ latex/problems/problem14.11.T.tex | 253 +++++++++++++++++ latex/problems/problem14.19.T.tex | 37 +++ latex/problems/problem14.20.tex | 105 +++++++ latex/problems/problem14.22.tex | 14 + latex/problems/problem14.51.T.tex | 69 +++++ latex/problems/problem19.03.tex | 29 ++ latex/problems/problem19.04.tex | 45 +++ latex/problems/problem19.07.tex | 61 ++++ latex/problems/problem19.09.tex | 66 +++++ latex/problems/problem19.11.tex | 80 ++++++ latex/problems/problem19.13.tex | 73 +++++ latex/problems/problem19.15.tex | 78 ++++++ latex/problems/problem19.16.tex | 68 +++++ latex/problems/problem19.19.tex | 49 ++++ latex/problems/problem19.31.tex | 16 ++ latex/problems/problem19.35.tex | 60 ++++ latex/problems/problem19.36.tex | 17 ++ latex/problems/problem19.38.tex | 25 ++ latex/problems/problem19.40.tex | 38 +++ latex/problems/problem19.55.tex | 111 ++++++++ latex/problems/problem19.57.tex | 69 +++++ latex/problems/problem19.59.tex | 113 ++++++++ latex/problems/problem19.62.tex | 105 +++++++ latex/problems/problem20.01.tex | 24 ++ latex/problems/problem20.03.tex | 31 +++ latex/problems/problem20.08.tex | 94 +++++++ latex/problems/problem20.11.tex | 14 + latex/problems/problem20.19.tex | 53 ++++ latex/problems/problem20.20.tex | 36 +++ latex/problems/problem20.21.tex | 25 ++ latex/problems/problem20.22.tex | 25 ++ latex/problems/problem20.24.tex | 33 +++ latex/problems/problem20.27.tex | 29 ++ latex/problems/problem20.40.tex | 45 +++ latex/problems/problem20.41.tex | 49 ++++ latex/problems/problem20.43.tex | 70 +++++ latex/problems/problem20.47.tex | 18 ++ latex/problems/problem20.49.tex | 33 +++ latex/problems/problem20.51.tex | 16 ++ latex/problems/problem20.54.tex | 46 +++ latex/problems/problem20.69.tex | 29 ++ latex/problems/problem20.73.tex | 31 +++ latex/problems/problem21.01.tex | 19 ++ latex/problems/problem21.04.tex | 21 ++ latex/problems/problem21.14.tex | 18 ++ latex/problems/problem21.17.tex | 23 ++ latex/problems/problem21.25.inversion.tex | 63 +++++ latex/problems/problem21.25.tex | 63 +++++ latex/problems/problem21.27.tex | 62 +++++ latex/problems/problem21.29.tex | 99 +++++++ latex/problems/problem21.30.tex | 68 +++++ latex/problems/problem21.31.tex | 85 ++++++ latex/problems/problem21.32.tex | 120 ++++++++ latex/problems/problem21.35.tex | 165 +++++++++++ latex/problems/problem21.38.tex | 263 ++++++++++++++++++ latex/problems/problem21.40.tex | 84 ++++++ latex/problems/problem21.42.tex | 114 ++++++++ latex/problems/problem21.45.tex | 112 ++++++++ latex/problems/problem21.46.tex | 39 +++ latex/problems/problem21.53.tex | 29 ++ latex/problems/problem21.55.tex | 17 ++ latex/problems/problem21.58.tex | 78 ++++++ latex/problems/problem22.01.tex | 88 ++++++ latex/problems/problem22.03.tex | 24 ++ latex/problems/problem22.04.tex | 25 ++ latex/problems/problem22.06.tex | 23 ++ latex/problems/problem22.08.tex | 35 +++ latex/problems/problem22.10.tex | 27 ++ latex/problems/problem22.12.tex | 58 ++++ latex/problems/problem22.15.tex | 33 +++ latex/problems/problem22.16.tex | 25 ++ latex/problems/problem22.21.tex | 70 +++++ latex/problems/problem22.33.tex | 38 +++ latex/problems/problem22.34.tex | 60 ++++ latex/problems/problem22.37.tex | 68 +++++ latex/problems/problem22.39.tex | 31 +++ latex/problems/problem22.43.tex | 22 ++ latex/problems/problem22.48.tex | 47 ++++ latex/problems/problem22.56.tex | 21 ++ latex/problems/problem22.57.tex | 40 +++ latex/problems/problem22.58.tex | 78 ++++++ latex/problems/problem23.01.tex | 24 ++ latex/problems/problem23.02.tex | 23 ++ latex/problems/problem23.06.tex | 32 +++ latex/problems/problem23.07.tex | 18 ++ latex/problems/problem23.10.tex | 37 +++ latex/problems/problem23.12.tex | 21 ++ latex/problems/problem23.13.tex | 56 ++++ latex/problems/problem23.22.tex | 38 +++ latex/problems/problem23.53.tex | 46 +++ latex/problems/problem23.64.tex | 30 ++ latex/problems/problem24.07.tex | 52 ++++ latex/problems/problem24.08.tex | 34 +++ latex/problems/problem24.09.tex | 43 +++ latex/problems/problem24.18.T.tex | 25 ++ latex/problems/problem24.22.tex | 28 ++ latex/problems/problem24.25.tex | 47 ++++ latex/problems/problem24.39.T.tex | 26 ++ latex/problems/problem24.55.T.tex | 41 +++ latex/problems/problem24.57.T.antenna.jpg | Bin 0 -> 8008 bytes latex/problems/problem24.57.T.tex | 72 +++++ latex/problems/problem27.02.T.tex | 35 +++ latex/problems/problem27.07.T.tex | 27 ++ latex/problems/problem27.15.tex | 40 +++ latex/problems/problem27.V1.tex | 89 ++++++ latex/problems/problem28.02.T.tex | 56 ++++ latex/problems/problem28.04.tex | 19 ++ latex/problems/problem28.06.tex | 22 ++ latex/problems/problem28.07.T.tex | 18 ++ latex/problems/problem28.09.T.tex | 33 +++ latex/problems/problem28.09.tex | 32 +++ latex/problems/problem28.10.tex | 27 ++ latex/problems/problem28.13.tex | 23 ++ latex/problems/problem28.14.tex | 25 ++ latex/problems/problem28.15.tex | 39 +++ latex/problems/problem28.16.tex | 28 ++ latex/problems/problem28.25.T.tex | 66 +++++ latex/problems/problem28.25.tex | 64 +++++ latex/problems/problem28.31.T.tex | 77 +++++ latex/problems/problem28.34.T.tex | 100 +++++++ latex/problems/problem28.38.T.tex | 27 ++ latex/problems/problem28.46.T.tex | 53 ++++ latex/problems/problem28.56.millikan.ppm | 61 ++++ latex/problems/problem28.56.millikan.scaled | 8 + latex/problems/problem28.56.tex | 69 +++++ latex/problems/problem28.57.tex | 75 +++++ latex/problems/problem28.62.T.tex | 98 +++++++ latex/problems/problem28.V1.tex | 35 +++ latex/problems/problem28.V2.tex | 36 +++ latex/problems/problem28.V3.tex | 40 +++ latex/problems/problem28.compton-cat.T.tex | 19 ++ .../problem28.thornton_and_rex.eqn5.23.T.tex | 77 +++++ latex/problems/problem28.xray.T.tex | 38 +++ latex/problems/problem28.xray.T.xray_tube.png | Bin 0 -> 37136 bytes latex/problems/question09.11.T.tex | 48 ++++ latex/problems/question12.07.T.tex | 41 +++ latex/problems/section11.05.T.tex | 54 ++++ latex/rec/Makefile | 21 ++ latex/rec/rec1/Makefile | 41 +++ latex/rec/rec1/all_problems.tex | 18 ++ latex/rec/rec1/problem1.tex | 1 + latex/rec/rec1/problem2.tex | 1 + latex/rec/rec1/problem3.tex | 1 + latex/rec/rec1/problem4.tex | 1 + latex/rec/rec1/problem5.tex | 1 + latex/rec/rec1/probs.tex | 5 + latex/rec/rec1/sols.tex | 5 + latex/syllabus/Makefile | 17 ++ pdf/Makefile | 11 + pdf/README | 1 + pdf/exam/Makefile | 16 ++ pdf/exam/README | 1 + pdf/exam/exam1/Makefile | 36 +++ pdf/lab/Makefile | 16 ++ pdf/lab/README | 26 ++ pdf/lab/lab1/Makefile | 30 ++ pdf/lab/sample-lab/Makefile | 29 ++ pdf/lab/sample-lab/report.pdf | Bin 0 -> 2322465 bytes pdf/lec/Makefile | 16 ++ pdf/lec/README | 25 ++ pdf/lec/lec1/Makefile | 36 +++ 324 files changed, 14418 insertions(+) create mode 100644 Makefile create mode 100644 README create mode 100644 announcements/Makefile create mode 100644 announcements/README create mode 100644 announcements/addresses.txt.examples create mode 100644 announcements/script/course-details.sh create mode 100755 announcements/script/initial-post.sh create mode 100755 announcements/script/post.sh create mode 100644 html/.htaccess create mode 100644 html/Makefile create mode 100644 html/README create mode 100644 html/announcements.shtml create mode 100644 html/homeworks.shtml create mode 100644 html/inactive/contact.shtml create mode 100644 html/inactive/exams.shtml create mode 100644 html/inactive/labs.shtml create mode 100644 html/inactive/lectures.shtml create mode 100644 html/index.shtml create mode 100644 html/php/atom.php create mode 100644 html/php/people.php create mode 100644 html/php/quarter.php create mode 100644 html/php/section_docs.php create mode 100644 html/php/webmaster.php create mode 100644 html/recitations.shtml create mode 100644 html/shared/favicon.ico create mode 100644 html/shared/feed-icon-14x14.png create mode 100644 html/shared/footer.shtml create mode 100644 html/shared/header.shtml create mode 100644 html/shared/style.css create mode 100644 html/xml/TAs.xml create mode 100755 html/xml/admin_mailing_list.py create mode 100755 html/xml/department_xml_to_people.py create mode 100644 html/xml/profs.xml create mode 100644 html/xml/webmaster.xml create mode 100644 latex/Makefile create mode 100644 latex/README create mode 100644 latex/hwk/Makefile create mode 100644 latex/hwk/hwk1/Makefile create mode 100644 latex/hwk/hwk1/all_problems.tex create mode 120000 latex/hwk/hwk1/problem1.tex create mode 120000 latex/hwk/hwk1/problem2.tex create mode 120000 latex/hwk/hwk1/problem3.tex create mode 100644 latex/hwk/hwk1/probs.tex create mode 100644 latex/hwk/hwk1/sols.tex create mode 100644 latex/old-source/s09-phys201-syllabus.tex create mode 100644 latex/problems/README create mode 100644 latex/problems/equation27.07.tex create mode 100644 latex/problems/example13.06.T.tex create mode 100644 latex/problems/figure27.03.T.tex create mode 100644 latex/problems/problem01.60.tex create mode 100644 latex/problems/problem01.62.tex create mode 100644 latex/problems/problem02.10.tex create mode 100644 latex/problems/problem02.16.tex create mode 100644 latex/problems/problem02.40.tex create mode 100644 latex/problems/problem02.49.tex create mode 100644 latex/problems/problem03.09.tex create mode 100644 latex/problems/problem03.19.tex create mode 100644 latex/problems/problem03.24.tex create mode 100644 latex/problems/problem03.43.tex create mode 100644 latex/problems/problem04.08.tex create mode 100644 latex/problems/problem04.22.tex create mode 100644 latex/problems/problem04.24.tex create mode 100644 latex/problems/problem04.51.tex create mode 100644 latex/problems/problem05.16.tex create mode 100644 latex/problems/problem05.18.tex create mode 100644 latex/problems/problem05.23.tex create mode 100644 latex/problems/problem05.24.tex create mode 100644 latex/problems/problem05.32.tex create mode 100644 latex/problems/problem05.34.tex create mode 100644 latex/problems/problem05.45.tex create mode 100644 latex/problems/problem05.47.tex create mode 100644 latex/problems/problem05.50.tex create mode 100644 latex/problems/problem05.52.tex create mode 100644 latex/problems/problem06.09.tex create mode 100644 latex/problems/problem06.24.tex create mode 100644 latex/problems/problem06.29.tex create mode 100644 latex/problems/problem06.30.tex create mode 100644 latex/problems/problem06.43.tex create mode 100644 latex/problems/problem06.57.tex create mode 100644 latex/problems/problem07.02.tex create mode 100644 latex/problems/problem07.04.tex create mode 100644 latex/problems/problem07.10.tex create mode 100644 latex/problems/problem07.16.tex create mode 100644 latex/problems/problem07.22.tex create mode 100644 latex/problems/problem07.28.tex create mode 100644 latex/problems/problem07.47.tex create mode 100644 latex/problems/problem07.50.tex create mode 100644 latex/problems/problem07.54.tex create mode 100644 latex/problems/problem07.55.tex create mode 100644 latex/problems/problem07.61.tex create mode 100644 latex/problems/problem07.62.tex create mode 100644 latex/problems/problem08.05.tex create mode 100644 latex/problems/problem08.06.tex create mode 100644 latex/problems/problem08.17.tex create mode 100644 latex/problems/problem08.18.tex create mode 100644 latex/problems/problem08.24.tex create mode 100644 latex/problems/problem08.25.tex create mode 100644 latex/problems/problem08.26.tex create mode 100644 latex/problems/problem08.28.tex create mode 100644 latex/problems/problem08.43.tex create mode 100644 latex/problems/problem08.45.tex create mode 100644 latex/problems/problem08.48.tex create mode 100644 latex/problems/problem08.51.tex create mode 100644 latex/problems/problem09.18.tex create mode 100644 latex/problems/problem09.19.tex create mode 100644 latex/problems/problem09.22.tex create mode 100644 latex/problems/problem09.23.tex create mode 100644 latex/problems/problem09.30.tex create mode 100644 latex/problems/problem09.31.tex create mode 100644 latex/problems/problem09.35.tex create mode 100644 latex/problems/problem09.50.tex create mode 100644 latex/problems/problem09.V12.tex create mode 100644 latex/problems/problem09.V13.tex create mode 100644 latex/problems/problem09.V17.tex create mode 100644 latex/problems/problem09.V3.tex create mode 100644 latex/problems/problem09.clock-orbit.T.tex create mode 100644 latex/problems/problem09.doppler.T.tex create mode 100644 latex/problems/problem09.limo.T.limo.py create mode 100644 latex/problems/problem09.limo.T.tex create mode 100644 latex/problems/problem10.13.tex create mode 100644 latex/problems/problem10.21.tex create mode 100644 latex/problems/problem10.44.tex create mode 100644 latex/problems/problem10.72.tex create mode 100644 latex/problems/problem11.34.tex create mode 100644 latex/problems/problem11.35.tex create mode 100644 latex/problems/problem11.36.tex create mode 100644 latex/problems/problem11.37.tex create mode 100644 latex/problems/problem11.38.tex create mode 100644 latex/problems/problem11.41.tex create mode 100644 latex/problems/problem11.V1.tex create mode 100644 latex/problems/problem11.V2.tex create mode 100644 latex/problems/problem12.01.tex create mode 100644 latex/problems/problem12.02.tex create mode 100644 latex/problems/problem12.05.tex create mode 100644 latex/problems/problem12.06.T.tex create mode 100644 latex/problems/problem12.07.tex create mode 100644 latex/problems/problem12.12.tex create mode 100644 latex/problems/problem12.15.tex create mode 100644 latex/problems/problem12.18.tex create mode 100644 latex/problems/problem12.20.tex create mode 100644 latex/problems/problem12.31.tex create mode 100644 latex/problems/problem12.33.tex create mode 100644 latex/problems/problem12.38.tex create mode 100644 latex/problems/problem12.42.tex create mode 100644 latex/problems/problem12.47.T.tex create mode 100644 latex/problems/problem12.T.bombardier.jpg create mode 100644 latex/problems/problem12.T.tex create mode 100644 latex/problems/problem12.V1.tex create mode 100644 latex/problems/problem12.V2.tex create mode 100644 latex/problems/problem12.V3.tex create mode 100644 latex/problems/problem13.05.tex create mode 100644 latex/problems/problem13.07.tex create mode 100644 latex/problems/problem13.10.tex create mode 100644 latex/problems/problem13.11.tex create mode 100644 latex/problems/problem13.12.T.tex create mode 100644 latex/problems/problem13.16.tex create mode 100644 latex/problems/problem13.18.tex create mode 100644 latex/problems/problem13.27.tex create mode 100644 latex/problems/problem13.40.tex create mode 100644 latex/problems/problem14.05.tex create mode 100644 latex/problems/problem14.06.tex create mode 100644 latex/problems/problem14.08.tex create mode 100644 latex/problems/problem14.09.tex create mode 100644 latex/problems/problem14.11.T.tex create mode 100644 latex/problems/problem14.19.T.tex create mode 100644 latex/problems/problem14.20.tex create mode 100644 latex/problems/problem14.22.tex create mode 100644 latex/problems/problem14.51.T.tex create mode 100644 latex/problems/problem19.03.tex create mode 100644 latex/problems/problem19.04.tex create mode 100644 latex/problems/problem19.07.tex create mode 100644 latex/problems/problem19.09.tex create mode 100644 latex/problems/problem19.11.tex create mode 100644 latex/problems/problem19.13.tex create mode 100644 latex/problems/problem19.15.tex create mode 100644 latex/problems/problem19.16.tex create mode 100644 latex/problems/problem19.19.tex create mode 100644 latex/problems/problem19.31.tex create mode 100644 latex/problems/problem19.35.tex create mode 100644 latex/problems/problem19.36.tex create mode 100644 latex/problems/problem19.38.tex create mode 100644 latex/problems/problem19.40.tex create mode 100644 latex/problems/problem19.55.tex create mode 100644 latex/problems/problem19.57.tex create mode 100644 latex/problems/problem19.59.tex create mode 100644 latex/problems/problem19.62.tex create mode 100644 latex/problems/problem20.01.tex create mode 100644 latex/problems/problem20.03.tex create mode 100644 latex/problems/problem20.08.tex create mode 100644 latex/problems/problem20.11.tex create mode 100644 latex/problems/problem20.19.tex create mode 100644 latex/problems/problem20.20.tex create mode 100644 latex/problems/problem20.21.tex create mode 100644 latex/problems/problem20.22.tex create mode 100644 latex/problems/problem20.24.tex create mode 100644 latex/problems/problem20.27.tex create mode 100644 latex/problems/problem20.40.tex create mode 100644 latex/problems/problem20.41.tex create mode 100644 latex/problems/problem20.43.tex create mode 100644 latex/problems/problem20.47.tex create mode 100644 latex/problems/problem20.49.tex create mode 100644 latex/problems/problem20.51.tex create mode 100644 latex/problems/problem20.54.tex create mode 100644 latex/problems/problem20.69.tex create mode 100644 latex/problems/problem20.73.tex create mode 100644 latex/problems/problem21.01.tex create mode 100644 latex/problems/problem21.04.tex create mode 100644 latex/problems/problem21.14.tex create mode 100644 latex/problems/problem21.17.tex create mode 100644 latex/problems/problem21.25.inversion.tex create mode 100644 latex/problems/problem21.25.tex create mode 100644 latex/problems/problem21.27.tex create mode 100644 latex/problems/problem21.29.tex create mode 100644 latex/problems/problem21.30.tex create mode 100644 latex/problems/problem21.31.tex create mode 100644 latex/problems/problem21.32.tex create mode 100644 latex/problems/problem21.35.tex create mode 100644 latex/problems/problem21.38.tex create mode 100644 latex/problems/problem21.40.tex create mode 100644 latex/problems/problem21.42.tex create mode 100644 latex/problems/problem21.45.tex create mode 100644 latex/problems/problem21.46.tex create mode 100644 latex/problems/problem21.53.tex create mode 100644 latex/problems/problem21.55.tex create mode 100644 latex/problems/problem21.58.tex create mode 100644 latex/problems/problem22.01.tex create mode 100644 latex/problems/problem22.03.tex create mode 100644 latex/problems/problem22.04.tex create mode 100644 latex/problems/problem22.06.tex create mode 100644 latex/problems/problem22.08.tex create mode 100644 latex/problems/problem22.10.tex create mode 100644 latex/problems/problem22.12.tex create mode 100644 latex/problems/problem22.15.tex create mode 100644 latex/problems/problem22.16.tex create mode 100644 latex/problems/problem22.21.tex create mode 100644 latex/problems/problem22.33.tex create mode 100644 latex/problems/problem22.34.tex create mode 100644 latex/problems/problem22.37.tex create mode 100644 latex/problems/problem22.39.tex create mode 100644 latex/problems/problem22.43.tex create mode 100644 latex/problems/problem22.48.tex create mode 100644 latex/problems/problem22.56.tex create mode 100644 latex/problems/problem22.57.tex create mode 100644 latex/problems/problem22.58.tex create mode 100644 latex/problems/problem23.01.tex create mode 100644 latex/problems/problem23.02.tex create mode 100644 latex/problems/problem23.06.tex create mode 100644 latex/problems/problem23.07.tex create mode 100644 latex/problems/problem23.10.tex create mode 100644 latex/problems/problem23.12.tex create mode 100644 latex/problems/problem23.13.tex create mode 100644 latex/problems/problem23.22.tex create mode 100644 latex/problems/problem23.53.tex create mode 100644 latex/problems/problem23.64.tex create mode 100644 latex/problems/problem24.07.tex create mode 100644 latex/problems/problem24.08.tex create mode 100644 latex/problems/problem24.09.tex create mode 100644 latex/problems/problem24.18.T.tex create mode 100644 latex/problems/problem24.22.tex create mode 100644 latex/problems/problem24.25.tex create mode 100644 latex/problems/problem24.39.T.tex create mode 100644 latex/problems/problem24.55.T.tex create mode 100644 latex/problems/problem24.57.T.antenna.jpg create mode 100644 latex/problems/problem24.57.T.tex create mode 100644 latex/problems/problem27.02.T.tex create mode 100644 latex/problems/problem27.07.T.tex create mode 100644 latex/problems/problem27.15.tex create mode 100644 latex/problems/problem27.V1.tex create mode 100644 latex/problems/problem28.02.T.tex create mode 100644 latex/problems/problem28.04.tex create mode 100644 latex/problems/problem28.06.tex create mode 100644 latex/problems/problem28.07.T.tex create mode 100644 latex/problems/problem28.09.T.tex create mode 100644 latex/problems/problem28.09.tex create mode 100644 latex/problems/problem28.10.tex create mode 100644 latex/problems/problem28.13.tex create mode 100644 latex/problems/problem28.14.tex create mode 100644 latex/problems/problem28.15.tex create mode 100644 latex/problems/problem28.16.tex create mode 100644 latex/problems/problem28.25.T.tex create mode 100644 latex/problems/problem28.25.tex create mode 100644 latex/problems/problem28.31.T.tex create mode 100644 latex/problems/problem28.34.T.tex create mode 100644 latex/problems/problem28.38.T.tex create mode 100644 latex/problems/problem28.46.T.tex create mode 100644 latex/problems/problem28.56.millikan.ppm create mode 100644 latex/problems/problem28.56.millikan.scaled create mode 100644 latex/problems/problem28.56.tex create mode 100644 latex/problems/problem28.57.tex create mode 100644 latex/problems/problem28.62.T.tex create mode 100644 latex/problems/problem28.V1.tex create mode 100644 latex/problems/problem28.V2.tex create mode 100644 latex/problems/problem28.V3.tex create mode 100644 latex/problems/problem28.compton-cat.T.tex create mode 100644 latex/problems/problem28.thornton_and_rex.eqn5.23.T.tex create mode 100644 latex/problems/problem28.xray.T.tex create mode 100644 latex/problems/problem28.xray.T.xray_tube.png create mode 100644 latex/problems/question09.11.T.tex create mode 100644 latex/problems/question12.07.T.tex create mode 100644 latex/problems/section11.05.T.tex create mode 100644 latex/rec/Makefile create mode 100644 latex/rec/rec1/Makefile create mode 100644 latex/rec/rec1/all_problems.tex create mode 120000 latex/rec/rec1/problem1.tex create mode 120000 latex/rec/rec1/problem2.tex create mode 120000 latex/rec/rec1/problem3.tex create mode 120000 latex/rec/rec1/problem4.tex create mode 120000 latex/rec/rec1/problem5.tex create mode 100644 latex/rec/rec1/probs.tex create mode 100644 latex/rec/rec1/sols.tex create mode 100644 latex/syllabus/Makefile create mode 100644 pdf/Makefile create mode 100644 pdf/README create mode 100644 pdf/exam/Makefile create mode 100644 pdf/exam/README create mode 100644 pdf/exam/exam1/Makefile create mode 100644 pdf/lab/Makefile create mode 100644 pdf/lab/README create mode 100644 pdf/lab/lab1/Makefile create mode 100644 pdf/lab/sample-lab/Makefile create mode 100644 pdf/lab/sample-lab/report.pdf create mode 100644 pdf/lec/Makefile create mode 100644 pdf/lec/README create mode 100644 pdf/lec/lec1/Makefile diff --git a/Makefile b/Makefile new file mode 100644 index 0000000..69702dd --- /dev/null +++ b/Makefile @@ -0,0 +1,28 @@ +INSTALL_HOST = einstein +INSTALL_USER = wking +INSTALL_DIR = public_html/courses/phys201_s09 +SOURCE_DIR := $(INSTALL_DIR)/source # := to avoid shifting with $INSTALL_DIR + +FRAMEWORK_SUBDIR = html +CONTENT_SUBDIRS = announcements latex +SUBDIRS = $(FRAMEWORK_SUBDIR) $(CONTENT_SUBDIRS) + +export INSTALL_HOST +export INSTALL_USER +export INSTALL_DIR +export SOURCE_DIR + +install : + @for i in $(SUBDIRS); do \ + echo "make install in $$i..."; \ + (cd $$i; $(MAKE) $(MFLAGS) install); done + +clean : + @for i in $(SUBDIRS); do \ + echo "make clean in $$i..."; \ + (cd $$i; $(MAKE) $(MFLAGS) clean); done + +echo : + @for i in $(SUBDIRS); do \ + echo "make echo in $$i..."; \ + (cd $$i; $(MAKE) $(MFLAGS) echo); done diff --git a/README b/README new file mode 100644 index 0000000..7a2efac --- /dev/null +++ b/README @@ -0,0 +1,27 @@ +This is an attempt at an organized, open source course website. The +idea is that a course website consists of a static HTML framework, and +a bunch of content that is gradually filled in as the semester/quarter +progresses. I've put the HTML framework in the HTML directory, along +with some of the write-once-per-course content (e.g. Prof & TA info). +See html/README for more information on the layout of the HTML. + +The rest of the directories contain the code for compiling material +that is deployed as the course progresses. The announcements +directory contains the atom feed for the course, and possibly a list +of email addresses of people who would like to (or should) be notified +when new announcements are posted. The latex directory contains LaTeX +source for the course documents for which it is available, and the pdf +directory contains PDFs for which no other source is available +(e.g. scans, or PDFs sent in by Profs or TAs who neglected to include +their source code). + +Installation is though a recursive Makefile framework. You'll need to +set the INSTALL_* variables once at the beginning of the course to +make sure all the files go to the right place, and I'd strongly +recommend setting up a ssh-keyed login from your work machine to your +hosted web account (see http://www.physics.drexel.edu/~wking/code/#SSH ). + +Not posted on the website but also important to the course are the +students' grades, which I keep in the grades directory. See the +README files in any of the subdirectories for more details on that +particular portion. diff --git a/announcements/Makefile b/announcements/Makefile new file mode 100644 index 0000000..63361ac --- /dev/null +++ b/announcements/Makefile @@ -0,0 +1,9 @@ +INSTALL_FILES = atom.xml +INSTALL_DIR := $(INSTALL_DIR)/xml + +clean : + rm -f install + +install : $(INSTALL_FILES) + scp -p $^ $(INSTALL_USER)@$(INSTALL_HOST):$(INSTALL_DIR) + @date > $@ diff --git a/announcements/README b/announcements/README new file mode 100644 index 0000000..f3a7f7e --- /dev/null +++ b/announcements/README @@ -0,0 +1,26 @@ +Construct the atom feed using + atomgen -o atom.xml +See + atomgen --help +for more information. + +For example: + atomgen -o atom.xml new --title 'Physics 201' --author 'W. Trevor King' \ + http://www.physics.drexel.edu/~wking/phys201 + echo "Changes to the Phys201 website will be noted in this feed." | \ + atomgen -o atom.xml add -i atom.xml 'Feed purpose' \ + http://www.physics.drexel.edu/~wking/phys201 + + +You can send automatic emails to your students when you publish new +announcements in the atom feed. The best way I have found to date +consists of monitoring the posted atom.xml file with rss2email + http://rss2email.infogami.com/ +I setup r2e to monitor the feed and email me when there's a change. +r2e runs every 15 minutes in a cron job + 15 * * * * /usr/bin/r2e run +Then I set up a procmail rule to forward the mail off to the list + :0 + * ^From: "Physics 201, W. Trevor King" $ + ! `grep -v '^#' $HOME/course/announcements/addresses.txt` + # ^--- Make sure those are backticks, BTW (ASCII 96) ---^ diff --git a/announcements/addresses.txt.examples b/announcements/addresses.txt.examples new file mode 100644 index 0000000..5647f35 --- /dev/null +++ b/announcements/addresses.txt.examples @@ -0,0 +1,6 @@ +# Administrators +John JJ Smith +Johnny Appleseed +# Students +Jack +Jill diff --git a/announcements/script/course-details.sh b/announcements/script/course-details.sh new file mode 100644 index 0000000..cfc58f9 --- /dev/null +++ b/announcements/script/course-details.sh @@ -0,0 +1,9 @@ +#!/bin/sh +# +# Set-up some course-specific details for announcement/script/*.sh +# Not intended to be used directly + +# No trailing slash on the course website, please. +COURSE_WEBSITE='http://www.physics.drexel.edu/~wking/course' +COURSE_TITLE='Physics 201' +ATOM_AUTHOR='W. Trevor King' diff --git a/announcements/script/initial-post.sh b/announcements/script/initial-post.sh new file mode 100755 index 0000000..b92afd8 --- /dev/null +++ b/announcements/script/initial-post.sh @@ -0,0 +1,19 @@ +#!/bin/sh +# +# Create the initial posting for a course. Use carefully, this is +# just meant to save some typing, and it might not fit into your +# layout without a bit of tweaking. +# +# From the announcements directory +# usage: script/initial-post.sh + +. script/course-details.sh + +echo "atomgen -o atom.xml new --title \"$COURSE_TITLE\" --author \"$ATOM_AUTHOR\" \"$COURSE_WEBSITE\"" +atomgen -o atom.xml new --title "$COURSE_TITLE" --author "$ATOM_AUTHOR" "$COURSE_WEBSITE" + +echo "echo \"Changes to the $COURSE_TITLE website will be noted in this feed.\" | \\ + atomgen -o atom.xml add -i atom.xml 'Feed purpose' \\ + \"$COURSE_WEBSITE\"" +echo "Changes to the $COURSE_TITLE website will be noted in this feed." | \ + atomgen -o atom.xml add -i atom.xml 'Feed purpose' "$COURSE_WEBSITE" diff --git a/announcements/script/post.sh b/announcements/script/post.sh new file mode 100755 index 0000000..2047000 --- /dev/null +++ b/announcements/script/post.sh @@ -0,0 +1,57 @@ +#!/bin/bash +# +# Create a post pointing out a change in the website. Use carefully, +# this is just meant to save some typing, and it might not fit into +# your layout without a bit of tweaking. +# +# From the announcements directory +# usage: script/post.sh [] +# where is one of hwk, lec, rec, lab, exam; +# is an integer; and is an optional explaination. +# +# For example, +# script/post.sh rec 2 solutions +# points out the posting of Recitation 2 solutions, and targets the URL +# $COURSE_WEBSITE/recitations.shtml#s2 + +. script/course-details.sh + +if [ "$#" -lt 2 ]; then + echo "usage: script/post.sh []" + exit 1 +fi + +DIR="$1" +INDEX="$2" +NOTE="$3" + +if [ -n "$NOTE" ] && [ "${NOTE:0:1}" != " " ]; then + NOTE=" $NOTE" # ensure leading space +fi + +if [ "$DIR" == "hwk" ]; then + NAME="Homework" + PAGE="homeworks.shtml" +elif [ "$DIR" == "lec" ]; then + NAME="Lecture" + PAGE="lectures.shtml" +elif [ "$DIR" == "rec" ]; then + NAME="Recitation" + PAGE="recitations.shtml" +elif [ "$DIR" == "lab" ]; then + NAME="Lab" + PAGE="labs.shtml" +elif [ "$DIR" == "exam" ]; then + NAME="Exam" + PAGE="exams.shtml" +else + echo "Unrecognized dir '$DIR'" + exit 1 +fi + +echo "echo \"$NAME $INDEX$NOTE posted.\" | \\ + atomgen -o atom.xml add -i atom.xml \"$NAME $INDEX$NOTE posted.\" \\ + \"$COURSE_WEBSITE/$PAGE#s$INDEX\"" +echo "$NAME $INDEX$NOTE posted." | \ + atomgen -o atom.xml add -i atom.xml "$NAME $INDEX$NOTE posted." \ + "$COURSE_WEBSITE/$PAGE#s$INDEX" diff --git a/html/.htaccess b/html/.htaccess new file mode 100644 index 0000000..f5ff39e --- /dev/null +++ b/html/.htaccess @@ -0,0 +1 @@ +AddType application/x-httpd-php .shtml diff --git a/html/Makefile b/html/Makefile new file mode 100644 index 0000000..53fcf32 --- /dev/null +++ b/html/Makefile @@ -0,0 +1,45 @@ +HTML_FILES = $(shell echo *.shtml) +EMPTY_DIRS = doc source +DEEP_EMPYT_DIRS = doc/exam doc/hwk doc/lab doc/lec doc/rec +HTML_DIRS = shared php xml $(EMPTY_DIRS) $(DEEP_EMPTY_DIRS) +SOURCE_FILES = $(HTML_FILES) $(HTML_DIRS) README .htaccess +OTHER_FILES = Makefile +DIST_FILES = $(SOURCE_FILES) $(OTHER_FILES) +DIST_FILE = website_framework.tar.gz +DIST_DIR = html + +clean : + rm -rf $(DIST_FILE) $(DIST_DIR) install* + +$(DIST_FILE) : $(DIST_FILES) $(EMPTY_DIRS) + mkdir $(DIST_DIR) + cp -rp $^ $(DIST_DIR) + tar -cozf $@ $(DIST_DIR) + rm -rf $(DIST_DIR) + +install : install-html install-source + +# Create a new directory for the installation +install-dir : + ssh $(INSTALL_USER)@$(INSTALL_HOST) mkdir $(INSTALL_DIR) + @date > $@ + +# Avoid the install-dir step, but allow installation to continue +install-override : + @date > install-dir + +# The transform removes the preceeding DIST_DIR (e.g. `html/') +install-html : $(DIST_FILE) install-dir + cat $< | ssh $(INSTALL_USER)@$(INSTALL_HOST) \ + tar --transform="s,$(DIST_DIR),.," -xzvC $(INSTALL_DIR) + ssh $(INSTALL_USER)@$(INSTALL_HOST) \ + cd $(INSTALL_DIR) '&&' rm -rf $(OTHER_FILES) $(DIST_DIR) + @date > $@ + +install-source : $(DIST_FILE) install-html + scp -p $(DIST_FILE) $(INSTALL_USER)@$(INSTALL_HOST):$(SOURCE_DIR) + @date > $@ + +# Create empty directories if neccessary (Git doesn't track dirs) +$(EMPTY_DIRS) : + mkdir $@ diff --git a/html/README b/html/README new file mode 100644 index 0000000..b01d1a9 --- /dev/null +++ b/html/README @@ -0,0 +1,76 @@ +To manage this website: + +**** Static information **** + +This information should only need to be setup at the beginning of the +course. + +** Introductory Blurbs ** + +You should change the introductory patter in all the *.shtml files +as necessary to suit your course. + +** Contact Information ** + +Add appropriate entries to the profs.xml, TAs.xml, and webmaster.xml +files in the xml directory. + +The prof and TA files are formatted into XHTML by people.php, and the +output is included in contact.shtml. The webmaster xml file is +formatted by webmaster.php. Because the formatting occurs at +run-time, the served page will always reflect the current xml data. + +** Course Information ** + +Add appropriate entries to the course.xml file in the xml directory. +The course xml file is formatted by quarter.php, and maybe a few more +in the future. + + +**** Dynamic information **** + +** Assignments / Section documents ** + +This material gets added and updated as the course progresses. +Basically, it consists of a lab, rectitation, exam, etc. files +(e.g. problems, solutions, procedures, etc.). The contents of the +directories in doc (e.g. labs) are scanned by section_docs.php to +create a list of all the files in the directory (e.g. 'doc/lab/' +beginning with a certain prefix (e.g. lab[0-9], starts with 'lab'). +So simply dumping the appropriate files into the appropriate directory +should get them displayed on the website. + +If you want to add a comment to a section document section (e.g. to +point out the due date for hwk3, or the date/time/room of exam1), just +add the a relevant XHTML snippet to the *_comment file. For example: + +

The Interference lab starts on Wed., April 08, 2009.

+

+Wednesday, April 8, Thursday, April 9 and Friday, April 10, 2009: +EVEN number sections 060, 062, 064, and 66. +

+

+Wednesday, April 15, Thursday, April 16, and Friday, April 17, 2009: +ODD number sections 063, 065, 071, and 073. +

+
+ +If you have something that you want to put up later (e.g. solutions) +you can chmod it 640 (so that it's not world-readable), and the php +parser will ignore the file. After you have collected the +homework/exam/etc., you chan chmod 644 the file (so that it is world +readable) and it will show up on the website. + +** Announcements / Atom feed ** + +Course announcements should be formatted in an atom feed + http://en.wikipedia.org/wiki/Atom_(standard) +Atom feeds may be generated with a number of tools, but a simple +command-line generator for linux is + http://www.physics.drexel.edu/~wking/code#atomgen +Once you've generated the atom.xml file, copy it into the xml +directory so atom.php can find it, and the announcements page will be +filled in automatically. Another benefit of this approach is that a +feed monitor such as rss2email can be used to monitor the feed and +send classwide emails out whenever a new announcement is posted +(http://rss2email.infogami.com/). diff --git a/html/announcements.shtml b/html/announcements.shtml new file mode 100644 index 0000000..0175860 --- /dev/null +++ b/html/announcements.shtml @@ -0,0 +1,9 @@ + + + + + diff --git a/html/homeworks.shtml b/html/homeworks.shtml new file mode 100644 index 0000000..20ef959 --- /dev/null +++ b/html/homeworks.shtml @@ -0,0 +1,10 @@ + + +

Homeworks

+ + + + diff --git a/html/inactive/contact.shtml b/html/inactive/contact.shtml new file mode 100644 index 0000000..58ce033 --- /dev/null +++ b/html/inactive/contact.shtml @@ -0,0 +1,21 @@ + + +
+ + + +

+For any questions about the webpage, contact +. +

+ + diff --git a/html/inactive/exams.shtml b/html/inactive/exams.shtml new file mode 100644 index 0000000..d5927ee --- /dev/null +++ b/html/inactive/exams.shtml @@ -0,0 +1,10 @@ + + +

Exams

+ + + + diff --git a/html/inactive/labs.shtml b/html/inactive/labs.shtml new file mode 100644 index 0000000..3abfa6a --- /dev/null +++ b/html/inactive/labs.shtml @@ -0,0 +1,30 @@ + + +

Labs

+ +
    +
  • All students should be present in Disque-820A - Phys201 + Laboratory - a few minutes before the start of their scheduled lab. +
  • +
  • Please note that pre-lab work must be completed before you go to + the lab to perform the experiment. +
  • +
  • All students in a group must actively participate in the lab work. +
  • +
  • + All pages in each report must be completed and submitted to your lab + instructor before you leave the laboratory. To get a feeling for + our expectations, consider this + sample lab report. +
  • +
  • + No grade will be given for incomplete pre-lab work or lab reports. +
  • +
+ + + + diff --git a/html/inactive/lectures.shtml b/html/inactive/lectures.shtml new file mode 100644 index 0000000..9afd513 --- /dev/null +++ b/html/inactive/lectures.shtml @@ -0,0 +1,10 @@ + + +

Lectures

+ + + + diff --git a/html/index.shtml b/html/index.shtml new file mode 100644 index 0000000..5a31893 --- /dev/null +++ b/html/index.shtml @@ -0,0 +1,27 @@ + + +

Physics 201 - Fundamentals of Physics III

+ + +

+This is my personal Phys 201 course page, for things specific to my +two recitations. I'll probably just be posting homework solutions, +but I'll email you and post an announcement if that changes. +

+ +

Resources

+ + + +

Source code

+

+For those who are interested, the source code used to generate the +content of this page is available here. +

+ + diff --git a/html/php/atom.php b/html/php/atom.php new file mode 100644 index 0000000..5990683 --- /dev/null +++ b/html/php/atom.php @@ -0,0 +1,43 @@ +\n$content\n

\n"; +} + +function printAtom($feed_title, $feed, $ignored_title){ + echo "

$feed_title

\n\n"; + + /* convert entries to an array (from some sort of iterable) */ + $entries = array(); + foreach($feed->entry as $entry) + $entries[] = $entry; + + /* print the entries */ + foreach(array_reverse($entries) as $entry) { + $title=$entry->title; + $link=$entry->link['href']; + $tpub_string=$entry->published; + $tpub=strtotime($tpub_string); + $time=strftime("%r %A, %B %d, %Y", $tpub); + if ($title == $ignored_title) + continue; + echo "
$title $time
\n"; + printContent($entry->content->asXML()); + } +} + +?> diff --git a/html/php/people.php b/html/php/people.php new file mode 100644 index 0000000..e3e97d3 --- /dev/null +++ b/html/php/people.php @@ -0,0 +1,62 @@ +\n"; +} +function printPeopleEnd($use_pictures){ + if ($use_pictures == false) + echo "\n"; +} +function printPeople($title, $people, $use_pictures){ + if ($use_pictures == true) + echo "

$title

\n"; + else + echo " $title\n"; + foreach($people->person as $person){ + $name=$person->name; + if (strlen($person->url) > 0){ + $href=" href=\"".$person->url."\""; + } else { + $href=""; + } + $office=$person->office; + $email=$person->email; + $hours=$person->hours; + $picture=$person->picture; + $extension=$person->extension; + if ($use_pictures == true) { + echo "
\n"; + echo " \"$name\"\n"; + echo "

\n"; + echo " $name
\n"; + echo " Email: $email
\n"; + echo " Office: $office
\n"; + echo " Hours: $hours
\n"; + echo " Extension: $extension
\n"; + echo "

\n"; + echo "
\n"; + } else { + echo " $name$office$email\n"; + if (strlen($hours) > 0){ + echo " Office hours: $hours\n"; + } + } + } +} +?> diff --git a/html/php/quarter.php b/html/php/quarter.php new file mode 100644 index 0000000..59d38f2 --- /dev/null +++ b/html/php/quarter.php @@ -0,0 +1,4 @@ + diff --git a/html/php/section_docs.php b/html/php/section_docs.php new file mode 100644 index 0000000..ab20df1 --- /dev/null +++ b/html/php/section_docs.php @@ -0,0 +1,44 @@ +=0; $i-=1) { + $front = "$directory/$startswith".$i."_"; + $frontlen = strlen($front); + $files = glob($front."*"); + $comment_file = $front.'comment'; // (X)HTML fragment commenting on doc. + $num_readable = 0; + foreach ($files as $file) { + if (is_readable($file) && $file != $comment_file) { + $num_readable += 1; + } + } + if ($num_readable > 0 or is_readable($comment_file)) { + echo "

$title $i

\n"; + } // 's' b/c id attributes must begin with a letter, not a digit. + if (is_readable($comment_file)) { + readfile($comment_file); + } + if ($num_readable > 0) { + echo "
    \n"; + foreach ($files as $file) { + if (!is_readable($file) or $file == $comment_file) { + continue; + } + $len = strlen($file); + $url = $file; + $name = substr($file, $frontlen, $len-$frontlen); // remove $front + + echo "
  • $name$mode
  • \n"; + } + echo "
\n"; + } + } +} +?> diff --git a/html/php/webmaster.php b/html/php/webmaster.php new file mode 100644 index 0000000..fba3f4e --- /dev/null +++ b/html/php/webmaster.php @@ -0,0 +1,15 @@ +name; +$email=$s->email; +if (strlen($email) > 0) + echo "$name ($email)"; +else + echo "$name"; +?> diff --git a/html/recitations.shtml b/html/recitations.shtml new file mode 100644 index 0000000..cb1a671 --- /dev/null +++ b/html/recitations.shtml @@ -0,0 +1,10 @@ + + +

Recitations

+ + + + diff --git a/html/shared/favicon.ico b/html/shared/favicon.ico new file mode 100644 index 0000000000000000000000000000000000000000..028b0f50207c5ca34819ae6feb24443519144512 GIT binary patch literal 3638 zcmeHJId2+a6dab@2gWysgpkWPPGaID4hgx)c2rbQB6m(fM@L0LL6rs}T)3h@X(;IU z10V{n0zm;i1p*0)28knY*J4>LKuV%GQo@r~-_FeYcHa)GSpW$bXtkhKg|Bkp5P->a zjlZjaZ^RuDM=c-EJ47(P-`rOJV82 z(t+D|!0-#TMkU_13(1}s8z7y61~9q(P&i2 z?pQ3w=XWBJKr)%+b3C0+^I4wFW|7O~kk98)C=^gE7EvmdP%f8e=6ti+M61<8yWJKt zzt`)b-|u5E7+^RYF24bbUXZ2s&pN>VCpG>7=RNMp1FqxHGEZkeldPDll0drh59{*N z)3f*U?!nE^)vE5r%oa|2X}2B#%>9`S*W{NS`d~a=&~QxG*;}C7NM9H0^tat8!km#R z5oXW8yb;!W2>G60%OrO05V?9=HOh%lRS(tky!*UETcH-TCU7SrqEjJM#?B`_A)!p7(kFf9-P@=@15kkTkGK zgFusyy#KECqZzRdBLb=P?$(kUP;>kYTDeG&{|a+iOiRbI6nbQ)j#7bOf>iF=C+|_py<&Fo1F5cC*iEM?zZGC{ejNg4LWYp=S$L6Qaby6y zp$+F`250{%tU{Lg$5*ROH}y!1UKJS4*xqd7P(Y3JQF?lrnf?yerr%&6yGXLG1ur*B z{$&R1@Oj)yl@%rY5rh?j(j10Yz_DBs`AKFU_QnB;)(aqQmGi&ieOS|21^NP9UMpa< zU&p!f6RZ6Owp^X!EXA=0SbN&h?CrQK%Q3(=YBqqHD^9ZUM0Hxt-6-KT;>lf@j?Z+v zHm(}`>85I&E<7e}oz?6UwjAogowzGO8kSN7+2`b^$Az9L{K5*ko87EV45LT-`_##3 z>d3AGh@>=mbg34|6}+-gT9N+6Dr@44VEl44O&{&|w=qpbzC#iWMKa?5)>tI+KLQK@ Xq0QFqn(9Yl00000NkvXXu0mjfZ8t + + + + + + + + diff --git a/html/shared/header.shtml b/html/shared/header.shtml new file mode 100644 index 0000000..a525627 --- /dev/null +++ b/html/shared/header.shtml @@ -0,0 +1,63 @@ + + + + + + + + + + + + + + + + +Phys201 + + + +

+ +

+ + +
diff --git a/html/shared/style.css b/html/shared/style.css new file mode 100644 index 0000000..0a6a3fb --- /dev/null +++ b/html/shared/style.css @@ -0,0 +1,120 @@ +/* General styling */ +body { + background: #FEC; + color: #000; + font: 100% Veranda,Tahoma,sans-serif; + border: 0; + margin: 0; + padding: 0; +} + +/* Arranging content */ +#header { + border: 0; + margin: 0; + padding: 0 1em 0 1em; +} + +#footer { + border: 0; + margin: 0; + padding: 0 1em 0 1em; +} + +#content { + background: #FEC; + color: #000; + border: 0; + margin: 0; + padding: 0 1em 0 1em; +} + +div.figure_auto { + float: right; + margin: 0.5em; + padding: 0.5em; + text-align: center; +} + +div.figure_frac { + float: right; + width: 35%; + margin: 0 0.5em 0 0.5em; + padding: 0 0.5em 0 0.5em; + text-align: center; +} + +div.figure_frac_odd { + float: left; + width: 35%; + margin: 0 0.5em 0 0.5em; + padding: 0 0.5em 0 0.5em; + text-align: center; +} + +div.note_frac { + float: right; + width: 40%; + margin: 0.5em; + padding: 0.5em; +} + +div.figure_big { + margin: 0.5em auto 0.5em auto; + padding: 0.5em; + text-align: center; +} + +img.scaled { + width: 100%; +} + +/* Details */ +a:link {color: #00F;} +a:visited {color: #F00;} +a:hover {color: #44F;} +a:active {color: #FFF;} + +h1, h2, h3, h4, h5, h6 { + /* Removing the top margin and replacing it with padding + keeps the appropriate container in the background. */ + margin: 0; + padding: 1em 0 0 0; + font-variant: small-caps; +} + +h5, h6 { + margin: 0; + margin-top: 1em; + padding: 0; +} + +td { + padding: 0 0.5em 0 0.5em; +} + +p { + margin: 1em 0 0 0; + padding: 0; +} + +ul, ol { + padding: 0 0 0 2em; + margin: 0 0 0 0; +} + +#header h3 { /* remove the pre padding on the #header headings */ + padding: 0; +} + +.code, pre { + font-family: monospace; + font-style: normal; + color: #333; +} + +.feed-small { + height: 14px; + padding-left: 15px; + background: url('shared/feed-icon-14x14.png') no-repeat 0% 50%; +} diff --git a/html/xml/TAs.xml b/html/xml/TAs.xml new file mode 100644 index 0000000..d906647 --- /dev/null +++ b/html/xml/TAs.xml @@ -0,0 +1,75 @@ + + + + Farnaza Neville Batliwalla + fnb23 at drexel dot edu + /students/courses/current/physics-201/faculty/farnaza.jpg + + + Benjamin Coy + btc24 at drexel dot edu + Disque 916 + 1546 + /directory/graduate/small/coy.benjamin.jpg + + + Edward Damon + ead54 at drexel dot edu + Disque 705 + 2732 + /directory/graduate/small/damon.edward.jpg + + + Nandita Ganesh + ng97 at drexel dot edu + /students/courses/current/physics-201/faculty/nandita.jpg + + + Travis Hoppe + travis.aaron.hoppe at drexel dot edu + Disque 819A + 2057 + http://www.physics.drexel.edu/~thoppe + /directory/graduate/small/hoppe.travis.jpg + + + Trevor King + wtk25 at drexel dot edu + Disque 927 + 1818 + http://www.physics.drexel.edu/~wking + /directory/graduate/small/king.trevor.jpg + + + Anitha Manohar + Disque 912 + am627 at drexel dot edu + /students/courses/current/physics-201/faculty/anitha.jpg + + + Greeshma Manomohan + gm322 at drexel dot edu + /students/courses/current/physics-201/faculty/greeshma.jpg + + + Ryan Michaluk + rmm622 at drexel dot edu + Disque 916 + 1546 + /directory/graduate/small/michaluk.ryan.jpg + + + Pavithra Ramakrishnan + Disque 915 + 2739 + pr323 at drexel.edu + /students/courses/current/physics-201/faculty/pavithra.jpg + + + John Schreck + jss74@drexel.edu + Disque 705 + 2732 + /directory/graduate/small/schreck.john.jpg + + diff --git a/html/xml/admin_mailing_list.py b/html/xml/admin_mailing_list.py new file mode 100755 index 0000000..17134d1 --- /dev/null +++ b/html/xml/admin_mailing_list.py @@ -0,0 +1,27 @@ +#!/usr/bin/python +# +# Generate a mailing list from my people XML format e.g. for TAs.xml. +# +# usage: ./admin_mailing_list.py profs.xml TAs.xml + +import xml.etree.ElementTree as ET + +def mailing_list(filename): + tree = ET.parse(filename) + root = tree.getroot() + addresses = [] + for person in root.findall("person"): + name = person.findtext("name") + email = person.findtext("email") + email = email.replace(" at ", "@") + email = email.replace(" dot ", ".") + addresses.append('"%s" <%s>' % (name, email)) + return addresses + +if __name__ == "__main__": + import sys + + addresses = [] + for filename in sys.argv[1:]: + addresses.extend(mailing_list(filename)) + print '\t' + ', \\\n\t'.join(addresses) diff --git a/html/xml/department_xml_to_people.py b/html/xml/department_xml_to_people.py new file mode 100755 index 0000000..88b6f90 --- /dev/null +++ b/html/xml/department_xml_to_people.py @@ -0,0 +1,60 @@ +#!/usr/bin/python +# +# Convert e.g. graduate.xml from the department directory into my +# people XML format e.g. for TAs.xml. +# +# usage: ./department_xml_to_people.py graduate.xml | xml_pp > TAs.xml +# +# xml_pp is included in the Ubuntu xml-twig-tools package. + +import elementtree.ElementTree as ET + +def convert_file(infile, outfile): + root = ET.Element("people") + in_tree = ET.parse(infile) + in_root = in_tree.getroot() + for in_person in in_root.findall("person"): + firstname = in_person.findtext("firstname") + lastname = in_person.findtext("lastname") + name_text = "%s %s" % (firstname, lastname) + email_text = in_person.findtext("email") + email_text = email_text.replace(" [at] ", " at ") + email_text = email_text.replace(".edu ", " dot edu") + office_text = in_person.findtext("office") + hours_text = None + phone_text = in_person.findtext("phone") + extension_text = phone_text.replace("(215) 895 - ","") + url_text = in_person.findtext("webpage") + picture_text = "/directory/graduate/small/%s.%s.jpg" \ + % (lastname.lower(), firstname.lower()) + + person = ET.SubElement(root, "person") + name = ET.SubElement(person, "name") + name.text = name_text + if email_text != None: + email = ET.SubElement(person, "email") + email.text = email_text + if office_text != None: + office = ET.SubElement(person, "office") + office.text = office_text + if hours_text != None: + hours = ET.SubElement(person, "hours") + hours.text = hours_text + if extension_text != None: + extension = ET.SubElement(person, "extension") + extension.text = extension_text + if url_text != None: + url = ET.SubElement(person, "url") + url.text = url_text + if picture_text != None: + picture = ET.SubElement(person, "picture") + picture.text = picture_text + tree = ET.ElementTree(root) + tree.write(outfile) + +if __name__ == "__main__": + import sys + + #infile = sys.argv[1] + #outfile = sys.argv[2] + convert_file(sys.stdin, sys.stdout) diff --git a/html/xml/profs.xml b/html/xml/profs.xml new file mode 100644 index 0000000..4a41a7d --- /dev/null +++ b/html/xml/profs.xml @@ -0,0 +1,12 @@ + + + + T. S. Venkataraman + Disque 912 + Open Door Policy Every Term + venkat at drexel dot edu + 2721 + /directory/faculty/homepage.html?name=Venkat + /students/courses/current/physics-201/faculty/venkatMATE.bmp + + diff --git a/html/xml/webmaster.xml b/html/xml/webmaster.xml new file mode 100644 index 0000000..ba06d43 --- /dev/null +++ b/html/xml/webmaster.xml @@ -0,0 +1,5 @@ + + + Trevor King + + diff --git a/latex/Makefile b/latex/Makefile new file mode 100644 index 0000000..19c783b --- /dev/null +++ b/latex/Makefile @@ -0,0 +1,11 @@ +SUBDIRS = hwk rec + +install : + @for i in $(SUBDIRS); do \ + echo "make install in $$i..."; \ + (cd $$i; $(MAKE) $(MFLAGS) install); done + +clean : + @for i in $(SUBDIRS); do \ + echo "make clean in $$i..."; \ + (cd $$i; $(MAKE) $(MFLAGS) clean); done diff --git a/latex/README b/latex/README new file mode 100644 index 0000000..6638893 --- /dev/null +++ b/latex/README @@ -0,0 +1,14 @@ +problems Contains LaTeX source for a bunch of problems +hwk/rec Contain particular homework and recitation subdirs, e.g. hwk1 + +The homework subdirs link back to the particular problems in the +problems directory so the problems can live in a central location and +be reused in future quarters. + +There are also non-problem directories such as `syllabus' for LaTeX +source for other course documents. With these added to Makefile's +`SUBDIRS', the source they contain is compiled and installed in their +`INSTALL_DIR'. Take a look at syllabus/Makefile for the particulars, +which are not too complicated. The directory `old-source' contains +the LaTeX source from previous courses, since so much of the layout +is standardized and much of the text is boilerplate. diff --git a/latex/hwk/Makefile b/latex/hwk/Makefile new file mode 100644 index 0000000..ff632c7 --- /dev/null +++ b/latex/hwk/Makefile @@ -0,0 +1,21 @@ +# give numbers for assigned homeworks +HWK_NUMS = +# give numbers for homeworks whose solutions should be posted +# (don't install source until the solutions should be published) +SOLN_NUMS = + +INSTALL_DIR := $(INSTALL_DIR)/doc/hwk +export INSTALL_DIR + +install : + @for i in $(HWK_NUMS:%=hwk%); do \ + echo "make install-probs in $$i..."; \ + (cd $$i; $(MAKE) $(MFLAGS) install-probs); done + @for i in $(SOLN_NUMS:%=hwk%); do \ + echo "make install-solns in $$i..."; \ + (cd $$i; $(MAKE) $(MFLAGS) install-solns); done + +clean : + @for i in $(HWK_NUMS:%=hwk%); do \ + echo "make clean in $$i..."; \ + (cd $$i; $(MAKE) $(MFLAGS) clean); done diff --git a/latex/hwk/hwk1/Makefile b/latex/hwk/hwk1/Makefile new file mode 100644 index 0000000..375c9ad --- /dev/null +++ b/latex/hwk/hwk1/Makefile @@ -0,0 +1,41 @@ +THIS_DIR = $(shell basename $(PWD)) +HOMEWORK_NUMBER = $(THIS_DIR:hwk%=%) +SOURCE_FILES = all_problems.tex probs.tex sols.tex problem[0-9].tex +OTHER_FILES = Makefile +DIST_FILES = $(SOURCE_FILES) $(OTHER_FILES) +DIST_FILE = $(THIS_DIR)_source.tar.gz +DIST_DIR = hwk + +all : sols.pdf probs.pdf + +view : all + xpdf probs.pdf & + xpdf sols.pdf & + +%.pdf : %.tex $(SOURCE_FILES) + pdflatex $(patsubst %.tex,%,$<) + asy $(patsubst %.tex,%,$<) + pdflatex $(patsubst %.tex,%,$<) + +semi-clean : + rm -f rm -f *.log *.aux *.out *.thm *.toc *.pre *_[0-9]_.tex *.asy + +clean : semi-clean + rm -f *.pdf $(DIST_FILE) $(DIST_DIR) install* + +$(DIST_FILE) : $(DIST_FILES) + mkdir $(DIST_DIR) + cp -Lrp $^ $(DIST_DIR) + tar -chozf $@ $(DIST_DIR) + rm -rf $(DIST_DIR) + +install : install-probs install-solns + +install-probs : probs.pdf + scp -p $< $(INSTALL_USER)@$(INSTALL_HOST):$(INSTALL_DIR)/hwk$(HOMEWORK_NUMBER)_problems.pdf + @date > $@ + +install-solns : sols.pdf $(DIST_FILE) + scp -p $< $(INSTALL_USER)@$(INSTALL_HOST):$(INSTALL_DIR)/hwk$(HOMEWORK_NUMBER)_solutions.pdf + scp -p $(DIST_FILE) $(INSTALL_USER)@$(INSTALL_HOST):$(SOURCE_DIR) + @date > $@ diff --git a/latex/hwk/hwk1/all_problems.tex b/latex/hwk/hwk1/all_problems.tex new file mode 100644 index 0000000..b6d517e --- /dev/null +++ b/latex/hwk/hwk1/all_problems.tex @@ -0,0 +1,19 @@ +\usepackage[author={W. Trevor King}, + coursetitle={Physics 201}, + classtitle={Homework 1}, + subheading={Chapter 12}]{problempack} +\usepackage[inline]{asymptote} +\usepackage{graphicx} +\usepackage{wtk_cmmds} +\usepackage{hyperref} +\usepackage{url} + +\begin{document} + +\maketitle + +\input{problem1} +\input{problem2} +\input{problem3} + +\end{document} diff --git a/latex/hwk/hwk1/problem1.tex b/latex/hwk/hwk1/problem1.tex new file mode 120000 index 0000000..3999af0 --- /dev/null +++ b/latex/hwk/hwk1/problem1.tex @@ -0,0 +1 @@ +../../problems/problem12.V1.tex \ No newline at end of file diff --git a/latex/hwk/hwk1/problem2.tex b/latex/hwk/hwk1/problem2.tex new file mode 120000 index 0000000..33a1893 --- /dev/null +++ b/latex/hwk/hwk1/problem2.tex @@ -0,0 +1 @@ +../../problems/problem12.V2.tex \ No newline at end of file diff --git a/latex/hwk/hwk1/problem3.tex b/latex/hwk/hwk1/problem3.tex new file mode 120000 index 0000000..18d2916 --- /dev/null +++ b/latex/hwk/hwk1/problem3.tex @@ -0,0 +1 @@ +../../problems/problem12.V3.tex \ No newline at end of file diff --git a/latex/hwk/hwk1/probs.tex b/latex/hwk/hwk1/probs.tex new file mode 100644 index 0000000..fa21ac1 --- /dev/null +++ b/latex/hwk/hwk1/probs.tex @@ -0,0 +1,5 @@ +\documentclass[letterpaper, 10pt]{article} + +\PassOptionsToPackage{nosolutions}{problempack} + +\input{all_problems} diff --git a/latex/hwk/hwk1/sols.tex b/latex/hwk/hwk1/sols.tex new file mode 100644 index 0000000..3ba5c0a --- /dev/null +++ b/latex/hwk/hwk1/sols.tex @@ -0,0 +1,5 @@ +\documentclass[letterpaper, 10pt]{article} + +\PassOptionsToPackage{solutions}{problempack} + +\input{all_problems} diff --git a/latex/old-source/s09-phys201-syllabus.tex b/latex/old-source/s09-phys201-syllabus.tex new file mode 100644 index 0000000..3ecf347 --- /dev/null +++ b/latex/old-source/s09-phys201-syllabus.tex @@ -0,0 +1,141 @@ +\documentclass[10pt]{article} +\usepackage[colorlinks]{hyperref} +\usepackage{url} + +\topmargin -0.5in +\headheight 0.5in +\headsep 0.0in +\textheight 9.5in % leave a bit of extra room for page numbers +\oddsidemargin -0.5in +\textwidth 7.5in +\setlength{\parindent}{0pt} + +\usepackage{fancyhdr} +\pagestyle{fancy} +\fancyhf{} % delete the current section for header and footer +\lfoot{Dr.~Venkat --- Disque--912 --- x2721} +\rfoot{Venkat at drexel dot edu} +\renewcommand{\headrulewidth}{0pt} % remove the head-rule + +\newcommand{\Tstrut}{\rule{0pt}{2.6ex}} % strut for table spacing +\newcommand{\toprule}{} +\newcommand{\colrule}{\hline\Tstrut} +\newcommand{\botrule}{} + +\begin{document} + +\begin{center} +{\Large PHYS--201: FUNDAMENTALS OF PHYSICS III} \\ +{\large Spring Term 2009 --- Sophmore Class} \\ +{\it Principles of Physics} by Raymond A. Serway and John W. Jewett Jr. +Fourth Edition + +\bigskip +\bigskip +SYLLABUS (as of \today% +\footnote{Assigned problems/course material schedule subject to + changes determined by the progress of the course.}) +\end{center} + +\begin{tabular}{llll} +\toprule +Week & +Material & %\footnotemark & +Reading & +Recitation Problems \\ +\colrule +1 & +Oscillatory Motion and Waves & +Ch.~12 (1-8) & +Ch.~12: 2, 5, 12, 15, 18. \\ +30-Mar-09 & +Superposition of waves & +Ch.~13 (1-7) & +No homework due this week. \\ +\colrule +2 & +Interference and Standing waves & +Ch.~14 (1-5) & +Ch.~12: 20, 40. Ch.~13: 5, 7, 10, 11, 40. \\ +06-Apr-09 & +Maxwell's Equations and EM waves & +Ch.~24 (1-6) & +Homework 1: Due Wed.~April 08 in Lecture. \\ +\colrule +3 & +Interference and Diffraction & +Ch.~24 (1-10) & +Ch.~14: 5, 6, 8, 9, 20. Ch.~24: 7, 8, 9, 22, 25. \\ +13-Apr-09 & +Lasers and Holography & + & +Homework 2: Due Wed.~April 15 in Lecture. \\ +\colrule +4 & +Quantum Physics, Planck's Theory & +Ch.~28 (1-2) & +Ch.~27: 1, 3, 4, 9, 15, 22, 23, 32. \\ +20-Apr-09 & +Philoelectric effect & + & +Exam 1 : 8 AM--8:50 AM Tuesday, April 21, 2009. \\ +\colrule +5 & +Bohr Model of Hydrogen & +Ch.~11 (5-6) & +Ch.~28: 4, 6, 9, 10, 13, 56, 57. \\ +27-Apr-09 & + & + & +Homework 3: Due Wed.~April 29 in Lecture. \\ +\colrule +6 & +Special Relativity & +Ch.~9 (1-5) & +Ch.~11: 34, 35, 36, 37, 38, 41. \\ +04-May-09 & + & + & +Exam 2: 8 AM--8:50 AM Tuesday, May 05, 2009. \\ +\colrule +7 & +Special Relativity--Mass Energy & +Ch.~9 (6-8) & +Ch.~9: 18, 19, 22, + Handout Problem. \\ +11-May-09 & + & + & +Homework 4: Due Wed.~May 13 in Lecture. \\ +\colrule +8 & +X-Rays - Compton Effect & +Ch.~28 (3-8) & +Ch.~9: 23, 30, 31, 35, 50, + Handout Problem. \\ +18-May-09 & +\multicolumn{2}{l}{Wave-Particle Duality, Quantum particle} & +Exam 3: 8 AM-8:50 AM Tuesday, May 19, 2009. \\ +\colrule +9 & +Heisenberg's Uncertainty Principle & +Ch.~28 (7-8) & +Ch.~28: 14, 15, 16, + Handout Problem. \\ +25-May-09 & +Schrodinger Equation and applications & +Ch.~28 (11-12) & +Homework 5: Due Wed.~May 27 in Lecture. \\ +\colrule +10 & +Atomic Physics and Hydrogen atom & +Ch.~29 (1-5) & +Ch.~28: 18, 21, 23, 25, 32, 34. \\ +01-Jun-09 & +Nuclear Physics-Binding Fusion, Fission & +Ch.~30 (1-5) & \\ +\botrule +\end{tabular} +%\footnotetext{Assigned problems/course material schedule subject +% to changes determined by the progress of the course.} +% Normal \footnote{}s can't escape tabulars. This fix from +% http://www.tex.ac.uk/cgi-bin/texfaq2html?label=footintab + +\end{document} diff --git a/latex/problems/README b/latex/problems/README new file mode 100644 index 0000000..e179ce2 --- /dev/null +++ b/latex/problems/README @@ -0,0 +1,4 @@ +A collection of LaTeX source (using my problempack.sty and wtk_cmmds.sty) +for intro-physics problems that I've covered over the years. + +References are to Serway & Jewett, 4th Edition unless otherwise specified. diff --git a/latex/problems/equation27.07.tex b/latex/problems/equation27.07.tex new file mode 100644 index 0000000..e0e40e7 --- /dev/null +++ b/latex/problems/equation27.07.tex @@ -0,0 +1,69 @@ +\begin{problem} +\emph{BONUS PROBLEM}. +Derive the Equation 27.8, which gives the average intensity on a +screen far from a single slit relative to the maximum intensity +$I_\text{max}$ at $\theta=0$. +\begin{equation} + I_\text{avg} = I_\text{max} \cos^2\p({\frac{\pi d \sin(\theta)}{\lambda}}) +\end{equation} + +\emph{HINT}. Remember from Chapter 24 that for plane waves +\begin{equation} + I = \frac{1}{2\mu_0 c} E_\text{max}^2 +\end{equation} +where the electric field is perpendicular to the direction of +propogation. Assume the screen is far enough away that the waves +emanating from the slits can be treated as plane waves. +\end{problem} % combines the phase difference from Equation 27.7 with vector +% addition for the Electric field amplitudes. + +\begin{solution} +From the path-length argument we've used in Problems 2 and 3, we know +the phase difference between the light from each slit will be +\begin{equation} + \Delta \phi = \frac{2\pi}{\lambda} d \sin(\theta) +\end{equation} + +Drawing a phasor diagram for the Electric field, we have +\begin{center} +\begin{asy} +import Mechanics; +import ElectroMag; + +real u = 1cm; +transform t=scale(u); + +real E = 1; +pair P = (0,0); + +Vector Et = EField(t*P, u*E, 0, L="$E_t$"); +Vector Eb = EField(t*P, u*E, 140, L="$E_b$"); +Angle a = Angle(Et.pTip(), Et.center, Eb.pTip(), Et.mag/2, L="$\Delta \phi$"); + +Et.draw(); +Eb.draw(); +a.draw(); +dot(P); +\end{asy} +\end{center} +\begin{equation} + \Delta \phi = \frac{2\pi}{\lambda} d \sin(\theta) +\end{equation} +The maximum electric field is thus given by +\begin{equation} + E_\text{max} = 2 E_0 \cos\p({\frac{\Delta\phi}{2}}) +\end{equation} +where $E_0 = E_t = E_b$. +The intensity is then given by +\begin{align} + I &= \frac{1}{2\mu_0 c} E_\text{max}^2 \\ + &= \frac{1}{2\mu_0 c} 4 E_0^2 \cos^2\p({\frac{\Delta\phi}{2}}) \\ + &= I_\text{max} \cos^2\p({\frac{\Delta\phi}{2}}) \;, +\end{align} +where we made the substitution $I_\text{max} = I(\Delta\phi=0)$. +Plugging in for $\Delta\phi$, +\begin{equation} + I = I_\text{max} \cos^2\p({\frac{\pi d \sin(\theta)}{\lambda}}) \;, +\end{equation} +which is what we set out to show. +\end{solution} diff --git a/latex/problems/example13.06.T.tex b/latex/problems/example13.06.T.tex new file mode 100644 index 0000000..56b684f --- /dev/null +++ b/latex/problems/example13.06.T.tex @@ -0,0 +1,25 @@ +\begin{problem} +Jack and Jill are broadcasting kazoo music from their treehouse to a +picnic below using a tin can telephone +(\url{http://en.wikipedia.org/wiki/Tin_can_telephone}). Their +transmitting string weighs $m = 140\U{g}$, is $L = 30\U{m}$ long, and +is stretched to a tension of $T = 45\U{N}$. At what amplitude must +Jack and Jill vibrate their end of the string to drive the far can at +$P = 1\U{W}$ while playing the musical note A at $f = 440\U{Hz}$? +\end{problem} % Example 13.6 backwards + +\begin{solution} +From Equation 13.23 we know that energy transfer in a sinusoidally +oscillating string follows +\begin{equation} + P = \frac{1}{2} \mu \omega^2 A^2 v +\end{equation} +The mass density of the string is $\mu = m/L \approx 4.667\U{g/m}$, +the speed of propagation is $v = \sqrt{T/\mu} \approx 98.20\U{m/s}$, +and the angular velocity of vibration is $\omega = 2\pi f \approx +2765\U{rad/s}$. Solving the power formula for the amplitude we have +\begin{equation} + A = \frac{1}{\omega}\sqrt{\frac{2P}{\mu v}} \approx \ans{0.76\U{mm}} +\end{equation} + +\end{solution} diff --git a/latex/problems/figure27.03.T.tex b/latex/problems/figure27.03.T.tex new file mode 100644 index 0000000..5fab2a2 --- /dev/null +++ b/latex/problems/figure27.03.T.tex @@ -0,0 +1,120 @@ +\begin{problem} +A plane wave of monochromatic light moving to the right through a +strange material with index of refraction $n_a$ hits a barrier with +two slits seperated by $d$. Some light passes through each slit, and +after moving a distance $r_a$ to right, leaves the strange material +and enters air with a refractive index $n_b$. The interface bends the +light rays according to Snell's law (bending shown on the diagram, so +you don't need Snell's law to solve the problem). A distance $r_b$ to +the right of the interface is a screen, on which an interference +pattern appears. The first minimum of the interference pattern +appears at point $P$, directly to the right of the top slit. Find the +frequency of light. + +\emph{HINT}. I've drawn the paths taken to $P$ from each slit. The +vertical distance between the two rays at the strange-material/air +interface is $d_i$. You should use a geometric argument to determine +the phase difference between the two paths. +\begin{center} +\begin{asy} +real ux=2cm; +real uy=100cm; +transform t=xscale(ux)*yscale(uy); + +pen cLight=red; +pen cA=blue+white; +pen cB=white; + +real nA=2.5; +real nB=1; + +real xAB = 1; +pair P=(3,0); +pair T=(-1,0); +pair B=(-1,-0.007); + +real xMin = T.x - 1; +real xMax = P.x + 0.5; +real yMin = B.y - (T.y-B.y); +real yMax = T.y + (T.y-B.y); + +path pA = (xMin,yMin)--(xAB,yMin)--(xAB,yMax)--(xMin,yMax)--cycle; +path pB = (xMax,yMin)--(xAB,yMin)--(xAB,yMax)--(xMax,yMax)--cycle; +path pScreen = (T.x, yMax)--(T.x, yMin); +path pScreenB = (P.x, yMax)--(P.x, yMin); +path pIncident = (xMin, yMin)--(T.x, yMin)--(T.x, yMax)--(xMin, yMax)--cycle; +path pLightT = T--P; + +/* For small angles, Snell's law is + * nA thetaA = nB thetaB + * comparing the Y displacement, + * yA = rA thetaA = rA/rB rB thetaB nB/nA = (rA nB)/(rB nA) yB + * yA/yB = (rA nB)/(rB nA) + * for a total Y displacement yT = yA + yB, we have + * yA/(yT-yA) = (rA nB)/(rB nA) + * yT/yA - 1 = (rB nA)/(rA nB) + * yA = yT ((rB nA)/(rA nB) + 1)^-1 = (yT rA nB)/(rB nA + rA nB) + */ +real yT = T.y-B.y; +real rA = xAB - T.x; +real rB = P.x - xAB; +real yA = yT * rA * nB / (rB * nA + rA * nB); +real yBP = B.y + yA; +path pLightB = B--(xAB, yBP)--P; + +fill(t*pA, cA); +fill(t*pB, cB); + +fill(t*pIncident, cLight); +draw(t*pLightT, cLight); +draw(t*pLightB, cLight); + +draw(t*pScreenB); +draw(t*pScreen); +dot(t*T, cA); // make slits in the screen +dot(t*B, cA); + +dot(t*P); +label("$P$", t*P, E); +label(format("$d=%f\U{mm}$", yT*1000), t*(T+B)/2, W); +label(format("$r_a=%f\U{m}$", rA), t*(T+(xAB,T.y))/2, N); +label(format("$r_b=%f\U{m}$", rB), t*((xAB,T.y)+P)/2, N); +label(format("$d_i=%f\U{mm}$", (yT-yA)*1000), t*(xAB, (T.y+yBP)/2), W); +label(format("$n_a=%f$", nA), t*(xAB, B.y), SW); +label(format("$n_b=%f$", nB), t*(xAB, B.y), SE); +\end{asy} +\end{center} +\end{problem} % based on the double-slit interference derivation +% (Figure 27.3), with the added tweak of an index-of-defraction +% altered wavelength (Equation 25.3 or 27.9). + +\begin{solution} +The path length in mediums $a$ and $b$ for the top $t$ and bottom $b$ +slits are given by +\begin{align} + L_{ta} &= 2\U{m} & L_{tb} &= 2\U{m} \\ + L_{ba} &= \sqrt{2^2+(0.007-0.005)^2}\U{m} = (2 + 1.00\E{-6})\U{m} + & L_{bb} &= \sqrt{2^2+0.005^2}\U{m} = (2 + 6.25\E{-6})\U{m} +\end{align} + +The wavelength depends on the index of refraction according to +$\lambda = \frac{c}{nf}$, and the phase along a path is given by $\phi += \frac{2\pi}{\lambda} L$, so +\begin{equation} + \frac{\Delta \phi}{2\pi} = \frac{\phi_b - \phi_t}{2\pi} + = \frac{L_{ba}}{\lambda_a} + \frac{L_{bb}}{\lambda_b} + -\frac{L_{ta}}{\lambda_a} + \frac{L_{tb}}{\lambda_b} + = \frac{f}{c} \p[{n_a (L_{ba}-L_{ta}) + n_b(L_{bb}-L_{tb})}] + \;. +\end{equation} +At frequency for which this is the first minimum, +\begin{equation} + \Delta \phi = \pi \;, +\end{equation} +so +\begin{equation} + f = \frac{c}{2 \p[{n_a(L_{ba}-L_{ta}) + n_b(L_{bb}-L_{tb})}]} + = \frac{3.00\E{8}\U{m/s}}{2 \p({2.5 \cdot 1.00\E{-6}\U{m} + 6.25\E{-6}\U{m}})} + = \ans{17.1\U{THz}} \;. +\end{equation} +\end{solution} diff --git a/latex/problems/problem01.60.tex b/latex/problems/problem01.60.tex new file mode 100644 index 0000000..119e815 --- /dev/null +++ b/latex/problems/problem01.60.tex @@ -0,0 +1,44 @@ +\begin{problem*}{1.60} +The consumption of natural gas by a company satisfies the empirical +equation +\begin{equation} + V = 1.50 t + 0.00800 t^2, +\end{equation} +where $V$ is the volume in millions of cubic feet and $t$ is the time in +months. Express this equation in units of cubic feet and seconds. +Assign proper units to the coefficients. Assume that a month is $30.0$ +days. +\end{problem*} % Probem 1.60 + +\begin{solution} +Adding units to the equation coefficients: +\begin{equation} + V = 1.50 \p[{\frac{\text{million ft}^3}{\text{month}}}] t + + 8.00\E{-3} \cdot\p[{\frac{\text{million ft}^3}{\text{month}^2}}] t^2 +\end{equation} + +We prepare some conversions: +\begin{align} +1 &= \p[{\frac{10^6 \text{ ft}^3}{\text{million ft}^3}}] \\ +1 &= \p[{\frac{1 \text{ month}}{30 \text{ days}} + \cdot \frac{1 \text{ day}}{24 \text{ hours}} + \cdot \frac{1 \text{ hour}}{60 \text{ minutes}} + \cdot \frac{1 \text{ minute}}{60 \text{ s}}}] \\ + &= \p[{\frac{ 1 \text{ month}}{ 2.592 \cdot 10^6 \text{ s}}}] +\end{align} + +So converting the units in our equation to ft$^3$ and s: +\begin{align} + V &= 1.50 \p[{\frac{\text{million ft}^3}{\text{month}} + \cdot \frac{10^6\U{ft}^3}{\text{million ft}^3} + \cdot \frac{1\U{month}}{2.592\E{6}\U{s}}}] + t + + 8.00\E{-3} \p[{\frac{\text{million ft}^3}{\text{month}^2} + \cdot \frac{10^6\U{ft}^3}{\text{million ft}^3} + \cdot \p{(\frac{1\U{month}}{2.592\E{6}\U{s}}})^2 }] + t^2 \\ + V &= 0.579 \p[{\frac{\text{ft}^3}{\text{s}}}] t + + 1.19\E{-9} \cdot\p[{\frac{\text{ft}^3}{\text{s}^2}}] t^2 +\end{align} + +\end{solution} diff --git a/latex/problems/problem01.62.tex b/latex/problems/problem01.62.tex new file mode 100644 index 0000000..447af74 --- /dev/null +++ b/latex/problems/problem01.62.tex @@ -0,0 +1,37 @@ +\begin{problem*}{1.62} +In physics, it is important to use mathematical approximations. +Demonstrate that for small angles ($< 20\dg$) +\begin{equation} + \tan \alpha \approx \sin \alpha \approx \alpha = \pi \alpha ' / 180\dg +\end{equation} +where $\alpha$ is in radians and $\alpha '$ is in degrees. +Use a calculator to find the largest angle for which $\tan \alpha$ may +be approximated by $\alpha$ with an error less than $10.0$\%. +\end{problem62} % Problem 1.62 + +\begin{solution} +To kill both birds with one stone, + a table to show the approximations hold + and show the \% error of the approximation:\\ +\begin{tabular}{|r|r|r|r|r|} +\hline +$\alpha '$&$\alpha$ [rad]&$\sin \alpha$&$\tan \alpha$&\% error\\ +\hline + $0\dg$&0.000&0.000&0.000&$\emptyset$\\ + $5\dg$&0.087&0.087&0.087&$-0.25$\%\\ +$10\dg$&0.175&0.174&0.176&$-1.02$\%\\ +$15\dg$&0.262&0.259&0.268&$-2.30$\%\\ +$20\dg$&0.349&0.342&0.354&$-4.09$\%\\ +$31\dg$&0.541&0.515&0.601&$-9.95$\%\\ +$32\dg$&0.599&0.530&0.625&$-10.62$\%\\ +\hline +\end{tabular}\\ +where the \% error is given by +\begin{equation} + \text{\% error} = \frac{\text{approx.} - \text{actual}}{\text{actual}} + = \frac{\alpha - \tan \alpha}{\tan \alpha}. +\end{equation} + +So $31\dg$ is the largest whole-degree angle with $< 10$\% error. +\end{solution} + diff --git a/latex/problems/problem02.10.tex b/latex/problems/problem02.10.tex new file mode 100644 index 0000000..410eedd --- /dev/null +++ b/latex/problems/problem02.10.tex @@ -0,0 +1,20 @@ +\begin{problem*}{2.10} +A $50.0\U{g}$ super-ball traveling at $25.0\U{m/s}$ bounces off a +brick wall and rebounds at $22.0\U{m/s}$. A high-speed camera records +this event. If the ball is in contact with the wall for $3.50\U{ms}$, +what is the magnitude of the average acceleration of the ball during +this time interval. (Note: $1\U{ms} = 10^{-3}\U{s}$.) +\end{problem*} % Problem 2.10 + +\begin{solution} +Pick a coordinate system (e.g. rebound direction is positive). Then +$v_0 = -25.0\U{m/s}$ and $v_1 = 22.0\U{m/s}$. +\begin{equation} + a \equiv \frac{\Delta v}{\Delta t} + = \frac{v_1 - v_0}{\Delta t} + = \frac{[22.0 - (-25.0)][\mbox{m/s}]} + {3.50\U{ms} \cdot \frac{1\mbox{s}}{10^3\U{ms}}} + = \frac{47.0\mbox{m/s}}{3.5\E{-3}\U{s}} + = 13400\U{m/s}^2 +\end{equation} +\end{solution} diff --git a/latex/problems/problem02.16.tex b/latex/problems/problem02.16.tex new file mode 100644 index 0000000..d47b2d6 --- /dev/null +++ b/latex/problems/problem02.16.tex @@ -0,0 +1,16 @@ +\begin{problem*}{2.16} +Draw motion diagrams... +\end{problem*} % problem 2.16 + +\begin{solution} +Look at Figure 2.11 on page 50 of the text. +For question parts (e) and (f), draw figures (b) and (c) respectively +but with the $x$-axis reversed. + +Note the different spacing in the figure because the `strobe' is going +off at a constant frequency (same time between pictures). +If you didn't vary the spacing when the velocity changed, you'd need to +point out somewhere that your time intervals were not constant. + +I also accepted plots of velocity or position vs time. +\end{solution} diff --git a/latex/problems/problem02.40.tex b/latex/problems/problem02.40.tex new file mode 100644 index 0000000..2847e6f --- /dev/null +++ b/latex/problems/problem02.40.tex @@ -0,0 +1,72 @@ +\begin{problem*}{2.40} +A woman is reported to have fallen $144\U{ft}$ from the 17th floor of +a building, landing on a metal ventilator box that she crushed to a +depth of $18.0\U{in}$. She suffered only minor injuries. Ignoring +air resistance, calculate +\Part{a} the speed of the woman just before she collided with the box and +\Part{b} her average acceleration while in contact with the box. +\Part{c} Modeling her acceleration as constant, calculate the time interval +it took to crush the box. +\end{problem*} % problem 2.40 + +\begin{solution} +\Part{a} +First deal with the portion from the top (point $P_0$) to the point of +collision with the box (point $P_1$). +Pick a coordinate system pointing down, with $x_0 = 0\U{m}$. +Converting the distance into meters: +\begin{equation} + x_1 = 144\U{ft} \cdot \frac{1\U{m}}{3.28\U{ft}} + = 43.9\U{m} +\end{equation} +So\\ +\begin{tabular}{r || r | r |} + & $P_0$ & $P_1$ \\ + \hline + \hline + $a$ & \multicolumn{2}{|c|}{$9.8\U{m/s}^2$} \\ + \hline + $v$ & $0\U{m/s}$ & ? \\ + \hline + $x$ & $0\U{m}$ & $43.9\U{m}$ \\ + \hline + $t$ & $0\U{s}$ & ? \\ + \hline +\end{tabular} + +We want $v_1$ and we don't know $t_1$ so we use +\begin{align} + v_1^2 &= v_0^2 + 2 a \Delta x_{01} \\ + v_1 &= \sqrt{2 a (x_1 - x_0)} + = \sqrt{2 \cdot 9.8\U{m/s} \cdot 43.9\U{m}} + = 29.3\U{m/s} +\end{align} + +Some people wanted to leave $\Delta x$ in ft, and this works if you also +use $a$ in ft/s$^2$. You run into trouble if you use ft for one and m +for the other... + +\Part{b} +Converting the change in $x$ over the box into m we have +\begin{equation} + \Delta x_{12} = 18\mbox{in} + \cdot \frac{1\U{ft}}{12\U{in}} + \cdot \frac{1\U{m}}{3.28\U{m}} + = 0.457\U{m} +\end{equation} +Calling the point just after she crushed the box $P_2$, we have +\begin{align} + v_2^2 &= v_1^2 + 2 a_{12} \Delta x_{12} \\ + a_{12} &= \frac{-v_1^2}{2 \Delta x_{12}} + = \frac{-(29.3\U{m/s})^2}{2 \cdot 0.457\U{m}} + = -941\U{m/s}^2 +\end{align} + +\Part{c} +\begin{align} + v_2 &= a_{12} t_{12} + v_1 \\ + t_{12} &= -v_1/a_{12} + = \frac{-29.3\U{m/s}}{-941\U{m/s}^2} + = 31.2\U{ms} +\end{align} +\end{solution} diff --git a/latex/problems/problem02.49.tex b/latex/problems/problem02.49.tex new file mode 100644 index 0000000..1ce9702 --- /dev/null +++ b/latex/problems/problem02.49.tex @@ -0,0 +1,76 @@ +\begin{problem*}{2.49} +Setting a world record in a $100\U{m}$ race, Maggie and Judy cross the +finish line in a dead heat, both taking $10.2\U{s}$. Accelerating +uniformly, Maggie took $2.00\U{s}$ and Judy $3.00\U{s}$ to attain +maximum speed, which they maintained for the rest of the race. \\ +\Part{a} What was the acceleration of each sprinter? \\ +\Part{b} What were their respective maximum speeds? \\ +\Part{c} Which sprinter was ahead at the $6.00\U{s}$ mark and by how much? +\end{problem*} % problem 2.49 + +\begin{solution} +\Part{a}\Part{b} +Consider Maggie first. +Let $P_0$ be the Maggie leaving the starting line, +$P_1$ be Maggie finishing her acceleration phase, +and $P_2$ be Maggie finishing the race. + +\begin{tabular}{r || r | r | r | r |} + & $P_0$ & \multicolumn{2}{|c|}{$P_1$} & $P_2$ \\ + \hline + \hline + $a$ & \multicolumn{2}{|c|}{?} & \multicolumn{2}{|c|}{$0\U{m/s}^2$} \\ + \hline + $v$ & $0\U{m/s}$ & \multicolumn{3}{|c|}{?} \\ + \hline + $x$ & $0\U{m}$ & \multicolumn{2}{|c|}{?} & $100\U{m}$ \\ + \hline + $t$ & $0\U{s}$ & \multicolumn{2}{|c|}{$2.00\U{s}$} & + $10.2\U{s}$ \\ + \hline +\end{tabular}\\ +Using the 2nd equation from Table 2.2 on page 53 on the first leg: +\begin{equation} + x_1 = 0.5 (v_0 + v_1) t_1 + x_0 = 0.5 v_1 t_1 +\end{equation} +And again on the second leg: +\begin{align} + x_2 &= 0.5 (v_2 + v_1) (t_2 - t_1) + x_1 + = 0.5(v_1 + v_1) (t_2 - t_1) + 0.5 v_1 t_1 + = v_1 (t_2 - t_1 + 0.5 t_1) + = v_1 (t_2 - 0.5 t_1) \\ + v_1 &= \frac{x_2}{t_2 - 0.5 t_1} + = \frac{100\U{m}}{10.2\U{s} - 0.5 \cdot 2.00\U{s}} + = 10.9\U{m/s} +\end{align} +Which is the answer for Maggie in \Part{b}. So +\begin{align} + v_1 &= a_12 t_1 + v_0 \\ + a_12 &= v_1 / t_1 + = \frac{10.9\U{m/s}}{2.00\U{s}} + = 5.43\U{m/s}^2 +\end{align} +Which answers Maggie in \Part{a}. + +Applying the formulas to Judy, +\begin{align} + v_1 &= \frac{x_2}{t_2 - 0.5 t_1} + = \frac{100\U{m}}{10.2\U{s} - 0.5 \cdot 3.00\U{s}} + = 11.5\U{m/s} \\ + a_12 &= v_1 / t_1 + = \frac{11.5\U{m/s}}{3.00\U{s}} + = 3.83\U{m/s}^2 +\end{align} + +\Part{c} +\begin{align} + x_M(t) &= v_{M1} (t - t_{M1}) + x_{M1} \\ + x_J(t) &= v_{J1} (t - t_{J1}) + x_{J1} \\ + \Delta x &= x_M(6\U{s}) - x_J(6\U{s}) + = 10.9\U{m/s} \cdot 4.00\U{s} + + 0.5 \cdot 10.9\U{m/s} \cdot 2.00\U{s} + -11.5\U{m/s} \cdot 3.00\U{s} + - 0.5 \cdot 11.5\U{m/s} \cdot 3.00\U{s} + = 2.62\U{m} +\end{align} +\end{solution} diff --git a/latex/problems/problem03.09.tex b/latex/problems/problem03.09.tex new file mode 100644 index 0000000..5f4d66f --- /dev/null +++ b/latex/problems/problem03.09.tex @@ -0,0 +1,63 @@ +\begin{problem*}{3.9} +The mountain lion can jump to a height of $h = 12.0\U{ft}$ when +leaving the ground at an angle of $\theta = 45.0\dg$. With what +speed, in SI units, does it leave the ground to make the leap? +\end{problem*} % problem 3.9 + +\begin{solution} +First, we'll convert the height into SI units: +\begin{equation} + h = 12.0\U{ft} \p[{ \frac{1\U{m}}{3.28\U{ft}} }] + = 3.659\U{m} +\end{equation} + +Next, arrange the information we know in a table, calling the launch +point $P_0$ and the peak point $P_1$.\\ +\begin{tabular}{r||r|r|} + Point & $P_0$ & $P_1$ \\ + \hline + \hline + $a_x$ & \multicolumn{2}{|c|}{$0\U{m}$} \\ + \hline + $a_y$ & \multicolumn{2}{|c|}{$-9.8\U{m}$} \\ + \hline + $v_x$ & \multicolumn{2}{|c|}{?} \\ + \hline + $v_y$ & ? & $0\U{m/s}$ \\ + \hline + $x$ & $0\U{m}$ & ? \\ + \hline + $y$ & $0\U{m}$ & $3.66\U{m}$ \\ + \hline + $t$ & $0\U{s}$ & ? \\ + \hline +\end{tabular}\\ +Where we know $v_1 = 0\U{m/s}$ because $P_1$ is at the apex of the jump + and $x_0$, $y_0$, and $t_0$ through our choice of coordinate frame. + +We want to pick an equation to tell us something about the initial velocity + (because they told us $\theta$, either $v_{x0}$ or $v_{y0}$ will suffice.). +Looking at our 4 constant acceleration equations (text p. 53), +\begin{align} + v_{xf} &= v_{xi} + a_x t \\ + x_f &= x_i + \frac{1}{2}(v_{xf} + v_{xi}) t \\ + x_f &= x_i + v_{xi} t + \frac{1}{2} a_x t^2 \label{eqn.t_sqr}\\ + v_{xf}^2 &= v_{xi}^2 + 2 a_x (x_f - x_i) \label{eqn.v_sqr} +\end{align} +We see that eqn.~\ref{eqn.v_sqr} applied to the $y$ direction is +perfect, because it has no information in it that we don't already +know except $v_{y0}$. +\begin{align} + v_{y1}^2 &= (0\U{m/s})^2 = v_{y0}^2 + 2 a_y (y_1 - y_0) \\ + v_{y0}^2 &= -2 a_y y_1 \\ + v_{y0} &= \sqrt{ -2 a_y y_1 } +\end{align} +And we use the angle to solve for the magnitude of the inital velocity: +\begin{align} + v_{y0} &= v_0 \sin \theta \\ + v_0 &= \frac{v_{y0}}{\sin \theta} + = \frac{\sqrt{ -2 a_y y_1 }}{\sin \theta} + = \frac{\sqrt{-2 \cdot (-9.8\U{m/s}^2) \cdot 3.66\U{m}}}{\sin 45^o} + = \ans{12.0\U{m/s}} +\end{align} +\end{solution} diff --git a/latex/problems/problem03.19.tex b/latex/problems/problem03.19.tex new file mode 100644 index 0000000..297dffa --- /dev/null +++ b/latex/problems/problem03.19.tex @@ -0,0 +1,78 @@ +\begin{problem*}{3.19} +A soccer player kicks a rock horizontally off a $h = 40.0\U{m}$ high +cliff into a pool of water. If the player hears the sound of the +splash $\Delta t = 3.00\U{s}$ later, what was the initial speed given +to the rock? Assume that the speed of sound in air is $v_s = +343\U{m/s}$. +\end{problem*} % problem 3.19 + +\begin{solution} +Let us call the point when the player kicks the ball $P_0$, the point +where the ball lands $P_1$, and the point where the sound hits the +players ear $P_2$. + +Arranging the information we know about the ball in a table,\\ +\begin{tabular}{r||r|r|} + Point & $P_0$ & $P_1$ \\ + \hline + \hline + $a_x$ & \multicolumn{2}{|c|}{$0\U{m}$} \\ + \hline + $a_y$ & \multicolumn{2}{|c|}{$-9.8\U{m}$} \\ + \hline + $v_x$ & \multicolumn{2}{|c|}{?} \\ + \hline + $v_y$ & $0\U{m/s}$ & ? \\ + \hline + $x$ & $0\U{m}$ & ? \\ + \hline + $y$ & $40.0\U{m}$ & $0\U{m}$ \\ + \hline + $t$ & $0\U{s}$ & ? \\ + \hline +\end{tabular}\\ +Where we know $v_{y0} = 0\U{m/s}$ because the ball is kicked horizontally + and $x_0$, $y_0$, and $t_0$ through our choice of coordinate frame. + +We want to pick an equation to tell us something about the time, + (because they told us $t_2$.). +Looking at our 4 constant acceleration equations +We see that eqn. \ref{eqn.t_sqr} applied to the $y$ direction is perfect, + because it has no information in it that we don't already know except $t_1$. +\begin{align} + y_1 &= 0\U{m} = y_0 + v_{y0} t_1 + \frac{1}{2} a_y t_1^2 \\ + \frac{1}{2} a_y t_1^2 &= -y_0 \\ + t_1^2 &= \frac{ -2 y_0}{a_y} \\ + t_1 &= \sqrt{ \frac{ -2 y_0}{a_y} } + = \sqrt{ \frac{ -2 \cdot 40.0\U{m}}{-9.8\U{m/s}^2} } + = 2.86\U{s} +\end{align} +So using eqn. \ref{eqn.t_sqr} applied to the $x$ direction, we have +\begin{equation} + x_1 = x_0 + v_{x0} t_1 + \frac{1}{2} a_x t_1^2 + = v_{x0} t_1 +\end{equation} + +Now that we know $x_1$ and $y_1$, we can find the distance $\Delta x_s$ +that the sound takes returning to $P_2$. Because it moves in a straight line +(more or less), we have +\begin{equation} + \Delta x_s = \sqrt{ (x_1-x_0)^2 + (y_1-y_0)^2 } + = \sqrt{ v_{x0}^2 t_1^2 + y_0^2 } +\end{equation} +So the time $(t_2 - t_1)$ taken for the sound to return is +\begin{equation} + \Delta x_s = v_s (t_2 - t_1) \\ +\end{equation} +And they give us $t_2$ in the problem, so we just solve this for $v_{x0}$. +\begin{align} + \Delta x_s &= \sqrt{ v_{x0}^2 t_1^2 + y_0^2 } + = v_s (t_2 - t_1) \\ + v_{x0}^2 t_1^2 + y_0^2 &= \p[{ v_s (t_2 - t_1) }]^2 \\ + v_{x0}^2 &= \p[{ \p[{ v_s (t_2 - t_1) }]^2 - y_0^2 }] / t_1^2 \\ + v_{x0} &= \sqrt{ \p[{v_s (t_2 - t_1)}]^2 - y_0^2} / t_1 + = \sqrt{ \p[{343\U{m/s} (3.00\U{s} - 2.86\U{s}}]^2 + - (40.0\U{m})^2} / 2.86\U{s} + = \ans{9.91\U{m/s}} +\end{align} +\end{solution} diff --git a/latex/problems/problem03.24.tex b/latex/problems/problem03.24.tex new file mode 100644 index 0000000..ce7b983 --- /dev/null +++ b/latex/problems/problem03.24.tex @@ -0,0 +1,52 @@ +\begin{problem*}{3.24} +Suppose a copper sleeve of inner radius $r_1=2.10\U{cm}$ and outer +radius $r_2=2.20\U{cm}$ is to be cast. To eliminate bubbles and give +high structural integrity, the centripetal acceleration of each bit of +metal should be at least $a_{c\U{min}}=100g$. What rate of rotation +is required? State the answer in revolutions per minute (rpm). +\end{problem*} % problem 3.24 + +\begin{solution} +For circular motion +\begin{align} + a_c &= v^2/r \\ + v &= \sqrt{a_c r} +\end{align} +And if the circular motion is uniform, the time $T$ taken to complete +one revolution is given by +\begin{align} + \Delta x &= v T \\ + T &= \Delta x / v = \frac{2 \pi r}{v} +\end{align} +So the frequency $f = 1/T$ of rotation is +\begin{equation} + f = 1/T = \frac{v}{2 \pi r} + = \frac{\sqrt{a_c r}}{2 \pi r} + = \frac{1}{2 \pi} \sqrt{ \frac{a_c}{r} } +\end{equation} + +Because for a given frequency $a_c \propto r$, + we must use the inner radius $r_1$ to compute the $f$ required + to create an acceleration $a_c \geq 100g$. +\begin{equation} + f = \frac{1}{2 \pi} \sqrt{ \frac{100 * 9.8\U{m/s}^2}{0.0210\U{m}} } + \cdot \frac{60\U{s}}{1\U{min}} + = \ans{2060\U{rpm}} +\end{equation} + +To reassure ourselves that this frequency creates enough centripetal +acceleration $a_{c2}$ at $r_2$, we can compute $a_{c2}$. +\begin{align} + f &= \frac{1}{2 \pi} \sqrt{ \frac{a_c}{r} } \\ + 2 \pi f &= \sqrt{ \frac{a_c}{r} } +\end{align} +The left hand side is constant, so applying this equation to both $r_1$ +and $r_2$ we get, +\begin{align} + \sqrt{ \frac{a_{c\U{min}}}{r_1} } &= \sqrt{ \frac{a_{c2}}{r_2} } \\ + a_{c2} &= a_{c\U{min}} \frac{r_2}{r_1} + = a_{c\U{min}} \frac{2.20\U{cm}}{2.10\U{cm}} + = 1.05 \cdot a_{c\U{min}} +\end{align} +So the acceleration is indeed $\geq 100g$ throughout the cylinder. +\end{solution} diff --git a/latex/problems/problem03.43.tex b/latex/problems/problem03.43.tex new file mode 100644 index 0000000..28d7ac2 --- /dev/null +++ b/latex/problems/problem03.43.tex @@ -0,0 +1,55 @@ +\begin{problem*}{3.43} +A ball on the end of a string is whirled around in a horizontal cirlce +of radius $r=0.300\U{m}$. The plane of the circle is $h=1.20\U{m}$ +above the ground. The string breaks, and the ball lands $L=2.00\U{m}$ +(horizontally) away from the point on the ground directly beneath the +ball's location when the string breaks. Find the radial acceleration +of the ball during its circular motion. +\end{problem*} % problem 3.43 + +\begin{solution} +The airborne ball portion of the problem is a 2-D projectile motion +problem. Calling the point where the string breaks $P_0$ and the +point where the ball lands $P_1$, we have \\ +\begin{tabular}{r||r|r|} + Point & $P_0$ & $P_1$ \\ + \hline + \hline + $a_x$ & \multicolumn{2}{|c|}{$0\U{m}$} \\ + \hline + $a_y$ & \multicolumn{2}{|c|}{$-9.8\U{m}$} \\ + \hline + $v_x$ & \multicolumn{2}{|c|}{?} \\ + \hline + $v_y$ & $0\U{m/s}$ & ? \\ + \hline + $x$ & $0\U{m}$ & $2.00\U{m}$ \\ + \hline + $y$ & $1.20\U{m}$ & $0\U{m}$ \\ + \hline + $t$ & $0\U{s}$ & ? \\ + \hline +\end{tabular}\\ +We use eqn. \ref{eqn.t_sqr} applied to the $y$ direction to find $t_1$ +\begin{align} + y_1 &= 0\U{m} = y_0 + v_{y0} t_1 + \frac{1}{2} a_y t_1^2 \\ + \frac{1}{2} a_y t_1^2 &= -y_0 \\ + t_1 &= \sqrt{ \frac{-2 y_0}{a_y} } +\end{align} +As we saw in problem 19. + +Now applying eqn. \ref{eqn.t_sqr} to the $x$ direction to find $v_{x}$ +\begin{align} + x_1 &= x_0 + v_{x} t_1 + \frac{1}{2} a_x t_1^2 \\ + v{x} &= x_1/t_1 +\end{align} + +And plugging these into our circular motion equation +\begin{equation} + a_c = v^2 / r = \frac{(x_1/t_1)^2}{r} + = \frac{x_1^2 a_y}{-2 y_0 r} + = \frac{(2.00\U{m})^2 \cdot (-9.8\U{m/s}^2)} + {-2 \cdot 1.20\U{m} \cdot 0.300\U{m}} + = \ans{54.4\U{m/s}^2} +\end{equation} +\end{solution} diff --git a/latex/problems/problem04.08.tex b/latex/problems/problem04.08.tex new file mode 100644 index 0000000..f98960b --- /dev/null +++ b/latex/problems/problem04.08.tex @@ -0,0 +1,67 @@ +\begin{problem*}{4.8} +Three forces, given by + $\vect{F}_1 = (-2.00\vect{i} + 2.00\vect{j})\U{N}$, + $\vect{F}_2 = ( 5.00\vect{i} - 3.00\vect{j})\U{N}$, and + $\vect{F}_3 = -45.0\vect{i}\U{N}$, + act on an object to give it an acceleration of magnitude + $a = 3.75\U{m/s}^2$ + \Part{a} What is the direction of the acceleration? + \Part{b} What is the mass of the object? + \Part{c} If the object is initially at rest, what is its speed $v$ + after $t = 10.0\U{s}$? + \Part{d} What are the velocity components of the object after + $t = 10.0\U{s}$? +\end{problem*} % problem 4.8 + +\begin{solution} +\Part{a} +Summing the forces we have +\begin{align} + \sum F_x &= F_1x + F_2x + F_3x = (-2.00 + 5.00 - 45.0)\U{N} = -42.0\U{N} \\ + \sum F_y &= F_1y + F_2y + F_3y = (+2.00 - 3.00 + 0)\U{N} = -1.00\U{N} +\end{align} +We know from Newtons second law that +\begin{equation} + \sum \vect{F} = m \vect{a} +\end{equation} +So the acceleration $\vect{a}$ will be in the same direction as the +force $\vect{F}$. +The direction $\theta$ of the force is given by +\begin{equation} + \theta = \arctan \left( \frac{F_y}{F_x} \right) + = \arctan \left( \frac{-1}{-42} \right) + = (1.36 + 180)^o = \ans{181.36^o} +\end{equation} +Measured counter-clockwise from the $\vect{x}$ axis + (where we have added $180^o$ because $F_x < 0$ so we have a backside + $\arctan$). + +\Part{b} +From Newton's second law +\begin{align} + \sum \vect{F} &= m \vect{a} \\ + \left|\sum \vect{F}\right| &= m \left|\vect{a}\right| \\ + m &= \frac{\left|\sum \vect{F}\right|}{a} + = \frac{ \sqrt{(-41.0)^2 + (-1.00)^2}\U{N}}{3.75\U{m/s}^2} + = \ans{11.2\U{kg}} +\end{align} + +\Part{c} +This section is constant acceleration review. +\begin{equation} + v = a t + v_0 + = 3.75\U{m/s}^2 \cdot 10.0\U{s} = \ans{37.5\U{m/s}} +\end{equation} + +\Part{d} +Using our velocity $v = |\vect{v}|$ from \Part{c} and our angle + $\theta$ from \Part{a} (we know that $\vect{v}$ is in the same +direction as $\vect{a}$ and $\vect{F}$) we have +\begin{align} + v_x &= v \cos \theta = 37.5\U{m/s} \cdot \cos 181.36^o + = -37.49\U{m/s} \\ + v_y &= v \sin \theta = 37.5\U{m/s} \cdot \sin 181.36^o + = -0.893\U{m/s} \\ + \vect{v} &= \ans{(-37.49\vect{i} - 0.893\vect{j})\U{m/s}} +\end{align} +\end{solution} diff --git a/latex/problems/problem04.22.tex b/latex/problems/problem04.22.tex new file mode 100644 index 0000000..18b480d --- /dev/null +++ b/latex/problems/problem04.22.tex @@ -0,0 +1,82 @@ +\begin{problem*}{4.22} +The systems shown in Fig. P4.22 are in equilibrium. +If the spring scales are calibrated in newtons, what do they read? +(Ignore the masses of the pulleys and strings, and assume that the +incline is frictionless.) +\end{problem*} % problem 4.22 + +\begin{solution} +Remember that what a spring scale does is measure the tension pulling +on {\it one} of it's sides when in equilibrium. To see this, imagine +a spring scale in it's normal use, hanging from the ceiling with a +mass $m$ suspended from it. $m$ is in eqilibrium, so the tension +$T_1$ in the string connecting $m$ to the scale must be $T_1=mg$. The +(massless) scale is also in equilibrium, so the tension $T_2$ in the +string connecting the scale to the ceiling must be $T_2=T_1=mg$. The +scale has $T_1=mg$ pulling down and $T_2=mg$ pulling up, and gives a +reading of $mg$, the weight of the suspended mass. + +The text tries to remind you of this somewhat tricky concept on page +108 in quick quiz 4.7. + +\Part{a} +Starting from the left, the ball of mass $m=5.00\U{kg}$ has two forces +acting on it: gravity $F_g=mg$ and tension $T_1$. Summing forces in +the upwards direction we have +\begin{align} + \sum F &= T_1 - F_g = T_1 - mg \label{eqn.sum_forces}\\ + &= ma = 0 \label{eqn.newtons_2nd} \\ + T_1 &= mg \label{eqn.T1} +\end{align} +Where \ref{eqn.sum_forces} comes from our free-body diagram of the +forces on the ball, \ref{eqn.newtons_2nd} come from Newton's second law +and the fact that the particle is in equilibrium, and \ref{eqn.T1} comes +from combining \ref{eqn.sum_forces} and \ref{eqn.newtons_2nd}. + +Moving on to the scale, we see that the scale has two forces on it: + tension from the left ball $T_1$ and tension from the right ball $T_2$. +Summing the forces in the rightwards direction we have +\begin{align} + \sum F &= T_2 - T_1 \\ + &= m_s a = 0 \\ + T_2 &= T_1 = mg \\ +\end{align} +Following exactly the same reasoning we applied to the left ball. + +The scale has $mg$ pulling on both sides, so it will read +$mg=5.00\U{kg} \cdot 9.8\U{m/s}^2=\ans{49.0\U{N}}$ (see the note above). +(Because of the slight sneaky-ness, I didn't take off if you gave an +answer of $2mg$.) + +\Part{b} +Following the same reasoning we applied to the left ball (eqns +\ref{eqn.sum_forces} to \ref{eqn.T1}) in \Part{a}, we have +$T_1=T_2=mg$ for both hanging masses. + +So the pulley has three forces on it: the tensions of the cord +connecting the two masses $T_1$ and $T_2$, and the tension cord +connecting it to the scale $T_3$. Summing the forces in the upwards +direction we have +\begin{align} + \sum F &= T_3 - T_2 - T_1 \\ + &= m_p a = 0 \\ + T_3 &= T_2 + T_1 = 2mg +\end{align} +And the scale is in equilibrium, so as in \Part{a} it has $T_3$ pulling +on both sides, and it will read + $2mg = 2 \cdot 5.00\U{kg} \cdot 9.8\U{m/s}^2 = \ans{98.0\U{N}}$. + +\Part{c} +The block has 3 forces acting on it: gravity $F_g = mg$, tension $T$, +and a normal force $F_N$. Summing forces in the tension direction we +have +\begin{align} + \sum F &= T - F_g \cdot \sin \theta= T_1 - mg \\ + &= ma = 0 \\ + T_1 &= mg \cdot \sin \theta +\end{align} +And the scale is in equilibrium, so it has $T_1$ pulling on both sides, +and it will read + $mg \cdot \sin \theta = 5.00\U{kg} \cdot 9.8\U{m/s}^2 \cdot \sin 30^o + = \ans{24.5\U{N}}$. +\end{solution} diff --git a/latex/problems/problem04.24.tex b/latex/problems/problem04.24.tex new file mode 100644 index 0000000..9337bce --- /dev/null +++ b/latex/problems/problem04.24.tex @@ -0,0 +1,70 @@ +\begin{problem*}{4.24} +Fig. P4.24 shows loads hanging from the ceiling of an elecator that is +moving at a constant velocity. Find the tension in each of the three +strands of cord supporting each load. +\end{problem*} % problem 4.24 + +\begin{solution} +First, we need to understand the effect of the elevator. +It is moving at a constant {\it velocity} so we know that +the acceleration $\vect{a}$ of all the elements must be $0$. +So the elevator's constant motion has no effect on the tensions. + +\Part{a} +Let $m = 5.00\U{kg}$ be the mass of the ball, + $\theta_1 = 40.0^o$ be the angle between $\vect{T}_1$ and the horizontal, + and $theta_2 = 50.0^o$ be the angle between $\vect{T}_2$ and the horizontal. +Following identical reasoning to Problem 22 \Part{a}, we know +that the tension + $T_3 = mg = 5.00\U{kg} \cdot 9.8\U{m/s}^2 = \ans{49\U{N}}$. + +Now looking at the knot where the three cords come together. +There are three forces acting on the knot: $T_1$, $T_2$, and $T_3$. +Letting the upwards direction be $+\vect{x}$ + and the rightwards direction be $+\vect{y}$ we can break our tensions +into components +\begin{align} + T_{1x} &= -T_1 \cos \theta_1 \\ + T_{1y} &= T_1 \sin \theta_1 \\ + T_{2x} &= T_2 \cos \theta_2 \\ + T_{2y} &= T_2 \sin \theta_2 \\ + T_{3x} &= 0\U{N} \\ + T_{3y} &= -mg +\end{align} +Now summing the forces on the knot we have +\begin{align} + \sum F_x &= T_{3x} + T_{2x} + T_{1x} + = 0 + T_2 \cos \theta_2 - T_1 \cos \theta_1 \\ + &= m_k a_{kx} = 0 \\ + T_2 &= T_1 \frac{\cos \theta_1}{\cos \theta_2} \\ + \sum F_y &= T_{3y} + T_{2y} + T_{1y} + = -mg + T_2 \sin \theta_2 + T_1 \sin \theta_1 \\ + T_2 &= \frac{mg - T_1 \sin \theta_1}{\sin \theta_2} + = T_1 \frac{\cos \theta_1}{\cos \theta_2} \\ + \frac{mg}{\cos \theta_1} - T_1 \frac{sin \theta_1}{\cos \theta_1} + &= T_1 \frac{\sin \theta_2}{\cos \theta_2} \\ + T_1 (\tan \theta_1 + \tan \theta_2) &= \frac{mg}{\cos \theta_1} \\ + T_1 &= \frac{mg}{\cos \theta_1 (\tan \theta_1 + \tan\theta_2)} + = \frac{49\U{N}}{\cos 40^o (\tan 40^o + \tan 50^o)} + = \ans{31.5\U{N}} \\ + T_2 &= T_1 \frac{\cos \theta_1}{\cos \theta_2} + = \frac{mg}{\cos \theta_2 (\tan \theta_1 + \tan\theta_2)} + = \frac{49\U{N}}{\cos 50^o (\tan 40^o + \tan 50^o)} + = \ans{37.5\U{N}} +\end{align} + +\Part{b} +The only changes from \Part{a} are + $m = 10\U{kg}$, $\theta_1 = 60.0^o$, and $\theta_2 = 0^o$. +Plugging the new values into our symbolic equation from \Part{a}: +\begin{align} + T_3 &= mg = 10.0\U{kg} \cdot 9.8\U{m/s}^2 = \ans{98\U{N}} \\ + T_1 &= \frac{mg}{\cos \theta_1 (\tan \theta_1 + \tan\theta_2)} + = \frac{98\U{N}}{\cos 60^o (\tan 60^o + \tan 0^o)} + = \ans{113\U{N}} \\ + T_2 &= T_1 \frac{\cos \theta_1}{\cos \theta_2} + = \frac{mg}{\cos \theta_2 (\tan \theta_1 + \tan\theta_2)} + = \frac{98\U{N}}{\cos 0^o (\tan 60^o + \tan 0^o)} + = \ans{56.6\U{N}} +\end{align} +\end{solution} diff --git a/latex/problems/problem04.51.tex b/latex/problems/problem04.51.tex new file mode 100644 index 0000000..bca87d3 --- /dev/null +++ b/latex/problems/problem04.51.tex @@ -0,0 +1,62 @@ +\begin{problem*}{4.51} +If you jump from a desktop and land stiff-legged on a concrete floor, +you run a significant rist that you will break a leg. To see how that +happens, consider the average force stopping your body when you drop +from rest from a height of $h = 1.00\U{m}$ and stop in a much shorter +distance $d$. Your leg is likely to break at the point where the +cross-sectional area of the tibia is smallest. This point is just +above the anke, where the cross sectional area of one bone is about $A += 1.60\U{cm}^2$. A bone will fracture when the compressive stress on +it exceeds about $\sigma_b = 1.60\E{8}\U{N/m}^2$. If you land on both +legs, the maximum force $F_{max}$ that your ankles can safely exert on +the rest of your body is then about +\begin{equation} + F_{max} = 2 F_b = 2 \sigma_b A = 5.12\E{4}\U{N} +\end{equation} +Calculate the minimum stopping distance $d$ that will not result in a + broken leg if your mass is $m = 60.0\U{kg}$. +\end{problem*} % problem 4.51 + +\begin{solution} +The problem breaks down into two constant-acceleration problems. +Call the top of the desk dropping-off-point $P_0$, the point of maximum +velocity when you are just starting to contact the floor $P_1$, and the +point where your shoe soles have compressed a distance $d$ and brought +you back to rest $P_2$. + +First consider the constant acceleration portion from $P_0$ to $P_1$. +Your final velocity $v_1$ is given by +\begin{equation} + v_1^2 = v_0^2 + 2 a_{01} \Delta y_{01} + = 2 a_{01} \Delta y_{01} +\end{equation} +Now applying the same equation to + the second constant acceleration portion from $P_1$ to $P_2$. +\begin{align} + v_2^2 &= v_1^2 + 2 a_{12} \Delta y_{12} = 0 \\ + v_1^2 &= -2 a_{12} \Delta y_{12} = 2 a_{01} \Delta y_{01} \\ + d &= \Delta y_{12} = -\frac{a_{01}}{a_{12}} \Delta y_{01} +\end{align} +The acceleration $a_{12}$ is given by Newton's second law +(picking down as the $+\vect{x}$ direction) +\begin{align} + \sum F_x &= m a_{12x} \\ + a_{12x} &= (\sum F_x)/m + = \frac{mg - F_{max}}{m} + = g - \frac{F_{max}}{m} +\end{align} +(I forgot to include $mg$ in the sum of the forces when I was doing +the problem, so I didn't take off points if you forgot it as well.) +So +\begin{align} + d &= -\frac{a_{01}}{a_{12}} \Delta y_{01} + = -\frac{g}{g - \frac{F_{max}}{m}} h + = -\frac{1}{1 - \frac{F_{max}}{mg}} h \\ + &= -\frac{1}{1 - \frac{5.12\E{4}}{60 \cdot 9.8}} \cdot 1.00\U{m} + = \ans{1.16\U{cm}} +\end{align} + +(Ignoring gravity in your sum of forces, you would have gotten + $d = \frac{mg}{F_{max}} h = 1.15\U{cm}$. +The correction is very small because $F_{max} \gg mg$.) +\end{solution} diff --git a/latex/problems/problem05.16.tex b/latex/problems/problem05.16.tex new file mode 100644 index 0000000..739ce43 --- /dev/null +++ b/latex/problems/problem05.16.tex @@ -0,0 +1,24 @@ +\begin{problem*}{5.16} +In the Bohr model of the hydrogen atom, the speed of the electron is +approximately $v = 2.20\E{6} \U{m/s}$. Find \Part{a} the force acting +on the electron as it revolves in a circular orbit of radius $r = +0.530\E{-10} \U{m}$ and \Part{b} the centripetal acceleration of the +electron. +\end{problem*} % problem 5.16 + +\begin{solution} +Doing \Part{b} first, +\begin{equation} + a_c = v^2 / r \\ + = \frac{(2.20\E{6}\U{m/s})^2}{0.530\E{-10}\U{m}} \\ + = \ans{9.13\E{22}\U{m/s}^2} +\end{equation} + +And going back to \Part{a}, (where the mass of an electron $m_e = +9.109\E{-31} \U{kg}$ came from the inside front cover of the text.) +\begin{equation} + F_c = m_e a_c + = 9.109\E{-31}\U{kg} \cdot 9.13\E{22}\U{m/s}^2 + = \ans{8.32\E{-8}\U{N}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem05.18.tex b/latex/problems/problem05.18.tex new file mode 100644 index 0000000..b1e399c --- /dev/null +++ b/latex/problems/problem05.18.tex @@ -0,0 +1,33 @@ +\begin{problem*}{5.18} +Whenever two {\em Apollo} astronauts were on the surface of the Moon, +a third astronaut orbited the Moon. Assume the orbit to be circular +and $r_1=100\U{km}$ above the surface of the Moon. At this altitude, +the free-fall acceleration is $g=1.52\U{m/s}^2$. The radius of the +Moon is $r_0=1.70\E{6}\U{m}$. Determine + \Part{a} the astronaut's orbital speed $v$ and + \Part{b} the period of the orbit. +\end{problem*} % problem 5.18 + +\begin{solution} +\Part{a} +Using the basic formula for circular motion +\begin{align} + a_c &= \frac{v^2}{r} \\ + v &= \sqrt{a_c r} + =\sqrt{g (r_1 + r_0)} + =\sqrt{1.52\U{m/s}^2 \cdot (1.00\E{5} + 1.70\E{6})\U{m}} + =\ans{1.65\U{km/s}} +\end{align} + +\Part{b} +The astronaut travels the circumference at a constant speed so +\begin{align} + \Delta_x &= v \Delta_t \\ + T &= \frac{2 \pi r}{v} + =\frac{2 \pi r}{\sqrt{a_c r}} + =2 \pi \sqrt{\frac{r}{a_c}} + =2 \pi \sqrt{\frac{(1.00\E{5} + 1.70\E{6})\U{m}}{1.52\U{m/s}^2}} + =6.84\U{ks} + =\ans{1.90\U{hrs}} +\end{align} +\end{solution} diff --git a/latex/problems/problem05.23.tex b/latex/problems/problem05.23.tex new file mode 100644 index 0000000..6adbf76 --- /dev/null +++ b/latex/problems/problem05.23.tex @@ -0,0 +1,18 @@ +\begin{problem*}{5.23} +A pail of water is rotated in a vertical circle of radius +$r=1.00\U{m}$. What is the minimum speed of the pail, upside down at +the top of the circle, if no water is to spill out? +\end{problem*} % problem 5.23 + +At the critical low speed, all of the centerward acceleration comes +from gravity (no tension/normal force, like Chapter 5, Problem 47 from +recitation). So +\begin{align} + a_c &= \frac{v^2}{r} \\ + v &= \sqrt{a_c r} + = \sqrt{g r} + = \sqrt{9.8\U{m/s}^2 \cdot 1.00\U{m}} + = \ans{3.13U{m/s}} +\end{align} +Just like in Problem 18. +\end{solution} diff --git a/latex/problems/problem05.24.tex b/latex/problems/problem05.24.tex new file mode 100644 index 0000000..b162cee --- /dev/null +++ b/latex/problems/problem05.24.tex @@ -0,0 +1,55 @@ +\begin{problem*}{5.24} +A roller coaster has vertical loops shaped like tear drops +(Fig.~P5.24). The cars ride on the inside of the loop at the top, and +the speeds are high enough to ensure that the cars remain on the +track. The biggest loop is $h = 40.0\U{m}$ high, with a maximum speed +$v_b = 31.0\U{m/s}$ at the bottom. Suppose the speed at the top is +$v_t = 13.0\U{m/s}$ and the corresponding centripetal acceleration is +$a_{ct} = 2g$. \Part{a} What is the radius $r_t$ of the arc of the +teardrop at the top? \Part{b} If the total mass of a car plus the +riders is $M$, what force $F_N$ does the rail exert on the car at the +top? \Part{c} Suppose the roller coaster had a circular loop of +radius $r = 20\U{m}$. If the cars have the same speed $v_t$ at the +top, what is the centripetal acceleration $a_{cc}$ at the top? +Comment on the normal force at the top in this situation. +\end{problem*} % problem 5.24 + +\begin{solution} +\Part{a} +\begin{align} + a_{ct} &= v_t^2 / r_t \\ + r_t &= v_t^2 / a_{ct} + = (13.0\U{m/s})^2 / (2 \cdot 9.8\U{m/s}^2) + = \ans{8.62\U{m}} +\end{align} + +\Part{b} +The central force $F_t = 2 M g$. +This force is a combination of the force of gravity $F_g = Mg$ + and the normal force $F_N$ from the rail: +\begin{align} + F_t &= \sum F_{central} + = F_g + F_N \\ + F_N &= F_t - F_g + = 2Mg - Mg + = Mg + = \ans{9.8\U{m/s}^2 \cdot M} +\end{align} + +\Part{c} +\begin{equation} + a_{cc} = v_t^2 / r + = (13.0\U{m/s})^2 / 20\U{m} + = \ans{8.45\U{m/s}^2} +\end{equation} +So the the new normal force $F_{Nc}$ is going to be: +\begin{equation} + F_{Nc} = F_{cc} - F_g + = (8.45 - 9.8)\U{m/s}^2 \cdot M + = \ans{-1.35\U{m/s}^2 \cdot M} +\end{equation} +Where the - sign indicates the normal force is the track pulling the +car \emph{away} from the center. The teardrop shape allows the loop to +be $40\U{m}$ high while always keeping the track's normal force in the +center-ward direction. +\end{solution} diff --git a/latex/problems/problem05.32.tex b/latex/problems/problem05.32.tex new file mode 100644 index 0000000..0ff3048 --- /dev/null +++ b/latex/problems/problem05.32.tex @@ -0,0 +1,31 @@ +\begin{problem*}{5.32} +Find the order of magnitude of the gravitational force that you exert +on another person $r = 2\U{m}$ away. In your solution, state the +quantities you measure or estimate and their values. +\end{problem*} % problem 5.32 + +\begin{solution} +We'll be using Newton's law for gravitation (text p. 144): +\begin{equation} + F_g = G \frac{mM}{r^2} +\end{equation} +with $G = 6.673\E{-11}\U{Nm$^2$/kg$^2$}$. + +We need to estimate $m$ and $M$. +Both bodies are people, so I'll use my weight for both: +\begin{equation} + m \approx M + \approx 165\U{lbs} \cdot \left[ \frac{1\U{kg}}{ \sim 2 \U{lbs}} \right] + \approx 82.5\U{kg} +\end{equation} +So +\begin{equation} + F_g \approx G \frac{m^2}{r^2} + = G (m/r)^2 + \approx 6.673\E{-11}\U{Nm$^2$/kg$^2$} \left(82.5\U{kg}/2\U{m}\right)^2 + = 1.14\E{-7}\U{N} + \approx \ans{1\E{-7}\U{N}} +\end{equation} +Where I reduced the answer to one sig. fig. because of my rough mass +approximation. +\end{solution} diff --git a/latex/problems/problem05.34.tex b/latex/problems/problem05.34.tex new file mode 100644 index 0000000..b3e5a00 --- /dev/null +++ b/latex/problems/problem05.34.tex @@ -0,0 +1,24 @@ +\begin{problem*}{5.34} +In a thundercloud, there may be electric charges of $q_t = +40.0\U{C}$ +near the top of the cloud and $q_b = -40.0\U{C}$ near the bottom of +the cloud. These charges are separated by $r = 2.00\U{km}$. What is +the electric force on the top charge? +\end{problem*} % problem 5.34 + +\begin{solution} +We'll be using Coulomb's law for the electro-magnetic force (text p. 144): +\begin{equation} + F_e = k_e \frac{q_1 q_2}{r^2} +\end{equation} +with $k_e = 8.99\E{9}\U{Nm$^2$/C$^2$}$. + +So +\begin{equation} + F_e = 8.99\E{9}\U{Nm$^2$/C$^2$} + \frac{-40.0\U{C} \cdot 40.0\U{C}}{(2000\U{m})^2} + = -8.99\E{9}\U{Nm$^2$/C$^2$} + \left( \frac{40\U{C}}{2000\U{m}} \right)^2 + = \ans{-3.596\E{6}\U{N}} +\end{equation} +where the $-$ sign indicates an attractive force. +\begin{solution} diff --git a/latex/problems/problem05.45.tex b/latex/problems/problem05.45.tex new file mode 100644 index 0000000..624a054 --- /dev/null +++ b/latex/problems/problem05.45.tex @@ -0,0 +1,77 @@ +\begin{problem*}{5.45} +A car rounds a banked curve as in Fig. 5.13. The radius of curvature +of the road is $R$, the banking angle is $/theta$, and the coefficient +of static friction is $\mu_s$. +\Part{a} Determine the range of speeds the car can have without +slipping up or down the road. +\Part{b} Find the minimum value of $\mu_s$ such that the minimum +speed is zero. +\Part{c} What is the range of speeds possible if $R = 100\U{m}$, +$\theta = 10.0\dg$, and $\mu_s = 0.100$ (slippery conditions). +\end{problem*} % problem 5.45 + +\begin{solution} +Looking at Fig. 5.13 (text page 137) and adding friction, we see that +the forces on the car are friction $\vect{F}_f$, gravity $\vect{F}_g$, +and a normal force $\vect{F}_N$. Let the vertical direction be +\jhat\ and the centerward direction to be \ihat, and the direction +centerward-down parallel to the surface of the road by \khat. Let us +assume at first that $\vect{F}_N$ is in the $-\khat$ direction and at +its maximum possible value of $F_f = \mu_s F_N$. +\begin{align} + \sum F_\jhat &= F_N\cos\theta - mg + F_f\sin\theta= 0 \\ + F_N (\cos\theta + \mu_s\sin\theta) &= mg \\ + F_N &= \frac{mg}{\cos\theta + \mu_s\sin\theta} \\ + \sum F_\ihat &= F_N\sin\theta - F_f\cos\theta + = F_N (\sin\theta - \mu_s\cos\theta) \\ + &= \frac{mg}{\cos\theta + \mu_s\sin\theta} (\sin\theta - \mu_s\cos\theta) \\ + &= mg \frac{\tan\theta - \mu_s}{1 + \mu_s\tan\theta} + = m\frac{v^2}{R} \label{eqn.45.Fi}\\ + v &= \sqrt{ Rg\frac{\tan\theta - \mu_s}{1 + \mu_s\tan\theta} } \label{eqn.45.v} +\end{align} + +\Part{a} +The work above shows that the minimum speed a car can have while going +around the turn is given by eqn \ref{eqn.45.v}, because that is the +case when friction is maximized in the $-\khat$ direction. The +maximum speed that the car can have can be found by simply reversing +the sign of the frictional force above (so that $\vect{F}_f$ points in +the $+\khat$ direction), which we achieve by replacing any $\mu_s$s in +eqn \ref{eqn.45.v} with $(-\mu_s)$. For any speeds between these +$F_f$ will be less than its maximum value of $\mu_s F_N$, and the car +will still not slip. So +\begin{equation} + \ans{ \sqrt{ Rg\frac{\tan\theta - \mu_s}{1 + \mu_s\tan\theta} } + \le v \le + \sqrt{ Rg\frac{\tan\theta + \mu_s}{1 - \mu_s\tan\theta} } } +\end{equation} + +\Part{b} +If the speed is 0, then $\vect{F}_f$ will be in the $-\khat$ direction +(opposing the $+\khat$ portion of $\vect{F}_g$). Summing the forces +in the \khat direction we have +\begin{align} + \sum F_\khat &= F_g\sin\theta - F_N + = mg(\sin\theta - \mu_s\cos\theta) + = 0 \\ + \mu_s &= \ans{\tan\theta} +\end{align} +Or we could go use eqn \ref{eqn.45.Fi}, our sum of forces in the +\ihat\ direction. +\begin{equation} + \sum F_\ihat = mg \frac{\tan\theta - \mu_s}{1 + \mu_s\tan\theta} + = m\frac{v^2}{R} = 0 +\end{equation} +And set the numerator to $0$, which gives the same formula for $\mu_s$. + +\Part{c} +Plugging into our ans for \Part{a} we have +\begin{align} + \sqrt{ 100\U{m} \cdot 9.8\U{m/s}^2 \frac{\tan 10.0\dg - 0.100} + {1 + 0.100 \cdot \tan 10.0\dg} } + &\le v \le + \sqrt{ 100\U{m} \cdot 9.8\U{m/s}^2 \frac{\tan 10.0\dg + 0.100} + {1 - 0.100 \cdot \tan 10.0\dg} } \\ + \ans{ 8.57\U{m/s\ } } & \ans{ \le v \le 16.6\U{m/s} } +\end{align} +\end{solution} diff --git a/latex/problems/problem05.47.tex b/latex/problems/problem05.47.tex new file mode 100644 index 0000000..c8cc0d7 --- /dev/null +++ b/latex/problems/problem05.47.tex @@ -0,0 +1,41 @@ +\begin{problem*}{5.47} +In a home laundry dryer, a cylindrical tub containing wet clothes is +rotated steadily about a horizontal axis as shown in Fig. P5.47. The +clothes are made to tumble so that they will dry uniformly. The rate +of rotation of the smooth-walled tub is chosen so that a small piece +of cloth will lose contact with the tub when the cloth is at an angle +of the $\theta = 68.0^o$ above the horizontal. If the radius of the +tub is $r = 0.330\U{m}$, what rate of revolution is needed? +\end{problem*} % problem 5.47 + +\begin{solution} +Looking at the figure, we see that there are fins sticking out of the +drum wall, so that clothes do not slip along the surface. Because of +this, we can ignore forces in the tangential direction. Focusing on +the center-ward direction, we see that the angle between the force of +gravity $F_g = mg$ and the center-ward direction is +\begin{equation} + \theta' = 90.0^o - \theta = 90.0^o - 68.0^o = 22.0^o +\end{equation} +The sum of forces in the center-ward direction is then +\begin{equation} + F_c = F_g \cos \theta' = mg \cos \theta' +\end{equation} + +In order for this center-ward force to provide separation from the +drum, this force must be the center-ward force needed for uniform +circular motion +\begin{align} + F_c &= m v^2/r = mg \cos \theta' \\ + v^2/r &= g \cos \theta' \\ + v &= \sqrt{r g \cos \theta'} +\end{align} +and the frequency of rotation $f$ is given by +\begin{align} + f = \frac{ v }{2 \pi r} + = \frac{ \sqrt{r g \cos \theta'} }{2 \pi r} + = \frac{1}{2 \pi}\sqrt{ \frac{g \cos \theta'}{r} } + = \frac{1}{2 \pi}\sqrt{ \frac{9.8\U{m/s}^2 \cos 22.0^o}{0.330\U{m}} } + = \ans{0.835\U{Hz}} +\end{align} +\end{solution} diff --git a/latex/problems/problem05.50.tex b/latex/problems/problem05.50.tex new file mode 100644 index 0000000..b5678da --- /dev/null +++ b/latex/problems/problem05.50.tex @@ -0,0 +1,38 @@ +\begin{problem*}{5.50} +An air puck of mass $m_1$ is tied to a string and allowed to revolve +in a circle of radius $R$ on a frictionless horizontal table. The +other end of the string passes through a hole in the center of the +table, and a counterweight of mass $m_2$ is tied to it (Fig. P5.50). +The suspended object remains in equilibrium while the puck on the +tabletop revolves. What are + \Part{a} the tension in the string, + \Part{b} the radial force acting on the puck, and + \Part{c} the speed of the puck? +\end{problem*} % problem 5.50 + +\Part{a} +Constructing a free body diagram for $m_2$, we see that the only +forces on it are the tension \vect{T} and gravity $\vect{F}_{g2}$. +Summing the forces in the downward direction we have +\begin{align} + \sum F &= F_{g2} - T = m_2 g - T \\ + &= m_2 a = 0 \\ + T &= \ans{m_2 g} +\end{align} +Where the first line is summing the forces, the second is Newton's +second law, and the third is combining the previous two and solving +for tension. + +\Part{b} +The only radial force acting on the puck is tension so +$F_c=T=\ans{m_2 g}$. + +\Part{c} +We find the speed of the puck using the circular motion formula +\begin{align} + a_c &= \frac{v^2}{r} \\ + v &= \sqrt{a_c r} + = \sqrt{\frac{F_c r}{m_1}} + = \ans{\sqrt{\frac{m_2}{m_1} g r}} +\end{align} +\end{solution} diff --git a/latex/problems/problem05.52.tex b/latex/problems/problem05.52.tex new file mode 100644 index 0000000..0cb8f8b --- /dev/null +++ b/latex/problems/problem05.52.tex @@ -0,0 +1,107 @@ +\begin{problem*}{5.52} +An amusement park ride consists of a rotating circular platform +$d=8.00\U{m}$ in diameter from which $m=10\U{kg}$ seats are suspended +at the end of $l=2.50\U{m}$ massless chains (Fig. P5.52). When the +system rotates, the chains make an angle of $\theta=28.0\dg$ with the +vertical. +\Part{a} What is the speed of each seat? +\Part{b} Draw a free-body diagram of a $m_c=40.0\U{kg}$ child riding +in a seat, and find the tension in the chain. +\end{problem*} % problem 5.52 + +\begin{solution} +\Part{a} +We will eventually use $v=\sqrt{a_c r}$ as we have in all the other +problems in this homework assignment to find $v$. + +First, we need to find the radius $r$ of the path that the seat takes +around the ride. +\begin{equation} + r=\frac{d}{2} + l \sin \theta + =(4.00 + 2.50\sin 28.0\dg)\U{m} + =5.1736\ldots\U{m} +\end{equation} + +Now we need to find the centerward acceleration $a_c$. Drawing a free +body diagram of our seat, we see that the only forces acting upon it +are the tension \vect{T} and gravity $\vect{F}_g$. We know that the +seat does not rise or fall in the vertical (\vect{y}) direction, so +summing the forces we have +\begin{align} + \sum F_y &= T \cos \theta - mg=m a_y=0 \\ + T &= \frac{mg}{\cos\theta} \label{eqn.T}\\ + \sum F_c &= T \sin \theta + =mg\tan\theta + =m a_c \\ + a_c &= g\tan\theta + =9.8\U{m/s}^2 \cdot \tan 28.0\dg + =5.2108\ldots\U{m/s}^2 \label{eqn.ac} +\end{align} +So +\begin{equation} + v=\sqrt{a_c r} + =\sqrt{g \tan \theta \cdot (\frac{d}{2} + l \sin \theta)} + =\sqrt{ 5.2108\ldots\U{m/s}^2 \cdot 5.1736\ldots\U{m}} + =5.19\U{m/s} +\end{equation} + +\Part{b} +Our free body diagram with a child in the seat will be the same as our +diagram from \Part{a} but with a new mass $m'=m + m_c=50\U{kg}$. + +Before we find the tension in the chain, we should check to see if the +chain angle changes. The angular velocity $\omega=v/r$ does not +change when people get into the seats (because they are of negligible +mass compared to the platform), so we can relate our new velocities +$v'$ and $r'$ using the same $\omega$ that we had in \Part{a}. +\begin{equation} + \omega=\frac{v'}{r'} + =\frac{v}{r} + =\frac{\sqrt{ g r \tan \theta}}{r} + = \sqrt{\frac{g\tan\theta}{r}} + =1.00\U{rad/s} +\end{equation} +Not that the numerical value is important, just that it is a constant. +We can plug $v'=\omega r'$ into our centerward acceleration equation +\begin{equation} + a_c'=\frac{v'^2}{r'} + =\frac{\omega^2 r'^2}{r'} + =r' \omega^2 +\end{equation} +And applying this to eqn. \ref{eqn.ac}(which hasn't changed except for +the need to substitute primed variables) +\begin{align} + a_c' &= g \tan\theta'=r' \omega^2 \\ + g \tan\theta' &= \left( \frac{d}{2} + l \sin\theta' \right) \omega^2 +\end{align} +The only unknown in this equation is $\theta'$, but the equation is +analytically unsolvable. We know $\theta'=28.0\dg$ is one solution, +because there are no masses in this equation, so is must also hold for +case \Part{a}. Then we have to decide if there will be any other +solutions. We know intuitively that any solutions will have $0\dg < +\theta' < 90\dg$. Considering the $\sin$ and $\tan$ functions on that +interval, we see that $\sin\theta'$ is concave down and continuous +over the entire interval, and that $\tan\theta;$ is concave up and +continuous over the entire interval. Therefore, the left hand side of +this equation only equals the right hand side at a single value of +$\theta'$ so our $28.0\dg$ solution is unique. If this doesn't make +sense to you, you can graph the right and left hand sides to check. + +Having proved that $\theta'=\theta$ we can move on to solve for the +tension. Using eqn \ref{eqn.T}. +\begin{equation} + T'=\frac{m' g}{\cos \theta'} + =\frac{50\U{kg} \cdot 9.8\U{m/s}^2}{\cos 28.0\dg} + =\ans{555\U{N}} +\end{equation} + +As far as grading is concerned I will accept anything where you did +any of the following: +\begin{itemize} +\item assumed $\theta$ didn't change (skipping the whole $\theta'=\theta$ step) +\item assumed $\omega$ didn't change, and you went on to show + $\theta'=\theta$ is a valid solution (skipping the uniqueness step). +\item assumed $\omega$ didn't change, and proved that $\theta'=\theta$ + is valid and unique. +\end{itemize} +\end{solution} diff --git a/latex/problems/problem06.09.tex b/latex/problems/problem06.09.tex new file mode 100644 index 0000000..6ba0307 --- /dev/null +++ b/latex/problems/problem06.09.tex @@ -0,0 +1,39 @@ +\begin{problem*}{6.9} +Using the definition of the scalar product, find the angles between + \Part{a} $\vect{A} = 3\ihat - 2\jhat$ and $\vect{B} = 4\ihat - 4\jhat$, + \Part{b} $\vect{A} = -2\ihat + 4\jhat$ and $\vect{B} = 3\ihat - 4\jhat + 2\khat$, and + \Part{c} $\vect{A} = \ihat - 2\jhat + 2\khat$ and $\vect{B} = 3\jhat + 4\khat$. +\end{problem*} % problem 6.9 + +\begin{solution} +From the definition of the scalar (or dot) product on pages 160 and +161, we see +\begin{align} + \vect{A} \cdot \vect{B} &= AB\cos\theta = A_x B_x + A_y B_y + A_z B_z \\ + \theta &= \arccos \left( \frac{A_x B_x + A_y B_y + A_z B_z}{AB} \right) +\end{align} + +\Part{a} +\begin{align} + A &= \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13} \\ + B &= \sqrt{4^2 + 4^2} = 4 \sqrt{2} \\ + \sum A_i B_i &= 3 \cdot 4 + (-2) \cdot (-4) = 12 + 8 = 20 \\ + \theta &= \arccos \left( \frac{20}{4\sqrt{26}} \right) = \ans{11.3\dg} +\end{align} + +\Part{b} +\begin{align} + A &= \sqrt{2^2 + 4^2} = \sqrt{4 + 16} = \sqrt{20} \\ + B &= \sqrt{3^2 + 4^2 + 2^2} = \sqrt{9 + 16 + 4} = \sqrt{29} \\ + \sum A_i B_i &= (-2) \cdot 3 + 4 \cdot (-4) = -6 + -16 = -22 \\ + \theta &= \arccos \left( \frac{-22}{\sqrt{580}} \right) = \ans{156\dg} +\end{align} + +\Part{c} +\begin{align} + A &= \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \\ + B &= \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \\ + \sum A_i B_i &= (-2) \cdot 3 + 2 \cdot 4 = -6 + 8 = 2 \\ + \theta &= \arccos \left( \frac{2}{15} \right) = \ans{82.3\dg} +\end{align} +\end{solution} diff --git a/latex/problems/problem06.24.tex b/latex/problems/problem06.24.tex new file mode 100644 index 0000000..98d0241 --- /dev/null +++ b/latex/problems/problem06.24.tex @@ -0,0 +1,31 @@ +\begin{problem*}{6.24} +An $m = 4.00\U{kg}$ particle is subject to a total force that varies +with position as shown in Fig. P6.11. The particle starts from rest +at $x = 0$. What is the speed at + \Part{a} $x = 5.00\U{m}$, + \Part{b} $x = 10.0\U{m}$, and + \Part{c} $x = 15.0\U{m}$? +\end{problem*} % problem 6.24 + +\begin{solution} +In each of these cases we'll be conserving energy. The energy put in +by the force all goes into the particle's kinetic energy. So +conserving energy we have +\begin{align} + W_{0,5} &= \int_{0\U{m}}^{5\U{m}} \vect{F} \cdot \vect{dx} + = \frac{1}{2} m v^2 \\ + v_5 &= \sqrt{ \frac{2 W_{0,5} }{m} } + = \sqrt{ \frac{2 \cdot 1.5\U{N} \cdot 5\U{m}}{4.00\U{kg}} } + = \ans{1.94\U{m/s}} +\end{align} +Doing the same for the other works +\begin{align} + W_{0,10} &= W_{0,5} + 3\U{N} \cdot 5\U{m} = 22.5\U{J} \\ + W_{0,15} &= W_{0,10} + 1.5\U{N} \cdot 5\U{m} = 30\U{J} +\end{align} +So the other velocities are +\begin{align} + v_{10} &= \sqrt{ \frac{2 W_{0,10} }{m} } = \ans{3.35\U{m/s}} \\ + v_{15} &= \sqrt{ \frac{2 W_{0,15} }{m} } = \ans{3.87\U{m/s}} +\end{align} +\end{solution} diff --git a/latex/problems/problem06.29.tex b/latex/problems/problem06.29.tex new file mode 100644 index 0000000..f234fd8 --- /dev/null +++ b/latex/problems/problem06.29.tex @@ -0,0 +1,51 @@ +\begin{problem*}{6.29} +An $m = 40.0\U{kg}$ box initially at rest is pushed $x = 5.00\U{m}$ +along a rough, horizontal floor with a constant applied horizontal +force of $F = 130\U{N}$. The coefficient of friction between box and +floor is $\mu = 0.300$. Find + \Part{a} the work done by the applied force, + \Part{b} the increase in internal energy in the box-floor sysem as a result of the friction, + \Part{c} the work done by the normal force, + \Part{d} the work done by the gravitational force, + \Part{e} the change in kinetic energy of the box, and + \Part{f} the final speed of the box. +\end{problem*} + +\begin{solution} +\Part{a} +\begin{equation} + W_F = \vect{F} \cdot \vect{x} = 130\U{N} \cdot 5.00\U{m} = \ans{650\U{J}} +\end{equation} + +\Part{b} +\begin{equation} + U_f = - \vect{F}_f \cdot \vect{x} = \mu m g x + = 0.300 \cdot 40.0\U{kg} \cdot 9.8\U{m/s}^2 \cdot 5.00\U{m} + = \ans{588\U{J}} +\end{equation} + +\Part{c} +\begin{equation} + W_N = \vect{F}_N \cdot \vect{x} = \ans{0\U{J}} +\end{equation} + +\Part{d} +\begin{equation} + W_g = \vect{F}_g \cdot \vect{x} = \ans{0\U{J}} +\end{equation} + +\Part{e} +Conserving energy +\begin{align} + W_F &= K_f + U_f \\ + \Delta K &= W_F - U_f = (650 - 588)\U{J} = \ans{62\U{J}} +\end{align} + +\Part{f} +\begin{align} + \frac{1}{2} m v^2 &= \Delta K \\ + v &= \sqrt{\frac{2 \Delta K}{m}} + = \sqrt{\frac{2 \cdot 62\U{J}}{40.0\U{kg}}} + = \ans{1.76\U{m/s}} +\end{align} +\end{solution} diff --git a/latex/problems/problem06.30.tex b/latex/problems/problem06.30.tex new file mode 100644 index 0000000..b25885e --- /dev/null +++ b/latex/problems/problem06.30.tex @@ -0,0 +1,70 @@ +\begin{problem*}{6.30} +An $m = 2.00\U{kg}$ block is attached to a spring of force constant $k += 500\U{N/m}$ as shown in Active Figure 6.8 on page 164. The block is +pulled $A = 5.00\U{cm}$ to the right of equilibrium and released from +rest. Find the speed the block has as it passes through equilibrium +if +\Part{a} the horizontal surface is frictionless and +\Part{b} the coefficient of friction between block and surface is +$\mu = 0.350$. +\end{problem*} % problem 6.30 + +\begin{solution} +For both cases we will use conservation of energy. Call the point +where the block is released $P_0$ and the point where the block passes +through equilibrium $P_1$. At $P_0$, the block has spring potential +energy $U_{s0} = 1/2\cdot k A^2$ and no kinetic or gravitational +potential energy. At $P_1$, the block has kinetic energy $K_1 = +1/2\cdot m v^2$ and no potential energy. + +\Part{a} +Without friction, the energy at $P_1$ is the same as that at $P_0$ +because there is no energy lost to friction. +So +\begin{align} + P_0 = P_1 + \frac{1}{2} k A^2 &= \frac{1}{2} m v^2 \\ + v &= A \sqrt{\frac{k}{m}} + = 5\U{cm} \sqrt{\frac{500\U{kg/s}^2}{2\U{kg}}} + = \ans{79.1\U{cm/s}} +\end{align} + +\Part{b} +With friction, part of the initial energy $P_0$ bleeds out into internal +heat energy. +The work done by friction is given by +\begin{equation} + W_f = \vect{F} \cdot \vect{\Delta x} +\end{equation} +Because the block is sliding the whole way in, the frictional force is +always maxed out at the constant +\begin{equation} + F_f = \mu F_N = \mu mg +\end{equation} +In the direction opposite to the motion. +So friction from the table does +\begin{equation} + W_f = -F_f A = -\mu mgA +\end{equation} +Where the negative sign denotes the frictional force sucking energy +from the block. + +Knowing the frictional work, the velocity at the equilibrium position +is given by +\begin{align} + E_0 + W_f &= U_{s0} + W_f = E_1 = K_1 \\ + \frac{1}{2} k A^2 - \mu mgA &= \frac{1}{2} m v^2\\ + m v^2 &= k A^2 - 2 \mu mgA \\ + v &= \sqrt{ \frac{k}{m} A^2 - 2 \mu g A} \\ + &= \sqrt{ \frac{500\U{kg/s}^2}{2\U{kg}} (0.05\U{m})^2 + - 2 \cdot 0.35 \cdot 9.8\U{m/s}^2 \cdot 0.05\U{m}} \\ + &= \ans{0.531\U{m/s}} +\end{align} + +What I was doing for \Part{b} in class on Wednesday was more +complicated because I had misread the question. I thought it was +asking us to find the \emph{maximum} speed, when it just asks for the +speed at equilibrium. Figuring out when the maximum speed occurs +requires more knowledge of differential equations than you guys are +responsible for. +\end{solution} diff --git a/latex/problems/problem06.43.tex b/latex/problems/problem06.43.tex new file mode 100644 index 0000000..67dbe68 --- /dev/null +++ b/latex/problems/problem06.43.tex @@ -0,0 +1,18 @@ +\begin{problem*}{6.43} +While running, a person transforms about $0.600\U{J}$ of chemical +energy to mechanical energy per step per kilogram of body mass. If a +$m = 60.0\U{kg}$ runner transforms energy at a rate of $P = 70.0\U{W}$ +during a race, how fast is the person running? Assume that a running +step is $s = 1.50\U{m}$ long. +\end{problem*} % problem 6.43 + +\begin{solution} +This is simply a units conversion problem +\begin{equation} + \frac{70.0\U{J/s}}{\mbox{runner}} + \cdot \frac{\mbox{step kg}}{0.600\U{J}} + \cdot \frac{\mbox{runner}}{60.0\U{kg}} + \cdot \frac{1.50\U{m}}{\mbox{step}} + = \ans{2.94\U{m/s}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem06.57.tex b/latex/problems/problem06.57.tex new file mode 100644 index 0000000..777c9d4 --- /dev/null +++ b/latex/problems/problem06.57.tex @@ -0,0 +1,50 @@ +\begin{problem*}{6.57} +In diatomic molecules, the consituent atoms exert attractive forces on +each other at large distances, and repulsive forces at short +distances. For many molecules, the Lennard-Jones law is a good +approximation to the magnitude of these forces: +\begin{equation} + F = F_0 \left[2\left(\frac{\sigma}{r}\right)^{13} - + \left(\frac{\sigma}{r}\right)^7 \right] +\end{equation} +Where $r$ is the center-to-center distance between the atoms in the +molecule, $\sigma$ is a length parameter, and $F_0$ is the force when +$r = \sigma$. For an oxygen molecule, $F_0 = 9.60\E{-11}\U{N}$ and +$\sigma = 3.50\E{-10}\U{m}$. Determine the work done by this force as +the atoms are pulled apart from $r_0 = 4.00\E{-10}\U{m}$ to $r_1 = +9.00\E{-10}\U{m}$. +\end{problem*} % problem 6.57 + +\begin{solution} +The work done by the force is given by +\begin{align} + W &= \int_{r_0}^{r_1} \vect{F} \cdot d\vect{r} \\ + &= \int_{r_0}^{r_1} F \cdot dr \\ + &= \int_{r_0}^{r_1} \left\{ F_0 \left[ 2 \left(\frac{\sigma}{r}\right)^{13} - + \left(\frac{\sigma}{r}\right)^7 \right] \right\} \cdot dr \\ + &= 2 F_0 \int_{r_0}^{r_1} \left(\frac{\sigma}{r}\right)^{13} dr + - F_0 \int_{r_0}^{r_1} \left(\frac{\sigma}{r}\right)^7 dr \\ +\end{align} +Then we note that +\begin{align} + \int \left(\frac{a}{x}\right)^n dx + &= a^n \int x^{-n} dx + = a^n \frac{x^{-n+1}}{-n+1} \\ + \int_{r_0}^{r_1} \left(\frac{a}{x}\right)^n dx + &= \frac{a^n}{1-n} \left(r_1^{1-n} - r_0^{1-n}\right) +\end{align} +And plug this into our equation for $W$ +\begin{align} + W &= 2 F_0 \frac{\sigma^{13}}{-12} \left(r_1^{-12} - r_0^{-12}\right) + - F_0 \frac{\sigma^7}{-6} \left(r_1^{-6} - r_0 ^{-6}\right) \\ + &= \frac{-F_0 \sigma}{6} \left[ \left(\frac{\sigma}{r_1}\right)^{12} + - \left(\frac{\sigma}{r_1}\right)^6 \right] + + \frac{F_0 \sigma}{6} \left[ \left(\frac{\sigma}{r_0}\right)^{12} + - \left(\frac{\sigma}{r_0}\right)^6 \right] \\ + &= \frac{-F_0 \sigma}{6} \left[ \sigma^{12} \left( r_1^{-12} - r_0^{-12} \right) - \sigma^6 \left( r_1^{-6} - r_0^{-6} \right) \right] \\ + &= \frac{ -9.50\E{-11}\U{N} \cdot 3.50\E{-10}\U{m}}{6} + \left\{ (3.50\U{\AA})^{12} \left[ (9.00\U{\AA})^{-12} - (4.00\U{\AA})^{-12} \right] + - (3.50\U{\AA})^{6} \left[ (9.00\U{\AA})^{-6} - (4.00\U{\AA})^{-6} \right] \right\} \\ + &= \ans{1.35\E{-25}\U{J}} +\end{align} +\end{solution} diff --git a/latex/problems/problem07.02.tex b/latex/problems/problem07.02.tex new file mode 100644 index 0000000..3105d77 --- /dev/null +++ b/latex/problems/problem07.02.tex @@ -0,0 +1,38 @@ +\begin{problem*}{7.2} +A $F_g = 400\U{N}$ child is in a swing attached to $r = 2.00\U{m}$ +ropes. Find the gravitional potential energy $U_g$ of the child-Earth +system relative to the child's lowest position when + \Part{a} the ropes are horizontal, + \Part{b} the ropes make a $\theta = 30.0\dg$ angle with the vertical, and + \Part{c} the child is at the bottom of the cirvular arc. +\end{problem*} % problem 7.2 + +\begin{solution} +$U_g$ is given by +\begin{equation} + U_g = mgh = F_g h +\end{equation} +Therefor, we need to determine the vertical distance between the +child's location for a given part of the question and the child's +lowest position. + +\Part{a} +The child is one radius above the lowest position, so +\begin{equation} + U_{gA} = F_g r + = 400\U{N} \cdot 2.00\U{m} + = \ans{800\U{J}} +\end{equation} + +\Part{b} +The child has height $h_b = (1-\cos\theta)r$, so +\begin{equation} + U_{gB} = F_g (1-\cos\theta) r + = U_{gA} \cdot (1-\cos\theta) + = 800\U{J} \cdot (1 - \cos 30.0\dg) + = \ans{107\U{J}} +\end{equation} + +\Part{c} +The child has a height of 0, so $U_{gC} = \ans{0\U{J}}$. +\end{solution} diff --git a/latex/problems/problem07.04.tex b/latex/problems/problem07.04.tex new file mode 100644 index 0000000..28732a9 --- /dev/null +++ b/latex/problems/problem07.04.tex @@ -0,0 +1,48 @@ +\begin{problem*}{7.4} +At 11:00AM on September 7, 2001, more than one million British school +children jumped up and down for one minute. The curriculum focus of +the ``Giant Jump'' was on earthquakes, but it was integrated with many +other topics, such as exercise, geography, cooperation, testing +hypothesis, ans setting world records. Children built their own +seismographs that registered local effects. +\Part{a} Find the mechanical energy released in the experiment. +Assume that $N_c=1,050,000$ children of an average mass $m=36.0\U{kg}$ +jump $N_j=12$ times each, raising their centers of mass by +$h=25.0\U{cm}$ each time and briefly resting between one jump and the +next. The free gall acceleration in Britain is $g=9.81\U{m/s}^2$. +\Part{b} Most of the energy is converted very rapidly into internal +energy within the bodies of the children and the floors of the school +buildings. Of the energy that propagates into the ground, most +produces high frequency ``microtremor'' vibrations that are rapidly +damped and cannot travel far. Assume that $p=0.01\U{\%}$ of the +energy is carried away by a long-range seismic wave. The magnitude of +an earthquake on the Richter scale is given by +\begin{equation} + M=\frac{\log E - 4.8}{1.5} +\end{equation} +Where E is the seismic wave energy in joules. +According to this model, what is the magnitude of the demonstration quake? +It did not register above background noise overseas or on the seismograph of the Wolverton Seismic Vault, Hampshire. +\end{problem*} % problem 7.4 + +\begin{solution} +\Part{a} +From ``briefly resting between each jump'' we are to conclude that +each collision is perfectly inelastic (that all the mechanical energy +the student had during the jump was lost into internal energies). The +energy lost by one student preforming a single jump is just $U_g=mgh$, +so the energy lost during the entire experiment is +\begin{equation} + E_T=N_c N_j mgh + =1.05\E{6} \cdot 12 \cdot 36.0\U{kg} \cdot 9.81\U{m/s}^2 \cdot 0.250\U{m} + =\ans{1.11\E{9}\U{J}} +\end{equation} + +\Part{b} +The energy in long-range seismic waves is given by $E=pE_t/100$ so the +magnitude of the ``quake'' is +\begin{equation} + M=\frac{\log( 0.01 \cdot 1.11\E{9} ) - 4.8}{1.5} + =\ans{0.164} +\end{equation} +\end{solution} diff --git a/latex/problems/problem07.10.tex b/latex/problems/problem07.10.tex new file mode 100644 index 0000000..8061acd --- /dev/null +++ b/latex/problems/problem07.10.tex @@ -0,0 +1,55 @@ +\begin{problem*}{7.10} +A particle of mass $m = 5.00\U{kg}$ is released from point $A$ and +slides on the frictionless track shown in Figure P7.10. Determine + \Part{a} the particle's speed at points $B$ and $C$ and + \Part{b} the net work done by the gravitaional force as the particle + moves from $A$ to $C$. +\end{problem*} % problem 7.10 + +\begin{solution} +Reading heights from the figure, \\ +\begin{tabular}{|c|c|c|} + Point & Height & Energy\\ + \hline + \hline + A & $5.00\U{m}$ & $U_{gA}$ \\ + \hline + B & $3.20\U{m}$ & $U_{gB} + K_B$ \\ + \hline + C & $2.00\U{m}$ & $U_{gC} + K_C$ \\ + \hline +\end{tabular} \\ +Where the energies are simply the sum of the particle's kinetic and +gravitational potential energies. The particle has no kinetic energy +at $A$ because is is released from rest. + +The track is frictionless so there are no non-conservative forces +acting on the particle. Therefore the particle's energy is conserved. + +\Part{a} +Conserving energy, we have +\begin{align} + E_A = U_{gA} &= E_B = U_{gB} + K_B \\ + K_B &= U_{gA} - U_{gB} \\ + \frac{1}{2} m v_B^2 &= mgh_A - mgh_B = -mg\Delta h_{AB} \\ + v_B &= \sqrt{ -2g\Delta_{hAB} } + = \sqrt{ -2 \cdot 9.8\U{m/s}^2 \cdot (3.20 - 5.00)\U{m} } + = \ans{ 5.94\U{m/s}} +\end{align} +And applying the same symbolic formula to point $C$, we have +\begin{equation} + v_C = \sqrt{ -2g\Delta_{hAC} } + = \sqrt{ -2 \cdot 9.8\U{m/s}^2 \cdot (2.00 - 5.00)\U{m} } + = \ans{ 7.67\U{m/s}} +\end{equation} + +\Part{b} +The net work done by gravity is simply the change in gravitational +potential energy with the sign reversed. So +\begin{align} + W_g &= -(U_{gC} - U_{gA}) = U_{gA} - U_{gC} = K_C \\ + &= -mg\Delta_{hAC} + = -5.00\U{kg} \cdot 9.8\U{m/s}^2 \cdot (2.00 - 5.00)\U{m} + = \ans{147\U{J}} +\end{align} +\end{solution} diff --git a/latex/problems/problem07.16.tex b/latex/problems/problem07.16.tex new file mode 100644 index 0000000..8970252 --- /dev/null +++ b/latex/problems/problem07.16.tex @@ -0,0 +1,20 @@ +\begin{problem*}{7.16} +An object of mass $m$ starts from rest and slides a distance $d$ down +a frictionless incline of angle $\theta$. While sliding, it contacts +an unstressed spring of negligable mass as shown in Figure P7.16. The +object slides an additional distance $x$ as it is brought momentarily +to rest by the compression of the spring (of force constant $k$). +Find the initial seperation $d$ between the object and the spring. +\end{problem*} % problem 7.16 + +\begin{solution} +This is just the symbolic form of Chapter 6 Problem 27 from last +week's recitation. + +There are no non-conservative forces, so +\begin{align} + E_i = U_{gi} = mgh &= E_f = U_{sf} = \frac{1}{2} k x^2 \\ + h = (x+d) \cdot \sin\theta &= \frac{k x^2}{mg} \\ + d &= \ans{\frac{k x^2}{mg\sin\theta} - x} +\end{align} +\end{solution} diff --git a/latex/problems/problem07.22.tex b/latex/problems/problem07.22.tex new file mode 100644 index 0000000..6e0d377 --- /dev/null +++ b/latex/problems/problem07.22.tex @@ -0,0 +1,60 @@ +\begin{problem*}{7.22} +In a needle biopsy, a narrow strip of tissue is extracted from a +patient using a hollow needle. Rather than being pushed by hand, to +ensure a clean cut the needle can be fired into the patient's body by +a spring. Assume that the needle has mass $m = 5.60\U{g}$, the light +spring has force constant $k = 375\U{N/m}$, and the spring is +originally compressed $d_0 = 8.10\U{cm}$ to project the needle +horizontally without friction. After the needle leaves the spring, +the tip of the needle moves through $d_1 = 2.40\U{cm}$ of sking and +soft tissue, which exerts a force $F_1 = 7.60\U{N}$. Next, the needle +cuts $d_2 = 3.50\U{cm}$ into an organ, which exerts on it a backward +force of $F_2 = 9.20\U{N}$. Find + \Part{a} the maximum speed of the needle and + \Part{b} the speed at which a flange on the back end of the needle + runs into a stop that is set to limit the penetration to $p=5.90\U{cm}$. +\end{problem*} % problem 7.22 + +\begin{solution} +Let us label the various points as follows. \\ +\begin{tabular}{|r|l|} + \hline + Needle at rest, spring maximally compressed & $A$ \\ + \hline + Spring extended, needle just about to enter body & $B$ \\ + \hline + Needle at boundary between soft tissue and organ & $C$ \\ + \hline + Needle at maximal penetration into organ & $D$ \\ + \hline +\end{tabular} \\ + +\Part{a} +The needle will have its maximum speed at point $B$. The kinetic +energy $K_B$ at $B$ will be equal to the spring potential energy +$U_{sA}$ at point $A$, because the launcher is frictionless, and there +are no other relavent potentials. Therefore, +\begin{align} + K_B &= \frac{1}{2} m v_B^2 = U_{sA} = \frac{1}{2} k d_0^2 \\ + v_B &= d_0 \sqrt{\frac{k}{m}} + = 0.0810\U{m} \sqrt{\frac{375\U{N/m}}{5.60\E{-3}\U{kg}}} + = \ans{21.0\U{m/s}} +\end{align} + +\Part{b} +The kinetic energy remaining in the needle just before the flange +strikes the stop is given by +\begin{equation} + K_D = U_{sA} + W_1 + W_2 +\end{equation} +Where $W_1$ and $W_2$ are the work done by the soft tissue and organ +resistance respectively. In each case $W = -F\Delta_x$ because the +forces are constant in the opposite direction to the motion of the +needle. So +\begin{align} + \frac{1}{2} m v_D^2 &= \frac{1}{2} k d_0^2 - F_1 d_1 - F_2 d_2 \\ + v_D &= \sqrt{\frac{k d_0^2 - 2(F_1 d_1 + F_2 d_2)}{m}} \\ + &= \sqrt{\frac{375\U{N/m} \cdot (0.0810\U{m})^2 - 2\cdot(7.60\U{N} \cdot 0.0240\U{m} + 9.20\U{N} \cdot 0.0350\U{m})}{5.60\E{-3}\U{kg}}} \\ + &= \ans{16.1\U{m/s}} +\end{align} +\end{solution} diff --git a/latex/problems/problem07.28.tex b/latex/problems/problem07.28.tex new file mode 100644 index 0000000..b452502 --- /dev/null +++ b/latex/problems/problem07.28.tex @@ -0,0 +1,43 @@ +\begin{problem*}{7.28} +An $m_1 = 50.0\U{kg}$ block and an $m_2 = 100\U{kg}$ block connected by a string as shown in Figure P7.28. +The pulley is frictionless and of negligible mass. +The coefficient of kinetic friction between $m_1$ and the incline is $\mu = 0.250$. +The incline is at an angle of $\theta = 37.0\dg$ from the horizontal. +Determine the change in the kinetic energy of $m_1$ as it moces from point $A$ to point $B$, a distance of $d = 20.0\U{m}$. +\end{problem*} % problem 7.28 + +\begin{solution} +Again, we use conservation of energy. Defining our gravitational +potential energy to be zero at $A$ we have +\begin{equation} + E_A + W_f = K_{1A} + K_{2A} + W_f = E_B = K_{1B} + K_{2B} + U_{g1B} + U_{g2B} +\end{equation} +The blocks are tied together, so they must have the same velocity +(since the string remains taught). So the change in velocity $v$ is +given by +\begin{align} + \frac{1}{2}(m_1 + m_2) v_A^2 - F_f d &= \frac{1}{2}(m_1 + m_2) v_B^2 + m_1 g d \sin \theta - m_2 g d \\ + \Delta(v^2) = v_B^2 - v_A^2 &= \frac{2}{m_1+m_2} \cdot \left[ gd \cdot (m_2 - m_1 \sin\theta) - F_f d \right] \\ +\end{align} +So the change in kinetic enery of $m_1$ is given by +\begin{equation} + \Delta(K_1) = \frac{d m_1}{m_1+m_2} \cdot \left[ g (m_2 - m_1 \sin\theta) - F_f \right] +\end{equation} + +We still need to find the force of fiction, which we do by +constructing a free body diagram of $m_1$. We see that the forces on +$m_1$ are friction $\vect{F}_f$, tension \vect{T}, normal +$\vect{F}_N$, and gravitational $\vect{F}_{g1}$. Summing the forces +in the direction perpendicular to the incline (\vect{y}), we have +\begin{align} + \sum F_y &= F_N - F_{g1} \cos \theta = 0 \\ + F_N &= m_1 g \cos\theta +\end{align} +The block is always sliding so $F_f = \mu F_N = \mu m_1 g \cos\theta$. +Plugging this into our equation for $\Delta(K_1)$ we have +\begin{align} + \Delta(K_1) &= \frac{d g m_1}{m_1+m_2} \cdot \left( m_2 - m_1 \sin\theta - \mu m_1 \cos \theta \right) \\ + &= \frac{20.0\U{m} \cdot 9.8\U{m/s}^2 \cdot 50.0\U{kg}}{150\U{kg}} \cdot \left[ 100\U{kg} - 50\U{kg}( \sin 27.0\dg - 0.250 \cos 27.0\dg ) \right] \\ + &= \ans{5.78\U{kJ}} +\end{align} +\end{solution} diff --git a/latex/problems/problem07.47.tex b/latex/problems/problem07.47.tex new file mode 100644 index 0000000..0246cba --- /dev/null +++ b/latex/problems/problem07.47.tex @@ -0,0 +1,39 @@ +\begin{problem*}{7.47} +The system shown in Fig.~P7.47 consists of a light inextensible cord, +light frictionless pulleys, and blocks of equal mass. It is initially +held at rest so that the blocks are at the same height above the +ground. The blocks are then released. Find the speed of block $A$ at +the moment when the vertical separation of the blocks is $h$. +\end{problem*} % problem 7.47 + +\begin{solution} +Let $m$ be the mass of one block, and \ihat be the vertical direction, +with $x=0$ for both blocks at their initial position. After some +consideration, we decide that block $A$ will fall and block $B$ will +rise (if you are not convinced, find the mass that $B$ must have in +order for the system to remain stationary). In order to get a +quantitative relationship between the motion of the two blocks, +imagine that $B$ moves up a distance $x$ in some time $\Delta t$. +Then block $B$ will have an average velocity of $v_B = x/\Delta t$, +and block $A$ will have gone a distance $-2x$ with an average velocity +of $v_A = -2x/\Delta t$. So $x_A = -2x_B$ and $v_A = -2v_B$. + +When they are a distance $h$ apart +\begin{align} + h &= x_B - x_A = x_B + 2 x_B = 3 x_B \\ + x_B &= \frac{h}{3} \\ + x_A &= \frac{-2h}{3} +\end{align} +So conserving energy +\begin{align} + E_i = K_i + U_{gi} = 0 + &= E_f = K_f + U_{gf} + = \frac{1}{2} m v_A^2 + \frac{1}{2} m v_B^2 + + mg\frac{h}{3} + mg\frac{-2h}{3} \\ + g\frac{2h}{3} &= v_A^2 + v_B^2 + = v_A^2 + \left(\frac{-v_A}{2}\right)^2 + = v_A^2 \left( 1 + \frac{1}{4} \right) + = \frac{5}{4} v_A^2 \\ + v_A &= \ans{\sqrt{\frac{8gh}{15}}} +\end{align} +\end{solution} diff --git a/latex/problems/problem07.50.tex b/latex/problems/problem07.50.tex new file mode 100644 index 0000000..d1e116a --- /dev/null +++ b/latex/problems/problem07.50.tex @@ -0,0 +1,69 @@ +\begin{problem*}{7.50} +A child's pogo stick (Fig~P7.50) stores energy in a spring with a +force constant of $k = 2.50\E{4}\U{N/m}$. At position $A$ ($x_A = +-0.100\U{m}$), the spring compression is a maximum and the child is +momentarily at rest. At position $B$ ($x_B = 0$), the spring is +relaxed and the child is moving upward. At position $C$, the child is +again momentarily at rest at the top of the jump. The combined mass +of child and pogo stick is $m = 25.0\U{kg}$. +\Part{a} Calculate the total energy of the child-stick-Earth system, +taking both gravitational and elastic potential energy as zero for +$x=0$. +\Part{b} Determine $x_C$. +\Part{c} Calculate the speed of the child at $B$. +\Part{d} Determine the value of $x$ for which the kinetic energy of +the system is a maximum. +\Part{e} Calculate the child's maximum upward speed. +\end{problem*} % problem 7.50 + +\begin{solution} +\Part{a} +We know the most about point $A$, so we'll calculate the total energy there. +\begin{equation} + E_A = U_{sA} + U_{gA} = \frac{1}{2} k x_A^2 + mgx_A + = \frac{1}{2} \cdot 2.50\E{4}\U{N/m} \cdot (-0.100\U{m})^2 + + 25.0\U{kg} \cdot 9.8\U{m/s}^2 \cdot (-0.100\U{m}) + = \ans{100.5\U{J}} +\end{equation} + +\Part{b} +Conserving energy between $A$ and $C$ +\begin{align} + E_A &= E_C = U_{gC} = mgx_C \\ + x_C &= \frac{E_A}{mg} = \frac{100.5\U{J}}{25.0\U{kg}\cdot9.8\U{m/s}^2} + = \ans{0.410\U{m}} +\end{align} + +\Part{c} +Conserving energy between $A$ and $B$ +\begin{align} + E_A &= E_B = K_B = \frac{1}{2}mv_B^2 \\ + v_B &= \sqrt{\frac{2 E_A}{m}} = \sqrt{\frac{2 \cdot 100.5\U{J}}{25.0\U{kg}}} + = \ans{2.84\U{m/s}} +\end{align} + +\Part{d} +The kinetic energy is maximized when the speed is maximized which +occurs at the point where the accelerating spring force balances the +decelerating gravitational force. Before this point, the spring force +exceeded the gravitational force and the child was speeding up. +Afterward, the gravitation force exceeded the spring force and the +child was slowing down. +\begin{align} + F_s = -kx &= -F_g = mg \\ + x &= \frac{mg}{k} = \frac{25.0\U{kg}\cdot9.8\U{m/s}^2}{2.50\E{4}\U{N/m}} + = -0.00980\U{m} = \ans{-9.80\U{mm}} +\end{align} + +\Part{e} +Conserving energy between $A$ and the point of maximum velocity $D$ +\begin{align} + E_A &= E_D = U_{sD} + U_{gD} + K_D \\ + K_D = \frac{1}{2}mv_D^2 + &= E_A - U_{sD} - U_{gD} + = E_A - \frac{1}{2} k x_D^2 - mgx_D \\ + v_D &= \sqrt{ \frac{2E_A - k x_D^2 - 2mgx_D}{m} } \\ + &= \sqrt{ \frac{2\cdot100.5\U{J} - 2.50\E{4}\U{N/m}\cdot(-9.80\E{-3}\U{m})^2 - 2\cdot 25.0\U{kg}\cdot9.8\U{m/s}^2\cdot(-9.80\E{-3}\U{m})}{25.0\U{kg}} } \\ + &= \ans{2.85\U{m/s}} +\end{align} +\end{solution} diff --git a/latex/problems/problem07.54.tex b/latex/problems/problem07.54.tex new file mode 100644 index 0000000..93ae628 --- /dev/null +++ b/latex/problems/problem07.54.tex @@ -0,0 +1,46 @@ +\begin{problem*}{7.54} +An $m = 1.00\U{kg}$ object slides to the right on a surface having a +coefficient of kinetic friction of $\mu = 0.250$ (Fig.~P7.54). The +object has a speed of $v_i = 3.00\U{m/s}$ when t makes contact with a +light spring that has a force constant of $k = 50.0\U{N/m}$ (point +$A$). The object comes to rest after the spring has been compressed a +distance $d$ (point $B$). The object is then forced toward the left +by the spring and continues to move in that direction beyond the +spring's unstretched position. The object finally comes to rest a +distance $D$ to the left of the unstretched spring (point $D$). Find + \Part{a} the distance of compression $d$, + \Part{b} the speed $v$ at the unstretched position when the object + is moving to the left (point $C$), and + \Part{c} the distance $D$ where the object comes to rest. +\end{problem*} % problem 7.54 + +\begin{solution} +\Part{a} +Conserving energy between points $A$ and $B$ +\begin{align} + E_A + W_{AB} &= \frac{1}{2} m v_i^2 - \mu m g d = E_B = \frac{1}{2} k d^2 \\ + 0 &= \frac{k}{m} d^2 + 2 \mu g d - v_i^2 \\ + d &= \frac{-2 \mu g \pm \sqrt{(2 \mu g)^2 - 4(k/m)(-v_i^2)}}{2k/m} \\ + &= \frac{-2 \cdot 0.250 \cdot 9.8\U{m/s}^2 \pm \sqrt{(2 \cdot 0.250 \cdot 9.8\U{m/s}^2)^2 + 4(50.0\U{N/m}/1.00\U{kg})(3.00\U{m/s})^2}}{2\cdot 50.0\U{N/m}/1.00\U{kg}} \\ + & = (-0.0490 \pm 0.427)\U{m} + = \ans{0.378\U{m}} +\end{align} + +\Part{b} +Conserving energy between $B$ and $C$ +\begin{align} + E_B + W_{BC} &= \frac{1}{2} k d^2 - \mu m g d = E_B = \frac{1}{2} m v^2 \\ + v &= \sqrt{\frac{k}{m} d^2 - 2 \mu g d} + = \sqrt{\frac{50.0\U{N/m}}{1.00\U{kg}} (0.378\ldots\U{m})^2 - 2 \cdot 0.250 \cdot 9.8\U{m/s}^2 \cdot 0.378\ldots\U{m}} + = \ans{2.67\U{m/s}} +\end{align} + +\Part{c} +Conserving energy between $C$ and $D$ +\begin{align} + E_C + W_{CD} &= \frac{1}{2} m v^2 - \mu m g D = E_D = 0\U{J} \\ + D &= \frac{v^2}{2 \mu g} + = \frac{(2.67\ldots\U{m/s})^2}{2 \cdot 0.250 \cdot 9.8\U{m/s}^2} + = \ans{1.46\U{m}} +\end{align} +\end{solution} diff --git a/latex/problems/problem07.55.tex b/latex/problems/problem07.55.tex new file mode 100644 index 0000000..aed0876 --- /dev/null +++ b/latex/problems/problem07.55.tex @@ -0,0 +1,47 @@ +\begin{problem*}{7.55} +A block of mass $m = 0.500\U{kg}$ is pushed against a horizontal +spring of negligable mass until the spring is compressed a distance +$x$ (Fig. P7.55) (point $A$). The force constant of the spring is $k += 450\U{N/m}$. When it is released, the block travels along a +frictionless, horizontal surface to point $B$, the bottom of a +vertical circular track of radius $R = 1.00\U{m}$, and continues to +move up the track. The speed of the block at the bottom of the track +is $v_B = 12.0\U{m/s}$, and the block experiences an average friction +force of $F_f = 7.00\U{N}$ while sliding up the track. +\Part{a} What is $x$? +\Part{b} What speed $v_T$ do you predict for the block at the top of +the track (point $T$)? +\Part{c} Does the block actually reach the top of the track, or does +it fall off before reaching the top? +\end{problem*} % problem 7.55 + +\begin{solution} +\Part{a} +Conserving energy between $A$ and $B$ +\begin{align} + E_A &= \frac{1}{2} k x^2 = E_B = \frac{1}{2} m v^2 \\ + x &= v \sqrt{\frac{m}{k}} + = 12.0\U{m/s} \sqrt{\frac{0.500\U{kg}}{450\U{N/m}}} + = \ans{0.400\U{m}} +\end{align} + +\Part{b} +Conserving energy between $B$ and $T$ +\begin{align} + E_B + W_f &= \frac{1}{2} m v_B^2 - \pi R F_f = E_T = \frac{1}{2} m v_T^2 + m g 2 R \\ + v_T &= \sqrt{ v_B^2 - 2R (\pi F_f/m + 2g) } + = \sqrt{ (12.0\U{m/s})^2 - 2\cdot 1.00\U{m}(\pi 7.00\U{N}/0.500\U{kg} + 2 \cdot 9.8\U{m/s}^2) } + = \ans{4.10\U{m/s}} +\end{align} + +\Part{c} +The centerward acceleration of the block if it passes through $T$ is +\begin{equation} + a_c = \frac{v_T^2}{r} + \sim 16\U{m/s}^2 + > g +\end{equation} +So the block reaches the top and is still attached to the ramp, +because it is still pushing out with some normal force against the +track. +\end{solution} diff --git a/latex/problems/problem07.61.tex b/latex/problems/problem07.61.tex new file mode 100644 index 0000000..6067b34 --- /dev/null +++ b/latex/problems/problem07.61.tex @@ -0,0 +1,41 @@ +\begin{problem*}{7.61} +A pendulum, comprising a light string of length $L$ and a small +sphere, swings in a vertical plane. The string hits a peg located a +distance $d$ below the point of suspension (Fig.~P7.61). +\Part{a} Show that if the sphere is released from a height below that +of the peg (point $A$), it will return to this height after the string +strikes the peg (point $B$). +\Part{b} Show that if the pendulum is released from the horizontal +position ($\theta = 90\dg$) and is to swing in a complete circle +centered on the peg, the minimum value of $d$ must be $3L/5$. +\end{problem*} % problem 7.61 + +\begin{solution} +\Part{a} +Conserving energy between points $A$ and $B$ (the sphere is at rest at +both points). +\begin{align} + E_A &= mgh_A = E_B = mgh_B \\ + h_A &= h_B +\end{align} + +\Part{b} +The radius of the smaller circle is $r = L-d$. The critical point is +when sphere is in the vertical position of it's circle around the peg. +The higher the peg is, the slower it's velocity will be at this point +and the less the tension will be. At the smallest possible $d$ for a +complete circle, there will be no tension at this point and we can +find the velocity with +\begin{align} + a_c &= g = \frac{v^2}{r} \\ + v^2 &= g(L-d) +\end{align} +Then conserving energy between this point $D$ and the release point +$C$ (letting $h=0$ be the level of the peg) +\begin{align} + E_C &= mgd = E_D = \frac{1}{2} m v^2 + m g (L-d) = \frac{1}{2} mg (L-d) + mg (L-d) \\ + d &= \frac{3}{2}(L-d) \\ + \frac{5}{2}d &= \frac{3}{2}L \\ + d &= \frac{3L}{5} +\end{align} +\end{solution} diff --git a/latex/problems/problem07.62.tex b/latex/problems/problem07.62.tex new file mode 100644 index 0000000..1a9bece --- /dev/null +++ b/latex/problems/problem07.62.tex @@ -0,0 +1,47 @@ +\begin{problem*}{7.62} +A roller coaster car is released from rest at the top of the first +rise and then moves freely with negligible friction. The roller +coaster shown in Fig.~P7.62 has a circular loop of radius $R$ in the +vertical plane. +\Part{a} First, suppose the car barely makes it around the loop; at +the top of the loop the riders are upside down and feel weightless. +Find the required height of the release point above the bottom of the +loop, in terms of $R$. +\Part{b} Now assume that the release point is at or above the minimum +required height. Show that the normal force on the car at the bottom +of the loop exceeds the normal force at the top by six times the +weight of the car. The normal force on each rider follows the same +rule. Such a large normal force is dangerous and very uncomfortable +for the riders. Roller coasters are therefore not build with circular +loops in vertical planes. Figure P5.24 and the photograph on page 134 +show two actual designs. +\end{problem*} % problem 7.62 + +\begin{solution} +\Part{a} +Because the riders ``feel weightless'' at the top of the loop (point +$T$), we will assume that they are in free fall with a centerwards +acceleration of $g = v_T^2/R$. Conserving energy between $T$ and the +release point $A$ +\begin{align} + E_A = mgh &= E_T = \frac{1}{2} m v_T^2 + mg(2R) \\ + h &= \frac{1}{2g}v_T^2 + 2R = \frac{Rg}{2g} + 2R = \ans{2.5 R} +\end{align} + +\Part{b} +If the release comes from a higher point, there will be some normal +force at the top $N_T$ and at the bottom $N_B$. Summing forces at +both points +\begin{align} + \sum F_{cT} &= mg + N_T = m \frac{v_T^2}{R} \\ + v_T^2 &= gR + R\frac{N_T}{m} \\ + \sum F_{cB} &= -mg + N_B = m \frac{v_B^2}{R} \\ + v_B^2 &= -gR + R\frac{N_B}{m} +\end{align} +And conserving energy between the top and bottom +\begin{align} + E_B = \frac{1}{2}mv_B^2 &= E_T = \frac{1}{2}mv_T^2 + mg(2R) \\ + v_B^2 &= v_T^2 + 4gR = -gR + R\frac{N_B}{m} = gR + R\frac{N_T}{m} + 4gR \\ + N_B &= N_T + 6mg +\end{align} +\end{solution} diff --git a/latex/problems/problem08.05.tex b/latex/problems/problem08.05.tex new file mode 100644 index 0000000..87e6ebb --- /dev/null +++ b/latex/problems/problem08.05.tex @@ -0,0 +1,27 @@ +\begin{problem*}{8.5} +Two blocks with masses $M$ and $3M$ are plaved on a horizontal, +frictionless surface. A light spring is attached to one of them, and +the blocks are pushed to gether with the spring between them +(Fig. P8.5). A cord initially holding the blocks together is burned; +after this, the block of mass $3M$ moves to the right with a speed of +$v_B = 2.00\U{m/s}$. +\Part{a} What is the speed $v_S$ of the block of mass $M$? +\Part{b} Find the original elastic potential energy $U_s$ in the +spring, taking $M = 0.350\U{kg}$ +\end{problem*} % problem 8.5 + +\begin{solution} +\Part{a} +Conserving momentum +\begin{align} + P_i = 0 &= P_f = P_B - P_S = 3Mv_B - Mv_S \\ + v_S &= 3v_B = 3 \cdot 2.00\U{m/s} = \ans{6.00\U{m/s}} +\end{align} + +\Part{b} +Conserving energy +\begin{align} + E_i = U_s &= E_f = K_B + K_S = \frac{1}{2}3Mv_B^2 + \frac{1}{2}Mv_S^2 \\ + U_s &= \frac{1}{2}3Mv_B^2 + \frac{1}{2}M(3v_B)^2 = \frac{1}{2}Mv_B^2 (3 + 9) = 6Mv_B^2 = 5 \cdot 0.350\U{kg} \cdot (2.00\U{m/s})^2 = \ans{8.40\U{J}} +\end{align} +\end{solution} diff --git a/latex/problems/problem08.06.tex b/latex/problems/problem08.06.tex new file mode 100644 index 0000000..03f947b --- /dev/null +++ b/latex/problems/problem08.06.tex @@ -0,0 +1,18 @@ +\begin{problem*}{8.6} +A friend claims that as long as he has his seat belt on, he can hold +on to an $m = 12.0\U{kg}$ child in a $v_i = 60.0\U{mph}$ head-on +collision with a brick wall in which the car passenger compartment +comes to a stop in $\Delta t = 0.050\U{s}$. Show that the violent +force during the collision will tear the child from his arms. +\end{problem*} + +\begin{solution} +The force needed to hold on to the child is given by +\begin{equation} + F = \frac{\Delta p}{\Delta t} = - m \frac{v_i}{\Delta t} + = -12.0\U{kg}\frac{60\U{mph}}{0.050\U{s}} + \cdot \frac{1609\U{m}}{1\U{mi}} \cdot \frac{1\U{hr}}{3600\U{s}} + = -6436\U{N} +\end{equation} +Which is much larger than what the friend is capable of applying. +\end{solution} diff --git a/latex/problems/problem08.17.tex b/latex/problems/problem08.17.tex new file mode 100644 index 0000000..111f3fa --- /dev/null +++ b/latex/problems/problem08.17.tex @@ -0,0 +1,29 @@ +\begin{problem*}{8.17} +Suppose a truch and car with initial speeds of $v_i = 8.00\U{m/s}$ +collide in a perfectly inelastic head on collision. Each driver has a +mass of $m = 80.0\U{kg}$. Including the drivers, the total vehicle +masses are $m_c = 800\U{kg}$ for the car and $m_t = 4000\U{kg}$ for +the truck. If the collision time is $\Delta t = 0.120\U{s}$, what +force does the seat belt exert on each driver. +\end{problem*} % problem 8.17 + +\begin{solution} +To find the final velocity $v_f$ of the crumpled mass, we conserve momentum. +\begin{align} + P_i = m_t v_i - m_c v_i = (m_t - m_c) v_i &= P_f = (m_t + m_c) v_f \\ + v_f &= v_i \frac{m_t - m_c}{m_t + m_c} + = 8.00\U{m/s} \frac{4000\U{kg} - 800\U{kg}}{4800\U{kg}} + = 5.333\ldots\U{m/s} +\end{align} +In the same direction the truck was initially going. The average +force $F$ on each driver is then given by +\begin{align} + F &= m a = m \frac{\Delta v}{\Delta t} = m \frac{v_f - v_i}{\Delta t} \\ + F_t &= m \frac{v_f - v_i}{\Delta t} + = 80.0\U{kg} \frac{5.333\U{m/s} - 8.00\U{m/s}}{0.120\U{s}} + = \ans{-1780\U{N}} \\ + F_c &= m \frac{v_f + v_i}{\Delta t} + = 80.0\U{kg} \frac{5.333\U{m/s} + 8.00\U{m/s}}{0.120\U{s}} + = \ans{8890\U{N}} +\end{align} +\end{solution} diff --git a/latex/problems/problem08.18.tex b/latex/problems/problem08.18.tex new file mode 100644 index 0000000..9f5306c --- /dev/null +++ b/latex/problems/problem08.18.tex @@ -0,0 +1,31 @@ +\begin{problem*}{8.18} +As show in Fig.~P8.18, a bullet of mass $m$ and speed $v$ passes +completely through a pendulum bob of mass $M$. The bullet emerges +with a speed $v_f = v/2$. The pendulum bob is suspended by a stiff +rod of length $l$ and a negligable mass. What is the minimum value of +$v$ such that the pendulum bob will barely swing through a complete +vertical circle? +\end{problem*} % problem 8.18 + +\begin{solution} +Let us break the problem up into two steps: the collision where we'll +conserve momentum, and the pendulum swinging upside down where we'll +conserve energy. Call the point before the collision $A$, the point +just after the collision before the bob has started to swing $B$, and +the point where the pendulum is completely inverted $C$. We just need +to give the bob enough energy that it has no speed at $C$ (just barely +coasting through), so conserving energy back to $B$ +\begin{align} + E_C = Mg(2l) &= E_B = \frac{1}{2}Mv_B^2 \\ + v_B^2 &= 4gl \\ + v_B &= 2\sqrt{gl} +\end{align} +Where we've left out the kinetic energy of the bullet since it doesn't +change from $B$ to $C$ + +Now conserving momentum back to $A$ +\begin{align} + P_B = Mv_B + m(v/2) &= P_A = mv \\ + v &= \frac{2Mv_B}{m} = \ans{ \frac{4M}{m}\sqrt{gl} } +\end{align} +\end{solution} diff --git a/latex/problems/problem08.24.tex b/latex/problems/problem08.24.tex new file mode 100644 index 0000000..38752f0 --- /dev/null +++ b/latex/problems/problem08.24.tex @@ -0,0 +1,33 @@ +\begin{problem*}{8.24} +An $m_1 = 90\U{kg}$ fullback running east (\ihat) with a speed of $v_1 += 5.00\U{m/s}$ is tackled by an $m_2 = 95\U{kg}$ opponent running +north (\jhat) with a speed of $v_2 = 3.00\U{m/s}$. Noting that the +collision is perfectly inelastic, + + \Part{a} calculate the speed $v_f$ and direction $\theta$ of the + players just after the tackle and + \Part{b} determine the mechanical energy lost as a result of the + collision. Account for the missing energy. +\end{problem*} % problem 8.24 + +\begin{solution} +\Part{a} +Conserving momentum in the \ihat\ and \jhat\ directions +\begin{align} + P_{ix} = m_1 v_1 &= P_{fx} = (m_1 + m_2) v_{fx} \\ + v_{fx} &= v_1 \frac{m_1}{m_1 + m_2} = 2.43\U{m/s} \\ + P_{iy} = m_2 v_2 &= P_{fy} = (m_1 + m_2) v_{fy} \\ + v_{fy} &= v_2 \frac{m_2}{m_1 + m_2} = 1.54\U{m/s} \\ + v_f &= \sqrt{v_{fx}^2 + v_{fy}^2} = \ans{2.88\U{m/s}} \\ + \theta &= \arctan\left(\frac{v_{fy}}{v_{fx}}\right) = \ans{32.3\dg} +\end{align} + +\Part{b} +\begin{align} + \Delta K &= K_f - K_i = \left( \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 \right) - \frac{1}{2} (m_1 + m_2) v_f^2 \\ + &= \frac{1}{2} \left[ 90.0\U{kg} (5.00\U{m.s})^2 + 95.0\U{kg} (3.00\U{kg})^2 - (90.0\U{kg} + 95.0\U{kg}) (2.88\U{m/s})^2 \right]\\ + &= \ans{-786\U{J}} +\end{align} +All of which has been lost as mechanical energy, and is now thermal +energy (warmer football players), noise (a loud crunch), etc. +\end{solution} diff --git a/latex/problems/problem08.25.tex b/latex/problems/problem08.25.tex new file mode 100644 index 0000000..8f8ee87 --- /dev/null +++ b/latex/problems/problem08.25.tex @@ -0,0 +1,47 @@ +\begin{problem*}{8.25} +Two shuffleboard disks of equal mass, one orange and the other yellow, +are involved in an elastic, glancing collision. The yellow disk is +initially at rest and is struck by the orange disk moving with a speed +$v_i$. After the collision, the orange disk moves along a direction +that makes an angle $\theta$ with its initial direction of motion. +The velocities of the two disks are perpendicular after the collision. +Determine the final speed of each disk. +\end{problem*} + +\begin{solution} +Let the final speed of the orange disk be $v_o$, the final speed of +the yellow disk be $v_y$, and $m$ be the mass of one disk. Calling +the initial direction of the orange disk \ihat, and the direction +perpendicular to that \jhat\ (such that the final direction of +$\vect{v}_o$ has positive components in both directions), we see +\begin{align} + v_{o\ihat} &= v_o \cos\theta \\ + v_{o\jhat} &= v_o \sin\theta +\end{align} +For the orange puck, and that since the motion of the yellow is +perpendicular the the orange, the angle between the final motion of +the yellow and the $-\jhat$ direction is also $\theta$, so +\begin{align} + v_{y\ihat} &= v_y \sin\theta \\ + v_{y\jhat} &= -v_y \cos\theta +\end{align} + +Conserving momentum in both directions we have +\begin{align} + P_{i\jhat} = 0 &= P_{f\jhat} = m v_{y\jhat} + m v_{o\jhat} = m v_o \sin\theta - m v_y\cos\theta \\ + v_y &= v_o \frac{\sin\theta}{\cos\theta}\\ + P_{i\ihat} = m v_i &= P_{f\ihat} = m v_{y\ihat} + m v_{o\ihat} = m v_o \cos\theta + m v_y \sin\theta \\ + v_i \cos\theta &= v_o \cos^2 \theta + \left(v_o \frac{\sin\theta}{\cos\theta}\right)\sin\theta\cos\theta + = v_o \cos^2 \theta + v_o \sin^2 \theta + = v_o +\end{align} +Because +\begin{equation} + \sin^2 \theta + \cos^2 \theta = 1 +\end{equation} +So +\begin{align} + v_o &= \ans{v_i \cos\theta} \\ + v_y &= v_o \frac{\sin\theta}{\cos\theta} = \ans{v_i \sin\theta} +\end{align} +\end{solution} diff --git a/latex/problems/problem08.26.tex b/latex/problems/problem08.26.tex new file mode 100644 index 0000000..ca35a84 --- /dev/null +++ b/latex/problems/problem08.26.tex @@ -0,0 +1,25 @@ +\begin{problem*}{8.26} +Two automobiles of equal mass approach an intersection. One vehicle +is traveling with a velocity $v_1 = 13.0\U{m/s}$ towards the east +(\ihat), and the other is traveling north (\jhat) with a speed $v_2$. +Neither driver sees the other. The vehicles collide in the +intersection and stick together, leaving parallel skid marks at an +angle of $\theta = 55.0\dg$ north of east. The speed limit for both +roads is 35\U{mph}, and the driver of the northward-moving vehicle +claims that he was within the speed limit when the collision occurred. +Is he telling the truth? +\end{problem*} % problem 8.26 + +\begin{solution} +Let $m$ be the mass of one car and $\vect{v}_f$ be the final velocity +of the wreck. Conserving momentum in both directions +\begin{align} + P_{i\ihat} = m v_1 &= P_{f\ihat} = (m+m) v_f \cos\theta \\ + P_{i\jhat} = m v_2 &= P_{f\jhat} = (m+m) v_f \sin\theta \\ + \tan\theta &= \frac{\sin\theta}{\cos\theta} = \frac{m v_2}{m v_1} \\ + v_2 &= v_1 \tan\theta + = 13.0\U{m/s} \tan 55.0\dg \cdot \frac{1\U{mi}}{1609\U{m}} \cdot \frac{3600\U{s}}{1\U{h}} + = \ans{41.6\U{mph}} +\end{align} +So he was speeding. +\end{solution} diff --git a/latex/problems/problem08.28.tex b/latex/problems/problem08.28.tex new file mode 100644 index 0000000..393ec39 --- /dev/null +++ b/latex/problems/problem08.28.tex @@ -0,0 +1,47 @@ +\begin{problem*}{8.28} +A proton, moving with a velocity of $v_i\ihat$, collides elastically +with another proton that is initially at rest. Assuming that the two +protons have equal speeds after the collision, find + \Part{a} the speed $v_f$ of each proton after the collision in terms + of $v_i$ and + \Part{b} the directions of the velocity vectors after the collision. +\end{problem*} % problem 8.28 + +\begin{solution} +\Part{a} +Looking at the front inside cover of the text we see that the the mass +of a proton is given by $m_p = 1.672\E{-27}\U{kg}$. Conserving energy +(because the collision is elastic) we have +\begin{align} + K_i = \frac{1}{2} m_p v_i^2 + &= K_f = \frac{1}{2} m_p v_f^2 + \frac{1}{2} m_p v_f^2 \\ + v_f &= \sqrt{\frac{v_i^2}{2}} = \ans{\frac{v_i}{\sqrt{2}}} +\end{align} + +\Part{b} +Let $\vect{v}_{f1}$ be the final velocity for the incident proton, and +$\vect{v}_{f2}$ be the final velocity for the proton initially at +rest. Conserving momentum in the \jhat\ direction +\begin{align} + P_{iy} = 0 &= P_{fy} = m_p v_{f1y} + m_p v_{f2y} \\ + v_{f1y} &= -v_{f2y} +\end{align} +So the protons have equal magnitude speeds in the \jhat\ direction. +Because the speed of the particles are equal, the magnitude of their +speeds in the \ihat\ direction should also be equal $|v_{f1x}| = +|v_{f2x}|$. Conserving momentum in the \ihat\ direction. +\begin{align} + P_{ix} = m_p v_i &= P_{fx} = m_p v_{f1x} + m_p v_{f2x} = 2 m_p v_{fx} \\ + v_{fx} &= \frac{v_i}{2} +\end{align} +Using the Pythagorean theorem to solve for the magnitude of $v_{fy}$ +\begin{align} + v_f^2 = \frac{v_i^2}{2} &= v_{fx}^2 + v_{fy}^2 = \frac{v_i^2}{4} + v_{fy}^2 \\ + v_{fy} &= v_i \sqrt{\frac{1}{2} - \frac{1}{4}} = \frac{v_i}{2} = v_{fx} +\end{align} +So because the \ihat\ and \jhat\ components of $\vect{v}_f$ are the +same, both protons are deflected away at an angle of $\theta = +\ans{45\dg}$ from the \ihat\ direction, with opposite +\jhat\ components (so the angle between $\vect{v}_{f1}$ and +$\vect{v}_{f2}$ is $90\dg$). +\end{solution} diff --git a/latex/problems/problem08.43.tex b/latex/problems/problem08.43.tex new file mode 100644 index 0000000..0aed036 --- /dev/null +++ b/latex/problems/problem08.43.tex @@ -0,0 +1,31 @@ +\begin{problem*}{8.43} +A rocket for use in deep space is to be capable of boosting a total +load (payload plus rocket frame and engine) of $M_f = 3.00\U{metric + tons}$ to a speed of $v_f = 10.0\U{km/s}$. +\Part{a} It has an engine and fuel designed to produce an exhaust +speed of $v_{ea} = 2.000\U{km/s}$. How much fule plus oxidizer is +required? +\Part{b} If a different fuel and engine design could give an exhaust +speed of $v_{eb} = 5.000\U{km/s}$, what amount of fuel and oxidizer +would be required for the same task? +\end{problem*} + +\begin{solution} +\Part{a} +Starting with equation 8.43 from page 248, and letting $M_e = M_i - +M_f$ be the mass of the fuel and oxidizer +\begin{align} + v_f - v_i &= v_e \ln \left(\frac{M_i}{M_f}\right) \\ + M_i &= M_f \exp^{\frac{v_f - v_i}{v_e}} \\ + M_e &= M_f \left(\exp^{\frac{v_f - v_i}{v_e}} - 1 \right) \label{43.M_e} \\ + &= 3.00\U{metric tons} \left(\exp^{\frac{10}{2}} - 1\right) + = \ans{ 442\U{metric tons}} +\end{align} + +\Part{b} +Using eqn. \ref{43.M_e} with our new exhaust velocity, +\begin{align} + M_e &= 3.00\U{metric tons} \left(\exp^{\frac{10}{5}} - 1\right) + = \ans{ 19.2\U{metric tons}} +\end{align} +\end{solution} diff --git a/latex/problems/problem08.45.tex b/latex/problems/problem08.45.tex new file mode 100644 index 0000000..f6e5512 --- /dev/null +++ b/latex/problems/problem08.45.tex @@ -0,0 +1,26 @@ +\begin{problem*}{8.45} +An orbiting spacecraft is described not as a ``zero-g'' but rather as +a ``microgravity'' environment for its occupants and for onboard +experiments. Astronouts experience slight lurches due to the motions +of the equipment and other astronauts and as a result of venting of +materials from the craft. Assume that an $M_i = 3500\U{kg}$ +spacecraft underoes an acceleration of $a = 2.50\U{$\mu$g} = +2.45\E{-5}\U{m/s}^2$ due to a leak from one of its hydraulic control +systems. The fluid is know to escape with a speed of $70.0\U{m/s}$ +into the vacuum of space. How much fluid will be lost in $\Delta t = +1.00\U{h}$ if the leak is not stopped. +\end{problem*} % problem 8.45 + +\begin{solution} +If the acceleration of the spaceship remains constant, and the rate of +fluid escape remains constant, the mass of escaping fluid must be much +less than the mass of the spaceship. Conserving momentum according to +the conservation of momentum equation 8.42 in the text, +\begin{align} + M dv &= -v_e dM \\ + dM &= -M \frac{dv}{v_e} + = -M \frac{a\Delta t}{v_e} + = -3500\U{kg} \frac{2.45\E{-5}\U{m/s}^2 \cdot 3600\U{s}}{70.0\U{m/s}} + = \ans{-4.41\U{kg}} +\end{align} +\end{solution} diff --git a/latex/problems/problem08.48.tex b/latex/problems/problem08.48.tex new file mode 100644 index 0000000..13929be --- /dev/null +++ b/latex/problems/problem08.48.tex @@ -0,0 +1,31 @@ +\begin{problem*}{8.48} +A bullet of mass $m$ is fired horizontally into a block of mass $M$ +initially at rest at the edge of a frictionless table of height $h$ +(Fig. P8.48). The bullet remains in the block, and after impact the +block lands a distance $d$ from the bottom of the table. Determine +the intial speed of the bullet. +\end{problem*} % problem 87.48 + +\begin{solution} +Breaking the problem up into two parts (like problem 18), call the +point before the collision $A$, the point just after the collision $B$ +and the point when the block-bullet hits the floor $C$. + +From $B$ to $C$ is a standard projectile motion problem, which we'll +solve for the horizontal velocity $v_B$ of the block-bullet at point +$B$. Because $v_B$ is purely horizontal (the \ihat direction), we'll +use the vertical (\jhat) direction to find the time it took the ball +to fall. +\begin{align} + y_f = -h &= \frac{1}{2}a t^2 + v_{y0}t + y_0 = \frac{-g}{2}t^2 \\ + t &= \sqrt{\frac{2h}{g}} \\ + x_f = d &= v_B t + x_0 = v_B t \\ + v_B &= \frac{d}{t} = d\sqrt{\frac{g}{2h}} \\ +\end{align} + +Now conserving momentum back to $A$ +\begin{align} + P_B = (m+M) v_B &= P_A = m v \\ + v &= \frac{m+M}{m} v_B = \ans{\frac{m+M}{m}d\sqrt{\frac{g}{2h}}} +\end{align} +\end{solution} diff --git a/latex/problems/problem08.51.tex b/latex/problems/problem08.51.tex new file mode 100644 index 0000000..ca8910b --- /dev/null +++ b/latex/problems/problem08.51.tex @@ -0,0 +1,35 @@ +\begin{problem*}{8.51} +A small block of mass $m_1 = 0.500\U{kg}$ is released from rest at the +top of a curve-shaped, frictionless wedge of mass $m_2 = 3.00\U{kg}$, +which sits on a frictionless, horizontal surface as sown in +Fig. P8.51a. When the block leaves the wedge, its velocity is +measured to be $v_1 = 4.00\U{m/s}$ to the right (\ihat) as shown in +Fig. P8.51b. +\Part{a} What is the velocity $\vect{v}_2$ of the wedge after the block reaches the horizontal surface? +\Part{b} What is the height $h$ of the wedge? +\end{problem*} % problem 8.51 + +\begin{solution} +\Part{a} +Conserving momentum +\begin{align} + P_i = 0 &= P_f = m_1 v_1 + m_2 v_2 \\ + v_2 &= -v_1 \frac{m_1}{m_2} = -4.00\U{m/s} \frac{0.500\U{kg}}{3.00\U{kg}} + = \ans{-0.667\U{m/s}} +\end{align} +Where the $-$ sign denotes motion in the $-\ihat$ direction (to the +left in Fig.~P8.51b). + +\Part{b} +Let $y = 0$ be the level of the table for the purpose of calculating +gravitational potential energy. Conserving energy (since none is lost +to friction or other internal energies) +\begin{align} + E_i = m_1 g h &= E_f = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 \\ + m_1 g h &= \frac{1}{2}\left(m_1 v_1^2 + m_2 \frac{m_1^2 v_2^2}{m_2^2}\right) \\ + &= \frac{m_1 v_1^2}{2}\left(1 + \frac{m_1}{m_2}\right) \\ + h &= \frac{v_1^2}{2g}\left(1 + \frac{m_1}{m_2}\right) + = \frac{(0.667\U{m/s})^2}{2\cdot9.80\U{m/s}^2}\left(1 + \frac{0.500\U{kg}}{3.00\U{kg}}\right) + = \ans{0.952\U{m}} +\end{align} +\end{solution} diff --git a/latex/problems/problem09.18.tex b/latex/problems/problem09.18.tex new file mode 100644 index 0000000..5752de5 --- /dev/null +++ b/latex/problems/problem09.18.tex @@ -0,0 +1,33 @@ +\begin{problem*}{9.18} +An observer in reference frame $S$ measures two events as +simultaneous. Event $A$ occurs at the point $(50.0\U{m},0,0)$ at the +instant 9:00:00 Universal time on January 15, 2005. Event $B$ occurs +at the point $(150\U{m},0,0)$ at the same moment. A second observer, +moving past with a velocity of $0.800c\ihat$, also observes the two +events. In her reference frame $S'$, which event occured first and +what time interval elapsed between the events? +\end{problem*} % problem 9.18 + +\begin{solution} +The $(x,t)$ coordinates in the $S$ frame are $(50.0\U{m},t_0)$ and +$(150\U{m},t_0)$. In the $S'$ frame, the coordinates are given by +the Lorentz transformations +\begin{align} + \gamma &= \frac{1}{\sqrt{1-v^2/c^2}} + = \frac{1}{\sqrt{1-0.800^2}} + = 1.67 \\ + t' &= \gamma \p({t - v x/c^2}) \\ + x' &= \gamma \p({x - v t}) \\ + y' &= y \\ + z' &= z +\end{align} +We see from the formula for $t'$ that the event with the largest $x$ +value will have the earliest time. Therefore, \ans{event $B$ happens +first in $S'$}. The time interval is +\begin{align} + \Delta t = t_A' - t_B' + = \gamma \p({\Delta t - v \Delta x/c^2}) + = \gamma \p({0 - 0.800 \cdot (-100\U{m}) / 3.00\E{8}\U{m/s}}) + = \ans{444\U{ns}} +\end{align} +\end{solution} diff --git a/latex/problems/problem09.19.tex b/latex/problems/problem09.19.tex new file mode 100644 index 0000000..dcb75d8 --- /dev/null +++ b/latex/problems/problem09.19.tex @@ -0,0 +1,41 @@ +\begin{problem*}{9.19} +A red light flashes at position $x_R=3.00\U{m}$ and time +$t_R=1.00\E{-9}\U{s}$, and a blue light flashes at $x_B=5.00\U{m}$ and +$t_B=9.00\E{-9}\U{s}$, all measured in the $S$ reference frame. +Reference frame $S'$ has its origin at the same point as $S$ at +$t=t'=0$; frame $S'$ moves uniformly to the right. Both flashes occur +at the same place in $S'$. \Part{a} Find the relative speed between +$S$ and $S'$. \Part{b} Find the location of the two flashes in frame +$S'$. \Part{c} At what time does the red flash occur in the $S'$ +frame? +\end{problem*} % problem 9.19 + +\begin{solution} +\Part{a} +From the Lorentz transformations +\begin{align} + \Delta x' &= \gamma \p({\Delta x - v \Delta t}) = 0 \\ + v &= \frac{\Delta x}{\Delta t} = \frac{5.00-3.00}{9-1}\U{m/ns} + = \ans{0.833c} +\end{align} + +\Part{b} +\begin{align} + \gamma &= \frac{1}{\sqrt{1-v^2/c^2}} + = \frac{1}{\sqrt{1-0.833^2}} + = 1.81 \\ + x' &= \gamma \p({x - v t}) \\ + x_R' &= 1.81 \p({3.00\U{m/s} - 0.833\cdot3.00\E{8}\U{m/s}\cdot1.00\E{-9}\U{s}}) + = \ans{4.97\U{m}} \\ + x_B' &= 1.81 \p({5.00\U{m/s} - 0.833\cdot3.00\E{8}\U{m/s}\cdot9.00\E{-9}\U{s}}) + = \ans{4.97\U{m}} +\end{align} + +\Part{c} +From the Lorentz transformations +\begin{align} + t' &= \gamma \p({t - v x/c^2}) \\ + t_R' &= 1.81 \p({1.00\E{-9}\U{s} - 0.833\frac{3.00\U{m}}{3.00\E{8}\U{m/s}}}) + = \ans{-13.3\U{ns}} +\end{align} +\end{solution} diff --git a/latex/problems/problem09.22.tex b/latex/problems/problem09.22.tex new file mode 100644 index 0000000..ffd5d25 --- /dev/null +++ b/latex/problems/problem09.22.tex @@ -0,0 +1,46 @@ +\begin{problem*}{9.22} +A spacecraft is launched from the surface of the Earth with a velocity +of $0.600\U{c}$ at an angle of $50.0\dg$ above the horizontal positive +$x$ axis. Another spacecraft is moving past with a velocity of +$0.700c$ in the negative $x$ direction. Determine the magnitude and +direction of the velocity of the first spacecraft as measured by the +pilot of the second spacecraft. +\end{problem*} % problem 9.22 + +\begin{solution} +The Lorentz transformations +\begin{align} + t' &= \gamma \p({t - v x/c^2}) \\ + x' &= \gamma \p({x - v t}) \\ + y' &= y +\end{align} +yield the velocity transformations +\begin{align} + u_x' &= \pderiv{t'}{x'} + = \frac{\gamma\p({\partial x - v \partial t})}{\gamma\p({\partial t - v \partial x/c^2})} + = \frac{\pderiv{x}{t} - v}{1 - v \pderiv{t}{x}/c^2} + = \frac{u_x - v}{1 - v u_x/c^2} \\ + u_y' &= \pderiv{t'}{y'} + = \frac{\partial y}{\gamma\p({\partial t - v \partial x/c^2})} + = \frac{\pderiv{t}{y}}{\gamma\p({1 - v \pderiv{t}{x}/c^2})} + = \frac{u_y}{\gamma\p({1 - v u_x/c^2})} \\ +\end{align} + +We can use these velocity transformations on our spacecraft's velocity. +\begin{align} + \gamma &= \frac{1}{\sqrt{1-v^2/c^2}} + = \frac{1}{\sqrt{1-(-0.700)^2}} = 1.40 \\ + u_x &= 0.600c\cos(50.0\dg) = 0.386c \\ + u_y &= 0.600c\sin(50.0\dg) = 0.460c \\ + u_x' &= \frac{u_x - v}{1 - vu_x/c^2} + = \frac{0.321c + 0.700c}{1 + 0.700\cdot0.321} + = 0.855c \\ + u_y' &= \frac{u_y}{\gamma(1 - vu_x/c^2)} + = \frac{0.383c}{1.40\cdot(1 + 0.700\cdot0.321)} + = 0.258c \\ + u' &= \sqrt{u_x'^2 + u_y'^2} + = \ans{0.893c} \\ + \theta' &= \arctan(u_y'/u_x') + = \ans{16.8\dg} +\end{align} +\end{solution} diff --git a/latex/problems/problem09.23.tex b/latex/problems/problem09.23.tex new file mode 100644 index 0000000..fe03489 --- /dev/null +++ b/latex/problems/problem09.23.tex @@ -0,0 +1,59 @@ +\begin{problem*}{9.23} +Calculate the momentum of an electron moving with a speed of \Part{a} +$0.0100c$, \Part{b} $0.500c$, \Part{c} $0.900c$. +\end{problem*} % problem 9.23 + +\begin{solution} +The momentum (using relativistic mass) is given by +\begin{equation} + p = mv = \gamma m_0 v +\end{equation} + +%\begin{python} +%import latex +%import sys +%tempmod = file('nine_twentythree.py', 'w') +%tempmod.write(""" +%def gamma(v_over_c): +% return 1.0/(1-v_over_c**2)**.5 +%def p(v_over_c): +% return gamma(v_over_c)*511e3*v_over_c # in eV/c +%""") +%tempmod.close() +%\end{python} + +\Part{a} +%\begin{equation} +% \gamma = +%\begin{python} +%from nine_twentythree import *; print gamma(0.01) +%\end{python} \\ +% p = +%\begin{python} +%from nine_twentythree import *; print p(0.01) +%\end{python} +%\end{equation} + +\begin{align} + \gamma &= \ans{1.0000500} \\ +%\begin{python} +%from nine_twentythree import *; print gamma(0.01) +%\end{python} \\ + p &= \ans{5.11\U{keV/c}} +%\begin{python} +%from nine_twentythree import *; print p(0.01) +%\end{python} +\end{align} + +\Part{b} +\begin{align} + \gamma &= \ans{1.155} \\ + p &= \ans{295\U{keV/c}} +\end{align} + +\Part{c} +\begin{align} + \gamma &= \ans{2.294} \\ + p &= \ans{1.06\U{MeV/c}} +\end{align} +\end{solution} diff --git a/latex/problems/problem09.30.tex b/latex/problems/problem09.30.tex new file mode 100644 index 0000000..2ac53bb --- /dev/null +++ b/latex/problems/problem09.30.tex @@ -0,0 +1,41 @@ +\begin{problem*}{9.30} +Show that, for any object moving at less than one-tenth the speed of +light, the relativistic kinetic energy agrees with the result of the +classical equation $K=\frac{1}{2}mv^2$ to within less than $1\%$. +Therefore, for most purposes the classical equation is good enough to +describe these objects, whose motion we call \emph{nonrelativistic}. +\end{problem*} % problem 9.30 + +\begin{solution} +The kinetic energy is the energy that is due to the objects motion. +In other words, the increase in the total energy over the rest mass +(in the absence of potential energies etc.). In math +\begin{equation} + K = E - m_0 c^2 = mc^2 - m_0c^2 = (\gamma - 1)m_0 c^2 + = \p({\frac{1}{\sqrt{1-\frac{v^2}{c^2}}} - 1}) m_0 c^2 + = \p[{\p({1-\frac{v^2}{c^2}})^{-0.5} - 1}] m_0 c^2 +\end{equation} +Using the Taylor series expansion around $x=0$, +\begin{equation} + (1+x)^b \approx 1 + bx + \mathcal{O}(x^2) +\end{equation} +we see that for small $x=-v^2/c^2$, the kinetic energy looks like +\begin{equation} + K = \p[{\p({1+0.5\frac{v^2}{c^2} + \mathcal{O}(v^4/c^4)}) - 1}] m_0 c^2 + = 0.5 m_0 v^2 + \mathcal{O}(m_0 v^4/c^2) + \approx \frac{1}{2} m_0 v^2 +\end{equation} +with the relative error on the order of $v^2/c^2 < 0.01 = 1\%$ for +$v<0.1c$, which is what we set out to show. + +Alternatively, we can compare the exact kinetic energy with the +nonrelativistic form for $v=0.1c$. From the above analysis, we see +that the relative error will be less for slower $v$. +\begin{align} + \gamma &= \frac{1}{\sqrt{1-0.1^2}} = 1.00503782 \\ + K_\text{rel} &= (\gamma-1) m_0 c^2 = 0.00503782 \gamma m_0 c^2 \\ + K_\text{non} &= \frac{1}{2} m_0 v^2 = 0.5 \cdot m_0 \cdot 0.01 c^2 = 0.005 m_0 c^2 \\ + \frac{K_\text{non}}{K_\text{rel}} &= \frac{0.005}{0.00503782} = 0.992494 +\end{align} +for a $7.51\%$ relative underestimate. +\end{solution} diff --git a/latex/problems/problem09.31.tex b/latex/problems/problem09.31.tex new file mode 100644 index 0000000..6b8ed22 --- /dev/null +++ b/latex/problems/problem09.31.tex @@ -0,0 +1,24 @@ +\begin{problem*}{9.31} +An electron has a kinetic energy five times greater than its rest +energy. Find \Part{a} its total energy and \Part{b} its speed. +\end{problem*} % problem 9.31 + +\begin{solution} +The total energy is +\Part{a} +\begin{equation} + E = K + m_0 c^2 = (5+1)m_0 c^2 + = 6\cdot 511\U{keV} + = \ans{3.07\U{MeV}} +\end{equation} + +\Part{b} +\begin{align} + E &= m c^2 = \gamma m_0 c^2 = 6 m_0 c^2 \\ + \gamma &= \frac{1}{\sqrt{1-\frac{v^2}{c^2}}} = 6 \\ + \frac{1}{6^2} &= 1-\frac{v^2}{c^2} \\ + \frac{v}{c} &= \sqrt{1-\frac{1}{6^2}} + = 0.986 \\ + v &= \ans{0.986c} +\end{align} +\end{solution} diff --git a/latex/problems/problem09.35.tex b/latex/problems/problem09.35.tex new file mode 100644 index 0000000..255725f --- /dev/null +++ b/latex/problems/problem09.35.tex @@ -0,0 +1,49 @@ +\begin{problem*}{9.35} +The rest energy of an electron is $0.511\U{MeV}$. The rest energy of +a proton is $938\U{MeV}$. Assume that both particles have kinetic +energies of $2.00\U{MeV}$. Find the speed of \Part{a} the electron +and \Part{b} the proton. \Part{c} By how much does the speed of the +electron exceed that of the proton? \Part{d} Repeat the calculations +assuming that both particles have kinetic energies of $2,000\U{MeV}$. +\end{problem*} % problem 9.35 + +\begin{solution} +First we'll work out the solution symbolically, since we'll need it +twice. The total energy yields $\gamma$, which in turn yields $v$. +\begin{align} + E &= K + m_0 c^2 = \gamma m_0 c^2 \\ + \gamma &= \frac{K}{m_0 c^2} + 1 \\ + \gamma &= \frac{1}{\sqrt{1-\frac{v^2}{c^2}}} \\ + \frac{1}{\gamma^2} &= 1-\frac{v^2}{c^2} \\ + \frac{v}{c} &= \sqrt{1-\frac{1}{\gamma^2}} \\ + v &= \sqrt{1-\frac{1}{\gamma^2}} \cdot c +\end{align} + +Applying these formula to our various situations, we get + +\Part{a} +\begin{align} + \gamma_a &= \frac{2.00\U{MeV}}{0.511\U{MeV}} + 1 = 4.91 \\ + v_a &= \ans{0.979c} +\end{align} + +\Part{b} +\begin{align} + \gamma_b &= \frac{2.00\U{MeV}}{938\U{MeV}} + 1 = 1.00213 \\ + v_b &= \ans{0.0652c} +\end{align} + +\Part{c} +\begin{equation} + v_a-v_b = \ans{0.914c} +\end{equation} + +\Part{d} +\begin{align} + \gamma_e &= \frac{2.00\U{GeV}}{0.511\U{MeV}} + 1 = 3.91e3 \\ + v_e &= \ans{(1-3.26\E{-8})c} \\ + \gamma_p &= \frac{2.00\U{GeV}}{938\U{MeV}} + 1 = 3.16 \\ + v_p &= \ans{0.948c} \\ + v_e-v_p &= \ans{0.0523c} +\end{align} +\end{solution} diff --git a/latex/problems/problem09.50.tex b/latex/problems/problem09.50.tex new file mode 100644 index 0000000..84ecb15 --- /dev/null +++ b/latex/problems/problem09.50.tex @@ -0,0 +1,68 @@ +\begin{problem*}{9.50} +Ted and Mary are playing a game of catch in frame $S'$, which is +moving at $0.600\U{c}$ with respect to frame $S$, while Jim, at rest +in frame $S$, watches the action (Fig.~P9.50). Ted throws the ball to +Mary at $0.800c$ (according to Ted), and their seperation (measured in +$S'$) is $1.80\E{12}\U{m}$. \Part{a} According to Mary, how fast is +the ball moving? \Part{b} According to Mary, how long does the ball +take to reach her? \Part{c} According to Jim, how far apart are Ted +and Mary, and how fast is the ball moving? \Part{d} According to Jim, +how long does it take the ball to reach Mary? +\end{problem*} % problem 9.50 + +\begin{solution} +\Part{a} +Mary is in the same frame as Ted, so she also feels the ball is moving +at $\ans{-0.800c}$. + +\Part{b} +Mary thinks the ball takes +\begin{equation} + \Delta t' = \frac{\Delta x'}{v'} + = \frac{1.80\E{12}\U{m}}{0.800\cdot3.00\E{8}\U{m/s}} + = \ans{7500\U{s}} = \ans{2.08\U{hours}} +\end{equation} + +\Part{c} +Jim sees the $S'$ frame as length contracted, so he sees the proper +length $\Delta x'$ between Mary and Ted (proper length is length +measured in the frame where the two ends are stationary, here the $S'$ +frame) as +\begin{align} + \gamma &= \frac{1}{\sqrt{1-v^2/c^2}} + = \frac{1}{\sqrt{1-0.6^2}} = 1.25 \\ + \Delta x &= \frac{\Delta x'}{\gamma} = \frac{1.8\E{12}\U{m}}{1.25} + = \ans{1.44\E{12}\U{m}} \;. +\end{align} +You can use the Lorentz velocity transformations to find the ball +speed in Jim's frame. +\begin{equation} + u_x = \frac{u_x'+v}{1+\frac{vu_x'}{c^2}} + = \frac{-0.8c+.6c}{1-0.8\cdot0.6} + = \ans{-0.385c} +\end{equation} + + +\Part{d} +You can do this several ways. One way is to use the total distance +between Mary and Ted in the $S$ frame +\begin{align} + (v - u_x)\Delta t &= \Delta x \\ + \Delta t &= \frac{\Delta x}{v - u_x} + = \frac{1.44\E{12}\U{m}}{0.600c + 0.385c} + = \ans{4870\U{s}} = \ans{1.35\U{hours}} +\end{align} + +Another way is to convert from the $S'$ frame to the ball frame to get +proper time +\begin{equation} + \Delta t_0 = \frac{\Delta t'}{\gamma_b'} + = 2.08\U{hours}\cdot\sqrt{1-0.8^2} + = 1.25\U{hours} +\end{equation} +Then you can time dilate from the ball frame into the $S$ frame +\begin{equation} + \Delta t = \gamma_b \Delta t_0 = \frac{1.25\U{hours}}{\sqrt{1-0.385^2}} + = \ans{1.35\U{hours}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem09.V12.tex b/latex/problems/problem09.V12.tex new file mode 100644 index 0000000..e2c2c3d --- /dev/null +++ b/latex/problems/problem09.V12.tex @@ -0,0 +1,39 @@ +\begin{problem*}{9.V12} +The $S'$ frame moves along the $x$ axis of the $S$ frame with a +constant velocity $v$. Observers in $S$ see an event $A$ occuring at +$x_1=0$ at time $t_1=0$ and another event $B$ at $x_2=1.5\U{km}$ at +time $t_2=2.7\U{$\mu$s}$. In the $S'$ frame, the two events are +simultaneous. \Part{a} Find $v$. \Part{b} For which $v$ between the +two frames will the event $B$ precede the event $A$ for observers +in the $S'$ frame? +\end{problem*} % Prof. Venkat lecture problem #12 + +\begin{solution} +\Part{a} +From the Lorentz transformation, +\begin{align} + t_1' &= \gamma\p({t_1-vx_1/c^2}) \\ + t_2' &= \gamma\p({t_2-vx_2/c^2}) \\ + \Delta t' &= (t_2'-t_1') + = \gamma\p({t_2-t_1 - \frac{v}{c^2}(x_2-x_1)}) + = \gamma\p({\Delta t - \frac{v}{c^2}\Delta x}) + = 0 \\ + 0 &= \Delta t - \frac{v}{c^2}\Delta x \\ + v &= \frac{c^2\Delta t}{\Delta x} + = \frac{3.00\E{8}\U{m/s}\cdot2.7\U{$\mu$s}}{1.5\U{km}}c + = \ans{0.54c} +\end{align} + +\Part{b} +From \Part{a} we have +\begin{equation} + \Delta t' = \gamma\p({\Delta t - \frac{v}{c^2}\Delta x}) \;, +\end{equation} +$\Delta t>0$, so $\Delta t'<0$ (i.e. $B$ precedes $A$) only if +\begin{align} + \frac{v\Delta x}{c^2} &> \Delta t \\ + v &> c^2 \frac{\Delta t}{\Delta x} = 0.54c \;. +\end{align} +So $B$ precedes $A$ for $\ans{0.54= 2: + filename = sys.argv[1] + + +figure(facecolor='w', figsize=[4,3]) +border = 0.15 +ax = axes([border,border,1-2*border,1-2*border]) +ax.set_xticks(range(-10,11,1)) +ax.set_yticks(range(-10,11,1)) +ax.grid() + +ax.set_title("Limo paradox, garage frame") +ax.set_xlabel("Distance (light seconds)") +ax.set_ylabel("Time (seconds)") + +# add light beams +ax.plot([-10,10],[-10,10], 'b-') +ax.plot([10,-10],[-10,10], 'b-') + +# switch to a moving observer +v = 0.661 +width = 1 +gamma = 1.0/sqrt(1-v**2) +t= arange(-5,10,1) + +# plot his spaceship +spaceship = Polygon([(v*t[0]-width,t[0]), (v*t[0], t[0]), + (v*t[-1],t[-1]), (v*t[-1]-width, t[-1])], + alpha=0.2, facecolor='k') +ax.add_patch(spaceship) + +# plot the position track of a moving observer +ax.plot(v*t,t, 'r-') + +# plot the position track of the garage +ax.plot(0*t,t, 'g-') +ax.plot(-width+0*t,t, 'g-') + +# plot his xprime axis at his 1 second intervals +tp = gamma*t +def plot_xp(tp, v, xmin=-10, xmax=10): + x = arange(xmin, xmax, 0.01) + xp_y = x*v + for t in tp: + origin_x = v*t + origin_y = t + ax.plot(x+origin_x, xp_y+origin_y, 'r:') +plot_xp(tp, v) + +# plot his tprime grids at his 1 light-second intervals +xp = tp +def plot_tp_grid(xp, v, tmin=-10, tmax=10): + t = arange(tmin, tmax, 0.01) + tp_x = t*v + for x in xp: + origin_x = x + origin_y = v*x + ax.plot(tp_x+origin_x, t+origin_y, 'r:') +plot_tp_grid(xp, v) + +proper_width = gamma*width +x_back_limo_frame = -proper_width +t_back_limo_frame = 0 +x_back_limo_frame_p = gamma*(x_back_limo_frame+v*t_back_limo_frame) +t_back_limo_frame_p = gamma*(t_back_limo_frame+v*x_back_limo_frame) +x_gar_limo_frame = -width/gamma +t_gar_limo_frame = 0 +x_gar_limo_frame_p = gamma*(x_gar_limo_frame+v*t_gar_limo_frame) +t_gar_limo_frame_p = gamma*(t_gar_limo_frame+v*x_gar_limo_frame) +points = [(0,0), (-width,0), (x_back_limo_frame_p, t_back_limo_frame_p), + (x_gar_limo_frame_p, t_gar_limo_frame_p)] +labels = ["A", "B", "C", "D"] + +ax.plot([p[0] for p in points], [p[1] for p in points], 'ko') +for p,L in zip(points, labels): + ax.text(p[0], p[1], ' '+L, + horizontalalignment='left', + verticalalignment='center') + +ax.set_ybound(-2,0.5) +ax.set_xbound(-2,0.5) +ax.set_aspect('equal') # Make aspect ratio equal to 1 + +if filename == None: + show() +else: + savefig(filename, dpi=200) diff --git a/latex/problems/problem09.limo.T.tex b/latex/problems/problem09.limo.T.tex new file mode 100644 index 0000000..cef7a3d --- /dev/null +++ b/latex/problems/problem09.limo.T.tex @@ -0,0 +1,59 @@ +\begin{problem} +\Part{a} How fast would you have to be driving a $20\U{ft}$ long limo +to fit into $15\U{ft}$ deep garage? \Part{b} How deep would the +garage appear to the driver of the limo? Is the limo ever really +entirely in the garage? Explain any apparent paradoxes. + +Both of the lengths given are proper lengths. +\end{problem} % Based on undergrad memories + +\begin{solution} +\Part{a} +The proper length of the limo $L_0$ needs to be contracted to the +length of the garage (equations compressed for space, read right to +left, then top to bottom). +\begin{align} + L &= \frac{L_0}{\gamma} & + \frac{L}{L_0} &= \frac{1}{\gamma} = \sqrt{1-\p({\frac{v}{c}})^2} \\ + \p({\frac{L}{L_0}})^2 &= 1 - \p({\frac{v}{c}})^2 & + \p({\frac{v}{c}})^2 &= 1 - \p({\frac{L}{L_0}})^2 \\ + \frac{v}{c} &= \sqrt{1 - \p({\frac{L}{L_0}})^2} = 0.661 & + v &= \ans{0.661 c} = \ans{198\E{6}\U{m/s}} \;. +\end{align} + +\Part{b} +The garage $L_{g0}$ is length contracted in the limo frame +\begin{align} + L_g &= \frac{L_{g0}}{\gamma} = L_{g0}\sqrt{1-\p({\frac{v}{c}})^2} + = 15\U{ft}\sqrt{1-.661^2} = \ans{11.2\U{ft}} = \ans{3.43\U{m}} \;. +\end{align} + +Wait, how can the limo fit into a garage that appears even shorter +than its proper length of $15\U{ft}$? This is a +relative-simultanaeity effect like the muon clock running slower than +an earth clock while the earth clock runs slower than the muon clock. +In the garage frame, the limo-nose-passes-crashes-into-back-wall event +$A$ and the limo-tail-passes-door event $B$ occur at the same time. +In the limo frame, event $A$ happens some time before event $B$. + +Drawing a space-time diagram in the garage frame may help clarify the +different events. The limo is the grey smear. The red dotted lines +represent a $1\U{ls}$ time and space grid for the limo driver. The +blue lines show the speed of light. The green lines show the garage. +I've rescaled the garage and limo to make them $1\U{ls}$ and +$1.33\U{ls}$ long respectively so that the axes have simple labels. +The limo driver thinks that at the same time as event $A$, the tail of +the limo is back at event $C$, while the door of the garage is up at +event $D$. Note that the garage is less than $1\U{ls}$ deep in the +limo frame. +\begin{center} +\includegraphics[height=2in]{limo} +\end{center} +``Entirely in the garage'' is something of a trick question, since it +means ``all of the limo is in the garage at same time'' and ``at the +same time'' depends on your reference frame. In the garage frame, the +limo is entirely in the garage for a single instant. In the limo +frame, the limo is never entirely in the garage. An absolute, +true-no-matter-what answer to the question is not possible in the +relativistic world-view. +\end{solution} diff --git a/latex/problems/problem10.13.tex b/latex/problems/problem10.13.tex new file mode 100644 index 0000000..15c7f91 --- /dev/null +++ b/latex/problems/problem10.13.tex @@ -0,0 +1,36 @@ +\begin{problem*}{10.13} +A car traveling on a flat (unbanked) circular track accelerates +uniformly from rest with a tangential acceleration of $a_t = +1.70\U{m/s}^2$. The car makes it one forth of the way around the +circle before it skids off the track. Determine the coefficient of +static friction between the car and track from these data. +\end{problem*} % problem 10.13 + +\begin{solution} +In order to find the coefficient of static friction, we must examine +the force of friction at the slipping point where $F_f = \mu_s F_N = +\mu_s m g$. We don't know the mass of the car, but hopefully it will +cancel out somewhere along the way. The only force on the car that is +not completely in the vertical direction is friction, so let us +consider the sums of forces in the tangential and centerward +directions. First the tangential direction +\begin{equation} + \sum F_t = F_{ft} = m a_t +\end{equation} +And then in the centerward direction +\begin{equation} + \sum F_c = F_{fc} = m a_c = m \frac{v_t^2}{r} +\end{equation} +Going back to our constant acceleration equations we see that +\begin{equation} + v_t^2 = v_{ti}^2 + 2 a_t \Delta x = 2 a_t \frac{\pi r}{2} +\end{equation} +So going backwards and plugging in +\begin{align} + F_{fc} &= m \frac{2 a_t \pi r}{2 r} = \pi m a_t \\ + F_f &= \sqrt{F_{ft}^2 + F_{fc}^2} = m a_t \sqrt{1 + \pi^2} \\ + \mu_s &= \frac{F_f}{m g} = \frac{a_t}{g} \sqrt{1 + \pi^2} + = \frac{1.70\U{m/s}^2}{9.80\U{m/s}^2} \sqrt{1 + \pi^2} + = \ans{0.572} +\end{align} +\end{solution} diff --git a/latex/problems/problem10.21.tex b/latex/problems/problem10.21.tex new file mode 100644 index 0000000..82e637b --- /dev/null +++ b/latex/problems/problem10.21.tex @@ -0,0 +1,25 @@ +\begin{problem*}{10.21} +Find the net torque $\tau$ on the wheel in Fig. P10.21 about the axle +through $O$, taking $a = 10.0\U{cm}$ and $b = 25.0\U{cm}$. +\end{problem*} % problem 10.21 + +\begin{solution} +Torque is defined as $\vect{\tau} = \vect{r} \times \vect{F}$, so we +have (defining the counter clockwise direction to be positive) +\begin{equation} + \sum \tau = - b \cdot 10.0\U{N} + a \cdot 12.0\U{N} - b \cdot 9.00\U{N} +\end{equation} +Where the $-$ sign on the first and third terms denote torques in the +$-$ direction. There are no $\sin$ terms, because all three forces +are in the tangential direction. The $12.0\U{N}$ force is slightly +suspicious, since they tell you it makes an angle of $30\dg$ with the +horizontal, but if you look closely, you'll see that it isn't actually +applied to the top of the circle, and it {\it is} tangential to it's +application radius. + +Plugging in for $a$ and $b$ we have +\begin{equation} + \sum \tau = -0.250\U{m} \cdot 10.0\U{N} + 0.100\U{m} \cdot 12.0\U{N} - 0.250\U{m} \cdot 9.00\U{N} + = \ans{-3.55\U{J}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem10.44.tex b/latex/problems/problem10.44.tex new file mode 100644 index 0000000..809d9ab --- /dev/null +++ b/latex/problems/problem10.44.tex @@ -0,0 +1,56 @@ +\begin{problem*}{10.44} +A space station is constructed in the shape of a hollow ring of mass +$m = 5.00\E{4}\U{kg}$. Members of the crew walk on a deck formed by +the inner surface of the outer cylindrical wall of the ring, with a +radius of $r = 100\U{m}$. At rest when constructed, the ring is set +rotating about its axis so that the people inside experience an +effective free-fall acceleration equal to $g$. The rotation is +achieved by firing two small rockets attached tangentially at opposite +points on the outside of the ring. +\Part{a} What angular momentum does the space station acquire? +\Part{b} How long must the rockets be fired if each exerts a thrust +of $F = 125\U{N}$? +\Part{c} Prove that the total torque on the ring, multiplied by the +the time interval found in \Part{b}, is equal to the change in angular +momentum found in \Part{a}. This equality represents the +\emph{angular impulse-angular momentum theorem}. +\end{problem*} % problem 10.44 + +\begin{solution} +\Part{a} +The certerward acceleration of people on the wall of the space station +is given by +\begin{align} + g = a_c &= \frac{v^2}{r} = r \omega^2 \\ + \omega &= \sqrt{\frac{g}{r}} +\end{align} +Where we used $v = r\omega$ to replace the linear velocity $v$. The +moment of inertia of a ring is given by $I = mr^2$ from table 10.2 on +page 300. The angular momentum is then given by +\begin{equation} + L = I \omega = m r^2 \sqrt{\frac{g}{r}} = \ans{m r \sqrt{gr}} = \ans{1.57\E{8}\U{Js}} +\end{equation} + +\Part{b} +The torque on the station is given by +\begin{align} + \sum \tau &= 2 \cdot r \cdot F = I \alpha = m r^2 \alpha\\ + \alpha &= \frac{2 F}{m r} +\end{align} +Going back to our constant acceleration equations, we see that +\begin{align} + \omega &= \alpha t + \omega_0 = \alpha t \\ + t &= \frac{\omega}{\alpha} = \sqrt{\frac{g}{r}} \cdot \frac{m r}{2 F} = \sqrt{g r} \frac{m}{2F} + = \sqrt{ 9.80\U{m/s}^2 \cdot 100\U{m}} \frac{5\E{4}\U{kg}}{2 \cdot 125\U{N}} + = \ans{ 6.26\U{ks} = 1.74\U{hr} } +\end{align} + +\Part{c} +\begin{align} + \tau t &= I \alpha t = I \omega = L \\ + 2 r F t &= 2 \cdot 100\U{m} \cdot 125\U{N} \cdot 6.26\E{3}\U{s} + = 1.57\E{8}\U{Js} = L +\end{align} +So they are equal both symbolically and numerically which means I +probably didn't make any algebra mistakes (we can hope). +\end{solution} diff --git a/latex/problems/problem10.72.tex b/latex/problems/problem10.72.tex new file mode 100644 index 0000000..eac9d60 --- /dev/null +++ b/latex/problems/problem10.72.tex @@ -0,0 +1,44 @@ +\begin{problem*}{10.72} +A wad of sticky clay with mass $m$ and velocity $\vect{v}_i$ is fired +at a solid cylinder of mass $M$ and radius $R$ (Fig. P10.72). The +cylinder is initially at rest and is mounted on a fixed horizontal +axle that runs through its center of mass. The line of motion of the +projectile is perpendixular to the axle and at a distance $d < R$ from +the center. +\Part{a} Find the angular speed of the system just after the clay +strikes and sticks to the surface of the cylinder. +\Part{b} Is the mechanical energy of the clay-cylinder system +conserved in this process? Explain your answer. +\end{problem*} % problem 10.72 + +\begin{solution} +\Part{a} +Conserving angular momentum (letting the \ihat\ direction be into the page) +\begin{align} + \vect{L}_i &= \vect{R} \times \vect{p} + = R p \sin\theta \ihat + = R m v_i \frac{d}{R} \ihat = m v_i d \ihat \\ + &= \vect{L}_f = I \omega \ihat = \left(\frac{1}{2} M R^2 + m R^2\right) \omega \ihat = \left(\frac{M}{2} + m\right)R^2 \omega \ihat \\ + \omega &= \ans{v_i \frac{m d}{I_{tot}}} +\end{align} +Where $I_{tot} \equiv \left( M/2 + m \right) R^2$. + +\Part{b} +The change in energy is +\begin{align} + \Delta K &= K_f - K_i = \frac{1}{2} I_{tot} \omega^2 - \frac{1}{2} m v_i^2 \\ + &= \frac{1}{2} \left(\frac{m^2 v_i^2 d^2}{I_tot} - mv_i^2\right) + = \frac{1}{2}m v_i^2 \left(\frac{m d^2}{I_tot} - 1\right) \\ + &= K_i \left(\frac{m d^2}{\left(M/2 + m\right)R^2} - 1\right) \\ +\end{align} +So for maximum final energy $d=R$ and the 2nd term on the right hand +side reduces to +\begin{equation} + \frac{m}{M/2 + m} - 1 = \frac{m - (M/2 + m)}{M/2 + m} + = \frac{-M}{M+2m} < 0 +\end{equation} +So the final energy is less than the initial energy unless $m = 0$, in +which case the cylinder just sits still for eternity. The lost energy +goes to the same types of internal energy that we had in Problem 24 in +Chapter 8: warmer clay, thwacking sound, etc. +\end{solution} diff --git a/latex/problems/problem11.34.tex b/latex/problems/problem11.34.tex new file mode 100644 index 0000000..7b8cf83 --- /dev/null +++ b/latex/problems/problem11.34.tex @@ -0,0 +1,39 @@ +\begin{problem*}{11.34} +Within the Rosette Nebula shown in the photograph opening this +chapter, a hydrogen atom emits light as it undergoes a transition from +the $n=3$ state to the $n=2$ state. Calculate \Part{a} the +energy, \Part{b} the wavelength, and \Part{c} the frequency of the +radiation. +\end{problem*} % problem 11.34 + +\begin{solution} +\Part{a} +From the Rydberg equation (Equation 11.28) +\begin{align} + \frac{1}{\lambda} &= R_H \p({\frac{1}{n_i^2}-\frac{1}{n_f^2}}) \\ + E &= \frac{hc}{\lambda} = hcR_H \p({\frac{1}{n_i^2}-\frac{1}{n_f^2}}) + = hcR_H \p({\frac{1}{n_i^2}-\frac{1}{n_f^2}}) + = 13.6\U{eV} \cdot \p({\frac{1}{2^2} - \frac{1}{3^2}}) + = \ans{1.89\U{eV}} \;, +\end{align} +where $R_H=1.097\E{7}\U{m$^{-1}$}$. + +\Part{b} +Inverting the Rydberg equation +\begin{equation} + \lambda = \p[{R_H \p({\frac{1}{n_i^2}-\frac{1}{n_f^2}})}]^{-1} + = \ans{656\U{nm}} \;. +\end{equation} +Alternatively, you could use the energy from \Part{a} +\begin{equation} + \lambda = \frac{hc}{E} = \frac{1240\U{eV$\cdot$nm}}{1.89\U{eV}} + = \ans{656\U{nm}} \;. +\end{equation} + +\Part{c} +Using the wavelength from \Part{b} +\begin{equation} + f = \frac{c}{\lambda} = \frac{3.00\E{8}\U{m/s}}{656\U{nm}} + = \ans{457\U{THz}} \;. +\end{equation} +\end{solution} diff --git a/latex/problems/problem11.35.tex b/latex/problems/problem11.35.tex new file mode 100644 index 0000000..a85399e --- /dev/null +++ b/latex/problems/problem11.35.tex @@ -0,0 +1,34 @@ +\begin{problem*}{11.35} +\Part{a} +What value of $n_i$ is associated with the $94.96\U{nm}$ spectral line +in the Lyman series of hydrogen? +\Part{b} +Could this wavelength be associated with the Paschen series or the +Balmer series? +\end{problem*} % problem 11.35 + +\begin{solution} +\Part{a} +The Lyman series transitions all end in the ground state $n_f=1$ +Using the generalized Rydberg equation (Equation 11.28) +\begin{align} + \frac{1}{\lambda} &= R_\text{H} \p({\frac{1}{n_f^2} - \frac{1}{n_i^2}}) \\ + -\frac{1}{n_i^2} &= \frac{1}{\lambda R_\text{H}} - \frac{1}{n_f^2} \\ + n_i &= \p({\frac{1}{n_f^2} - \frac{1}{\lambda R_\text{H}}})^{-1/2} + = \p({1 - \frac{1}{94.96\E{-9}\U{m} \cdot 1.10\E{7}\U{m$^{-1}$}}})^{-1/2} + = \ans{5} \;. +\end{align} + +\Part{b} +This wavelength cannot have come from the Balmer ($n_f=2$) or Paschen +($n_f=3$) series because the shortest wavelength for any series is given +in the limit that $n_i \rightarrow \infty$ +\begin{align} + \frac{1}{\lambda_\text{min}} &= \frac{R_\text{H}}{n_f^2} \\ + \lambda_\text{min} &= \frac{n_f^2}{R_\text{H}} \;. +\end{align} +For the Balmer series $\lambda_\text{min} = 365\U{nm}$, and for the +Paschen series $\lambda_\text{min} = 820\U{nm}$. Both of these +series-minimum wavelengths are larger than the wavelength of our +spectral line. +\end{solution} diff --git a/latex/problems/problem11.36.tex b/latex/problems/problem11.36.tex new file mode 100644 index 0000000..9cf283e --- /dev/null +++ b/latex/problems/problem11.36.tex @@ -0,0 +1,35 @@ +\begin{problem*}{11.36} +For a hydrogen atom in its ground state, use the Bohr model to +compute \Part{a} the orbital speed of the electron, \Part{b} the +kinetic energy of the electron, and \Part{c} the electric potential +energy of the atom. +\end{problem*} % problem 11.36 + +\begin{solution} +\Part{a} +The Bohr radius is given by +\begin{align} + r_n &= \frac{n^2\hbar^2}{mke^2} = n^2 r_1 \\ + r_1 &= 0.529\E{-10}\U{m} +\end{align} +where $\hbar=h/(2\pi)=1.055\E{-34}\U{J$\cdot$s}$ and +$k=9.00\E{9}\U{Nm$^2$/C$^2$}$. So the velocity is +\begin{align} + v_n &= \frac{n\hbar}{mr_n} \\ + v_1 &= \frac{\hbar}{mr_1} = \ans{2.19\U{Mm/s}} \;. +\end{align} +\begin{equation} +\end{equation} + +\Part{b} +The kinetic energy is then +\begin{equation} + K = \frac{1}{2} m v^2 = \ans{13.6\U{eV}} \;. +\end{equation} + +\Part{c} +The electric potential energy is +\begin{equation} + U = -k\frac{e^2}{r} = -27.2\U{eV} \;. +\end{equation} +\end{solution} diff --git a/latex/problems/problem11.37.tex b/latex/problems/problem11.37.tex new file mode 100644 index 0000000..5b0f6ce --- /dev/null +++ b/latex/problems/problem11.37.tex @@ -0,0 +1,45 @@ +\begin{problem*}{11.37} +Four possible transitions for a hydrogen atom are as follows: +\begin{center} +\begin{tabular}{l l c l l} + (i) & $n_i=2$; $n_f=5$ && (ii) & $n_i=5$; $n_f=3$ \\ + (iii) & $n_i=7$; $n_f=4$ && (iv) & $n_i=4$; $n_f=7$ +\end{tabular} +\end{center} +\Part{a} In which transition is light of the shortest wavelength emitted? +\Part{b} In which transition does the atom gain the most energy? +\Part{c} In which transition(s) does the atom lose energy? +\end{problem*} % problem 11.37 + +\begin{solution} +\Part{a} +Looking at the sized of the changes in $n$, we have +\begin{center} +\begin{tabular}{l l c l l} + (i) & $\Delta n=3$ && (ii) & $\Delta n=-2$ \\ + (iii) & $\Delta n=-3$ && (iv) & $\Delta n=3$ +\end{tabular} +\end{center} +We know we want to release energy, so we need $\Delta n < 0$ (relaxing +from a more excited state). That leaves (ii) and (iii). We have to +crunch some numbers for this, since each case has a point in its +favor: (iii) jumps more levels, but (ii) is closer in, where the +levels are further apart. +\begin{align} + E_{ii} &= A \p({\frac{1}{5^2}-\frac{1}{3^2}}) = -71\E{-3}\cdot A \\ + E_{iii} &= A \p({\frac{1}{7^2}-\frac{1}{4^2}}) = -42\E{-3}\cdot A \;, +\end{align} +so \ans{(ii)} releases the most energy. Note that +$A=hcR_H=13.6\U{eV}$, but it's actual value doesn't matter because it +is a constant value for hydrogen. + +\Part{b} +Now we need to compare (i) and (iv), but this is easier, since they +both increase by three levels, but (i) starts closer in (where the +levels are further apart). Therefore, \ans{(i)} will gain the most +energy. + +\Part{c} +The atom loses energy in \ans{(ii)} and \ans{(iii)} as mentioned +in \Part{a}. +\end{solution} diff --git a/latex/problems/problem11.38.tex b/latex/problems/problem11.38.tex new file mode 100644 index 0000000..e016c76 --- /dev/null +++ b/latex/problems/problem11.38.tex @@ -0,0 +1,18 @@ +\begin{problem*}{11.38} +How much energy is required to ionize hydrogen \Part{a} when it is in +the ground state and \Part{b} when it is in the state for which $n=3$? +\end{problem*} % problem 11.38 + +\begin{solution} +Ionization can be considered to be the state where $n_f=\infty$. +Using the Rydberg equation and $E=hc/\lambda$ we have +\begin{center} +\begin{tabular}{r r r} + & \Part{a} & \Part{b} \\ +$n_i$ & $1$ & $3$ \\ +$E_\text{absorbed}=hcR_H\p({\frac{1}{n_i^2}-\frac{1}{n_f^2}})$ + & $\ans{13.6\U{eV}}$ + & $\ans{1.51\U{eV}}$ +\end{tabular} +\end{center} +\end{solution} diff --git a/latex/problems/problem11.41.tex b/latex/problems/problem11.41.tex new file mode 100644 index 0000000..0b65edf --- /dev/null +++ b/latex/problems/problem11.41.tex @@ -0,0 +1,29 @@ +\begin{problem*}{11.41} +Two hydrogen atoms collide head-on and end up with zero kinetic +energy. Each atom then emits light with a wavelength of $121.6\U{nm}$ +($n=2$ to $n=1$ transition). At what speed where the atoms moving +before the collision? +\end{problem*} % problem 11.41 + +\begin{solution} +Ending up with zero kinetic energy after the collision means the atoms +must have zero velocity and momentum after the collision as well. +Conserving momentum, we see that having zero momentum after the +collision, means their momenta before the collision must have been +equal and opposite. Because both atoms are hydrogens, their masses +are the same, so their velocities must have also been equal and +opposite. Thus, their initial kinetic energies must have been equal. + +Conserving energy +\begin{align} + E_i &= 2 \cdot \frac{1}{2} m v_i^2 = m v_i^2 + = E_f = 2\cdot\frac{hc}{\lambda} \\ + v_i &= \sqrt{\frac{2hc}{\lambda m}} + = \sqrt{\frac{2\cdot6.63\E{-34}\U{J$\cdot$s}\cdot3.00\E{8}\U{m/s}} + {121.6\E{-9}\U{m}\cdot1.67\E{-27}\U{kg}}} + = \ans{44.3\U{km/s}} \;. % ((2*6.63e-34*3e8)/(121.6e-9*1.67e-27))**.5 +\end{align} +Note that the mass of a hydrogen atom is the sum of the masses of a +proton and electron, but $m_e\ll m_p$, which is why $m_H\approx +m_p=1.67\E{-27}\U{kg}$. +\end{solution} diff --git a/latex/problems/problem11.V1.tex b/latex/problems/problem11.V1.tex new file mode 100644 index 0000000..4443434 --- /dev/null +++ b/latex/problems/problem11.V1.tex @@ -0,0 +1,191 @@ +\begin{problem} +A hypothetical particle (a ``drexelon'') is captured by a proton to +form a ``drexelonic atom''. A drexelon is identical to an electron +except for its rest mass, which is $m_d=117.3\U{MeV/$c^2$}$. Note +that the rest mass of an electron is $m_e=0.511\U{keV/$c^2$}$. A +proton is approximately eight times more massive than a drexelon. It +is possible to use the equations of the Bohr model of Hydrogen to +discuss the drexelonic atom. Since the mass of the nucleus is of the +same order as that of the drexelon, you should use the reduced mass +$m_d'=m_dM_p/(m_d+m_P)$ for the rotational mass of the drexelon. The +mass of a proton is $M_p=938.28\U{MeV/$c^2$}$. + +For the first Bohr-orbit of the drexelonic atom, determine +\Part{a} the radius of the orbit, +\Part{b} the speed (in m/s) of the drexelon. +\Part{c} the kinetic energy (in eV) of the drexelon, and +\Part{d} the electrostatic potential energy (in eV) of the drexelon. + +\Part{e} What is the total energy (in eV) of the drexelon in the +first exited state of the drexelonic atom? +\Part{f} What is the smallest wavelength (in nm) of radiation in the +Balmer series of the drexelonic atom? +\Part{g} What is the wavelength (in nm) of the least energetic photon +in the Balmer series of the drexelonic atom? + + +\Part{h} Determine the largest wavelength (in nm) of the photons +emitted in the Lyman series of the drexelonic atom. +For this emitted photon, determine +\Part{i} the linear momentum (in eV/c) and +\Part{j} the angular momentum (in units of $\hbar=h/2\pi$, assuming +the angular momentum of the system is conserved). + +The linear momentum of the photon is $E/c$. If we assume the +conservation of linear momentum, find for the atom emitting the photon +\Part{k} the velocity (in multiples of $c$) and +\Part{l} the recoil kinetic energy (in eV). + +\Part{m} What is the ratio of recoil kinetic energy to the energy of +the emitted photon? Do we have to correct the energy of the emitted +photon to account for this recoil energy? What percentage energy +correction is needed? +\end{problem} % Prof. Venkat homework problem 4.1 + +\begin{solution} +\Part{a} +First we find the reduced mass of the drexelonic atom in kg. +\begin{equation} + m_d' = \frac{m_d M_p}{m_d+M_p} + = \frac{117.3\cdot938.28}{117.3+938.28}\U{MeV/$c^2$} + = 104.3\U{MeV/$c^2$} + = 104.3\E{6}\U{eV}\cdot\frac{1.60\E{-19}\U{J/eV}}{(3.00\E{8}\U{m/s})^2} + = 1.86\E{-28}\U{kg} +\end{equation} +The radius of the first orbital is then +\begin{align} + r_n &= \frac{n^2\hbar^2}{m_d'Zke^2} \\ + r_1 &= \frac{\hbar^2}{m_d'ke^2} + = \frac{\hbar^2}{m_d'ke^2} + = \frac{(1.05\E{-34}\U{J$\cdot$s})^2}{1.86\E{-28}\U{kg}\cdot8.99e9\U{Nm$^2$/$C^2$}\cdot(1.60\E{P-19}\U{C})^2} + = \ans{2.59\E{-13}\U{m}} +\end{align} + +\Part{b} +From the Bohr-model assumptions, angular momentum comes in chunks of $\hbar$ +\begin{align} + m_d'v_n'r_n &= n\hbar \\ + v_1' &= \frac{\hbar}{m_d'r_1} + = \frac{1.05\E{-34}\U{J$\cdot$s}}{1.86\E{-28}\U{kg}\cdot2.59\E{-13}\U{m}} + = 2.19\U{Mm/s} +\end{align} +$v_1'$ is the speed of the reduced mass particle, not quite that of +the drexelon. We can get the speed of the drexelon with +\begin{equation} + v_1 = v_1'\frac{r_d}{r} + = v_1'\frac{M_p}{m_d+M_p} + = 2.19\U{Mm/s}\cdot\frac{8}{1+8} + = \ans{1.94\U{Mm/s}} +\end{equation} + +\Part{c} +As in \Part{b}, we're only interested in the \emph{drexelon's} kinetic +energy, so we use the drexelon's full mass. Using the reduced mass +$m_d'$ and its associated velocity $v_1'$ would give the kinetic +energy of the whole atom (drexelon + proton). +\begin{align} + m_d &= 117.3\E{6}\U{eV}\cdot\frac{1.60\E{-19}\U{J/eV}}{(3.00\E{8}\U{m/s})^2} + = 2.09\E{-28}\U{kg} \\ + K &= \frac{1}{2} m_d v_1^2 + = \frac{1}{2}\cdot2.09\E{-28}\U{kg}\cdot(1.94\U{Mm/s})^2 + = 3.95\E{-16}\U{J}\cdot\frac{1}{1.60\E{-19}\U{J/eV}} + = \ans{2.47\U{keV}} +\end{align} + + +\Part{d} +Using the equation for the potential of a point charge $V=kq/r$, we +have +\begin{equation} + U_1= -eV_1 = \frac{-kZe^2}{r_1} + = \frac{-8.99\E{9}\U{Nm$^2$/C$^2$}\cdot(1.60\E{-19}\U{C})^2}{2.59\E{-13}\U{m}} + = -8.90\E{-16}\U{J}\cdot\frac{1}{1.60\E{-19}\U{J/eV}} + = \ans{-5.55\U{keV}} +\end{equation} + +\Part{e} +From the Bohr-model +\begin{align} + E_n &= \frac{-m_d'(kZe^2)^2}{2n^2\hbar^2} \\ + E_2 &= \frac{-m_d'(ke^2)^2}{8\hbar^2} + = \frac{-1.86\E{-28}\U{kg}[8.99\E{9}\U{Nm$^2$/C$^2$}\cdot(1.60\E{-19}\U{C})^2]^2}{8(1.05\E{-34}\U{J$\cdot$s})^2} + = -1.11\E{-16}\U{J}\cdot\frac{1}{1.60\E{-19}\U{J/eV}} + = \ans{-693\U{eV}} +\end{align} + +\Part{f} +For the Balmer series, $n_f=2$. The smallest wavelength comes from +the largest energy transition, so $n_i=\infty$. The wavelength is then +\begin{align} + E &= E_\infty-E_2 = -E_2 = 693\U{eV} \\ + \lambda &= \frac{hc}{E} + = \frac{1240\U{eV$\cdot$nm}}{693\U{eV}} = \ans{1.79\U{nm}} +\end{align} + +\Part{g} +The least energetic photon comes from the smallest energy transition, +so $n_i=n_f+1=3$. +\begin{align} + E &= E_3-E_2 + = \frac{-m_d'(ke^2)^2}{2\hbar^2}\p({\frac{1}{3^2}-\frac{1}{2^2}}) + = 385\U{eV} \\ + \lambda &= \frac{hc}{E} + = \frac{1240\U{eV$\cdot$nm}}{385\U{eV}} = \ans{3.22\U{nm}} +\end{align} + +\Part{h} +For the Lyman series, $n_f=1$. The largest wavelength photon comes +from the smallest energy transition, so $n_i=n_f+1=2$. +\begin{align} + E &= E_2-E_1 + = \frac{-m_d'(ke^2)^2}{2\hbar^2}\p({\frac{1}{2^2}-\frac{1}{1^2}}) + = 2.08\U{keV} \\ + \lambda &= \frac{hc}{E} + = \frac{1240\U{eV$\cdot$nm}}{2.08\U{keV}} = \ans{0.596\U{nm}} +\end{align} + +\Part{i} +The linear momentum of the photon is given by +\begin{equation} + p = \frac{E}{c} = \ans{2.08\U{keV/$c$}} +\end{equation} + +\Part{j} +Conserving angular momentum, +\begin{align} + L_i &= 2\hbar = L_f = \hbar + L_\text{photon} \\ + L_\text{photon} &= \ans{\hbar} +\end{align} +Remember that the Bohr model \emph{assumes} that the angular momentum +of the atom comes in chunks of $\hbar$ ($L_n=m'v_n'r_n'=n\hbar$). + +\Part{k} +If the photon leaves with momentum $p_\text{photon} = 2.08\U{keV/$c$}$ +(from \Part{h}), the atom must have the same momentum in the opposite +direction, so +\begin{align} + p &= mv \\ + v &= \frac{p}{m} + = \frac{2.08\U{keV/$c$}}{(938.28+117.3)\U{MeV/$c^2$}} + = \ans{1.97\E{-6}c} = 591\U{m/s} +\end{align} +Note that we are dealing with the momentum of the \emph{atom}, so we +use the full mass of the atom, not the reduced mass which we had used +to understand the atom's internal orbits. + +\Part{l} +The recoil kinetic energy is +\begin{equation} + K = \frac{1}{2}mv^2 + = \frac{1}{2}(938.28+117.3)\U{MeV/$c^2$}\cdot(1.97\E{-6}c)^2 + = \ans{2.05\U{meV}} +\end{equation} + +\Part{m} +The recoil kinetic energy is small enough to ignore +\begin{equation} + \frac{K}{E_\text{photon}} = \frac{2.05\U{meV}}{2.08\U{keV}} + = \ans{9.86\E{-7}} +\end{equation} +This is a $\ans{9.86\E{-5}\%}$ correction. +\end{solution} diff --git a/latex/problems/problem11.V2.tex b/latex/problems/problem11.V2.tex new file mode 100644 index 0000000..34a505a --- /dev/null +++ b/latex/problems/problem11.V2.tex @@ -0,0 +1,37 @@ +\begin{problem} +In a Lithium atom (atomic number $Z=3$) there are two electrons in the +first orbit, and, due to Pauli's exclusion principle (Serway Ch.~29, +Sec.~5), the third electron is in the second orbit $n=2$. The +interaction of the inner electrons with the one in the second orbit +can be approximated by writing the energy of the outer electron +$E_n'=-Z'^2E_1/n^2$, where $E_1=13.6\U{eV}$, $n=2$, and $Z'$ is the +effective atomic number. Note that $Z'$ is less than three because of +the screening effect of the two electrons in the first orbit. +\Part{a} If we need $5.39\U{eV}$ of energy to remove the outer +electron from its binding with the nucleus, determine $Z'$. +\Part{b} What would be the longest wavelength (in nm) of the photon +that can be absorbed by the electron in the $n=2$ state? +\end{problem} % Prof. Venkat homework problem 4.2 + +\begin{solution} +\Part{a} +\begin{align} + E' &= E_\infty'-E_2' = -E_2' = \frac{-Z'^2 E_1}{2^2} \\ %\frac{m_e(kZ'e^2)^2}{2\cdot2^2\hbar^2} \\ + Z' &= 2\sqrt{\frac{E'}{E_1}} %\frac{2\hbar}{ke^2}\cdot\sqrt{\frac{2E}{m_e}} + = 2\sqrt{\frac{5.39\U{eV}}{13.6\U{eV}}} + = \ans{1.26} +\end{align} +$Z'<3$ which is good, since there are only three protons available. +$Z'>1$ which is also good, because the screening of the inner two +electrons shouldn't be perfect. + +\Part{b} +The longest wavelength photon comes from the smallest energy +transition, so $n_i=n_f+1=3$. +\begin{align} + E' &= -(E_2'-E_3') = Z'^2E_1 \p({\frac{1}{2^2}-\frac{1}{3^2}}) + = 1.26^2\cdot13.6\U{eV} \p({\frac{1}{4}-\frac{1}{9}}) + = 2.99\U{eV} \\ + \lambda &= \frac{hc}{E'} = \ans{414\U{nm}} +\end{align} +\end{solution} diff --git a/latex/problems/problem12.01.tex b/latex/problems/problem12.01.tex new file mode 100644 index 0000000..d21b665 --- /dev/null +++ b/latex/problems/problem12.01.tex @@ -0,0 +1,10 @@ +\begin{problem*}{12.1} +A ball dropped from a height of $4.00\U{m}$ makes an elastic collision +with the ground. Assuming that no mechanical energy is lost due to +air resistance, \Part{a} show that the ensuing motion is periodic +and \Part{b} determine the period of the motion. \Part{c} Is the +motion simple harmonic? Explain. +\end{problem*} + +\begin{solution} +\end{solution} diff --git a/latex/problems/problem12.02.tex b/latex/problems/problem12.02.tex new file mode 100644 index 0000000..ceb9942 --- /dev/null +++ b/latex/problems/problem12.02.tex @@ -0,0 +1,40 @@ +\begin{problem*}{12.2} +In an engine, a piston oscillates with simple harmonic motion so that +its position varies according to the expression +\begin{equation} + x = (5.00\U{cm}) \cos(2t + \pi/6) +\end{equation} +where $x$ is in centimeters and $t$ is in seconds. At $t = 0$, +find \Part{a} the position of the pistion, \Part{b} its velocity, +and \Part{c} its acceleration. \Part{d} Find the period and amplitude +of the motion. +\end{problem*} + +\begin{solution} +\Part{a} +Simply plugging in $t=0$ into the given position equation we have +\begin{equation} + x(t=0) = 5.00\U{cm} \cdot \cos(\pi/6) = \ans{4.33\U{cm}} +\end{equation} + +\Part{b} +Then we take the derivative to get the velocity +\begin{align} + v &= \pderiv{t}{x} = -2\U{s$^{-1}$} \cdot 5.00\U{cm} \cdot \sin(2t+\pi/6) \\ + v(t=0) &= -10\U{cm/s} \cdot \sin(\pi/6) = \ans{-5.00\U{cm/s}} +\end{align} + +\Part{c} +Taking the derivative again yields the acceleration +\begin{align} + a &= \pderiv{v}{x} = -2\U{s$^{-1}$}\cdot 10.00\U{cm/s}\cdot \cos(2t+\pi/6) \\ + a(t=0) &= -20\U{cm/s$^2$} \cdot \cos(\pi/6) = \ans{-17.3\U{cm/s$^2$}} +\end{align} + +\Part{d} +The period is the time it takes for a complete revolution, i.e.~for a +phase change of $2\pi$, so $\ans{T = \pi\U{s}}$. The amplitude is the +maximum distance from equilibrium. Looking at the original equation +for $x(t)$, we realize that $|\cos(\theta)| \le 1$ for all $\theta$, +so the biggest $x$ will ever get is $\ans{A = 5.00\U{cm}}$. +\end{solution} diff --git a/latex/problems/problem12.05.tex b/latex/problems/problem12.05.tex new file mode 100644 index 0000000..5edcce3 --- /dev/null +++ b/latex/problems/problem12.05.tex @@ -0,0 +1,72 @@ +\begin{problem*}{12.5} +A particle moving along the $x$ axis in simple harmonic motion starts +from its equilibrium position, the origin, at $t=0$ and moves to the +right. The amplitude of its motion is $2.00\U{cm}$ and the frequency +is $1.50\U{Hz}$. \Part{a} show that the position of the particle is +given by +\begin{equation} + x = (2.00\U{cm}) \sin(3.00\pi t) +\end{equation} +Determine \Part{b} the maximum speed and the earliest time ($t > 0$) +at which the particle has this speed, \Part{c} the maximum +acceleration and the earliest time ($t > 0$) at which the particle has +this acceleration, and \Part{d} the total distance traveled between +$t=0$ and $t = 1.00\U{s}$. +\end{problem*} + +\begin{solution} +\Part{a} +Because $x(t=0) = 0$, we can express the motion +\begin{equation} + x(t) = A \sin(\omega t) \;. +\end{equation} +(this is Equation 12.6 with $\phi = -\pi/2$, because +$\cos(\theta-\pi/2) = \sin(\theta)$.) + +To find $A$, note that $\sin(\theta)$ increases as $\theta$ increases +from $0$, so the particle's initially rightward motion requires $A > +0$. $|\sin(\theta)| \le 1$ so $|x| \le A$, and the amplitude is gives +as $2.00\U{cm}$ so $A = 2.00\U{cm}$. + +To find $\omega$, simply compute +\begin{equation} + \omega = 2\pi f = 2\pi\cdot1.50\U{Hz} = 3\pi\U{rad/s} \;. +\end{equation} + +Plugging our $A$ and $\omega$ into our $x(t)$ yields the equation of +motion we set out to find. + +\Part{b} +To find the maximum speed, we could either take the derivative of +$x(t)$ (like we did in 12.2), or realize that the derivative will have +another factor of $\omega$ in it's amplitude and jump to the answer +$v_\text{max}=A\omega=\ans{6\pi\U{cm/s}}$. + +The maximum speed occurs when the position is zero. Our particle +starts at $x=0$, so it has maximum speed at $t = 0, T/2, T, 3T/2, +\ldots$. We're asked for the first occurence for $t>0$, so +$t=T/2=1/2f=\ans{0.333\U{s}}$ + +\Part{c} +To find the maximum acceleration, we could either take the derivative +of $v(t)$ (like we did in 12.2), or realize that the derivative will +have another factor of $\omega$ in it's amplitude compared to the +velocity and jump to the answer +$a_\text{max}=A\omega^2=\ans{18\pi^2\U{cm/s$^2$}}$. + +The maximum acceleration occurs at the minimum position, because +$F=ma=-kx$. Our particle starts at $x=0$, so it at minimum extension +at $t = 3T/4, 7T/4, \ldots$. We're asked for the first +occurence for $t>0$, so $t=3T/4=3/4f=\ans{0.500\U{s}}$ + +Note that in \Part{b} we were looking for the maximum scalar +\emph{speed}, so the direction didn't matter, but in \Part{c} we were +looking for the maximum vector \emph{acceleration}, so the direction +did matter. + +\Part{d} +The period of our particle is $T = 1/f = 2/3 \U{s}$. $t = 1.00\U{s} = +1.5T$. That means it travels $0 \rightarrow A \rightarrow -A +\rightarrow A \rightarrow 0$, for a grand total of +$d=A+2A+2A+A=6A=12.0\U{cm}$. +\end{solution} diff --git a/latex/problems/problem12.06.T.tex b/latex/problems/problem12.06.T.tex new file mode 100644 index 0000000..e57f6ec --- /dev/null +++ b/latex/problems/problem12.06.T.tex @@ -0,0 +1,85 @@ +\begin{problem} +A thin, rigid rod $L = 8.4\U{m}$ long pivots freely about one end. +The rod is initially deflected $\theta_i = 6.4\dg$ from the vertical +with an angular velocity of $\dt\theta_i = 2.7\dg\text{/s}$. +\Part{a} Determine the time dependence $\theta(t)$. +\Part{b} By what angle is the rod deflected at $t=8.9\U{s}$? + +Hint: you might want to review torque and moments of inertia in +Chapter 10. +\end{problem} % combines the second part of P12.6 with Examp 12.6 and Tbl 10.2. + +\begin{solution} +\begin{center} +\begin{asy} +import Mechanics; +real u = 1cm; + +real a=6.4; // degrees +real force=2u; // magnitude +Pendulum p = makePendulum(angleDeg=a, length=2u, stringL="$L$"); +p.mass.radius = 0; +Vector fg = Force(p.mass.center/2, dir=-90, mag=force, L="$F_g$"); +Vector fgtan = Force(p.mass.center/2, dir=a-180, mag=force*sin(a), L=Label("$F_{\tan}$")); +Vector v = Velocity(p.mass.center, dir=a, mag=0.5u, L="$v$"); + +fg.draw(); +fgtan.draw(labelOffset=(-2mm,1mm)); +v.draw(); +p.draw(drawVertical=true); +\end{asy} +\end{center} +The only force on the rod is from gravity, with $mg$ pulling the rods +center of mass downward. Only the portion of this force that is +perpendicular to the rod itself (tangential to the circle the rod +sweeps out) affects its rotation. The torque on the rod is thus +\begin{equation} + \tau = -F_{\tan} \cdot \frac{L}{2} + = -F_g \sin(\theta) \cdot \frac{L}{2} + = -\frac{mgL}{2}\sin(\theta) + \approx -\frac{mgL}{2}\theta\;, +\end{equation} +where we used the small angle approximation $\sin(\theta) \approx +\theta$ for the last step. + +The equation of motion is then +\begin{equation} + \tau = I\ddt\theta = \frac{1}{3}mL^2\ddt\theta\;, +\end{equation} +because the moment of inertia of a rod rotating about it's end is $I = +\frac{1}{3}mL^2$ (Table 10.2). + +Combining the two expressions of $\tau$ we have +\begin{align} + -\frac{mgL}{2}\theta &= \frac{1}{3}mL^2\ddt\theta \\ + -\frac{3g}{2L}\theta &= \ddt\theta\;. +\end{align} +Comparing this formula to Equation 12.5 for a general simple harmonic oscillator +\begin{equation} + \ddt x = -\omega^2 x\;, +\end{equation} +we see by matching that +\begin{equation} + \omega = \sqrt{\frac{3g}{2L}} \approx \ans{1.323\U{rad/s}}\;. +\end{equation} +We can plug this $\omega$ into Equation 12.6 +\begin{equation} + \theta(t) = A \cos(\omega t + \phi)\;, +\end{equation} +where $A$ and $\psi$ are determined by the initial conditions (see Example 12.3) +\begin{align} + \theta_i &= 6.4\dg\text{/s} \cdot \frac{\pi}{180\dg} \approx 111.7\U{mrad} \\ + \dt\theta_i &= 2.7\dg\text{/s} \cdot \frac{\pi}{180\dg} \approx 47.12\U{mrad/s} \\ + \phi &= \arctan\p({\frac{-\dt\theta_i}{\omega\theta_i}}) \approx -308.7\U{mrad} \approx -17.69\dg \\ + A &= \sqrt{\theta_i^2 + \p({\frac{\dt\theta_i}{\omega}})^2} \approx 117.2\U{mrad} \approx 6.718\dg\\ + \theta(t) &\approx \ans{0.1172\cos\p({1.323t-0.3087})}\;. +\end{align} + +\Part{b} +Plugging in $t=8.9\U{s}$ yields +\begin{equation} + \theta(t=8.9\U{s}) = 0.1172\cos\p({1.323 \cdot 8.9 - 0.3087}) + \approx \ans{53\U{mrad}} + \approx \ans{3.0\dg}\;. +\end{equation} +\end{solution} diff --git a/latex/problems/problem12.07.tex b/latex/problems/problem12.07.tex new file mode 100644 index 0000000..2e0db53 --- /dev/null +++ b/latex/problems/problem12.07.tex @@ -0,0 +1,17 @@ +\begin{problem*}{12.7} +The initial position, velocity, and acceleration of an objectmoving in +simple harmonic motion are $x_i$, $v_i$, and $a_i$; the angular +frequency of oscillation is $\omega$. \Part{a} Show that the position +and velocity of the object for all time can be written as +\begin{align} + x(t) &= x_i \cos \omega t + \p({\frac{v_i}{\omega}}) \sin \omega t \;, \\ + v(t) &= -x_i\omega \sin \omega t + v_i \cos \omega t \;. +\end{align} +\Part{b} Using $A$ to represent the amplitude of the motion, show that +\begin{equation} + v^2 - ax = v_i^2 - a_i x_i = \omega^2 A^2 \;. +\end{equation} +\end{problem*} + +\begin{solution} +\end{solution} diff --git a/latex/problems/problem12.12.tex b/latex/problems/problem12.12.tex new file mode 100644 index 0000000..aba65c9 --- /dev/null +++ b/latex/problems/problem12.12.tex @@ -0,0 +1,41 @@ +\begin{problem*}{12.12} +A $1.00\U{kg}$ glider attached to a spring with a force constant of +$25.0\U{N/m}$ oscillates on a horizontal, frictionless air track. At +$t=0$, the glider is released from rest at $x=-3.00\U{cm}$ (that is, +the spring is compressed by $3.00\U{cm}$). Find \Part{a} the period +of its motion, \Part{b} the maximum values of its speed and +acceleration, and \Part{c} the position, velocity, and acceleration as +functions of time. +\end{problem*} + +\begin{solution} +\Part{a} +\begin{equation} + \omega = \sqrt{\frac{k}{m}} = \ans{5.00\U{N/m}} \;, +\end{equation} +and +\begin{equation} + T = \frac{1}{f} = \frac{2\pi}{\omega} = \ans{1.26\U{s}} \;. +\end{equation} + +\Part{b} +The maximum speed of the object is (see 12.5) +\begin{equation} + v_\text{max} = \omega A = \ans{15.0\U{cm/s}} \;, +\end{equation} +where $A = 3.00\U{cm}$. + +The maximum acceleration of the object is (see 12.5) +\begin{equation} + a_\text{max} = \omega^2 A = \ans{75.0\U{cm/s$^2$}} \;. +\end{equation} + +\Part{c} +The position starts at the minimum value of $x$, so a $-\cos$ based +expression for $x$ is in order +\begin{align} + x &= -A \cos(\omega t) = -A \cos(\omega t) \\ + v &= \omega A\sin(\omega t) = v_\text{max} \sin(\omega t) \\ + a &= \omega^2 A\cos(\omega t) = a_\text{max} \cos(\omega t) \;. +\end{align} +\end{solution} diff --git a/latex/problems/problem12.15.tex b/latex/problems/problem12.15.tex new file mode 100644 index 0000000..9a2a171 --- /dev/null +++ b/latex/problems/problem12.15.tex @@ -0,0 +1,35 @@ +\begin{problem*}{12.15} +A block of unknown mass is attached to a spring with a spring constant +of $6.50\U{N/m}$ and undergoes simple harmonic motion with an +amplitude of $10.0\U{cm}$. When the block is halfway between its +equilibrium position and the end point, its speed is measured to be +$30.0\U{cm/s}$. Calculate \Part{a} the mass of the block, \Part{b} +the period of the motion, and \Part{c} the maximum acceleration of the +block. +\end{problem*} + +\begin{solution} +\Part{a} +Conserving energy +\begin{align} + E &= \frac{1}{2} k A^2 = 32.5\U{mJ} \\ + E &= \frac{1}{2} k \p({\frac{A}{2}})^2 + \frac{1}{2} m v^2 + = \frac{E}{4} + \frac{1}{2} m v^2 \\ + m &= \frac{2}{v^2} \cdot \frac{3}{4}E = \frac{3E}{2v^2} + = \ans{542\U{g}} \;. +\end{align} + +\Part{b} +\begin{equation} + T = \frac{1}{f} = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{m}{k}} + = \ans{1.81\U{s}} \;. +\end{equation} + +\Part{c} +This is just Hooke's law +\begin{align} + F &= ma_\text{max} = kA \\ + a &= \frac{k}{m}A = \ans{1.20\U{m/s$^2$}} \;. +\end{align} + +\end{solution} diff --git a/latex/problems/problem12.18.tex b/latex/problems/problem12.18.tex new file mode 100644 index 0000000..1e6b4ce --- /dev/null +++ b/latex/problems/problem12.18.tex @@ -0,0 +1,98 @@ +\begin{problem*}{12.18} +A $2.00\U{kg}$ object is attached to a spring and placed on a +horizontal, smooth surface. A horizontal force of $20.0\U{N}$ is +required to hold the object at rest when it is pulled $0.200\U{m}$ +from its equilibrium position (the origin of the $x$ axis). The +object is now released from rest with an initial position of +$x_i=0.200\U{m}$, and it subsequently undergoes simple harmonic +oscillations. Find \Part{a} the force constant of the +spring, \Part{b} the frequency of oscillations, and \Part{c} the +maximum speed of the object. Where does this maximum speed +occur? \Part{d} Find the maximum acceleration of the object. Where +does it occur? \Part{e} Find the total energy of the oscillating +system. Find \Part{f} the speed and \Part{g} the acceleration of the +object when its position is equal to one third of the maximum value. +\end{problem*} + +\begin{solution} +\begin{center} +\begin{asy} +import Mechanics; + +real u = 1cm; +real a = u/2; + +Surface surf = Surface(pFrom=(-.7u,-a/2), pTo=(2u,-a/2)); +Block b = Block(center=(0,0), side=a); +Spring spring = Spring(pFrom=(b.center+(a/2,0)), pTo=(2u,0)); +Vector Fspring = Force(b.center, mag=2a, dir=0, L="$F_s$"); +Vector Fexternal = Force(b.center, mag=2a, dir=180, L="$F_e$"); + +Fspring.draw(); +Fexternal.draw(); +surf.draw(); +spring.draw(); +b.draw(); +\end{asy} +\end{center} +\Part{a} +The external force $F_e$ must exactly balance the spring force $F_s$ +to hold the object at rest on a frictionless surface, so +\begin{align} + |F_s| &= k|x| = |F_e| \\ + k &= \p|{\frac{F_e}{x}}| = \ans{100\U{N/m}} \;. +\end{align} + +\Part{b} +The frequency of oscillation is then +\begin{equation} + f = \frac{\omega}{2\pi} = \frac{1}{2\pi}\sqrt{\frac{k}{m}} + = \ans{1.13\U{Hz}} \;, +\end{equation} +and +\begin{equation} + \omega = 2 \pi f = 7.07\U{rad/s} \;. +\end{equation} + +\Part{c} +The maximum speed of the object is (see 12.5) +\begin{equation} + v_\text{max} = \omega A = 7.07\U{rad/s} \cdot 0.200\U{m} + = \ans{1.41\U{m/s}} \;, +\end{equation} +which occurs at $x=0$, when all the oscillation energy is kinetic. + +\Part{d} +The maximum acceleration of the object is (see 12.5) +\begin{equation} + a_\text{max} = \omega^2 A = (7.07\U{rad/s})^2 \cdot 0.200\U{m} + = \ans{10\U{m/s$^2$}} \;, +\end{equation} +which occurs at $x=-A=-0.200\U{m}$. If you are only interested in the +peaks in the \emph{magnitude} of the acceleration, they occur for +$x=\pm A$. + +\Part{e} +Lets find the energy in the initial situation, right after the object +was released. It's at rest, so its kinetic energy is $0$ and all the +enegy is spring-potential energy +\begin{equation} + E = \frac{1}{2} k A^2 = \ans{2.00\U{J}} +\end{equation} + +\Part{f} +Conserving energy +\begin{align} + E &= \frac{1}{2} k \p({\frac{A}{3}})^2 + \frac{1}{2} m v^2 + = \frac{E}{9} + \frac{1}{2} m v^2 \\ + v &= \pm\sqrt{\frac{2}{m} \cdot \frac{8}{9}E} = \ans{\pm1.33\U{m/s}} \;. +\end{align} + +\Part{g} +This is very similar to Problem 12.15 \Part{c}. +\begin{align} + F &= ma = kx \\ + a &= \frac{k}{m}x = \pm \frac{kA}{3m} = \ans{\pm3.33\U{m/s$^2$}} \;. +\end{align} + +\end{solution} diff --git a/latex/problems/problem12.20.tex b/latex/problems/problem12.20.tex new file mode 100644 index 0000000..80b3192 --- /dev/null +++ b/latex/problems/problem12.20.tex @@ -0,0 +1,163 @@ +\begin{problem*}{12.20} +A $65.0\U{kg}$ bungee jumper steps off a bridge with a light bungee +cord tied to her and the bridge (Figure P12.20). The unstretched +length of the cord is $11.0\U{m}$. She reaches the bottom of her +motion $36.0\U{m}$ below the bridge before bouncing back. Her motion +can be seperated into an $11.0\U{m}$ free-fall and a $25.0\U{m}$ +section of simple harmonic oscillation. \Part{a} For what time +interval is she in free-fall? \Part{b} Use the principle of +consevation of energy to find the spring constant of the bungee +cord. \Part{c} What is the location of the equilibrium point where +the spring force balances the gravitational force acting on the +jumper? Note that this point is takes as the origin in our +mathematical description of simple harmonic oscillation. \Part{d} +What is the angular frequency of the oscillation? \Part{e} What time +interval is required for the cord to stretch by $25.0\U{m}$? \Part{f} +What is the total time interval for the entire $36.0\U{m}$ drop? +\end{problem*} + +\begin{solution} +It always helps me to draw a picture of what's going on: +\begin{center} +\begin{asy} +import graph; +size(5cm,3cm, IgnoreAspect); + +real g = 9.8; // m/s^2, gravitational acceleration. +real m = 65; // kg, mass of jumper. +real L = 11; // m, length of the bungee cord. +real dH = 36; // m, peak-to-peak amplitude. +real tF = sqrt(2*L/g); //s, time to fall from peak to bungee-tension. y=-gt^2/2 +// E = mg*dH = 1/2 k Lmax^2 -> k = 2mg*dH/Lmax^2 +real dLmax = dH-L;// m, maximum stretch on bungee cord. +real k = 2*m*g*dH/dLmax**2; // N/m, bungee cord spring constant. +real dLeq = m*g / k; //m, stretch while still accelerating down. +real A = dLmax - dLeq; //m, amplitude of SHO. +real w = sqrt(k/m); //rad/s, angular speed of SHO. +real thetaEngage = asin(dLeq/A); //rad, phase angle with horizontal at dL=0. +real tS = (2*thetaEngage+pi)/w; //s, bungee-tension time per cycle; + +real y(real t) { // y=0 is the transition region, when dL=0; + // valid for t <= 3*tF + tS = second bungee phase + if (t <= 0) // standing on bridge + return L; + if (t <= tF) // free-fall + return L-g*t**2/2; + t -= tF; + if (t <= tS) // bungee oscillation + return -dLeq-A*sin(w*t-thetaEngage); + t -= tS; + return -g*t**2/2 + (g*tF)*t; // second parabola +} + +real ySHO(real t) { // if there was no free-fall section. + return -dLeq-A*sin(w*(t-tF)-thetaEngage); +} + +real tmin = -tF; +real tmax = 2.5*tF+tS; +//pair[] z={(tmin,0),(tmax,0)}; +//draw(graph(z), dashed); + +draw(graph(ySHO, tmin, tmax), blue); +draw(graph(y, tmin, tmax), red); +yequals(0, xmin=tmin, xmax=tmax, Dotted); +yequals(-dLeq, xmin=tmin, xmax=tmax, Dotted); +xequals(0, Dotted); +xequals(tF, Dotted); +xequals(tF+tS, Dotted); +\end{asy} +\end{center} +The dotted horizontal lines are, top to bottom, the position where the +bungee cord begins resisting the fall and the equilibrium position of +the simple harmonic oscillation. The dotted vertical lines are, left +to right, the times of the person jumping off the bridge, the bungee +cord beginning to resist the fall, and the bungee cord ceasing to +resist the fall as the jumper is launched back up into the air. The +red curve tracks the position of the jumper as a function of time, and +the blue curve extrapolates the simple harmonic oscillation to draw +attention to the difference between the simple harmonic oscillation +and free-fall portions of the actual trajectory. + +\Part{a} +The free-fall phase follows the parabolic $y = -\frac{1}{2}gt^2$ +behavior you all know and love from your Freshman Mechanics class. +This fall continues until the jumper drops the $L=11\U{m}$ needed to +take the slack out of the bungee cord. The time is thus +\begin{align} + -L &= -\frac{1}{2}gt_f^2 & t_f &= \sqrt{\frac{2L}{g}} = \ans{1.50\U{s}} \;. +\end{align} + +\Part{b} +We don't know anything about velocity yet, so lets conserve energy +between the points where the velocity is zero. Defining $h_b=0$ to be +the height of the lowest point in the trajectory, the energy at that +point is all spring potential energy. Of course, the energy at the +jumping-off point ($h_t=36\U{m}$)is all gravitational potential +energy. Setting these equal, we have +\begin{align} + E &= mgh_t = \frac{1}{2} k \Delta L^2 = \frac{1}{2} k \p({h_t-L})^2 \\ + k &= \frac{2mgh_t}{\p({h_t-L})^2} = \ans{73.4\U{N/m}} +\end{align} +where $\Delta L = h_t - L = 25\U{m}$ is the maximum stretch in the +bungee cord. Of course, in the real world energy is lost to heating +the bungee cord, shaking the jumper, etc., which is good, since +otherwise the jumper would bump into the bridge in the second +free-fall phase on the right side of the drawing above. + +\Part{c} +Here we just use Hooke's law and balance the vertical forces on the +jumper. +\begin{align} + mg &= k\Delta L_{eq} & \Delta L_{eq} &= \frac{mg}{k} = 8.68\U{m} \;, +\end{align} +where $\Delta L_{eq}$ is the distance from bungee-engage to equilibrium. +The equilibrium point is thus +\begin{align} + L + \Delta L_{eq} = \ans{19.7\U{m}} +\end{align} +below the bridge. + +\Part{d} +\begin{equation} + \omega = \sqrt{\frac{k}{m}} = \ans{1.06\U{rad/s}} +\end{equation} + +\Part{e} +Let's take a look at the reference circle for the harmonic oscillation +phase +\begin{center} +\begin{asy} +import Mechanics; + +real u = 1.2cm; +real A = 16.32; +real dLeq = 8.68; +real theta = asin(dLeq/A); + +draw(scale(u)*unitcircle, dotted); +pair engage = (-u*cos(theta), u*sin(theta)); + +Angle a = Angle(engage, (0,0), (-1,0), radius=6mm, "$\theta$"); +a.draw(); +draw((0,0)--engage, red); +draw(engage--realmult(engage, (1,0)), blue); +label("$\Delta L_{eq}$", (engage.x, engage.y/2), W); +draw((0,0)--(-u,0), dashed); +draw((0,0)--(0,-u), blue); +label("$A$", (0,-u/2), E); +\end{asy} +\end{center} +so +\begin{align} + \theta &= \arcsin\p({\frac{\Delta L_{eq}}{A}}) = 0.561\U{rad} \\ + t_s &= \frac{\theta+\frac{\pi}{2}}{\omega} = \ans{2.00\U{s}} \;. +\end{align} + +\Part{f} +Combining the free-fall time from \Part{a} with the harmonic time +from \Part{e} we have +\begin{equation} + t_{tb} = t_f + t_s = \ans{3.50\U{s}} \;. +\end{equation} +\end{solution} diff --git a/latex/problems/problem12.31.tex b/latex/problems/problem12.31.tex new file mode 100644 index 0000000..590b2f0 --- /dev/null +++ b/latex/problems/problem12.31.tex @@ -0,0 +1,8 @@ +\begin{problem*}{12.31} +A pendulum with a length of $1.00\U{m}$ is released from an initial +angle of $15.0\dg$. After $1000\U{s}$, its amplitdue has been reduced +by friction to $5.50\dg$. What is the value of $b/2m$? +\end{problem*} + +\begin{solution} +\end{solution} diff --git a/latex/problems/problem12.33.tex b/latex/problems/problem12.33.tex new file mode 100644 index 0000000..697f389 --- /dev/null +++ b/latex/problems/problem12.33.tex @@ -0,0 +1,10 @@ +\begin{problem*}{12.33} +A $2.00\U{kg}$ object attached to a spring moves without friction and +is driven by an external force $F=(3.00\U{N})\sin(2\pi t)$. Assuming +that the force constant of the spring is $20.0\U{N/m}$, +determine \Part{a} the period and \Part{b} the amplitude of the +motion. +\end{problem*} + +\begin{solution} +\end{solution} diff --git a/latex/problems/problem12.38.tex b/latex/problems/problem12.38.tex new file mode 100644 index 0000000..7bd8914 --- /dev/null +++ b/latex/problems/problem12.38.tex @@ -0,0 +1,14 @@ +\begin{problem*}{12.38} +Four people, each with a mass of $72.4\U{kg}$, are in a car with a +mass of $1130\U{kg}$. An eathquake strikes. The vertical +oscillations of the ground surface make the car bounce up and down on +its suspension springs, but the driver manaages to pull off the road +and stop. When the frequency of the shaking is $1.80\U{Hz}$, the car +exhibits a maximum amplitude of vibration. The earthquake ends and +the four people leave the car as fast as they can. By what distance +does the car's undamaged suspension lift the car's body as the people +get out? +\end{problem*} + +\begin{solution} +\end{solution} diff --git a/latex/problems/problem12.42.tex b/latex/problems/problem12.42.tex new file mode 100644 index 0000000..87e673d --- /dev/null +++ b/latex/problems/problem12.42.tex @@ -0,0 +1,100 @@ +\begin{problem*}{12.42} +\Part{a} A hanging spring stretches by $35.0\U{cm}$ when an object of +mass $450\U{g}$ is hung on it at rest. In this situation, we define +its position as $x=0$. The object is pulled down an additional +$18.0\U{cm}$ and released from rest to oscillate without friction. +What is its position $x$ at a time $84.4\U{s}$ later? \Part{b} A +hanging spring stretches by $35.5\U{cm}$ when an object of mass +$440\U{g}$ is hung on it at rest. We define this new position as +$x=0$. This object is also pulled down an additional $18.0\U{cm}$ and +released from rest to oscillate without friction. Find its position +$84.4\U{s}$ later. \Part{c} Why are the answers to parts \Part{a} +and \Part{b} different by such a large percentage when the data are so +similar? Does this circumstance reveal a fundamental difficulty in +calculating the future? \Part{d} Find the distance traveled by the +vibrating object in \Part{a}. \Part{e} Find the distance traveled by +the object in \Part{b}. +\end{problem*} + +\begin{solution} +There's a lot of repetition in this problem, so let's do everything +symbolically first. A stretch of $\Delta x$ due to hanging a mass $m$ +implies a spring constant of $k = F/\Delta x = mg/\Delta x$ and an +angular frequency of $\omega = \sqrt{k/m} = \sqrt{g/\Delta{x}}$. +Notice that $\omega$ does not depend on the hanging mass. At this +point we know everything about how the position changes as a function +of time, namely +\begin{equation} + x(t) = -A\cos(\omega t) = -A\cos(\sqrt{g/\Delta{x}} t)\;, +\end{equation} +where the $-\cos$ part came from letting up be the positive $x$ +direction and noticing that the mass starts at an extreme low point in +its oscillation. Finally, we note that the total distance traveled as +a function of time is going to be +\begin{equation} + d = 2A \cdot N_{T/2} + (A+x(t_\text{frac})) +\end{equation} +where $N_{T/2} = floor(2t/T)$ is the number of completed half-periods +and $t_\text{frac} = t - N_{T/2}\cdot T/2$ is the fractional +half-period left over. The extra $A$ in the right-hand term ensures +that the right-hand term is zero when $t_\text{frac}=0$. Now we just +have to plug in the two cases\ldots + +\Part{a} +\begin{align} + \Delta x &= 0.350\U{m} & A &= 0.180\U{m} & t &= 84.4\U{s} \\ + \omega &= 5.29\U{rad/s} & x(t) &= \ans{-15.8\U{cm}} +\end{align} + +\Part{b} +\begin{align} + \Delta x &= 0.355\U{m} & A &= 0.180\U{m} & t &= 84.4\U{s} \\ + \omega &= 5.25\U{rad/s} & x(t) &= \ans{15.9\U{cm}} +\end{align} + +\Part{c} +The answers to \Part{a} and \Part{b} are so different because the +angular velocities are slightly different. The phase starts out the +same but grows slightly faster in \Part{a}. The difference seems so +large because the phase loops around at $2\pi$, so a small difference +in the ``total phase'' $\omega t$ can produce a large difference in +the ``effective phase'' $\omega t \mod 2\pi$. + +This sensisivity to the initial conditions (here to $\Delta x$) is the +same sort of effect that gives rise to chaotic behavior +(see \url{http://en.wikipedia.org/wiki/Chaos_theory#Chaotic_dynamics}). +The simple harmonic oscillator is not chaotic though, because $\Delta +x$ is not a dimension that changes with time. This means that +predicting the future for a simple harmonic oscillator is not +\emph{that} difficult. You may have to keep adjusting your model +parameters as you get more data, but with time your model will get +better and better. + +Compare this system to one that \emph{is} chaotic, e.g.~the +damped-forced pendulum. In this situations, the sensitivity to +initial conditions also involves the changing parameters, like the +position of the pendulum. Not only does your model have to be +perfect, but your understanding of where the pendulum is now must also +be perfect. This is a much more difficult problem, since the position +of the pendulum is changing with time, so you can't just wait and +aquire a arbitarily precise time average. This is why it is so hard +to make long term predictions for chaotic systems. + +\Part{d} +\begin{align} + T &= \frac{2\pi}{\omega} = 1.19\U{s} & N_{T/2} &= 142 + & t_\text{frac} &= 93.9\U{ms} \\ + d &= 51.1\U{m} + 2.17\U{cm} = \ans{51.1\U{m}} +\end{align} + +\Part{e} +\begin{align} + T &= \frac{2\pi}{\omega} = 1.20\U{s} & N_{T/2} &= 141 + & t_\text{frac} &= 91.7\U{ms} \\ + d &= 50.8\U{m} + 2.05\U{cm} = \ans{50.8\U{m}} +\end{align} +Notice that the distance $d$ doesn't loop back on itself like the +position $x$, so the small relative difference in ``total phase'' +leads to a small relative difference in distance between \Part{d} +and \Part{e}. +\end{solution} diff --git a/latex/problems/problem12.47.T.tex b/latex/problems/problem12.47.T.tex new file mode 100644 index 0000000..3b4d809 --- /dev/null +++ b/latex/problems/problem12.47.T.tex @@ -0,0 +1,98 @@ +\begin{problem} +\emph{BONUS PROBLEM}. Find the resonant frequency in Hz of the sprung +pendulum for small $\theta$ on both Earth and the Moon. The mass of +the bob is $m = 2.3\U{kg}$, the length of the light rod is $r = +3.0\U{m}$, and the spring constant is $k = 1.4\U{N/m}$. The system is +at equilibrium when the pendulum rod is vertical. + +Hints: drawing a free body diagram may help determine the restoring +forces. You will need to use the small angle approximation. +\end{problem} % Developed from Ch. 12, Prob. 47. + +\begin{nosolution} +\begin{center} +\begin{asy} +import Mechanics; +real u = 1cm; + +Pendulum p = makePendulum(angleDeg=25, length=2u, angleL="$\theta$"); +Spring s = Spring(pFrom=p.mass.center, pTo=p.mass.center+2u, + unstretchedLength=2u); + +s.draw(); +p.draw(drawVertical=true); +\end{asy} +\end{center} +\end{nosolution} + +\begin{solution} +\begin{center} +\begin{asy} +import Mechanics; +real u = 1cm; + +Pendulum p = makePendulum(angleDeg=25, length=2u, + angleL="$\theta$", stringL="$r$"); +Spring s = Spring(pFrom=p.mass.center, pTo=p.mass.center+2u, + unstretchedLength=2u, L="$k$"); +Vector fs = Force(p.mass.center, dir=180, mag=5mm, L="$F_s$"); +Vector fg = Force(p.mass.center, dir=-90, mag=7mm, L="$F_g$"); + +s.draw(); +fs.draw(); +fg.draw(); +p.draw(drawVertical=true); + +label("$m$", p.mass.center); +\end{asy} +\end{center} +The spring is stretched or compressed by $x \approx r\sin(\theta)$ +where the approximation is exact in the limit of small angles. The +total force is the sum of the spring force $F_s$ and the gravitation +force $F_s$ acting on the bob. The portion of this total force that +is tangent to the bob's path is +\begin{align} + \sum F_{\tan} &= F_s\cos(\theta) - F_g\sin(\theta) + = -kx \cos(\theta) - mg\sin(\theta) + \approx -kr \sin(\theta) \cos(\theta) - mg\sin(\theta) + = -\p[{kr \cos(\theta) + mg}]\sin(\theta) \\ + &\approx -\p[{kr + mg}] \cdot \theta\;, +\end{align} +where we have used the small angle approximation again in the last +step. We also know from Newton's laws that +\begin{equation} + \sum F_{\tan} = ma_{\tan} = m\nderiv{2}{t}{x_{\tan}} + = mr\nderiv{2}{t}{\theta}\;. +\end{equation} + +Combining these two formulas for $\sum F$ we have +\begin{align} + mr\nderiv{2}{t}{\theta} &= -{kr + mg} \cdot \theta \\ + \nderiv{2}{t}{\theta} &= -\frac{kr + mg}{mr} \cdot \theta + = -\p({\frac{k}{m} + \frac{g}{r}}) \cdot \theta \;. +\end{align} +Looking at the last form, we see that it looks a lot like the +equation of motion for simple harmonic motion +\begin{equation} + \nderiv{2}{t}{\theta} = -\omega^2 \theta\;, +\end{equation} +and we see that the equations are equal when +\begin{equation} + \frac{k}{m} + \frac{g}{r} = \omega^2\;. +\end{equation} +Plug in to the frequency formula for a simple harmonic oscillator, we +have +\begin{equation} + f = \frac{\omega}{2\pi} + = \ans{\frac{1}{2\pi}\sqrt{\frac{k}{m}+\frac{g}{r}}}\;. +\end{equation} + +On Earth $g = 9.8\U{m/s$^2$}$, and on the Moon $g = 1.6\U{m/s$^2$}$, so +\begin{align} + f_\text{Earth} &= \frac{1}{2\pi}\sqrt{\frac{1.4}{2.3}+\frac{9.8}{3.0}} + = \ans{0.31\U{Hz}} \\ + f_\text{Moon} &= \frac{1}{2\pi}\sqrt{\frac{1.4}{2.3}+\frac{1.6}{3.0}} + = \ans{0.17\U{Hz}}\;. +\end{align} + +\end{solution} diff --git a/latex/problems/problem12.T.bombardier.jpg b/latex/problems/problem12.T.bombardier.jpg new file mode 100644 index 0000000000000000000000000000000000000000..778c1c20c2ea96d64c327bb24fdee70cc1d702e7 GIT binary patch literal 11296 zcmbVyWmsH67G)DOIKdJc4Hjr5cyRaN!5c!-xHT3eKyV1sNN^4A4o%|{TpADV(zquO zd^5ANvorf^cW<2^@4Mf7x8AGo)~!>g-s9Zk8h}_uL0JKS_5=Vh|JwkMhX4|}PY^pV z02%-T007YbbsYl;rOlxqEdb`7e?4fAi-2GNF&-WsJ{~bXJ~1T`0TCsTjF^}VNJse( zqobvy`fHT5w2aKG%#5_$+`{@eZcL!O`$1JKaX(J(PEaWOD4o}mBr{e7GS1CxPATI(6s z2j`ch0dc%CWH~im6WSkLzA=*X$?CjY56or4uKh7d0g>AXVkY@VSabjy=D+(yBVpiq z5+MD-`5F4l#{~dB`rn`==p+D1fS(Mp|NkYl6hAp|RD}u~Ttg<67S_NkXKwx7Z>KJOrr|X%s4gq8jzYpI=gDnmq!xM9aPy@Tu|jSYu8Bh^%jsw3EKI9d!dz zTpWe=XQC@M6+};j$S8<|>Hj}KM%kcub@^=pjL3SCX0*QA>K-CO>^W*hB8d0$78v{f z>6tVel>}e)y$-Rtf;q<0|c!vi0MeqD?=+hC-Yex zvkusfEF3|_Vq8@6?(Vc`j{qa=1bX5%>M6}n81@V}82``E8riNmqu_4In8|uR-*zHO z6}XkLVtfszI@VF7@t?9WrSwImmzeNp+4mlE``V4zHI!*zmAZNmHtw`|Mx)?g=>SlG z5N6#Z4aG=;Uy}veAALV8Vr%o;Q88kW5x6OujNi#PDs7RGsCzl$`={Hk6TO@M{KK=@ z^hHAJxk=$XmfSFvK<#=;i(u@}xWz7AJKW8V?gran%U%^5%>Me1mB=q+AAjL&nU~wg zHHyao;79=snsqOWb`?;|`+(LbN|}d^M>fmyB~z)_PC{zE=H@$nLw<{3x@~>uL(R{) z#5nZCwuC=|HG>%d{{*&#z0Xp{(ax;^`ERb|7z=aBc5?}a(F@G(-L(yzoC#|Kl*{Fs z4~v2f)&S~W;So@RU7W*W^a;7eB*bb-jl7WhVyftC6G=1uJR_x`{OCfc=MjMZ2w=M* zw$8zkV)zTZ?_l!Z$msK;YvGcR{@NmD>b;=6G?}(^S37^%s!A=-=-*esc6Omc1 ztw60_Rz%SI&FlcEfBv_>)8BrJDUZaMZNu(LeH2AblrYq!ZKZZdCzIDt>J+!Hc*?KXaxTR+gQ-8+)Nj$6`++x_0YDudk%$yyU^pFc|YqVFQi z^t;^%4EqJnvg2g53Kf37J8bIPJo_1izx+#Lq>?eT{W(&f2{%wURpphW#d@}!9v zpHQw{z{4nGnY&js?d~CPwz%ocNMSBzLLmYR20&v_6nv%_wwTH@b>B#BcupW8FW&#q z#av!9xAnr4i3}BsHG~Zb4KL1{S(d#`IO?5`c870fAWW@-q-Ls8E8}Z>+@?vv9myP5 zfyPE*7Y-eOsN%=ondHXM#9^NT0DO`+$gFc4+aLCfNma-z3mlmIMCS1cQC zx;DeJw3L!FLYV57;nmlAN1w8}ko9K~y}G}WG4 zDptu&$xo~ilR&9{IxaC9e2<&woqH2N7=NdIh|4MZHgFQfC5U_*J5dXYK{Pa>b^o{@bqw25O)TuS zT)9;GIx9!ud3Wqet|0sfps`)u9y|)TdJpG=G`A3WD=4%6&}e77lPI!hdpX5GosCVS zTf%A92o2B96{m@TEKv7j^B>Yr`$XWi+=5tKmq!PTua?k$5tJdL1tuN=ScZ&HtVaKK zA#&g{5|qhs+w(n>@~t6ldoZPJxc}&Vpw({Il3)Vdi^Z6mH8n1C%yBm?BpeXVB&2?NnSsrAeLD+~4nwv)@mWWL6=GtF&OKl&#leX>k zBg+<12&=z6)UAX>D0WN16g*n_U~h>{SkqX%|)f;UY!mE_`$0oP5>2P^Ik z5Pf(zn@-2p-9?XmLNCuI;?hX7RumZ>*X&@2$3)}LF?eHL+d9)*6lqJ$**vjoHQjV3 zUzj&5Uw=o*U29=gAakfTaA_$%io=Id<&;NL_3?(O3E17zOa2I0gr*mtFYo4VEt(=0 z0*V@o>Ftk;zG{}_HYbMGwANpeQ^$5_A9%$4(C6T(&axcBe!?E~5&wP@I4Hmp^TDnY z6z*^;wAI*mAe?!k;3IG+O5v0?=im(WWLIdPUu2@=C3L*`d`vQCf4SV}?qYqSJ<8?7 z7`HSrFiSdQi*p)_Fmp|@!|!e`T^yn0+-eW0^*uw(kSZX@FHI@RME!{_u;e13GXKR?yu+mr{*c z@Jby_FngqiCN?6ZhxrvFO@6`1C*agkajLW_HsD8nM-jne#tB1NSvrOQPRi$8702+9a*aZ@BWm z2I4N%4+*RZ-0Hry4!8dF{%u<+rFbPdrqnf_3Z8nZ%yo;d{#%u`)`VvgD#aPL?eB6h z?IIOa*!i92*6X=Gw5Kiq0CkWG3cjx}0;}RN+t`KJ1}=iB(Nk=viWv+8j}5?hV3{t+ zPQRqeprd+)Xi~llujNyS7?PdsJKZ#w4Z(M#Im&mJutO+Tr1b)+R>`Oh@T@i7=WBzmh;{zGGa|0g@5tMY%v+O zpIt&bK~uOHDiI$^uJw^0t}=S5tjz{|rltuj?!_%Ik*iKrl#$IqpBlh#Lo zaQgnvJUpn^!u2po2}5u~Zf#aXbLX2<1r@N%vG)-`SJMM*S#drQd}TEDo7TKLsJD(Z zDiqnisK{S=t1YTe?(62#b_$NnZg!EhWn&UEVR!^IL_qKPiuM#bQCCWjfC|SPEVSKn zp=K+n+jj%)?#UVV6Z_aPKGSZ!#>Qu&F|Ul3{*_YLWtHyDF(6_*7 z--)ne~co>&jTJNa(4+Sd`SHVC#YU)~yZcg^>M_34iSnsWF}h z?lZs2v&G|6Jo^N}IQx!GB{ag0X15H3F6o1}6uzQ?eL}w+QcNyagfq`8fRRaZg8Q{a zEpB0s86*PCe<$E72fqu!G?}WfL~8#^JQL%3(XBo0GjF2?)$oPvrdD`;%t%vWjZkFt z%Gy`CjvjO8{M5}0hGmcdZ5D353)Dufa&W6wuI`0BBSHWRwWgKtJ9A<wCojmK1NCL(XUQ?K=(eCKlQHdUyONt+K z+iol<^ud(H!#}V4ppZ^inws`N(i3^N;R+*O#9={C(0!}pB2c4k<()X|L~lqcN1de3 zLg4($$%^LFFzrs@5O2?hh++y5l$nG!SoF@+ z6sOD1z1)k*b&x67=$2zNb~@42CO0Hh8T`BpKFW_9a%>T&&QZSkY5U@rJ+Ie79?`n$icIOxYyv5D@?HXXU*Y#G|-qbua0!FQac}CtgY^;7y7A~8HG73U7``asU!MRoWFxc zD(v#U#aMyvgE|FT@E9R>rp(S_Z@>X8dg)IC2q;PFQ&x^mttb`Y*(|9qqxF(h#xFB* zUgkiS*TOx&ErmZ{_6Y~+RPp)y`d&1Ys-6}cEIFz^+aDd{UAiT$>-i!2;}+`P4$YcElI-pHxjIXp7oNby&2CKu}!T&(|L@oiR(h2rhms&qKs0^eqrF zof&u}S2cPS!c5ey8ojuyTo`Me7szx)o;8ys`mJ4iaDh9=OG>j$C`Yy3*;td_q|q>B zv%mnlqheG-iK*$9w)8;e{Dy`xYbWL+O^>$j`NbMEulUe~@~ChYVB5@9!oj33A1rWT zmFv$k^Y0#qxY49wp0P7sSYbG?dSWA@kB{l9!R+WgPyio0d?n*EtK^x}msz*{rNxHo z#@kaE;KUXy|J8dh`{B?<2`LuOGQ;)=^C!f?{~Mv_$3T#w<1rD3W_{b1t+f#0WTC-q z5e#ykgR9Qc5kI!oA{XfYs zFMf1DJ7Wfi+MG205%aM;zQ28GnbTG&8b`_d;yGuEWm7CqTZ@L1;pL21WiEX;_zOp- zmB*PmopYHE$)uFh;@x7%^6^anU2zLwMdvjDmjEF9VlIkMh=`Io->=v&T=Y&`vTYDl z&KEtjf(O(mwQ}62vi~NX;!H|QU?+#O|MWo`vkQk$d)_Z&B zGo#)!N}8ME$|96UDt$IxcTAYgkwJgHtS@G{=7e=wLI|0D!gE|``=?65X$63t(JQLz^TxdjvxcTtv1EO@wxq?) z@b*CuyYOH15Jdb)NX)GiIeS?&hG7rUJnrPiq;PhqJB3Q;splot-2v?m2CAXDZ3_3B z!MSjgGRg_t%WFKo$&sEvApyj@f%+N9a8niEE5<7@YFP-g%lqP=yo<9`)V61hGRqpc zV;%%FQ_V=&+M+E`6snxOa5Unw;p|p&(|ql!1YWh0{#A^b1?7@7Sw$GOT&tbEy}Zo) zX_WqX9XF=6sXp%VqF%({msmc@0iNnp2sDn4+>14RNR3lEPhMh`Y~CWc-#`Hph;?uz zzL`3D!mQoC7pV-ks%4qnvZbS|Go7i(?d0Yp>6@T-7#GO(Cz82YG}_k#3*#*r-(|E~ z4Oal&y7cIJyBxdt`Cdy1Vb?6;2;eYUlzFnraRL+8aJfunAh#CT7HLy0S|Yh(G-H*aHa_qSK9Cmj&Qbt(|e zyWx2U&YZdiA&Xgjx40lFqoG#UOe6|T)@Bm5adIVg(Yw785=*ouJBQu2C!LI8SXtmF zCN}fDpT?1vjX&rS04wsawd(y)^C!ip?9HwQ0tAoSiOg&>1)xc11D_D%$P}bD3#QDY zporn2vA^02&Tri(rbe!bBg3x*Lix7kyA#uuP6XINv!Of(UFVrq6CJ_!y2MSjCQG~vXxbVeDYb@~%ehDqeZ7dLeyaHk_0rB0&{7(P zT*|&UcC-{sxqQk>rOen7Lg3MQA|3z{&{EORxlQM|&>NkhL@ z#w<`x$nCOiGbbjPk37H2Y9ENR9=17zzIXlft&$O5;Ck?RyrPo`otE}Ha=19WZCIEU zRx4ER(`y0#XxUJncnC-WVp3mTh#mGWh~e?Rw&Vq zEvjL_I0fbKWf)O^hDV7vc{xw9Vl?J*=7pybcj;x4?UB8!$v!%qJ~;f_d&zFk#7J>l zOuXAN8q;q5#jw+Xcj!41FOqtyo+6F7XdmAR-fDhG7P{-|jvZtD**!PRxNkSeAIOel zY(f|3Mu{4dRobB?xmql~rr?b43hvodeEmm**n>-Kb`dP-PW885@Ly5oimM^*{_4JZ zjhaE#fr-_aGnB&k7=0CAo5uBhG{~U?I-K=~O^ApM$&Y$rF-oN-`|fvG+TE|aq&82d zuINZ560|EhkNbC65p#Iq*2n6TXdKero~7#h#qC5O@;k_nbGlto9R;p6HCs$Ojg&*( zWQr@o+GhLi`MI;+0zLtxx9o!LEN;+TQsqVtNEXx01X%IDLEP|<`iV>=)qo6%%sD6h!ZkH=0JUDi6_?^tv76!S^M!Cb8DHBmoCZIR?p9TL?}n%88&UxcMjz$4E%} zfSux(NQLX4NrJ~_T#~$zn9wuBuL0!v(bQ&}?6cEf!_cW-YIGLZ^A`lfPCMR=}cZ-1>4`CQm;GZ6`1o=xLD zAMiu>;WVbu{7Mh-R-Z1oa|4f=fxf7Q$^!E}s=IV{4S!W;SvICN==CS*N82zxWOzTl zQ*`;zKi_4AZWhp5gP2i2-)v2kC9vLgxSNMJHcFTmh4?1Ta0=4Ye6jz{ubRATmX%+Logg^zZvb@!Yb+t)Pa#XliQauj<|FKxiwd^+NS zKnqmMj$`l=y2uy1{7e>ok6EI-mCJaTvX}w0!Y>CWvaCE*RGd(O9z&?RUt_;EqknRN zJnvh>3w&lH_CK9*nMaG~ulTmMn%P%=*>R@lxh}W5(6K!NMBr08kx_Q&@a*kZ+L`qk z--Lo%xu|UmTD}sIxO{k{U7=xUZRCizQqoRdI2Z{YOH_$%x{DM$hG&Oj9Cu z?Km6J?g#ep!+q2uWH&yXFE1aLoF=VlB>oVEm|j+UkjlX$5-(rqFAlB~Ie$2Gk|5XG zoh3lo7C7+0Tg+Pm&OB&v;m}uE^HmErvMc1ONt(r>)zaitK{dFQynYfxLf%N~=o8y| z*ne(pFv_x+w(=`c^+ejXD)SqXE`ICKkvKNn-#eqpH5GWWc^?TovSdr_-F_#gdMaiL zd0r>Y%A@U=WUg1xvFGg=c{=P0mGaI=1l2{^?0~;{OL5;Mg&7iB`x_#jd1X?X%lZh; za+^n^OTD^!_h3Q6cW68$jeCTDrPokjW*#ddeFZryZ#>C1e`gNk77fsj9OTU6&Wo%3 z_Om;UQPTw2SpixpbfKkjCa?cuUKr%G;+@3Y|E}$XGx+)DlDu$CesLuia?b7dsc=W( z8^JUVz?r5xa@__f*(#@IO1s&Ub`Ppa^Y@OvrhxX&`N^Ub`{s@j*Rl59@zG}IXx3&W ztbrl(Daw~%MH+HRiRH`MW~|UZN=^kt1(vm6^x>n_NUVHk9Kq$J;M?eH%DK98bhC)`AswTl>VS-)JT^1yo3+mEIHMRD0OSm!>wjY_k+~DAFnEX864Y zT{i@M*}O8Ud!J`b0;C~+03*9Sl+h%Tno9Owx~V=L8F~cN;g#*V>P!vdI|HSd$#)Dh z>YqDSH#Nolrt-p@`yrm&N&R&5T}|RZzi-^P%jY8uJ1K(j9No%%pJW}SbMTeY#tu#X zbg|}V*0<&%KN~Uj*NfNI;WkTkwo-eoK^2ZYpYlv?C5dllbH2^5+r#GMwMf@k@(K`= zQ9iv6%&q2G>hg(mH;9>3;s6|(SN}f7R27${<9q~2E}BVHNCb~me@v##aGrrfaCV<3w_&$utP1Ra9ORA5T3N+VBSPLg% ziR|mU9m@XEI|HVZ7EE9>vx~mXO z(*yFTxGkd*Vl9#4yx)Ep!bQJ%M$rsj_!TWyi0>PmizB<9(2iS z!*Lh_(u;pKE`q{tUuT`alF$|9fmT?$8oVJ;!Eg1^#u?xg@NQ-NJUQ@T?oO^Uxm)a0 zV$tDwP*FZ;ToDSr#KTvI&sq z!Ssc4m-D)TSoc)q^X3E=SbY&hGJ|oo%cH}d(r$Hc{%SbeeUW@gQK_KxbiY406iZ4w zNT17k*R+;l*T@BdC93gqw_y2{%Pf)dV?=5P`G-LN8PVtI$Uk2R{>tUAu5}1;iCB7J zYd`bL-!`Gz{mjs}3@4#S`rPIhTm_zUV4K|ut<+y7D}wB>hhPgRlzC}jVd%2y=OX~F zwLe;)wV}WH`k3?Uvq4ATk&-(_U68j&?kMW5zS0(ViWhThT(#W#vW&0%F!oc&31F2u zIn#L`k>zi4jOV~6DYtw%!gkJ5LlJi=Np-#W&Ir!Jwn?fZP_{Hb#U>o&^kPLozFY zMr(@Mh1Irb8;M+Cx}nQM_mW&vgA~ttp8-Yde=(7NZs_yU5PX|k1ebaFL3b@*mj==(VSEZTi{6Hkf+7MN*< zl&RM48S_Z65$%5w-S%4>2ipU#aF_z6+DlCHmyc3)eXpKNGIu@(I0Ayb|cYSFC*b)YDe>6&y>sL^G349 zS<2X%2()aPfX~>9b0P~}SG@f2D<+rOo4;i_|JyqS=7iekCJut}i*Ner#f)>^5dw&> zutVrb@=eeS4*j^T@=b2uIPwvDa+dbtU5R(y=&B5`FqxTpl7%Or`v3mXf=48}bD(dz zZ`p7?>ARJ)iV(>k7}n1{B0JN`{s{PwV4Ai3jH7_M6vVZ8*y}TgFCp4>XIC-(CjD;g z2CMiLv=@Y{def(u@*a+ON#&(r_XX&=Hx|^^l zH9x$E^5sK(Sao3-CkW5VfX|sn3Hon2ol2FEW=sfYS7W{6+V(}HgNwm+O8+p84?;{o zAyNLcgL=-Vzv+qy<>V$MP>p+ADMDeVuJ02m9zSURpku0afM+@Oih5L^){^8eF?^mx zUH6^Fg4Pc3zz+$?*@;i#}qzxSaY(Ughz{_iB$R%q9FyaKL9CAj_TjsMV;QgX|nTS zMS7v;8(KSyv!f+s*in7T3>kgjUj`W&ryCG3d7_s3{$%)~=_jFV!a#Ny#=Cx6-5txi zLF-?&{0X=5j-QUdEb=K2Z!IT7H^VLa&NOBREX%Tto!QR%}`50Qjn;Ttstp4J?+6LR`-+r0}jp|E51OkkAY zjAL73ebRnLh8)DId_U>*O_&9Dup=2FreF9Le(62*%MxC04UwlBN0*ud$om>z`!FXN z(GQ0v4Iv?^Y2rnDG?CIc#OE~Rv0syoVPZU!36Qefd3wygPwZ7*@$D(T z4u7ozt$zIx26wawvAnd}y=?HGne=q$hxOcG-|S}}T=SeGG^K5(X>#82esFCTT=;#n zJBM<Q+;&oGmNy;lDY_ z#3QLT3oN5sgD1#Ug?tGP))NZ~6=Ip3in+|@a0~Yq)m{O{F>U_f#oEX;TWKtPcgw9C z$@99=$C5ds0>QscF-VOX%S1XrwVsPr`7IU^_R`9-aV{H(5#L9P zZ$nJLwcNdpFD2CIVQ^9P&ay>W@$KOcA+6^F)&TH=@zRzf5TAhCyIt!0sV5GP)}puQ}eHsCUOg ziu_$n&6n<@2o?4zZU&IHOULoJh<3Zreb`D-2qXG4GWd&dZ^u(fIv z#E5G5-j^q7r)-g}>5}$yRJTg7Hbny$tl>wWqfsJ)>+O&);}e6QlFf0IghMymROZ*+ z`*o^!14b8xAWpKX*VG=88mIaoD18}tmPlF&CP0qWHl#3cR@3uYQ`ASGCAzbj;#9~< z*`YbLg?4>OMdGC*9qE$y(mO(E(j>Rd5!4G!FP<;vE3H0dTvOhjO2JM9?1HC#sxLhj z3bwLJs_^%6*n|)B8h+x6`zbmo0OEa{E|o7+6j8dz+UOCL>A}vqY_3odY5Eg0GX$mJ zOs&T48d2vEp7_gkacE_^%xFRQ$avTRw1Ev}E70UMJB|IAosBk2NLTy_$mW#$t8k@P zvE21O0e8)N3!${szbadTXRqSFSX>~Hj{pxLl&pHOa#XyaI>P0_Le$So^1jK}+NS2| zhl&xphv|0suR5Ol>Gpd5k>Hx)l!yKIM#8Ri%c=*mZ+BI;n_`X&epf1u_I4J36OvVSk} zqLr+#3|0K{kEN4hcU@qz?imSX>?qzz>?p1r{ny3%W6eQIde%hapFZwLO%8Kc4Y(KN zqX2L(*SNje_uzWF%1i?xiC*=6a4$EH^`S$9E?EvIR1g;8!};`w#{GL=aa__zK&i7t zzyo`UcEX&}v5CMrEJh+>V0|*<{Vv@`BV&Qk3-R|GK>!UWOyP+gurC~;p1ic@_v#Ta z=!;(PcMNhK0pIYS?Pa_&)n^Wa=@8R!UKafJi`XSh+GH)e)8xdGbjlsCZnS7=iUN;r zd@|;w;co1hl!waOflw+62rO(GRwLqo(e^wvx5*BomFGB~ZFPKtkr<{f?5 tfEDKHVt q_1$ and $r_2 < r_1$) than it +would be pulled to the left by $q_1$. So the only place to look for +equilibrium is to the left of $q_1$, ($x < 0$, where $r_2=r_1+x_2$). +\begin{align} + \vect{E} &= k_e \left(-\frac{q_1}{r_1^2} - \frac{q_2}{(r_1 + x_2)^2}\right) + = 0 \\ + \frac{q_1}{r_1^2} &= -\frac{q_2}{(r_1 + x_2)^2} \\ + \frac{r_1+x_2}{r_1} = 1 + \frac{x_2}{r_1} &= \pm\sqrt{\frac{-q_2}{q_1}} \\ + r_1 &= \frac{x_2}{\sqrt{\pm\frac{-q_2}{q_1}} - 1} = 1.82\U{m}, -0.392\U{m} +\end{align} +But $r_1 = -0.392\U{m}$ is between the two charges (where our +assumption about the electric fields opposing each other doesn't +hold), so $\vect{E} = 0$ only at a $r_1 = 1.82\U{m}$ ($x=-1.82\U{m}$). +\end{solution} diff --git a/latex/problems/problem19.13.tex b/latex/problems/problem19.13.tex new file mode 100644 index 0000000..b722de8 --- /dev/null +++ b/latex/problems/problem19.13.tex @@ -0,0 +1,73 @@ +\begin{problem*}{19.13} +Three point charges are arranged as shown in Figure P19.13.\\ +%\begin{center} +% \begin{tabular}{|l|r|r|r|} +% Name & Charge (nC) & x (m) & y (m) \\ +% \hline +% $q_1$ & $5.00$ & $0$ & $0$ \\ +% $q_2$ & $6.00$ & $0.300$ & $0$ \\ +% $q_3$ & $-3.00$ & $0$ & $-0.100$ \\ +% \hline +% \end{tabular} +%\end{center} +\Part{a} Find the vector electric field \vect{E} that $q_2$ and $q_3$ +together create at the origin. +\Part{b} Find the vector force \vect{F} on $q_1$. +\end{problem*} % problem 19.13 + +\empaddtoprelude{ + numeric a; + pair A, B, C; + a := 3cm; + A := origin; % q1 + B := (a,0); % q2 + C := (0,-a/3); % q3 + def drawB = + label.top(btex 0.300\mbox{ m} etex, draw_length(B, A, 8pt)); + label.lft(btex 0.100\mbox{ m} etex, draw_length(A, C, 8pt)); + labeloffset := 6pt; + draw_pcharge(A, 4pt); + label.rt(btex $q_1 = 5\mbox{ nC}$ etex, A); + draw_pcharge(B, 4.2pt); + label.rt(btex $q_2 = 6\mbox{ nC}$ etex, B); + draw_ncharge(C, 3pt); + label.rt(btex $q_3 = -3\mbox{ nC}$ etex, C); + enddef; +} + +\begin{nosolution} +\begin{center} +\begin{empfile}[2p] +\begin{emp}(0cm,0cm) + drawB; +\end{emp} +\end{empfile} +\end{center} +\end{nosolution} + +\begin{solution} +\begin{center} +\begin{empfile}[2] +\begin{emp}(0cm,0cm) + label.lft(btex $E_{21}$ etex, draw_Efield(B, A, a/8)); + label.rt(btex $E_{31}$ etex, draw_Efield(C, A, -a/5)); + draw_ijhats(-(a, a/3), 0, a/6); + drawB; +\end{emp} +\end{empfile} +\end{center} +\Part{a} +\begin{equation} +\begin{equation} + \vect{E} = k_e \sum_i \frac{q_i}{r_i^2}\rhat_i + = k_e \left[\frac{q_2}{x_2^2}(-\ihat) + \frac{q_3}{y_3^2}\jhat\right] + = 8.99\E{9}\U{N$\cdot$m$^2$/C$^2$} \left(\frac{-6.00\ihat}{0.300^2} - \frac{3.00\jhat}{0.100^2}\right)\E{-9}{C/m^2} + = \ans{\left( -0.599\ihat - 2.70\jhat \right)\U{kN/C}} +\end{equation} + +\Part{b} +\begin{equation} + \vect{F} = q_1 \vect{E} + = \ans{\left( -3.00\ihat -13.5\jhat\right)\U{$\mu$N}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem19.15.tex b/latex/problems/problem19.15.tex new file mode 100644 index 0000000..e927f4a --- /dev/null +++ b/latex/problems/problem19.15.tex @@ -0,0 +1,78 @@ +\begin{problem*}{19.15} +Four point charges are at the corners of a square of side $a$ as shown +in Figure P19.15, with $q_1=2q$, $q_2=3q$, $q_3=4q$, and $q_4=q$. +\Part{a} Determine the magnitude and direction of the electric field +at the location of charge $q_4$. +\Part{b} What is the resultant force on $q_4$? +\end{problem*} % problem 19.15 + +\empaddtoprelude{ + numeric a; + pair A, B, C, D; + a := 1cm; + A := (0, a); % q1, labeled CCW from upper left + B := origin; % q2 + C := (a, 0); % q3 + D := (a, a); % q4 + def drawE = + label.lft("a", draw_length(A, B, 8pt)); + label.bot("a", draw_length(B, C, 8pt)); + labeloffset := 5pt; + draw_pcharge(A, 3pt); + label.bot(btex $q_1$ etex, A); + draw_pcharge(B, 3pt); + label.top(btex $q_2$ etex, B); + draw_pcharge(C, 3pt); + label.top(btex $q_3$ etex, C); + draw_pcharge(D, 3pt); + label.bot(btex $q_4$ etex, D); + enddef; +} +\begin{nosolution} +\begin{center} +\begin{empfile}[5ns] +\begin{emp}(0cm,0cm) + drawE; +\end{emp} +\end{empfile} +\end{center} +\end{nosolution} + +\begin{solution} +\begin{center} +\begin{empfile}[5] +\begin{emp}(0cm,0cm) + label.rt(btex $E_{14}$ etex, draw_Efield(A, D, 0.5cm)); + label.urt(btex $E_{24}$ etex, draw_Efield(B, D, 0.53cm)); + label.lft(btex $E_{34}$ etex, draw_Efield(C, D, 1cm)); + draw_ijhats((-1.5*a, a/3), 0, a/3); + drawE; +\end{emp} +\end{empfile} +\end{center} +Let \ihat\ point to the right and \jhat\ point up. +\begin{equation} + \vect{E} = k_e \sum_i \frac{q_i}{r_i^2}\rhat_i + = k_e \left(\frac{2q}{a^2}\ihat + + \frac{3q}{(\sqrt{2}a)^2}\frac{\ihat + \jhat}{\sqrt{2}} + + \frac{4q}{a^2}\jhat \right) + = k_e \frac{q}{a^2} \left( 2\ihat + + \frac{3}{2\sqrt{2}}(\ihat+\jhat) + + 4\jhat \right) +\end{equation} +So the magnitude of \vect{E} is given by +\begin{equation} + E = k_e \frac{q}{a^2} \sqrt{ \left(2+\frac{3}{2\sqrt{2}}\right)^2 + \left(4+\frac{3}{2\sqrt{2}}\right)^2 } = \ans{5.91 k_e \frac{q}{a^2}} +\end{equation} +And the direction $\theta$ (measured counter clockwise from \ihat) of +\vect{E} is given by +\begin{equation} + \theta = \arctan\left(\frac{4+\frac{3}{2\sqrt{2}}}{2+\frac{3}{2\sqrt{2}}}\right) + = \ans{58.8\dg} +\end{equation} + +\Part{b} +$\vect{F} = q \vect{E}$ so the direction of \vect{F} is the same as +the direction of \vect{E}. The magnitude of \vect{F} is given by $F = +5.91 k_e q^2 / a^2$ +\end{solution} diff --git a/latex/problems/problem19.16.tex b/latex/problems/problem19.16.tex new file mode 100644 index 0000000..9e8e9d3 --- /dev/null +++ b/latex/problems/problem19.16.tex @@ -0,0 +1,68 @@ +\begin{problem*}{19.16} +Consider the electric dipole shown in Figure P19.16. Show that the +electric field at a distant point on the $+x$ axis is $E_x \approx +4k_eqa/x^3$. +\end{problem*} % problem 19.16 + +\empaddtoprelude{ + pair A, B; + numeric a; + a := 1cm; + A := (-a,0); + B := (a, 0); + C := (6a, 0); + def drawC = + drawarrow (A-(a,0))--(C+(a,0)) withpen pencircle scaled 0pt; + draw_ncharge(A, 6pt); + draw_pcharge(B, 6pt); + label.top("0", draw_ltic(origin, 90, 0, 3pt, 0pt, black)); + dotlabel.bot("x", C); + label.bot("a", draw_length(A, origin, 10pt)); + label.bot("a", draw_length(origin, B, 10pt)); + labeloffset := 8pt; + label.top("-q", A); + label.top("q", B); + enddef; +} + +\begin{nosolution} +\begin{center} +\begin{empfile}[3p] +\begin{emp}(0cm, 0cm) + drawC; +\end{emp} +\end{empfile} +\end{center} +\end{nosolution} + +\begin{solution} +\begin{center} +\begin{empfile}[3] +\begin{emp}(0cm, 0cm) + label.top(btex $E_{q}$ etex, draw_Efield(B, C, 18pt)); + label.top(btex $E_{-q}$ etex, draw_Efield(A, C, -16pt)); + drawC; +\end{emp} +\end{empfile} +\end{center} +Let us assume the point in question has a positive $x$ value (just +reverse the sign if $x < 0$). +\begin{equation} + \vect{E} = k_e \sum_i \frac{q_i}{r_i^2}\rhat_i + = k_e \left[\frac{q}{(x-a)^2}\ihat + \frac{-q}{(x+a)^2}\ihat\right] +\end{equation} +For $|x| \gg |c|$, +\begin{equation} + (x+c)^n = x^n \left(1+\frac{c}{x}\right)^n + = x^n \left[1 + n\frac{c}{x} + \frac{n(n-1)}{2}\cdot\left(\frac{c}{x}\right)^2 + \ldots\right] + \approx x^n (1 + n\frac{c}{x}) \;, +\end{equation} +because $(c/x)^2$ is very, very small. (We are Taylor expanding +$(x+c)^n$ as a function of $c/x$, and keeping only the first two +terms.) In our case, $n = -2$ and $c = \mp a$ +\begin{equation} + \vect{E} = k_e \left[\frac{q}{x^2}\left(1-2\frac{-a}{x}\right) + \frac{-q}{x^2}\left(1-2\frac{a}{x}\right)\right]\ihat + = k_e \frac{q}{x^2}\left(1+2\frac{a}{x} - 1+2\frac{a}{x}\right)\ihat + = \ans{\frac{4 k_e q a}{x^3}\ihat} +\end{equation} +\end{solution} diff --git a/latex/problems/problem19.19.tex b/latex/problems/problem19.19.tex new file mode 100644 index 0000000..dbccac1 --- /dev/null +++ b/latex/problems/problem19.19.tex @@ -0,0 +1,49 @@ +\begin{problem*}{19.19} +A uniformly charged ring of radius $r = 10.0\U{cm}$ has a total charge +of $q = 75.0\U{$\mu$C}$. Find the electric field on the axis of the +ring at + \Part{a} $x_a = 1.00\U{cm}$, + \Part{b} $x_b = 5.00\U{cm}$, + \Part{c} $x_c = 30.0\U{cm}$, and + \Part{d} $x_d = 100\U{cm}$ from the center of the ring. +\end{problem*} % problem 19.19 + +\begin{solution} +\begin{center} +\begin{empfile}[6] +\begin{emp}(0cm,0cm) + pair A, B, C; + numeric a; + a := 0.75cm; + A := (0,a); + B := (0,-a); + C := (1cm,0); + draw_ijhats((-1cm,a/3), 0, a/3); + draw_ring(origin, a, 0, 3cm, 1cm, red, "q", "x"); + label.bot("0", draw_ltic(origin, -90, 0, 3pt, 0pt, black)); + label.top("A", A); + label.bot("B", B); + draw A--C; label.urt(btex $d_A$ etex, (A+C)/2); + draw B--C; label.lrt(btex $d_B$ etex, (B+C)/2); + label.lrt("E", draw_Efield(origin, C, 18pt)); + label.top(btex $E_B$ etex, draw_Efield(B, C, 15pt)); + label.bot(btex $E_A$ etex, draw_Efield(A, C, 15pt)); +\end{emp} +\end{empfile} +\end{center} + +From Example 19.5 (p.~616) we see the electric field along the axis +(\ihat) of a uniformly charged ring is given by +\begin{equation} + E = \frac{k_e x q}{(x^2 + r^2)^{3/2}} \ihat +\end{equation} + +So applying this to our 4 distances (rembering to convert the +distances to meters), we have +\begin{align} + E_a &= \ans{6.64\E{6}\U{N/C}\;\ihat} \\ + E_b &= \ans{24.1\E{6}\U{N/C}\;\ihat} \\ + E_c &= \ans{6.40\E{6}\U{N/C}\;\ihat} \\ + E_d &= \ans{0.664\E{6}\U{N/C}\;\ihat} +\end{align} +\end{solution} diff --git a/latex/problems/problem19.31.tex b/latex/problems/problem19.31.tex new file mode 100644 index 0000000..61bcee9 --- /dev/null +++ b/latex/problems/problem19.31.tex @@ -0,0 +1,16 @@ +\begin{problem*}{19.31} +A $d = 40.0\U{cm}$ diameter loop is rotated in a uniform electric +field until the position of maximum electric flux is found. +The flux in this position is measured to be + $\Phi_E = 5.20\E{5}\U{N$\cdot$m$^2$/C}$. +What is the magnitude of the electric field? +\end{problem*} % problem 19.31 + +\begin{solution} +\begin{align} + \Phi_E &= EA \\ + E &= \frac{\Phi_E}{A} = \frac{\Phi_E}{\pi (d/2)^2} + = \frac{5.20\E{5}\U{N$\cdot$m$^2$/C}}{\pi \cdot (0.200\U{m})^2} + = \ans{4.14\E{6}\U{N/C}} +\end{align} +\end{solution} diff --git a/latex/problems/problem19.35.tex b/latex/problems/problem19.35.tex new file mode 100644 index 0000000..dec939b --- /dev/null +++ b/latex/problems/problem19.35.tex @@ -0,0 +1,60 @@ +\begin{problem*}{19.35} +A solid sphere of radius $R = 40.0\U{cm}$ has a total charge of $q = +26.0\U{$\mu$C}$ uniformly distributed throughout its volume. +Calculate the magnitude $E$ of the electric field + \Part{a} $r_a = 0\U{cm}$, + \Part{b} $r_b = 10.0\U{cm}$, + \Part{c} $r_c = 40.0\U{cm}$, and + \Part{d} $r_d = 60.0\U{cm}$ + from the center of the sphere. +\end{problem1} + +\begin{solution} +The charge distribution is symmetric under rotations and reflections +about the center of the sphere , so the electric field must also be +symmetric under rotations and reflections about the center of the +sphere. So the electric field can only be a function of the radius +$\vect{E}(r)$ (if it was a f'n of the angle, it wouldn't be symmetric +under rotations), and it must be only in the radial direction +$\vect{E}(r) = E(r)\rhat$\ (if it had non-radial components, it +wouldn't be symmetric under reflections). + +Because we have these insights from symmetry, we can use Gauss's Law +to solve for $E(r)$ +\begin{align} + \oint \vect{E}(\vect{r}) \cdot d\vect{A} &= \frac{q_{in}}{\epsilon_0} \\ + E(r) \oint \rhat \cdot d\vect{A} &= \frac{q_{in}}{\epsilon_0} +\end{align} +because $r$ is a constant over our surface of integration, $E(r)$ must +also be constant, so we pull it out of the integral. We also note +that \rhat\ is going to be perpendicular to our surface at every point +on it, so +\begin{align} + E(r) \oint dA = E(r)A &= \frac{q_{in}}{\epsilon_0} \label{eqn.symm_gauss} \\ + E(r) 4 \pi r^2 &= \frac{q_{in}}{\epsilon_0} \\ + E(r) &= \frac{q_{in}}{4 \pi \epsilon_0 r^2} \label{eqn.sphere_gauss} +\end{align} +(If this is confusing, you can look at the first bit of the Gauss's +law section 19.9 page 624 in the book for their derivation, and +Example 19.9 on page 627 for their take on this problem.) + +For $r \le R$ (points $A$, $B$, and $C$) we have +\begin{equation} + q_{in} = q \frac{ 4/3 \cdot \pi r^3 }{ 4/3 \cdot \pi R^3 } + = q \left(\frac{r}{R}\right)^3 +\end{equation} +so +\begin{align} + E_\le(r) &= \frac{q r^3 / R^3}{4 \pi \epsilon_0 r^2} + = \frac{q r}{4 \pi \epsilon_0 R^3} \\ + E_a &= \ans{0} \qquad \text{because $r = 0$} \\ + E_b &= \frac{26.0\E{-6}\U{C} \cdot 0.100\U{m}}{4 \pi \cdot 8.854\E{-12}\U{C$^2$/N$\cdot$m$^2$} \cdot (0.400\U{m})^3} + = \ans{3.65\E{5}\U{N/C}} +\end{align} +And for $r \ge R$ (points $C$ and $D$) we have $q_{in} = q$, so +\begin{align} + E_\ge(r) &= \frac{q}{4 \pi \epsilon_0 r^2} \label{eqn.sphere_gauss_out} \\ + E_c &= \ans{1.46\E{6}\U{N/C}} \\ + E_d &= \ans{6.49\E{5}\U{N/C}} +\end{align} +\end{solution} diff --git a/latex/problems/problem19.36.tex b/latex/problems/problem19.36.tex new file mode 100644 index 0000000..f3c37a5 --- /dev/null +++ b/latex/problems/problem19.36.tex @@ -0,0 +1,17 @@ +\begin{problem*}{19.36} +An $m = 10.0\U{g}$ piece of Styrofoam carries a net charge of $q = +-0.700\U{$\mu$C}$ and floats above the center of a large horizontal +sheet of plastic that has a uniform charge density $\sigma$ on it's +surface. Find $\sigma$. +\end{problem*} % problem 19.36 + +\begin{solution} +Because the Styrofoam is floating in equilibrium, the sum of forces in +the vertical direction must be zero. So +\begin{align} + F_g = mg &= F_E = q E = q \frac{\sigma}{2 \epsilon_0} \\ + \sigma &= \frac{2\epsilon_0 mg}{q} + = \frac{2 \cdot 8.54\E{-12}\U{C$^2$/N$\cdot$m$^2$} \cdot 0.0100\U{kg} \cdot 9.80\U{m/s$^2$}}{-0.700\E{-6}\U{C}} + = \ans{2.39\E{-6}\U{C/m$^2$}} +\end{align} +\end{solution} diff --git a/latex/problems/problem19.38.tex b/latex/problems/problem19.38.tex new file mode 100644 index 0000000..1047a4a --- /dev/null +++ b/latex/problems/problem19.38.tex @@ -0,0 +1,25 @@ +\begin{problem*}{19.38} +Consider a thin spherical shell of radius $R = 14.0\U{cm}$ with a +total charge of $q = 32.0\U{$\mu$C}$ distributed uniformly on its +surface. Find the electric field + \Part{a} $r = 10.0\U{cm}$ and + \Part{b} $r = 20.0\U{cm}$ + from the center of the charge distribution. +\end{problem*} % problem 19.38 + +\begin{solution} +Again, the problem is symmetric under rotations and reflections about +the center, so following the same reasoning as in Problem 35 we can +use Equation \ref{eqn.sphere_gauss}. + +\Part{a} +Inside the shell there is no charge ($q_{in} = 0$), so $E_a = \ans{0}$. + +\Part{b} +Outside the shell we can use Equation \ref{eqn.sphere_gauss_out} +\begin{equation} + E_b = \frac{q}{4 \pi \epsilon_0 r_b^2} + = \frac{32\E{-6}\U{C}}{4 \pi \cdot 8.853\E{-12}\U{C$^2$/N$\cdot$m$^2$} \cdot (0.200\U{m})^2} \\ + = \ans{7.19\E{6}\U{N/C}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem19.40.tex b/latex/problems/problem19.40.tex new file mode 100644 index 0000000..ca047a3 --- /dev/null +++ b/latex/problems/problem19.40.tex @@ -0,0 +1,38 @@ +\begin{problem}{19.40} +An insulating solid sphere of radius $a$ has a uniform volume charge +density $\rho$ and carries a total positive charge $Q$. A spherical +gaussian surface of radius $r$, which shares a common center with the +insulating sphere, is inflated starting from $r=0$. +\Part{a} Find an expression for the electric flux $\Phi_E$ passing through the +surface of the gaussian sphere as a function of $r$ for $r < a$. +\Part{b} Find an expression for the electric flux $\Phi_E$ for $r > a$. +\Part{c} Plot $\Phi_E$(r). +\end{problem*} % problem 19.40 + +\begin{solution} +\Part{a} +\begin{equation} + \Phi_E = \frac{q_{in}}{\epsilon_0} + = \frac{Q \cdot 4/3 \cdot \pi r^3}{\epsilon_0 \cdot 4/3 \cdot \pi R^3} + = \ans{\frac{Q r^3}{\epsilon_0 R^3}} +\end{equation} + +\Part{b} +\begin{equation} + \Phi_E = \frac{q_{in}}{\epsilon_0} + = \ans{\frac{Q}{\epsilon_0}} +\end{equation} + +\Part{c} +\empaddtoprelude{input graph} +\begin{center} +\begin{empfile}[3] +\begin{empgraph}(5cm, 3cm) + % scaled so x=r/R, y=Phi/(Q/e0) + glabel.bot(btex $r/R$ etex, OUT); + glabel.lft(btex $\displaystyle \frac{\Phi_E \epsilon_0}{Q}$ etex, OUT); + gdraw (0,0){right}..(.2,.008)..(.5, .125)..(.8,.512)..(1,1)--(2,1) withcolor green; +\end{empgraph} +\end{empfile} +\end{center} +\end{solution} diff --git a/latex/problems/problem19.55.tex b/latex/problems/problem19.55.tex new file mode 100644 index 0000000..c03f0c0 --- /dev/null +++ b/latex/problems/problem19.55.tex @@ -0,0 +1,111 @@ +\begin{problem*}{19.55} +Four identical point charges ($q = +10.0\U{$\mu$C}$) are located on +the corners of a rectangle as shown in Figure P19.55. The dimensions +of the rectangle are $L = 60.0\U{cm}$ and $W = 15.0\U{cm}$. Calculate +the magnitude and direction of the resultant electric force exerted on +the charge at the lower left corner by the other three charges. +\end{problem*} % problem 19.55 + +\empaddtoprelude{ + numeric a; + pair A, B, C, D; + a := 1cm; + A := (0, a); % q1, labeled CCW from upper left + B := origin; % q2 + C := (4a, 0); % q3 + D := (4a, a); % q4 + def drawE = + label.rt("W", draw_length(C, D, 8pt)); + label.bot("L", draw_length(B, C, 8pt)); + labeloffset := 5pt; + draw_pcharge(A, 3pt); + label.bot(btex $q_1$ etex, A); + draw_pcharge(B, 3pt); + label.top(btex $q_2$ etex, B); + draw_pcharge(C, 3pt); + label.top(btex $q_3$ etex, C); + draw_pcharge(D, 3pt); + label.bot(btex $q_4$ etex, D); + enddef; +} +\begin{nosolution} +\begin{center} +\begin{empfile}[3p] +\begin{emp}(0cm,0cm) + drawE; +\end{emp} +\end{empfile} +\end{center} +\end{nosolution} + +\begin{solution} +\begin{center} +\begin{empfile}[3] +\begin{emp}(0cm,0cm) + label.rt(btex $F_{12}$ etex, draw_force(A, B, 2cm)); + label.lft(btex $F_{32}$ etex, draw_force(C, B, .5cm)); + label.bot(btex $F_{42}$ etex, draw_force(D, B, .48cm)); + draw A--(D+(a/2,0)) dashed evenly; + draw A--B dashed evenly; + draw B--D dashed evenly; + label.top(btex $\theta$ etex, draw_lout_angle(D+(1,0),D,B, a/3)); + draw_right_angle(B, A, D, a/3); + draw_ijhats((5.5*a, a/3), 0, a/3); + drawE; +\end{emp} +\end{empfile} +\begin{center} +\begin{empfile}[3] +\begin{emp}(0cm,0cm) + label.rt(btex $F_{12}$ etex, draw_force(A, B, 2cm)); + label.lft(btex $F_{32}$ etex, draw_force(C, B, .5cm)); + label.bot(btex $F_{42}$ etex, draw_force(D, B, .48cm)); + draw A--(D+(a/2,0)) dashed evenly; + draw A--B dashed evenly; + draw B--D dashed evenly; + label.top(btex $\theta$ etex, draw_lout_angle(D+(1,0),D,B, a/3)); + draw_right_angle(B, A, D, a/3); + draw_ijhats((5.5*a, a/3), 0, a/3); + drawE; +\end{emp} +\end{empfile} +The unit vector \rhat\ diagonally across from the upper right is given by +\begin{align} + \rhat &= \cos\theta \ihat + \sin\theta \jhat \\ + \theta &= \arctan{W/L} + 180\dg = 194\dg \\ + \cos\theta &= -0.970 \\ + \sin\theta &= -0.243 +\end{align} +So the electric field in the lower left corner is given by +\begin{align} + \vect{E} &= k_e \sum_i \frac{q_i}{r_i^2}\rhat_i + = k_e \left(\frac{q}{L^2}(-\ihat) + + \frac{q}{(L^2 + W^2)}(\cos\theta\ihat + \sin\theta\jhat) + + \frac{q}{W^2}(-\jhat) \right) \\ + &= -k_e q \left[ + \left(\frac{1}{L^2} - \frac{\cos\theta}{L^2+W^2}\right)\ihat + + \left(\frac{1}{W^2} - \frac{\sin\theta}{L^2+W^2}\right)\jhat + \right] +\end{align} + +So the magnitude of \vect{E} is given by +\begin{equation} + E = k_e q \sqrt{ \left(L^{-2} - \frac{\cos\theta}{L^2+W^2}\right)^2 + + \left(W^{-2} - \frac{\sin\theta}{L^2+W^2}\right)^2 } + = 4.08\E{6}\U{N/C} +\end{equation} +(Remembering to convert $L$ and $W$ to meters.) And the direction +$\phi$ (measured counter clockwise from \ihat) of \vect{E} is given by +\begin{equation} + \phi = \arctan\left(\frac{-W^{-2}+\frac{\sin\theta}{L^2+W^2}}{-L^{-2}+\frac{\cos\theta}{L^2+W^2}}\right) + 180\dg + = \ans{263\dg} +\end{equation} +Where the $+180\dg$ is because the tangent has a period of $180\dg$, +and the angle we want is in the backside $180\dg$. + +$\vect{F} = q \vect{E}$ so the direction of \vect{F} is the same as +the direction of \vect{E}. The magnitude of \vect{F} is given by +\begin{equation} + F = 10.0\E{-6}\U{C} \cdot 4.08\E{6}\U{N/C} = \ans{40.8\U{N}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem19.57.tex b/latex/problems/problem19.57.tex new file mode 100644 index 0000000..3cec744 --- /dev/null +++ b/latex/problems/problem19.57.tex @@ -0,0 +1,69 @@ +\begin{problem*}{19.57} +Two identical metallic blocks resting on a frictionless horizontal +surface are connected by a light metallic spring having the spring +constant $k = 100\U{N/m}$ and an unstretched length of $L_0 = +0.300\U{m}$ as shown in Figure P19.57a. A total charge of $Q$ is +slowly placed on the system, causing the spring to stretch to an +equilibrium length of $L_1 = 0.400\U{m}$ as shown in Figure P19.57b. +Determine the value of $Q$, assuming that all charge resides in the +blocks and modeling the blocks as point charges. +\end{problem*} % problem 19.57 + +\empaddtoprelude{ + pair A, B, Ac, Bc; + vardef draw_sprung_blocks(expr center, r, labelgraphic, lengthlabelgraphic) = + numeric h; + h := 6pt; + A := center+(-r,+h); % spring attachment points + B := center+(r, +h); + draw_spring(A, B, h/2, 20); + draw_spring(A, B, h/2, 20); + label.top(lengthlabelgraphic, draw_length(B,A,h+5pt)); + Ac := A - (h,0); % block centers + Bc := B + (h,0); + draw_block(Ac,2h,2h,(.7,.7,.7)); + draw_block(Bc,2h,2h,(.7,.7,.7)); + draw_table(center, 3.7cm, 1.5 h); + label.bot(labelgraphic, center-(0,2h)); + enddef; + def drawD = + draw_sprung_blocks(origin, 0.9cm, btex (a) etex, btex $L_0 = 0.300\mbox{ m}$ etex); + draw_sprung_blocks((4cm, 0), 1.2cm, btex (b) etex, btex $L_1 = 0.400\mbox{ m}$ etex) + enddef; +} + +\begin{nosolution} +\begin{center} +\begin{empfile}[4p] +\begin{emp}(0, 0) + drawD; +\end{emp} +\end{empfile} +\end{center} +\end{nosolution} + +\begin{solution} +\begin{center} +\begin{empfile}[4] +\begin{emp}(0, 0) + drawD; + label.top(btex $F_s$ etex, draw_force(A,B,-16pt)); + label.rt(btex $F_E$ etex, draw_force(A,Bc,16pt)); +\end{emp} +\end{empfile} +\end{center} +Looking at the right hand block (it doesn't matter which one you +pick), we see that the only relevant forces are the attractive spring +force, and the repulsive electrostatic force. Because the blocks are +at equilibrium, these forces must cancel, so +\begin{align} + F_s &= k(L_1 - L_0) = F_E = k_e \frac{(Q/2)^2}{L_1^2} + = k_e \left(\frac{Q}{2L_1}\right)^2 \\ + Q &= 2L_1 \sqrt{k(L_1 - L_0)/k_e} \\ + &= 2 \cdot 0.400\U{m} + \cdot \sqrt{100\U{N/m} + \cdot 0.100\U{m} + / 8.99\E{9}\U{N$\cdot$m$^2$/C$^2$} } + = \ans{2.67\E{-5}\U{C}} +\end{align} +\end{solution} diff --git a/latex/problems/problem19.59.tex b/latex/problems/problem19.59.tex new file mode 100644 index 0000000..8a439dd --- /dev/null +++ b/latex/problems/problem19.59.tex @@ -0,0 +1,113 @@ +\begin{problem5}{19.59} +Two small spheres of mass $m$ are suspended from strings of length $l$ +that are connected at a common point. One sphere has charge $Q$, and +the other has charge $2Q$. The strings make angles $\theta_1$ and +$\theta_2$ with the vertical. +\Part{a} How are $\theta_1$ and $\theta_2$ related? +\Part{b} Assume that $\theta_1$ and $\theta_2$ are small. + Show that the distance $r$ between the spheres is given by + \begin{equation} + r \approx \left( \frac{4 k_e Q^2 l}{mg} \right)^{1/3} + \end{equation} +\end{problem*} % problem 19.59 + +\empaddtoprelude{ + pair A, B, C, D, mFe, mFg; + numeric L, theta, mFe, mFg; + L := 3cm; theta := 15; + mFe := 10pt; mFg := 20pt; % in the big picture (b) + A := L*dir(-90-theta); B := (0cm,0cm); C := L*dir(-90+theta); D := L*dir(-90); +} + +\begin{solution} +\begin{center} +\begin{empfile}[5a] +\begin{emp}(0, 0) + pair Ae, At, pFe, pFg; + %Ap := A / cosd theta; % extend R as deep as the vertical + Ae := A + unitvector(A) * 4mFg / cosd theta; % extend R as deep as Fg + At := A + (unitvector(A) rotated -90) * 4mFe / cosd theta; % extend as far out as Fe + pFe := A-(4mFe,0); % tip of electric force + pFg := A-(0,4mFg); % top of gravitational force + dotlabel.bot(" ", B); + draw A -- B; % broken + draw B -- D dashed evenly; % drop vertical from the pivot + label.bot(btex $\theta_1$ etex, draw_langle(A, B, D, .6L)); + % draw forces + label.bot(btex $F_E$ etex, draw_force(C,A,4mFe)); + label.bot(btex $F_g$ etex, draw_force(A+dir(90),A,4mFg)); + % draw axes + drawarrow A -- Ae; % extend string radius + drawarrow A -- At; % draw tangential axis head + draw A -- (At rotatedabout(A, 180)); % and tangential axis tail + label.top(btex $x_t$ etex, At); + label.lft(btex $x_r$ etex, Ae); + % label force angles + label.lft(btex $\theta_1$ etex, draw_langle(At, A, pFe, 3mFe)); + label.bot(btex $\theta_1$ etex, draw_langle(Ae, A, pFg, .6L)); + draw_right_angle(At, A, Ae, .7mFe); + draw_right_angle(pFe, A, pFg, 1mFe); + % draw charge + draw_pcharge(A, 4pt); +\end{emp} +\end{empfile} +\hspace{1cm} +\begin{empfile}[5b] +\begin{emp}(0, 0) + dotlabel.bot(" ", B); + draw A -- B -- C; + draw B -- D dashed evenly; + label.bot(btex $\theta_1$ etex, draw_langle(A, B, D, .6L)); + label.bot(btex $\theta_2$ etex, draw_langle(D, B, C, .6L)); + label.lft(btex $F_E$ etex, draw_force(C,A,mFe)); + label.bot(btex $F_g$ etex, draw_force(A+dir(90),A,mFg)); + draw_pcharge(A, 4pt); + draw_pcharge(C, 6pt); + labeloffset := 8pt; + label.rt(btex $m$ etex, A); + label.rt(btex $m$ etex, C); + label.ulft(btex $Q$ etex, A); + label.bot(btex $2Q$ etex, C); +\end{emp} +\end{empfile} +\end{center} +\Part{a} +Assuming that the charges are not rotating about each other, the +forces on each charge must cancel. The forces on each sphere are +gravity $F_g = mg$, electrostatic $F_E = k_e 2Q^2/r^2$, and tension +$T$. The tension will automatically handle canceling forces in the +radial direction, so we need only consider the tangential direction. +Let us assume that $F_E$ is purely in the horizontal direction +(see \Part{Note}). Summing the tangential forces on the first sphere +\begin{align} + 0 &= F_E \cos\theta_1 - F_g \sin\theta_1 \\ + \tan\theta_1 &= \frac{F_E}{F_g} +\end{align} +And on the second sphere $\tan\theta_2 = \frac{F_E}{F_g}$ + so $\theta_1 = \theta_2 = \theta$. + +\Part{b} +\begin{align} + r &= 2 l \sin\theta + \approx 2 l \tan\theta + = 2 l \frac{F_E}{F_g} + = 2 l \frac{k_e 2 Q^2 / r^2}{mg} \\ + r &\approx \left( \frac{4 l k_e Q^2}{mg} \right)^{1/3} \;, +\end{align} +where we used the small angle approximation +$\sin\theta\approx\tan\theta$ for small $\theta$. + +\Part{Note} Why $\vect{F}_E$ is horizontal. + +Let $q$ be the charge on the first mass and $Q$ be the charge on the +second. The force of $1$ on $2$ is given by $F_{12} = k_e +qQ\rhat_{12}/r^2$. This is identical to the force of $1$ on $2$ that +we would get if we had put $Q$ on $1$ and $q$ on $2$ (let us say ``the +electric force does not care about which mass has which charge''). +The only difference between the two masses is the charge, and the only +effect of that difference (the electrostatic force) does not care +about the difference, so the final situation must be symmetric +($\theta_1 = \theta_2$ [no calculation required :p] and $\vect{r}$ is +horizontal). Because $\vect{F_E} \propto \rhat_{12}$ it must also be +horizontal. +\end{solution} diff --git a/latex/problems/problem19.62.tex b/latex/problems/problem19.62.tex new file mode 100644 index 0000000..6c6c57c --- /dev/null +++ b/latex/problems/problem19.62.tex @@ -0,0 +1,105 @@ +\begin{problem*}{19.62} +Two infinite, nonconducting sheets of charge are parallel to each +other as shown in Figure P19.62. The sheet on the left has a uniform +surface charge density $\sigma$, and the one on the right has a +uniform charge density $-\sigma$. Calculate the electric field at +points + \Part{a} to the left of, + \Part{b} in between, and + \Part{c} to the right of +the two sheets. +\end{problem*} % problem 19.62 + +\empaddtoprelude{ + numeric r, rf, mf, dy, height, depth, thick, theta; + r := 1cm; + height := 2cm; + depth := 1cm; + thick := 3pt; + theta := 45; + def draw_plates = + draw_plate((-r,0), height, depth, thick, theta, .5(white+red), (.7white+.3red), black); + draw_plate(( r,0), height, depth, thick, theta, .5(white+blue), (.7white+.3blue), black); + enddef; +} + +\begin{nosolution} +\begin{center} +\begin{empfile}[6] +\begin{emp}(0, 0) + draw_plates; +\end{emp} +\end{empfile} +\end{center} +\end{nosolution} + +\begin{solution} +\hspace{\stretch{1}} +\begin{empfile}[6a] +\begin{emp}(0, 0) + numeric rE, mE; + rE := 2r/3; mE := 2r/3; + draw_ihat((2r/3,r), 0, 2r/3); + draw_gauss_half_cyl((-thick/2,0),rE-thick/2,height/6,0.5,180); + draw_gauss_half_cyl((-thick/2,0), 0,height/6,0.5,180); + draw_plate(origin, height, depth, thick, theta, .5(white+red), (.7white+.3red), black); + draw_gauss_half_cyl(( thick/2,0), 0,height/6,0.5,180); + draw_gauss_half_cyl(( thick/2,0),rE-thick/2,height/6,0.5,0); + label.top(btex $E_+$ etex, draw_arrow(origin,(-rE, 0), mE, 2pt, red)); + label.top(btex $E_+$ etex, draw_arrow(origin,( rE, 0), mE, 2pt, red)); +\end{emp} +\end{empfile} +\hspace{\stretch{1}} +\begin{empfile}[6b] +\begin{emp}(0, 0) + numeric rE, mE, dy; + rE := 2r/3; mE := 2r/3; dy := 3pt; + draw_plates; + draw_ihat((-r/3,r), 0, 2r/3); + label.top(btex $E_+$ etex, draw_arrow((-r, dy),(-r-rE, dy), mE, 2pt, red)); + label.top(btex $E_+$ etex, draw_arrow((-r, dy),(-r+rE, dy), mE, 2pt, red)); + label.top(btex $E_+$ etex, draw_arrow((-r, dy),( r+rE, dy), mE, 2pt, red)); + label.bot(btex $E_-$ etex, draw_arrow(( r,-dy),(-r-rE-mE,-dy),-mE, 2pt, blue)); + label.bot(btex $E_-$ etex, draw_arrow(( r,-dy),(-r+rE, -dy),-mE, 2pt, blue)); + label.bot(btex $E_-$ etex, draw_arrow(( r,-dy),( r+rE+mE,-dy),-mE, 2pt, blue)); +\end{emp} +\end{empfile} +\hspace{\stretch{1}} + +Let \ihat\ be the direction to the right perpendicular to the sheets. +Because the problem has is symmetric to translations in the plane of +the sheets and reflections through planes perpendicular to the sheets, +the electric field must be of the form $\vect{E}(\vect{r}) = +E(x)\ihat$. + +Using Gauss's law to find the electric field due to a single plate, we +imagine a cylinder that extends through the plate a length $L$ out +either side. $\vect{E} = E\ihat$, so no flux passes through the side +walls of the cylinder. The single sheet is symmetric to reflection in +it's plane, so (defining $x=0$ to be the $x$ value of the plane) +$\vect{E}(x) = -\vect{E}(x)$ (positive charges are repelled from both +sides). So, letting the area of a single end cap be $A$, the charge +enclosed by the cylinder is $\sigma A$ and the flux through the +end-caps of the cylinder is given by +\begin{align} + \Phi_E = 2EA &= \frac{q_{in}}{\epsilon_0} = \frac{\sigma A}{\epsilon_0} \\ + E &= \frac{\sigma}{2\epsilon_0} \label{eqn.plane_E} +\end{align} +A constant! (See Example 19.12 on page 629 for the book's version) + +\Part{a} +Using Equation \ref{eqn.plane_E} and superposition, we see +\begin{equation} + E_L = \frac{\sigma}{2\epsilon_0} + \frac{-\sigma}{2\epsilon_0} = \ans{0} +\end{equation} + +\Part{b} +\begin{equation} + \vect{E}_B = \frac{\sigma \ihat}{2\epsilon_0} + + \frac{-\sigma \cdot (-\ihat)}{2\epsilon_0} + = \frac{\sigma}{\epsilon_0}\ihat +\end{equation} + +\Part{c} +Identically to \Part{a}, $E_R = 0$. +\end{solution} diff --git a/latex/problems/problem20.01.tex b/latex/problems/problem20.01.tex new file mode 100644 index 0000000..525ce30 --- /dev/null +++ b/latex/problems/problem20.01.tex @@ -0,0 +1,24 @@ +\begin{problem*}{20.1} +\Part{a} Calculate the speed of a proton that is accelerated from +rest through a potential difference of $\Delta V = 120\U{V}$. +\Part{b} Calculate the speed of an electron that is accelerated +through the same potential difference. +\end{problem*} % problem 20.1 + +\begin{solution} +\Part{a} +Conserving energy +\begin{gather} + E_0 = \frac{1}{2}m_p v^2 = E_1 = e\Delta V \\ + v = \sqrt{\frac{2 e \Delta V}{m_p}} + = \sqrt{\frac{2 \cdot 1.60\E{-19}\U{C} \cdot 120\U{V}}{1.67\E{-27}\U{kg}}} + = \ans{152\U{km/s}} +\end{gather} + +\Part{b} Replacing $m_p$ with $m_e$ +\begin{equation} +v = \sqrt{\frac{2 e \Delta V}{m_e}} + = \sqrt{\frac{2 \cdot 1.60\E{-19}\U{C} \cdot 120\U{V}}{9.11\E{-31}\U{kg}}} + = \ans{6.49\U{Mm/s}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem20.03.tex b/latex/problems/problem20.03.tex new file mode 100644 index 0000000..17e02dc --- /dev/null +++ b/latex/problems/problem20.03.tex @@ -0,0 +1,31 @@ +\begin{problem*}{20.3} +A uniform electric field of magnitude $E = 250\U{V/m}$ is directed in +the positive $x$ direction (\ihat). A $q = +12.0\U{$\mu$C}$ charge +moves from the origin to the point $(x,y) = (20.0\U{cm}, 50.0\U{cm})$. +\Part{a} What is the change in the potential energy $\Delta U$ of the +charge-field system? +\Part{b} Through what potential difference $\Delta V$ does the charge move? +\end{problem*} % problem 20.3 + +\begin{solution} +\Part{a} +From the text Equation 20.1 (page 643) we see +\begin{equation} + \Delta U = -q \int_A^B \vect{E} \cdot d\vect{s} + = -q \int_A^B E\ihat \cdot d\vect{s} + = -q E \int_{x_1}^{x_2} dx + = -q E \Delta x +\end{equation} +Which is the same process the book used to get to their Equation 20.9. +Plugging in our numbers +\begin{equation} + \Delta U = -12.0\E{-6}\U{C} \cdot 250\U{V/m} \cdot 0.200\U{m} + = \ans{-6.00\E{-4}\U{J}} +\end{equation} + +\Part{b} +The change in electric potential is given by +\begin{equation} + \Delta V = \frac{\Delta U}{q} = \ans{-50.0\U{V}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem20.08.tex b/latex/problems/problem20.08.tex new file mode 100644 index 0000000..d100b73 --- /dev/null +++ b/latex/problems/problem20.08.tex @@ -0,0 +1,94 @@ +\begin{problem*}{20.8} +Given two $q_0 = 2.00\U{$\mu$C}$ charges as shown in Figure P20.8 and +a positive test charge of $q = 1.28\E{-18}\U{C}$ at the origin, + \Part{a} what is the net force exerted by the two $q_0$ charges on + the test charge $q$? + \Part{b} What is the electric field at the origin due to the two + $q_0$ charges? + \Part{c} What is the electrical potential at the origin due to the two + $q_0$ charges?\\ +%\begin{center} +% \begin{tabular}{|l|r|r|} +% Name & Charge & x(m) \\ +% \hline +% $q_{0A}$ & $q_0$ & $-a$ \\ +% $q_{0B}$ & $q_0$ & $a$ \\ +% $q$ & $q$ & $0$ \\ +% \hline +% \end{tabular} +%\end{center} +%Where $a = 0.800\U{m}$. +\end{problem*} % problem 20.8 + +\empaddtoprelude{ + pair A, B, C; + numeric a; + a := 2cm; + A := (-a,0); + B := (a, 0); + C := (0, 0); + def drawA = + drawarrow (A-(a/2,0))--(B+(a,0)) withpen pencircle scaled 0pt; + label.bot(btex x etex, B+(a,0)); + draw_ihat(B+(a/4,8pt), 0, a/2); + draw_pcharge(A, 5pt); + draw_pcharge(B, 5pt); + draw_pcharge(C, 3pt); + labeloffset := 8pt; + label.bot(btex $x = -0.800\mbox{ m}$ etex, A); + label.bot(btex $x = 0.800\mbox{ m}$ etex, B); + label.bot(btex $x = 0$ etex, C); + label.top(btex $q_0$ etex, A); + label.top(btex $q_0$ etex, B); + label.top(btex q etex, C); + enddef; +} + +\begin{nosolution} +\begin{center} +\begin{empfile}[2p] +\begin{emp}(0cm, 0cm) + drawA; +\end{emp} +\end{empfile} +\end{center} +\end{nosolution} + +\begin{solution} +\begin{center} +\begin{empfile}[2] +\begin{emp}(0cm, 0cm) + label.top(btex $E_{x_+}$ etex, draw_Efield(B, C, 18pt)); + label.top(btex $E_{x_-}$ etex, draw_Efield(A, C, 18pt)); + drawA; +\end{emp} +\end{empfile} +\end{center} + +\Part{a} +Letting $a = 0.800\U{m}$ and summing the forces from Coulomb's law +\begin{equation} + \vect{F} = \vect{F}_A + \vect{F}_B + = k_e \left[ \frac{q_0 q}{a^2}\ihat + + \frac{q_0 q}{a^2}(-\ihat)\right] + = \ans{0} +\end{equation} +Which makes sense because the situation is symmetric. + +\Part{b} +Summing the electric fields +\begin{equation} + \vect{E}(0) = \vect{E}_A + \vect{E}_B + = k_e \left[ \frac{q_0}{a^2}\ihat + \frac{q_0}{a^2}(-\ihat)\right] + = \frac{\vect{F}}{q} = \ans{0} +\end{equation} + +\Part{c} +Summing the potentials +\begin{equation} + V(0) = V_A + V_B = k_e \frac{q_0}{a} + k_e \frac{q_0}{a} + = 2 k_e \frac{q_0}{a} + = 2 \cdot 8.99\E{9}{Vm/C} \frac{2.00\E{-6}\U{C}}{0.800\U{m}} + = \ans{45.0U{kV}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem20.11.tex b/latex/problems/problem20.11.tex new file mode 100644 index 0000000..646d8cf --- /dev/null +++ b/latex/problems/problem20.11.tex @@ -0,0 +1,14 @@ +\begin{problem*}{20.11} +The three charges in Figure P20.11 are at the vertices of an isosceles +triangle. Calculate the electric potential at the midpoint of the +base, taking $q = 7.00\U{$\mu$C}$. +\end{problem*} % problem 20.11 + +\begin{solution} +\begin{equation} + V = k_e \left( \frac{-q}{1.00\U{cm}} + \frac{-q}{1.00\U{cm}} + + \frac{q}{\sqrt{4.00^2-1.00^2}\U{cm}}\right) + \cdot \frac{100\U{cm}}{1\U{m}} + = \ans{-11.0\U{MV}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem20.19.tex b/latex/problems/problem20.19.tex new file mode 100644 index 0000000..f37b9b8 --- /dev/null +++ b/latex/problems/problem20.19.tex @@ -0,0 +1,53 @@ +\begin{problem*}{20.19} +A light, unstressed spring has a length $d$. Two identical particles, +each with charge $q$, are connected to the opposite ends of the +spring. The particles are held stationary a distance $d$ apart and +are then released at the same time. The spring has a bit of internal +kinetic friction, so the oscillation is damped. The particles +eventually stop vibrating when the distance between them is $3d$. +Find the increase in internal energy $\Delta E_i$ that appears in the +spring during the oscillations. Assume that the system of the spring +and the two charges is isolated. +\end{problem*} % problem 20.19 + +\begin{solution} +From last quarter, we remember that spring potential energy is given +by $U_s = 1/2\cdot k x^2$. To plug in for $k$, we balance the forces +at equilibrium +\begin{align} + F_e = k_e \left(\frac{q}{3d}\right)^2 &= F_s = k \cdot 2d \\ + k &= k_e \frac{q^2}{9 \cdot 2 \cdot d^3} +\end{align} + +From this chapter (Equation 20.13), we see that the electrical +potential energy of two charges is given by +\begin{equation} + U_e = k_e \frac{q_1 q_2}{r_{12}} +\end{equation} + +So the total potential energy of the system in it's final state is +given by the sum of the electric $U_e$ and spring $U_s$ potentials. +\begin{equation} + U = U_e + U_s = \frac{1}{2}k(r-d)^2 + k_e \frac{q^2}{r} +\end{equation} + +The total energy at a point in time is the sum of potential and +internal energies +\begin{equation} + E_t = U_t + E_{it} \;. +\end{equation} +Since we were only interested in the change in internal energy, we can +set the initial internal energy to $0$, and call the final internal +energy $E_i$. + +Conserving energy $E_0 = E_1$ (because the system is isolated) +\begin{align} + E_0 = U_0 &= E_1 = U_1 + E_i \\ + E_i &= U_0 - U_1 + = k_e \frac{q^2}{d} - \frac{1}{2}k(2d)^2 - k_e \frac{q^2}{3d} + = k_e \frac{q^2}{d} \left( 1 - \frac{1}{3}\right) - 2kd^2 \\ + &= k_e \frac{2q^2}{3d} - 2 \left(k_e \frac{q^2}{9 \cdot 2 \cdot d^3}\right)d^2 + = k_e \frac{2q^2}{3d} - k_e \frac{q^2}{9d} + = \ans{\frac{5 k_e q^2}{9d}} \;, +\end{align} +\end{solution} diff --git a/latex/problems/problem20.20.tex b/latex/problems/problem20.20.tex new file mode 100644 index 0000000..e7db0fd --- /dev/null +++ b/latex/problems/problem20.20.tex @@ -0,0 +1,36 @@ +\begin{problem*}{20.20} +In 1911, Ernest Rutherford and his assistants Hans Geiger and Ernest +Mardsen conducted an experiment in which they scattered alpha +particles from thin sheets of gold. An alpha particle, having a +charge of $q_\alpha = +2e$ and a mass of $m = 6.64\E{-27}\U{kg}$ is a +product of certain radioactive decays. The results of the experiment +lead Rutherford to the idea that most of the mass of an atom is in a +very small nucleus, whith electrons in orbit around it, in his +planetary model of the atom. Assume that an alpha particle, initially +very far from a gold nucleus, is fired with a velocity $v = +2.00\E{7}\U{m/s}$ directly toward the nucleus (charge $Q = +79e$). +How close does the alpha particle get to the nucleus before turning +around? Asume that the gold nucleus remains stationary. +\end{problem*} % problem 20.20 + +\begin{solution} +Let $r$ be the distance between the alpha particle and the gold +nucleus. Conserving energy between the initial point at $r=\infty$ +where the energy is all kinetic +\begin{equation} + E_0 = \frac{1}{2}m v_0^2 +\end{equation} +And the point of closest approach where the energy is all electric potential +\begin{equation} + E_1 = k_e \frac{(2e)(79e)}{r} +\end{equation} +We have +\begin{align} + E_0 = \frac{1}{2}mv^2 &= E_1 = k_e \frac{158 e^2}{r} \\ + r &= \frac{2 \cdot 158 \cdot k_e e^2}{m v^2} + = \frac{316 \cdot 8.99\E{9}\U{N m$^2$/C$^2$} \cdot (1.60\E{-19}\U{C})^2}{6.64\E{-27}\U{kg} \cdot (2.00\E{7}\U{m/s})^2} + = \ans{2.74\E{-14}\U{m}} +\end{align} +Which is significantly less than the $r_e \sim 10^{-10}\U{m}$ radius +of the gold atom. +\end{solution} diff --git a/latex/problems/problem20.21.tex b/latex/problems/problem20.21.tex new file mode 100644 index 0000000..43d4ad8 --- /dev/null +++ b/latex/problems/problem20.21.tex @@ -0,0 +1,25 @@ +\begin{problem*}{20.21} +The potential in a region between $x=0$ and $x=6.00\U{m}$ is $V = +a+bx$, where $a = 10.0\U{V}$ and $b = -7.00\U{V/m}$. Determine + \Part{a} the potential at $x = 0$, $3.00\U{m}$, and $6.00\U{m}$; and + + \Part{b} the magnitude and direction of the electric field at $x = +0$, $3.00\U{m}$, and $6.00\U{m}$. +\end{problem5} % problem 20.21 + +\begin{solution} +\Part{a} +Simply plugging into their $V(x)$ formula +\begin{align} + V(0\U{m}) &= \ans{10.0\U{V}} \\ + V(3.00\U{m}) &= 10.0\U{V} - 21.0\U{V} = \ans{-11\U{V}} \\ + V(6.00\U{m}) &= 10.0\U{V} - 42.0\U{V} = \ans{-32\U{V}} +\end{align} + +\Part{b} +Using $E_x = -dV/dx$ we have +\begin{equation} + E = - \frac{d}{dx}(a+bx) = -b = \ans{7.00\U{V/m}} +\end{equation} +At any point for $0 \le x \le 6.00\U{m}$. +\end{solution} diff --git a/latex/problems/problem20.22.tex b/latex/problems/problem20.22.tex new file mode 100644 index 0000000..16b1323 --- /dev/null +++ b/latex/problems/problem20.22.tex @@ -0,0 +1,25 @@ +\begin{problem*}{20.22} +The electric potential insize a charged spherical conductor of radius +$R$ is given by $V_i = k_e Q / R$, and the outside potential is given +by $V_o = k_e Q/r$. Using $E_r = -dV/dx$, determine the electric +field + \Part{a} inside and + \Part{b} outside + this charge distribution. +\end{problem*} % problem 20.22 + +\begin{solution} +\Part{a} +\begin{equation} + E_i = - \frac{d}{dx}\left(\frac{k_e Q}{R}\right) = 0 +\end{equation} +Because $V_i$ is constant with respect to $r$. + +\Part{b} +\begin{equation} + E_o = - \frac{d}{dx}\left(\frac{k_e Q}{r}\right) + = -k_e Q \frac{d}{dx}\left(\frac{1}{r}\right) + = -k_e Q \frac{-1}{r^2} + = \ans{\frac{k_e Q}{r^2}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem20.24.tex b/latex/problems/problem20.24.tex new file mode 100644 index 0000000..267a967 --- /dev/null +++ b/latex/problems/problem20.24.tex @@ -0,0 +1,33 @@ +\begin{problem*}{20.24} +Consider a ring of radius $R$ with the total charge $Q$ spread +uniformly over its perimeter. What is the potential difference +between the point at the center of the ring and a point on its axis a +distance $d=2R$ from the center? +\end{problem*} % problem 20.24 + +\begin{solution} +From the first week's recitation (P19.19), we have the electric field +along the axis due to the ring as +\begin{equation} + \vect{E} = \frac{k_e x Q}{(x^2 + R^2)^{3/2}}\ihat +\end{equation} +So the potential drop from $0$ to $d$ is given by +\begin{equation} + \Delta V = -\int_0^d E_x dx + = - k_e Q \int_0^d \frac{x \cdot dx}{(x^2 + R^2)^{3/2}} +\end{equation} +Substituting $u = x^2 + R^2$ so $du = 2x dx$ we have +\begin{equation} + \Delta V = - k_e Q \int \frac{1/2 \cdot du}{u^{3/2}} + = - \frac{1}{2} k_e Q \frac{-2}{\sqrt{u}} + = \frac{k_e Q}{\sqrt{u}} +\end{equation} +And plugging back in in terms of $x$ +\begin{equation} + \Delta V = \left.\frac{k_e Q}{\sqrt{x^2 + R^2}}\right|_0^d + = \frac{k_e Q}{\sqrt{d^2 + R^2}} - \frac{k_e Q}{R} + = k_e Q \left(\frac{1}{\sqrt{(4+1)R^2}} - \frac{1}{R}\right) + = \frac{k_e Q}{R} \left(\frac{1}{\sqrt{5}}-1\right) + = \ans{-0.533 \frac{k_e Q}{R}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem20.27.tex b/latex/problems/problem20.27.tex new file mode 100644 index 0000000..21a7865 --- /dev/null +++ b/latex/problems/problem20.27.tex @@ -0,0 +1,29 @@ +\begin{problem*}{20.27} +A uniformly charged insulating rod of length $L = 14.0\U{cm}$ is bent +to form a semicircle. The rod has a total charge of $Q = +-7.50\U{$\mu$C}$. Find the electric potential at the center of the +semicircle $0$. +\end{problem*} % problem 20.27 + +\begin{solution} +As in problem 20.11, we'll sum over all the charge bits, but in this +case our bits are infinitesimal, so our sum is technically an +integral. Defining the charge density $\lambda = Q/L$ we have +\begin{equation} + V = \int_0^L k_e \frac{\lambda dL}{r} = k_e \frac{\lambda}{r}\int_0^L dL + = k_e \frac{Q}{r} +\end{equation} +The same as for a point charge $Q$! This is because electric +potential is a scalar, and all the charges are the same distance from +$O$. It doesn't matter if they are all gathered together at one +point, or smeared out in a semicircle, spherical shell, or whatever, +as long as they are all the same distance $r$ from $O$. + +We still need to find $r$, but we know that the arc length of a +semicircle is $\pi r$, so $r = L/\pi$, and +\begin{equation} + V = k_e \frac{\pi Q}{L} + = 8.99\E{9}\U{N m$^2$/C$^2$} \frac{\pi \cdot (-7.50\E{-6}\U{C})}{0.140\U{m}} + = \ans{-1.51\U{MV}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem20.40.tex b/latex/problems/problem20.40.tex new file mode 100644 index 0000000..3f88ece --- /dev/null +++ b/latex/problems/problem20.40.tex @@ -0,0 +1,45 @@ +\begin{problem*}{20.40} +Two capacitors, $C_1 = 5.00\U{$\mu$F}$ and $C_2 = 12.0\U{$\mu$F}$, are +connected in series, and the resulting combination is connected to a +$\Delta V = 9.00\U{V}$ battery. Find + \Part{a} the equivalent capacitance of the combination, + \Part{b} the potential difference across each capacitor, and + \Part{c} the charge on each capacitor. +\end{problem*} % problem 20.40 + +\begin{solution} +\Part{a} +The wire connecting the inner plates of $C_1$ and $C_2$ contains no +net charge, so we know that any charge on the inner plate of $C_1$ +must have come from the inner plate of $C_2$. Because these charges +are equal and opposite, the total charge $Q$ on each capacitor +seperately is the same for both ($Q_1 = Q_2$). So using the +definition of capacitance for both cases we have +\begin{align} + \Delta V_1 &= Q / C_1 \label{eqn.V1} \\ + \Delta V_2 &= Q / C_2 \label{eqn.V2} \\ + \Delta V &= \Delta V_1 + \Delta V_2 + = Q \left( \frac{1}{C_1} + \frac{1}{C_2} \right) + = \frac{Q}{C_{eq}} \label{eqn.VQC} +\end{align} +So +\begin{equation} + C_{eq} = \left(\frac{1}{C_1}+\frac{1}{C_2}\right)^{-1} + = \left(\frac{1}{5.00\E{-6}\U{F}}+\frac{1}{12.0\E{-6}\U{F}}\right)^{-1} + = \ans{3.53\U{$\mu$F}} +\end{equation} + +\Part{c} +Plugging back into equation \ref{eqn.VQC} we have +\begin{equation} + Q = \Delta V \cdot C_{eq} + = 3.53\U{$\mu$F}\cdot 9.00\U{V} = \ans{31.8\U{$\mu$C}} +\end{equation} + +\Part{b} +And plugging into equations \ref{eqn.V1} and \ref{eqn.V2} we have +\begin{align} + \Delta V_1 &= \frac{31.8\E{-6}\U{C}}{5.00\E{-6}\U{F}} = \ans{6.35\U{V}} \\ + \Delta V_2 &= \frac{31.8\E{-6}\U{C}}{12.0\E{-6}\U{F}} = \ans{2.65\U{V}} \\ +\end{align} +\end{solution} diff --git a/latex/problems/problem20.41.tex b/latex/problems/problem20.41.tex new file mode 100644 index 0000000..e4fb2f4 --- /dev/null +++ b/latex/problems/problem20.41.tex @@ -0,0 +1,49 @@ +\begin{problem*}{20.41} +Four capacitors are connected as shown in Figure P20.41. +\Part{a} Find the equivalent capacitance between points $a$ and $b$. +\Part{b} Calculate the charge on each capacitor, taking + $\Delta V_{ab} = 15.0\U{V}$ +\end{problem*} % problem 20.41 + +\begin{solution} +\Part{a} +First consider the top two capacitors, $C_1 = 15.0\U{$\mu$F}$ and + $C_2 = 3.00\U{$\mu$F}$. +They are in series, so the effective capacitance of the top line is + given by +\begin{equation} + C_t = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1} + = 2.50\U{$\mu$F} +\end{equation} + +We can find the effective capacitance of the box, because $C_t$ is +in parallel with $C_3 = 6.00\U{$\mu$F}$. +\begin{equation} + C_b = C_t + C_3 = 8.50\U{$\mu$C} +\end{equation} + +We can find the total equivalent capacitance, because $C_b$ is in +series with $C_4 = 20.0\U{$\mu$F}$. +\begin{equation} + C_{eq} = \left(\frac{1}{C_b} + \frac{1}{C_4}\right)^{-1} + = \ans{ 5.96\U{$\mu$F}} +\end{equation} + +\Part{b} +Working backwards to find the charges, using $Q = CV$, we have +\begin{equation} + Q_4 = Q_b = C_{eq} V_{ab} = \ans{89.5\U{$\mu$C}} +\end{equation} +So the voltage across the box is +\begin{equation} + V_b = \frac{Q_b}{C_b} = 10.5\U{V} +\end{equation} +So +\begin{equation} + Q_3 = C_3 V_b = \ans{63.2\U{$\mu$C}} +\end{equation} +and +\begin{equation} + Q_1 = Q_2 = C_t V_b = \ans{26.3\U{$\mu$C}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem20.43.tex b/latex/problems/problem20.43.tex new file mode 100644 index 0000000..7923aa6 --- /dev/null +++ b/latex/problems/problem20.43.tex @@ -0,0 +1,70 @@ +\begin{problem*}{20.43} +Consider the circuit shown in Figure P20.43, where $C_1 = +6.00\U{$\mu$F}$, $C_2 = 3.00\U{$\mu$F}$, and $\Delta V = 20.0\U{V}$. +Capacitor $C_1$ is first charged with $Q_1$ by the closing of switch +$S_1$. Switch $S_1$ is then opened, and the charged capacitor is +connected to the uncharged capacitor by the closing of $S_2$. +Calculate $Q_1$ and the final charge on each capacitor ($Q_1'$ and +$Q_2'$). +\begin{center} +\begin{empfile}[2p] +\begin{emp}(0cm, 0cm) + input makecirc; % circuit drawing functions + initlatex(""); + numeric a, cAy, cBy; + a = 3cm; + % add elements + battery.B(origin, 90, "V", ""); + centreof.c(B.B.n, B.B.p, cap); + capacitor.A(c.c+(a,0), normal, phi.c, "C_1", ""); + capacitor.B(c.c+(2a,0), normal, phi.c, "C_2", ""); + centreof.d(B.B.n, (xpart C.A.l, ypart B.B.n), swt); + switch.S(c.d, NO, phi.d, "S_1", ""); + centreof.e((xpart C.A.l, ypart B.B.n), (xpart C.B.l, ypart B.B.n), swt); + switch.s(c.e, NO, phi.e, "S_2", ""); + % add wiring along the bottom + wire(B.B.n, st.S.l, nsq); + wire(st.S.r, C.A.l, rlsq); + wire(st.S.r, st.s.l, nsq); + wire(st.s.r, C.B.l, rlsq); + % add wiring along the top + wire(B.B.p, C.A.r, rlsq); + wire(B.B.p, C.B.r, rlsq); +\end{emp} +\end{empfile} +\end{center} +\end{problem*} % problem 20.43 + +\begin{solution} +The first situation with $S_1$ closed and $S_2$ open is just a +standard capacitor charging problem. Using the definition of +capacitance +\begin{equation} + Q_1 = C_1 \Delta V = 6.00\E{-6}\U{F} \cdot 20.0\U{V} = \ans{120\U{$\mu$C}} +\end{equation} + +After disconnecting the battery and connecting the two capacitors, we +have a net charge of $Q_1$ in the upper wire that we can distribute as +we desire between $C_1$ and $C_2$. Because charge is conserved, we +know +\begin{equation} + Q_1 = Q_1' + Q_2' \label{eqn.q12_one} +\end{equation} +We also know that at equilibrium the voltage across each capacitor +must be equal (because if there was a voltage difference beween the +upper plates of the two capacitors, it would push current through the +upper wire until the voltage difference dissapeared, etc.). So +\begin{equation} + \Delta V_1' = \frac{Q_1'}{C_1} = \Delta V_2' = \frac{Q_2'}{C_2} \label{eqn.q12_two} +\end{equation} +Now we have two equations relating our two unknowns $Q_1'$ and $Q_2'$. +Solving equation \ref{eqn.q12_two} for $Q_2'$ and plugging into +equation \ref{eqn.q12_one} we get +\begin{align} + Q_2' &= \frac{C_2}{C_1} Q_1' \\ + Q_1 &= \left(1 + \frac{C_2}{C_1}\right)Q_1' \\ + Q_1' &= \frac{Q_2}{1 + C_2/C_1} = \frac{120\U{$\mu$C}}{1.5} + = \ans{80\U{$\mu$C}} \\ + Q_2' &= 0.5 \cdot 80\U{$\mu$C} = \ans{40\U{$\mu$C}} +\end{align} +\end{solution} diff --git a/latex/problems/problem20.47.tex b/latex/problems/problem20.47.tex new file mode 100644 index 0000000..58eaee0 --- /dev/null +++ b/latex/problems/problem20.47.tex @@ -0,0 +1,18 @@ +\begin{problem*}{20.47} +\Part{a} A $C = 3.00\U{$\mu$F}$ capacitor is connected to a $\Delta +V_a = 12.0\U{V}$ battery. How much energy $U_a$ is stored in the +capacitor? +\Part{b} If the capacitor had been connected to a $\Delta V_b = +6.00\U{V}$ battery, how much energy would have been stored? +\end{problem*} % problem 20.47 + +\begin{solution} +Simply plugging into the formula for energy stored in a capacitor we have +\begin{align} + U_a &= \frac{1}{2} C (\Delta V)^2 + = \frac{1}{2} (3.00\E{-6}\U{F}) \cdot (12.0\U{V})^2 + = \ans{ 216 \U{$\mu$J}} \\ + U_b &= \frac{1}{2} (3.00\E{-6}\U{F}) \cdot (6.0\U{V})^2 + = \ans{ 54 \U{$\mu$J}} +\end{align} +\end{solution} diff --git a/latex/problems/problem20.49.tex b/latex/problems/problem20.49.tex new file mode 100644 index 0000000..da7437f --- /dev/null +++ b/latex/problems/problem20.49.tex @@ -0,0 +1,33 @@ +\begin{problem*}{20.49} +Two capacitors, $C_1 = 25.0\U{$\mu$F}$ and $C_2 = 5.00\U{$\mu$F}$, are +connected in parallel and charged with a $\Delta V = 100\U{V}$ power +supply. +\Part{a} Draw a circuit diagram and calculate the total energy stored in the +two capacitors. +\Part{b} What potential difference would be required across the same +two capacitors connected in series so that the combination stores the +same energy as in \Part{a}? +Draw a circuit diagram for this circuit. +\end{problem*} % problem 20.49 + +\begin{solution} +The diagrams are given in the back of the book. + +\Part{a} +The equivalent capacitance is $C_{eq} = C_1 + C_2 = 30.0\U{$\mu$F}$, +so the stored energy is +\begin{equation} + U = \frac{1}{2} C_{eq} (\Delta V)^2 = \ans{0.150\U{J}} +\end{equation} + +\Part{b} +The equivalent capacitance is now +\begin{equation} + C_{eq} = \left(\frac{1}{C_1}+\frac{1}{C_2}\right)^{-1} = 4.17\U{$\mu$F} +\end{equation} +So the necessary voltage is given by +\begin{align} + U &= \frac{1}{2} C_{eq} (\Delta V)^2 \\ + \Delta V &= \sqrt{\frac{2 U}{C_{eq}}} = \ans{ 268\U{V}} +\end{align} +\end{solution} diff --git a/latex/problems/problem20.51.tex b/latex/problems/problem20.51.tex new file mode 100644 index 0000000..439666b --- /dev/null +++ b/latex/problems/problem20.51.tex @@ -0,0 +1,16 @@ +\begin{problem*}{20.51} +Show that the force between two plates of a parallel-plate capacitor +each have an attractive force given by +\begin{equation} + F = \frac{Q^2}{2\epsilon_0 A} +\end{equation} +\end{problem*} % problem 20.51 + +\begin{solution} +The electric field generated by the plate $A$ is given by $E_A = Q/2 +\epsilon_0 A$ (which we derived for P19.62, along with $\sigma = +Q/A$). So the force on plate $B$ due to plate $A$ is given by +\begin{equation} + F = QE_A = \frac{Q^2}{2 \epsilon_0 A} +\end{equation} +\end{solution} diff --git a/latex/problems/problem20.54.tex b/latex/problems/problem20.54.tex new file mode 100644 index 0000000..6a27ce4 --- /dev/null +++ b/latex/problems/problem20.54.tex @@ -0,0 +1,46 @@ +\begin{problem*}{20.54} +\Part{a} How much charge $Q_c$ can be placed on a capacitor with air +between the plates before it breaks down if the area of each plate is +$A=5.00\U{cm}^2$? +\Part{b} Find the maximum charge assuming polystyrene is used between +the plates instead of air. +\end{problem*} % problem 20.54 + +\begin{solution} +From Chapter 19, the voltage difference due to a constant electric +field \vect{E} over a displacement \vect{d} is given by $\Delta V = +\vect{E} \cdot \vect{d}$. So for two plates a distance $d$ apart, the +breakdown voltage is given by +\begin{equation} + V_c = E_c d \label{eqn.Vc_Ec} +\end{equation} +where $E_c$ is the dielectric strength of the material. + +The capacitance of a parallel-plate capacitor is given by +\begin{equation} + C = \frac{\kappa \epsilon_0 A}{d} \label{eqn.pp_cap} +\end{equation} + +Combining these two formula with the definition of capacitance we have +\begin{equation} + E_c d = V = \frac{Q}{C} = \frac{Q d}{\kappa \epsilon_0 A} \\ + Q = \kappa E_c \epsilon_0 A +\end{equation} + +Looking up the values for air and polystyrene in Table 20.1 on page +699 of the text we see: +\begin{center} + \begin{tabular}{l r r} + Name & Dielectric constant $\kappa$ & Dielectric strength $E_c$ \\ + \hline + \Tstrut Air & $1.00059$ & $3\E{6}\U{V/m}$ \\ + Polystyrene & $2.56$ & $24\E{6}\U{V/m}$ \\ + \end{tabular} +\end{center} + +So plugging into our formula for the charge +\begin{align} + Q_a &= 1.00 \cdot (3\E{6}\U{V/m}) \cdot (8.85\E{-12}\U{C$^2$/N m$^2$}) \cdot 5\E{-4}\U{m$^2$} = \ans{1.33\E{-8}\U{C}} \\ + Q_b &= 2.56 \cdot (24\E{6}\U{V/m}) \cdot (8.85\E{-12}\U{C$^2$/N m$^2$}) \cdot 5\E{-4}\U{m$^2$} = \ans{2.72\E{-7}\U{C}} +\end{align} +\end{solution} diff --git a/latex/problems/problem20.69.tex b/latex/problems/problem20.69.tex new file mode 100644 index 0000000..24599d7 --- /dev/null +++ b/latex/problems/problem20.69.tex @@ -0,0 +1,29 @@ +\begin{problem*}{20.69} +The $x$ axis is the symmetry axis of a stationary, uniformly charged +ring of radius $R$ and charge $Q$ (Fig.~P20.69). A particle with +charge $Q$ and mass $M$ is located at the center of the ring. When it +is displaced slightly, the point charge accelerates along the $x$ axis +to infinity. Show that the ultimate speed of the point charge is +\begin{equation} + v = \left(\frac{2 k_e Q^2}{MR}\right)^{1/2} +\end{equation} +\end{problem*} % problem 20.69 + +\begin{solution} +Conserving energy, the inital energy is entirely electric, +\begin{equation} + E_i = U_e = k_e \frac{Q^2}{R} +\end{equation} +because all the ring charge is a distance $R$ from the particle. + +The final energy is entirely kinetic +\begin{equation} + E_f = K = \frac{1}{2} M v^2 +\end{equation} + +So +\begin{align} + k_e \frac{Q^2}{R} = E_i &= E_f = \frac{1}{2} M v^2 \\ + v &= \ans{\sqrt{\frac{2 k_e Q^2}{M R}}} +\end{align} +\end{solution} diff --git a/latex/problems/problem20.73.tex b/latex/problems/problem20.73.tex new file mode 100644 index 0000000..31a5b64 --- /dev/null +++ b/latex/problems/problem20.73.tex @@ -0,0 +1,31 @@ +\begin{problem*}{20.73} +A parallel-plate capacitor is constructed using a dielectric material +whose dielectric constant is $\kappa = 3.00$ and whose dielectric +strength is $E_c = 2.00\E{8}\U{V/m}$. The desired capacitance is $C = +0.250\U{$\mu$F}$, and the capacitor must withstand a maximum potential +difference of $V_c = 4000\U{V}$. Find the minimum area $A$ of the +capacitor plates. +\end{problem*} + +\begin{solution} +Using equation \ref{eqn.Vc_Ec}, we have +\begin{equation} + d \ge \frac{V_c}{E_c} +\end{equation} +Where equality represents a breakdown at $V_c$ and larger $d$ give us +more protection with larger breakdown voltages. + +From equation \ref{eqn.pp_cap} we have +\begin{equation} + A = \frac{d C}{\kappa \epsilon_0} +\end{equation} +From which we can see that the smaller $d$ is, the smaller $A$ can be, +and we pick $d = V_c/E_c$, the smallest possible value we can. + +Then the smallest area is given by +\begin{equation} + A = \frac{V_c C}{E_c \kappa \epsilon_0} + = \frac{(4000\U{V})\cdot(0.25\E{-6}\U{F})}{(2.00\E{8}\U{V/m})\cdot3.00\cdot(8.85\E{-12}\U{C$^2$/Nm$^2$})} + = \ans{0.188\U{m$^2$}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem21.01.tex b/latex/problems/problem21.01.tex new file mode 100644 index 0000000..b92f1a1 --- /dev/null +++ b/latex/problems/problem21.01.tex @@ -0,0 +1,19 @@ +\begin{problem*}{21.1} +In a particular cathode-ray tube, the measured beam current is + $I = 30.0\U{$\mu$A}$. +How many electrons strike the tube screen every $\Delta t = 40.0\U{s}$ +\end{problem*} % problem 21.1 + +\begin{solution} +Current is defined as \emph{charge passing through a given surface per + unit time} or in SI units: +\begin{equation} + 1\U{A} = \frac{1\U{C}}{1\U{s}} \;. +\end{equation} +So +\begin{align} + \Delta Q &= I \Delta t = 1.20\U{mC} \\ + N_e &= \frac{\Delta Q}{e} = \ans{7.50\E{15}} \;, +\end{align} +where $e = 1.60\E{-19}\U{C}$ is the charge on one electron. +\end{solution} diff --git a/latex/problems/problem21.04.tex b/latex/problems/problem21.04.tex new file mode 100644 index 0000000..298b647 --- /dev/null +++ b/latex/problems/problem21.04.tex @@ -0,0 +1,21 @@ +\begin{problem*}{21.4} +The quantity of charge $q$ (in coulombs) that has passed through a +surface of area $A = 2.00\U{cm$^2$}$ varies with time according to the +equation $q = 4t^3 + 5t + 6$, where $t$ is in seconds. +\Part{a} What is the instantaneous current across the surface at + $t_a = 1.00\U{s}$? +\Part{b} What is the value of the current density? +\end{problem*} % problem 21.4 + +\begin{solution} +\Part{a} +\begin{align} + I(t) = \frac{dQ}{dt} &= 12 t^2 + 5 \\ + I(t_a) &= \ans{17.0\U{A}} +\end{align} + +\Part{b} +\begin{equation} + j(t_a) = I(t_a)/A = \ans{8.50\U{A/cm$^2$}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem21.14.tex b/latex/problems/problem21.14.tex new file mode 100644 index 0000000..49cd088 --- /dev/null +++ b/latex/problems/problem21.14.tex @@ -0,0 +1,18 @@ +\begin{problem*}{21.14} +A toaster is rated at $P = 600\U{W}$ when connected to a $V = +120\U{V}$ source. What current $I$ does the toaster carry, and what +is its resistance $R$? +\end{problem*} % problem 21.14 + +\begin{solution} +(Assuming the voltage is DC). +The power through a resistor is given by $P = IV$ so +\begin{equation} + I = \frac{P}{V} = \frac{600\U{W}}{120\U{V}} = \ans{5\U{A}} +\end{equation} + +The voltage across a resistor is given by $V = IR$ so +\begin{equation} + R = \frac{V}{I} = \frac{120\U{V}}{5\U{A}} = \ans{24\U{$\Omega$}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem21.17.tex b/latex/problems/problem21.17.tex new file mode 100644 index 0000000..c3fb052 --- /dev/null +++ b/latex/problems/problem21.17.tex @@ -0,0 +1,23 @@ +\begin{problem*}{21.17} +Suppose a voltage surge produces $V_s = 140\U{V}$ for a moment. By +what percentage $p$ does the power output of a $V = 120\U{V}$, $P = +100\U{W}$ lightbulb increase? Assume the resistance does not change. +\end{problem*} % problem 21.17 + +\begin{solution} +The voltage across a resistor is +\begin{equation} + V = IR +\end{equation} +So power absorbed by a resistor is +\begin{equation} + P = IV = \frac{V^2}{R} +\end{equation} + +And the fractional change in power $f$ is given by +\begin{equation} + f = \frac{P_s}{P} = \frac{V_s^2 / R}{V^2 / R} + = \left(\frac{V_s}{V}\right)^2 = 1.361 +\end{equation} +So $p = \ans{36.1\U{\%}}$. +\end{solution} diff --git a/latex/problems/problem21.25.inversion.tex b/latex/problems/problem21.25.inversion.tex new file mode 100644 index 0000000..0ab2aea --- /dev/null +++ b/latex/problems/problem21.25.inversion.tex @@ -0,0 +1,63 @@ +\begin{align} + \begin{pmatrix} + -1 & 1 & 1 & \big| & 1 & 0 & 0 \\ + R_1 & R_2 & 0 & \big| & 0 & 1 & 0 \\ + R_1 & 0 & R_3 & \big| & 0 & 0 & 1 + \end{pmatrix} + &\rightarrow + \begin{pmatrix} + 1 & -1 & -1 & \big| & -1 & 0 & 0 \\ + 1 & R_2/R_1 & 0 & \big| & 0 & 1/R_1 & 0 \\ + 1 & 0 & R_3/R_1 & \big| & 0 & 0 & 1/R_1 + \end{pmatrix} + \rightarrow \\ + \begin{pmatrix} + 1 & -1 & -1 & \big| & -1 & 0 & 0 \\ + 0 & R_2/R_1 +1 & 1 & \big| & 1 & 1/R_1 & 0 \\ + 0 & 1 & R_3/R_1 +1 & \big| & 1 & 0 & 1/R_1 + \end{pmatrix} + &\rightarrow + \begin{pmatrix} + 1 & -1 & -1 & \big| & -1 & 0 & 0 \\ + 0 & 1 & \frac{R_1}{R_2 +R_1} & \big| & \frac{R_1}{R_2 +R_1} & \frac{1}{R_2+R_1} & 0 \\ + 0 & 1 & \frac{R_3+R_1}{R_1} & \big| & 1 & 0 & 1/R_1 + \end{pmatrix} + \rightarrow \\ + \begin{pmatrix} + 1 & -1 & -1 & \big| & -1 & 0 & 0 \\ + 0 & 1 & \frac{R_1}{R_2 +R_1} & \big| & \frac{R_1}{R_2 +R_1} & \frac{1}{R_2+R_1} & 0 \\ + 0 & 0 & \frac{R_3+R_1}{R_1} - \frac{R_1}{R_2+R_1} & \big| & 1-\frac{R_1}{R_2 + R_1} & \frac{-1}{R_2+R_1} & 1/R_1 + \end{pmatrix} + &\rightarrow + \begin{pmatrix} + 1 & -1 & -1 & \big| & -1 & 0 & 0 \\ + 0 & 1 & \frac{R_1}{R_2 +R_1} & \big| & \frac{R_1}{R_2 +R_1} & \frac{1}{R_2+R_1} & 0 \\ + 0 & 0 & \frac{R_3R_2 + R_2R_1+ R_1R_3+ R_1^2-R_1^2}{R_1(R_2+R_1)} & \big| & \frac{R_2}{R_2 + R_1} & \frac{-1}{R_2+R_1} & 1/R_1 + \end{pmatrix} + \rightarrow \\ + \begin{pmatrix} + 1 & -1 & -1 & \big| & -1 & 0 & 0 \\ + 0 & 1 & \frac{R_1}{R_2 +R_1} & \big| & \frac{R_1}{R_2 +R_1} & \frac{1}{R_2+R_1} & 0 \\ + 0 & 0 & \frac{A}{R_1(R_2+R_1)} & \big| & \frac{R_2}{R_2 + R_1} & \frac{-1}{R_2+R_1} & 1/R_1 + \end{pmatrix} + &\rightarrow + \begin{pmatrix} + 1 & -1 & -1 & \big| & -1 & 0 & 0 \\ + 0 & 1 & \frac{R_1}{R_2 +R_1} & \big| & \frac{R_1}{R_2 +R_1} & \frac{1}{R_2+R_1} & 0 \\ + 0 & 0 & 1 & \big| & \frac{R_1R_2}{A} & \frac{-R_1}{A} & \frac{R_1+R_2}{A} + \end{pmatrix} + \rightarrow \\ + \begin{pmatrix} + 1 & -1 & -1 & \big| & -1 & 0 & 0 \\ + 0 & 1 & 0 & \big| & \frac{R_1}{R_2 +R_1}\left(1-\frac{R_1R_2}{A}\right) & \frac{R_1}{R_2+R_1}\left(\frac{1}{R_1}+\frac{R_3}{A}\right) & \frac{-R_1}{A} \\ + 0 & 0 & 1 & \big| & \frac{R_1R_2}{A} & \frac{-R_1}{A} & \frac{R_1+R_2}{A} + \end{pmatrix} + &\rightarrow + \begin{pmatrix} + 1 & 0 & 0 & \big| & -0.2308 & 0.0385 & 0.0577 \\ + 0 & 1 & 0 & \big| & 0.3077 & 0.1154 & -0.0769 \\ + 0 & 0 & 1 & \big| & 0.4615 & -0.0769 & 0.1346 + \end{pmatrix} + \rightarrow \\ +\end{align} +Where $A \equiv R_1 R_2 + R_2 R_3 + R_3 R_1$. diff --git a/latex/problems/problem21.25.tex b/latex/problems/problem21.25.tex new file mode 100644 index 0000000..3252231 --- /dev/null +++ b/latex/problems/problem21.25.tex @@ -0,0 +1,63 @@ +\begin{problem*}{21.25} +A battery has an emf of $\epsilon = 15.0\U{V}$. The terminal voltage +of the battery is $V_t = 11.6\U{V}$ when it is delivering $P = +20.0\U{W}$ of power to an external load resistor $R$. +\Part{a} What is the value of $R$? +\Part{b} What is the internal resistance $r$ of the battery? +\end{problem*} % problem 21.25 + +\begin{solution} +\begin{center} +\begin{empfile}[1] +\begin{emp}(0,0) + path P; + pair N[]; + numeric dx, ddy, f; + dx := 2cm; + ddy := 3pt; + f := 2.5; + % draw the battery branch components + battery.B(origin, 90, "\epsilon", ""); + resistor.B(B.B.p, normal, 90, "r", ""); + N[0] := B.B.n; + N[1] := R.B.r; + % draw the resistor branch components + centerto.A(N[0], N[1], dx, res); + resistor.A(A, normal, 90, "R", ""); + N[2] := (xpart R.A.l, ypart N[0]); + N[3] := (xpart N[2], ypart N[1]); + % draw the currents + centreof.i(N[1], N[3], cur); + current.A(c.i, phi.i, "I", ""); + % draw the wires + wire(N[0], R.A.l, rlsq); + wire(N[1], R.A.r, rlsq); + % draw the nodes + draw N[0] withpen pencircle scaled 3pt; + draw N[1] withpen pencircle scaled 3pt; + % box the battery + P := (N[0]+(-dx/f,ddy))--(N[0]+(dx/f,ddy))--(N[1]-(-dx/f,ddy))--(N[1]-(dx/f,ddy))--cycle; + draw P dashed evenly; + % label the battery + ctext.lft(N[0]+(-dx/f,ddy), N[1]-(dx/f,ddy), "$V_t$", witharrow); +\end{emp} +\end{empfile} +\end{center} +\Part{a} +Using the power absorbed by $R$ +\begin{align} + P &= IV_t = \frac{V_t^2}{R} \\ + R &= \frac{V_t^2}{P} = \frac{(11.6\U{V})^2}{20.0\U{W}} = \ans{6.75\Omega} +\end{align} + +\Part{b} +The current through the entire ciruit is given by +\begin{equation} + I = \frac{V_t}{R} = \frac{P}{V_t} = 1.72\U{A} +\end{equation} +So the internal resistance is given by +\begin{align} + \epsilon - V_t &= I r \\ + r &= \frac{\epsilon - V_t}{I} = \frac{3.4\U{V}}{1.72\U{A}} = \ans{1.97\Omega} +\end{align} +\end{solution} diff --git a/latex/problems/problem21.27.tex b/latex/problems/problem21.27.tex new file mode 100644 index 0000000..4dd4ea1 --- /dev/null +++ b/latex/problems/problem21.27.tex @@ -0,0 +1,62 @@ +\begin{problem*}{21.27} +\Part{a} Find the equivalent resistance between points $a$ and $b$ in +Figure P21.27. +\Part{b} A potential difference of $V = 34.0\U{V}$ is applied between +points $a$ and $b$. Calculate the current in each resistor. +\begin{center} +\begin{empfile}[5] +\begin{emp}(0,0) + input makecirc; % circuit drawing functions + initlatex(""); + numeric dx, dy; + dx := 1cm; + dy := 1cm; + dotlabel.lft("a", origin); + resistor.A(origin, normal, 0, "R_1", "4.00\ohm"); + resistor.B((0,dy)+R.A.r, normal, 0, "R_2", "7.00\ohm"); + resistor.C((0,-dy)+R.A.r, normal, 0, "R_3", "10.0\ohm"); + resistor.D((xpart(R.C.r),0), normal, 0, "R_4", "9.00\ohm"); + wire(R.A.r, R.B.l,nsq); + wire(R.A.r, R.C.l,nsq); + draw R.A.r withpen pencircle scaled 3pt; + wire(R.D.l, R.B.r,nsq); + wire(R.D.l, R.C.r,nsq); + draw R.D.l withpen pencircle scaled 3pt; + dotlabel.rt("b", R.D.r); +\end{emp} +\end{empfile} +\end{center} +\end{problem*} % problem 21.27 + +\begin{solution} +%(Numbering from right to left and top to bottom, +% $R_1 = 4.00\U{$\Omega$}$, +% $R_2 = 7.00\U{$\Omega$}$, +% $R_3 = 10.0\U{$\Omega$}$, and +% $R_4 = 9.00\U{$\Omega$}$.) + +\Part{a} +First, we calculate the equivalent resistance to the two resistors in parallel +\begin{equation} + R_p = \left(\frac{1}{R_2} + \frac{1}{R_1}\right)^{-1} = 4.12\U{$\Omega$} +\end{equation} +Then we calculate the equivalent resistance of the three resistors in series +\begin{equation} + R_{ab} = R_1 + R_p + R_4 = \ans{17.1\U{$\Omega$}} +\end{equation} + +\Part{b} +Now applying $V = IR$ to the equivalent system +\begin{equation} + I_{ab} = I_1 = I_4 = I_p = \frac{V}{R_{ab}} = \ans{1.99\U{A}} +\end{equation} +From which we can compute the voltage across the parallel resistors +\begin{equation} + V_p = I_p R_p = 8.18\U{V} +\end{equation} +Giving us currents of +\begin{align} + I_2 &= \frac{V_p}{R_2} = \ans{ 1.17\U{A}} \\ + I_3 &= \frac{V_p}{R_3} = \ans{ 0.818\U{A}} +\end{align} +\end{solution} diff --git a/latex/problems/problem21.29.tex b/latex/problems/problem21.29.tex new file mode 100644 index 0000000..96b7092 --- /dev/null +++ b/latex/problems/problem21.29.tex @@ -0,0 +1,99 @@ +\begin{problem*}{21.29} +Consider the circuit shown in Figure P21.29. +Find \Part{a} the current in the $R_1 = 20\Omega$ resistor and + \Part{b} the potential difference between points $a$ and $b$. +\begin{center} +\begin{empfile}[2] +\begin{emp}(0,0) + pair N[]; + numeric dx, ddx, dy; + dx := 4cm; + ddx := 1cm; + dy := 1.5 cm; + % draw the top branch components + resistor.T(origin, normal, 0, "R_3", "10.0\ohm"); + battery.T(R.T.r, 0, "V", "25.0 V"); + N[0] := R.T.l; + N[1] := B.T.p; + % draw the top-middle branch components + centerto.t(N[0], N[1], -dy, res); + resistor.t(t, normal, 0, "R_4", "10.0\ohm"); + N[2] := (xpart N[0], ypart R.t.l); + N[3] := (xpart N[1], ypart R.t.r); + % draw the bottom-middle branch components + centerto.b(N[0], N[1], -2dy, res); + resistor.b(b, normal, 0, "R_5", "5.00\ohm"); + N[4] := (xpart N[0], ypart R.b.l); + N[5] := (xpart N[1], ypart R.b.r); + % draw the bottom branch components + N[6] := N[2] - (ddx,0); + N[7] := N[3] + (ddx,0); + N[8] := N[6] - (0,2dy); + N[9] := N[7] - (0,2dy); + centreof.L(N[8], N[6], res); + resistor.L(c.L, normal, phi.L, "\mbox{5.00\ohm}", "$R_2$"); + centreof.R(N[9], N[7], res); + resistor.R(c.R, normal, phi.R, "R_1", "20.0\ohm"); + % draw the currents + %centreof.T(R.T.r, B.T.n, cur); + %current.T(c.T, phi.T, "", ""); + % draw the wires + wire(R.t.l, N[0], rlsq); + wire(R.t.r, N[1], rlsq); + wire(R.b.l, N[2], rlsq); + wire(R.b.r, N[3], rlsq); + wire(N[2], R.L.r, rlsq); + wire(N[3], R.R.r, rlsq); + wire(N[8], R.L.l, nsq); + wire(N[9], R.R.l, nsq); + wire(N[8], N[9], nsq); + % draw the nodes + draw N[2] withpen pencircle scaled 3pt; + draw N[3] withpen pencircle scaled 3pt; + draw (N[2]+N[6])/2 withpen pencircle scaled 3pt; + draw (N[3]+N[7])/2 withpen pencircle scaled 3pt; + % label the connection points + puttext.top("$a$", (N[2]+N[6])/2); + puttext.top("$b$", (N[3]+N[7])/2); +\end{emp} +\end{empfile} +\end{center} +\end{problem*} + +\begin{solution} +Label the voltage $V = 25.0\U{V}$ and the resistances (clockwise from +$b$) $R_1 = 20.0\Omega$, $R_2 = 5.00\Omega$, $R_3 = 10.0\Omega$, $R_4 += 10.0\Omega$, and $R_5 = 5.00\Omega$. + +Computing some equivalent resistance of $R_1$ and $R_2$ in series we +have +\begin{equation} + R_s = R_1 + R_2 = 25.0\Omega +\end{equation} +Computing the equivalent resistance of $R_s$, $R_4$, and $R_5$ in +parallel we have +\begin{equation} + R_p = \left(\frac{1}{R_4} + \frac{1}{R_5} + \frac{1}{R_s}\right)^{-1} + = 2.94\Omega +\end{equation} +And the equivalent resistance of the entire setup is +\begin{equation} + R_e = R_p + R_3 = 12.94\Omega +\end{equation} + +The total current is then (from Ohm's law) +\begin{equation} + I_e = \frac{V}{R_e} = 1.93\U{A} +\end{equation} +And the voltage from $a$ to $b$ is +\begin{equation} + V_{ab} = I_e R_p = \ans{5.68\U{V}} +\end{equation} +Which is what they were looking for in \Part{b}. + +The current through the branch with $R_1$ and $R_2$ is then +\begin{equation} + I_s = \frac{V_{ab}}{R_s} = \ans{227\U{mA}} +\end{equation} +Which is what they were looking for in \Part{a}. +\end{solution} diff --git a/latex/problems/problem21.30.tex b/latex/problems/problem21.30.tex new file mode 100644 index 0000000..9c699ec --- /dev/null +++ b/latex/problems/problem21.30.tex @@ -0,0 +1,68 @@ +\begin{problem*}{21.30} +Three $R = 100\U{$\Omega$}$ resistors are connected as shown in Figure +P21.30. The maximum power that can safely be delivered to any one +resistor is $P_{max} = 25.0\U{W}$. +\Part{a} What is the maximum voltage that van be applies to the +terminals $a$ and $b$? +\Part{b} For the voltage determined in \Part{a}, what is the power +delivered to each resistor? +What is the total power delivered? +\begin{center} +\begin{empfile}[6] +\begin{emp}(0,0) + input makecirc; % circuit drawing functions + initlatex(""); + numeric dx, dy; + dx := 1cm; + dy := 1cm; + dotlabel.lft("a", origin); + resistor.A(origin, normal, 0, "R_1", "100\ohm"); + resistor.B((0,dy)+R.A.r, normal, 0, "R_2", "100\ohm"); + resistor.C((0,-dy)+R.A.r, normal, 0, "R_3", "100\ohm"); + wire(R.A.r, R.B.l,nsq); + wire(R.A.r, R.C.l,nsq); + draw R.A.r withpen pencircle scaled 3pt; + wire((xpart(R.B.r),0), R.B.r,nsq); + wire((xpart(R.B.r),0), R.C.r,nsq); + wire((xpart(R.B.r),0), (xpart(R.B.r)+dx,0),nsq); + draw (xpart(R.B.r)+dx,0) withpen pencircle scaled 3pt; + dotlabel.rt("b", (xpart(R.B.r)+dx,0)); +\end{emp} +\end{empfile} +\end{center} +\end{problem*} % problem 21.30 + +\begin{solution} +\Part{a} +The current through the entire setup $I_{ab}$ all goes through $R_1$, +so $I_{ab} = I_1$. Then it splits 50/50, so $I_{ab} = 2I_2 = 2I_3$. +($R_1$ and $R_2$ each get half the current going through $R_1$). +Because it gets the most current, the maximum current $I_{ab}$ is when +the power $P_1$ absorbed by $R_1$ is $P_{max}$. +\begin{align} + P_{max} &= \frac{V_1^2}{R_1} \\ + V_1 &= \sqrt{R_1 P_{max}} = 50\U{V} +\end{align} +So $I_1 = I_{ab} = V_1/R_1 = 0.500\U{A}$. + +The equivalent resistance of the two parallel resistors is +\begin{equation} + R_p = \left( \frac{1}{R_1} + \frac{1}{R_2}\right)^{-1} = 50\U{$\Omega$} +\end{equation} +So the voltage drop over them is $V_p = I_{ab} R_p = 25.0\U{V}$. + +Adding the two voltages together +\begin{equation} + V_{ab} = V_1 + V_p = \ans{75.0\U{V}} +\end{equation} + +\Part{b} +The power absorbed by the other two resistors is then +\begin{equation} + P_2 = P_3 = I_2 V_p = 0.250\U{A} \cdot 25.0\U{V} = \ans{6.25\U{W}} \;, +\end{equation} +and the total power delivered is +\begin{equation} + P = P_1 + P_2 + P_3 = (25 + 2\cdot6.25)\U{W} = \ans{37.5\U{W}} \;. +\end{equation} +\end{solution} diff --git a/latex/problems/problem21.31.tex b/latex/problems/problem21.31.tex new file mode 100644 index 0000000..525f0c7 --- /dev/null +++ b/latex/problems/problem21.31.tex @@ -0,0 +1,85 @@ +\begin{problem*}{21.31} +Calculate the power delivered to each resistor in the circuit shown in +Figure P21.31. +\begin{center} +\begin{empfile}[3] +\begin{emp}(0,0) + pair N[]; + numeric ddy, dx; + ddy := 6pt; + dx := 3cm; + % draw the left branch components + battery.L(origin, 90, "\mbox{18.0 V}", "$V$"); + N[0] := B.L.n-(0,ddy); + N[1] := B.L.p+(0,ddy); + % draw the horizontal components + N[2] := N[0]+(dx,0); + N[3] := N[1]+(dx,0); + centreof.B(N[0], N[2], res); + resistor.B(c.B, normal, phi.B, "R_4", "4.00\ohm"); + centreof.T(N[1], N[3], res); + resistor.T(c.T, normal, phi.T, "R_1", "2.00\ohm"); + % draw the middle branch components + centreof.M(N[2], N[3], res); + resistor.M(c.M, normal, phi.M, "R_2", "3.00\ohm"); + % draw the right branch components + N[4] := 2N[2]-N[0]; + N[5] := 2N[3]-N[1]; + centreof.R(N[4], N[5], res); + resistor.R(c.R, normal, phi.R, "R_3", "1.00\ohm"); + % draw the currents + %centreof.T(R.T.r, B.T.n, cur); + %current.T(c.T, phi.T, "", ""); + % draw the wires + wire(B.L.p, R.T.l, udsq); + wire(B.L.n, R.B.l, udsq); + wire(R.T.r, N[3], nsq); + wire(R.B.r, N[2], nsq); + wire(R.M.r, N[3], nsq); + wire(R.M.l, N[2], nsq); + wire(R.R.r, N[3], udsq); + wire(R.R.l, N[2], udsq); + % draw the nodes + draw N[2] withpen pencircle scaled 3pt; + draw N[3] withpen pencircle scaled 3pt; +\end{emp} +\end{empfile} +\end{center} +\end{problem*} % problem 21.31 + +\begin{solution} +Label the voltage $V = 18.0\U{V}$ and the resistors (starting in the +upper left) $R_1 = 2.00\Omega$, $R_2 = 3.00\Omega$, $R_3 = +1.00\Omega$, and $R_4 = 4.00\Omega$. + +To find the total current through the circuit, we compute its +equivalent resistance. First for the two resistors in parallel +\begin{equation} + R_p = \left(\frac{1}{R_2} + \frac{1}{R_3}\right){-1} = 0.750\Omega + %1/3 + 1 = 4/3 +\end{equation} +And then for the complete circuit +\begin{equation} + R_c = R_1 + R_p + R_4 = 6.75\Omega +\end{equation} + +Using Ohm's law to calculate the total current $I_c = I_1 = I_4$ we have +\begin{equation} + I_c = \frac{V}{R_c} = 18/6.75 = 2.67\U{A} +\end{equation} +And the powers dissipated through $R_1$ and $R_4$ are +\begin{align} + P_1 &= I_1 V_1 = I_c^2 R_1 = \ans{14.2\U{W}} \\ + P_4 &= I_c^2 R_4 = \ans{28.4\U{W}} +\end{align} + +The voltage across $R_p$ is given by +\begin{equation} + V_p = I_c R_p = 2\U{V} +\end{equation} +And the powers dissipated through $R_2$ and $R_3$ are +\begin{align} + P_2 &= I_2 V_2 = \frac{V_p^2}{R_2} = \ans{1.33\U{W}} \\ + P_3 &= \frac{V_p^2}{R_3} = \ans{4\U{W}} +\end{align} +\end{solution} diff --git a/latex/problems/problem21.32.tex b/latex/problems/problem21.32.tex new file mode 100644 index 0000000..ab1fe7a --- /dev/null +++ b/latex/problems/problem21.32.tex @@ -0,0 +1,120 @@ +\begin{problem*}{21.32} +Four resistors are connected to a battery as shown in Figure P21.32. +The current in the battery is $I$, the battery emf is $\epsilon$, and +the resistor values are $R_1 = R$, $R_2 = 2R$, $R_3 = 4R$, and $R_4 = +3R$. +\Part{a} Rank the resistors according to the potential difference +across them, form largest to smallest. Note any cases of equal +potential difference. +\Part{b} Determine the potential difference across each resistor in +terms of $\epsilon$. +\Part{c} Rank the resistors according to the current in them, from +largest to smallest. Note any cases of equal current. +\Part{d} Determine the current in each resistor in terms of $I$. +\Part{e} If $R_3$ is increased, what happens to the current in each of +the resistors? +\Part{f} In the limit that $R_3 \rightarrow \infty$, what are the new +values of the current in each resistor in terms of $I$, the original +current in the battery? +\begin{center} +\begin{empfile}[7] +\begin{emp}(0,0) + input makecirc; % circuit drawing functions + initlatex(""); + pair N[]; + numeric dx, dy; + dx := 2cm; + dy := 1cm; + battery.B(origin, 90, "\mathcal{E}", ""); + resistor.A(B.B.p, normal, 90, "R_1", "$R$"); + N[0] := B.B.n + (dx,0); + N[1] := R.A.r + (dx,0); + centerto.A(R.A.l, R.A.r, dx, res); + resistor.D(A, normal, 90, "R_4", "$3R$"); + resistor.B(N[1]+(dx/2,0), normal, 0, "R_2", "$2R$"); + resistor.C(N[0]+(dx/2,0), normal, 0, "R_3", "$4R$"); + centreof.B(R.A.r, N[1], cur); + current.A(c.B, phi.B, "I", ""); + centreof.C(R.B.r, R.C.r, cur); + current.B(c.C, phi.C, "I_2", ""); + centreof.D(R.D.l, N[0], cur); + current.C(c.D, phi.D, "I_3", ""); + wire(R.A.r, R.D.r,rlsq); + wire(B.B.n, R.D.l,rlsq); + wire(N[1], R.B.l,rlsq); + wire(N[0], R.C.l,rlsq); + wire(R.B.r, R.C.r,nsq); + draw N[0] withpen pencircle scaled 3pt; + draw N[1] withpen pencircle scaled 3pt; +\end{emp} +\end{empfile} +\end{center} +\end{problem*} + +\begin{solution} +\Part{a} +$R_2$ and $R_3$ both have $I_2$ passing through them, so from Ohm's +law we know $V_2=I_2 R_2 < V_3=I_2 R_3$, because $R_2 < R_4$. $R_4$ +and the equivalent resistance $R_s=R_2+R_3$ are in parallel, so they +have the same voltage across them. Because $V_4=V_s=V_2+V_4$, the +voltage $V_4$ across $R_4$ is greater than either $V_2$ or $V_3$. +Finally, the equivalent resistance of $R_4$ and $R_s$ in parallel is +given by +$$ + R_p=\p({\frac{1}{R_4}+\frac{1}{R_s}})^{-1} + =\p({\frac{1}{3R}+\frac{1}{6R}})^{-1} + =3R\p({1+\frac{1}{2}})^{-1} + =3R\cdot\frac{2}{3} + =2R \;, +$$ +so $R_p > R_1$. Since both $R_p$ and $R_1$ have $I$ going through +them, and $V_p=V_4=V_s > V_1$. We still need to place $V_1$ relative +to $V_2$ and $V_3$, so we use the formula for voltage across series +resistors +$$ + I=\frac{V_A}{R_A}=\frac{V_B}{R_B} \;. +$$ +$R_p=2R_1$, so $V_1=V_p/2$, and $R_3=2R_2$, so $V_3=2V_2$. +$V_3 + V_2=V_p$, so $V_3=2/3\cdot V_p$ and $V_2=V_p/3$. +The final ranking is therefore $\ans{V_4=V_p > V_3=2/3\cdot V_p > V_1=V_p/2 > V_2=V_p/3}$. + +\Part{b} +We've done most of the work in \Part{a}. +$$ + \mathcal{E}=V_1 + V_p=\frac{3 V_p}{2} \;, +$$ +so +\begin{align} + V_4 &= V_p =\ans{\frac{2\mathcal{E}}{3}} \\ + V_1 &= \frac{V_p}{2}=\ans{\frac{\mathcal{E}}{3}} \\ + V_2 &= \frac{V_p}{3}=\ans{\frac{2\mathcal{E}}{9}} \\ + V_3 &= \frac{2V_p}{3}=\ans{\frac{4\mathcal{E}}{9}} +\end{align} + +\Part{c} +$I=I_2 + I_3$, and all our currents are positive as we've labled them, +so $I$ is greater than $I_2$ and $I_3$. $R_4=3R < R_s=6R$, so $I_3 > +I_2$. The final ranking is therefore $I > I_3 > I_2$, with $I_2$ +passing through both $R_2$ and $R_3$. + +\Part{d} +To be quantitative about \Part{c}, we can use Ohm's law for each current: +\begin{align} + I &= \frac{V_1}{R_1}=\frac{\mathcal{E}}{3}\cdot\frac{1}{R}=\frac{\mathcal{E}}{3R} \\ + I_3 &= \frac{V_p}{R_4}=\frac{2\mathcal{E}}{3}\cdot\frac{1}{3R}=\frac{2}{3}\cdot\frac{\mathcal{E}}{3R}=\ans{\frac{2I}{3}}\\ + I_2 &= \frac{V_p}{R_s}=\frac{2\mathcal{E}}{3}\cdot\frac{1}{6R}=\frac{1}{3}\cdot\frac{\mathcal{R}}{3R}=\ans{\frac{I}{3}}\;. +\end{align} +We see that $I=I_2+I_3$, as it should by Kirchhoff's junction rule. + +\Part{e} +If $R_3$ increases, $R_s$ increases and $R_p$ increases, so $I_2$ and +$I$ decrease. The change in $I_3$ is a balance of increased flow +relative to $I_2$ and decreased overall $I$. We see that less current +through $I$ drops $V_1$, but $V_1+V_4=\mathcal{E}$ which doesn't +change, so $V_4$ increases, so $I_3$ increases. + +\Part{f} +As $R_3 \rightarrow \infty$, $I_2$ is choked off entirely, so $I=I_3$. +So $I$ flows through $R_1$ and $R_4$, and nothing flows through $R_2$ +and $R_3$. +\end{solution} diff --git a/latex/problems/problem21.35.tex b/latex/problems/problem21.35.tex new file mode 100644 index 0000000..12caf89 --- /dev/null +++ b/latex/problems/problem21.35.tex @@ -0,0 +1,165 @@ +\begin{problem*}{21.35} +Determine the current in each branch of the circuit shown in Figure P21.35. +\begin{center} +\begin{empfile}[1] +\begin{emp}(0,0) + pair N[]; + numeric dx, dy; + dx := 3cm; + dy := 1cm; + % draw the middle branch components + battery.B(origin, 90, "\epsilon_2", "4 V"); + resistor.B(B.B.p, normal, 90, "", "1.00\ohm"); + resistor.b(R.B.r, normal, 90, "", "5.00\ohm"); + N[0] := B.B.n + (0,0); + N[1] := R.b.r + (0,0); + % draw the left branch components + centerto.A(N[0], N[1], -dx, res); + resistor.A(A, normal, 90, "R_1", "8.00\ohm"); + N[2] := (xpart R.A.l, ypart N[0]); + N[3] := (xpart N[2], ypart N[1]); + % draw the right branch components + N[6] := N[1] + (dx,0); + resistor.c(N[6], normal, -180, "", "3.00\ohm"); + N[4] := (xpart N[6], ypart N[0]); + N[5] := (N[4]+N[6])/2; % midpoint of right branch + centreof.c(N[4], N[5], bat); + battery.C(c.c, phi.c, "\epsilon_3", "12 V"); + centreof.C(N[5], N[6], res); + resistor.C(c.C, normal, phi.C, "", "1.00\ohm"); + % draw the currents + centreof.i(N[3], R.A.r, cur); + current.A(c.i, phi.i, "I_1", ""); + centreof.I(R.B.l, R.b.r, cur); + current.B(c.I, phi.I, "I_2", ""); + centreof.j(B.C.p, R.C.l, cur); + current.C(c.j, phi.j, "I_3", ""); + % draw the wires + wire(N[0], R.A.l, rlsq); + wire(N[1], R.A.r, rlsq); + wire(N[1], R.c.r, nsq); + wire(N[6], R.C.r, nsq); + wire(R.C.l, B.C.p, nsq); + wire(N[0], B.C.n, rlsq); + % draw the nodes + draw N[0] withpen pencircle scaled 3pt; + draw N[1] withpen pencircle scaled 3pt; +\end{emp} +\end{empfile} +\end{center} +\end{problem*} % problem 21.35 + +\begin{solution} +Let $I_1$ be the current on the left branch (going down), $I_2$ be the +current on the middle branch (going up), and $I_3$ be the current on +the right branch (going up). From Kirchhoff's junction rule, we know. +\begin{equation} + I_1 = I_2 + I_3 +\end{equation} + +Let $\epsilon_2 = 4.00\U{V}$ be the voltage across the middle battery, +and $\epsilon_3 = 12.0\U{V}$ be the voltage across the right battery. + +Using our knowledge of series resistors, we find +\begin{align} + R_1 &= 8.00\Omega \\ + R_2 &= 5.00\Omega + 1.00\Omega = 6.00\Omega \\ + R_3 &= 3.00\Omega + 1.00\Omega = 4.00\Omega +\end{align} +We can use Ohm's law to find the voltage drops across them in the +direction of their current. + +Now using Kirchhoff's loop rule on the left-center and left-right loops +respectively we have +\begin{align} + 0 &= \epsilon_2 - I_2 R_2 - I_1 R_1 \\ + 0 &= \epsilon_3 - I_3 R_3 - I_1 R_1 +\end{align} + +So we have our three equations relating our unknown currents. If +you're comfortable with linear algebra (take a look at my linear +algebra intro if you want to get comefortable), you can express these +as a matrix +\begin{equation} + \begin{pmatrix} + 0 \\ + \epsilon_2 \\ + \epsilon_3 + \end{pmatrix} + = + \begin{pmatrix} + -1 & 1 & 1 \\ + R_1 & R_2 & 0 \\ + R_1 & 0 & R_3 + \end{pmatrix} + \begin{pmatrix} + I_1 \\ + I_2 \\ + I_3 + \end{pmatrix} +\end{equation} + +Inverting the 3x3 matrix, we get +\begin{equation} + \begin{pmatrix} + I_1 \\ + I_2 \\ + I_3 + \end{pmatrix} + = \begin{pmatrix} + -1 & 1 & 1 \\ + 8.00\Omega & 6.00\Omega & 0 \\ + 8.00\Omega & 0 & 4.00\Omega + \end{pmatrix}^{-1} + \begin{pmatrix} + 0 \\ + \epsilon_2 \\ + \epsilon_3 + \end{pmatrix} + = + \begin{pmatrix} + -0.2308 & 0.0385 & 0.0577 \\ + 0.3077 & 0.1154 & -0.0769 \\ + 0.4615 & -0.0769 & 0.1346 + \end{pmatrix} + \begin{pmatrix} + 0 \\ + 4.00 \\ + 12.0 + \end{pmatrix} + = + \ans{ + \begin{pmatrix} + 0.8462 \\ + -0.4615 \\ + 1.3077 + \end{pmatrix} + \U{A} + } +\end{equation} +Where $I_2 < 0$ indicates that current actually flows in the opposite +direction to what we expected. + +If you're not comfortable with linear algebra, you can solve the +equations using your method of choice. If no methods make sense to +you, come talk to me or get someone else to teach you one. If you +want to double check your algebra, I work the solution out +symbolically in my linear algebra introduction in traditional equation +format as well as in matrix format. + +The benifit of the linear algebra is that most graphing calculators +can do the matrix inversion for you. On the TI-89, you can do +\begin{align} +&[-1,1,1;8,6,0;8,0,4] \rightarrow A \\ +&[0;4;12] \rightarrow I \\ +&A^{-1}*I \\ +& \qquad\qquad + \begin{pmatrix} + 0.8462 \\ + -0.4615 \\ + 1.3077 + \end{pmatrix} +\end{align} +(I don't have a TI-89, so if this is wrong, let me know\ldots, see my +linear algebra introduction for TI-83+ rules). +\end{solution} diff --git a/latex/problems/problem21.38.tex b/latex/problems/problem21.38.tex new file mode 100644 index 0000000..cec9b8b --- /dev/null +++ b/latex/problems/problem21.38.tex @@ -0,0 +1,263 @@ +\begin{problem*}{21.38} +The following equations describe an electric circuit: +\begin{align} + -(220\Omega)I_1 + 5.80\U{V} - (370\Omega)I_2 &= 0 \label{eq.2_L1}\\ + (370\Omega)I_2 + (150\Omega)I_3 - 3.10\U{V} &= 0 \label{eq.2_L2}\\ + I_1 + I_3 - I_2 &= 0 \label{eq.2_J} +\end{align} +\Part{a} Draw a diagram of the circuit. +\Part{b} Calculate the unknowns and identify the physical meaning of +each unknown. +\end{problem*} % problem 21.38 + +\begin{solution} +\Part{a} +Looking at the three equations, we see that the only unknowns are +$I_1$, $I_2$, and $I_3$. That looks like a circuit with current in +three branches. +\begin{center} +\begin{empfile}[2a] +\begin{emp}(0,0) + numeric dx, dy; + dx := .5cm; + dy := .5cm; + % draw dashed branches (with single CCW spiral) + draw (0,0)--(0,dy)--(-dx,dy)--(-dx,0)--(dx,0)--(dx,dy)--(0,dy) dashed evenly; + % draw the nodes + draw (0,0) withpen pencircle scaled 3pt; + draw (0,dy) withpen pencircle scaled 3pt; +\end{emp} +\end{empfile} +\end{center} +By looking at Eqn.~\ref{eq.2_J} and identifying it with Kirchhoff's +junction rule on junction $A$, we can get current directions. +\begin{center} +\begin{empfile}[2b] +\begin{emp}(0,0) + numeric dx, dy; + dx := 1cm; + dy := 1cm; + % draw the nodes + draw (0,dy) withpen pencircle scaled 3pt; + draw (0,0) withpen pencircle scaled 3pt; + puttext.bot("$A$", (0,0)); + % draw dashed branches (with single CCW spiral) + draw (0,0)--(0,dy)--(-dx,dy)--(-dx,0)--(dx,0)--(dx,dy)--(0,dy) dashed evenly; + centreof.i((-dx,0), (0,0), cur); + current.A(c.i, phi.i, "", "$I_1$"); + centreof.I((0,0), (0,dy), cur); + current.B(c.I, phi.I, "I_2", ""); + centreof.j((dx,0), (0,0), cur); + current.C(c.j, phi.j, "I_3", ""); +\end{emp} +\end{empfile} +\end{center} +Eqn.~\ref{eq.2_L1} looks like a Kirchhoff's loop rule involving only +branches 1 and 2. The first term $-(220\Omega)I_1$ looks like a +$V=IR$ resistor drop in the direction of the current on branch 1, so +let's add a $220\Omega$ resistor to branch 1. Because the voltage +drops in our loop equation, we must be moving in the direction of the +current. Continuing through the Eqn.~\ref{eq.2_L1}, we see a constant +voltage increase, which looks like we crossed a battery from the +negative to positive side, so we'll add that onto branch 1 too. +Finally, there is a $-(370\Omega)I_2$ drop which looks like crossing a +resistor in the direction of the current on branch 2, so let's add a +$370\Omega$ resistor to branch 2. +\begin{center} +\begin{empfile}[2c] +\begin{emp}(0,0) + pair N[]; + numeric dx; + dx := 2cm; + % draw the left branch components + resistor.A(origin, normal, -90, "", "220\ohm"); + battery.A(R.A.r, -90, "", "5.80 V"); + N[0] := B.A.p; + N[1] := R.A.l; + N[2] := N[0] + (dx,0); + centreof.i(N[0], N[2], cur); + current.A(c.i, phi.i, "", "$I_1$"); + % draw the middle branch components + N[3] := (xpart N[2], ypart N[1]); + centerto.B(R.A.r, R.A.l, dx, res); + resistor.B(B, normal, 90, "", "370\ohm"); + centreof.I(N[2], R.B.l, cur); + current.B(c.I, phi.I, "I_2", ""); + % draw the right branch components + N[4] := N[2]+(dx,0); + N[5] := (xpart N[4], ypart N[3]); + centreof.j(N[4], N[2], cur); + current.C(c.j, phi.j, "I_3", ""); + % draw the wires + wire(N[0], N[2], rlsq); + wire(N[2], R.B.l, rlsq); + wire(N[1], R.B.r, nsq); + draw N[2]--N[4]--N[5]--N[3] dashed evenly; + % draw the nodes + draw N[2] withpen pencircle scaled 3pt; + draw N[3] withpen pencircle scaled 3pt; + % draw the loop direction + imesh((N[0]+N[3])/2, ypart (N[1]-N[0])/4, dx/4, ccw, 90, ""); +\end{emp} +\end{empfile} +\end{center} + +Eqn.~\ref{eq.2_L2} looks like another Kirchhoff's loop rule, this time +involving only branches 2 and 3. The first term $-(370\Omega)I_2$ +looks like a resistor gain \emph{against} the direction of the current +on branch 2. We already have a $370\Omega$ resistor to branch 2, so +this term just tells us we're moving upstream against $I_2$. +Continuing through the Eqn.~\ref{eq.2_L2}, we see another voltage +\emph{gain} $(150\Omega)I_3$. If we're moving upstream on $I_2$, +we'll also be moving upstream on $I_3$, so this voltage gain must be a +$150\Omega$ resistor on branch 3. The last term is a constant votage +\emph{drop}, which looks like we crossed a battery from the positive +to negative side, so we'll add that onto branch 3 too. +\begin{center} +\begin{empfile}[2d] +\begin{emp}(0,0) + pair N[]; + numeric dx; + dx := 2cm; + % draw the left branch components + resistor.A(origin, normal, -90, "", "220\ohm"); + battery.A(R.A.r, -90, "", "5.80 V"); + N[0] := B.A.p; + N[1] := R.A.l; + N[2] := N[0] + (dx,0); + centreof.i(N[0], N[2], cur); + current.A(c.i, phi.i, "", "$I_1$"); + % draw the middle branch components + N[3] := (xpart N[2], ypart N[1]); + centerto.B(R.A.r, R.A.l, dx, res); + resistor.B(B, normal, 90, "", "370\ohm"); + centreof.I(N[2], R.B.l, cur); + current.B(c.I, phi.I, "I_2", ""); + % draw the right branch components + N[4] := N[2]+(dx,0); + N[5] := (xpart N[4], ypart N[3]); + centreof.j(N[4], N[2], cur); + current.C(c.j, phi.j, "I_3", ""); + resistor.C(N[4], normal, 90, "", "150\ohm"); + battery.C(N[5], -90, "\mbox{3.10 V}", ""); + % draw the wires + wire(N[0], N[2], rlsq); + wire(N[2], R.B.l, rlsq); + wire(N[1], R.B.r, nsq); + wire(N[2], N[4], nsq); + wire(N[3], N[5], nsq); + % draw the nodes + draw N[2] withpen pencircle scaled 3pt; + draw N[3] withpen pencircle scaled 3pt; + % draw the loop direction + imesh((N[2]+N[5])/2, ypart (N[3]-N[2])/4, dx/4, ccw, 90, ""); +\end{emp} +\end{empfile} +\end{center} + +\Part{b} +Solve using your method of choice. With linear algebra: +\begin{equation} + \begin{pmatrix} + 5.80\U{V} \\ + 3.10\U{V} \\ + 0 + \end{pmatrix} + = + \begin{pmatrix} + 220\Omega & 370\Omega & 0 \\ + 0 & 370\Omega & 150\Omega \\ + 1 & -1 & 1 + \end{pmatrix} + \begin{pmatrix} + I_1 \\ + I_2 \\ + I_3 + \end{pmatrix} +\end{equation} + +Inverting the 3x3 matrix, + we get +\begin{equation} + \begin{pmatrix} + I_1 \\ + I_2 \\ + I_3 + \end{pmatrix} + = + \begin{pmatrix} + 0.0031 & -0.0022 & 0.3267 \\ + 0.0009 & 0.0013 & -0.1942 \\ + -0.0022 & 0.0035 & 0.4791 + \end{pmatrix}^{-1} + \begin{pmatrix} + 5.80\U{V} \\ + 3.10\U{V} \\ + 0 + \end{pmatrix} + = + \ans{ + \begin{pmatrix} + 11.0 \\ + 9.13 \\ + -1.87 + \end{pmatrix} + \U{mA} + } +\end{equation} + +With regular algebra, we can save ourselves a bit of work by noticing +that this problem is the same as the one we just did (35)! Well, now +we have a battery on the first branch and none on the second, and the +batteries are facing down\ldots If we flip the picture over and swap +the first and second branches\ldots +\begin{center} +\begin{empfile}[2e] +\begin{emp}(0,0) + pair N[]; + numeric dx; + dx := 2cm; + % draw the left branch components (now middle) + resistor.A(origin, normal, 90, "", "220\ohm"); + battery.A(R.A.r, 90, "", "5.80 V"); + N[0] := B.A.p; + N[1] := R.A.l; + N[2] := N[0] - (dx,0); + centreof.i(N[1], N[0], cur); + current.A(c.i, phi.i, "", "$I_1$"); + % draw the middle branch components (now left) + N[3] := (xpart N[2], ypart N[1]); % (now bottom) + centerto.B(R.A.r, R.A.l, -dx, res); + resistor.B(B, normal, 90, "", "370\ohm"); + centreof.I(N[2], R.B.r, cur); + current.B(c.I, phi.I, "I_2", ""); + % draw the right branch components + N[4] := N[0]+(dx,0); + N[5] := (xpart N[4], ypart N[3]); % (now bottom) + centreof.j(N[5], N[4], cur); + current.C(c.j, phi.j, "I_3", ""); + resistor.C(N[4], normal, -90, "\mbox{150\ohm}", ""); + battery.C(N[5], 90, "", "3.10 V"); + % draw the wires + wire(N[0], N[2], rlsq); + wire(N[1], R.B.l, rlsq); + wire(N[2], R.B.r, nsq); + wire(N[2], N[4], nsq); + wire(N[3], N[5], nsq); + % draw the nodes + draw N[0] withpen pencircle scaled 3pt; + draw N[1] withpen pencircle scaled 3pt; +\end{emp} +\end{empfile} +\end{center} +Alright, now it looks like the figure in Problem 35, except that the +things labeled $X_1$ and $X_2$ are reversed. We can take our analytic +solution to 35 (see the linear algebra notes) and exchange $1 +\leftrightarrow 2$ giving + +\begin{align} + \frac{\frac{\epsilon_3}{R_3}+\frac{\epsilon_1}{R_1}}{\frac{R_2}{R_3}+\frac{R_2}{R_1}+1} &= I_2 = \ans{9.13\U{mA}} \\ + \frac{\epsilon_1}{R_1} - \frac{1}{R_1}\frac{\frac{\epsilon_3}{R_3}+\frac{\epsilon_1}{R_1}}{\frac{1}{R_3}+\frac{1}{R_1}+\frac{1}{R_2}} &= I_1 = \ans{11.0\U{mA}} \\ + \frac{\epsilon_3}{R_3} - \frac{1}{R_3}\frac{\frac{\epsilon_3}{R_3}+\frac{\epsilon_1}{R_1}}{\frac{1}{R_3}+\frac{1}{R_1}+\frac{1}{R_2}} &= I_3 = \ans{-1.87\U{mA}} +\end{align} +\end{solution} diff --git a/latex/problems/problem21.40.tex b/latex/problems/problem21.40.tex new file mode 100644 index 0000000..4a94c5f --- /dev/null +++ b/latex/problems/problem21.40.tex @@ -0,0 +1,84 @@ +\begin{problem*}{21.40} +A dead battery is charged by connecting it to the live battery of +another car with jumper cables (Fig.~P21.40). Determine the current +in the starter and in the dead battery. +\end{problem*} % problem 21.40 + +\begin{solution} +Let $V_L = 12\U{V}$ and $R_L = 0.01\Omega$ be the parameters of the +live battery, $V_D = 10\U{V}$ and $R_D = 1.00\Omega$ be the parameters +of the dead battery, and $R_S = 0.06\Omega$ be the resistance of the +starter. Let $I_L$ be the current going upward in the left branch, +$I_D$ be the current going upward in the middle branch, and $I_S$ be +the current going downward in the right branch. + +Applying Kirchhoff's junction rule to the top node, we have +\begin{equation} + I_L + I_D - I_S = 0 +\end{equation} + +Applying Kirchhoff's loop rule to the outer and right loops +respectively, we have +\begin{align} + V_L - I_L R_L - I_S R_S &= 0 \\ + V_D - I_D R_D - I_S R_S &= 0 +\end{align} + +Solving these using linear algebra (or your method of choice) +\begin{align} + \begin{pmatrix} + 0 \\ + V_L \\ + V_D + \end{pmatrix} + &= + \begin{pmatrix} + 1 & 1 & -1 \\ + R_L & 0 & R_S \\ + 0 & R_D & R_S + \end{pmatrix} + \begin{pmatrix} + I_L \\ + I_D \\ + I_S + \end{pmatrix} + = + \begin{pmatrix} + 1 & 1 & -1 \\ + 0.01 & 0 & 0.06 \\ + 0 & 1.00 & 0.06 + \end{pmatrix} + \begin{pmatrix} + I_L \\ + I_D \\ + I_S + \end{pmatrix} \\ + \begin{pmatrix} + I_L \\ + I_D \\ + I_S + \end{pmatrix} + &= + \begin{pmatrix} + 0.850 & 15.0 & -0.850 \\ + 0.0085 & -0.850 & 0.992 \\ + -0.142 & 14.2 & 0.142 + \end{pmatrix} + \begin{pmatrix} + 0 \\ + 12 \\ + 10 + \end{pmatrix} + = + \ans{ + \begin{pmatrix} + 172 \\ + -0.283 \\ + 171 + \end{pmatrix} + \U{A} + } +\end{align} +Where $I_2 < 0$ indicates that the current in the middle branch +actually flows downward, recharging the dead battery. +\end{solution} diff --git a/latex/problems/problem21.42.tex b/latex/problems/problem21.42.tex new file mode 100644 index 0000000..c9e0340 --- /dev/null +++ b/latex/problems/problem21.42.tex @@ -0,0 +1,114 @@ +\begin{problem*}{21.42} +A $C = 2.00\U{$\mu$F}$ capacitor with an intial charge of +$Q=5.10\U{$\mu$C}$ is discharged through an $R=1.30\Omega$ resistor. +\Part{a} Calculate the current in the resistor $t_a = 9.00\U{$\mu$s}$ +after the resistor is connected across the terminals of the capacitor. +\Part{b} What charge remains on the capacitor after $t_b = 8.00\U{$\mu$s}$? +\Part{c} What is the maximum current in the resistor? +\end{problem*} % problem 21.42 + +\begin{solution} +\Part{a} +The current through the entire circuit follows +\begin{equation} + I = \frac{Q}{RC}e^{-t/RC} \label{eq.3_I} +\end{equation} +So +\begin{equation} + I(t_a) = \frac{5.10\E{-6}\U{C}}{1.30\Omega\cdot2.00\E{-6}\U{F}} e^{\frac{-9.00\E{-6}\U{s}}{1.30\Omega\cdot2.00\E{-6}\U{F}}} + = \ans{61.6\U{mA}} +\end{equation} + +\Part{b} +The charge on the capacitor follows +\begin{equation} + q = Qe^{-t/RC} \label{eq.3_q} +\end{equation} +So +\begin{equation} + I(t_a) = 5.10\E{-6}\U{C} e^{\frac{-8.00\E{-6}\U{s}}{1.30\Omega\cdot2.00\E{-6}\U{F}}} + = \ans{235\U{nC}} +\end{equation} + +\Part{c} +Plugging $t=0$ into our equation from \Part{a} we have +\begin{equation} + I_{max} = \frac{Q}{RC} = \ans{1.96\U{A}} +\end{equation} + +For those who are interested the derivation of Eqns.~\ref{eq.3_I} and +\ref{eq.3_q} is pretty straightforward. Consider the circuit +\begin{center} +\begin{empfile}[3] +\begin{emp}(0,0) + pair N[]; + numeric Lres; + % calculate the length of a resistor + centreof.R((1,0), (-1,0), res); + Lres := 2*(xpart c.R); + % define the nodes + N[0] := (0,0); + N[1] := (Lres,0); + N[2] := (Lres,Lres); + N[3] := (0,Lres); + resistor.R(N[1], normal, 90, "R", ""); + centreof.I(N[3], N[2], cur); + current.I(c.I, phi.I, "I", ""); + centreof.C(N[0], N[3], cap); + capacitor.C(c.C, normal, phi.C, "C", ""); + wire(N[0], N[1], nsq); + wire(N[1], R.R.l, nsq); + wire(R.R.r, N[2], nsq); + wire(N[2], N[3], nsq); + wire(N[3], C.C.r, nsq); + wire(C.C.l, N[0], nsq); + labeloffset := 4pt; + puttext.urt("$q$", (0, Lres/2)); + puttext.lrt("$-q$", (0, Lres/2)); +\end{emp} +\end{empfile} +\end{center} +The current $I = -dq/dt$. + +(Note: In the book it gives $I \equiv dQ/dt$ [Eqn.~21.2], but that +$dQ$ is the charge passing through a given cross section. Our $q$ is +the charge on the top capacitor plate. As charge leaves the top +capacitor plate ($dq/dt < 0$), it passes through a point in the wire +in the direction we've specified for $I$ ($I > 0$), so $I = -dq/dt$. +This is the point that tripped me up in Wednesday's recitation, right +after I had warned about equating symbols without thinking about what +they ment :p) + +Using Kirchhoff's loop rule and the definition of capacitance $Q = CV$ +and resistance $V = IR$, we have +\begin{align} + \Delta V &= +\frac{q}{C} - IR = 0 \\ + \frac{q}{C} &= IR = -\frac{dq}{dt}R \\ + \frac{-dt}{RC} &= \frac{dq}{q} \;. +\end{align} +Integrating both sides we have +\begin{equation} + \int \frac{-dt}{RC} = \frac{-1}{RC} \int dt = \frac{-1}{RC} (t+A) + = \int \frac{dq}{q} = \ln(q) \;, +\end{equation} +where $A$ is some constant of integration because we were taking +indefinite integrals. We want a function for $q(t)$, so we take $e$ +to the power of both sides +\begin{equation} + e^{-(t+A)/RC} = e^{-t/RC - A/RC} = A'e^{-t/RC} + = e^{\ln(q)} = q \;, +\end{equation} +where $A' \equiv e^{-A/RC}$ is just another way of thinking about our +arbitrary integration constant $A$. Looking at our initial condition, +$q(t=0) = Q$, the initial charge on the capacitor, and comparing with +our equation we have +\begin{equation} + q(t=0) = A' e^{-0/RC} = A' = Q \;, +\end{equation} +so we can replace $A'$ with $Q$ to get Eqn.~\ref{eq.3_q}. + +Eqn.~\ref{eq.3_I} follows from Eqn.~\ref{eq.3_q} using our $I = -dq/dt$: +\begin{equation} + I = -\frac{d}{dt}\p({Q e^{-t/RC}}) = -Q \frac{d}{dt}e^{-t/RC}) = -Q \frac{-1}{RC} e^{-t/RC} = \frac{Q}{RC} e^{-t/RC} +\end{equation} +\end{solution} diff --git a/latex/problems/problem21.45.tex b/latex/problems/problem21.45.tex new file mode 100644 index 0000000..449baf8 --- /dev/null +++ b/latex/problems/problem21.45.tex @@ -0,0 +1,112 @@ +\begin{problem*}{21.45} +The circuit in Figure P21.45 has been connected for a long time. +\Part{a} What is the voltage $V_c$ across the capacitor? +\Part{b} If the battery is disconnected, how long does it take the +capacitor to discharge to $V_c'=1/10\cdot V$? +\begin{center} +\begin{empfile}[4] +\begin{emp}(0,0) + pair N[]; + numeric dx, Lres; + dx := 3cm; + % calculate the length of a resistor + centreof.R((1,0), (-1,0), res); + Lres := 2*(xpart c.R); + % draw the bridge + N[0] := origin; + N[3] := N[0] - (0,Lres*sqrt(2)); + N[1] := N[0] - ((1,1)*Lres/sqrt(2)); + N[2] := N[0] + ((1,-1)*Lres/sqrt(2)); + resistor.A(N[1], normal, 45, "R_1=1.00\ohm", ""); + resistor.B(N[3], normal, 135, "R_2=4.00\ohm", ""); + resistor.C(N[3], normal, 45, "", "$R_3=2.00\ohm$"); + resistor.D(N[2], normal, 135, "", "$R_4=8.00\ohm$"); + centreof.C(N[1], N[2], cap); + capacitor.C(c.C, normal, phi.C, "C", ""); + %centerto.B(N[3], N[1], -dx, bat); % I don't know why this way doesn't work, but it appears to not fully define B + %battery.B(B, 90, "\mathcal{E}", "10.0 V"); + centreof.B(N[3]-(dx,0), N[0]-(dx,0), bat); + battery.B(c.B, phi.B, "V", "10.0 V"); + % draw the wires + wire(N[1], C.C.l, nsq); + wire(N[2], C.C.r, nsq); + wireU(N[0], B.B.p, 3pt, udsq); + wireU(N[3], B.B.n, -3pt, udsq); + % draw the nodes + draw N[0] withpen pencircle scaled 3pt; + draw N[1] withpen pencircle scaled 3pt; + draw N[2] withpen pencircle scaled 3pt; + draw N[3] withpen pencircle scaled 3pt; +\end{emp} +\end{empfile} +\end{center} +\end{problem*} % problem 21.45 + +\begin{solution} +Labeling the resistors counterclockwise from the upper left we have + $R_1 = 1.00\Omega$, + $R_2 = 4.00\Omega$, + $R_3 = 2.00\Omega$, and + $R_4 = 8.00\Omega$. +Let $V = 10.0\U{V}$ be the voltage on the battery + and $C = 1.00\U{$\mu$F}$ be the capacitance of the capacitor. + +\Part{a} +Because the system has been running for a long time, the system must +be close to equilibrium. Therefore, the current through the capacitor +must be zero (otherwise the voltage across the capacitor would be +changing, and you wouldn't be at equilibrium). The resistor bridge +then reduces to two parallel circuits, and we can apply Ohm's law to +determine $V_c$ + +Starting with the left side of the bridge (calling the current $I_L$), +\begin{align} + V &= I_L (R_1 + R_2) & + I_L &= \frac{V}{R_1 + R_2} +\end{align} +And on the right calling the current $I_R$ +\begin{equation} + I_R = \frac{V}{R_3 + R_4} +\end{equation} + +So using Ohm's law to compute the voltage across the capacitor, we +call the voltage on the bottom wire $0$ and have the voltage $V_L$ on the left at +\begin{equation} + V_L = I_L R_2 = \frac{V R_2}{R_1+R_2} = 8\U{V} +\end{equation} +And the voltage $V_R$ to the right of the capacitor is +\begin{equation} + V_R = I_R R_3 = \frac{V R_3}{R_3+R_4} = 2\U{V} +\end{equation} +So the voltage across the capacitor is +\begin{equation} + V_c = V_L - V_R = \ans{6\U{V}} +\end{equation} + +\Part{b} +Once we remove the battery, we see that the capacitor discharges +through two paths in parallel, $R_1 \rightarrow R_4$ and $R_2 +\rightarrow R_3$. +The eqivalent resistances of these two parallel branches (top and +bottom) are +\begin{align} + R_T &= R_1 + R_4 & + R_B &= R_2 + R_3 +\end{align} +So the total equivalent resistance is +\begin{equation} + R = \left(\frac{1}{R_T}+\frac{1}{R_B}\right)^{-1} + = 3.60\Omega +\end{equation} + +The voltage of a discharging capacitor depends on time according to +\begin{equation} + V_c' = V_c e^{-t/RC} +\end{equation} +So using $V_c' = V_c/10$ we have +\begin{align} + 10 &= \frac{V_c}{V_c'} = \frac{V_c}{V_c e^{-t/RC}} = e^{t/RC} \\ + \ln(10) &= \frac{t}{RC} \\ + t &= RC\ln(10) = \ans{8.29\U{$\mu$s}} +\end{align} +\ens{solution} diff --git a/latex/problems/problem21.46.tex b/latex/problems/problem21.46.tex new file mode 100644 index 0000000..4401ce5 --- /dev/null +++ b/latex/problems/problem21.46.tex @@ -0,0 +1,39 @@ +\begin{problem*}{21.46} +A $C=10.0\U{$\mu$F}$ capacitor is sharged by a $\epsilon= 10.0\U{V}$ +battery through a resistance $R$. The capacitor reaches a potential +difference of $V_C(t_f)=4.00\U{V}$ at the instant $t_f = 3.00\U{s}$ +after the charging begins. Find $R$. +\end{problem*} % problem 12.46 + +\begin{solution} +Applying Kirchhoff's loop rule, +\begin{align} + \epsilon - V_C - V_R &= \epsilon - \frac{q}{C} - IR = 0 \\ + R \frac{dq}{dt} &= \epsilon - \frac{q}{C} \\ + \frac{dq}{dt} &= \frac{C\epsilon - q}{RC} \\ + \frac{dq}{C\epsilon - q} &= \frac{dt}{RC} \\ + \int \frac{dq}{C\epsilon -q} &= \int \frac{dt}{RC} \\ + -\ln (C\epsilon-q) &= t/RC + A \\ + C\epsilon - q &= Be^{-t/RC} \\ + q &= C\epsilon - Be^{-t/RC} \\ + q &= C\epsilon(1-e^{-t/RC}) +\end{align} +Where $A$ is a constant of integration, + $B = e^{-A}$ is another way of writing that constant, + $C\epsilon = Q$ (because as $t \rightarrow \infty$, $q \rightarrow Q$), + and $B = Q = C\epsilon$ (because at $t=0$, $q=0$). + +Note: The book derives this on pages 709-710 if you want more details. + +Now applying this to our particular problem, +\begin{align} + V_C(t_f) &= \frac{q(t_f)}{C} + = \frac{C\epsilon}{C}(1-e^{-t_f/RC}) \\ + \frac{V_C(t_f)}{\epsilon} &= 1 - e^{-t_f/RC} \\ + e^{-t_f/RC} &= 1 - \frac{V_C(t_f)}{\epsilon} \\ + \frac{-t_f}{RC} &= \ln\left(1 - \frac{V_C(t_f)}{\epsilon}\right) \\ + R &= \frac{-t_f}{C \ln(1 - V_C(t_f)/\epsilon)} + = \frac{-3.00\U{s}}{10.0\E{-6}\U{F}\cdot\ln(1-4.00\U{V}/10.0\U{V})} + = \ans{587\U{k$\Omega$}} +\end{align} +\end{solution} diff --git a/latex/problems/problem21.53.tex b/latex/problems/problem21.53.tex new file mode 100644 index 0000000..6ab5f88 --- /dev/null +++ b/latex/problems/problem21.53.tex @@ -0,0 +1,29 @@ +\begin{problem*}{21.53} +An electric heater is rated at $P_H = 1500\U{W}$, + a toaster at $P_T = 750\U{W}$, and + an electric grill at $P_G = 1000\U{W}$. +The three appliances are connected to a common $V = 120\U{V}$ + household circuit. +\Part{a} How much current does each draw? +\Part{b} Is a circuit with a $V_{max} = 25.0\U{A}$ circuit breaker + sufficient in this situation? + Explain your answer. +\end{problem*} % problem 21.53 + +\begin{solution} +\Part{a} +Using $P=IV$ we have +\begin{align} + I_H &= \frac{P_H}{V} = \ans{12.5\U{A}} & + I_T &= \frac{P_T}{V} = \ans{6.25\U{A}} & + I_G &= \frac{P_G}{V} = \ans{8.33\U{A}} +\end{align} + +\Part{b} +If all the appliances are running together, the circuit draws +\begin{equation} + I = I_H + I_T + I_G = 27.1\U{A} +\end{equation} +So you will be fine with a $25\U{A}$ breaker unless you plan to run +all three at the same time. +\end{solution} diff --git a/latex/problems/problem21.55.tex b/latex/problems/problem21.55.tex new file mode 100644 index 0000000..bc5545a --- /dev/null +++ b/latex/problems/problem21.55.tex @@ -0,0 +1,17 @@ +\begin{problem*}{21.55} +Four $V = 1.50\U{V}$ AA batteries in series are used to power a +transistor radio. If the batteries can move a charge of $\Delta Q = +240\U{C}$, how long will they last if the radio has a resistance of $R += 200\Omega$? +\end{problem*} % problem 21.55 + +\begin{solution} +Using Kirchhoff's loop rule, +\begin{align} + V + V + V + V - IR &= 0 \\ + I &= \frac{4V}{R} = \frac{\Delta q}{\Delta t} \\ + \Delta t &= \frac{\Delta q R}{4V} + = \frac{240\U{C}\cdot200\Omega}{4\cdot1.50\U{V}} + = 8000\U{s} = \ans{2.22\U{hours}} +\end{align} +\end{solution} diff --git a/latex/problems/problem21.58.tex b/latex/problems/problem21.58.tex new file mode 100644 index 0000000..c33745d --- /dev/null +++ b/latex/problems/problem21.58.tex @@ -0,0 +1,78 @@ +\begin{problem*}{21.58 +A battery with emf $\epsilon$ is used to charge a capacitor $C$ +through a resistor $R$ as shown in Figure 21.25. +Show that half the energy supplied by the battery appears as internal +energy in the resistor and that half is stored in the capacitor. +\begin{center} +\begin{empfile}[6] +\begin{emp}(0,0) + pair N[]; + numeric dx, dy, Lres; + % calculate the length of a resistor + centreof.R((1,0), (-1,0), res); + Lres := 2*(xpart c.R); + dy := 1cm; + dx := 2.5*Lres; + N[0] := origin; + N[1] := N[0] + (dx/2,0); + N[2] := N[0] + (dx,0); + N[3] := N[0] + (0,dy); + N[4] := N[3] + (dx/2,0); + N[5] := N[3] + (dx,0); + % draw the top branch + centreof.R(N[3], N[4], res); + resistor.R(c.R, normal, phi.R, "R", ""); + centreof.C(N[4], N[5], cap); + capacitor.C(c.C, normal, phi.C, "C", ""); + % draw the bottom branch + centreof.S(N[0], N[1], swt); + switch.S(c.S, NO, phi.S, "", "Switch"); + centreof.B(N[2], N[1], bat); + battery.B(c.B,phi.B, "\epsilon", ""); + % draw the wires + wire(N[3], R.R.l, nsq); + wire(R.R.r, C.C.l, nsq); + wire(C.C.r, N[5], nsq); + wire(N[0], N[3], nsq); + wire(N[2], N[5], nsq); + wire(N[0], st.S.l, nsq); + wire(st.S.r, B.B.p, nsq); + wire(B.B.n, N[2], nsq); +\end{emp} +\end{empfile} +\end{center} +\end{problem*} + +\begin{solution} +%The capacitor charges to a final charge of $Q=C\epsilon$, at which +%point no more current flows through the system. +The total current through the system is given by +\begin{equation} + I = I_o e^{-t/RC} = \frac{\epsilon}{R}e^{-t/RC} +\end{equation} +Which allows us to compute the energy put out by the battery. +Power is the time derivative of energy so +\begin{equation} + E_b = \int_0^\infty P\cdot dt + = \int_0^\infty I\epsilon\cdot dt + = \frac{\epsilon^2}{R}\int_0^\infty e^{-t/RC}\cdot dt + = \frac{\epsilon^2}{R}\left. -RC e^{-t/RC}\right|_0^\infty + = \frac{\epsilon^2}{R}\left(0 - (-RC e^0)\right) + = C\epsilon^2 +\end{align} +Similarly for the energy absorbed by the resistor +\begin{align} + E_r = \int_0^\infty P\cdot dt + = \int_0^\infty I^2 R\epsilon\cdot dt + = \frac{\epsilon^2}{R}\int_0^\infty e^{-2t/RC}\cdot dt + = \frac{\epsilon^2}{R}\left. \frac{-RC}{2} e^{-2t/RC}\right|_0^\infty + = \frac{E_b}{2} = \frac{1}{2}C\epsilon^2 +\end{align} +And we already know the energy stored in a capacitor with a voltage +$\epsilon$ is +\begin{equation} + E_c = \frac{1}{2}C\epsilon^2 = \frac{E_b}{2} +\end{equation} +So the battery energy splits evenly between the capacitor and the +resistor, and we're done. +\end{solution} diff --git a/latex/problems/problem22.01.tex b/latex/problems/problem22.01.tex new file mode 100644 index 0000000..f48d948 --- /dev/null +++ b/latex/problems/problem22.01.tex @@ -0,0 +1,88 @@ +\begin{problem*}{22.1} +Determine the initial direction of the deflection of charged particles +as they enter magnetic fields as shown in Figure P22.1. +\begin{center} +\Part{a} +\empaddtoprelude{% + pair p; + numeric Dx, Dy, ddx, dx, dy, nx, ny; + Dx := 2cm; + Dy := 2cm; + ddx := .4cm; + nx := 4; + ny := 4; + dx := Dx/nx; + dy := Dy/ny; +} +\begin{empfile}[1a] +\begin{emp}(0,0) + for i=1 upto nx : + for j=1 upto ny : + p := draw_Bfletch((dx*(i-.5),dy*(j-.5))); + endfor; + endfor; + draw origin--(Dx,0)--(Dx,Dy)--(0,Dy)--cycle dashed evenly; + p := draw_velocity((-2ddx,Dy/2),(-ddx,Dy/2),2ddx); + draw_pcharge((-ddx,Dy/2), 6pt); +\end{emp} +\end{empfile} +\hspace{1cm} +\Part{b} +\begin{empfile}[1b] +\begin{emp}(0,0) + for i=1 upto nx : + p := draw_Bfield((dx*(i-.5),0), (dx*(i-.5),.5dy), (ny-1)*dy); + endfor; + draw origin--(Dx,0)--(Dx,Dy)--(0,Dy)--cycle dashed evenly; + p := draw_velocity((Dx+2ddx,Dy/2),(Dx+ddx,Dy/2),2ddx); + draw_ncharge((Dx+ddx,Dy/2), 6pt); +\end{emp} +\end{empfile} +\hspace{1cm} +\Part{c} +\begin{empfile}[1c] +\begin{emp}(0,0) + for j=1 upto ny : + p := draw_Bfield((0,dy*(j-.5)), (.5dx,dy*(j-.5)), (nx-1)*dx); + endfor; + draw origin--(Dx,0)--(Dx,Dy)--(0,Dy)--cycle dashed evenly; + p := draw_velocity((Dx+2ddx,Dy/2),(Dx+ddx,Dy/2),2ddx); + draw_pcharge((Dx+ddx,Dy/2), 6pt); +\end{emp} +\end{empfile} +\hspace{1cm} +\Part{d} +\begin{empfile}[1d] +\begin{emp}(0,0) + for j=1 upto ny : + p := draw_Bfield((dx/2,dy*(j-.5))-dir(45), (dx/2,dy*(j-.5)), (ny-j)*sqrt(2)*dy); + endfor; + for i=1 upto nx : + p := draw_Bfield((dx*(i-.5),dy/2)-dir(45), (dx*(i-.5),dy/2), (nx-i)*sqrt(2)*dx); + endfor; + draw origin--(Dx,0)--(Dx,Dy)--(0,Dy)--cycle dashed evenly; + draw (Dx/2,-ddx)--(Dx/2,Dy) dashed withdots scaled .3; + label.urt(btex $45^\circ$ etex, draw_langle((Dx/2,Dy),(Dx/2,Dy/2),(Dx,Dy), dx/2)); + p := draw_velocity((Dx/2,-2ddx),(Dx/2,-ddx),2ddx); + draw_pcharge((Dx/2,0-ddx), 6pt); +\end{emp} +\end{empfile} +\end{center} +\end{problem*} + +\begin{solution} +Using our right hand rule for the cross product, and + $\vect{F}_B = q \vect{v} \times \vect{B}$ + +\Part{a} +Force is up. + +\Part{b} +Force is out of the page. + +\Part{c} +No force. + +\Part{d} +Force is into the page. +\end{solution} diff --git a/latex/problems/problem22.03.tex b/latex/problems/problem22.03.tex new file mode 100644 index 0000000..417da3e --- /dev/null +++ b/latex/problems/problem22.03.tex @@ -0,0 +1,24 @@ +\begin{problem*}{22.3} +A proton travels with a speed of $v = 3.00\E{6}\U{m/s}$ at an angle of +$\theta = 37.0\dg$ with the direction of a magnetic field of $B = +0.300\U{T}$ in the $+y$ direction. What are \Part{a} the magnitude of +the magnetic force on the proton and \Part{b} its acceleration? +\end{problem*} % problem 22.3 + +\begin{solution} +We'll pick the \ihat\ direction so that \vect{v} has a positive $x$-component. + +\Part{a} +\begin{equation} + F_B = q v B \sin\theta = (1.60\E{-19}\U{C})\cdot(3.00\E{6}\U{m/s})\cdot(0.300\U{T})\cdot\sin37.0\dg + = \ans{8.67\E{-14}\U{N}} +\end{equation} +and the direction of the force is in the \khat\ direction. + +\Part{b} +Using $\vect{F} = m \vect{a}$ we have +\begin{equation} + \vect{a} = \frac{\vect{F}}{m} = \frac{8.67\E{-14}\U{N}}{1.67\E{-27}\U{kg}} + = \ans{5.19\E{13}\U{m/s$^2$}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem22.04.tex b/latex/problems/problem22.04.tex new file mode 100644 index 0000000..e361fee --- /dev/null +++ b/latex/problems/problem22.04.tex @@ -0,0 +1,25 @@ +\begin{problem*}{22.4} +An electron is accelerated through $V = 2400\U{V}$ from rest and then +enters a uniform $B = 1.70\U{T}$ magnetic field. What are \Part{a} +the maximum and \Part{b} the minimum values of the magnetic force this +charge can experience? +\end{problem*} % problem 22.4 + +\begin{solution} +First we compute the electron's velocity $v$ upon entering the field. +Conserving energy +\begin{align} + qV &= \frac{1}{2} m v^2 \\ + v &= \sqrt{\frac{2qV}{m}} + = 29.0\U{Mm/s} +\end{align} + +The magnetic force is given by $\vect{F} = q\vect{v}\times\vect{B}$, +so it is maximized when \vect{B} is perpendicular to \vect{v}, at +which point +\begin{equation} + F = qvB = \ans{7.90\U{pN}} +\end{equation} +The force is minimized then \vect{B} is parallel (or anti-parallel) to +\vect{v}, at which point $\ans{F = 0}$. +\end{solution} diff --git a/latex/problems/problem22.06.tex b/latex/problems/problem22.06.tex new file mode 100644 index 0000000..14432df --- /dev/null +++ b/latex/problems/problem22.06.tex @@ -0,0 +1,23 @@ +\begin{problem*}{22.6} +A proton moves with a velocity of $\vect{v} = (2\ihat -4\jhat ++\khat)\U{m/s}$ in a region in which the magnetic field is $\vect{B} = +(\ihat + 2\jhat -3\khat)\U{T}$. What is the magnitude of the magnetic +force this charge experiences? +\end{problem*} % problem 22.6 + +\begin{solution} +\begin{align} + \vect{F} &= q \vect{v}\times\vect{B} + = q \left| + \begin{matrix} + \ihat & \jhat & \khat \\ + 2 & -4 & 1 \\ + 1 & 2 & -3 + \end{matrix} + \right| + = q [\ihat(12-2) -\jhat(-6-1) +\khat(4-(-4))] + = q (10\ihat+7\jhat+8\khat) \\ + |\vect{F}| &= q \sqrt{10^2+7^2+8^2} + = \ans{2.34\E{-18}\U{N}} +\end{align} +\end{solution} diff --git a/latex/problems/problem22.08.tex b/latex/problems/problem22.08.tex new file mode 100644 index 0000000..2b726a0 --- /dev/null +++ b/latex/problems/problem22.08.tex @@ -0,0 +1,35 @@ +\begin{problem*}{22.8} +An electron moves in a circular path perpendicular to a constant +magnetic field of magnitude $B=1.00\U{mT}$. The angular momentum of +the electron about the center of the circle is $L=4.00\E{-25}\U{Js}$. +Determine + \Part{a} the radius of the circular path and + \Part{b} the speed of the electron. +\end{problem*} % problem 22.8 + +\begin{solution} +Angular momentum is defined as +\begin{equation} + \vect{L} = \vect{r}\times\vect{p} = m\vect{r}\times\vect{v} \;, +\end{equation} +which for circular orbits reduces to +\begin{equation} + L = mrv \;, +\end{equation} +because \vect{r} and \vect{v} are perpendicular. + +We also have +\begin{align} + F_c &= qvB = m\frac{v^2}{r} \\ + qBr &= mv \;, +\end{align} +which combined with the angular momentum formula give two equations +with two unknowns. + +Solving for the unknowns +\begin{align} + L &= qBr^2 \\ + r &= \sqrt{\frac{L}{qB}} = \ans{0.0500\U{m}} \\ + v &= \frac{L}{mr} = \ans{4.79\U{km/s}} \;. +\end{align} +\end{solution} diff --git a/latex/problems/problem22.10.tex b/latex/problems/problem22.10.tex new file mode 100644 index 0000000..32c9fb3 --- /dev/null +++ b/latex/problems/problem22.10.tex @@ -0,0 +1,27 @@ +\begin{problem*}{22.10} +A velocity selector consists of electric and magnetic fields described +by the expressions $\vect{E} = E\khat$ and $\vect{B} = B\jhat$, with +$B = 15.0\U{mT}$. Find the value of $E$ such that a $K = 750\U{eV}$ +electron moving in the \ihat\ direction is undeflected. +\end{problem*} % problem 22.10 + +\begin{solution} +The force from the magnetic field is in the $-\khat$ direction (right +hand rule), so the sign of $E$ must be negative (to push the electron +in the \khat\ direction). + +The velocity of the electron is given by +\begin{align} + K &= \frac{1}{2} m v^2 \\ + v &= \sqrt{\frac{2K}{m}} + = \sqrt{\frac{2\cdot(750\cdot1.60\E{-19}\U{J})}{9.11\E{-31}\U{kg}}} + = 16.2\U{Mm/s} +\end{align} + +Balancing the magnitudes of the two forces +\begin{align} + F_e = qE &= F_B = qvB \\ + E &= vB = \ans{243\U{kV/m}} +\end{align} +So $\vect{E} = -243\khat\U{kV/m}$. +\end{solution} diff --git a/latex/problems/problem22.12.tex b/latex/problems/problem22.12.tex new file mode 100644 index 0000000..137cb73 --- /dev/null +++ b/latex/problems/problem22.12.tex @@ -0,0 +1,58 @@ +\begin{problem*}{22.12} +A cyclotron designed to accelerate protons has an outer radius of $R = +0.350\U{m}$. The protons are emitted nearly at rest from a source at +the center and are accelerated through $V = 600\U{V}$ each time they +cross the gap between the dees. The dees are between the poles of an +electromagnet where the field is $B = 0.800\U{T}$. +\Part{a} Find the cyclotron frequency $f$. +\Part{b} Find the speed $v_e$ at which the protons exit the cyclotron and +\Part{c} their kinetic energy $K$. +\Part{d} How many revolutions $N$ does a proton make in the cyclotron? +\Part{e} For what time $\Delta t$ interval does one proton accelerate? +\end{problem*} % problem 22.12 + +\begin{solution} +\Part{a} +Protons with velocities $v$ in a constant magntic field will move in +circles of radius $r$ in the plane perpendicular to the magnetic +field. The centerward acceleration is given by +\begin{align} + F_c = m \frac{v^2}{r} &= F_B = qvB \\ + v &= \frac{qrB}{m} +\end{align} +Their velocity can also be related to their period $T=1/f$ by +\begin{equation} + v = \frac{dr}{dt} = \frac{2\pi r}{T} = 2\pi r f +\end{equation} +So +\begin{align} + 2\pi r f &= \frac{qrB}{m} \\ + f &= \frac{qB}{2\pi m} = 12.2\U{MHz} +\end{align} +This is the frequency of revolution for a proton \emph{anywhere} +inside the cyclotron. + +\Part{b} +Using our $v(r)$ equation from \Part{a} when $r = R$, we have +\begin{equation} + v_e = \frac{qRB}{m} = \frac{(1.60\E{-19}\U{C})\cdot(0.350\U{m})\cdot(0.800\U{T})}{1.69\E{-27}\U{kg}} = \ans{26.8\U{Mm/s}} +\end{equation} + +\Part{c} +\begin{equation} + K = \frac{1}{2} m v^2 = \frac{(qrB)^2}{2m} = \ans{6.01\E{-13}\U{J}} +\end{equation} + +\Part{d} +The kinetic energy $K$ is built up from $2N$ passes through $V$ (twice +per revolution). +\begin{equation} + N = \frac{K}{2qV} = \frac{6.01\E{-13}\U{J}}{2\cdot(1.60\E{-19})\cdot(600\U{V})} + = \ans{3130} +\end{equation} + +\Part{e} +\begin{equation} + \Delta t = T N = N/f = \ans{257\U{$\mu$s}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem22.15.tex b/latex/problems/problem22.15.tex new file mode 100644 index 0000000..7c67167 --- /dev/null +++ b/latex/problems/problem22.15.tex @@ -0,0 +1,33 @@ +\begin{problem*}{22.15} +A wire carries a steady current of $A = 2.40\U{A}$. A straight +section of the wire is $l = 0.750\U{m}$ long and lies in the +\ihat\ direction within a uniform magbnetic field, $\vect{B} = +1.60\khat\U{T}$. What is the magnetic force on the section of wire? +\end{problem*} % problem 22.15 + +\begin{solution} +We can find the magnetic force on a wire using $\vect{F} = +q\vect{v}\times\vect{B}$. Consider an infinitesimal bit of wire of +length $d\vect{s}$, a current $I = dq/dt$ means that $dq$ will move +through this bit of wire in time $dt$. So the force on the bit of +wire is +\begin{equation} + \vect{dF} = dq \frac{\vect{ds}}{dt} \times \vect{B} + = \frac{dq}{dt} \vect{ds} \times \vect{B} + = I \vect{ds} \times \vect{B} +\end{equation} +If the wire is straight, we can integrate easily to find the total +force on the whole segment +\begin{equation} + \vect{F} = \int_0^l \vect{dF} = \int_0^l I \vect{ds} \times \vect{B} + = I B \sin\theta \int_0^l ds = I l B \sin\theta + = I \vect{l} \times \vect{B} +\end{equation} + +Plugging in for our specific case we get a force in the $-\jhat$ +direction from the right-hand-rule, with a magnitude of +\begin{equation} + F = IlB = (2.40\U{A})\cdot(0.750\U{m})\cdot(1.60\U{T}) = 2.88\U{N} +\end{equation} +So $\ans{\vect{F} = -2.88\jhat\U{N}}$ +\end{solution} diff --git a/latex/problems/problem22.16.tex b/latex/problems/problem22.16.tex new file mode 100644 index 0000000..776ae27 --- /dev/null +++ b/latex/problems/problem22.16.tex @@ -0,0 +1,25 @@ +\begin{problem*}{22.16} +A wire $l = 2.80\U{m}$ in length carries a current of $I = 5.00\U{A}$ +in a region where a uniform magnetic field has a magnitude of $B = +0.390\U{T}$. Calculate the magnitude of the magnetic force on the +wire assuming that the angle between the magnetic field and the +current is + \Part{a} $\theta_a = 60.0\dg$, + \Part{b} $\theta_b = 90.0\dg$, and + \Part{c} $\theta_c = 120\dg$. +\end{problem*} % problem 22.16 + +\begin{solution} +Using our formula for the force on a wire due to a uniform field we +have +\begin{align} + \vect{F} &= I\vect{l}\times\vect{B} \\ + F &= IlB\sin\theta \;, +\end{align} +so just pluggging in +\begin{align} + F_a &= IlB\sin\theta_a = \ans{4.73\U{N}}\\ + F_b &= IlB\sin\theta_b = \ans{5.46\U{N}}\\ + F_c &= IlB\sin\theta_c = \ans{4.73\U{N}} \;. +\end{align} +\end{solution} diff --git a/latex/problems/problem22.21.tex b/latex/problems/problem22.21.tex new file mode 100644 index 0000000..bd01b35 --- /dev/null +++ b/latex/problems/problem22.21.tex @@ -0,0 +1,70 @@ +\begin{problem7}{22.21} +A rectangular coil consists of $N=100$ closely wrapped turns and has +dimensions $a = 0.400\U{m}$ and $b = 0.300\U{m}$. The coil is hinged +along the $y$ axis, and its plane makes an angle $\theta = 30.0\dg$ +with the $x$ axis (Fig.~P22.21). What is the magnitude of the torque +exerted on the coil by a uniform magnetic field $B = 0.800\U{T}$ +directed along the x axis whwn the current is $I=1.20\U{A}$ in the +direction shown? What is the expected direction of motion of the +coil? +\begin{center} +\begin{empfile}[7] +\begin{emp}(0,0) + pair p[]; + numeric dirz, dirl, Dx, Dy, Dz, Dlxz, Dly, ddy; + dirz := -160; + dirl := -20; + Dx := 2cm; + Dy := 2cm; + Dz := 1cm; + Dlxz := 1.5cm; + Dly := 1.5cm; + ddy := 5pt; + % draw axes + drawarrow origin--(Dx,0) withcolor black withpen pencircle scaled 0pt; + label.bot(btex x etex, (Dx,0)); + drawarrow origin--(0,Dy) withcolor black withpen pencircle scaled 0pt; + label.lft(btex y etex, (0,Dy)); + drawarrow origin--(Dz*dir(dirz)) withcolor black withpen pencircle scaled 0pt; + label.lft(btex z etex, (Dz*dir(dirz))); + % draw box + p[0] := origin; + p[1] := Dlxz*dir(dirl); + p[2] := p[1]+(0,Dly); + p[3] := p[0]+(0,Dly); + draw p[0]--p[1]--p[2]--p[3]--cycle withcolor (1,.2,0) withpen pencircle scaled 2pt; + label.lft(btex $a = 0.400\mbox{ m}$ etex, draw_length(p[3],p[0],3pt)); + label.bot(btex $b = 0.300\mbox{ m}$ etex, draw_length(p[0],p[1],3pt)); + label.rt(btex $30^\circ$ etex, draw_langle((Dx,0),p[0],p[1],Dlxz/2.2)); + drawarrow (p[3]+0.2(p[2]-p[3])+(0,ddy))--(p[2]-0.2(p[2]-p[3])+(0,ddy)) withcolor (1,.2,1) withpen pencircle scaled 1pt; + label.urt(btex $I = 1.20\mbox{ A}$ etex, (p[2]+p[3])/2+(0,ddy)); +\end{emp} +\end{empfile} +\end{center} +\end{problem*} % problem 22.21 + +\begin{solution} +Using our formula for force on a wire segment $\vect{F} = +I\vect{l}\times\vect{B}$, and recalling that torque is defined $\tau = +\vect{r}\times\vect{F}$, we can use the right hand rule to find the +direction of motion. + +The torque from the portion of the coil lying on the $y$ axis is zero, +because the lever arm is zero ($r$ in the torque equation). The +torque from the top portion is also zero, because the force is in the +\jhat\ direction and the coil is not free to rotate in that direction. +Similarly the torque from the bottom portion is zero, because the +force is in the $-\jhat$ direction. All the torque comes from the +force on the outer leg, giving a force in the \khat\ direction. So +\ans{we expect the angle $\theta$ to increase}. + +To find the magnitude of the torque, we simply plug in +\begin{equation} + \tau = \vect{r}\times\vect{F} = bF\cos\theta = b\cos\theta\cdot(NIaB) + = IabB\cos\theta + = \ans{9.98\U{J}} +\end{equation} +Where we multiplied the force from a single wire by $N$ because there +are $N$ wraps, and took $\cos\theta$ to get the perpendicular force +because $\theta$ is the complement of the angle between $r$ and $F$. +\end{solution} diff --git a/latex/problems/problem22.33.tex b/latex/problems/problem22.33.tex new file mode 100644 index 0000000..9999e25 --- /dev/null +++ b/latex/problems/problem22.33.tex @@ -0,0 +1,38 @@ +\begin{problem*}{22.33} +In studies of the possibility of migrating birds using the Earth's +magnetic field for navigation, birds have been fitted with coils as +``caps'' and ``collars'' as shown in Figure P22.33. +\Part{a} If the identical coils have radii of $r=1.20\U{cm}$ and are +$d=2.20\U{cm}$ apart, with $N=50$ turns of wire apiece, what current +should they both carry to produce a magnetic field of +$B=4.50\E{-5}\U{T}$ halfway between them? +\Part{b} If the resistance of each coild is $R=210\Omega$, what +voltage should the battery supplying each coil have? +\Part{c} What power is delivered to each coil? +\end{problem*} % problem 22.33 + +\begin{solution} +\Part{a} +From page 745 we have the magnetic field along the axis of symmetry of +a loop of wire as +\begin{equation} + \vect{B} = \frac{\mu_0 I r^2}{2(x^2 + r^2)^{3/2}}\ihat +\end{equation} +All of our $2N$ loops are equidistant from the center, with $x = d/2$ so +\begin{align} + B &= \frac{\mu_0 I r^2}{2(x^2 + r^2)^{3/2}}\cdot(2N) \\ + I &= \frac{(x^2+r^2)^{3/2} B}{\mu_0 N r^2} + = \ans{21.4\U{mA}} +\end{align} + +\Part{b} +Using Ohm's law +\begin{equation} + V = IR = \ans{4.51\U{V}} +\end{equation} + +\Part{c} +\begin{equation} + P = IV = \ans{96.7\U{mW}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem22.34.tex b/latex/problems/problem22.34.tex new file mode 100644 index 0000000..e106c71 --- /dev/null +++ b/latex/problems/problem22.34.tex @@ -0,0 +1,60 @@ +\begin{problem*}{22.34} +Two long, parallel conductors, separated by $r = 10.0\U{cm}$, carry +current in the same direction. The first wire carries current $I_1 = +5.00\U{A}$, and the second carries $I_2 = 8.00\U{A}$. +\Part{a} What is the magnitude of the magnetic field $B_1$ created by +$I_1$ at the location of $I_2$? +\Part{b} What is the force per unit length exerted by $I_1$ on $I_2$? +\Part{c} What is the magnitude of the magnetic field $B_2$ created by +$I_2$ at the location of $I_1$? +\Part{d} What is the force per unit length exerted by $I_2$ on $I_1$? +\end{problem*} % problem 22.34 + +\begin{solution} +\Part{a} +From Ampere's law, the $B$ field generated by a long, thin current is +\begin{equation} + B = \frac{\mu_0 I}{2 \pi r} +\end{equation} +Plugging in $I_1$, we have +\begin{equation} + B_1 = \frac{\mu_0 I_1}{2 \pi r} = \ans{10.0\U{$\mu$T}} \label{eqn.34_b1} +\end{equation} +This $B$ field depends on your distance from $I_1$, but because the +wires are parallel, the $B$ field from $I_1$ is constant along $I_2$ +We can use the right hand rule to determine that $\vect{B}_1$ is +perpendicular to both $I_1$ and $r$. + +\Part{b} +From $F_B = q\vect{v}\times\vect{B}$ we have the force on a current +carrying wire in a uniform magnetic field as +\begin{equation} + F_B = I\vect{l}\times\vect{B} +\end{equation} + +Combining these two equations, we have the force per unit length of +$I_1$ on $I_2$ as +\begin{equation} + F_{B12}/l = I_2 B_1 = \frac{\mu_0 I_1 I_2}{2 \pi r} = \ans{80.0\U{$\mu$N}} \label{eqn.34_fb12} +\end{equation} +where there is no $\sin\theta$ term in the cross product, because +$B_1$ is perpendicular to $I_2$. +By drawing the situation and doing some right hand rules, you can +convince yourself that this force is \emph{attractive}. + +\Part{c} +Because the situation in \Part{c} is identical to \Part{a} with $I_1 +\leftrightarrow I_2$, we simply relabel eqn.\ \ref{eqn.34_b1}. +\begin{equation} + B_2 = \frac{\mu_0 I_2}{2 \pi r} = \ans{16.0\U{$\mu$T}} +\end{equation} + +\Part{d} +Eqn.\ \ref{eqn.34_fb12} is identical under the relabeling, so we have +another attractive force at the same magnitude +\begin{equation} + F_{B21}/l = \ans{80\U{$\mu$N}} +\end{equation} +as we would expect from Newton's third law (for every action there is +an equal and opposite reaction). +\end{solution} diff --git a/latex/problems/problem22.37.tex b/latex/problems/problem22.37.tex new file mode 100644 index 0000000..d61d521 --- /dev/null +++ b/latex/problems/problem22.37.tex @@ -0,0 +1,68 @@ +\begin{problem*}{22.37} +Four long, parallel conductors carry equal currents of $I = +5.00\U{A}$. Figure P22.37 is an end view of the conductors. The +current direction is into the page at points $A$ and $B$ and out of +the page at points $C$ and $D$. Calculate the magnitude and direction +of the magnetic field at point $P$, located at the center of the +square of edge length $a=0.200\U{m}$. +\begin{center} +\begin{empfile}[2] +\begin{emp}(0cm, 0cm) + pair p; + numeric r; + r := 1cm; + dotlabel.bot(btex $P$ etex, origin); + draw (-r,r)--(-r,-r)--(r,-r)--(r,r)--cycle dashed evenly; + p := draw_Ifletch((-r, r)); + p := draw_Ifletch((-r,-r)); + p := draw_Itip( ( r,-r)); + p := draw_Itip( ( r, r)); + label.bot(btex 0.200\mbox{ m} etex, (0,-r)); + label.rt(btex 0.200\mbox{ m} etex, (r,0)); + labeloffset := 4pt; + label.lft(btex $A$ etex, (-r, r)); + label.lft(btex $B$ etex, (-r,-r)); + label.rt( btex $D$ etex, ( r,-r)); + label.rt( btex $C$ etex, ( r, r)); +\end{emp} +\end{empfile} +\end{center} +\end{problem*} % problem 22.37 + +\begin{solution} +First, let us pick a coordinate system by choosing unit vectors. +Let \ihat\ be down and to the left, + \jhat\ be down and to the right, and + \khat\ be straight down. + +Using the right-hand rule, we determine the direction of the magnetic +field at $P$ generated by each wire to be +\begin{align} + \widehat{B_A} &= \ihat \\ + \widehat{B_B} &= \jhat \\ + \widehat{B_C} &= \ihat \\ + \widehat{B_D} &= \jhat +\end{align} + +The magnitude of each $B$ is given by +\begin{equation} + B = \frac{\mu_0 I}{2 \pi r} +\end{equation} +And since the currents have the same magnitude, and each corner is +equidistant from the square center, each magnetic field contribution +will have the same magnitude. The distance $r$ is given by +\begin{equation} + r = \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{a}{2}\right)^2} + = \frac{a}{\sqrt{2}} +\end{equation} + +We still have to add our vector fields, which gives +\begin{equation} + \vect{B}_P = \vect{B}_A + \vect{B}_B + \vect{B}_C + \vect{B}_D + = 2B(\ihat + \jhat) + = 2\frac{\mu_0 I}{2 \pi r}\cdot\sqrt{2}\khat + = \frac{\sqrt{2}\mu_0 I}{\pi r}\khat + = \frac{2\mu_0 I}{\pi a}\khat + = \ans{20\U{$\mu$T}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem22.39.tex b/latex/problems/problem22.39.tex new file mode 100644 index 0000000..3d1f297 --- /dev/null +++ b/latex/problems/problem22.39.tex @@ -0,0 +1,31 @@ +\begin{problem*}{22.39} +A packed bundle of $N = 100$ long, straight, insulated wires forms a +cylinder of radius $R = 0.500\U{cm}$. +\Part{a} If each wire carries $I = 2.00\U{A}$, what are the magnitude +and direction of the magnetic force per unit length acting on a wire +located $r = 0.200\U{cm}$ from the center of the bundle? +\Part{b} Would a wire on the outer edge of the bundle experience a +force greater or smaller than the value calculated in \Part{a}. +\end{problem*} % problem 22.39 + +\begin{solution} +\Part{a} +Drawing an Amperian loop at a radius $r$, the number of enclosed wires is +\begin{equation} + N_{enc} = N \frac{\pi r^2}{\pi R^2} = N \frac{r^2}{R^2} \;. +\end{equation} +So the magnetic field is +\begin{equation} + B = \frac{\mu_0 I N r^2/R^2}{2 \pi r} = \frac{\mu_0 I N r}{2 \pi R^2} + = 3.17\E{-3}\U{T} \;, +\end{equation} +and the force per unit length is +\begin{equation} + \frac{F}{l} = IB = \frac{\mu_0 I^2 N r}{2 \pi R^2} = \ans{6.34\U{mN/m}} \;. +\end{equation} + +\Part{b} +From the previous equation, you can see the force increases linearly +with $r$ (so long as we stay inside the wire), so the force will be +\ans{greater} at the outer edge. +\end{solution} diff --git a/latex/problems/problem22.43.tex b/latex/problems/problem22.43.tex new file mode 100644 index 0000000..7434069 --- /dev/null +++ b/latex/problems/problem22.43.tex @@ -0,0 +1,22 @@ +\begin{problem*}{22.43} +Niobium metal becomes superconducting when cooled below 9K. Its +superconductivity is destroyed when the surface $B$ field exceeds +$B_{max} = 0.100\U{T}$. Determine the maximum current in a +$d=2.00\U{mm}$ diameter niobium wire can carry and remain +superconducting, in the absence of any external $B$ field. +\end{problem*} % problem 22.43 + +\begin{solution} +For long, cylindrical wires, the magnetic field a distance $r$ from +the center of the wire is +\begin{equation} + B = \frac{\mu_0 I}{2 \pi r} +\end{equation} +As long as you are outside the wire. + +Therefore, the magnetic field at the surface is maximized when +\begin{align} + B_{max} &= \frac{\mu_0 I_{max}}{2 \pi r} \\ + I_{max} &= (2 \pi r B_{max})/\mu_0 = \ans{500\U{A}} +\end{align} +\end{solution} diff --git a/latex/problems/problem22.48.tex b/latex/problems/problem22.48.tex new file mode 100644 index 0000000..f0ec3e1 --- /dev/null +++ b/latex/problems/problem22.48.tex @@ -0,0 +1,47 @@ +\begin{problem*}{22.48} +In Bohr's 1913 model of the hydrogen atom, the electron is in a +circular orbit of radius $r = 5.29\E{-11}\U{m}$, and its speed is $v = +2.19\E{6}\U{m/s}$. +\Part{a} What is the magnitude of the magnetic moment \vect{\mu} due to the +electron's motion? +\Part{b} If the electron moves in a horizontal circle, +counterclockwise as seen from above, what is the direction of \vect{\mu}? +\end{problem*} % problem 22.48 + +\begin{solution} +\Part{a} +The magnetic moment is defined on page 742 as +\begin{equation} + \vect{\mu} = I \vect{A} +\end{equation} + +The area swept out by our electron is just +\begin{equation} + A =\pi r^2 +\end{equation} + +The current is the amount of charge circling the nucleus in a unit +time. +Because +\begin{equation} + \Delta x = v \Delta t +\end{equation} +The time $\tau$ taken for an entire circuit is +\begin{equation} + \tau = \frac{\Delta x}{v} = \frac{2 \pi r}{v} +\end{equation} +The current is then given by +\begin{equation} + I = \frac{\Delta q}{\Delta t} = \frac{q_e v}{2 \pi r} +\end{equation} + +Plugging $I$ and $A$ into our moment equation +\begin{equation} + \mu = \frac{q_e v}{2 \pi r}\cdot \pi r^2 = (q_e v r)/2 = + \ans{9.27\E{-24}\U{A m$^2$}} +\end{equation} + +The direction of the current is opposite the direction of the electron +(because the electron has negative charge), so the direction of +\vect{\mu} is down. +\end{solution} diff --git a/latex/problems/problem22.56.tex b/latex/problems/problem22.56.tex new file mode 100644 index 0000000..55da363 --- /dev/null +++ b/latex/problems/problem22.56.tex @@ -0,0 +1,21 @@ +\begin{problem*}{22.56} +An $m = 0.200\U{kg}$ metal rod carrying a current of $I = 10.0\U{A}$ +glides on two horizontal rails $l = 0.500\U{m}$ apart. +What vertical magnetic field is required to keep the rod moving at a +contant speed if the coefficient of kinetic friction between the rod +and rails is $\mu_k = 0.100$? +\end{problem*} % problem 22.56 + +\begin{solution} +Balancing the forces on the rod in the \jhat\ direction +\begin{align} + N - mg &= 0 \\ + N &= mg \;, +\end{align} +and in the \ihat\ direction +\begin{align} + IlB - \mu_k N &= 0 \\ + B &= \frac{\mu_k m g}{Il} = \ans{ 39.2\U{mT}} \;, +\end{align} +where we are ignoring the magnetic field generated by the current in the rails. +\end{solution} diff --git a/latex/problems/problem22.57.tex b/latex/problems/problem22.57.tex new file mode 100644 index 0000000..31ec4fe --- /dev/null +++ b/latex/problems/problem22.57.tex @@ -0,0 +1,40 @@ +\begin{problem*}{22.57} +A positive charge $q = 3.20\E{-19}\U{C}$ moves with a velocity +$\vect{v} = (2\ihat + 3\jhat - \khat)\U{m/s}$ through a region where +both a uniform magnetic field and a uniform electric field exist. +\Part{a} Calculate the total force $F$ on the moving charge (in +unit-vector notation), taking $\vect{B} = (2\ihat + 4\jhat ++\khat)\U{T}$ and $\vect{E} = (4\ihat - \jhat - 2\khat)\U{V/m}$. +\Part{b} What angle $\theta$ does the force vector \vect{F} make with \ihat? +\end{problem*} % problem 22.57 + +\begin{solution} +\Part{a} +From Chapter 19, +\begin{equation} + \vect{F}_E = q \vect{E} = q(4\ihat - \jhat - 2\khat)\U{N/C} +\end{equation} + +From this chapter +\begin{equation} + \vect{F}_B = q\vect{v}\times\vect{B} + = q \begin{vmatrix} \ihat & \jhat & \khat \\ + 2 & 3 & -1 \\ + 2 & 4 & 1 \end{vmatrix} + = q [(3+4)\ihat - (2+2)\jhat + (8-6)\khat] + = q (7\ihat - 4\jhat + 2\khat)\U{N/C} +\end{equation} + +So the total force is given by +\begin{equation} + \vect{F} = \vect{F}_E + \vect{F}_B + = q [(4+7)\ihat + (-1-4)\jhat + (-2+2)\khat]\U{N/C} + = q (11\ihat - 5\jhat)\U{N/C} + = \ans{(35.2\ihat - 16.0\jhat)\E{-19}\U{N}} +\end{equation} + +\Part{b} +\begin{equation} + \theta = \arctan\left(\frac{-5}{11}\right) = \ans{-24.4\dg} +\end{equation} +\end{solution} diff --git a/latex/problems/problem22.58.tex b/latex/problems/problem22.58.tex new file mode 100644 index 0000000..54d2599 --- /dev/null +++ b/latex/problems/problem22.58.tex @@ -0,0 +1,78 @@ +\begin{problem*}{22.58} +Protons having a kinetic energy of $K=5.00\U{MeV}$ are moving in the +\ihat\ direction and enter a magnetic field $B = 0.050\khat\U{T}$ +directed out of the plane of the page and extending from $x=0$ to +$x=1.00\U{m}$ as shown in Figure P22.58. +\Part{a} Calculate the $y$ component of the protons' momentum as they +leave the magnetic field. +\Part{b} Find the angle $\alpha$ between the initial velocity vector of +the proton beam, and the velocity vector after the beam emerges from +the field. +Ignore relativistic effects and note that $1\U{eV} = 1.60\E{-19}\U{J}$. +\begin{center} +\begin{empfile}[6] +\begin{emp}(0,0) + pair p; + numeric Dx, Dy, ddx, dx, dy, nx, ny; + Dx := 3cm; + Dy := 2cm; + ddx := .4cm; + nx := 6; + ny := 4; + dx := Dx/(nx); + dy := Dy/(ny); + for i=1 upto nx : + for j=1 upto ny : + p := draw_Btip((dx*(i-.5),dy*(j-.5))); + endfor; + endfor; + draw origin--(Dx,0)--(Dx,Dy)--(0,Dy)--cycle dashed evenly; + drawarrow (.9ddx,Dy/2){right} .. (Dx+ddx,Dy/4) withcolor red; + p := draw_velocity((-2ddx,Dy/2),(-ddx,Dy/2),2ddx); + draw_pcharge((-ddx,Dy/2), 6pt); + draw_ijhats((-Dy/2, Dy/4), 0, Dy/3); +\end{emp} +\end{empfile} +\end{center} +\end{problem*} % problem 22.58 + +\begin{solution} +\Part{b} +As in our cyclotron problem (Recitation 7, Problem 12), we know +\begin{align} + F_c &= m\frac{v^2}{r} = qvB \\ + mv &= qrB +\end{align} +And +\begin{align} + K &= \frac{1}{2}mv^2 \\ + v &= \sqrt{\frac{2K}{m}} = 30.9\U{Mm/s} +\end{align} +So the radius of the circular arc our protons make in the constant +magnetic field region is +\begin{equation} + r = \frac{mv}{qB} = \frac{m}{qB}\sqrt{\frac{2K}{m}} + = \frac{1}{qB}\sqrt{2Km} + = \ans{6.47\U{m}} +\end{equation} +Drawing out the center of the circle the beam would make and doing a +bit of geometry, we see that +\begin{equation} + \alpha = \arcsin\left(\frac{\Delta x}{r}\right) + = \ans{8.90\dg} +\end{equation} + +\Part{a} +Because the \emph{speed} of the particles doesn't change because of a +magnetic field's perpendicular force, we can find the protons' speed +in the $y$ direction on exiting by +\begin{equation} + v_y = v \sin(\alpha) +\end{equation} +So the $y$ momentum is +\begin{equation} + p_y = m v_y = m v \sin(\alpha) = m v \frac{\Delta x}{r} + = \frac{ m v \Delta x }{(mv)/(qB)} = qB\Delta x + = \ans{8.00\E{-21}\U{kg m/s}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem23.01.tex b/latex/problems/problem23.01.tex new file mode 100644 index 0000000..3280163 --- /dev/null +++ b/latex/problems/problem23.01.tex @@ -0,0 +1,24 @@ +\begin{problem*}{23.1} +A flat loop of wire consisting of a single turn of cross-sectional +area $A=8.00\U{cm$^2$}$ is perpendicular to a magnetic field that +increases uniformly in magnitude from $B_i = 0.500\U{T}$ to $B_f = +2.50\U{T}$ in $1.00\U{s}$. What is the resulting induced current if +the loop has a resistance of $R = 2.00\Omega$. +\end{problem*} % problem 23.1 + +\begin{solution} +By Faraday's law +\begin{equation} + \varepsilon = - \frac{d\Phi_B}{dt} + = - \frac{(2.0\U{T})\cdot(8.00\E{-4}\U{m$^2$})}{1.00\U{s}} + = - 1.6\U{mV} \;. +\end{equation} + +By Ohm's law +\begin{align} + \varepsilon &= V = IR \\ + I &= \frac{\varepsilon}{R} = \frac{-1.6\U{mV}}{2.00\Omega} + = \ans{-0.80\U{mA}} \;. +\end{align} +\end{solution} + diff --git a/latex/problems/problem23.02.tex b/latex/problems/problem23.02.tex new file mode 100644 index 0000000..df069ac --- /dev/null +++ b/latex/problems/problem23.02.tex @@ -0,0 +1,23 @@ +\begin{problem*}{23.2} +An $N = 25$ turn circular coil of wire has diameter $d = 1.00\U{m}$. +It is placed with it's axis along the direction of the Earth's +magnetic field of $B = 50.0\U{$\mu$T}$, and then in $t = 0.200\U{s}$ +it is flipped 180\dg. An average emf of what magnitude is generated +in the coil? +\end{problem*} % problem 23.2 + +\begin{solution} +The flux before the flip is +\begin{equation} + \Phi_{Bi} = AB = N \pi r^2 B \;, +\end{equation} +and the flux after the flip is +\begin{equation} + \Phi_{Bf} = -AB = -N \pi r^2 B \;. +\end{equation} + +From Ampere's law +\begin{equation} + \varepsilon = - \frac{d\Phi_B}{dt} = 2 N \pi r^2 B/dt = \ans{9.82\U{mV}} \;. +\end{equation} +\end{solution} diff --git a/latex/problems/problem23.06.tex b/latex/problems/problem23.06.tex new file mode 100644 index 0000000..6e6618a --- /dev/null +++ b/latex/problems/problem23.06.tex @@ -0,0 +1,32 @@ +\begin{problem*}{23.6} +A coil of $N=15$ turns and radius $R=10.0\U{cm}$ surrounds a long +solenoid of radius $r=2.00\U{cm}$ and $n=1.00\E{3}\U{turns/m}$ +(Fig.~P23.6). The current in the solenoid changes as +$I=(5.00\U{A})\sin(120t)$. Find the induced emf in the $15$ turn coil +as a function of time. +\end{problem*} % problem 23.6 + +\begin{solution} +Because the solenoid is long, we can pretend it is infinite, so all +the magnetic field is contained inside the solenoid, and there is no +magnetic field outside (see page 751). + +The field inside the solenoid is given by +\begin{equation} + B = \mu_0 n I \;, +\end{equation} +so the flux through the large coil is +\begin{equation} + \Phi_B = \int BdA = N \pi r^2 B = N \pi r^2 \mu_0 n I \;. +\end{equation} + +The induced emf is then +\begin{equation} + \varepsilon = -\frac{d\Phi_B}{dt} = - \pi\mu_0 n N r^2 \frac{dI}{dt} + = -\pi\mu_0 n N r^2 (5.00\U{A}\cdot120\U{Hz})\cos(120t) + = \ans{-14.2\cos(t \cdot 120\U{rad/s})\U{mV}} \;, +\end{equation} +where we are assuming that the units on 120 are rad/s, otherwise we'd +have to convert them to rad/s to make the units work out on the +coefficient. +\end{solution} diff --git a/latex/problems/problem23.07.tex b/latex/problems/problem23.07.tex new file mode 100644 index 0000000..57fa317 --- /dev/null +++ b/latex/problems/problem23.07.tex @@ -0,0 +1,18 @@ +\begin{problem*}{23.7} +An $N=30$ turn circular coil of radius $r = 4.00\U{cm}$ and resistance +$R = 1.00\Omega$ is placed in a magnetic field directed perpendicular +to the plane of the coil. The magnitude of the magnetic field varies +with time according to $B = 0.0100t + 0.0400t^2$, where $t$ is in +seconds and $B$ is in Tesla. Calculate the induced emf in the coil +at $t= 5.00\U{s}$. +\end{problem*} % problem 23.7 + +\begin{solution} +The magnetic flux through the loop is +\begin{align} + \Phi_B &= AB = N \cdot \pi r^2 \cdot B \\ + \varepsilon &= - \frac{d\Phi_B}{dt} = - 30 \cdot \pi r^2 \cdot \frac{dB}{dt} + = -30 \cdot \pi (0.0400\U{m})^2 \cdot (0.100 + 0.800t)\U{T/s} + = \ans{61.8\U{mV}} \;. +\end{align} +\end{solution} diff --git a/latex/problems/problem23.10.tex b/latex/problems/problem23.10.tex new file mode 100644 index 0000000..2ce4c19 --- /dev/null +++ b/latex/problems/problem23.10.tex @@ -0,0 +1,37 @@ +\begin{problem*}{23.10} +A piece of insulated wire is shaped into a figure eight as shown in +Figure P23.10. The radius of the upper circle is $r_s = 5.00\U{cm}$ +and that of the lower circle is $r_b = 9.00\U{cm}$. The wire has a +uniform resistance per unit length of $\lambda = 3.00\U{$\Omega$/m}$. +A uniform magnetic field is applied perpendicular to the plane of the +two circles, in the direction shown. The magnetic field is increasing +at a constant rate of $dB/dt = 2.00\U{T/s}$. Find the magnitude and +direction of the induced current in the wire. +\end{problem*} % problem 23.10 + +\begin{solution} +Pick a direction for the current to be counterclockwise in the bottom +loop (so clockwise in the top). Thus, the area vector of the top loop +is antiparallel to \vect{B} and that of the bottom loop is parallel to +\vect{B}. The magnetic flux is then +\begin{equation} + \Phi_B = \vect{A}\cdot\vect{B} = (\pi r_s^2 - \pi r_b^2)B \;. +\end{equation} + +Using Ampere's law +\begin{equation} + \varepsilon = - \frac{d\Phi_B}{dt} = \pi(r_b^2 - r_s^2)\frac{dB}{dt} \;. +\end{equation} + +The resistance of the entire figure eight is +\begin{equation} + R = \lambda (2 \pi r_s + 2 \pi r_b) \;. +\end{equation} + +Plugging that into Ohm's law yields +\begin{align} + \varepsilon &= V = I R \\ + I &= \frac{(r_b^2 - r_s^2) \frac{dB}{dt}}{2 \lambda (r_s + r_b)} + = \ans{25.2\U{mA}} \;. +\end{align} +\end{solution} diff --git a/latex/problems/problem23.12.tex b/latex/problems/problem23.12.tex new file mode 100644 index 0000000..7a3f495 --- /dev/null +++ b/latex/problems/problem23.12.tex @@ -0,0 +1,21 @@ +\begin{problem*}{23.12} +Consider the arrangement shown in Figure P23.12. Assume that $R = +6.00\Omega$, $l = 1.20\U{m}$, and a uniform $B=2.50\U{T}$ magnetic +field is directed into the page. At what speed should the bar be +moved to produce a current of $0.500\U{A}$ in the resistor. +\end{problem*} + +\begin{solution} +This problem is almost identical to the recitation Problem 13. +Copying the induced current formula: +\begin{equation} + I = \frac{\varepsilon}{R} = \frac{-lvB}{R} \;, +\end{equation} +where the $-$ sign indicates the current is counterclockwise (out of the +page), so current flows upward through the bar. + +We can solve this equation for $v$, yeilding +\begin{equation} + v = \frac{IR}{lB} = \ans{1.00\U{m/s}} \;. +\end{equation} +\end{solution} diff --git a/latex/problems/problem23.13.tex b/latex/problems/problem23.13.tex new file mode 100644 index 0000000..8d9bff2 --- /dev/null +++ b/latex/problems/problem23.13.tex @@ -0,0 +1,56 @@ +\begin{problem*}{23.13} +Figure P23.12 shows a top view of a bar that can slide without +friction. The resistor is $R = 6.00\Omega$, and a $B = 2.50\U{T}$ +magnetic field is directed perpendicularly downward, into the paper. +Let $l = 1.20\U{m}$. +\Part{a} Calculate the applied force required to move the bar to the +right at a constant speed $v = 2.00\U{m/s}$. +\Part{b} At what rate is energy delivered to the resistor? +\end{problem*} % problem 23.13 + +\begin{solution} +\Part{a} +Let $x$ be the width of the enclosed loop. The magnetic flux is then +\begin{equation} + \Phi_B = AB = xlB +\end{equation} +So the induced emf is +\begin{equation} + \varepsilon = -\frac{d\Phi_B}{dt} = -lB \frac{dx}{dt} = -lvB +\end{equation} +So the induced current is +\begin{equation} + I = \frac{\varepsilon}{R} = \frac{-lvB}{R} +\end{equation} +The $-$ sign indicates the current is counterclockwise (out of the +page), so current flows upward through the bar, so the magnetic force +on the bar is to the left, so our applied force must be \ans{to the right}. + +The work begin done by the applied force is +\begin{equation} + W = F \cdot dx \;. +\end{equation} +So the power input from the force is +\begin{equation} + P_F = \frac{W}{dt} = F \frac{dx}{dt} = Fv \;. +\end{equation} + +All of this power must be dissipated by the resistor, so the current is +\begin{align} + P &= I^2 R \\ + I &= \sqrt{\frac{P}{R}} = \sqrt{\frac{Fv}{R}} \;. +\end{align} + +We combine both current equations to yield +\begin{align} + \frac{-lvB}{R} &= \sqrt{\frac{Fv}{R}} \\ + (lvB)^2 &= RFv \\ + F &= \frac{v(lB)^2}{R} = \ans{3.00\U{N}} \;. +\end{align} + +\Part{b} +Going back and plugging in $F$, +\begin{equation} + P_F = Fv = \ans{6.00\U{W}} \;. +\end{equation} +\end{solution} diff --git a/latex/problems/problem23.22.tex b/latex/problems/problem23.22.tex new file mode 100644 index 0000000..df18844 --- /dev/null +++ b/latex/problems/problem23.22.tex @@ -0,0 +1,38 @@ +\begin{problem*}{23.22} +A rectangular coil with resistance $R$ has $N$ turns, each of length +$l$ and width $w$ as shown in Figure P23.22. The coil moves in a +uniform magnetic field \vect{B} with constant velocity $v$. What are +the magnitude and direction of the total magnetic force on the coild +as it + \Part{a} enters, + \Part{b} moves within, and + \Part{c} leaves + the magnetic field. +\end{problem*} % problem 23.22 + +\begin{solution} +\Part{a} +As in Problem 13, $d\Phi_B/dt = wBv$, so the induced current is +\begin{align} + I = \frac{\varepsilon}{R} = \frac{-d\Phi_B/dt}{R} = \frac{-wvBN}{R} \;, +\end{align} +where the $-$ sign indicates it is counterclockwise (against the +changing flux direction). The force on the leading wires is +\begin{equation} + \vect{F} = I\vect{l}\times\vect{B} = -I\cdot Nw\cdot B\ihat + = \ans{\frac{-v(wBN)^2}{R}\ihat} \;. +\end{equation} + +\Part{b} +Once the coil is inside the magnetic field, the flux becomes constant, +so there is no induced emf driving a current, and thus \ans{no net + force} on the coil. + +\Part{c} +The situation here is the inverse of that in \Part{a}, so the induced +emf is clockwise, but the current through the portion of loop in the +magnetic field is \emph{still up}, so the force is unchanged. +\begin{equation} + \vect{F} = \ans{\frac{-v(wBN)^2}{R}\ihat} +\end{equation} +\end{solution} diff --git a/latex/problems/problem23.53.tex b/latex/problems/problem23.53.tex new file mode 100644 index 0000000..0bc23c2 --- /dev/null +++ b/latex/problems/problem23.53.tex @@ -0,0 +1,46 @@ +\begin{problem*}{23.53} +A particle with a mass of $m = 2.00\E{-16}\U{kg}$ and a charge of $q = +30.0\U{nC}$ starts from rest, is accelerated by a strong electric +field, and is fired from a small source inside a region of uniform +constant magnetic field $B = 0.600\U{T}$. The velocity of the +particle is perpendicular to the field. The circular orbit of the +particle encloses a magnetic flux of $\Phi_B = 15.0\U{$\mu$Wb}$. +\Part{a} Calculate the speed of the particle. +\Part{b} Calculate the potential difference through which the particle +accelerated inside the source. +\end{problem*} % problem 23.53 + +\begin{solution} +\Part{a} +For particles circling in a uniform, perpendicular magnetic field, +\begin{align} + F_c &= m \frac{v^2}{r} = qvB \\ + mv &= qrB +\end{align} + +Letting $\tau$ be the period, from $\Delta x = v \Delta t$ we have +\begin{equation} + \tau = \frac{2 \pi r}{v} = \frac{2 \pi r m}{qrB} = \frac{2 \pi m}{qB} + = 69.8\U{ns} +\end{equation} +The inverse of our cyclotron frequency from Recitation 7. + +The flux and magnetic field give us radius by +\begin{align} + \Phi_B &= AB = \pi r^2 B \\ + r &= \sqrt{\frac{\Phi_B}{\pi B}} = \ans{2.82\U{mm}} +\end{align} + +So the speed is given by +\begin{equation} + v = \frac{2 \pi r}{\tau} = \frac{qB}{2 \pi m}\sqrt{\frac{\Phi_B}{\pi B}} + = \ans{254\U{km/s}} +\end{equation} + +\Part{b} +Conserving energy +\begin{align} + K &= \frac{1}{2}mv^2 = q\Delta V \\ + \Delta V &= \frac{mv^2}{2q} = \ans{215\U{V}} +\end{align} +\end{solution} diff --git a/latex/problems/problem23.64.tex b/latex/problems/problem23.64.tex new file mode 100644 index 0000000..c87a321 --- /dev/null +++ b/latex/problems/problem23.64.tex @@ -0,0 +1,30 @@ +\begin{problem*}{23.64} +A novel method of storing energy has been proposed. A huge, +underground, superconducting coil, $d = 1.00\U{km}$ in diameter, would +be fabricated. It would carry a maximum current of $I=50.0\U{kA}$ +through each winding of an $N = 150$ turn Nb$_3$Sn solenoid. +\Part{a} If the inductance of this huge coil were $L = 50.0\U{H}$, +what would be the total energy stored? +\Part{b} What would be the compressive force per meter length acting +between two adjacent windings $r = 0.250\U{m}$ apart? +\end{problem*} % problem 23.64 + +\begin{solution} +\Part{a} +\begin{equation} + U_L = \frac{1}{2} L I^2 = \ans{62.5\E{10}\U{J}} +\end{equation} + +\Part{b} +Because the radius of the loop is so much larger than the spacing +between windings, we can ignore the curvature of the wires and treat +them as infinitely long and parallel. +Then the magnetic field of one at the location of it's neighbor is +\begin{equation} + B = \frac{\mu_0 I}{2 \pi r} +\end{equation} +And the force per unit length is +\begin{equation} + F/l = IB = \frac{\mu_0 I^2}{2 \pi r} = \ans{2000\U{N/m}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem24.07.tex b/latex/problems/problem24.07.tex new file mode 100644 index 0000000..4112ccb --- /dev/null +++ b/latex/problems/problem24.07.tex @@ -0,0 +1,52 @@ +\begin{problem*}{24.7} +Figure 24.3 shows a plane electromagnetic sinosoidal wave propogating +in the $x$ direction. Suppose the wavelength is $50.0\U{m}$ and the +electric field vibrates in the $xy$ plane with an amplitude of +$22.0\U{V/m}$. Calculate \Part{a} the frequency of the wave +and \Part{b} the magnitude and direction of \vect{B} when the electric +field has its maximum value in the negative $y$ direction. \Part{c} +Write an expression for the \vect{B} with the correct unit vector, +with numerical values for $B_\text{max}$, $k$, and $\omega$, and with +its magnidude in the form +\begin{equation} + B = B_\text{max}\cos(kx-\omega t) +\end{equation} +\end{problem*} % problem 24.7 + +\begin{solution} +\Part{a} +This is just a units conversion +\begin{equation} + f = \frac{c}{\lambda} = \frac{3.00\E{8}\U{m/s}}{50.0\U{m/cycle}} + = 6.00\E{6}\U{cycles/s} = \ans{6.00\U{MHz}} +\end{equation} + +\Part{b} +The magnitude of $B$ in an electromagnetic plane wave is given by +$B=E/c$. The direction of the wave's motion is given by the Poynting +vector $\vect{S}=\vect{E}\times\vect{B}$. Using the right-hand-rule +for the cross product, we see that when \vect{E} is in the $-\jhat$ +direction and \vect{S} is in the \ihat\ direction, \vect{B} must be in +the $-\khat$ direction. Putting this together +\begin{equation} + \vect{B_0} = \frac{-E_0}{c}\khat = \ans{-73.3\U{nT}\cdot\khat} +\end{equation} + +\Part{c} +Because it is a sinusoidal wave moving in the \ihat\ direction, we know +$B$ must look something like +\begin{equation} + \vect{B} = \vect{B_0} \cos(kx - \omega t + \phi) \;. +\end{equation} +We already found \vect{B_0} in \Part{b}, and we don't have any phase +information, so we can drop $\phi$. That leaves +\begin{align} + k &= \frac{2\pi}{\lambda} = 0.126\U{rad/m} \\ + \omega &= 2\pi f = 3.77\E{7}\U{rad/s} +\end{align} +so +\begin{equation} + \vect{B} = \ans{-73.3\U{nT} \cdot + \cos(0.126\U{rad/m}\cdot x - 3.77\E{7}\U{rad/s}\cdot t) \khat} \;. +\end{equation} +\end{solution} diff --git a/latex/problems/problem24.08.tex b/latex/problems/problem24.08.tex new file mode 100644 index 0000000..d3d54fa --- /dev/null +++ b/latex/problems/problem24.08.tex @@ -0,0 +1,34 @@ +\begin{problem*}{24.8} +In SI units, the electric field in an electromagnetic wave is described by +\begin{equation} + E_y = 100\sin(1.00\E{7}x - \omega t) +\end{equation} +Find \Part{a} the amplitude of the corresponding magnetic field +oscillations, \Part{b} the wavelength $\lambda$, and \Part{c} the +frequency $f$. +\end{problem*} % problem 24.8 + +\begin{solution} +\Part{a} +The amplitude is the magnitude of the oscillation, which just comes +from the prefactor outside the trig function. In this case, +$A=\ans{100\U{V/m}}$ + +\Part{b} +By comparing with the standard form of sinusoidal waves +\begin{equation} + Y = A \sin(kx - \omega t) \;, +\end{equation} +we see that the wavenumber $k=1.00\E{7}\U{rad/m}$. Converting radians +to cycles and inverting yields +\begin{equation} + \lambda = \frac{2\pi\U{rad/cycle}}{k} = 628\U{nm/cycle} +\end{equation} + +\Part{c} +Once we know the length of a cycle, and how fast the wave is moving, we can find out how many of them occur in a second +\begin{equation} + f = \frac{c}{\lambda} = \frac{3.00\U{m/s}}{628\U{nm/cycle}} + = 477\E{12}\U{cycles/s} = \ans{477\U{THz}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem24.09.tex b/latex/problems/problem24.09.tex new file mode 100644 index 0000000..bd71e29 --- /dev/null +++ b/latex/problems/problem24.09.tex @@ -0,0 +1,43 @@ +\newcommand{\Em}{E_\text{max}} +\newcommand{\Bm}{B_\text{max}} +\newcommand{\ctrig}{\cos(kx-\omega t)} +\newcommand{\strig}{\sin(kx-\omega t)} +\begin{problem*}{24.9} +Verify by substitution that the following equations are solutions to +Equations 24.15 and 24.16 respectively: +\begin{align} + E &= \Em\ctrig \\ + B &= \Bm\ctrig +\end{align} +\begin{align*} + \npderiv{2}{x}{E} &= \epsilon_0\mu_0 \npderiv{2}{t}{E} \tag{24.15} \\ + \npderiv{2}{x}{B} &= \epsilon_0\mu_0 \npderiv{2}{t}{B} \tag{24.16} +\end{align*} +\end{problem*} % problem 24.9 + +\begin{solution} +This is just an excercise in partial derivatives. +\begin{align} + \pderiv{x}{E} &= -\Em\strig\cdot k \\ + \npderiv{2}{x}{E} &= -\Em k\ctrig\cdot k = -k^2 E\\ + \pderiv{t}{E} &= -\Em\strig\cdot (-\omega) \\ + \npderiv{2}{t}{E} &= \Em\omega\ctrig\cdot (-\omega) = -\omega^2 E \\ + \frac{k\U{rad/m}}{\omega\U{rad/s}} &= \frac{1}{c} + = \sqrt{\epsilon_0\mu_0} \label{eq.c_to_e_mu} \\ + \npderiv{2}{x}{E} &= \frac{k^2}{\omega^2} \npderiv{2}{t}{E} + = \epsilon_0\mu_0 \npderiv{2}{t}{E} +\end{align} +which is what we set out to show. Note that we used Equation 24.17 in +Equation \ref{eq.c_to_e_mu}. The situation for $B$ is exactly the +same with the replacement $E\rightarrow B$. +\begin{align} + \pderiv{x}{B} &= -\Bm\strig\cdot k \\ + \npderiv{2}{x}{B} &= -\Bm k\ctrig\cdot k = -k^2 B\\ + \pderiv{t}{B} &= -\Bm\strig\cdot (-\omega) \\ + \npderiv{2}{t}{B} &= \Bm\omega\ctrig\cdot (-\omega) = -\omega^2 B \\ + \frac{k\U{rad/m}}{\omega\U{rad/s}} &= \frac{1}{c} + = \sqrt{\epsilon_0\mu_0} \\ + \npderiv{2}{x}{B} &= \frac{k^2}{\omega^2} \npderiv{2}{t}{B} + = \epsilon_0\mu_0 \npderiv{2}{t}{B} +\end{align} +\end{solution} diff --git a/latex/problems/problem24.18.T.tex b/latex/problems/problem24.18.T.tex new file mode 100644 index 0000000..b181441 --- /dev/null +++ b/latex/problems/problem24.18.T.tex @@ -0,0 +1,25 @@ +\begin{problem} +\Part{a} Caluculate the inductance of an LC circuit that oscillates at +$60\U{Hz}$ when the capacitance is $5.00\U{$\mu$F}$. \Part{b} A +resistor is inserted into the LC loop shown in Figure 24.8. Give a +qualitative description of current oscillation in the new circuit. +\end{problem} % based on P24.18 + +\begin{solution} +\Part{a} +The oscillation frequency of an LC circuit is given in Equation 24.24 +(with the derivation in the preceeding few equations) +\begin{equation} + f_0 = \frac{1}{2\pi\sqrt{LC}} \;. +\end{equation} +So +\begin{align} + LC &= \frac{1}{(2\pi f_0)^2} \\ + L &= \frac{1}{C (2\pi f_0)^2} = \ans{1.41\U{H}} +\end{align} + +\Part{b} +When current passes through the resistor some electrical energy is +converted into heat, so the LRC circuit would act as a damped harmonic +oscillator (see Section 12.6 for more on damped oscillations). +\end{solution} diff --git a/latex/problems/problem24.22.tex b/latex/problems/problem24.22.tex new file mode 100644 index 0000000..16069e6 --- /dev/null +++ b/latex/problems/problem24.22.tex @@ -0,0 +1,28 @@ +\begin{problem*}{24.22} +An AM radio station broadcasts isotropically (equally in all +directions) with an average power of $4.00\U{kW}$. A dipole recieving +antenna $65.0\U{cm}$ long is at a location $4.00\U{miles}$ from the +transmitter. Compute the amplitude of the emf that is induced by this +signal between the ends of the recieving antenna. +\end{problem*} % problem 24.22 + +\begin{solution} +To find the signal intensity at our antenna, we note that the power +broadcast from the station is spread out over a sphere of radius +$R=4.00\U{miles}$. The average intensity is then +\begin{equation} + I = S_\text{avg} = \frac{P}{A} = \frac{P}{4\pi R^2} + = \frac{4.00\E{3}\U{W}}{4\pi(4.00\U{miles}\cdot 1.609\E{3}\U{m/mile})^2} + = 7.68\U{$\mu$W/m$^2$} \;. +\end{equation} +From Equation 24.27, we see +\begin{align} + S_\text{avg} &= \frac{E_\text{max}^2}{2\mu_0 c} \tag{24.27} \\ + E_\text{max} &= \sqrt{2\mu_0 c S_\text{avg}} = 76.1\U{mV/m} +\end{align} +The total voltage difference produced across our length $L=65.0\U{cm}$ +antenna is then +\begin{equation} + \Delta V = LE_\text{max} = \ans{49.4\U{mV}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem24.25.tex b/latex/problems/problem24.25.tex new file mode 100644 index 0000000..dffb1c5 --- /dev/null +++ b/latex/problems/problem24.25.tex @@ -0,0 +1,47 @@ +\begin{problem*}{24.25} +The filament of an incandescent lamp has a $150\U{\Ohm}$ resistance +and carries a direct current of $1.00\U{A}$. The filament is +$8.00\U{cm}$ long and $0.900\U{mm}$ in radius. \Part{a} Calculate +thte Poynting vector at the surface of the filament, associated with +the static electric field producing the current and the curret's +static magnetic field. \Part{b} Find the magnitude of the static +electric and magnetic fields at the surface of the filament. +\end{problem*} % problem 24.25 + +\begin{solution} +\Part{a} +The hot resistor will be radiating heat, and none of the electric or +magnetic fields change with time, so we expect a constant Poynting +vector of magnitude +\begin{equation} + S = \frac{P}{A} = \frac{I^2R}{2\pi r L} + = \ans{332\U{kW/m$^2$}} \;. +\end{equation} +This Poynting vector will always point away from the wire (in the +direction the radiation is going). + +\Part{b} +The electric field is given by Ohm's law. +\begin{align} + V &= I R \\ + E &= \frac{V}{L} = \frac{IR}{L} + = \frac{1.00\U{A}\cdot150\U{\Ohm}}{8.00\E{-2}\U{m}} + = \ans{1875\U{V/m}} \;. +\end{align} +The magnetic field from a long, straight wire is +\begin{equation} + B = \ans{\frac{I}{2\pi r}} \;, +\end{equation} +so the magnetic field at the surface of the wire is +\begin{equation} + B = 177\U{T} +\end{equation} +The electric field is along the wire, and the magnetic field is +perpendicular to the current, so the Poynting vector points directly +out (perpendicular to the wire's surface) and has a magnitude +\begin{equation} + S = EB\sin(90\dg) = EB = \frac{IR}{L}\cdot\frac{I}{2\pi r} + = \frac{I^2R}{2\pi r L} \;, +\end{equation} +which is the same expression we found in \Part{a}. +\end{solution} diff --git a/latex/problems/problem24.39.T.tex b/latex/problems/problem24.39.T.tex new file mode 100644 index 0000000..8c8e6f6 --- /dev/null +++ b/latex/problems/problem24.39.T.tex @@ -0,0 +1,26 @@ +\begin{problem} +You're listening to WKDU (transmitted from Van Rensselaer Hall) on +91.7fm while watching a basketball game $400\U{m}$ away at the DAC. How +many wavelengths are between you and the transmitter? FM channel +names give the carrier frequency in MHz. +% Building from http://en.wikipedia.org/wiki/WKDU +% Lat, Long: +39° 57' 36.00" N, 75° 11' 27.00" W, from +% http://www.fcc.gov/fcc-bin/fmq?list=0&facid=17596 +% +% DAC Lat, Long: 39° 57' 22.99" N, 75° 11' 26.51" W, from +% http://en.wikipedia.org/wiki/Daskalakis_Athletic_Center +% +% Distance calculated following the Vincenty algorithm according to +% http://en.wikipedia.org/wiki/Great-circle_distance#The_geographical_formula +\end{problem} % based on P24.39 + +\begin{solution} +The wavelength of the signal is +\begin{equation} + \lambda = \Delta x = v \Delta t = c T = \frac{c}{f} = 3.27\U{m} +\end{equation} +So the number of wavelengths in $400\U{m}$ is +\begin{equation} + N = \frac{L}{\lambda} = \frac{400}{3.27} = \ans{122} +\end{equation} +\end{solution} diff --git a/latex/problems/problem24.55.T.tex b/latex/problems/problem24.55.T.tex new file mode 100644 index 0000000..6f5eea0 --- /dev/null +++ b/latex/problems/problem24.55.T.tex @@ -0,0 +1,41 @@ +\begin{problem} +Assume that the intensity of solar radiation incident on the cloudtops +of the Earth is $1370\U{W/m$^2$}$. \Part{a} Calculate the total power +radiated by the Sun. \Part{b} Determine the maximum values of the +electric and magnetic fields in the sunlight at their source in the +photosphere (\url{http://en.wikipedia.org/wiki/Sun#Photosphere}) a +distance of $6.96\E{8}\U{m}$ from the center of the sun. +\end{problem} % based on P24.55 + +\begin{solution} +\Part{a} +The intensity at Earth is the total power spread over a sphere of +radius $r_E = 150\E{9}\U{m}$ (the Earth-Sun distance). +\begin{align} + \frac{P}{4\pi r_E^2} &= I_E \\ + P &= 4\pi r_E^2 I_E = 4\pi (150\E{9}\U{m})^2 \cdot 1370\U{W/m$^2$} + = \ans{3.87\E{26}\U{W}} \;. +\end{align} + +\Part{b} +The intensity in the photosphere is +\begin{equation} + I_P = \frac{P}{4\pi r_P^2} = \frac{4\pi r_E^2 I_E}{4\pi r_P^2} + = I_E\p({\frac{r_E}{r_P}})^2 = 63.6\U{MW/m$^2$} \;. +\end{equation} +The intensity of light is related to the peak electric field by +Equation 24.27 +\begin{equation} + I = \avg{S} = \frac{1}{2\mu_0 c} E_\text{max}^2 \;. +\end{equation} +So +\begin{equation} + E_\text{max} = \sqrt{2\mu_0 c I} + = \sqrt{2 \cdot 4\pi\E{-7} \cdot 3\E{8} \cdot 63.6\E{6}} + = \ans{219\U{kV/m}} \;. +\end{equation} +In a light wave, $E_\text{max} = cB_\text{max}$ so +\begin{equation} + B_\text{max} = \frac{E_\text{max}}{c} = \ans{730\U{$\mu$T}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem24.57.T.antenna.jpg b/latex/problems/problem24.57.T.antenna.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7c3eb4bee91d4b7a90be4f0f2917f3f20421f490 GIT binary patch literal 8008 zcmb_=cUV(Pw|=OhBcikfse*!lAiV?w2q?{pbVQIMy@n!)bfkk)giu7K2dN=+A@oqB zgc1ln^j@W2{LcBE-*>)q|G3X{@4KHpGkfj5*UYT7_FnJI`N;Vc;L-!t`>FsUVgSJ6 z;sBhl0`yhf&27B^L;z9%0H6vW2B=)rod4?saJ~+pgIYMgdK=Q@(iAjhqa52(9Kn^4&qaYz7ru;4a zH~Ga~Vj>dKO8_ELB4ScvASsZHjPgSGTLCE<138!IWgsI3^pV*+Zm}!QSxQ&qN*=#- z3E=q=|M?D6sd6A6b1e*mfn z!>{g2x_f2O(Xp~2>}KjKbQ_#-_mgOu*;1$?WLZb3lZNa>{iP zZtw4x{t2j0oBG5W*7j?Ud4Xydw3}Up!em%3baT1DaOh*gSZ#9WDwsVzb3w8y_*DL# ze{#bUMhAoByg$u*RWUg-HFqDs<_Z7ui;_EsqafcZit-@Xd%F|9+DX%Duc^Q%UQsd> zwwwN{w`KsaIi$A^lZ&e_PjPj1Auo?)Fp>JSKw8zR~KwtCh`!heIQdMkE1+<@% zLv=1nc;M@pIyP=_pnVTmFc~i_f%$Vfk037y9%|RiJkY{tUsu04#w!|{_22c)F?p~z zlkjl~Z2w+TvjJ;o}La{9ms@H{nG5eSzs7;OKFP#ett@ zO+Jkf`Jh8u5M1lU?1`|;5|W{$Zzc7g;e8GDJP=G9hggR>CR_g4;Nny&{w$(_ti|wnsjNVj4&E5 zSBR#wnE}&f2AQ|cbr!o_A zX>B=BirhG++@VkRU#swTYVge3q@?p^(A-tb1&TASKIy-SZ1He>Vg8kAZT78PN8G7q z$ZItVE3W~iw}nPOir33;ZGUz&DKdx)%WnoVhy$=HeXah|0Ft|4CJUciq-^r|?lHr7 z9wr}34eovl@)plIr{#tI8QGBfCZxDB#~5%b&2E3v#X=ID{doLMyc|!2Gyh|Dljd-T z+InD=0<|kBk#1@tb(WzVNdv-NrM1bOT}YS5%PJj7hU$c{u}u$y_B>%4b!zuY-CueB zGHGRFPe+gWcw2UAS)SCFE?vJxdYa{5wEuQwwQBhGe`7GHktHm|)ouQky)cdiU12)^EvdFm8@NIG(N z5?(nkYc%4EufQ4SOxY#r3=R?VXIBS?y9D{kN|4$=aC(}R&2d=EQ1*wG`*k@P#JJhu ztc`a)=Kul6=hHCmGMQ&}x{`f(Y5SFkldj7L5?k`k-XEHq%XFKiAvcpfE4l?lRC)i^ z+20F6dt7pt!|E;^Ii_p;C{DE00W)VRA=`iQUCGOH2jF&^cw*B0*e|@5n(RGJFMq^H z$a1jlnWN^TJ2*57y==5_P1v<60bPjXkwh~X6btF64$)xTT*SA9Jo{q$bm`t~BQ5RT zfO4!1eS#wu`asmbklNK7eMg>+%%)bn(|s$koWDWn6<0hVn7&xeJc~=jG+uWIN>4;p zvn$NI54^|hMaNsyT3b&6`siO6eL^4+{hj7wR#mA~l1MjQ%M>HiE;^HJ>0~^R=#JX2 z$F9TE@>ey|KWJ1|&b2v=vuo}Pp|Rz7(OMhc$Kt#7Qqg7@Cm|;R)#*Qz*m|4AhSUO^(DoLvrW89~iss=3Py({}xv>U6G{*0kXuhw8g+;Tm@= z!%x9KX1+k%sW^zYsZ5v3yiZR2F*4{AT-k`E`u?>#4L9Q)Edifu1?PtWRTaQs-41l0vVf(BnwUH){6L`uZSL=5%=rw>*uv=_2$xG8MxHdU+KsEIV#>Ah?u<(_4)M}) zeAX2nKzy11c{da=-5#Yh1IfJb*Gb)vNY`Gz038%i+9O7*g}_|p6W%Rs$yYAjp60oW z>S0^j54nnS_=N5;=B~lEje?Hc)5zr0$foMVK^s$wU)%LjssOC2;f- zjuJ>Sna7Hdw)?_VpuHgZjI zUEBC_*IUJ`vG4X5V{PPY!Ye{YS;9&cOjF0h=1LKMaLavY>)@$@cLtZ^$W{CH#G4lh z;+XIW)izrhy%T0DOfLY+Dbyqle6rtI<9%GZUAN`&xh}fEg_xamOH4gYhDrK$zrjmQuEoUlC4*nq?%-Z|@EH|RDul`uF5m{P)M zX{9LBpu3k_t9*uajF&qPRvm0c&xY(HHU?U*WCv)`HC#2D%BXwqG5^f$=8Fp*B>2d_ z#{FR@3+h1X*AK7>E3OnAUQ`uxHg76l@;2{V*^623_PX%nV;OQlmt`7{aaqq+=Vdo5 znI$MFIE@?Qo!pqmW{E@5Cr$exgXi%69o9pI1jTIFs;a;svBjvS@oZ%5yi!c zCd?t!AUY6rH2OIJs#^Xmo5X)9{9X2*um_>yyB-CFVEs0^l*7xy+TBV7j9IebmH*`0 zv)qy^0e@1=KPsx4+E{HNk8=P&2gMDCeDbbdzETg3OZ;oDpC-NQd?N1M{T-hRbRFk_ zE``-~zb?_kM_rckUv&esRh}@{B$X>fAj=9rM8_CGFKDzBY!2Q$fxxb|F7b*HxN97k zZE}L|`reoIxhr@a*sbzKF=-t@VCJc zQ%HH<=ypY>gfD-G;BP>a-{qKywCJ#Rlc&dXbLrNGe-wO(&oNnpg>#lM^1WAu8xYj{ zrl5P5p2oQS=1a41THH0e66SJOt_i*8O22^o8hY{2Gd+Xqoje&gm${3~AyeIO@{=&b zAH^H^+U%B2-tPTZO#n6IeF|gGA@~G0O8kP`5lw9QIXCP>C;*2yx?oP@Rtlg89N+vi z4zZu6PXuzV=zRFQP3h4kYVtY(mZ8mp8ocIJp%TqX^kbKlYhLjV-M(Y55hK!2Vb>An z<;Ct$z!a0iHPE-b5i^-zgtFJVauHb29=}&v()Pn+r&}PSpE2E%QF)`7dv@hSYrl-D zm#}(0>tO*Er&Amk5F2so{%q{*m*Cl1NqVGkT5b)7Ihe$?|oBh_(L#-$RI?9Q_Tlx#M z#t{7co!sNUCszv2<9KK}@}AI)jw&-+ls(6X<)E55;m`t@pu2CUO+@-y zIemHbDpX@*AvfMJ%~m`v=^t-$~p$Ty(0EirLfkJqJL;9PcoA@)>G_j|AI> zxb|W}hl%Y{dSD@TR7iF}YuV?I6#Ar`Th26W%+g0jvs=eCB8F<8Wla~{VkReHQ!pX|Ig;a~&5KDH`?L&?N|gUMZN;Y;ZZo9!}H zZ~W>cTemYVY!bjfjsZ#Wp?jvUHSTzSshG8GaPVLW<$xZd^070enUH6$h;9#CAh@4- zw6$WFkM38pZQak1jPFtb#TLu9P0L1OoCPP%R^%k*sqaVLs>I(li#*#orP_t7c9rVU z@3y^`jAjYopp&ebrz2cX3D74xgUMKqmpWzKv<@_e_n1rK1zOETqywTX_Y~S9(%w?D z0GVal0u7|&10+hnkIE(4Z4~t~M93vr1u6wL9G!S%VM29|)nYkB_ZBCc^3NzsWB;9N zLfP>(E4CgxK)&e-6uJ2p#wl8C&6u~p>hj1;R5fZt*2Q{%o7$rN8;-!??I0<3h8`hr zC0BE6iNjdro7XC>3(?vY+qyf=$XfX2*IE!V<}9D>2w+J2uJpK7ulRfq5M$1Lc+@|d~9Qg{XdBbZiYXzbq&(dPHsl~nnF`=3hm)~#%8SaCOv zw4M5F*93CBS}Wj_uBNoc7jeCa)!yIa!Z=w+6^oq4;|2DxWnzMwlfH6+>5XO1Gq8Ih zFEig2*&FFXm_`zH#gjT@e2zx;{n>eGf%_>1kn67cX^-(K5eZ$re)%vt#%mlBH!PQO zNFCf$WV!4Ks2(drp5eefM|2OQ;Q@TFSpsF!^(oowbq^{6^(;`IFF;jQVqjK?tJW8+ z`=hsB508qyb^a!p-vIN^R z-~FU5gg*7#eFN&yk?Ny!fd2EA8>3g%%_D7CUMzvjNo_wb7#!$Hc&#;ujG_E|!@0Ew%qrY{T%q;}O#czHe#VS6~Yzo*!{#J4U}0zN?i9u zM54MAvf|$e+a5YSDnwymV;J}Mv$hUCBdjZR>*6j9B}Iw!^lkB`K|o1$S)*&ieta@t z7`nYnL`1+9b*PMvPon~cs+#rK);Sz&`(XB~ku;5*$dwriiv(TZHRtcU-Xv~QIjyj# z$WpFI9k|HA@QPEs)_t(a;xCdz;8i3357RY)s6$WJmzs}45QD@< z7{?l|C=pQy^y+5 ztr{J_pz*Ywa2Yy%%T6#R>e(VnlCXj^tPgZaH5Gay5(7J%`G85uJc9S@+~2<@aE~D< zL@SH%rl}p{**zJ!Xf`m-bbA|ufE!hawze&;85bKrk#W0PSkD&`A!1sr-<)ch5|^%s zR+`D_MAb?xkUwr8D&2OY4Y8h+J&kf!rc$fY^jp|CYyEL&wiua-N-I@6Mz&nCV>>Oa zi>R!V$g3?DMA7&Ol$6AlU42jpwn$lv%A~gqGkWT;x9$u7A)bsMGv|Pp53|g7J)n`U z0!v?BGR}F#@qIF4D8JAzs&#y1BhS-;eZXx&O5+`E>Hh9;{;=ySYt(J;iJdFRP0gqO zkw&R2g2y~=qFSO#7^j87jd5SAWBLOV}t{j~w;Y+jouB5^^TMtyU_b8uW9PGgDK*~ePZgjPoOkjw5wq<6iq$2<4ySAi8 zl8l?f5tC>RCw9KPnpW*`KfiKYth*4Nmpm+qF8*}eLWFYVKIk2oo-uz3v5hu%ewb!z57TC1m2`9y z#UUzLw8s+#9bY;ZqS#aWZ&&n6%0oFGIz-vfx~ArldLJCKDhlSF6z@aMniC`%U|Rb5 z>+Fr&Hy_q1V#o6|V`pbEQcLDVo&pc3=$!)(Fu`>rw18FQ=tJ*doV0p>e7 z(T-qJSGM$Wc1;d}+12rlE_cmm2StU*H``jtMO^kNH0yJ1=#ii|B-9arWzRvkXzDM+ zbTGTkZ)*;#EgdwK2#s4g1RwkYN~Hy4SOD7IP@ET>$(D+kdOK_=909bm72awy&$&uF~!Q$@L1h2@)jB`8gl~~ z@`_Br6^Uj4|3F}vJb_STb%325t?{d<4KZXT2`{3t)U6zv8Q=(H8P0bIiHXn&HCDU2 zxYv{7jNfZ^9Ess?jVr2_E26PaolZoIhEMqNCrf?>hM%?`_evJxMh_?4Ja{ibbtzVK z!(*|*pQW>+vLemd#A$6+{Q)w7D%rZd;rG51#n{>vk&Ids`O>eD-NBW%E8W9MtWh^KyQ zO&#GMx6~)DDNq%#81j=vVR~8X6jjP5-+!=Y2*)_HWQdm~k1HF2`myorw4_xP;~!dh zK?63;K%+g@XH7-QE-jsLR3$P^U0j=~jCbkSFQeD%BnH!YT?$3REBEJqF_ok7HbJj0 zh=7X&9oE5HrrIL3aXtLAGgrdhZF%*KV+6^#8|-$Dy(=?fotKJ_(&MW z#ectaN%i1jeL9L0&0IHX@fNFc7pn=6Zw@UgQ3Y=+)CpQ3-12$f_yR4osS_-&bU zT4wajY-}PjWHW9=8tgp$!FAP%p^Z6f$52>t!cKWF{}+GvBUoDlihZYI3TOYG%Izx> zyg$L1CX1uE9_j2;K9C#gTSQeca5dFFxown{t$csft)kt=^0VcZ<3UK4u^Qdmb;JXZ zK4mReCT~%muJoJJ6I!HR-cKIhY4OW@@jg~E4k-5AVud5z?OW#1wbH==%k6&-BX^oqMK=#&Z^ktz%_7<8oVPmSH zgM+~>*{2IS8frV&D5>K2)#_!8Q;|8%F;v}(xm%wvFK_k}{HOZC(oWzch4QX%H7|t) zOe|SW$qLktQZFzO`V!`=$$lIsV7Rcp`Lq?(qgXpZ~> zPvQ{!nv5*d6(C%O0#f~ z*Q5GWyf=*9*X#>%X}g927>=1(NHT2qHItv@zYp04$QIgaFY9&;CUST_32AWt;lT~= zrGK;{8-p!hjC*+iS!;W9MXV@upgEshh2wN)n4``XB=F_4}T@GEKG;xI?)<+r0 z*J$UA^?(Pgj+K=nRX%}&CPFCP)(0Ny!@$|>*k;ftcRKe_>()hI-e4(qoY>j>m%&?+ zU&P>wDPi14J%NM09GUKmzB~obX1(>T|88{(3Q@;d=TSXcBe=Q)7S>IhJbH(IyY^D0 z5!Jz+`Gazq`fSK(NMWdHbWpiBKPF L$. +%so the normalization condition, Equation 28.23, reduces to $\int_0^L |\psi|^2 dx = 1$. +\end{problem} % problem 28.46 + +\begin{solution} +\begin{equation} + 1 = \int_{-\infty}^{\infty} \psi dx \psi^* = \int_0^L \psi^2 dx \;, +\end{equation} +where we used the fact that $\psi(x) = 0$ for $x < 0$ and $x > L$ to +reduce the range of integration, and the fact that $\psi$ is real to +reduce $\psi\psi^2 = \psi^2$. So we must integrate +\begin{equation} + 1 = \int_0^L \psi^2 dx = \int_0^L A^2 \sin^2\p({\frac{n\pi x}{L}}) dx + = A^2 \int_0^{\pi} \sin^2(nu) \frac{Ldu}{\pi} + = \frac{LA^2}{\pi} \int_0^{\pi} \sin^2(nu) du \;, +\end{equation} +where $u \equiv \pi x/L$, so $dx = Ldu/\pi$. + +There are two possible approaches. The easiest way is to use +symmetry. We're integrating over multiples of half wavelengths of +$\sin$ ($\lambda = 2\pi/n$ so $\pi = n\lambda/2$), so we're +integrating through full wavelengths of $\sin^2$. Over a full +wavelength, the averages $<\sin^2> = <\cos^2> = 1/2$ since $\sin^2 + +\cos^2 = 1$. so +\begin{align} + 1 &= \frac{LA^2}{\pi} \int_0^\pi \sin^2(nu) du + = \frac{LA^2}{\pi} \cdot \pi \frac{1}{2} = \frac{LA^2}{2} \\ + A &= \ans{\sqrt{\frac{2}{L}}} \;. +\end{align} + +The slightly harder way is to use the double-angle identity +$\sin^2(\theta) = [1-\cos(2\theta)]/2$. +\begin{align} + 1 &= \frac{LA^2}{\pi} \int_0^\pi \sin^2(nu) du + = \frac{LA^2}{2\pi} \int_0^\pi [1-\cos(2nu)] du + = \frac{LA^2}{2\pi} \cdot \p[{\int_0^\pi du - \int_0^\pi \cos(2nu) du}] \\ + &= \frac{LA^2}{2\pi} \cdot \p[{u + \frac{1}{2n}\sin(2nu)}]_0^\pi + = \frac{LA^2}{2\pi} \cdot \pi + = \frac{LA^2}{2} \\ + A &= \ans{\sqrt{\frac{2}{L}}} \;. +\end{align} +\end{solution} diff --git a/latex/problems/problem28.56.millikan.ppm b/latex/problems/problem28.56.millikan.ppm new file mode 100644 index 0000000..9f92590 --- /dev/null +++ b/latex/problems/problem28.56.millikan.ppm @@ -0,0 +1,61 @@ +P6 +480 283 +255 +ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿùùùÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþýýýþþþÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿþþþþþþÿÿÿÿÿÿþþþýýýÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþþþþýýýÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿþþþýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþüüüÿÿÿþþþÿÿÿþþþÿÿÿþþþûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿýýýüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿþþþþþþüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýýýýþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿøøøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿûûûÿÿÿþþþÿÿÿÿÿÿýýýýýýþþþýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþûûûÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþûûûÿÿÿûûûÿÿÿþþþÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿþþþòòòíííäääççççççæææçççãããçççäääìììäääãããêêêæææååååååæææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææçççãããåååçççåååéééææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææåååéééçççæææèèèèèèåååæææäääéééæææçççæææäääçççææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææâââäääæææçççèèèæææåååçççäääæææåååçççäääèèèååååååäääèèèäääæææêêêãããæææåååæææèèèåååååååååäääåååæææççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççèèèåååæææåååçççäääéééåååèèèäääåååèèèåååäääèèèæææèèèæææåååçççæææåååèèèæææäääåååææææææäääéééçççåååéééãããçççéééæææççççççäääççççççèèèæææâââçççèèèäääæææëëëâââäääèèèæææççççççççççççéééääääääåååäääèèèãããææææææååååååêêêæææåååçççèèèéééæææâââäääçççæææææææææææææææææææææææææææææææææææææææææææææææææææååååååãããéééäääêêêâââçççæææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææåååççççççææææææçççæææçççäääèèèããããããèèèäääæææææææææææææææææææææææææææçççèèèáááèèèéééäääæææèèèçççåååççççççææææææåååçççæææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææäääãããèèèåååçççèèèãããäääæææææææææççççççååååååæææòòòÿÿÿýýýÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýý‰‰‰&&&~~~ýýýþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýìììööö~~~```ØØØÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿþþþsss999ÜÜÜÇÇÇÅÅÅÈÈÈÅÅÅÇÇÇÇÇÇÆÆÆÉÉÉÅÅÅÇÇÇaaaÅÅÅÅÅÅÊÊÊÄÄÄÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÅÅÅÅÅÅÅÅÅÈÈÈÅÅÅxxxQQQÇÇÇÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÅÅÅÅÅÅÉÉÉÇÇÇÅÅÅÊÊÊlllqqqÅÅÅÌÌÌÂÂÂÄÄÄÇÇÇÇÇÇÄÄÄÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÉÉÉÀÀÀ©©©ÉÉÉÅÅÅÅÅÅÇÇÇÄÄÄËËËÆÆÆÀÀÀ®®®»»»rrr–––oooaaaœœœŒŒŒÈÈÈ~~~qqqrrržžž|||’’’kkkrrrpppnnnqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqtttlllCCC+++oooqqqpppttt$$$jjj###kkksssooo:::rrrssslllwww999SSSnnnqqqssspppSSSrrrrrriiitttqqqssskkkAAAqqqlll--- """^^^bbb,,,tttUUU&&&VVVPPP???PPP???VVVooo===###777%%% !!! + + + »»»ÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüøøø!!!¦¦¦ ???uuuÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿmmmBBBÿÿÿþþþþþþÿÿÿÿÿÿþþþþþþÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿŸŸŸ___ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýããã×××ýýý¬¬¬¬¬¬ÿÿÿýýýÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿøøøëëëÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿ÷÷÷ùùùÿÿÿÿÿÿþþþüüüÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿüüüüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿûûûÿÿÿ€€€èèèÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüýýýÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿŸŸŸóóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿýýý÷÷÷öööüüüÿÿÿÿÿÿþþþÞÞÞÊÊÊÅÅÅÌÌÌØØØËËËÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈxxxÉÉÉÆÆÆÆÆÆÌÌÌÇÇÇËËËÇÇÇÈÈÈÎÎÎÓÓÓËËËÆÆÆÇÇÇÈÈÈÉÉÉÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈÆÆÆÇÇǒ’’ÊÊÊÈÈȺºº---¸¸¸ÂÂÂÊÊÊËËËÊÊÊÈÈÈÇÇÇÈÈÈÉÉÉ%%%¥¥¥üüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿëëë PPPAAA;;;ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþqqq<<<üüüÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ€€€ÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿŸŸŸeeeÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþòòò™™™ÿÿÿ«««ªªªÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþüüüÿÿÿþþþ÷÷÷ùùùüüüÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþèèèáááÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿýýýþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿšššéééþþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿ¶¶¶öööÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáááÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýüüü¸¸¸$$$óóóþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ***ÕÕÕÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüü„„„###»»»œœœ¤¤¤ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿdddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿííí777JJJáááÿÿÿÿÿÿ««««««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííæææÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿäääÁÁÁÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûaaaêêêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿâââÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿ«««000¹¹¹ÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþþþþÿÿÿÿÿÿÿÿÿýýýéééÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿƒƒƒÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿdddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿûûûýýýÿÿÿËËË   ÿÿÿÿÿÿÿÿÿÿÿÿ««««««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿæææàààüüüüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿññññññÿÿÿÿÿÿüüüýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿûûûÿÿÿÿÿÿ†††èèèþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬¬¬úúúÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿýýýûûûÿÿÿÿÿÿþþþþþþÿÿÿþþþþþþÿÿÿüüüÿÿÿýýýººº...„„„óóóÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿïï—ÃÃÃ×××hhh<<<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿŽŽŽþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿdddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿ¿¿¿999æææüüüÿÿÿýýýüüüþþþÿÿÿ««««««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííçççÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿææ檪ªþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýþþþ¶¶¶éééÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¤¤¤ÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿàààeeeFFFÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííDDD ###+++666···ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿ‹‹‹þþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿdddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþíííGGG...žžžÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿüüü¬¬¬«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿâââÝÝÝüüüýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþäääÄÄÄÿÿÿþþþÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿþþþ"""ëëëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}}}þþþÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿûûûÿÿÿÿÿÿýýýÿÿÿüüüƒƒƒòòò„„„ýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýßßßîîîÓÓÓÔÔÔæææÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿ~~~ÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿdddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüýýýÖÖ֞žžòòòÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýûûûÿÿÿ««««««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿëëëäääÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþèè觧§ÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýýýýÿÿÿŠŠŠêêêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒƒƒÿÿÿüüüýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýüüüÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿÔÔÔCCC;;;ÌÌÌþþþýýý–––üüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿóóóooo...TTT///---rrrÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿdddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆÆÆGGG¹¹¹ÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿªªª«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿñññèèèÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçççßßßüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿûûû‡‡‡èèèÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}}}ýýýüüüÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûÿÿÿÿÿÿùùùååå}}}¼¼¼ôôôýýýÿÿÿÿÿÿªªªÿÿÿþþþþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÕÕÕÛÛۘ˜˜ÕÕÕÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþ€€€ÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿdddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¨¨¨ „„„ôôôþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýþþþÿÿÿ¬¬¬«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòòòéééÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýèèèîîîþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþýýýÿÿÿaaaæææÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿˆˆˆÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿïïš+++ VVVôôôýýýÿÿÿþþþþþþüüü¯¯¯þþþþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþ±±±lll £££ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿsssÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿdddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÎÎÎÁÁÁýýýþþþÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿ««««««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿéééãããÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿæææìììÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýkkkêêêþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþwwwÛÛÛxxx~~~ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿšššÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþJJJÙÙÙÿÿÿ¬¬¬dddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿwwwþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿžžžeeeÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþ˜˜˜¸¸¸þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿüüü¬¬¬«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚÚÚÍÍÍþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿåååîîîÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿþþþnnnéééþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿ«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿ‚‚‚ÞÞÞbbbôôôDDDýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿªªªÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿHHHËËËúúú]]]iiiÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýVVVÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿdddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿýýýÇÇÇ???666ËËËÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿ­­­«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàààÔÔÔÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿèèèïïïþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýRRRçççÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüü«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿýýýÆÆÆBBB333¤¤¤åååuuuIIIÿÿÿþþþþþþüüüÿÿÿûûûÛÛÛüüüÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿ¿¿¿'''ÛÛÛÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿ{{{þþþýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿdddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿ¢¢¢   ÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿ«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿèèèÞÞÞÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþçççîîîþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿWWWêêêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿ«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÛÛÛfff000žžžÿÿÿÐÐÐ;;;666888ÐÐÐþþþüüüÿÿÿÿÿÿþþþÿÿÿíííÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿððð@@@vvvÊÊÊàààïïïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ~~~ÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿcccþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿ³³³³³³ÿÿÿÿÿÿþþþÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿ………«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííæææÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþçççîîîÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿþþþIIIêêêþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿûûûûûû«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿ¸¸¸nnníííûûûÿÿÿÿÿÿÿÿÿøøøÿÿÿûûûÿÿÿÿÿÿþþþüüüþþþÿÿÿ¥¥¥ÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÝÝ݉‰‰@@@CCC’’’òòòÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþpppÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿcccþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþýýýßßßaaa%%%©©©ÿÿÿþþþýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿ§§§«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííèèèþþþþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçççîîîÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿVVVëëëþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿ«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýþþþòòò```<<<èèèúúúÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿ’’’ÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿäää=== ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿ„„„ýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿžžždddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿDDDqqqíííýýýýýýÿÿÿþþþþþþþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ¬¬¬«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííèèèþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÞÞÞçççÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿNNNéééÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿüüüªªªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþþþþÿÿÿ±±±+++„„„öööþþþÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿýýýüüüÿÿÿÿÿÿÿÿÿòòòÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÜÜÜfffggg×××ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ€€€ÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿœœœcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþËËËÞÞÞþþþùùùþþþÿÿÿÿÿÿüüüýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿþþþ«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííçççÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒÒÒÝÝÝÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýý///åååÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿþþþÐÐЪªªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÜÜÜFFFKKKÌÌÌÿÿÿþþþÿÿÿþþþýýýÿÿÿýýýþþþþþþÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿñññ:::€€€ÙÙÙÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüƒƒƒýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüü˜˜˜```ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÙÙÙccc%%%¬¬¬ÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ««««««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííåååÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÍÍÍÙÙÙÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿþþþwwwìììüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþýýýýýýÿÿÿÆÆƪªªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÜÜܐBBBŸŸŸÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþþþþÿÿÿ§§§ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþúúúýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ€€€þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿšššdddÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÑÑÑ...   øøøýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþþþþ¬¬¬¬¬¬ÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííçççÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÝÝÝåååÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿVVVéééÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿµµµôôôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÞÞÞªªªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÍÍÍVVV>>>ÅÅÅùùùÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿžžžüüüÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿíí퍍ÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ€€€þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþŸŸŸcccÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþùùù¼¼¼öööýýýøøøÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿ¬¬¬«««ÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííçççÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿàààèèèÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþýýýoooêêêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþýýýÿÿÿþþþµµµóóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿªªªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿúúúÿÿÿ+++   öööÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ€€€ÿÿÿþþþûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýþþþÔÔÔþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ€€€þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþýýý¡¡¡dddÿÿÿÿÿÿúúúÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýöööbbbLLLðððÿÿÿýýýûûûÿÿÿÿÿÿýýýüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüüüü«««©©©þþþþþþýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííçççÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÑÑÑÚÚÚýýýÿÿÿþþþûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿ888çççÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ···óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûÿÿÿÿÿÿÿÿÿüüü¯¯¯ªªªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿýýýýýýÿÿÿþþþûûûþþþÿÿÿÏÏÏ>>>333ìììÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ~~~ÿÿÿþþþÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùùùŒŒŒ ”””ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ€€€þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿ___þþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþûûûÿÿÿ000RRRøøøÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿ¬¬¬«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííçççÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÝÝÝåååÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýý///çççÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿýýýÿÿÿ´´´óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿââ⪪ªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿŒŒŒšššúúúÿÿÿÿÿÿüüüÿÿÿþþþþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûû„„„ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøøø§§§èèèÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ€€€þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþúúú¥¥¥cccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÀÀÀÖÖÖþþþúúúþþþÿÿÿüüüÿÿÿÿÿÿþþþüüüÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿþþþŸŸŸ›››øøøþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííçççÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÙÙÙãããÿÿÿÿÿÿýýýüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿéééÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿþþþ···òòòÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿûûûæææ©©©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùùùÿÿÿüüüüüüÿÿÿþþþþþþÿÿÿ´´´$$$ùùùÿÿÿÿÿÿýýýÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿððð^^^ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ€€€þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿŒŒŒbbbÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿûûûþþþÛÛÛaaa¦¦¦þþþýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿ®®®¨¨¨ÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííçççÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÝÝÝäääþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿ,,,éééÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý»»»óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿüüüýýýÿÿÿ¬¬¬©©©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþþþþÿÿÿþþþýýýþþþddd333ÎÎÎÿÿÿÿÿÿüüüÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþüüüÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿœœœþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ€€€þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿeeeÿÿÿþþþÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿuuuwwwèèèÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿûûûÿÿÿýýýþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿùùù­­­ÿÿÿýýýýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííçççÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÞÞÞçççÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿúúúrrréééþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþšššóóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýúúúÿÿÿÿÿÿýýýÿÿÿªªª©©©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿûûûÿÿÿÒÒÒ"""†††øøøÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ€€€þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýaaaÿÿÿþþþÿÿÿüüüþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿªªªªªªþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííçççÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþØØØáááþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûýýýÿÿÿ555èèèÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþýýýÿÿÿÿÿÿbbbóóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿþþþ­­­©©©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿøøøaaa&&&»»»ÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ«««þþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿqqq>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýfffÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüžžžfffýýýÿÿÿþþþÙÙÙccc777ûûûÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿŒŒŒ«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííéééýýýþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿåååëëëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿMMMéééÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýüüüÿÿÿ```õõõÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬¬¬ÄÄÄÿÿÿÿÿÿýýýÿÿÿþþþýýýÿÿÿÿÿÿþþþþþþÿÿÿ¶¶¶|||êêêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòòòÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ,,,ÕÕÕÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿlll@@@ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒƒƒýýýÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùùùÿÿÿÿÿÿþþþþþþýýýÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿ›››eeeÿÿÿúúúlllgggÐÐÐÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿúúúƒƒƒ«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÔÔÔãããÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿéééîîîÿÿÿþþþüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüqqqèèèÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûÿÿÿÿÿÿþþþ¸¸¸ñññÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬¬¬ªªªüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÐÐÐ000AAA¼¼¼ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿŒŒŒþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ---ÓÓÓÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿþþþÿÿÿnnn===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿ   bbbþþþ÷÷÷‘‘‘ìììüüüÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿ«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿééééééÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÞÞÞæææþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿþþþÿÿÿýýýiiiêêêþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿ———ôôôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬¬¬©©©ÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿööö'''   ÿÿÿÿÿÿüüüýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ“““ÿÿÿúúúþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüü,,,ÕÕÕýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþýýýuuu<<<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþúúúþþþÿÿÿÿÿÿþþþþþþÿÿÿúúú```ÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþüüüÿÿÿÿÿÿÿÿÿ©©©«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿñññèèèýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþØØØàààüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿkkkëëëþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿýýýbbbôôôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬¬¬ªªªþþþÿÿÿûûûÿÿÿÿÿÿÿÿÿÓÓÓ555dddëëëÿÿÿþþþüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÉÉÉüüüÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ...ÖÖÖÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿjjj???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿ‚‚‚ÿÿÿüüüþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþùùùººº###bbbÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿúúúÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþ‚‚‚«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿéééçççÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿäääíííÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿþþþÿÿÿüüürrrìììÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿýýýþþþgggðððÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬¬¬ÅÅÅþþþÿÿÿÿÿÿþþþ÷÷÷aaa ···ÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ***ÑÑÑÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿRRR>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|||ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿûûûÿÿÿÿÿÿûûûÿÿÿggg'''...cccýýýþþþÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿ­­­«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿïïïêêêÿÿÿýýýýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÐÐÐÚÚÚüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿ‚‚‚êêêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿaaaóóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬¬¬äääþþþÿÿÿÿÿÿ´´´ìììÿÿÿýýýÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿŽŽŽÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ///×××ÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿUUU<<<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüühhhÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþÿÿÿýýýÿÿÿýýýùùùþþþÿÿÿÏÏÏÿÿÿŸŸŸdddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿýýýýýý‹‹‹«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿëëëæææÿÿÿÿÿÿþþþüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþ×××âââÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿlllëëëþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþ___õõõÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬¬¬ÿÿÿÿÿÿÐÐÐccc---ÎÎÎÿÿÿýýýüüüÿÿÿÿÿÿÿÿÿþþþûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿôôôúúúÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ777àààÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ€€€þþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýœœœ222ÿÿÿÿÿÿÿÿÿþþþbbbÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿ‘‘‘«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîîîæææþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÐÐÐÜÜÜþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþnnnéééÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýþþþÿÿÿcccòòòÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬¬¬÷÷÷}}} ƒƒƒèèèÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÊÊÊÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ,,,ÕÕÕÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÙÙÙccc---ºººÿÿÿþþþþþþÿÿÿœœœbbbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþüüü©©©«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿìììèèèÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÐÐÐÜÜÜÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿlllæææÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿ```óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÁÁÁ222lllæææþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ›››ÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿnnnÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþýýýþþþüüüÿÿÿþþþÿÿÿÿÿÿ———¤¤¤ÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿppp```ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿ«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðððåååÿÿÿþþþûûûÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÎÎÎÙÙÙÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿ¦¦¦êêêüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿaaaõõõÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýûûûÿÿÿþþþÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿüüüûûû|||›››þþþÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúŒŒŒüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþþþþiiiÿÿÿüüüÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿ÷÷÷µµµÓÓÓÿÿÿÿÿÿþþþýýýÿÿÿüüüÿÿÿÿÿÿýýý”””fffþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþ~~~«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÊÊÊæææýýýÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÓÓÓÞÞÞÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿiiièèèÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿbbbðððÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿüüüþþþÜÜÜKKKiii€€€ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿþþþûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿzzzÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿþþþµµµ555000µµµþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿ}}}cccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿ„„„«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××ëëëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚÚÚäääÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüoooèèèýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿþþþ£££ôôôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿðð𙙙EEE¡¡¡ÿÿÿ­­­üüüÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþñññûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ„„„ýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿþþþÿÿÿýýýiiiÖÖÖÿÿÿÿÿÿüüüþþþÿÿÿýýýûûûÿÿÿÿÿÿÿÿÿþþþttteeeýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþÿÿÿÿÿÿ‚‚‚«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ³³³çççÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××àààÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýüüüþþþÿÿÿÿÿÿhhhêêêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿûûûÿÿÿýýýuuuóóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýþþþÛÛÛrrr222   þþþÿÿÿúúú­­­ÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿðððÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûúúúõõõþþþÿÿÿýýýÿÿÿÿÿÿúúúÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿüüüÿÿÿsssdddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý•••«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîîîçççÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÙÙÙâââýýýþþþýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüümmméééÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿûûûÿÿÿÿÿÿÿÿÿeeeòòòÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿ$$$‰‰‰ýýýýýýÿÿÿÿÿÿÿÿÿ¬¬¬üüüþþþÿÿÿüüüþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÔÔÔÿÿÿüüüÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ~~~ÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüÐÐÐKKK£££ÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüüüüÿÿÿùùùÿÿÿÿÿÿþþþÿÿÿoooeeeþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿ¥¥¥«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆÆÆçççüüüÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàààèèèÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýnnnéééýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýþþþÿÿÿ†††óóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿ×××[[[RRRäääþþþþþþÿÿÿþþþÿÿÿÿÿÿªªªÿÿÿûûûþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ×××ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýyyyþþþýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿ³³³ŸŸŸûûûþþþÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿýýýÿÿÿvvv```ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿüüü«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ˜˜˜çççÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÚÚÚãããýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿõõõhhhèèèÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþvvvóóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ÷÷÷~~~)))   ûûûÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿ­­­þþþÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ×××ýýýÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿnnn@@@ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþHHHþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿõõõ­­­ëëëðððêêêÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿssseeeÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿ………«««ÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒÒÒåååþþþÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿØØØàààÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþíííeeeçççÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýdddòòòÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþüüüÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿ¯¯¯999SSSáááÿÿÿþþþÿÿÿýýýÿÿÿþþþþþþÿÿÿþþþÔÔÔþþþÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××ýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ>>>éééÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿýýýnnn===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþ<<<ÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÌÌÌOOOOOOÁÁÁÿÿÿÿÿÿûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿýýý²²²___ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿýýýýýýýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿ¬¬¬¬¬¬üüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¤¤¤èèèÿÿÿýýýÿÿÿüüüýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýèèèíííÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýkkkéééÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþýýýýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿýýýþþþÿÿÿùùùÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþýýýÿÿÿeeeñññýýýÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿîîî^^^<<<ÏÏÏÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýýýý»»»ýýýüüüÿÿÿÿÿÿûûûÿÿÿüüüýýýþþþÿÿÿÿÿÿûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕÕÕþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþRRRøøøÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿrrr@@@ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿýýýWWWÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþüüüþþþÿÿÿººº„„„ùùùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÍÍÍeeeÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿ¹¹¹«««ÿÿÿÿÿÿÿÿÿûûûÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿþþþþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚÚÚòòòÿÿÿþþþüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòòòõõõÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿûûûÿÿÿ{{{èèèÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿþþþÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýÿÿÿûûûÿÿÿÿÿÿÿÿÿþþþaaaõõõÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿùùùÒÒÒ###„„„ûûûþþþþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿ«««ÿÿÿýýýÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþÿÿÿÓÓÓÿÿÿþþþþþþÿÿÿÿÿÿþþþþþþþþþþþþþþþþþþþþþþþþÿÿÿ222ÛÛÛýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøøøÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿùùù×××ÞÞÞþþþÿÿÿÿÿÿÿÿÿnnn<<<þþþþþþþþþþþþþþþþþþþþþþþþÿÿÿÿÿÿÿÿÿrrrýýýýýýÿÿÿþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþÿÿÿÿÿÿýýýöööþþþõõõîîîüüüÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþþþþþþþþþþþþþþþþþþþþþþüüüþþþþþþýýýÿÿÿ®®®dddýýýþþþþþþþþþþþþþþþþþþþþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿ···¬¬¬üüüýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîîîüüüÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÞÞÞäääþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿööö   èèèýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþbbbðððÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýüüüÿÿÿþþþüüüÿÿÿÿÿÿûûûþþþÿÿÿýýýÿÿÿøøøAAAÊÊÊÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýþþþºººýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþþþþÿÿÿÿÿÿüüüÿÿÿûûûþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÓÓÓÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþDDDçççÿÿÿÿÿÿüüüÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿèèèccc((( vvvýýýÿÿÿÿÿÿooo???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿüüüYYYÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþöööbbb222æææýýýþþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüééédddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿÖÖÖªªªÿÿÿÿÿÿýýýûûûþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ±±±ðððÿÿÿýýýþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿêêêîîîÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿ–––íííÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúüüüÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿýýýþþþÿÿÿýýý~~~õõõþþþÿÿÿþþþýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúúúúÃÃÃ777………ùùùÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿýýýþþþÿÿÿÿÿÿüüüØØØÿÿÿûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÕÕÕýýýþþþÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ;;;íííÿÿÿüüüýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿoooŸŸŸÿÿÿÍÍÍ000ñññþþþÿÿÿkkk@@@þþþþþþþþþþþþþþþþþþþþþþþþÿÿÿÿÿÿÿÿÿ"""ýýýÿÿÿÿÿÿÿÿÿþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþÚÚÚ;;;ƒƒƒìììÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿþþþþþþþþþþþþþþþþþþþþþþþþÿÿÿÿÿÿýýýþþþÿÿÿÅÅÅbbbÿÿÿþþþþþþþþþþþþþþþþþþþþþþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüùùùÿÿÿ¸¸¸¬¬¬üüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿyyyèèèÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþÿÿÿýýýýýýÿÿÿþþþÿÿÿþþþüüüÿÿÿþþþÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿ]]]ôôôÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿüüüýýýêêê]]]aaaßßßþþþÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûÿÿÿªªªÑÑÑÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿéééÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWWWÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþ===àààÿÿÿüüü†††íí펎Ž---(((((((((((((((((((((((((((%%%&&&***%%%)))%%%(((((((((((((((((((((((((((((((((((((((((((((((()))$$$)))"""&&&))))))'''%%%''')))&&&&&&(((((((((((((((((((((((((((&&&'''***&&&''''''((((((((((((((((((((((((+++$$$((($$$((()))'''***+++!!!((((((%%%(((&&&((('''''''''''''''''''''''''''''''''''''''''''''''''''###((($$$***(((''''''+++!!!&&&***%%%%%%)))''''''''''''''''''''''''''''''''''''''''''''''''&&&'''%%%***%%%%%%***'''+++'''%%%''')))((('''(((''''''''''''''''''''''''&&&%%%)))%%%&&&)))$$$)))''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''***$$$%%%$$$%%%***((((((''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''&&&***(((((($$$(((&&&''''''''''''''''''''''''''''''''''''''''''''''''((($$$%%%***"""***'''&&&'''''''''&&&'''%%%''''''(((((('''&&&)))&&&((((((%%%''')))'''%%%"""$$$&&&%%%'''&&&)))&&&'''((('''''''''''''''''''''''''''(((&&&'''(((&&&''''''***(((###%%%&&&((($$$'''((()))%%%(((((($$$)))&&&'''***$$$,,,(((%%%%%%''''''&&&((('''&&&)))&&&&&&$$$(((((('''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''&&&)))###)))&&&$$$''')))''''''''''''''''''''''''&&&111ÿÿÿýýýÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿþþþRRRÊÊÊþþþÿÿÿbbbîîîßßßÝÝÝ???"""………………………………………………………………†††„„„‡‡‡„„„‚‚‚ˆˆˆƒƒƒ†††………………………………………………………………………………………………………………………………………†††‚‚‚†††††††††‡‡‡ƒƒƒƒƒƒ†††………………ƒƒƒ„„„‡‡‡„„„………………………………………………………………‡‡‡„„„ƒƒƒˆˆˆƒƒƒRRRŠŠŠƒƒƒ………………………………………………………………„„„]]]LLL444111222///AAAXXX333000333///333000111111111111111111111111111111111111111111111111111111111222000222111000111222222111000222111000111111111111111111111111111111111111111111111111222UUUUUU000###AAASSSUUUSSSJJJ???FFFTTTSSSDDDRRRUUU 777$$$VVVSSS&&&UUU:::---VVV777VVVSSSUUURRRUUUUUUVVVTTTSSS;;;<<<555SSSVVVVVVSSSTTTUUUTTTSSSVVVSSS888UUUSSSUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUTTTTTTVVVSSSTTTTTTTTTSSSUUUUUUUUUUUUUUUUUUUUUUUUTTT333õõõÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿüüüÿÿÿýýý¯¯¯<<<”””fff???÷÷÷ÿÿÿþþþqqq===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþÎÎÎÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿüüüÿÿÿüüüÿÿÿÿÿÿ¦¦¦ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿêêêýýýÞÞÞçççÜÜÜÝÝÝÜÜÜèèèäääßßßÛÛÛÜÜÜÝÝÝÜÜÜÛÛÛÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜܺººÔÔÔÜÜÜÞÞÞÝÝÝÝÝÝÚÚÚÝÝÝÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÝÝÝÔÔÔÇÇdz³³ÝÝÝÞÞÞÚÚÚÜÜÜÜÜܑ‘‘ÖÖÖÜÜÜÛÛÛÁÁÁÄÄļ¼¼©©©‰‰‰°°°ÞÞÞ¥¥¥¼¼¼ŠŠŠˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ‰‰‰ˆˆˆ‡‡‡‹‹‹ˆˆˆ­­­šššˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ‡‡‡‰‰‰‹‹‹ƒƒƒ€€€iii†††‰‰‰ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ††††††€€€vvv†††‰‰‰ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ‰‰‰‡‡‡‹‹‹mmm†††ˆˆˆ‡‡‡‰‰‰†††ˆˆˆqqqLLLUUU444ggg‡‡‡‰‰‰nnn111PPP‹‹‹………LLL666555ˆˆˆ………rrrˆˆˆ‡‡‡‡‡‡ŠŠŠDDD555XXXzzz)))xxx‹‹‹@@@444MMMbbb‡‡‡[[[222444555222444444MMM333111777222111555222111$$$555333222222222444555111pppƒƒƒ444111666222333444333333333333333333333333444CCC???222333555222222333333333333333333333333333333333333333333333333333333444333444333222333333333333333333333333222ÞÞÞÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿüüüÿÿÿööö³³³oooiiiÌÌÌüüüÿÿÿÿÿÿrrr<<<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþîîîÿÿÿøøøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþýýýþþþÿÿÿÿÿÿüüüýýýÿÿÿûûûˆˆˆÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýüüüÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿýýýþþþþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿûûûþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿðððÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÎÎÎúúúýýýýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûüüüüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýþþþûûûÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿûûûÿÿÿþþþýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýûûûÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþæææccc£££÷÷÷ýýýÿÿÿÿÿÿýýýÿÿÿþþþûûûÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿýýýÿÿÿýýýÿÿÿþþþÿÿÿþþþýýýÿÿÿÿÿÿáááýýýþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿýýýþþþýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÞÞÞÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿXXXþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿüüüüüüÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþmmmAAAÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýøøøÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿúúúÿÿÿþþþÿÿÿÿÿÿýýýüüüýýýÿÿÿÿÿÿÿÿÿ™™™þþþÿÿÿÿÿÿýýýüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿúúú¬¬¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶õõõÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýèèèíííÿÿÿýýýýýýýýýÿÿÿüüüÿÿÿÿÿÿûûûþþþþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿµµµÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿþþþþþþÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿþþþÿÿÿýýýûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûýýýÿÿÿããã}}}777ÔÔÔüüüÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿ½½½ÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿ÷÷÷ÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿQQQÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿþþþÆÆÆóóóÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿþþþÿÿÿûûûýýýÿÿÿþþþnnn???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÄÄÄýýýûûûþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿýýýÿÿÿýýýþþþþþþÿÿÿüüüÿÿÿþþþÿÿÿýýýýýýÿÿÿüüüÿÿÿÿÿÿþþþþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿüüüÿÿÿüüü©©©½½½€€€"""ÔÔÔþþþÿÿÿýýýþþþþþþÿÿÿÿÿÿ„„„ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿçççëëëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿþþþÿÿÿþþþÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýóóóþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿùùùÿÿÿÿÿÿùùùÿÿÿÿÿÿûûûÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿÉÉÉ///hhhìììÿÿÿüüüÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿþþþþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿûûûþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿúúúýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿ÷÷÷ýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý[[[þþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ®®®ÕÕÕ===———ÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿrrr<<<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÇÇÇþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýþþþüüüÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿüüüþþþÿÿÿÿÿÿûûûÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿþþþþþþÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýÿÿÿûûûÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿ)))XXXíííËËË–––üüüÿÿÿÿÿÿÿÿÿÿÿÿüüüüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¤¤¤æææÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿæææïïïÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿùùùÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüüüü¹¹¹þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿýýýÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿüüüíííÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿÛÛÛ___VVVÑÑÑþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþüüüÿÿÿþþþÿÿÿÿÿÿúúúÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÕÕÕÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýSSSÿÿÿÿÿÿûûûÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþ@@@™™™„„„BBBþþþÿÿÿþþþüüüÿÿÿÿÿÿýýýÿÿÿþþþþþþÿÿÿûûûÿÿÿþþþkkk@@@ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿáááÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüþþþÿÿÿÿÿÿýýýýýýÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÄÄÄoooÿÿÿÙÙÙ>>>ŸŸŸÿÿÿþþþþþþþþþûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿýýýþþþþþþÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿžžžñññÿÿÿùùùÿÿÿýýýûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýçççìììÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿûûûÿÿÿýýýÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©©©ÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþüüüÿÿÿþþþÿÿÿýýý®®®üüüþþþÿÿÿýýýüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿ©©©===¢¢¢üüüþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿþþþÿÿÿþþþüüüÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÓÓÓÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿUUUÿÿÿýýýüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿQQQaaaŠŠŠSSSÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿqqq<<<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþêêêýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÁÁÁûûûÿÿÿÕÕÕþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûþþþÿÿÿÿÿÿÿÿÿÿÿÿÝÝÝ111ÞÞÞ¨¨¨+++GGGõõõþþþÿÿÿÔÔÔ>>>oooôôôÿÿÿÿÿÿýýýûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÂÂÂüüüÿÿÿ¦¦¦FFFLLLçççþþþªªªWWWúúúÀÀÀBBB```ýýýÿÿÿüüüÿÿÿÿÿÿþþþýýýŠŠŠÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÙÙÙøøøýýýÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿïïïñññÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿ¬¬¬þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿ©©©ÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüççç|||===ÚÚÚýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿþþþþþþþþþþþþþþþþþþÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿýýý³³³åååúúúÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿâââÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûUUUýýýÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿõõõ³³³ûûû÷÷÷òòòÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþooo???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûÀÀÀÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ óóóooofffÿÿÿúúúÿÿÿÒÒÒ¾¾¾¿¿¿ÿÿÿÿÿÿþþþÿÿÿþþþ¬¬¬"""ÃÃí­­¼¼¼êêêMMM|||ÿÿÿþþþ???———ááá222¨¨¨ÿÿÿýýýÜÜÜäääýýýÙÙÙûûûþþþÿÿÿCCC¢¢¢‹‹‹,,,•••}}}BBBÿÿÿÜÜܹ¹¹ÿÿÿ”””|||ØØØþþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿœœœÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿþþþýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÓÓÓðððþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿäääîîîÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿ¨¨¨ÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬¬¬ÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿ¯¯¯)))………ûûûÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿþþþÿÿÿ«««ýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÖÖþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿYYYþþþÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿäääÔÔÔúúú³³³\\\ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ[[[+++KKKùùùþþþÿÿÿÿÿÿnnnçççÿÿÿ¦¦¦...ëëë===¾¾¾ÿÿÿþþþsss°°°ýýýÿÿÿccc‚‚‚¹¹¹@@@„„„ÿÿÿÿÿÿäää,,,EEEõõõÿÿÿüüüòòò^^^œœœcccæææþþþÿÿÿTTTûûûÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿûûû………ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîîîåååÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþëëëëëëÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûÿÿÿÂÂÂÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿüüü¬¬¬þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿ———---‹‹‹ìììÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþÿÿÿ­­­þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÑÑÑÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWWWÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþõõõ<<< hhhÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿ¸¸¸ýýýûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýLLLîîîþþþêêêÿÿÿÿÿÿhhhEEEDDDFFFKKKæææðððvvvûûûÿÿÿÿÿÿ²²²BBBÿÿÿÿÿÿöööDDD ƒƒƒÿÿÿþþþÿÿÿWWWÆÆÆÿÿÿÿÿÿÿÿÿûûûeeeœœœbbb¨¨¨ÿÿÿÿÿÿEEEúúúþþþÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ€€€ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííçççÿÿÿýýýÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþåååìììþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÊÊÊÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýþþþþþþÿÿÿ®®®ÿÿÿþþþÿÿÿÿÿÿüüüüüüÿÿÿÿÿÿÎÎÎ***eeeÚÚÚýýýÿÿÿüüüýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕÕÕÿÿÿüüüýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿTTTÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûôôô———ÛÛÛñññðððÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿžžžÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¼¼¼ÔÔÔÿÿÿœœœ + + +©©©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýñññòòòÌÌÌDDD²²²îî‰vvvTTT···ÉÉɇ‡‡{{{µµµ¸¸¸ÿÿÿÿÿÿŸŸŸ999???ÙÙÙÿÿÿüüüÿÿÿeee™™™•••"""´´´eeeüüüÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüþþþþþþýýýÿÿÿþþþýýýÿÿÿ~~~ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîîîèèèüüüÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüëëëîîîÿÿÿþþþûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþßßߢ¢¢ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýý¥¥¥ÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿ{{{"""ÖÖÖÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿ¬¬¬þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿããã±±±······¶¶¶ÕÕÕÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿ|||ÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿˆˆˆÆÆÆÿÿÿþþþÿÿÿýýýÿÿÿþþþýýýýýýÿÿÿÿÿÿÿÿÿùùùÿÿÿÿÿÿ§§§UUUœœœèèèÏÏÏÎÎÎìììvvvHHH†††ÿÿÿýýýÿÿÿŽŽŽÕÕÕüüüyyy±±±þþþÿÿÿÿÿÿ­­­ÖÖÖÿÿÿ‰‰‰000ÕÕÕÿÿÿþþþþþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿ‚‚‚ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿšššêêêÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿàààðððÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþìì좢¢ûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ°°°þþþÿÿÿÿÿÿÿÿÿþþþ³³³ jjjôôôÿÿÿÿÿÿþþþþþþúúúÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬¬¬þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿæææûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ;;;åååýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷÷÷„„„MMMIIILLLIIIeeeÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûþþþ©©©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿùùùüüüþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüþþþÿÿÿýýýÿÿÿÿÿÿýýýþþþÿÿÿþþþÿÿÿÿÿÿûûûÿÿÿýýýøøøúúúÿÿÿþþþÿÿÿþþþÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿüüü~~~ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÏÏÏèèèúúúÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿëëëëëëÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿááឞžÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿúúúÿÿÿ«««þþþÿÿÿýýýêêêbbb444ÙÙÙÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþûûûüüü­­­þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþ˜˜˜ÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýVVVÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÞÞÞ³³³½½½þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿ~~~ÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿüüüÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿûûûýýýÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿþþþÿÿÿúúúÿÿÿÿÿÿÿÿÿøøøÿÿÿªªªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíííçççÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüçççíííÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþôôô¦¦¦þþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿüüü«««ÿÿÿÿÿÿššš:::¤¤¤ûûûÿÿÿýýýüüüÿÿÿÿÿÿþþþÿÿÿþþþþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÁÁÁþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿèèèúúúÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿSSSÿÿÿÿÿÿýýýþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÔÔÔ NNN•••ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿ‚‚‚ýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿþþþþþþÿÿÿúúúÿÿÿÿÿÿþþþÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿýýýúúúÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþûûûÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿþþþ€€€ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÖÖäääÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÊÊÊòòòþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøøøÿÿÿÿÿÿôôô¤¤¤ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüü¬¬¬´´´%%%fffßßßÿÿÿúúúÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþûûûýýý¯¯¯þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûWWWÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüIII¶¶¶ÿÿÿÅÅÅÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýéé陙™ÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿýýýþþþÿÿÿýýýþþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿýýýþþþþþþÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿ~~~ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÐÐÐéééýýýÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþééééééÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿááឞžþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿGGG666¾¾¾ÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿ¬¬¬þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüJJJÕÕÕÿÿÿÆÆÆ<<<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿooo===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿ‘‘‘bbbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿšššçççÿÿÿþþþýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÌÌÌíííÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿààà¡¡¡þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿêêêCCC000úúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿ«««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðððýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿJJJñññþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÓÓÓ444¼¼¼ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿùùùÿÿÿÿÿÿUUU@@@ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ›››þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿýýýÈÈÈeeeÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿüüüÿÿÿÑÑÑÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ˜˜˜éééýýýüüüÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýý‡‡‡éééÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿááឞžþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿëëëuuu999ÙÙÙrrrÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿªªªþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÙÙÙÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWWWÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷÷÷………YYYËËËþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿþþþüüüooo===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿ­­­ýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿüüüÿÿÿaaaþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿ‚‚‚ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿìììçççÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ•••ðððþþþüüüýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüúúú¨¨¨þþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýûûû˜˜˜ ˆˆˆùùùÿÿÿ¬¬¬ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿþþþýýý®®®þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÏÏÏÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþUUUÿÿÿþþþþþþüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûû¦¦¦555(((êêêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþýýýÿÿÿqqq>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþ¬¬¬ÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýþþþþþþ«««gggÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿ€€€ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ›››äääÿÿÿþþþüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÅÅÅíííþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÞÞÞ¡¡¡ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÍÍÍFFF<<<ÙÙÙýýýÿÿÿþþþªªªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþúúúÿÿÿÆÆÆþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÕÕÕÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWWWÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþ‹‹‹ZZZÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿúúúÿÿÿÿÿÿgggBBBÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿaaaþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿþþþœœœÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÜÜÜ÷÷÷üüüÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÕÕÕêêêþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿââ➞žýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿùùù|||"""¡¡¡ûûûÿÿÿþþþÿÿÿÿÿÿ­­­ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿýýý©©©þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÖÖÖýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿTTTùùùÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ×××yyy000SSS×××ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿÿÿÿüüüttt???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ¨¨¨þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûýýýssscccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ~~~ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ———æææÿÿÿÿÿÿýýýþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿâââïïïÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüôôôßßßÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþ²²²'''lllÚÚÚýýýÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿ°°°þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÔÔÔÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ;;;åååþþþýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòòò(((iiiðððÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþooo;;;ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿ’’’þþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿssseeeÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿþþþþþþ¢¢¢ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ–––ëëëüüüýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿñññóóóÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿââ⢢¢ýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûçççdddÔÔÔþþþÿÿÿÿÿÿþþþþþþÿÿÿþþþüüü¿¿¿ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿþþþýýý©©©þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕÕÕÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ888æææÿÿÿþþþþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿqqq===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýývvvÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþÿÿÿrrrcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ©©©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿšššæææÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿáá᜜œÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿööö›››<<<ŒŒŒùùùÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿWWWÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿ¬¬¬þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÔÔÔþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWWWÿÿÿýýýÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýõõõ¨¨¨ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýqqq>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿpppdddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿ”””ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¡¡¡ðððþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÊÊÊìììÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿííí   ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÉÉÉ333KKKßßßÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿþþþÿÿÿûûûÿÿÿqqqÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ¬¬¬þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ×××ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿìììÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿppp===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùùùþþþÿÿÿÿÿÿüüü———cccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþþþþþþþþþþøøøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬¬¬ûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿëëëòòòþþþüüüþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÐÐÐÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþþþþþþþÿÿÿóóóqqq&&&œœœÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþTTTÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÖÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþêêêÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿlll@@@ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿ¤¤¤bbbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿŒŒŒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬¬¬ÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüøøøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÝÝÝýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÆÆÆHHHjjjÞÞÞÿÿÿÿÿÿüüüüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ²²²üüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýüüü¬¬¬þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÔÔÔÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüëëëýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿeee@@@ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿûûûÿÿÿtttcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿþþþüüü~~~ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«««þþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýéééðððýýýýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþýýýÿÿÿÿÿÿÉÉÉÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþýýýÿÿÿÃÃÃQQQ???"""œœœøøøþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿûûûÿÿÿþþþþþþjjjÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿ¬¬¬þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÓÓÓÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðððcccÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþýýýbbb===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýùùùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ›››___ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿ€€€ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ®®®ÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿãããîîîÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÝÝÝýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿ   qqq¹¹¹???ýýýÿÿÿÿÿÿÿÿÿûûûýýýÿÿÿûûûÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿüüü[[[ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿªªªþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÔÔÔþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿýýýþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿjjj===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿ···fffþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¥¥¥üüüÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿéééëëëÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿñññ¨¨¨ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿððð½½½¸¸¸ìììYYYÙÙÙÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿ­­­ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿûûûÿÿÿþþþ………þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚÚÚýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿqqq???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûþþþýýýúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÉÉÉbbbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþüüüÿÿÿýýýÿÿÿƒƒƒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«««ûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýëëëìììÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýþþþÿÿÿâââÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüøøø»»»$$$‚‚‚–––,,,€€€///öööüüüÿÿÿþþþýýýþþþÿÿÿüüüÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿýýýÿÿÿþþþÙÙÙÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿ©©©þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿâââþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿüüüppp===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþËËËcccþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿ~~~ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆÆÆÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýåååðððýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿàààœœœÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüãããfff%%%žžžÿÿÿÿÿÿÈÈÈrrrãããÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÓÓÓýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþýýýÿÿÿ­­­þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿèèèÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþrrr===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÈÈÈaaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿ~~~ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿªªªÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçççíííÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿßßß¡¡¡ÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿýýýòòò···...   ÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿýýýþþþÎÎÎþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿýýýÿÿÿÿÿÿþþþ………þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷÷÷ÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿýýýnnn===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿùùùÌÌÌdddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿêêêÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçççíííÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿçç睝þþþÿÿÿýýýÿÿÿûûûÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿþþþüüü½½½777cccòòòÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿþþþYYYüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿbbbþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÛÛÛÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿHHH@@@ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿ¯¯¯fffýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿüüü€€€ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÄÄÄòòòÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçççíííÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿêêêÊÊÊÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýâââIIIDDD½½½ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþŠŠŠÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿ‡‡‡þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþýýý<<<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿooo```ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿüüü«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿõõõñññýýýÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçççíííÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿâââ´´´þþþþþþÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿüüüþþþÿÿÿþþþ¨¨¨¡¡¡ÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿâââþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿþþþýýýXXXþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ,,,>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿþþþ¸¸¸eeeüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçççíííÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáá៟ŸÿÿÿþþþüüüÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿòòòDDDAAAáááÿÿÿÿÿÿþþþÿÿÿùùùÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿýýýÿÿÿºººÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿVVVþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿöööÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿiiiAAAÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÇÇÇfffþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿýýýÿÿÿ£££ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðððÿÿÿþþþþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçççíííÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿáá៟Ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûÿÿÿÿÿÿÿÿÿ~~~%%%………ñññÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýþþþþþþáááÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿXXXþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿßßßûûûþþþþþþÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþýýýttt;;;ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúþþþÿÿÿÿÿÿüüüÉÉÉbbbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¦¦¦÷÷÷ÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçççíííÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüáá៟Ÿúúúÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿýýýÿÿÿÿÿÿ™™™CCCMMMæææÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýýýýÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿºººÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÓÓÓÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿ\\\AAAÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿËËËcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿ“““ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿñññÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçççíííÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòòòíííÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþòòò^^^===¿¿¿ûûûÿÿÿýýýüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿ‹‹‹ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿVVVþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿêêêýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþþþþ///<<<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÈÈÈcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××ìììýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþöööüüüþþþÿÿÿýýýÿÿÿýýýÿÿÿðð𗗗+++ƒƒƒõõõüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿ„„„ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿYYYþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿéééÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿÿÿÿþþþ&&&???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÈÈÈcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿûûûÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÙÙÙïïïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿîîîøøøýýýÿÿÿÿÿÿýýýþþþÇÇÇ888JJJÈÈÈÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿcccýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûiiiþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîîîýýýÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿúúú;;;ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÈÈÈcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿØØØÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÑÑÑùùùþþþÿÿÿþþþþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿëëëëëëþþþüüüþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿùùùÿÿÿÿÿÿÿÿÿýýýñññ```///¡¡¡ÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWWWÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿ€€€þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÉÉÉûûûÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýüüüÿÿÿÿÿÿBBBÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÈÈÈcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿáááÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÉÉÉùùùýýýþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿËËËóóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿûûû™™™hhhïïïüüüþþþÿÿÿýýýÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿRRRÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿùùùWWWþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÃÃÃÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿUUUýýýþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿPPP>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý ýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÈÈÈcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒÒÒöööÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÆÆÆìììýýýÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿãããôôôÆÆÆCCC>>>¼¼¼ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿYYYþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿlllþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿéééÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿXXXÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüüüü<<<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿéééÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÈÈÈcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþéééÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÂÂÂáááÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿéééëëëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýîîî***œœœôôôÿÿÿÿÿÿýýýÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿŒŒŒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿÿÿÿüüüÿÿÿ^^^þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûñññüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿïïïKKKúúúÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿþþþ@@@ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿäääÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÈÈÈcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­ÏÏÏùùùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÉÉÉñññÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÜÜÜ]]]SSSêêêÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿýýý£££ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿZZZþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚÚÚÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWWWÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿ444???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿöööþþþýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÈÈÈcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÒÒÒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ†††ÍÍÍÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý¯¯¯îîîüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ´´´ |||±±±þþþýýýýýýÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿ{{{ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿ†††þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ¼¼¼üüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþmmm<<<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÍÍÍÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÊÊÊdddþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿõõõþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ´´´íííÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÊÊÊRRRåååááẺºÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþýýý‹‹‹ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþýýý¬¬¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿ­­­þþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿnnn>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿáááÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿjjjcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿåååÿÿÿÿÿÿúúúÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿûûûÿÿÿùùùøøøÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÍÍÍÙÙÙÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþÙÙÙmmm:::µµµíííüüüÿÿÿýýýšššÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©©©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿ©©©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿuuuÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿooo???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùùùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿIII```ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûþþþÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýý´´´ÿÿÿþþþýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¿¿¿åååþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿýýýÿÿÿ˜˜˜$$$ŸŸŸùùùÿÿÿûûûÿÿÿþþþÿÿÿ¥¥¥þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿ¬¬¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿýýýýýýÿÿÿ©©©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿ‰‰‰ÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿüüübbbeeeÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýÿÿÿþþþ   ëëëÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÉÉÉëëëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýþþþÿÿÿþþþÿÿÿÿÿÿþþþüüüÞÞÞHHHhhhÊÊÊÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþýýýªªªÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿûûû’’’ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþûûûÿÿÿÿÿÿýýý¬¬¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŽŽŽýýýÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿnnn===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿOOObbbýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷÷÷ÿÿÿÿÿÿûûûÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿ­­­ÿÿÿÿÿÿúúúÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚÚÚèèèÿÿÿûûûÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿýýýööö§§§!!!»»»ýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿZZZÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýý®®®ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþxxxÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿUUUþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþúúúfffÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýšššÖÖÖþþþÿÿÿþþþýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÎÎÎÙÙÙÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿýýý»»»JJJÛÛÛÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿþþþüüüÿÿÿýýýˆˆˆÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿ¥¥¥ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ¥¥¥þþþýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWWWÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿ}}}cccþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿþþþþþþÿÿÿœœœÛÛÛüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûÿÿÿüüüÛÛÛfff!!!¹¹¹ÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿþþþÿÿÿûûûþþþÿÿÿÉÉÉÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿ°°°þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿøøøÿÿÿ¨¨¨ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý‰‰‰ÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýUUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿ   aaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿ¡¡¡èèèÿÿÿüüüÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÑÑÑÚÚÚÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý÷÷÷ŠŠŠ„„„ýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýÅÅÅÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýý©©©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿWWWÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿæææüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿñññLLLûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿUUUþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿhhhbbbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿûûûÈÈÈÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿˆˆˆÍÍÍÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÐÐÐÙÙÙÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýþþþÿÿÿýýýýýýÿÿÿÛÛÛaaahhhìììýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýZZZüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿªªªþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþsssÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××(((ÿÿÿþþþþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþ©©©ÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþgggaaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿ¬¬¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ†††ÎÎÎÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ–––ÝÝÝÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþüüüÿÿÿúúúÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿúúú}}} + + +¸¸¸þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿ¦¦¦ÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿªªªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿúúúÿÿÿÿÿÿüüüªªªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøøøÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôôôIIIÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿ¨¨¨ÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿƒƒƒeeeÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿ§§§ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÐÐÐÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÚÚÚÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿûûû¶¶¶LLLíííÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýŽŽŽÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüýýýËËËûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿ¬¬¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿèèèÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòòòCCCýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþ¬¬¬ÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿ~~~eeeþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ†††ÎÎÎÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ØØØÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿüüüüüüÿÿÿÊÊÊ]]]GGGÒÒÒÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿœœœÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÆÆÆÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþýýý€€€ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýâââýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØØØ///üüüÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüü«««ýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþNNNcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿüüüüüüþþþ®®®ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŒŒŒËËËÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ~~~ÜÜÜÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿþþþüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿÕÕÕ333eeeêêêÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþTTTÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿŠŠŠÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþûûûÿÿÿÿÿÿ«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþæææýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîîîGGGÿÿÿþþþÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿäää«««ÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿCCCcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ   ÏÏÏþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ{{{ÚÚÚÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿþþþþþþÿÿÿ÷÷÷‰‰‰'''»»»þþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýýýýÿÿÿ”””ÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþþþþÿÿÿÿÿÿúúú­­­ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàààÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿççç===ýýýüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýãã㧧§ÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿþþþOOOcccþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿýýýûûûÿÿÿ¬¬¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¡¡¡ÑÑÑþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ€€€ØØØÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÚÚÚHHHwwwéééûûûÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüoooüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿýýýÿÿÿ­­­ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿªªªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆÆÆÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿõõõDDDÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ¬¬¬«««ÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿGGGcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿªªªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿˆˆˆÊÊÊÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿxxxÝÝÝÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüþþþüüü}}}###‚‚‚ÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿýýýÿÿÿýýýÿÿÿþþþýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿtttþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ‰‰‰ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿ¬¬¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ«««ÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþWWWüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûû´´´ªªªÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿýýýÿÿÿJJJ```ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÅÅÅþþþÿÿÿþþþþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÄÄÄÍÍÍÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿyyyÝÝÝþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÕÕÕ,,,KKKíííüüüÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ\\\ÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿªªªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿËËËÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿóóóEEEÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúýýýrrr<<<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷÷÷©©©þþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþGGGbbbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÇÇÇÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ   ÌÌÌÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý|||ÙÙÙýýýÿÿÿÿÿÿýýýÿÿÿúúúþþþÿÿÿþþþùùùÿÿÿÿÿÿþþþýýýÿÿÿ÷÷÷bbb+++¼¼¼ÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþ©©©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÄÄÄÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿæææ;;;ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿooo???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿèè謬¬ÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿþþþJJJgggüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿûûûÿÿÿÿÿÿýýý¬¬¬þþþüüüÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ………ÏÏÏÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþûûû€€€ÛÛÛÿÿÿþþþþþþÿÿÿþþþÿÿÿÿÿÿ¾¾¾RRR444qqqþþþÿÿÿøøø¶¶¶%%%‚‚‚ÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿ¦¦¦þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿþþþÿÿÿ}}}ûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿPPPÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüåååÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþTTTÿÿÿÿÿÿüüüüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿøøøppp>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿ§§§ÿÿÿÿÿÿýýýûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþKKKbbbþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýøøøÿÿÿÌÌÌüüüÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ„„„ÒÒÒýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿyyyØØØÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿãããDDDÔÔÔÈÈÈOOOÃÃö¶¶///LLLæææÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýþþþwwwÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿ„„„ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþþþþÿÿÿþþþÿÿÿ^^^ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÅÅÅÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿááá:::üüüÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿnnn???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿååå«««üüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿkkkeeeþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿþþþ¤¤¤ÃÃÃúúúÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿˆˆˆÏÏÏüüüÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿìììÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüü———’’’[[[¸¸¸ŸŸŸÿÿÿÿÿÿÿÿÿÿÿÿúúúþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿýýýüüü©©©þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþŽŽŽÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿþþþÿÿÿ¬¬¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþ­­­ÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØØØ&&&ÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿlllAAAÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿøøø¯¯¯ÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿºººbbbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý”””ÄÄÄÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÍÍÍÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿîîîüüüýýýþþþÿÿÿÿÿÿÿÿÿýýýñññPPPÞÞÞËËËjjjfffûûûÿÿÿýýýýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÛÛ۟ŸŸÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýþþþVVVþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿýýý­­­ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿsssþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿèèè@@@ýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþòòòüüüþþþýýýÿÿÿrrr<<<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿ¨¨¨þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýþþþýýýþþþ‚‚‚dddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþýýýýýýþþþ‘‘‘ÃÃÃþþþÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ†††ÎÎÎÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý¿¿¿ÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿþþþïïïDDDjjj¦¦¦üüüÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿþþþýýýÿÿÿþþþþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþ«««ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿ___ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÒÒÒûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùùùTTTüüüÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÑÑÑ'''˜˜˜ÿÿÿÿÿÿýýýnnn???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ­­­ÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþ]]]cccþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÇÇÇýýýÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÏÏÏýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿªªªþþþÿÿÿÿÿÿýýýÿÿÿýýýÒÒÒ!!!€€€ëëëÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþøøø©©©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿžžžÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿ¬¬¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ½½½ÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÞÞÞ+++ÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÄÄÄ@@@ŒŒŒÿÿÿþþþýýýooo???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿõõõÅÅÅÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýüüüÿÿÿþþþÿÿÿþþþÿÿÿþþþrrrdddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿüüüÿÿÿÿÿÿüüü“““ÅÅÅÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‰‰‰ÎÎÎþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿµµµÿÿÿÿÿÿþþþÿÿÿëëëbbb777¯¯¯þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿüüüóó󦦦þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿfffÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿ¹¹¹þþþÿÿÿÿÿÿýýýþþþþþþÿÿÿþþþýýýÿÿÿþþþýýýÿÿÿÿÿÿWWWþþþÿÿÿÿÿÿüüüþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÍÍ͆††îîîNNN333 555555555555555555555555555555""""""444222444333555555555555555555555555555555555555555555555555555555555555555555555555999111777HHH‰‰‰†††;;;KKKˆˆˆ†††QQQ777333kkknnniii666‡‡‡‡‡‡‡‡‡ŠŠŠ999333ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ‡‡‡ŠŠŠˆˆˆ¢¢¢ÀÀÀŠŠŠÌÌÌÍÍ͇‡‡˜˜˜¥¥¥¿¿¿ÜÜÜÛÛÛÃÃÃÜÜÜÜÜÜØØØÜÜܧ§§ÙÙÙßßß¾¾¾¨¨¨ÀÀÀÛÛÛ£££ÝÝÝÞÞÞÛÛÛÝÝÝÝÝÝßßßÚÚÚÞÞÞÚÚÚÛÛÛÞÞÞbbb¨¨¨ÚÚÚàààÛÛÛÜÜÜßßßÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ܎ŽŽ´´´ÙÙÙàààßßßÛÛÛÛÛÛÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÚÚÚÞÞÞÞÞÞÚÚÚÞÞÞÞÞÞÜÜÜÛÛÛÛÛÛßßßÁÁÁÚÚÚÜÜÜÛÛÛ¬¬¬"""EEEÃÃÃØØØáááÚÚÚÝÝÝÜÜÜÛÛÛÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÝÝÝÜÜÜÝÝÝØØØÜÜÜÞÞÞÛÛÛÝÝÝÜÜÜÛÛÛÛÛÛÞÞÞÜÜÜÜÜÜàààÜÜÜÜÜÜÝÝÝÜÜÜÞÞÞÝÝݓ““ÛÛÛÜÜÜÛÛÛÛÛÛÛÛÛÜÜÜÛÛÛÜÜÜÜÜÜÝÝÝÚÚÚáááÛÛÛÛÛÛÝÝÝßßßÙÙÙÞÞÞÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÙÙÙàààÚÚÚÜÜÜÚÚÚßßßàààÛÛÛÛÛÛÛÛÛáááÛÛÛÚÚÚßßßÞÞÞÚÚÚÚÚÚÝÝÝÛÛÛÞÞÞÛÛÛÛÛÛÊÊÊÚÚÚÝÝÝ×××ÞÞÞÞÞÞÛÛÛÚÚÚØØØàààÛÛÛÞÞÞÛÛÛ×××áááÜÜÜ×××ÛÛÛÝÝÝÛÛÛÜÜÜÝÝÝÛÛÛÛÛÛÜÜÜÚÚÚÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÚÚÚÝÝÝÛÛÛØØØÝÝÝÝÝÝeeeÛÛÛÛÛÛÜÜÜÞÞÞÝÝÝÛÛÛÛÛÛÜÜÜÛÛÛÛÛÛÛÛÛÜÜÜÝÝÝÝÝÝÜÜÜÛÛÛÞÞÞÚÚÚÛÛÛÜÜÜÙÙÙÜÜÜÝÝÝÛÛÛßßßÚÚÚÜÜÜÙÙÙÜÜÜáááÛÛÛÞÞÞßßßÙÙÙÜÜÜÛÛÛÞÞÞÛÛÛÛÛÛÜÜÜÞÞÞÚÚÚÝÝÝàààÜÜÜÚÚÚÝÝÝÜÜÜÞÞÞÜÜܽ½½ÜÜÜÛÛÛÛÛÛÞÞÞßßßÛÛÛÛÛÛÚÚÚàààÛÛÛÞÞÞÙÙÙÛÛÛÚÚÚRRRýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÁÁÁŒŒŒýýýäääÎÎÎXXX***ÿÿÿÿÿÿþþþúúúþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŸŸŸPPPÿÿÿÿÿÿûûûttt000ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÐÐÐÏÏÏÒÒÒDDDÐÐÐÏÏÏÐÐÐÏÏÏÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÐÐÐÓÓÓÒÒÒÐÐÐÎÎÎÐÐÐÓÓÓÏÏÏÑÑÑÑÑÑÐÐÐÎÎÎÓÓÓÐÐÐÏÏÏÎÎÎÏÏÏÑÑÑÏÏÏÓÓÓÐÐÐZZZPPPÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÑÑÑÌÌÌÑÑÑÐÐÐÔÔÔÐÐÐÎÎÎÎÎÎÒÒÒÍÍÍÎÎÎÑÑÑÑÑÑÐÐÐÑÑÑÑÑÑÏÏÏÓÓÓÑÑÑÏÏÏÏÏÏÐÐÐÎÎÎÏÏÏÒÒÒÔÔÔÒÒÒÐÐÐÎÎÎÐÐÐÐÐÐÏÏÏÒÒÒÐÐÐÏÏÏÒÒÒÎÎÎÎÎÎÐÐПŸŸŸŸŸÑÑÑÕÕÕÍÍÍÏÏÏÒÒÒÑÑÑÑÑÑÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐЖ––¬¬¬ÍÍÍÐÐÐÐÐÐÒÒÒÏÏÏÍÍÍÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÏÏÏÐÐÐÑÑÑÏÏÏÒÒÒÍÍÍÔÔÔÎÎÎÑÑÑÎÎÎccc 444©©©ÏÏÏÓÓÓÒÒÒÎÎÎÍÍÍÒÒÒÒÒÒÕÕÕÏÏÏÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÔÔÔÌÌÌÒÒÒËËËÏÏÏÒÒÒÒÒÒÍÍÍÌÌ̎ŽŽÁÁÁÑÑѶ¶¶ÍÍÍÒÒÒÒÒÒÍÍÍÓÓÓÐÐУ££ÈÈÈÑÑÑÎÎÎÒÒÒÏÏÏÒÒÒÎÎÎÌÌ̺ºº®®®œœœ”””|||ÏÏÏÑÑÑvvv€€€|||}}}{{{{{{{{{{{{{{{{{{{{{{{{{{{yyywwwxxx€€€^^^zzz|||}}}{{{zzzxxx}}}wwwbbbzzzzzz|||}}}|||zzz|||yyyyyy{{{yyy}}}{{{@@@@@@|||^^^@@@ddd===&&&)))BBB(((GGGxxx|||VVV)))###)))%%%&&&''''''''''''''''''''''''''''''''''''''''''''''''((($$$'''(((###***((($$$&&&)))&&&(((''''''###''')))&&&%%%'''''''''(((&&&((((((((( LLL&&&  666}}}³³³©©©¬¬¬ÇÇDz²²©©©®®®ÎÎÎÓÓÓËËËÈÈÈÐÐЖ––%%%ÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿóóóíííÿÿÿüüüÿÿÿmmm===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿUUUýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿþþþýýýþþþüüüÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿýýýþþþcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿøøøÿÿÿýýýüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿŸŸŸÄÄÄÿÿÿüüüýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ”””ÍÍÍÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿüüüþþþÿÿÿËËË"""NNN÷÷÷ÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿþþþüüüþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüæææÿÿÿÿÿÿþþþþþþôôôñññÿÿÿÿÿÿñññÿÿÿÿÿÿþþþÿÿÿÿÿÿðððÿÿÿèèèÒÒÒÚÚÚéééÒÒÒÑÑÑÒÒÒÓÓÓÑÑÑÐÐÐåååÓÓÓÎÎÎÔÔÔÐÐÐÐÐÐÑÑÑìììåååÔÔÔÐÐÐÐÐÐÕÕÕÓÓÓÒÒÒÔÔԌŒŒYYY999)))+++NNNHHHdddQQQ¦¦¦ŠŠŠMMMYYY¬¬¬VVV+++ýýýÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿÿÿÿlllBBBÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿãããTTTÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿ“““dddþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿûûûÿÿÿþþþÿÿÿþþþýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýþþþÿÿÿúúúýýýÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿÃÃÃþþþÿÿÿÿÿÿýýýýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‹‹‹ÌÌÌÿÿÿýýýÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿþþþþþþýýýÿÿÿìììfffRRR$$$‰‰‰ýýýÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿúúúÿÿÿüüüÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿýýýþþþÿÿÿÿÿÿûûûþþþÿÿÿùùùÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿþþþüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿþþþ®®®ÿÿÿüüüÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÖÖÖ+++þþþþþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþrrr;;;ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿµµµSSSÿÿÿúúúþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýýýýýýýÿÿÿýýýþþþþþþÿÿÿÿÿÿøøøÿÿÿÿÿÿûûûÆÆÆeeeþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿþþþþþþþþþýýýÿÿÿþþþýýýÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿþþþÿÿÿ   ÄÄÄÿÿÿÿÿÿüüüÿÿÿþþþþþþÿÿÿþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ†††ÍÍÍÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþÿÿÿýýýÿÿÿþþþÿÿÿúúú}}}+++šššþþþxxx†††ÿÿÿûûûÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþÿÿÿÏÏÏõõõüüüÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿýýýþþþþþþÿÿÿýýýþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûÿÿÿÿÿÿûûûÿÿÿþþþÿÿÿþþþûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýþþþÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿúúúÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿ¦¦¦ÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿúúúÿÿÿýýýþþþÕÕÕ---ÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿmmm???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿ¬¬¬WWWüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýýýýÿÿÿfffbbbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýžžžÆÆÆýýýÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÍÍÍÿÿÿÿÿÿýýýþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÙÙÙ999YYYÝÝÝÿÿÿþþþ™™™   þþþÿÿÿþþþÿÿÿÿÿÿììì¼¼¼ýýýÔÔÔýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿrrr$$$ÒÒÒÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿûûûþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿûûûÿÿÿþþþþþþÿÿÿÿÿÿþþþþþþþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿ¬¬¬þþþÿÿÿþþþüüüÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿ’’’&&&ÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿäääWWWÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿ¡¡¡aaaþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÍÍÍÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿþþþüüüÚÚÚiiiIII¶¶¶ÿÿÿÿÿÿÿÿÿÿÿÿzzz†††ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŽŽŽ???ÿÿÿµµµÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿüüüÿÿÿ¬¬¬ÍÍÍ---†††þþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþ²²²åååþþþÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþþþþþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒƒƒ***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ®®®TTTÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþŸŸŸcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþüüüÿÿÿ“““ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ   ÓÓÓûûûÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿþþþüüüÿÿÿÿÿÿþþþßßß]]]ZZZËËËþþþýýýþþþÿÿÿþþþÿÿÿ£££§§§ÿÿÿÿÿÿÿÿÿþþþûûûêêêNNNÝÝÝ+++öööýýýþþþýýýÿÿÿüüüüüüÿÿÿÿÿÿÿÿÿýýýýýýüüüÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþ®®®$$$ÊÊÊúúúÿÿÿþþþýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿééé222éééÿÿÿýýýÿÿÿàààüüüþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿûûûŒŒŒ!!!%%%{{{ýýýÿÿÿÿÿÿÿÿÿûûûÿÿÿýýýüüüÿÿÿ¯¯¯$$$%%%qqqÿÿÿppp""""""šššýýýÿÿÿÿÿÿÿÿÿÿÿÿùùùÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒƒƒ***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý­­­SSSþþþþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿRRRaaaýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþbbbÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŠŠŠÍÍÍÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿøøøÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿþþþûûû£££+++sssüüüÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿ”””’’’ÿÿÿÿÿÿüüüÿÿÿÿÿÿõõõRRR½½½GGGâââyyy¹¹¹ÿÿÿýýýÿÿÿÿÿÿYYY===www@@@———ûûûÍÍÍÄÄÄýýý‘‘‘óóóSSS ÎÎÎÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿÑÑÑttt­­­ÿÿÿÞÞÞCCCµµµ444òòòÿÿÿûûûÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿ===ÛÛÛÃÃÃÿÿÿÿÿÿýýýùùùÿÿÿÿÿÿÿÿÿÿÿÿþþþPPPÅÅÅËËË***ãããËËË£££&&&ÿÿÿõõõººº½½½óóóÿÿÿýýýýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒƒƒ***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿËËËUUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿ‚‚‚gggÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüüüüÿÿÿlllÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒƒƒÎÎÎÿÿÿþþþüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿûûûþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿËËËRRRAAA²²²ÿÿÿýýýýýýÿÿÿÿÿÿûûûÿÿÿüüüÿÿÿ¢¢¢§§§ÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýììì½½½ + + +555 ÆÆÆÿÿÿýýýìììCCC«««000AAAkkk + + +ÿÿÿœœœccc’’’>>>ôôôôôôÛÛÛâââøøøÿÿÿøøøÆÆÆ£££µµµƒƒƒÝÝÝýýýŠŠŠLLL}}}ÎÎÎüüüººº'''cccJJJúúúÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿþþþÓÓÓ(((‘‘‘qqqLLLþþþ¨¨¨“““uuurrrzzzïïïüüüîîîvvviii777µµµLLLÿÿÿÝÝÝ!!!ÿÿÿ]]]FFF(((___þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒƒƒ***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÄÄÄTTTÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿIII___ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûþþþÿÿÿÿÿÿÿÿÿûûûÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‹‹‹ÏÏÏþþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿèèè(((³³³þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýªªª¯¯¯ûûûÿÿÿþþþþþþþþþÿÿÿþþþ½½½àààÝÝÝ µµµÿÿÿÿÿÿªªªªªªûûû&&&÷÷÷æææþþþŸŸŸ ÙÙÙÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÄÄĨ¨¨ÿÿÿ333ÌÌÌýýýnnnŒŒŒûûûÍÍÍ æææééé***ÝÝÝÿÿÿ›››%%%:::<<<ÍÍÍüüüÿÿÿ¢¢¢===BBBÚÚÚzzzˆˆˆÿÿÿÆÆÆsssÝÝÝ222üüüÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒƒƒ***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÃÃÃUUUþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿcccgggýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿ’’’ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ………ËËËþþþÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþÿÿÿüüüþþþÿÿÿýýý²²²...gggïïïþþþÿÿÿþþþüüüÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿüüüÿÿÿ©©©¬¬¬ÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿtttéé退€ + + +¨¨¨ýýýÿÿÿüüüSSSÖÖÖÐÐÐÿÿÿuuuZZZÿÿÿêêꋋ‹ÿÿÿúúúûûûÿÿÿûûûÿÿÿÿÿÿñññ‘‘‘hhh:::¿¿¿ÙÙÙ,,,üüüôôô000ÚÚÚÿÿÿ|||¾¾¾þþþÿÿÿæææéééÅÅÅËËËËËËûûûÿÿÿGGG×××ÿÿÿÿÿÿÿÿÿÿÿÿ•••”””âââúúú¹¹¹üüüÿÿÿÿÿÿ666ÊÊÊàààMMMªªªŒŒŒqqqâââáááêêêÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒƒƒ***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÇÇÇZZZÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüýýýþþþÿÿÿbbb^^^ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿúúúbbbÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‰‰‰ÐÐÐþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿäääLLL:::ÏÏÏýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþüüüüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿ­­­©©©þþþþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿððð###ÃÃÃÿÿÿþþþxxxüüüÜÜܸ¸¸þþþÑÑÑ×××ýýýùùù™™™÷÷÷ÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüßßߘ˜˜ýýýÝÝÝdddÿÿÿÿÿÿwww¾¾¾ÿÿÿûûûÿÿÿþþþýýýÿÿÿýýýÿÿÿûûûÿÿÿûûûþþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿyyyâââÿÿÿÿÿÿóóó;;;(((êêêØØØ)))222óóóþþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒƒƒ***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ®®®UUUýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿ†††eeeþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿˆˆˆÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ………ÏÏÏÿÿÿþþþÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþýýýÿÿÿ:::ƒƒƒøøøÿÿÿüüüÿÿÿþþþÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿþþþ¬¬¬ÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýPPPñññóóóèèèèèèøøøÿÿÿþþþÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿþþþþþþÿÿÿýýýÿÿÿþþþýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿþþþýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿþþþñññþþþÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþôôôìììæææòòòÿÿÿÿÿÿóóóéééìììÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒƒƒ***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿ¬¬¬TTTÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý|||dddþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿžžžëëëþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿþþþÿÿÿ²²²///€€€ûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý±±±¬¬¬ýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿýýýýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ···&&&ÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬¬¬TTTÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþmmmcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýýýý”””ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©©©þþþÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿþþþûûûÿÿÿýýýÿÿÿüüüêêêaaa777ÕÕÕÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿ¬¬¬ªªªÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿûûûþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿüüüýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþüüüþþþÿÿÿýýýûûûÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüüüüÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ«««ÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÓÓÓ...þþþýýýÿÿÿþþþýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþªªªXXXþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿ```cccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿûûûÿÿÿýýý\\\ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©©©ÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿüüüŸŸŸ###ûûûÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý‘‘‘“““üüüÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿþþþúúúÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþýýýýýýÿÿÿþþþÿÿÿþþþþþþýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýüüüýýýÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿýýýþþþþþþïïï¹¹¹öööÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬¬¬ýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØØØ,,,ýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûSSSÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüþþþMMM```ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüü]]]ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŽŽŽúúúýýýÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÏÏÏVVVrrrÖÖÖÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿ§§§©©©ÿÿÿþþþþþþÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿûûûüüüüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüýýýþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþKKK222 ïïïúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúú’’’ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÔÔÔ+++ÿÿÿÿÿÿþþþýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÊÊÊYYYÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿÿÿÿþþþ›››eeeüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿýýýþþþÿÿÿþþþÿÿÿqqqÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ®®®ÿÿÿþþþÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýý¼¼¼ýýýÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©©©¨¨¨ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý¡¡¡¿¿¿þþþÿÿÿííí```GGG[[[ååå²²²}}}ÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿûûûþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿýýýþþþþþþñññóóóûûûóóóÝÝÝÿÿÿýýýíííÝÝÝÿÿÿÿÿÿýýýýýýÿÿÿþþþííííííÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿnnn :::þþþÿÿÿÿÿÿþþþýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþâââîîîÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ«««ýýýþþþÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØØØ+++ÿÿÿþþþüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©©©UUUýýýûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿšššfffÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿüüüBBBÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿªªªüüüÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýœœœ+++ƒƒƒøøøÿÿÿþþþþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþûûû¬¬¬¬¬¬þþþÿÿÿÿÿÿÿÿÿþþþþþþ¿¿¿^^^ GGGÿÿÿýýý˜˜˜KKK£££¥¥¥>>>¤¤¤ºººÍÍÍÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿ………‚‚‚ÿÿÿÞÞÞ@@@ÿÿÿÿÿÿ•••VVVîîî°°°ùùùÿÿÿ‰‰‰fff   ÿÿÿþþþýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÂÂÂÙÙÙÿÿÿ“““888ÍÍÍþþþ(((ØØؾ¾¾ðððúúúþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþHHHØØØýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýùùùxxxÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØØØ(((þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýý°°°UUUÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿþþþŸŸŸbbbþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþ===ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¯¯¯ýýýÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿæææeeeÎÎÎÿÿÿÿÿÿüüüýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ®®®­­­þþþÿÿÿÿÿÿþþþÿÿÿÊÊÊNNNsssœœœÿÿÿþþþaaaWWW’’’ ¿¿¿ÿÿÿýýý!!!áááÿÿÿùùùÿÿÿÿÿÿþþþþþþþþþýýýÿÿÿÿÿÿýýýþþþÿÿÿûûûŒŒŒƒƒƒýýýÿÿÿZZZÜÜÜþþþ333ººº³³³iii———MMMHHHýýýÑÑÑAAA XXXÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ§§§zzz¡¡¡888¢¢¢zzzXXXÿÿÿššš"""AAA÷÷÷ÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòòò cccÔÔÔÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúyyyÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××)))ÿÿÿÿÿÿÿÿÿþþþüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ­­­QQQÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿŸŸŸaaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿýýýþþþÿÿÿ<<<ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿªªªÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿœœœ   kkk\\\þþþþþþÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©©©ªªªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿoooÇÇÇÿÿÿggg———ÿÿÿÿÿÿ MMMQQQ‡‡‡ÊÊÊRRRýýýüüü"""ÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûßßß444éé鎎Ž}}}þþþÿÿÿ³³³mmm²²²lllZZZ¦¦¦øøø···HHHjjj™™™µµµ¶¶¶ÿÿÿyyy¤¤¤§§§ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþ¸¸¸{{{444´´´ÿÿÿÿÿÿüüüÿÿÿùùùúúúüüüþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ–––***††† ÛÛÛüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùùù“““ÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***ÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿýýýÿÿÿsss===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­UUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿ›››dddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ===ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÈÈÈÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÎÎÎ---bbbÑÑÑÅÅÅZZZ¦¦¦ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ««««««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ®®®hhh¬¬¬***›››þþþÐÐÐMMMÿÿÿÿÿÿÿÿÿªªª©©©ÿÿÿŒŒŒ[[[þþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿ£££\\\ÿÿÿÕÕÕ}}}ÿÿÿÿÿÿûûûPPPÁÁÁUUUÆÆÆÿÿÿ×××FFFiiiššš¸¸¸¹¹¹ÿÿÿþþþÅÅÅWWWÅÅÅüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿØØØ~~~HHH¹¹¹þþþÿÿÿ®®®ÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿxxxÁÁÁÿÿÿ777ÉÉÉýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþúúú”””þþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÙÙÙ(((ÿÿÿþþþüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿiii>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­UUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûýýý‚‚‚aaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ===ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ………ÌÌÌÿÿÿüüüþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿêêêdddººº···fffåååÛÛÛZZZÂÂÂÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ««««««ÿÿÿÿÿÿÿÿÿÿÿÿýýýøøøbbb666XXX¸¸¸ÿÿÿÎÎÎÀÀÀûûûÿÿÿÿÿÿxxxåååÿÿÿüüüýýýÿÿÿüüüþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿþþþõõõKKKTTT,,,þþþÿÿÿÿÿÿÂÂÂZZZÿÿÿìììEEEVVV˜˜˜………–––ÎÎÎSSSÞÞÞÎÎÎrrrŽŽŽÄÄÄÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿýýýÚÚÚ{{{¹¹¹eeeÿÿÿëëërrrÿÿÿýýýûûûÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿúúúÿÿÿýýýÿÿÿüüüþþþÿÿÿÿÿÿþþþýýýþþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿUUUýýýîîî222þþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¨¨¨þþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕÕÕ***ÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿsss===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­UUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿ×××hhhüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ===ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿˆˆˆÒÒÒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿüüüþþþÿÿÿÿÿÿœœœ!!!eeeúúúüüüÿÿÿaaa999>>>SSSþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ««««««ÿÿÿÿÿÿÿÿÿÿÿÿþþþ¾¾¾×××ÎÎΩ©©ÄÄĪªª¨¨¨¨¨¨«««¦¦¦ÅÅŨ¨¨§§§«««ÆÆÆÄÄÄûûûÿÿÿÿÿÿeeeRRRÖÖÖÿÿÿþþþôôô©©©¥¥¥œœœ;;;FFF›››¨¨¨¦¦¦©©©¨¨¨¨¨¨ªªª©©©‘‘‘UUU¾¾¾¥¥¥ÚÚÚÍÍÍ®®®wwwÀÀÀ¬¬¬©©©ÄÄÄÄÄÄýýýþþþþþþÿÿÿþþþýýýÿÿÿÿÿÿýýýÿÿÿþþþúúúüüüüüüýýýüüüøøøÿÿÿþþþÕÕÕzzzÿÿÿ}}}¡¡¡þþþýýýÿÿÿûûûûûûûûûùùùÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿýýýþþþÿÿÿÿÿÿÈÈȨ¨¨¥¥¥«««‹‹‹’’’ÿÿÿÿÿÿÿÿÿÿÿÿüüüúúú˜˜˜ÿÿÿîî‚þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøøøyyyÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××,,,ýýýÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿþþþÿÿÿmmm===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­UUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýœœœbbbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ===ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ËËËþþþÿÿÿýýýÿÿÿþþþÿÿÿþþþÿÿÿýýýéééaaa111¾¾¾þþþÿÿÿÿÿÿþþþÿÿÿãããÃÃÃÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ««««««ÿÿÿÿÿÿÿÿÿÿÿÿÚÚÚ&&&777+++XXX  ØØØþþþ---ÿÿÿúúúÿÿÿ³³³XXXZZZXXXUUU[[[ ...HHHNNNZZZFFF555 """‘‘‘ýýýÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿ´´´ ///%%%000444###MMMRRRpppúúúÿÿÿÿÿÿÿÿÿÿÿÿùùùgggTTTQQQQQQTTTlllTTTTTT^^^ìììÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþóóó___ÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***þþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþPPP???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­UUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿ›››fffþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ===ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿLLLÐÐÐÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿèèèeee‰‰‰÷÷÷ÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ««««««ÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÆÆƯ¯¯¯¯¯¬¬¬­­­µµµýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþþþþÿÿÿÿÿÿýýýþþþÿÿÿþþþÿÿÿþþþþþþÿÿÿýýýþþþÿÿÿýýýþþþüüüÿÿÿúúúÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüþþþÿÿÿþþþÿÿÿýýýùùùÿÿÿþþþÿÿÿåååãããþþþÿÿÿ¸¸¸²²²®®®ÚÚÚ¹¹¹¯¯¯ùùùµµµ±±±±±±©©©±±±«««vvvOOOúúúÿÿÿýýý±±±vvv[[[\\\[[[|||ÿÿÿÿÿÿùùù³³³±±±­­­®®®«««œœœZZZZZZgggîîîýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý•••ÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××'''ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþUUU???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­UUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýŸŸŸ```ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ===ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ444ÍÍÍýýýÿÿÿÿÿÿÿÿÿÿÿÿüüüååå???KKKòòòÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ««««««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýüüüÿÿÿÿÿÿûûûááá÷÷÷ÿÿÿþþþþþþÿÿÿÿÿÿýýýþþþýýýÿÿÿûûûýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýþþþûûûÿÿÿÿÿÿýýýþþþÿÿÿüüüÿÿÿýýýÁÁÁýýýÿÿÿÿÿÿþþþÿÿÿþþþüüüÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüþþþÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿ²²²¤¤¤­­­ÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿÿÿÿÿÿÿûûûÿÿÿùùùûûûÿÿÿåå吐eee···ÿÿÿùùù333²²²aaaXXXEEENNNúúúÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿûûûþþþÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ«««ÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÖÖ,,,ÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿþþþÿÿÿooo===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­UUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿ£££aaaýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ===ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿSSSÍÍÍþþþÿÿÿýýýÿÿÿÇÇÇQQQNNNÕÕÕýýýÿÿÿüüüýýýÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ««««««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøøø§§§ˆˆˆŸŸŸþþþÂÂÂþþþûûû¾¾¾ÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿýýýþþþÿÿÿÊÊÊYYYEEEâââÿÿÿ×××ýýýýýý¼¼¼þþþþþþÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿýýýÿÿÿÓÓÓ   ´´´FFFþþþþþþóóóÎÎÎýýýèèèÏÏÏÿÿÿÂÂÂNNN¶¶¶QQQÊÊÊÒÒÒhhh­­­ÿÿÿ¹¹¹œœœVVVÿÿÿÿÿÿùùùÿÿÿûûûÿÿÿýýýþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþüüü±±±ÆÆÆÿÿÿûûûÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøøø“““ÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶...ýýýýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿppp>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­UUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþ™™™bbbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ===ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿgggÍÍÍÿÿÿûûûåååuuu&&&óóóÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ««««««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿbbbYYYbbb ¼¼¼þþþ```ÚÚڋ‹‹>>>ÿÿÿþþþÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿúúú888©©©uuuãããýýýèè虙™OOOûûûüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÊÊÊ***‘‘‘ÿÿÿÿÿÿççç'''III¤¤¤ÿÿÿðð𐐐444vvv‹‹‹ÿÿÿýýýñññžžžýýýggg™™™CCCššš„„„%%%ýýýýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþþþþÿÿÿüüüYYYbbb&&&éééÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûû———ýýýÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ„„„)))þþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿmmm>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­UUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿôôôVVVbbbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ===ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿpppËËËùùù¾¾¾ cccôôôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿbbb   ÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿîîîþþþcccÐÐÐþþþ___}}}åååþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÐÐÐ///ÿÿÿÿÿÿAAAðððÿÿÿWWWuuu"""ÜÜÜÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÞÞÞjjjVVVýýýÿÿÿÿÿÿÒÒÒfffÿÿÿþþþÿÿÿÎÎÎ444±±±ŠŠŠÿÿÿþþþÐÐЂ‚‚ÿÿÿ¾¾¾ßßßÒÒÒgggdddàààÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÉÉÉ===ÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¦¦¦ÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿˆˆˆ+++ÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿrrr>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­UUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþûûû‡‡‡dddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ===ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþˆˆˆ˜˜˜666333ºººÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýý­­­©©©ÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿUUUˆˆˆžžž"""žžžÿÿÿ\\\‘‘‘ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿððð333ŠŠŠÞÞÞÿÿÿmmmžžžýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿþþþòòòïïš&&&ýýýÿÿÿààà###HHH(((ÀÀÀÿÿÿùùùÍÍÍ555ÎÎÎ<<<ÈÈÈÚÚÚBBB›››ÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿûûûýýýÿÿÿ•••ÊÊʳ³³éééÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿóóóaaaÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÖÖ+++ýýýÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþþþþýýýqqq;;;ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­UUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþ¤¤¤aaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ>>>ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþüüüùùùEEEœœœÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûû¢¢¢ÿÿÿÿÿÿüüüýýýÿÿÿýýýÿÿÿðððYYYÀÀÀýýý¿¿¿cccÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûÿÿÿþþþýýýÊÊÊ<<<###fff×××ÿÿÿ•••vvvùùùþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿýýýÿÿÿeee®®®ÿÿÿþþþµµµ   þþþbbbýýýÿÿÿàààˆˆˆüüü–––UUUþþþþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿúúúÿÿÿþþþÿÿÿÿÿÿþþþþþþüüüÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÚÚÚ111999TTTþþþÿÿÿûûûþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþõõõaaaýýýþþþþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÓÓÓ)))ÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿnnnAAAÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­UUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿŸŸŸ```ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ>>>ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿüüüúúúÿÿÿèèè111ÒÒÒþþþüüüþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ………ªªªþþþûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿ÷÷÷ÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýþþþýýýÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿüüüÿÿÿ÷÷÷¿¿¿ÙÙÙÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿóóófffÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‚‚‚&&&ÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿccc???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­UUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿšššeeeÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ===ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿùùùÞÞÞlll$$$¯¯¯'''ÍÍÍýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿIIIžžžÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿúúúÿÿÿÿÿÿýýýþþþýýýÿÿÿþþþÿÿÿÿÿÿýýýþþþüüüÿÿÿþþþýýýþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿóóóZZZÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ```///ýýýþþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþ^^^<<<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­UUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþŸŸŸeeeÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþ===ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ¾¾¾444 ÂÂÂÿÿÿ444ÍÍÍÿÿÿþþþÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ”””ªªªÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿûûûýýýÿÿÿýýýÿÿÿþþþüüüÿÿÿÿÿÿùùùÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿüüüÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþüüüþþþÿÿÿúúúÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþýýýþþþÿÿÿþþþÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿööödddýýýÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,,,%%%ÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿlllAAAÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­UUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüü   aaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿ@@@ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÅÅÅcccäääóóómmmÀÀÀÿÿÿ111ÎÎÎþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©©©­­­ÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþýýýýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿüüüÿÿÿþþþþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿûûûÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿýýýûûûÿÿÿÿÿÿüüüýýýÿÿÿüüüþþþÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðððaaaÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ000...þþþüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüsss<<<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­UUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿŸŸŸ```ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿEEEÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿeeeÀÀÀÅÅŌŒŒ™™™ýýý555ÍÍÍþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ£££«««ÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿóóóaaaþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ---+++ÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýþþþÿÿÿÿÿÿCCC???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÓÓÓYYYýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ   bbbýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüü‡‡‡ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿ¤¤¤vvv"""©©©ÞÞÞppp¢¢¢ÿÿÿXXXÎÎÎÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿeeeœœœÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿõõõcccÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿzzz,,,þþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿmmm???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþUUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýþþþÿÿÿ   bbbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŽŽŽÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿýýýþþþááágggCCCÉÉÉÿÿÿááá666"""***ÔÔÔýýýˆˆˆÑÑÑýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡………ÿÿÿüüüÿÿÿüüüÿÿÿÿÿÿþþþþþþýýýíííÿÿÿõõõðððÿÿÿÿÿÿñññÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿóóóöööÿÿÿüüüýýýÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿþþþÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿþþþÿÿÿÿÿÿùùùÿÿÿÿÿÿûûûÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýööö^^^ÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÞÞÞ000ÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþýýýttt<<<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿWWWÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿ˜˜˜eeeþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿ’’’ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿóó󝝝,,,ŸŸŸÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿ¬¬¬ÏÏÏûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÍÍ͈ˆˆÿÿÿÿÿÿúúúÿÿÿþþþÿÿÿþþþââ⬬¬&&&ööösssuuuÿÿÿrrrnnnÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿùùùfff'''xxxÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿþþþúúúÿÿÿÿÿÿýýýýýýÿÿÿûûûÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþþþþþþþÿÿÿÿÿÿûûûÿÿÿýýýþþþÿÿÿÿÿÿþþþüüüáááýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôôôcccþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿóóóIIIüüüÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿkkk@@@ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿøøø[[[ÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¤¤¤aaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿ‘‘‘ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿýýýÿÿÿþþþüüüÿÿÿÀÀÀ,,,‚‚‚ïïïÿÿÿÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿÿÿÿüüüÿÿÿ™™™ÎÎÎÿÿÿüüüþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ´´´‚‚‚ÿÿÿÿÿÿýýýýýýÿÿÿóóó]]]"""ûûû£££”””ÊÊÊêêêþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿþþþÐÐÐÓÓÓ£££ÿÿÿþþþýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿüüüýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþûûûÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿúúú°°°ÖÖÖÖÖÖ000,,,ÅÅÅÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòòò```ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿááá:::ÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿüüüÿÿÿnnn>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿTTTþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿ›››bbbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿ‘‘‘ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÈÈÈGGGdddàààÿÿÿþþþÿÿÿüüüÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüü½½½ÍÍÍýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿŠŠŠ†††ÿÿÿûûûÿÿÿÿÿÿþþþ›››\\\ááᘘ˜GGGûûû···\\\333»»»ÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿüüüÿÿÿþþþýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿåååNNN÷÷÷ûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüýýýþþþÿÿÿÿÿÿþþþþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿýýýûûûñññÖÖÖÖÖÖ×××õõõõõõOOOvvvsss111UUU«««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿõõõcccÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøøøFFFÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýqqq;;;ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿSSSþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿžžžeeeýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿ‘‘‘ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿïïïdddIII¹¹¹þþþÿÿÿûûûÿÿÿÿÿÿÿÿÿüüüÿÿÿüüüÿÿÿÿÿÿþþþþþþÿÿÿ–––ÏÏÏÿÿÿþþþÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý|||‡‡‡þþþÿÿÿûûûüüüýýý–––```ÓÓÓÀÀÀPPPüüü¸¸¸PPPÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþüüüÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿýýý:::¸¸¸ÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿüüüþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿþþþüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿûûûèèèþþþÿÿÿÌÌÌ>>>+++---“““ÿÿÿœœœ›››þþþþþþÕÕÕ%%%èèèÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþúúú„„„ÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüUUUýýýÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýqqqAAAÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýWWWÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿüüüžžžcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿ‘‘‘ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿºººGGGœœœóóóýýýþþþÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿþþþÿÿÿúúúþþþÿÿÿÿÿÿÿÿÿˆˆˆÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿzzz‡‡‡ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿöööttt'''gggÿÿÿÂÂÂ888èèèÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿþþþüüüÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿÐÐÐ}}}vvv%%%ßßßÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿüüüdddÜÜÜþþþùùù‰‰‰ÀÀÀööö\\\---iiiüüüÿÿÿÿÿÿ¤¤¤ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÞÞÞÈÈÈÿÿÿ¾¾¾999kkkñññþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿ¨¨¨ˆˆˆááá***(((çççþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøøø‰‰‰ûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿâââ...ÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿnnn===ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿSSSÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿþþþWWWdddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÆÆÆGGGHHHÇÇÇÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿ†††ÐÐÐÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ{{{†††þþþÿÿÿþþþþþþôôôÑÑÑÐÐл»»ÎÎÎÐÐÐÑÑÑÐÐÐÅÅÅÐÐÐÔÔÔÐÐÐðððÿÿÿþþþþþþüüüÿÿÿÿÿÿüüüÔÔÔÐÐÐÑÑÑôôôÿÿÿÿÿÿùùùÑÑÑÐÐÐÏÏÏÕÕÕÎÎÎÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑáááÐÐÐÒÒÒÒÒÒÒÒÒáááÒÒÒðð𜜜yyyçççÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿùùùddd + + +ÏÏÏÿÿÿ¢¢¢‰‰‰‘‘‘fff×××EEE¸¸¸ýýýCCCÿÿÿÿÿÿüüüËËËëëëüüüýýýýýýÑÑÑXXXÎÎÎ###ÌÌÌßßß555ÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûçççøøøÛÛÛÔÔÔíííÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòòòaaaÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÔÔÔ///þþþþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýWWWÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýMMM```ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‘‘‘ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿ¸¸¸RRRVVV½½½þþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ———ÐÐÐýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿyyyˆˆˆÿÿÿÿÿÿÿÿÿýýýîî—………„„„‡‡‡………†††………‡‡‡………………„„„···ÿÿÿüüüÿÿÿÿÿÿ†††$$$%%%°°°ÿÿÿÿÿÿ××ׂ‚‚‡‡‡………†††………‡‡‡………„„„………†††MMMƒƒƒiii………MMM„„„†††ˆˆˆVVV...333111000333000222000LLL222vvvMMM333000KKK???333TTTVVVKKKVVVSSSXXXUUUVVVVVVVVVXXXTTTXXXUUUVVVOOOVVVZZZSSSSSSYYYEEE;;;FFF777'''QQQ+++555777TTT***222WWW555&&&777UUUFFF555EEEØØØüüüÿÿÿëëë]]]PPP&&&%%%***«««ÿÿÿýýýÿÿÿûûûoooÀÀÀjjjÒÒÒþþþÿÿÿÀÀÀ‡‡‡úúúòòò¤¤¤XXXåå噙™]]]BBBÿÿÿÿÿÿÿÿÿÁÁÁ888666ŽŽŽÿÿÿÿÿÿôôôáááJJJ¥¥¥___ÿÿÿþþþäääfffüüüÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôôôaaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿUUUÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿFFFeeeÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‘‘‘ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþüüüÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿôôôaaa¹¹¹þþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‘‘‘ÏÏÏþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}}}„„„ýýýÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýþþþýýýŽŽŽ222222:::ccc;;;ÞÞÞÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿûûûÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿúúúÿÿÿýýýþþþÿÿÿúúúþþþýýýÿÿÿÿÿÿýýýòòòìììííííííÜÜÜûûûÝÝÝæææçççÿÿÿÛÛÛéééÿÿÿêêêÛÛÛÂÂÂÿÿÿkkk°°°ÿÿÿÿÿÿüüüÜÜÜ)))®®®ýýýÿÿÿþþþxxx$$$ŠŠŠþþþÿÿÿÓÓӄ„„ÿÿÿ———^^^åååÖÖÖ GGGõõõûûûÿÿÿííí555ËËËÿÿÿÿÿÿÿÿÿþþþYYYïïïZZZûûûÿÿÿááábbbÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôôôaaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿVVVûûûÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿJJJaaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‘‘‘ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýýýýÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿµµµ)))jjjäääþþþþþþÿÿÿûûûÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŠŠŠÍÍÍÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿxxx‹‹‹þþþþþþÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýüüüÿÿÿÚÚÚüüüÿÿÿüüüÿÿÿÿÿÿÓÓÓâââÿÿÿúúúÿÿÿÿÿÿÿÿÿþþþÿÿÿÏÏÏéééþþþýýýõõõÉÉÉÖÖÖÿÿÿÿÿÿýýýûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿþþþþþþËËËÍÍÍîîîÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿöööÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿþþþÿÿÿþþþÿÿÿïïïÛÛÛ~~~WWWþþþÿÿÿÿÿÿüüüÝÝÝÛÛÛÚÚÚáááÛÛÛùùùþþþþþþÿÿÿïïïÝÝÝÑÑÑccc¶¶¶¿¿¿½½½ÐÐЈˆˆÏÏϬ¬¬§§§úúúáááÚÚڕ••***õõõÿÿÿüüü>>>€€€LLLýýýþþþýýýÿÿÿ>>>ýýýddd[[[•••...¡¡¡þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôôôaaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþSSSÿÿÿûûûÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿXXXfffýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‘‘‘ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþãããbbb!!!ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÍÍÍÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþïïﺺºÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿúúúÿÿÿÿÿÿþþþþþþýýýþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÔÔÔ999ÝÝÝ000§§§íííGGG###®®®×××ccc   ýýý½½½555999ÁÁÁñññ===666lllúúúÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿýýýÿÿÿÿÿÿçççSSSüüüæææ666888 DDDóóóþþþ$$$ vvvêêê///222$$$áááÿÿÿBBB±±±ÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿðððÕÕÕÿÿÿÇÇÇ^^^777¸¸¸ÿÿÿÿÿÿMMM«««ýýýzzz,,,ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûþþþÿÿÿÿÿÿýýýÿÿÿøøøÇÇÇÇÇÇÅÅÅÈÈÈÃÃÃÄÄÄÄÄĸ¸¸ÄÄÄ^^^SSSPPP¼¼¼ÉÉÉÇÇÇÍÍͱ±±ÇÇÇÉÉÉÆÆÆ­­­ÈÈÈÈÈȏÈÈÈÈÈÈÊÊÊÉÉÉ´´´ÇÇǼ¼¼nnnPPPyyyÈÈÈÌÌÌÈÈÈÉÉÉÄÄÄÇÇÇÉÉÉÉÉÉÈÈÈËËËÈÈÈÈÈÈÈÈÈÉÉÉÆÆÆÕÕÕÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôôôaaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWWWÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþ~~~dddýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‘‘‘ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýýýýÿÿÿÿÿÿþþþÈÈÈYYYWWWµµµøøøÿÿÿþþþÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ†††ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ‡‡‡‰‰‰ÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÈÈÈhhh444IIIþþþ¨¨¨ÉÉÉðððdddýýýÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþýýýcccÀÀÀÜÜÜXXXuuuÒÒÒ«««ñññŸŸŸ444ÃÃÃtttaaaÜÜÜAAAÕÕÕÿÿÿÁÁÁ€€€FFF§§§üüüîîîHHH···ÿÿÿÅÅÅÅÅÅÅÅÅÆÆÆðððüüüüüüººº000ÿÿÿÌÌÌ tttttt àààÿÿÿÖÖÖÞÞÞ(((€€€```[[[ÔÔÔþþþ¸¸¸PPPÿÿÿ¢¢¢¯¯¯òòòlllóóó÷÷÷XXX¬¬¬HHHÐÐÐÆÆÆ===ËËËüüüWWWªªª¼¼¼```äääûûûÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþýýýÿÿÿûûû£££---ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôôôaaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿãããVVVüüüÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿþþþýýýÿÿÿJJJfffýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‘‘‘ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþ···"""   ÿÿÿøøøÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÏÏÏÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþvvv†††þþþÿÿÿÿÿÿþþþÿÿÿÝÝÝJJJLLLGGGüüüccc   ooo>>>þþþþþþûûûÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýþþþÿÿÿúúúÿÿÿýýýÿÿÿÿÿÿ:::ÃÃÃÿÿÿxxxþþþÿÿÿ¼¼¼%%%³³³ÿÿÿËˡ‡‡ÇÇÇyyyþþþÿÿÿÿÿÿgggíííÿÿÿÿÿÿddd®®®rrrÿÿÿ··· ???ÿÿÿªªªXXX999þþþÿÿÿÿÿÿçççyyyggg×××```ŒŒŒrrr777ôôôÿÿÿ999ììì···xxxúúúÿÿÿþþþTTTüüüþþþªªª£££ÿÿÿÒÒÒôôôîî‘ìììÿÿÿÿÿÿÿÿÿûûûÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿ€€€,,,ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôôôaaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüYYYþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿDDDcccÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‘‘‘ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿîîîfff$$$ÍÍÍÿÿÿûûûÿÿÿüüüÿÿÿýýýüüüÿÿÿýýýüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÏÏÏÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}}}‡‡‡ÿÿÿýýýÿÿÿþþþþþþÄÄē““ÿÿÿ»»»EEEÿÿÿ+++õõõýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿûûûÿÿÿNNNÈÈÈÿÿÿyyyôôômmmdddÂÂÂÿÿÿúúúÒÒÒsssûûû444ÛÛÛýýý´´´lll___©©©üüüÿÿÿKKKÕÕÕÿÿÿåååçççäääæææõõõÿÿÿfff»»»JJJŸŸŸÿÿÿüüü777ÌÌÌüüüÛÛÛ%%%øøøÿÿÿýýýÿÿÿýýý***×××õõõ888ïïïïïï;;;ØØØÿÿÿÿÿÿýýýhhhÿÿÿÿÿÿœœœ¢¢¢ÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿýýýüüüüüüççççççæææåååæææåååãããéééçççáááæææççççççæææèèèéééäääçççåååêêêäääãããåååççççççççççççæææåååéééâââåååéééæææçççååååååçççéééæææêêêäääæææèèèçççäääåååæææâââîîîÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôôôaaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüWWWÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿþþþfffdddþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‘‘‘ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýµµµ+++œœœöööÿÿÿýýýÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ†††ÏÏÏÿÿÿþþþÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ«««„„„ÿÿÿþþþþþþÿÿÿÿÿÿäää000ºººsssCCCÿÿÿ¶¶¶®®®þþþÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿ¿¿¿JJJýýýŠŠŠxxx«««[[[kkk³³³ÿÿÿÎÎÎ+++  + + +£££ÞÞÞ%%%///AAAøøøÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿöööéééçççgggàààŒŒŒiiifff QQQttt!!!lll€€€ôôô555ZZZ___222îîî»»»FFFþþþOOO333ƒƒƒ&&&ÝÝÝÿÿÿÿÿÿÒÒÒ™™™§§§íííÿÿÿÿÿÿüüüÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿþþþþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿþþþýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôôôaaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿñññXXXÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýKKKaaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿ’’’ÄÄÄÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôôô’’’NNN›››ÜÜÜÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆÆƆ††ÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþáá᧧§£££ÁÁÁÿÿÿíííÎÎÎúúúÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýùùùÂÂÂõõõõõõõõõôôôÉÉÉÂÂÂÀÀÀßßßÿÿÿùùùëëëëëëöööâââÁÁÁæææüüüþþþôôôÂÂÂÍÍÍôôôÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿþþþþþþýýýêêêÀÀÀÀÀÀàààöööìììÊÊÊÁÁÁ¬¬¬´´´ýýýèèè¿¿¿ÃÃÃìììÿÿÿ‘‘‘ÜÜÜÿÿÿÒÒÒôôôþþþ½½½âââþþþÿÿÿÐÐÐýýýààদ¦–––ÙÙÙÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿþþþþþþÿÿÿüüüÿÿÿöööaaaþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØØØ,,,ÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüVVVÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿJJJdddþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýûûûÿÿÿÿÿÿÿÿÿüüüÄÄÄþþþûûûÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÍÍÍ777hhhîîîúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüwww‹‹‹ÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿûûûÿÿÿûûûÿÿÿýýýýýýÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿýýýþþþÿÿÿþþþÿÿÿúúúÿÿÿüüüÿÿÿüüüüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüþþþÿÿÿþþþþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýþþþÿÿÿýýýüüüûûûÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿýýýüüüÿÿÿÿÿÿòòòaaaüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕÕÕ+++ÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÌÌÌYYYýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþýýýýýýGGG```ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿ”””ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýñññ~~~///···ûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒƒƒýýýþþþÿÿÿþþþÿÿÿþþþýýýþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿþþþýýýÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿþþþÿÿÿûûûþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿûûûûûûÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿûûûýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿüüüÒÒÒÁÁÁþþþÿÿÿ»»»¸¸¸ÕÕÕüüüÿÿÿüüüþþþýýýüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿúúúÿÿÿýýýþþþÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýÿÿÿ÷÷÷zzzÿÿÿþþþþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÖÖ,,,ÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRRRüüüÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÔÔÔfffýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿŒŒŒÆÆÆýýýÿÿÿÿÿÿÿÿÿüüüõõõ«««GGGsssèèèÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüzzz„„„ÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿüüüþþþþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþüüügggáááßßßPPPÿÿÿÈÈÈGGGÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýþþþýýýÓÓÓÿÿÿÿÿÿµµµ¹¹¹¸¸¸¾¾¾øøøººº™™™µµµ¸¸¸òòòÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿþþþüüüÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿüüüÿÿÿýýý®®®³³³ÈÈÈÿÿÿþþþÿÿÿÿÿÿÿÿÿÎÎÎ...HHHÇÇÇÂÂÂýýýþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿþþþþþþÿÿÿûûûÿÿÿþþþÿÿÿýýýÿÿÿüüüüüüÿÿÿÿÿÿõõõ•••ÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÖÖ+++ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿWWWÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿûûûÇÇÇaaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿ”””ÃÃÃÿÿÿýýýþþþÿÿÿýýýóóó{{{@@@œœœðððÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿyyy†††þþþÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþþþþÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿ………´´´ÖÖÖEEEþþþ¸¸¸<<<ûûûÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿþþþúúúÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþþþþªªªýýýùùù{{{yyyxxx‚‚‚ùùùvvvnnn}}}vvvàààþþþÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿüüü|||sssŸŸŸÿÿÿþþþýýýÿÿÿÿÿÿÌÌÌ***YYY'''ÉÉÉÉÉÉÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþúúúÿÿÿýýýþþþÿÿÿúúúÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþööö···þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØØØ,,,ÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýVVVüüüýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿ†††eeeýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿõõõ|||333ÅÅÅüüüÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþzzzŠŠŠÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿúúúÿÿÿûûûÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿûûûÿÿÿýýýÿÿÿþþþüüüÿÿÿÿÿÿýýýÁÁÁ^^^gggìììøøø‹‹‹___vvvÛÛÛ(((ýýýKKK³³³ÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿ^^^ÿÿÿüüü‡‡‡PPP444ßßßiiiOOOHHHŽŽŽÿÿÿõõõdddIIIÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿŒŒŒÓÓÓ:::^^^‘‘‘###ººº + + +ŠŠŠùùùüüü«««MMMÂÂÂ000+++êêêþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿëëë´´´°°°ÌÌÌýýýÿÿÿýýýüüüÿÿÿùùùËËËÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿååå555ÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüZZZþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýJJJbbbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿùùùyyyÄÄÄýýýÿÿÿüüü²²²666iiiëëëÿÿÿÿÿÿýýýþþþÿÿÿùùùÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ±±±ƒƒƒþþþÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþüüüýýýñññ ŒŒŒqqqwwwIII¡¡¡>>>yyyÙÙÙ'''ÀÀÀIIIúúúÿÿÿÿÿÿýýýÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿýýýüüüþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿ°°°333 þþþüüüþþþÿÿÿˆˆˆ¬¬¬ÿÿÿÿÿÿÿÿÿÍÍÍgggýýý÷÷÷ccc555###ûûûÿÿÿþþþMMMƒƒƒ777£££ýýýÿÿÿ¯¯¯III999ýýýÿÿÿÑÑÑJJJÿÿÿ÷÷÷õõõùùùÿÿÿ{{{999ýýýÿÿÿ÷÷÷ûûûMMM“““ÿÿÿÿÿÿúúúÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÒÒÒ + + +mmmÇÇÇkkk þþþÿÿÿþþþÿÿÿÿÿÿòòò¼¼¼ýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿæææ666ÿÿÿþþþýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿUUUþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûþþþÿÿÿHHHdddþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýþþþÿÿÿÄÄÄÿÿÿõõõbbb)))ºººþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýššš………þþþÿÿÿÿÿÿþþþÿÿÿÿÿÿêêêßßßþþþþþþÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿššš;;;QQQNNNœœœTTTÄÄÄÿÿÿÀÀÀwwwÛÛÛ³³³ÿÿÿþþþüüüÿÿÿþþþÿÿÿýýýÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿ®®®<<<úúúþþþÿÿÿÿÿÿúúúvvvÿÿÿÿÿÿýýýùùùPPPÕÕÕÿÿÿnnnÛÛÛ&&&ÿÿÿþþþþþþíííbbbþþþÿÿÿÿÿÿýýýrrrooouuuÿÿÿýýýþþþWWWÿÿÿýýýÿÿÿýýýçççOOOXXXþþþVVV"""âââÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿêêê²²²ÄÄÄÿÿÿåååØØز²²KKKÿÿÿÿÿÿ===¤¤¤ÿÿÿýýýÿÿÿþþþÿÿÿóóó³³³ÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÖÖ+++ÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿHHH```ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿuuu¶¶¶jjjíííþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|||………ÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿˆˆˆIII®®®üüüüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿ˜˜˜fff®®®ÐÐÐÿÿÿÈÈÈ222ˆˆˆtttÚÚÚ@@@üüüÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÎÎÎþþþþþþ………¦¦¦ÿÿÿÿÿÿÿÿÿ´´´OOOþþþâââ+++222 ßßßÿÿÿûûûÉÉÉ<<<òòòþþþÿÿÿýýýtttÎÎÎ:::öööÿÿÿ£££CCCÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿúúúüüüÿÿÿþþþùùùþþþþþþÿÿÿÿÿÿúúúÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþþþþÚÚڝÿÿÿÿÿÿüüü®®®ÊÊÊÿÿÿŠŠŠcccÿÿÿþþþÿÿÿ¼¼¼ÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýËËËXXX[[[ËËËÿÿÿ÷÷÷XXXZZZ¹¹¹þþþ×××WWWZZZ¾¾¾þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿ···aaa¹¹¹þþþQQQVVVòòòÿÿÿµµµRRRÝÝÝÿÿÿÊÊÊQQQÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿóó󶶶ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××+++ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿKKKdddþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿúúúýýýÿÿÿÿÿÿþþþÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿüüü‘‘‘!!!111ÏÏÏûûûÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýœœœžžžÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþOOOIIIùùùþþþÌÌ̬¬¬ªªª©©©ªªªªªª­­­¨¨¨©©©®®®­­­ªªª¬¬¬©©©¤¤¤,,,¨¨¨«««gggppp›››¬¬¬­­­®®®««««««©©©¬¬¬¬¬¬­­­ªªª¯¯¯«««©©©ªªª©©©ªªª®®®ÅÅÅþþþÿÿÿþþþÿÿÿÀÀÀªªª<<<ààà@@@ööö!!!ëëëúúúÿÿÿýýýGGGÖÖÖÿÿÿÿÿÿ¾¾¾¨¨¨+++îîîüüüèèè999´´´666lllÿÿÿÿÿÿÿÿÿqqqççç¼¼¼888VVV¾¾¾ýýýÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿýýýäääÿÿÿøøø¼¼¼ÿÿÿþþþÿÿÿÿÿÿôôô%%%%%%ýýýÿÿÿ   ƒƒƒ–––>>>§§§ZZZâââÿÿÿ»»»AAAÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿþþþûûûÿÿÿÿÿÿóóóooo¨¨¨‹‹‹\\\ÿÿÿõõõ@@@ªªª¥¥¥ëëëöööXXX©©©žžž111ÿÿÿþþþüüüýýýÿÿÿüüüÿÿÿÿÿÿ¦¦¦•••111^^^–––###°°°ÿÿÿÿÿÿýýýÿÿÿÒÒÒ 555¤¤¤ÿÿÿ###àààýýýÿÿÿýýýÿÿÿÿÿÿüüü£££ºººÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÖÖ)))ýýýþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿFFFaaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿüüü´´´ŒŒŒüüüÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}}}………ÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿCCCôôôééé + + +öööÿÿÿ___GGGÿÿÿÿÿÿýýýüüüþþþþþþþþþýýýúúúÿÿÿàààüüüýýýþþþüüüäääýýýýýýøøøüüüúúúÿÿÿúúúÿÿÿÿÿÿüüüýýýÿÿÿúúúýýýýýýúúúüüüÿÿÿøøøüüüÿÿÿ°°°ÛÛÛúúúþþþùùùüüüþþþüüüþþþþþþýýýÿÿÿþþþøøøýýýÿÿÿùùùþþþÿÿÿ–––aaaHHHoooûûûÿÿÿÿÿÿôôôMMM···CCCÿÿÿÿÿÿýýý¹¹¹„„„ïïïôôôÿÿÿŸŸŸßßßììì&&&•••BBBýýýÿÿÿýýýýýýÿÿÿùùùÿÿÿýýýÿÿÿÿÿÿÕÕÕVVVVVVZZZÄÄÄþþþÚÚÚfff°°°$$$000???¡¡¡þþþÿÿÿ£££TTTššš+++ðððýýýÖÖÖlllQQQ666üüüÿÿÿÖÖÖEEEÿÿÿþþþÿÿÿÿÿÿÿÿÿÊÊʨ¨¨ÃÃÃýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýþþþÿÿÿžžž°°°ÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØØØ,,,ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿüüüÿÿÿIIIeeeÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿþþþÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÒÒÒ444eeeDDDÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüü®®®¬¬¬ÿÿÿÿÿÿýýýÿÿÿÿÿÿÑÑÑdddÿÿÿÓÓÓõõõûûû```RRRÿÿÿ<<<aaaÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿŠŠŠNNN™™™+++ïïïÿÿÿÿÿÿÎÎ΄„„ÿÿÿææælllììì///___€€€>>>ÿÿÿúúú¸¸¸£££þþþµµµZZZ¨¨¨®®®$$$ýýýøøø±±±ýýýßßßLLL...¯¯¯£££ÚÚÚûûûÿÿÿjjjÅÅÅÿÿÿÿÿÿÿÿÿÏÏÏWWW555þþþûûûÿÿÿVVVÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýý¤¤¤···ýýýÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××)))ýýýýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþ„„„dddüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþùùùzzz'''»»»ÿÿÿ‘‘‘ÅÅÅýýýþþþÿÿÿþþþüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿ««««««ÿÿÿýýýýýýÿÿÿýýýooo———þþþ„„„bbbÿÿÿÿÿÿÍÍÍ^^^\\\WWWYYYãããÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿþþþÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿýýýüüüÿÿÿþþþüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüÂÂÂYYYVVVZZZ^^^ZZZŒŒŒÿÿÿûûûÑÑѬ¬¬­­­³³³¯¯¯¯¯¯¯¯¯®®®®®®¯¯¯°°°¬¬¬¯¯¯­­­°°°°°°®®®®®®vvv­­­²²²¤¤¤iii’’’±±±±±±°°°®®®°°°ƒƒƒ\\\ˆˆˆaaaYYYXXXZZZ[[[[[[YYY[[[ZZZXXXYYY[[[\\\XXXZZZaaaVVV<<>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿ___eeeýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿûûûÿÿÿüüüÿÿÿµµµ222oooÿÿÿþþþÿÿÿ’’’ÄÄÄÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©©©©©©ÿÿÿÿÿÿþþþþþþÿÿÿÔÔÔöööþþþÐÐÐßßßþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿùùùØØا§§÷÷÷ÿÿÿÿÿÿÔÔÔ¥¥¥âââþþþÿÿÿøøø¶¶¶ÇÇÇûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿþþþýýýÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþýýýÿÿÿþþþþþþÿÿÿÿÿÿýýýÿÿÿOOO¹¹¹àààuuuÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÚÚÚîîîËËËÊÊÊÊÊÊ éééÿÿÿþþþþþþ¯¯¯ÿÿÿÿÿÿþþþþþþÿÿÿûûûÿÿÿþþþÿÿÿýýýþþþzzz===<<<]]]$$$ÆÆÆ;;;///666ûûû,,,GGG444ìììÿÿÿRRRšššËËË>>>ÞÞÞÿÿÿÿÿÿ€€€ÂÂÂ}}}---NNN%%%±±±þþþÿÿÿÿÿÿýýýüüüÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþüüüêêêüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØØØ+++þþþýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿLLL___ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿøøøGGG---ÓÓÓÿÿÿýýýÿÿÿýýýÃÃÃÿÿÿÿÿÿüüüûûûÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüü­­­¬¬¬þþþÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿýýý&&&AAAááᑑ‘000888ÑÑÑïïïBBBJJJ:::TTTûûûÿÿÿþþþùùùÛÛÛÂÂÂûûûøøøÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿþþþÿÿÿþþþþþþÖÖÖaaaRRR¶¶¶ÿÿÿýýý±±±]]]¿¿¿þþþþþþèè蟟Ÿ¡¡¡ðððþþþÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿúúúÿÿÿþþþÿÿÿÿÿÿýýýþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿ×××ÆÆÆýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿ÷÷÷úúúûûûýýýúúúúúúúúúááá³³³úúúüüüõõõððð«««íííûûûýýý÷÷÷ÿÿÿÿÿÿñññóóóÿÿÿþþþüüüÿÿÿÿÿÿØØؙ™™ÀÀÀÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþäääýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕÕÕ***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVVVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþddddddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿûûûööö€€€111ÅÅÅòòòÿÿÿÿÿÿþþþýýýÿÿÿ‘‘‘ÆÆÆûûûÿÿÿÿÿÿÿÿÿûûûÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿªªª«««ÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿ···---XXXJJJòòòÿÿÿÞÞÞ...XXXŸŸŸÿÿÿúúúhhh®®®ÑÑÑVVV333HHH™™™µµµoooÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÜÜÜÒÒÒÊÊÊÒÒÒRRRƒƒƒÔÔÔ```¨¨¨¸¸¸\\\···ŸŸŸ%%%­­­þþþÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿþþþýýýÿÿÿþþþüüüÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ„„„iii%%%ttteee///%%%'''---%%%'''LLL((((((&&&---'''+++GGGKKKJJJLLLHHHLLLIIIKKKJJJKKKWWWKKKVVVYYYRRRZZZTTTUUUTTTOOOIIIMMMXXX;;;ÈÈÈýýýÿÿÿþþþÿÿÿÿÿÿóóóµµµÿÿÿüüüÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××+++þþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþppp<<<ÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿUUUþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþýýýÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýþþþÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿIIIdddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ···ëëëÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿ‘‘‘ÆÆÆýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‰‰‰ÌÌÌÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþþþþÿÿÿþþþªªª­­­ÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿýýý˜˜˜%%%HHH```ÿÿÿýýýæææBBBÂÂÂÿÿÿþþþˆˆˆ}}}uuuƒƒƒÿÿÿ‰‰‰///@@@ ¯¯¯ÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþýýýþþþÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿqqq µµµ777þþþÿÿÿÒÒÒaaazzzÈÈÈÿÿÿþþþ­­­“““ýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿýýýþþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿýýýýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÊÊÊUUUUUU>>>XXXQQQ***;;;DDD    GGGEEEUUUSSSWWWVVVPPP333000FFFHHHãããÿÿÿþþþÿÿÿÿÿÿÿÿÿÜÜÜÓÓÓýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØØØ)))ÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿüüüÄÄ웛ËËËÿÿÿýýýÿÿÿppp@@@ýýýÿÿÿüüüÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿYYYÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿþþþþþþüüüÿÿÿÿÿÿÿÿÿþþþþþþýýýýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿKKKeeeýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿüüüûûûÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿØØØaaa...···ÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýÃÃÃÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ†††ÑÑÑÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüþþþÿÿÿüüüýýýýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿúúúûûûÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿüüü¬¬¬¬¬¬üüüÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþ››› + + + ÝÝÝÿÿÿÆÆÆ999eee÷÷÷ïïï444ÍÍÍnnnÄÄÄÿÿÿ¯¯¯zzzTTTÿÿÿüüüÿÿÿüüüüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿþþþþþþÿÿÿýýýþþþÿÿÿÿÿÿÞÞÞGGGˆˆˆ888ðððÿÿÿÒÒÒpppwwwºººÿÿÿÿÿÿÀÀÀvvvþþþÿÿÿþþþÿÿÿýýýþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýýýýüüüýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþðððÌÌÌÿÿÿÎÎÎõõõÿÿÿþþþüüüÔÔÔ¹¹¹»»»ººº¸¸¸¼¼¼¹¹¹þþþüüüÿÿÿüüüÿÿÿüüüÿÿÿýýýÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÙÙÙ(((ýýýÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýÿÿÿÿÿÿ¢¢¢777èèèÿÿÿþþþlll>>>ÿÿÿûûûÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûýýýÿÿÿþþþVVVùùùÿÿÿÿÿÿÿÿÿþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿýýýÿÿÿüüüýýýÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿ………bbbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿüüüÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿûûûÿÿÿþþþÿÿÿüüüÿÿÿýýýÿÿÿþþþúúú³³³&&&iiiýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿ‘‘‘ÅÅÅþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÌÌÌþþþÿÿÿÿÿÿýýýÿÿÿþþþþþþÿÿÿþþþÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýüüüüüüþþþ®®®ªªªüüüÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿýýýüüüPPPEEE»»»ªªª"""CCCÃÃÃÛÛÛ$$$:::###CCCñññ¨¨¨BBB †††ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿýýýìììääähhh€€€sssnnnîîîlll‹‹‹œœœMMMõõõâââ$$$”””ÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿüüüÿÿÿþþþþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿûûûÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿûûûÿÿÿûûûÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕÕÕ+++ÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÂÂÂóóóÿÿÿ>>>ÅÅÅÿÿÿÿÿÿqqq<<<ÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿXXXÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüýýýÿÿÿÿÿÿÿÿÿûûûÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿúúúÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿùùùÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýýýýeeeþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýþþþÑÑÑIII555åååÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿûûûÿÿÿ‘‘‘ÆÆÆúúúþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþþþþþþþˆˆˆÏÏÏÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿûûûÿÿÿÿÿÿüüüÿÿÿÿÿÿüüüûûûÿÿÿÿÿÿÿÿÿýýýÿÿÿúúúÿÿÿÿÿÿþþþÿÿÿþþþýýýûûûÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿªªªªªªÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþûûûÿÿÿüüüÿÿÿÿÿÿååå¾¾¾ÖÖÖüüüÿÿÿÎÎξ¾¾ÙÙÙÿÿÿÿÿÿ÷÷÷¼¼¼»»»õõõýýýþþþààà¿¿¿¿¿¿ÜÜÜóóóàààþþþÿÿÿÿÿÿüüüüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿùùùÿÿÿþþþÿÿÿÿÿÿÿÿÿììì^^^JJJùùùååå@@@RRRõõõÿÿÿ–––@@@+++WWWùùùþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþþþþÿÿÿüüüÿÿÿýýýþþþüüüÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿüüüüüüÿÿÿüüüÿÿÿýýýÿÿÿþþþþþþÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþûûûÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÖÖ---þþþÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿøøø###êêêÄÄĔ””@@@%%%‘‘‘eeeŒŒŒyyy“““–––’’’““““““{{{111“““’’’———•••””””””””””””””””””””””””””””””””””””””””””””””””••••••˜˜˜•••‘‘‘ÅÅś››•••’’’±±±˜˜˜•••”””¯¯¯••••••”””°°°äääìììæææØØØéééèèèéééèèèêêêWWWZZZèèèèèèèèèèèèèèèèèèèèèèèèèèèéééêêêççççççææææææóóóõõõëëëçççôôôûûûçççýýýÿÿÿýýýüüüýýýÿÿÿüüüýýýüüü~~~   úúúÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿþþþþþþ÷÷÷êêêþþþûûûÿÿÿÃÃÃÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýýýýýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¡¡¡ÐÐÐýýýûûûÿÿÿüüüÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿüüüýýýÿÿÿþþþÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿýýýþþþÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿýýý©©©¬¬¬þþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýÿÿÿþþþýýýþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿüüüþþþÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿûûûûûûÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿïïïãããÿÿÿþþþýýýÿÿÿþþþÿÿÿÿÿÿþþþüüüþþþþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþüüüÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿûûûÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþþþþýýýþþþýýýÈÈÈçççÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***ÿÿÿÿÿÿÿÿÿùùùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿüüüýýýååå<<<~~~åååÿÿÿÞÞÞ­­­...444888;;;HHHTTTUUUVVVXXXVVVYYYAAA===111TTTUUU[[[XXXUUUVVVXXXTTTTTTYYY333OOO\\\SSS)))888CCCHHHJJJIIIVVVVVVXXXNNN???GGGWWWWWWWWWQQQ@@@>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>???>>>>>>>>>???>>><<<###///???GGG<<<>>><<<===>>><<<>>>>>>@@@>>>===;;;???>>>>>>???:::<<<>>>>>>??????===:::>>>>>>===@@@===@@@;;;???<<<>>>===???@@@===???===???>>>>>>???===???((()))>>>======@@@>>>>>>>>>>>>>>>>>>>>>>>>;;;AAA===>>><<<>>>???;;;???AAA<<<<<>>???===@@@???===<<>>DDD>>>;;;@@@>>>===@@@>>>:::@@@???<<<<<<===@@@@@@???AAA<<>>>>>>>>>>>>>>>>>>>>>>>;;;@@@AAA>>>@@@???>>><<<===@@@<<>>;;;<<>>\\\™™™   ’’’‘‘‘‘‘‘‘‘‘’’’‘‘‘’’’iii€€€ŠŠŠ˜˜˜ŽŽŽ‘‘‘vvv•••’’’’’’‹‹‹”””ŒŒŒ•••ŽŽŽ“““‹‹‹ŽŽŽqqq–––«««åååçççÛÛÛµµµããããããããããããããããããããããã㦦¦$$$ÿÿÿÿÿÿüüüþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿààà~~~qqqoooïïïýýýÿÿÿppp===þþþÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüäääZZZÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿýýýÿÿÿœœœeeeýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÑÑюŽŽãããííí~~~)))ƒƒƒüüüÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÛÛÛÅÅÅþþþþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüü†††ÑÑÑÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÛÛÛ«««ÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿûûûÿÿÿûûûôôôÁÁÁÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÙÙ٘˜˜ÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþØØØíííéééÞÞÞÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿìììýýýÿÿÿþþþÜÜÜþþþýýýÿÿÿÿÿÿýýýâââäääêêêÇÇÇÈÈÈÅÅÅÅÅÅÇÇÇÆÆÆÕÕÕÿÿÿÈÈÈÆÆÆÇÇÇÄÄĬ¬¬ªªªÆÆÆÈÈÈëëëÆÆÆÆÆÆÇÇÇÆÆÆÝÝÝêêêÆÆÆÄÄÄÉÉÉÆÆÆÂÂÂËËËÄÄÄÅÅÅÆÆÆÆÆÆÃÃÃÅÅÅËËËÂÂÂÈÈÈÅÅÅÇÇÇÈÈÈÅÅÅÇÇÇÇÇÇÃÃÃÇÇÇÇÇÇÃÃÃÆÆÆÉÉɒ’’¿¿¿www¬¬¬rrr©©©ŽŽŽsssŽŽŽÆÆÆaaaJJJuuuqqqnnnsssoooqqqqqqqqqqqqqqqqqqqqqqqqCCC,,,ýýýþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþWWWÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿœœœeeeþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿýýýÿÿÿ­­­LLLnnn%%%SSSàààýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþ‘‘‘ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«««ªªªÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿïïïýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÙÙÙþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿüüüáááÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý¬¬¬ÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÀÀÀRRRÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿžžždddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþýýýÿÿÿýýýüüü|||­­­ÆÆƀ€€üüüÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿ‘‘‘ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿªªª­­­ÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÈÈÈýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþßßߨ¨¨þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿüüüõõõ±±±ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûöööŸŸŸüüüÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþçççVVVþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿžžžbbbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿëëë&&&±±±åå刈ˆ¼¼¼þþþÿÿÿüüüþþþþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿþþþ‘‘‘ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþˆˆˆŒŒŒýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýþþþ½½½þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ···šššÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿ¸¸¸«««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ§§§‚‚‚ÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ´´´TTTÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿ‚‚‚aaaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿ÷÷÷ªªª***PPPJJJAAAùùùýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿ‘‘‘ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿŸŸŸ¤¤¤ÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÎÎΕ••ÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþþþþÐÐÐ¥¥¥ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿýýýââ⪪ªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþªªª¬¬¬ÿÿÿÿÿÿÿÿÿùùùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôôôXXXýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿcccþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÛÛÛNNN333´´´ÿÿÿýýýÕÕÕüüüþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿûûûýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‘‘‘ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿªªª«««ÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûþþþÿÿÿñññíííÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚÚÚ£££ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿÆÆÆÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ«««¬¬¬þþþÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýªªªSSSÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýý¢¢¢dddýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿûûûÿÿÿøøøššš:::¬¬¬ûûûÿÿÿùùùÿÿÿþþþÿÿÿÿÿÿúúúÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿŽŽŽÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüþþþ­­­¬¬¬ÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÔÔÔýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúýýýþþþÓÓӟŸŸÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýþþþªªªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý®®®¨¨¨ÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­WWWûûûûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿUUUbbbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿýýýÿÿÿÑÑÑ,,,TTTÞÞÞÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿýýýÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿþþþ‡‡‡ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúú¬¬¬­­­ûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿ©©©ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýªªªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿýýýÿÿÿÕÕÕÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿªªª©©©ÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÖÖÖSSSÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿGGGdddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿíííaaa¡¡¡øøøÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýƒƒƒÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ«««ªªªÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýóóóÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿòòò©©©þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿýýýÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþªªª­­­ýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿUUUÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýJJJbbbÿÿÿÿÿÿÿÿÿüüüÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿééé|||‚‚‚êêêÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿxxxÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿˆˆˆÎÎÎÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ¬¬¬«««ÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿâââ©©©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿ¹¹¹œœœÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÇÇÇÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ««««««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××+++ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿäääYYYýýýþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿIIIeeeýýýÿÿÿûûûÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿ®®®%%%SSSÏÏÏÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýüüüÿÿÿÿÿÿÿÿÿcccÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ………ÎÎÎþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿªªªªªªÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÜÜܤ¤¤þþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿææ楥¥ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÈÈÈ©©©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ««««««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕÕÕ)))ÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿUUUÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿIIIbbbÿÿÿýýýÿÿÿþþþþþþÿÿÿÿÿÿööönnn,,,°°°öööýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿüüüýýýÿÿÿ<<<ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿxxxÎÎÎþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬¬¬¬¬¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÊÊʗ——ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿùùù»»»ŸŸŸþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿ§§§ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ««««««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÙÙÙ***ÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÃÃÃVVVûûûÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþþþþMMMaaaÿÿÿÿÿÿüüüÿÿÿÿÿÿèè脄„???“““ìììÿÿÿÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿyyyÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿiiiÎÎÎÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿªªªªªªþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÄÄē““ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýüüüÿÿÿ¸¸¸þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÒÒÒ¬¬¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ««««««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØØØ&&&ÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüªªªXXXþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿCCCcccÿÿÿÿÿÿýýýèèègggðððþþþÿÿÿøøøÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿþþþ’’’ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿkkkÎÎÎÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüü¤¤¤¤¤¤ýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÃÃҒ’ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿ···šššÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÁÁÁ¹¹¹ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ««««««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÙÙÙ)))ÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ®®®TTTÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþôôô&&&cccÿÿÿÿÿÿ±±±%%%PPPÔÔÔÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýþþþÿÿÿtttÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}}}ÐÐÐýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý¦¦¦¦¦¦þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýüüüÆÆƓ““ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿüüüýýý¼¼¼ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿ¶¶¶ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ««««««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÔÔÔ,,,ÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý°°°PPPþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿ@@@dddÓÓÓbbb$$$µµµ÷÷÷ÿÿÿÿÿÿüüüÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýüüüÿÿÿÿÿÿÿÿÿ’’’ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÏÏÏþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ««««««ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÔÔԚššÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿ¹¹¹œœœÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿýýýææ樨¨ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ««««««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÀÀÀ&&&ýýýýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿooo>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ©©©WWWÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿGGG ƒƒƒôôôÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿ‘‘‘ÄÄÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ†††ÎÎÎÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ««««««ÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿ××ךššÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþ¸¸¸ëëëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿùùùÿÿÿþþþ¿¿¿ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ««««««þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¹¹¹+++ÿÿÿþþþÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþsss<<<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿ«««VVVÿÿÿÿÿÿþþþþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþýýýÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿýýý›››888ÞÞÞÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÅÅÅÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÎÎÎþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýüüüÿÿÿÿÿÿþþþ®®®©©©ÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿ“““ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿ···ÙÙÙýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÐÐÐËËËÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¦¦¦“““ÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØØØ+++ýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿþþþppp???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüü®®®TTTÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿüüüýýýÿÿÿÌÌÌ000eeeûûûþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿúúúþþþÿÿÿýýýþþþþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿüüüþþþÿÿÿýýý~~~ÄÄÄýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿˆˆˆÏÏÏÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýþþþýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýüüüýýýýýýÿÿÿþþþÿÿÿýýý¨¨¨­­­þþþÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùùùÿÿÿÅÅœ““ÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÌÌÌóóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿûûû²²²¾¾¾ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©©©­­­ýýýÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØØØ'''ÿÿÿþþþþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþýýýmmm???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«««TTTÿÿÿýýýüüüÿÿÿÿÿÿÿÿÿýýýýýýÿÿÿÿÿÿüüüÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿûûûÿÿÿÿÿÿÿÿÿééé„„„æææhhhþþþÿÿÿÿÿÿýýýÿÿÿýýýýýýÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿýýýþþþÿÿÿúúúüüüþþþÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿ;;;ÅÅÅýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ………ÏÏÏÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿüüüÿÿÿ­­­ªªªÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþûûûþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿçççóóóþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþ½½½ñññÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýüüüÿÿÿ§§§þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý°°°¨¨¨ÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÖÖ---üüüþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿppp???ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ®®®VVVÿÿÿÿÿÿÿÿÿýýýüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ½½½%%%‚‚‚ÜÜÜüüüùùù___ÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿþþþýýýýýýþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýûûûÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿþþþüüüÿÿÿ>>>ÄÄÄÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡‡‡ÍÍÍþþþÿÿÿÿÿÿüüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿýýýÿÿÿÿÿÿûûûªªª­­­þþþÿÿÿÿÿÿüüüýýýþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþüüüçççõõõÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿ···óóóþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿ¯¯¯áááÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿªªª®®®ÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÂÂÂ)))ÿÿÿÿÿÿúúúÿÿÿþþþüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýüüüppp>>>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÄÄÄVVVüüüýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþýýýúúúÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþýýýÿÿÿÿÿÿ___---ÙÙÙüüüÿÿÿýýýõõõbbbþþþÿÿÿþþþÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýþþþþþþýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿýýýýýýþþþÿÿÿþþþþþþÿÿÿüüüÿÿÿýýýÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþ;;;ÁÁÁÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‰‰‰ÏÏÏýýýþþþÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿüüüýýýÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüýýýÿÿÿÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿÿÿÿªªªªªªýýýÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿïïïøøøþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿ···òòòýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþûûûýýýËËËúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­§§§ÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒƒƒ)))ÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿqqq ŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠ‹‹‹ŠŠŠaaa111ŠŠŠ¥¥¥ŒŒŒ   ŠŠŠ‹‹‹ŠŠŠ¥¥¥‹‹‹“““†††‰‰‰œœœ˜˜˜‰‰‰ˆˆˆŠŠŠ•••¯¯¯¸¸¸«««²²²¹¹¹²²²³³³ººº¯¯¯´´´´´´´´´´´´´´´´´´´´´´´´µµµ¶¶¶¶¶¶¦¦¦|||***:::®®®ËË˵µµ³³³ÍÍÍ«««aaa···µµµÌÌÌ°°°···ÕÕÕ÷÷÷ÖÖÖòòò¶¶¶ëëëÿÿÿûûûþþþÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿýýýNNNÈÈÈÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ………ÎÎÎÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿýýýþþþþþþÿÿÿþþþþþþþþþÿÿÿÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿûûûÿÿÿÿÿÿÿÿÿÿÿÿüüü®®®ªªªþþþÿÿÿþþþÿÿÿýýýþþþÿÿÿüüüþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿæææ÷÷÷ÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ»»»ìììÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÇÇÇüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÄÄĬ¬¬ÿÿÿþþþÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©©©)))ÿÿÿÿÿÿÿÿÿýýýùùùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþmmm  + + +  + + + 666VVV\\\[[[YYY'''______^^^\\\___!!!)))]]]___```^^^___\\\___]]]^^^]]][[[CCC]]]___^^^___\\\___^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^222OOO]]][[[```[[[\\\aaa^^^^^^^^^^^^^^^^^^^^^^^^^^^]]]^^^______```WWWaaa]]]___^^^___]]]___^^^___\\\``````ZZZ______]]]___^^^]]]]]][[[bbb\\\___^^^^^^___===CCC]]]]]]aaa[[[cccZZZ___^^^]]]aaa___]]]________________________\\\\\\```^^^[[[ccc\\\___________________________________________________^^^^^^___ZZZ```^^^___aaa___________________________________________________________________________________________________________________________^^^^^^\\\___CCCYYY___________________________________________________________________________________________________________________________^^^^^^]]]]]]]]]___XXXaaa___________________________________________________________________________________________________________________________________________________AAACCC[[[___[[[\\\___________________________QQQ(((ÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿœœœNNNOOOOOOOOOOOOOOOOOOOOOOOOMMMSSS444QQQMMMOOOPPPOOOMMMOOONNNQQQNNNRRROOONNNPPPNNNPPPOOONNNOOOOOOPPP@@@)))###)))RRRMMMOOOOOOOOOOOOOOOOOOOOOOOOQQQLLLQQQOOOMMMPPPNNNOOONNNNNNPPPQQQNNN444QQQPPPQQQNNNMMMPPPMMMPPPMMMOOOOOOQQQNNNNNNPPPNNNOOOOOONNNQQQMMMQQQQQQMMMQQQMMMLLLSSSKKKRRROOOOOONNNPPPPPPOOOQQQMMMOOOPPPKKKPPPOOOOOOOOOPPPMMMOOOPPPQQQOOOPPPNNNNNNOOOQQQMMMOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO<<>>———¤¤¤|||TTTÿÿÿýýýNNN•••ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿ‡‡‡___………PPPóóó×××,,,ãããÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿþþþÿÿÿééé%%%«««žžžããã@@@www­­­222rrrÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚÚÚ&&&/// + + +©©©þþþjjj$$$šššÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿûûûÿÿÿþþþÿÿÿÿÿÿýýýþþþÿÿÿáááýýý———UUUiiiÀÀÀþþþ½½½UUUmmmÄÄÄÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿüüüÿÿÿüüüýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿüüüüüüÿÿÿþþþûûûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþýýýýýýÿÿÿÿÿÿþþþþþþÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿüüüÿÿÿýýýÿÿÿûûûÿÿÿÿÿÿþþþÿÿÿÿÿÿûûûþþþÿÿÿûûûýýýÿÿÿÿÿÿûûûÿÿÿýýýþþþÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþýýýÿÿÿ)))***¿¿¿"""ßßßýýýûûû999®®®ÿÿÿÛÛÛ111 èèèýýýþþþååå‘‘‘sssþþþýýýÞÞÞuuuÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿËËËýýýÞÞÞSSSjjjýýýÿÿÿçççÿÿÿþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿòòòAAAWWW‹‹‹ÿÿÿÿÿÿŠŠŠyyyúúúÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿééé ÚÚÚ444ÐÐÐþþþÿÿÿ{{{ƒƒƒÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþæææ ___•••···000ÿÿÿÿÿÿñññ777õõõþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿwww¿¿¿ÿÿÿììì???ššš[[[ÿÿÿëëë<<<øøøþþþþþþüüüÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüüüüÿÿÿÿÿÿþþþííí(((???¡¡¡JJJ¯¯¯˜˜˜ÂÂÂ===ªªª’’’ãããÿÿÿÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿþþþÿÿÿûûûÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­­­OOOüüüâââmmmÃÃÃñññ999«««ÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿþþþþþþþþþÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýÿÿÿÿÿÿýýýþþþþþþÿÿÿþþþÿÿÿüüüÿÿÿÿÿÿÿÿÿýýýÿÿÿþþþÿÿÿÿÿÿüüüúúúÿÿÿ­­­§§§üüüÿÿÿôôô¢¢¢XXXÍÍÍÿÿÿÿÿÿÿÿÿþþþÿÿÿþþþüüüþþþþþþÿÿÿÿÿÿÿÿÿúúúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýþþþÿÿÿÿÿÿÿÿÿÍÍÍ®®®™™™ÂÂÂvvvRRRÁÁÁmmmêêêøøøfffQQQ$$$èèèÿÿÿêêê°°°èèèûûûhhh|||ÿÿÿþþþþþþÿÿÿÿÿÿþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúúú¨¨¨úúúõõõIII@@@"""ãããúúúuuu444ÿÿÿÿÿÿûûûüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøøøCCCüüüÿÿÿ°°°lllþþþýýý‰‰‰xxxÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿüüüÿÿÿhhh•••ÿÿÿ†††±±±ÿÿÿþþþ€€€„„„ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿýýýÿÿÿýýýæææ;;;YYY\\\–––555þþþþþþüüüèèèúúúÿÿÿþþþýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþþþþþþþþþþþþþþþþþþþþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ•••CCCèè說ª,,,———ÿÿÿÿÿÿeee¶¶¶üüüþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿýýýýýýÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿýýýûûûÿÿÿëëë³³³999———þþþÿÿÿwwwÿÿÿÿÿÿ”””«««üüüýýýÿÿÿÿÿÿþþþÿÿÿþþþÿÿÿÿÿÿúúúÿÿÿÿÿÿüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüüüfff»»»°°°$$$¦¦¦§§§²²²üüü««« ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþÿÿÿÿÿÿþþþþþþÿÿÿÿÿÿþþþüüüÿÿÿÿÿÿýýýüüüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÿÿÿÿÿÿÿÿÿÿÿÿûûûNNN<< (1200-500)/(442-93)*(Xp-93) + 500 +# Yp -> (2.5-0.5)/(64-215)*(Yp-215) + 0.5 +550.143 0.44702 +688.539 1.00331 +740.688 1.18874 +818.911 1.58609 +959.312 2.0894 +1181.95 3.00331 diff --git a/latex/problems/problem28.56.tex b/latex/problems/problem28.56.tex new file mode 100644 index 0000000..32ab154 --- /dev/null +++ b/latex/problems/problem28.56.tex @@ -0,0 +1,69 @@ +\begin{problem*}{28.56} +Figure P28.56 shows the stopping potential versus the incident photon +frequency for the photoelectric effect for sodupm. Use the graph to +find \Part{a} the work function, \Part{b} the ratio $h/e$, +and \Part{c} the cutoff wavelength. The data are taken from +R.A.~Millikan, \emph{Physical Review} 7:362 (1916). +\begin{center} +\begin{asy} +import graph; +size(5cm, 4cm, IgnoreAspect); + +real fmin = 400; +real fmax = 1200; + +pair[] points={(550,0.827),(689,1.20),(741,1.39), + (818,1.79),(959,2.29),(1182,3.20)}; // (THz, V) + +real fit(real f) +{ + real work_fn = 1.62; // electron-volts + real h = 6.56e-34; // joule-seconds + real E = h*f*1e12 / 1.6e-19; // electron-volts + real Vs = E-work_fn; + return Vs; +} + +draw(graph(fit, fmin, fmax), red); +draw(graph(points), p=invisible, marker=marker(scale(1pt)*unitcircle, blue)); + + +pen thin=linewidth(0.5*linewidth())+grey; +xaxis("$f$ (THz)",BottomTop, + LeftTicks(begin=false,end=false,extend=true,ptick=thin)); +yaxis("$\Delta V_s$ (V)",LeftRight, + RightTicks(begin=false,end=false,extend=true,ptick=thin)); +\end{asy} +\end{center} +\end{problem*} % problem 28.56 + +\begin{solution} +\Part{a} +The fit line passes nearby the points $(400\U{THz},0\U{V})$ and +$(1.20\U{PHz},3.3\U{V})$. In point-slope form, the fit line is then +\begin{align} + \Delta V_s-0\U{V} &= \frac{(3.3-0)\U{V}}{(1200-400)\U{THz}} (f-400\U{THz}) \\ + \Delta V_s &= 4.125\text{mV/THz}\cdot (f-400\U{THz}) +\end{align} +The work function is the inverse $y$-intercept, so +\begin{equation} + \phi = -\Delta V_s(f=0) = -4.125\text{mV/THz}\cdot(-400\U{THz}) + = \ans{1.65\U{eV}} +\end{equation} + +\Part{b} +The theoretical form for the fit line is +\begin{align} + e\Delta V_s &= hf - \phi \\ + \Delta V_s &= \frac{h}{e}f - \phi +\end{align} +so $\frac{h}{e} = \ans{4.12\U{mV/THz}} = \ans{4.12\U{pV/s}}$. + +\Part{c} +The cutoff wavelength is given by the work function and conservation +of energy. +\begin{align} + hf_\text{cut} &= \frac{hc}{\lambda_\text{cut}} = \phi \\ + \lambda_\text{cut} &= \frac{hc}{\phi} = \ans{751\U{nm}} +\end{align} +\end{solution} diff --git a/latex/problems/problem28.57.tex b/latex/problems/problem28.57.tex new file mode 100644 index 0000000..c3f374a --- /dev/null +++ b/latex/problems/problem28.57.tex @@ -0,0 +1,75 @@ +\begin{problem*}{28.57} +The following table shows data obtained in a photoelectric +experiment. \Part{a} Using these data, make a graph similar to Active +Figure 28.9 that plots as a straight line. From the graph, +determine \Part{b} an experimental value for Planck's constant (in +joule-seconds) and \Part{c} the work function (in electron volts) for +the surface. (Two significant figures for each answer are +sufficient.) +\begin{center} +\begin{tabular}{r r} +Wavelength (nm) & Maximum Kinetic Energy of Photoelectrons (eV) \\ +$588$ & $0.67$ \\ +$505$ & $0.98$ \\ +$445$ & $1.35$ \\ +$399$ & $1.63$ +\end{tabular} +\end{center} +\end{problem*} % problem 28.57 + +\begin{solution} +\Part{a} +We can convert the wavelengths to frequencies and graph them +\begin{center} +\begin{tabular}{r r} +$\lambda$ (nm) & $f=c/\lambda$ (THz) \\ +$588$ & $510$ \\ +$505$ & $594$ \\ +$445$ & $674$ \\ +$399$ & $751$ +\end{tabular} \\ +\begin{asy} +import graph; +import stats; +size(8cm, 5cm, IgnoreAspect); + +real c = 299792458.0; + +real fmin = 0; +real fmax = 800; + +real[] x = {588, 505, 445, 399}; // nm +real[] y = {0.67, 0.98, 1.35, 1.63}; // eV + +// convert wavelength in nm to freq in THz +int i; +for (i=0; iU$. Classically, we would +expect all the particles to continue on, although with reduced speed. +According to quantum mechanics, a fraction of the particles are +reflected at the barrier. Prove that the reflection coefficient $R$ +for this case is +\begin{equation} + R = \frac{(k_1-k_2)^2}{(k_1+k_2)^2} \;, +\end{equation} +where $k_1=2\pi/\lambda_1$ and $k_2=2\pi/\lambda_2$ are the wave +numbers for the incident and transmitted particles. Proceed as +follows. Impose the boundary conditions $\psi_1=\psi_2$ and +$d\psi_1/dx = d\psi_2/dx$ at $x=0$ to find the relationships between +$B$ and $A$. Then evaluate $R=B^2/A^2$. + +Assume the wave function $\psi_1 = Ae^{ik_1x}+Be^{-ik_1x}$ satisfies +the Schr\"odinger equation in region 1, for $x<0$. Also assume that +$\psi_2 = Ce^{ik_2x}$ satisfies the Schr\"odinger equation in region +2, for $x>0$. These assumptions will be derived in the posted +solutions in case you are interested, but they are pretty +straightforward. +\begin{center} +\begin{asy} +import Mechanics; + +real u=.8cm; +real U=1u; +real E=1.2U; +real bonusU=0.3u; +real xmax=2u; +real xpos=-u; + +path pU = (-xmax,-bonusU)--(-xmax,0)--(0,0)--(0,U)--(xmax,U)--(xmax,-bonusU)--cycle; +draw(pU, black); +fill(pU, blue+4white); +Vector v = Velocity(center=(xpos, E)); +label("incoming particle", v.center, W); +v.draw(); +dot(v.center); +Distance dE = Distance(pFrom=(xpos, 0), pTo=(xpos, E), L="E"); +dE.draw(rotateLabel=false); +Distance dU = Distance(pFrom=(-xpos, 0), pTo=(-xpos, U), L="U"); +dU.draw(rotateLabel=false); +\end{asy} +\end{center} +\end{problem} % problem 28.62 + +\begin{solution} +Show that $\psi_1$ satisfies the Schr\"odinger equation +\begin{equation} + -\frac{\hbar}{2m}\frac{d^2\psi}{dx^2} = (E-U)\psi +\end{equation} +in region 1. +\begin{align} + \frac{d\psi_1}{dx} &= ik_1Ae^{ik_1x}-ik_1Be^{-ik_1x} \\ + \frac{d\psi_1^2}{dx^2} &= i^2k_1^2Ae^{ik_1x}+i^2k_1^2Be^{-ik_1x} = -k_1^2\psi \;. +\end{align} +So the Schr\"odinger equation is satisfied if +\begin{align} + k_1^2 \frac{\hbar}{2m} &= E-U_1 = E \\ + k_1 &= \frac{\sqrt{2mE}}{\hbar} +\end{align} + +Show that $\psi_2$ satisfies the Schr\"odinger equation in region 2. +\begin{align} + \frac{d\psi_2}{dx} &= ik_2Ce^{ik_2x} \\ + \frac{d\psi_2^2}{dx^2} &= i^2k_2^2Ce^{ik_2x} = -k_2^2\psi \;. +\end{align} +So the Schr\"odinger equation is satisfied if +\begin{align} + k_2^2 \frac{\hbar}{2m} &= E-U_2 = E-U \\ + k_2 &= \frac{\sqrt{2m(E-U)}}{\hbar} +\end{align} + +Imposing the continuous $\psi$ boundary condition +\begin{equation} + \psi_1(x=0) = \psi_2(x=0) \qquad \rightarrow \qquad + A+B = C +\end{equation} + +Imposing the smooth $\psi$ boundary condition +\begin{equation} + \frac{d\psi_1}{dx}(x=0) = \frac{d\psi_2}{dx}(x=0) \qquad \rightarrow \qquad + ik_1A-ik_1B = ik_2C \qquad \rightarrow \qquad \frac{k_1}{k_2}(A-B) = C +\end{equation} + +Putting this together to find the reflection coefficient +\begin{align} + A+B &= C = \frac{k_1}{k_2}(A-B) \\ + k_2B + k_1B &= k_1A - k_2A \\ + B &= \frac{k_1-k_2}{k_1+k_2}A \\ + \frac{B}{A} &= \frac{k_1-k_2}{k_1+k_2} \\ + R &= \frac{B^2}{A^2} = \p({\frac{B}{A}})^2 = \frac{(k_1-k_2)^2}{(k_1+k_2)^2} \;, +\end{align} +which is what we set out to show. +\end{solution} diff --git a/latex/problems/problem28.V1.tex b/latex/problems/problem28.V1.tex new file mode 100644 index 0000000..2287ca2 --- /dev/null +++ b/latex/problems/problem28.V1.tex @@ -0,0 +1,35 @@ +\begin{problem} +Light of intensity $1.0\U{$\mu$W/cm$^2$}$ falls on a clean metal +surface $2.5\U{cm$^2$}$ in area. Assume that the surface reflects +$95\%$ of the incident light and that only $4\%$ of the absorbed energy +lies above the threshold frequency of the spectrum. \Part{a} How much +energy (in eV) is available for photoelectric effect in this case? +\Part{b} Assume that the photons in the region above the threshold +frequency have an effective wavelength of $250\U{nm}$, how many +electrons will be emitted per second? \Part{c} Find the stopping +potential for sodium ($\phi=2.3\U{eV}$) if the photoelectrons are +produced by the light of wavelength $\lambda=250\U{nm}$. +\end{problem} + +\begin{solution} +\Part{a} +\begin{align} + P_\text{total} &= IA = 2.5\U{$\mu$W} \\ + P_\text{absorbed} &= 0.05\cdot P_\text{total} = 125\U{nW} \\ + P_\text{thresh} &= 0.04\cdot P_\text{absorbed} = 5.00\U{nW} + = \ans{31.2\U{GeV/s}} +\end{align} + +\Part{b} +\begin{align} + E_\text{photon} &= hf = \frac{hc}{\lambda} = 4.96\U{eV} \\ + \Phi &= \frac{P_\text{thresh}}{E_\text{photon}} + = \ans{6.30\E{9}\U{photons/second}} +\end{align} + +\Part{c} +\begin{equation} + \Delta V_s = \frac{E_\text{photon} - \phi}{e} = \frac{(4.96-2.3)\U{eV}}{e} + = \ans{2.7\U{V}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem28.V2.tex b/latex/problems/problem28.V2.tex new file mode 100644 index 0000000..010872b --- /dev/null +++ b/latex/problems/problem28.V2.tex @@ -0,0 +1,36 @@ +\begin{problem} +This problem is one of estimating the time lag (expected classically +but not observed) for the photoelectric effect. Assume that a point +source of light gives $3\U{Watt}=3\U{Joule/sec}$ of light +energy. \Part{a} Assuming uniform radiation in all directions, find +the light intensity in eV/m$^2\cdot$sec at a distance of $2\U{m}$ from +the point source. \Part{b} Assuming some reasonable size for an atom, +find the energy/time incident on the atom for this intensity. \Part{c} +If the work function is $1.6\U{eV}$, how long does it take for this +much energy to be absorbed, assuming that all the energy hitting the +atom is absorbed? +\end{problem} + +\begin{solution} +\Part{a} +The intensity $R=2\U{m}$ from the source is +\begin{equation} + I = \frac{P}{4\pi R^2} = 0.0597\U{W/m$^2$} + = \ans{3.73\E{17}\U{eV/m$^2$}} \;. +\end{equation} + +\Part{b} +The atom presents a cross-sectional surface area of +\begin{equation} + A_a = \pi r^2 \;, +\end{equation} +with $r\approx1\U{\AA}$ ($r_\text{Hydrodgen}=0.529\U{\AA}$). So +\begin{equation} + P_a = IA_a = \ans{11.7\U{meV/s}} +\end{equation} + +\Part{c} +\begin{equation} + \Delta t = \frac{\phi}{P_a} = \ans{137\U{s}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem28.V3.tex b/latex/problems/problem28.V3.tex new file mode 100644 index 0000000..3abb410 --- /dev/null +++ b/latex/problems/problem28.V3.tex @@ -0,0 +1,40 @@ +\begin{problem} +Ultra-violet light of wavelength $\lambda$ incident on an emitter +surface gives rise to photoelectrons with maximum kinetic energy +$2.00\U{eV}$ whereas, for a wavelength $3\lambda/4$, the maximum +kinetic energy of emitted photoelectrons from the same surface is +$3.47\U{eV}$. \Part{a} Determine the wavelength $\lambda$ (in nm) of +these ultraviolet light waves incident on the emitter +surface. \Part{b} What are the photoelectric work function $\phi$ (in +eV) and the threshold wavelength $\lambda_\text{threshold}$ (in nm) of the +photons for photoelectron emission from this emitter surface. \Part{c} If +the wavelength of incident violet light is $400\U{nm}$, find the maximum +kinetic energy (in eV) of emitted photoelectrons. +\end{problem} + +\begin{solution} +\Part{a} +Balancing energy in both cases +\begin{align} + \phi &= \frac{hc}{\lambda} - K_\text{max} = \frac{4hc}{3\lambda} - K_\text{max}' \\ + K_\text{max}' - K_\text{max} &= \frac{1}{\lambda}(\frac{4}{3}hc-hc) \\ + \lambda &= \frac{hc}{3(K_\text{max}' - K_\text{max})} + = \ans{281\U{nm}} \\ + \frac{3}{4}\lambda = \ans{211\U{nm}} +\end{align} + +\Part{b} +\begin{align} + \phi &= \frac{hc}{\lambda} - K_\text{max} + = \ans{2.41\U{eV}} \\ + \phi &= \frac{hc}{\lambda_\text{threshold}} \\ + \lambda_\text{threshold} &= \frac{hc}{\phi} + = \ans{514\U{nm}} \\ +\end{align} + +\Part{c} +\begin{equation} + K_\text{max} = \frac{hc}{\lambda} - \phi + = \ans{0.690\U{eV}} +\end{equation} +\end{solution} diff --git a/latex/problems/problem28.compton-cat.T.tex b/latex/problems/problem28.compton-cat.T.tex new file mode 100644 index 0000000..346e1dc --- /dev/null +++ b/latex/problems/problem28.compton-cat.T.tex @@ -0,0 +1,19 @@ +\begin{problem} +You are working in the radiology department at a vetrinary hospital. The cat you are trying to X-ray refuses to hold still so you volunteer to stand at the table and hold the cat down during the exposure. If X-rays of wavelength $\lambda = 24\U{pm}$ enter the cat from above, what is the wavelength of the photons that enter your head after scattering through a $135\dg$ angle? +\end{problem} + +\begin{solution} +Compton effect +\begin{align} + \lambda' - \lambda_0 &= \frac{h}{m_e c}(1-\cos\theta) \\ + \lambda' &= \lambda_0 + \frac{h}{m_e c}(1-\cos\theta) + = \lambda_0 + \frac{hc}{m_e c^2}(1-\cos\theta) + = 24\U{pm} + \frac{1240\U{eV$\cdot$nm}}{511\U{keV}}(1-\cos 135\dg) + = \ans{28.1\U{pm}} \;. +\end{align} +These are still quite penatrative X-rays, which is why radiologists +try to hold down cats with tape and sandbags when taking radiographs. +Determining the intensity of the scattered beam is more complicated +and would involve some sort of volume integral over the atoms in the +cat and the scattering cross section per atom. +\end{solution} diff --git a/latex/problems/problem28.thornton_and_rex.eqn5.23.T.tex b/latex/problems/problem28.thornton_and_rex.eqn5.23.T.tex new file mode 100644 index 0000000..3a2a4c3 --- /dev/null +++ b/latex/problems/problem28.thornton_and_rex.eqn5.23.T.tex @@ -0,0 +1,77 @@ +\begin{problem} +In the particle-wave duality, localized particles are modeled as wave +packets, with both a group speed and a phase speed. Between Equations +28.13 and 28.16, the text shows that the group speed $v_g$ of a wave +function $\psi$ is the same as the particle speed $u$. Treat the +particle as a non-relativistic de Broglie wave, and use $v_p = \lambda +f$ to show that the phase speed $v_p = u/2 \ne u = v_g$. +\end{problem} % based on Thornton and Rex's 3rd edition Equation 5.34. + +\begin{solution} +Here's a picture of the wave packet, just as a reminder of what we're +talking about. +\begin{center} +\begin{asy} +import graph; + +real u=1cm; +real dp=2; +real f=440; +real v=343; +real plength=5; // packet length scale + +real xMax=4plength; +real width=6u; + +real lambda = v/f; +real k = 2pi/lambda; + +real envelope(real x) { return exp(-(x/plength)**2); } +real amplitude(real x) { return envelope(x) * cos(k*x); } + +size(width,width/2,IgnoreAspect); +scale(Linear, Linear); +xlimits(-xMax,xMax); +ylimits(-1.2,1.2); +xaxis("$x$"); +//yaxis("$y$"); + +draw(graph(envelope,-xMax,xMax, n=200, operator ..),blue); +draw(graph(amplitude,-xMax,xMax, n=800, operator ..),red); + +real vlength = 8lambda; +real vxpos = 3.625lambda; +pair[] vgs = {(vxpos, envelope(vxpos)), (vxpos+vlength, envelope(vxpos))}; +pair[] vps = {(vxpos, amplitude(vxpos)), (vxpos+vlength, amplitude(vxpos))}; + +real scalex(real x) { return x/xMax*(width/2); } + +draw("$v_g$", graph(vgs), N, Arrow); +draw("$v_p$", graph(vps), S, Arrow); +\end{asy} +\end{center} +We start with the given definition of the phase velocity +\begin{equation} + v_p = \lambda f \;. +\end{equation} +DeBroglie tells us (Equations 28.10 and 28.11) +\begin{align} + \lambda &= \frac{h}{p} \\ + E &= hf \;, +\end{align} +so +\begin{equation} + v_p = \lambda f = \frac{hf}{p} = \frac{E}{p} \;. +\end{equation} +Then we use the non-relativistic kinetic energy and momentum +\begin{align} + E &= \frac{p^2}{2m} \\ + p &= mu \\ + v_p &= \frac{E}{p} = \frac{\frac{p^2}{2m}}{p} = \frac{p}{2m} + = \frac{mu}{2m} = \frac{u}{2} \;. +\end{align} + +As a side note, I have no idea why the text uses $u$ instead of $v$ +for Equation 28.16, but I though I should stick with it here to avoid +adding to the confusion. +\end{solution} diff --git a/latex/problems/problem28.xray.T.tex b/latex/problems/problem28.xray.T.tex new file mode 100644 index 0000000..dd32614 --- /dev/null +++ b/latex/problems/problem28.xray.T.tex @@ -0,0 +1,38 @@ +\begin{problem} +X-rays generation (e.g. for medical imaging) can be modeled as an +inverse photoelectric effect (basically the regular photoelectric +effect played backwards in time). An electron beam is fired into an +anode, which absorbs the electrons and emits radiation (the X-rays). +If the electrons are accelerated by $50\U{kV}$ towards a Tungsten +surface ($\phi = 4.5\U{eV}$), find the wavelength of the emitted +photons predicted by this model. +\begin{center} +\includegraphics[width=2in]{xray_tube} % http://en.wikipedia.org/wiki/File:Roentgen-Roehre.svg +\end{center} + +\emph{HINT}. Follow the energy flow through the system. Ignore anode +heating. +\end{problem} % based on Urbanc's X-ray production lecture notes + +\begin{solution} +The kinetic energy of the incoming electrons (due to the accelerating +voltage) is $e\Delta V = 50\U{keV}$. They gain an additional +$\phi=4.5\U{eV}$ of energy while ``dropping into'' the lower energy +bound states of the metal, but this energy is much less than the energy +from the accelerating voltage, so we'll ignore it. + +Assuming all the energy from the electons is converted into photons +(since we're ignoring anode heating), we get +\begin{align} + E &= hf = \frac{hc}{\lambda} \\ + \lambda &= \frac{hc}{E} = \frac{hc}{e\Delta V} + = \frac{1240\U{eV$\cdot$nm}}{5\U{keV}} + = \ans{0.0248\U{nm}} +\end{align} + +The production of X-rays in tubes is more accurately modeled as a +combination of X-ray flourescence and bremsstrahlung. Our ``inverse +photoelectric effect'' prediction is the gives the shortest wavelength +(highest frequency) of the emitted photons. For more details, see +\url{http://en.wikipedia.org/wiki/X-ray#Medical_physics}. +\end{solution} diff --git a/latex/problems/problem28.xray.T.xray_tube.png b/latex/problems/problem28.xray.T.xray_tube.png new file mode 100644 index 0000000000000000000000000000000000000000..245f63d1e969819fa00b02a3e6282a63111c3809 GIT binary patch literal 37136 zcmbSyg;$i{_q7G6q#|8{gf!BP(hbr%bobD$NJvWzNK1DO-5@zM0>UsfL-!zE@55*P zzW>0xSWDJoIdkuG&p!K{v-f?%Rh4D1Uy{Cj^ym?`oUEkUqeo9p9zA;8_8cAf%g>HW zE#Mcrse+8;qx*-SUu}g6z+W)jwZrE1+HewWnz<(zm#5{)U8YsmypZeWB45hFh|p&HrbsZJ_;c$2 zuYauR^K+g)r~WsYl5|?qQq|=*Hr$1v^*p;Wfbq|N%{~!1d0+pd75XeL6j&l#S}y|U zZSc5Czqe*&Y_5O175bVQY#Eec74fNYDk$8KButuy3fKyFh3tlewdLCFE331k;WP;O zQmL!rDVqIcHy4qDqfXEkdOI&hihW&9_f`!rhQRcoRM;!==O!>IPAc&eve-bjBWpM# z1eFq!wuSw3yqhbQY^AY8lJ5tE!nFR7k?%9i^iPg`tFB15oh8%qE1lXBVb`iwYovw6Q;MVPF9QTiMTEB6;!g%`$DU>TAtz=}Y>hU9yI1Isf zzvIKrMT5T@x3)l{4p&kf68*CKXKF9Y(xXNX)yf0ZM~=|*;@dcipnSThB%1E+I_NuQ z{cp~WaoNC;>wx2i!#GqEGs5+Kz5H^_yS*tD{`T64q_1~`3KbBpVDnpCyCKLTnA2_G zIls3d1|D_34Kj<=BPZuT$i~fSQgBUv$<7_S5N?TbJz2`Ethjz1wYS0&CeT$&D#h=N z%)8Av5or$B&M=hZ_dn9btf#$;IKgJ7`3VF>fi3lDk+WCx7I!G?5zu(7e0~_?O$tMgS2&dqGi_5VUgypsFxxo-F zTDX-ygB&t5g0+v$SMnJxmN;Rg?os&-qQ#pn9}=TuwIINj(;q%%Ecj+@?0i=C=J61# zvm0!seXm!rXZnVX^Vy+c&nvUx))lwKg_Wt>=GygkGo@&es3@Sd^$lm zf65H?ce12PYSwNprtL4$+oqGzt4M(zJp9&T$`#;@i!uQ?5f|y* z5{u~!e;y;=De?*CGEVe`-{#u~y;#&+v-T;RFMVC|X)Z(kL}rCB&aU{R9;~=qUnG7=gcQB~Nn~e0_UKH`pix6B#_<893X}lYzAjIwlHh zx&6$DpN6y+qfFKaTBDNP4&AtWN|aGEbxuawY$X(b8z9%W@fPgGiQmUhT(qO%Uv8rd z476_q#Y4M9sb`eO4&Cq_4D!FrU$hd<+vZ@GxQ+H{c!=s9n{e4{x$#HxO!UQP)WH>? zJ`)e{*y?zI2Y-9aDWO*_@Mahj%q$U$sk?TKpW*EP+A;hAaH79~`2jINy%K47djl75nX0|Y&eZ|6hKz!6;0w4SUsO?Z*W{t` znf6m=E~ta|O~)oIi7aOHkIuV9`esXv60}dA%|0b`>0!PoL$>&fdOnc8;6w06_MeF` zpoq?x;=;7}R`)0~;q#dEET8NnIbSC$u(=jk*ttbt$$Lz1$ihNKx7JM!fe-$E9Rbju zCB!~ts+$XUInrNnhL~aHfHLzk=SBUYt9{$~i^^t0s5f@yXLfCk<~edl%Wo<{N}=+7 zvVSWRZ9;%NPy?Vg9)+?#!{sn8!gDhpt6pR!Yy^>cMfH)w(@vw>f%$JjW5n zFr8_+Og4^GVDq*( zP^b|o?a$jfEt`ureFV24KRI~(Z#Mu#ydPbFh{>#&`zfO|(_1tWEosGA1%pX18U7|N zElD5D)i5r;9ModwO?=os0g%AGDS}IPsGr}*6h?byXe+11%AU~f4o1oOG(6SUC@R3B}ZxABaDSUZ)#ui1+Qc9C)P4L@xZFpMvXU=W@23fjWj|@DSGOgZ!Bc$vd0xVl$jS#c5q>4}0+S>WCczhxvrbe`!gDotvfvq-F8LvVWXCef_h?+AENvunhO8B7V6@kEL$1PI89v zV>DUO z&>?2uj&a+p0yfsc+Y`R75rvV|#{h%vFi8W;EiN?2Uv`k02U?U0_LeJU44jSOR&lk{ zT_$MQb12Yyf9y95B}A;Uhx7qGkIBae(py#PrQ{zYX5b%G6t?zThnst+e@jShzrR|g zb#<1VFwuam3C3S~q}kM(-*GelT<5SDGO0o;{8zcM4RA2DXzoAg3QYyc>e!<8`n4#? zSn@QkEMo0wnqHT{qbPl#o1gT3ib|h#b&N;uQ55p-|IX{bmIKoICDs(D-Igbdg+FJ` z&b4)ZdV|=nc-h*gbj=Z_=q-il`;4;Lzxyh-Jo_Idk9$7U?csQRY-k)ZQq;j?Vr9wz zKG`hYgv$lDl?t6yurf1?N=(;u<2ZRQ1CX7#wZ}sxtJ!TA-;pFs13*T;`UaPXShL*E z=)hhAMq4AIZ_nTMLs-x4dE^oKU8MGrc~|vAYZmtN5!vsL6C2%wY`wDcG5d5iFJnrs z=;t~O?u*Ot5C+OMK`8}%7JEPtN!6nMo1~Pwp^&zQ_ud#4%p5s$Kks9@&COa)U5&Id z-?TDmmHL$jtydeY+qtceeO?%awxVJ1f%@hL&$zw6=Eqdpc%hGJ-T6VGx5OaBw;RZp zd*%f^wX=kQ+Xy4UhYjgIOa^aYPIOkw`0_a8JAFA4C2^Wn#e8#ck2AjR&?MJbo4;`h zC|lj^tV&QQVX7VP;bQjZjWG!}P&lX-T5i>Ba~s zRV9gUURTcC`<081Q_{ z+xsh|HHYQ?Hjse`e?c7b_sx4|fd!QEQM_8mp%$?B_o@#O*MK?Chst2PerNZs{_;Ml zyQR7zy_4NuZQBkd`)>sNm!zuUoa(=T_xb5uHKsFHA(pxnz{* zD*K}$`zg20dQjegpav84zsWlqu8TylQ?TwUa;7G?S2DOsn>c$h3rJ*pVcfMY>icah z5_tzH>3two#)k$O9eNOcQ>-<$p+?uRI?QBb^Zcym6H3-k1z+2!v#t@nV`3)mJmi`x z!%#`N1~n(f`y3|eL6e6`Sy!kbSUL}1f<<~G(| zxqx?`Sfu&AEm58dhj)Sxnb@^TZxRBu$mXs!^IzK_O7VhZbZo^+&b*nOV@Hoq=uxrS znMo+hg<`p{MoUU{;#xG)=)hwhR!kb{q5b) z_ZT{GRR-=4BCp3k-u>br9C}Z-(BB9U;2Rd8D(MIc%WooQvM+uZBrj5RSBr_#&3KO; z%H8NF&)w(UJG}LE(p);t)2GFqy3xCZ%!dn=Iu|rG7NgwD=KEX&o62ma2S1c9V?rts z&MyMK&-n5${c}VBzyexBYVJI91=z_P`P>*+SvU;5bcXUXs$97SN5WPQFX$vPs;5qs zsAy+q0*wO1HUeWaG+Lb>513*#ye_sw+pjXKYo*t>npU1y* z0(YPe=-%EZ%CydO+jv#P#GQ>4jwI;|WSSJ6)?H~%P>*cBBroaxD{WnRQkT_TjJo!E zdmx>OYEGI+s{VTI_u0{v1PB#?KfSayx(3AD9cr-jWJc@$#UVlD5Vi*0o(%)8++aKu z*S-C`AshwNC7>S9(b~z5PFu1U@(q{|eswGw!8)~Dz`vj#1P^s*U`CbsDA(nft3CZY z$`=#PTUV*2--wt+6CF2{QL?)RV#<^vP;;*fh?Tqks|8){ z3I|1k9)_8U3ZiF7de(rmwDY1QcVrWy)bl=_RiJ+B$44;tV$6uM^ZIrB=RNvBr`9%v znd=cnlixP%i7C+1R6PfJJyIASQy@-!!qu8fhIZTgCQZ&yX@<1jk(kxR*l|Q8KB|uT zvvC7UyTrIYHPzByPe+;9dP;nvN43(!_{O(xKo?cQt8Lz0)x(G9;QkB|ccs4+Q7WsC z$=?x@VNnN%zJ~c(ljjqeor?}&)Gw7ec$vcOcpf?;S+)d0F;$~T zzExGj+~ar0n%)G6j9p4AAVQQt*JRBC)BRUWzUsa=Wt{&q+8j$cSw>4JV9{#jiDFLt zvhs%k4Zh`AV)hjEdsVx)Bvw&j6c&~f*>1Kqk@NSrlopxXxn_+Zo)wo0*dsdq zi%4zf1QCgv&Hhii?r1JVdj=~@+LDddkp(*;g|vj+-@ZU5UoN80ef5;1y^9N!zLYX+ z*L9d2z(AHG`QKwmTsW}Dihg)~Ng3TceUVuqdFRq zDYRP^+;gk$`{jC}|O}6mepLo|$VfjGa&!0l@e*bw7aON6(iv4(&CdP|| zOYuXI@++Qi1Rv1ErXT}LA?54P)I~ZJT+BJpqNU8d#uiQYd!8YTWPuVc-E{OdDt66z zuV^9dWlX-9<$(J?!~ni2%nk;M$bx=cc#y+L0a2Vg(|<%0d@P=sLC=7#|C1Ev*Q*Q` zKV2ETBliaH{%y=1vr@1mLB4A=iZrYhtknBTSg;4aQG_k(?dRngI7>$Vo!Iy?7}1$P zTYA0%x&MI}$dufqT{~ZMY-+Q3ScBQejVU-&iTAI4tcmrenZ+2R_oGtcoqgqh_9n+X zpnJ@Wt!=G9m{S*-U|>t zKlnvJlsI2y-TL1z2<@{Wej_%2ueKd+yAxfDLYwNaW5?2~%UxEuE{v?UId4mqR2;?E zWJphUIK88ND?G{J&ADIQd~mZE*HQQ~2&Vn)|e&2PZO4>rofXat~ z-S$Y4+7{ikwwIB0?TgGa-JZ0lu|W#y7_CT2Q2}-M42OIRmEg!r%?{}{Ky^Xl0s^H# zyk-PW@h1ZY6$23?_?m)qW(rF7#?kF;Y)PK2|FZM76fw{!$W*g zWp*qj&9*`L)Zmt2s?)C}Qf#FpmAe&l*kG|s2BNbZCWF(KIe)DK<3ElC)7F1L`>w)~ z?o7TztC3)oZlJ@NT0J)Jv}w@s0TV5bY@haJ6rZU=)1IZL_w-7sbIi@52nQh@CZL+) z;Xju!L%^f|h|g&(ZppPYe}aP=)tKHhmd36hnkrx18+vxo;3uq*01?qylQPip8=-gd}Uy$d#V7XzN0;FYFD6? z3&@%Ml{9bwzQ0&!x;}@6-*mi;+|po9TW`_9)tB?%FWJ_RiynWB4+qlHQ6!%h4VcTjz2>BDR$r@gvreKT|(2sM^5Ri^{i2 zxEzD=^ihZv&X|ZPva{p>vJteybYbw_QfL3mNGmxc?cJkv7KW65_A4~aj=M44J^B9A zKW!SNTAsCctSWPN_45msBnFJ0#)37{Ge9+X%-#$S{+d5+PRB5azjwyBxD<&~Ooa}+ zZDJpX3}n6YEMsJg3o{#5-Pz-Owl1$W?_SIUu3 zs2aKyRJr{6Ln9zQPzNjHm-CGUq-i;{tEzJQe^5NQn)s|QOcq8&I&lMTyLsav3UYg| zKsz&fU#M0iDgpI;{NW}GX$|Y8pDjC>VgJj3)JmdQ+U-aZ!g`1!wcF%IZv2`2ACIq$ z*oa=6+Id^(yQY+i(o;(_1+8Q(cEKo7JJ%|ta6;MVfzyQD7NsDOydT67b@-t1Q;~bC zG97D4Kr=93t+ynejqe(andX6CI~0%>9M7#r_f{VL9lWanU-xtn5Po(7rhCt0Gr#&} z>#Krk3p5!Hf)=g%egeW?sZg&!dMFHewS_tJyT?Myd^%4N%a*N?^p0Nv@xvVuO-+my zHU?mSPQ8BP9aj3z#P{keC>smDzPumsZ%U(%TQWQ#Y3CHpEniMbQJ^6yACXhuPyc9$ z+c1#eq%y6x9Au^9!%W#nabc5D8BjUzd-rwlj{kDWB3G~_ z=^DC>Ji6%G#-`bQ9n`W7 zE=(z8GLrI=R$g=}->al&_}2@e0^*4OT`KqYAFCkN+G|W{4N3teuxUo_tZL?7vzEpE zA_b%IX6&90 zJdp4(k?1SHEqLOc&k%B%Nq!xiYDOx%0}0oHf?hXhLo))QbNovjFtqq4h|kr=hpx1A z-H&!XTh@~a7D#V43bA)%#tGu@fc6WWz=GFgn|sj#9WiH}rKToLS*;SV8kPDNtCF65 zxW>}rp4VIQE}s-s6996KYXv)CwlnM2Er0iMYHcCkoF2WsqB~n4vSF&vqqT8KB_K7X zu9`tg{i&$jtBhJQx&2M^-x@GK9iNOnv6v4}Y3*!1Sw*cw)AC2nTT-)d24Mk?Sr-?k~gusTn(6>~Y5q=F4?rx|E=(n5jXU4D(E4 z>e=h*kQ;)!7cbN;0+nu(Qg7@5k8hI6=O10L^zjQrx!?R{70vjcWro~4^)=3@e(Zk1 zP^Q5x^wLS|hB(-!*AG5}Z^YFOF+xkd%=<+!(L?Ahk4J==UhYhy%G!*ZNg?bVf!DLIRyC(A%t+HulSrw&gW^4>2s>o+6+nGE52AT z?Y2wueEQoKm8xi@8Be>swoDpy#MZCe(xX9`RIC&l_$-Ev4KP^Vg8(VwAFU1F@Bzwv zpzw&&CNp)l7mky>bH(ADXFyoxCdby-G%Hs+nQE&M0G+0tu{pQ$TPW5lgV)I)B;sFD zF*oH}&gdp0pTRn4?-Trre-Qg@qLYhnp8wGWYZpC`YVf6j`FHc&(OdH(P>sXpTu zwzRtQB)2$hd!e4JIBn#&;%{7L#L&uS^M)1BZ>yQ9PCO1C=SD|pz`apdSQ5vzX*ZVb zx$Ugyz4V@CaEZ(dQoUBHWY~RxQ*BNEf`+P`oRfd2*vJtxY}>J9r}-(Sy!703+MYdb zi}wV!JLsFSRqP5A>!|h_CZD@Lc7uyy*aEV}#Oz4==GXZ5htnAEq@Ptr)go=x2`@PO zf-4YrlRXai-s^FfMjC_slt1h>-DLffYJp*hG~@belrxzZV+Kk3bdnU+niP}OcHA2Z z2(+gFi%|dT^=crox7%BC_?+j`zQq?RSP0h81${nSG!3#>r31|LD9kDd@+?PUr!G$_ z4R=kMU6!X=-mP{!>)uq%@OGnr$g>A9Ad2z)fw}y3p&nc@Pz%~#h$OpV7sBi(AlG%3 z)l1yVo_3cCgUUAXtgl1bwnO#C!ZRy(cmT#{fiY*?>7YhRG6P-cXT@7+XNJTW;2jk+ zM&SMxX2|~Lk)^ExDS`NN?6(hM%IiuYN!XRKMcD>rx{kHt2#qem3}cHHDm$lJH}6Bm z6oeRu4>79Q(dV_47zJs~JqY*XRXbQ|C#z>$zEap>@kR-h1s{fcn*iO>M*y}g;V%lB zKx}1Aqs({fB0mkCHAYtb_CWCV9@^bEB*Qcm76tKg7fGLZ|IVdwYpG0#Tp%{LEhjI^ zC5SZo7>=zi00)yN z$YkUcyf?F2QAf?hR#iekr|#Z*CQJUyoD}q@`D0;$<*~;+OYGoSS4?C1|3%sveQm5+ z(Ate|-(it8MSWWl{0Z04Nj!|#R~F|z&`T&J#gQAHYMLbMHnYyV$!dNDh7q($LY$+UlR7>m*UQL1F=lI+4&kP0;EMLj!5PVbPz zyZdO@VXz`(>`t{|-$hgO{11}*CL7w8SrJ|h7z@h}9`2F@UF=QV?wVLA$$W6sZfooZ!+Fb~>b8quW$qb1#AH z2HftXFgJwl|HN=^6t3n2%`N0LMYIQrA(TWm&*&vwcfH zP$r(QJ!Ev=f7K57!k9>;7PP8qr%f9GedB{();hu81~u$6@oF2hlB0AFvQaH=XqUeG z;T&l`QX(m+nz%=IFVvk$e_;@}@~yt=H~KYiI@U$X z;!yhAZQg)0VaeX>`JivdymaeyqMOc3{VxH>|-=Dr6G*|%`E z{QBVJJkM6?cN&dRNHhUz=)Kvp=r zG$0_^^uhke6EAmnvhx(59uw`---J7ze1?72>=^y{BPx*`Nm;n_$At=gBdVEGF8{Et9YS$ya5P^rOK{(@@=ZPT_HDiD5b1`wwgE#! z*oF?hFvdIksVE%^sWc1+J%y5V+hDu8p9RuG}pJ|>Y=d3>4*3kTESZl+j& zqxq)WX+2pTo&G+ik0|LVs)hqA(V;$g^W_QC5XE=F4Zd1a`08)qnd$I>iwGhJDyItj zrHE3yfL@ccp3|QNy_w4Y{6;F_!Z`hAC{x37<+H<}wUn6;mhas?gqt-3sIDtZb4Ree zt8=gT7r^oNlN$?j=x!pHMj!H_ZKN@597zuaUIWe{OcOg_XV%hecu6CnSS7U?@Q0?U zQOy$SHspZcz$O?KB8d22Lf2WSHz7$T>rUxxQzO&xqRMmXbndhvy8^b)KG7MO0Kl9E z7)PID3clRbtPhO9B_xysrwSjR5zt{+yDOPgbElfy(V3B5Ezy$9HOcC54YaM_>%e_= zpeAuEQ(b(>X%nGV9gVlxdzzOLV_3o=498T85TfxGnYI}~w;MKdeyH`vp=%d|9zx1& zEb-?4h7I>JOxJkW>5YFCbmh{_TuPubivP3hKE=(erZOUZDNB~JOnw>Sq+hKgzTvrOP=10$lM^$DEsF?zceXLKI@jfq{2PTLT2*<-Nc% zhM_5*8Uf(1)#hsp^zc#D$qXGiWCBl|b1f1=)6Fc2N=KSq@KFBhB3vNdXJQw6T56V; zvRG^fwJ?eruR|R*+J+Dj9t{m@>$I+*!nUxh;^t|W_fh9o{Wme6QDNiXkl=LJV+R2k zaEIw5;Eay1KW_>p42bf_jLNry$u`NH5jNuc%4NRiEefi=tb*>6qMjr~;%BV3 z2V|}}8|c8V+mUbI*QAqr&Xujji13#^O5Ett_o3=X2Ddv=gEPEnduyD3lO6w@Do zY7ZxPy3sviUYcU((5>k1r>r&9^mORfw$XMQ%5XgQqxE*Hsq93pyh4M=A>Xf%i93{f z_Gwn<^~iOXEBa{9He~;STx`##>w2!oFk>tx=KOU3unA;8h-}biWT?DQuh>tu7Rd&q z`0P2qIU5DhCg|{`#bDhH>2>eu-^BI6nDYI)lA}|-6iCT2Z%FE_YCGbxq++SkqUrQd z6s?co_m|g^(jhl!J5&^#H42V`o88xmvCF%VW!aai zzXHEb?$Rsl?5__H^eaZ3ZDWd*e6ABxS4Nspsh1m=^P>q6`pV-t{gkAXZqfmnZxZ-T zDz1xWny~Qpk2ldBmUwt69qh;=(?%1(M)wph+UwQp>%EtwNxSN0#fo zLojuyXSbsdVV1bx+_A3lUV4Hbx^O#(=DT+S)yq0phcptj`tAqG5LzpRdKQinQ`&1; zP-0@8K*g3bq4Q@dX(|R?yKygHQU1Q%{roFhSlE8PFskR~@oKsQrpheQ*=c|8{aOfp zb)>NA(y{M_fV~kQ197JShptf5#a{~*NuvjuoJ?9OI3CVt8Mg`-pA$NqF|kyb`h9G7 zSAk0=lxf=Y6BO!w2A440>X-C1@H6=OjXwLv=hr2e4~||dwPrjS9B&oz*YU4_;~Fsv zeo^J&8;n$0(19C$1__)kgh;&+Pq1l^4^qXX^GPwlV!1Ys9z0{mO6*mP=Ya@mLn(^) zj1APyW!=w6nz~2iFM<<9K+eLK%5rI9L*-WkRJD4(mph|`dHeb4_A`HqQVbE3VSmr` zZvXwr-@W#>IZB*Qy94jBk3GH;5RIWCAl81alzrjzN7b&>%*=axKe{?xxY*GmTE@hu> zwl6E7nen{rw{}2(m**7kaG?xp2T#jOgyHNP5s3*k4zr8g#HZj?>#iB(bfXEIXqXcr z;b*|4HBP@7I%H}(t0Fgwy!9FXcw?Ma#;#lAdauE((9TApYpl^Li!;8lEN;e+cn({l z&2ni65mY5!UT!W<)_tF>ZXp7dg8t3aSV&J@mA?#0E80DG6%y66=cfkDw&YG0fBD(R z7$)rAQ~oZXV!t+~^NS2N&o?@xBR}rfF7$zGh8j>T$4=h=v7X>S;31~-b4%;$=;H%6 z{t^)53Hp5C3ZmA}a_nZdg$g;x{1Us=x-jvlh8tcsoARGi&{(|PmeYG+6erc58s@9S zM*94I%7hT{MsHXaosY#}GMXd=`w=&aezHOgvQ~4o0|SdY*DwcHTP~DOyyc|IE{@tg z)!J;IcVcHJgxrN(Z}Ai_`95kS(;`8z%-!ciki12vB6(?*BtSU-Y-TT?Bxl~#hEq3l z((PI3VB41GF9Ff0Fu-?eB@v6Wd$Gw*ltRxQ=l_Nm-xDP6`Os1&r)#;rcZakZa_XbV zU?oyv?{uY5BCvFM%n>yDtYqE%VLPcrs6m5?w(eM(n4y=h(s?Cjgjb7rHu{RK;eEe| za>Ji4yeBz47F_VhGpke=zbeihJ=Tx?*I%cdulacg88+RSgoaMI4nA7w4wKlN{A2 zfG)7WNXha()a*#}hJryMVBuIpz%$t=u|m^~eJS3KcXd&d|CkV`xzr0AaY1M27%E`I|077V0-->TU{Wg_9~zzA37 zw5zTxt)F1~2gRtpg8X^nIgT^I8W)Dp-YjwPzOJbDuJvzPF?@dLI2wK>iRMkW{cfr0hk@7TTKm{^n$J_5IMMIS|#c@5@ zP-$h76{=%U{CBSW%PF(3Q&<1X@HJvC+KzOFxGYmu0o*Ebp8J)x%>B8{X0XT;Eb1xP zOE28fz6Far?TtU2Es%FIm~C$?c%$=!*8MI&x~JwWp7?@rsM8ws&&Lis(j-~hlV~#wKbgDW#T6!R`1u7j&gsO4mqpNWii|ZQpEG7k&^C_~D<`ea2CXF)3~?_IR)=Y8Ddc;E z7aMC>`ZF?2l`bC)M^(0(PnAw$XCf-oc509}#%i>u*$i>Re4+Q}*zfB#L;>?kjm9soB2Dl>ap1{=3PZi?I47 z+r?%`FW?*O*a}-TQlxWq5)msX{}`G@H-jRP z&HdvWn1ddz+d_SN|B5Jpk)6`uf)~Ax3ru+E^Zf(Y4psN0S)blvs?0F4mTcH4-i~c~ zA=UY4$Ia;Dj=Qgh_a5KWyyK<=$5wy-`BQadv;~pfh&&}}V(^n0n^$0tl?t)la+I*A zi(OPsKoH)2F5gg9to<6Vn}Kht(vUur5wS*BIfYD>l4JW-Gj``@uOZ2P#kq!LBRm#r zT1|XMpXz3PE2bZ!T8o|OHQOKP-6T>u;DlKqZ+TYG~w_n-=AySld{U}9A)X0?{a9g!8K-XpF;ZAZdwebJAl zTkkLnwPP0o*HMIF>w1)1%vq_ViL8bAg8bKu(;!Vg2fJfb?6H5Qq&eTrm}t-2RGkaL z1MNK8e1-x$5FF&!a=o=7%$stKVZ$~nVft0)9pK1;{OQtnNp%N2u|AHM5W+y`=TE1; zr*M&w7yMWYXuUW57 z*Izq~4P`_&`~Ik%$T30)O<1)PCpfEFw6Lgvqo=VY!q(AosazL|raj>H(GFvjB5ugJ zg)FjAll3#*%ru{gulFsv4u?&ZDu`r(x+|%>4+3#vtRraltRIFL7Y_8R0i?zR}{>3RJ|rA`i)qWy`|%=C^8T zeQozSpq>%mb9LUK$*k@Q?Q8U+@5#@up)xlD>1o;`twKicFohN+93>Bkpxp>Y zDDd9Ij&ypCJ@iF==_%b%RL_cY&l2(V%kIsi>Xx7S#;?rJ+fkFgrx`jTVhg8FDfR5S zuRz?v^hZ5Rc5~NzMze>t%px805h4^|j*9o2Qm);?p^HWRErjb*(amci4oIQZNDj|J zDKVo1o2qhy@M0#Kl*+7(^%oTs_ZtkWtG{zzL|gB7b!*RA?U8lN7Jh(dzniJ=Lnu>m znfKV@+Y$WK;`14n;D`4E1-}<99#fIz?YmDBZ9y?}G1PMzs$r!8uZOxhYc5wbh5aZu z4Yd_9Qg9Bvg2!$l>`T9K6oh$7okj(gF;Cl!pDS4o3Z2(YpF5t%DlPt*oV;Es0c(e~ zK2r80yx&_1?~NKxCQR7-)=PWhLz>c&fS+~P+vH0Ze|e>&dGK!OxZ7P+nVl_t{5v`> znd=mjK6#B=;6{F|clTF`p$*ES`V-?m;~c8X$TU{%?IyP$fw~Q$Gi6z8ttGtyKfhLz zm@VmnD$8kh9qDKQSKx~ak>XlZ7GP|A&X^YJ@Vouc#w`|1X2|jM8 z?hb+5REG7yyGtT%L={o-X=wj6{z7qVMnXFBgaI$B#tYouPZ&3x)y%m#KBV(-k#dfV z_B@VCAAV2wV3>>-$+Lbt*LB<%xjyC6Wx|H;F(DwT*NWCj)Q+7^jXf$EYTb^4r@V^` z=m;HfUasvTjfc@ce#X^x6UDi>=oprIkM_k;k+%Unq2v0MxD*FJj*|s1xe|PQe5edm zH-C^C*ic8)5b|D$THs+O>fbE{y}PmFaJhrk5!4XzW|fz~{M>4a+Y;Q}pL%0u;nj>t z;LdH1f?SS{AYD&8=5??4dK=uFNI3sUAGW=SBCfgQoV;^A4Q;FoHStLKdM`+P*ewt< zZJKB#dr&rXYPXJb6iH*y8#7p%UUltjDIL_lGF8D%Qm{W^Jg9tgV^GDzuw<~#%=fE! zH})iw!gm5C5X=z^3rj~%uM7!Zr<-jU+3$Skj7{XPDVil6I!a6V(Ep^#$s6OwxofSk z9UkO5;h4NhyZ7O++tu@TH)dvTzt5#^(T>xp?1r74Zq16PE0*{#3bj z*Ku6HTa=YrYf}~;-D$o)6&f4kfzI;>-uKr|$UJ?*r58=`jF$U}!F-)7+TeSu!}hf_ zrVfmlKu3nsz37+UU#^;dUzSw;)cckH@%dsvZ%71QPuuxbQ*Q`vD>fo<4$_iYKsfEiSV#7_dAaHN9oaF9BZwm{ha|HI|dKb8=h^5X57iOj;R-d zlwCjs3rmS=n$6ogzHtBTtn{N1nXiRuk19#|<-_DHl!8!*AZ0xd_KPo4@6EclmIQx?e-JOwv&t1_`BT3ERL{W+ua zr`hmGN#@rG-xt*OGWWhvHR$Z-SH*^4q)&!XBR^zu<5oXEMCtfuW-1u#Fq`EP-f zJ?cMJ$(~I9{QBf+bd+nkw>Sg>X>B_`blH`UyemC3OCD=xX7BBb6CIZpA?jbM8q9i z42jB%Q6-un?Ujt3^`{Bmh1g}EV6AH#GfvC#e+FsF!e3hOO8aEv_8c2VMo0>nI|QLW z(p3dfjY5|d8`cI@;b(M1?H4irr8xvzGD;!rH{otnSN-ibA+>o|?_#LblOV}uEfl_Yt?*j-M6{E#InjAnK3a`!j!zxTIO33AF}uciWgereMz-$ z{l?CwU8!_dSwTw~=Dzp`D}>89%XGp9%O3onPdG@4ZH%sy{mxb_c_pu$-z9*OjXU76 zQ~ns;N-|xb(v?w|^J>tJuwYZP&Wr_n3$9<*C&~)QbVrs*;E+Xp z{zu-E`WQMjIqmZaNEdxN5TtU?@$9tKQi#eqVn$@f6r}Jgj)Prt0N3uwc-yEktCE|Y~{hCk#sdDTJ67=dXGO-A+zCz zfZ|7;Q==y6UDQL$QKUUnl~$J8!Bm0<0VOQhnadqldQrA&&^Y@#CCnNJ4C*@XZZMxR zPio%Og5ThO>+|=5GxJAEEC#u@`ljq+&d!!#+)%MrVdS_8e66+0`x;^mA-xU@&I}PD z!}|$;&|^Pa)q8LA+wUtLz}})~j3mt#?jtdmFspoYp1`CS3PUl_t z%mu|0>+6icp5dq)d-L2kIx*UKlpOi#1V+KNj}Fei+rC~%c*S8DayOFCG5Au0u7nn3 zBPrTr$!}7%9^3o3napr%l+5|*Kn-_(c!weMkiO>5Lsupx#ePcXFITK9%hbNc&vFk5 z2l8?|5~q(7z!p@qsEiCRJ?_lYlO5Xk7t>srVtyH z)(XLEK|j$YgLGwvdu;^isd-K`-0#W0EXe3#Qe(Wr^ff%GTllTjopcj`nI}AB6TyUdSG4MKkCB!onUXj}seJsvbpp0!y>90q2Jjq6eMsq*q7>hL#PSRIQ*0sxw%**K%&azPLSAH>0j*YLvNq)_E+l>f!96fg_c=G zYY#w!cJ}nzlFt1Ir(*@M#Z+*4^${+25`NG(X(=t@-|5l{lW@XJDr#mtPASXorr0Iy z5E>V$r3Lj&Ki3zoidxiwoC=TlNzNUzW=zMc{5ofxbP@1XKZJv-&Sn4r!GLV<`<*j- z%=hvo!Bd)L&Hv||Fsq4Oh}BP3zFYe47*edkY>|AMr9yPC&-aGPDcrn>IVj(?a|J7G zy%^=UB59weEDBZUJtEi~)oT{bn@sXEoRa!RndeuOi8S2a`W2Q6K-=Ngz+b0na|CvT zIV^G#4l#Ydkhoi6%G^2Xq*$~YXmWWW&9PwDMTX4y6SxOf@$bE=Q)?RjxMdn=X&T+NIs*zv*qy; z0=2=I^uBikk)P)4yXO3s;gk`ueo0`U$N( z)-pIn>SZbECn3UvT+igs%1G^jYoR zmhG%}gHT0zRb32HA;fS zN_5i&OTbkBxq@!S0%@V6$aXOHO8TH)@yTo2ao%Ilr1)X%hi&n@a^!&-ulx9Bq4kk% z@0}YSN#?gEogQhcHP)E%Em%5GXP7jDTc`=$g3s44U3CXTKP@mc;9>FxuN`=|feu<% zyq>=^JX-Ul09w_mNX5f4jm_g2aeH!hDDz9@B|^Kz%1RNF)vQ*BC8)Z9Yut#zpJSHN zz5$0-tjgphr1X5K^r*)a-jr#Psun|X#QR%hS(d-|zn1s+#9<6@dk-b;x(pr8jL7Ni z1__@qokhX6Ve6-{thAQa#Bt{22Yu*GB)wL%%JE4WQP}B z4qEfV!+90T9;uFw0_A64){{M~>Jw~lbIDg~Aq_FtSrUtf&r|xn7wl#{GFlfG;`E5~ zq`@wmUVVs+lNf)K9};bQseK5tKkBI0n5>&qU`-evtwv$jgTW`{Jp@4q7%Vn-Hf%L8 ziuC%|7$vrR@_Q@Caqe|e>Mo9`CPMsVlz6X*XGw1Vn*Cr!OVaY5o4dtG@Z7m}VIGL~ z_i6H653u?5v^1nU*fgbSP|KN2$4XLN47x?L<%r!G((5OmgO4X~MAJ_FU8jdv{M1!5@8qirDB818sDxb@Ux1pvRz_w_cv~Zf99{t z&N7^RQNPi{-X}sv1BN(!!SG%~X%z3PHyl~16EdZlT{-0E^u3h!{#3B=;pJvDWq2&l z5Jrv*^VjP6TEFn1R3qxuw(O*v*zd@M(Q6DEJ}^)8E9a(5&jwP}=&&X^7|M2pxd1Nvme>I|GWwC0pMQXXP zRl^JvBvF&V%wHmdy5oO{chf9&P)~Psi*r^c@r~ilSBOfrC_TrF=>d*t09Q+Aa#w)$ z%9o$t>A)0*ezYh&o)O<;^=dUa>n1C)QkQ(5Ge_unj35UN174*ksGCXTm-<3WGZqMK z@qH9d@I3(!lqcy@40~n>SB7zoz#bR|vop%$+jiem_Sq0Lde_5uj+Sm^Rl1VBnIV+Q z#MiWE*s@l(^VGeWF=3!{(09G(lgE7nDq_FJ3h`;6|tG%*nCY(9EPYW(1Jj%4EXe$=`Z# zynWx`eaCrUg-#|3F+wI`^24gWv51Z!9a_*X<4}@!LZ{MK_3hGjwdC6!^he0di2eGu zHOq$;`ZP-ae8};7d#`NqI)utIShyEfBHlatqwvZq?!iAZ9g%Mu`-DVl%EN3Z3V@ho?K9F(S)XPGuQBl~lm4#{ed5oDWI5aICt zerSBkf=IwSpX;Qsrc?*@vQhCL;j<|s;)T5(C|;Fw|b01KEPe!`En4XoPyzgYBk5miZekUt2@o6SRKjGFfW8X_LmNKulLn{cyXa zbLgL|`3Mrn8smEjNl4X)Ws5lk)^+fyyZDZp*yk+()5g`4juc!BGz?6sosRKGJR)Bg zR&NmL*Le**;kSN?!@ys{mF0l$)g=Co6@7mWz4_W3Y9i?$9K=~x#>qWLZHrMGgMny% zp;4M1QjTQ$8KW{W{JU6qXY&zE&ER^{BgFejOQ&NM` zN)KT$UI`K(=qsDJ8&PK;aZJ@L^PN)OfAlVKzs>Dj;W7N_`wWHdEKvk{y&g5kZuK;q zDiOl>XQ{8Z`+%!+sr@_3T`mS;5M2l9InV9rBbA=@2xcpSi{faULc-aTfVTUoki--U z628Pn81^vwkwh|2EZKv8HIUAAkP#j;EL|8CBX!mm6Z57hYBM^iwW9BU#v7fscOmQ{ z2p$d}7bqkhZH771{XEh4)}s8T;#oo5!9i$eB#@52NP1IJBSB#k?SBVqsX;&uNe9fQCqI8$`1ssB*pC1* zEJ8coX`BqNUHOQ(hxo4VFyghXdw7``aX<a4FKnt~ks*L)_1gW7w zf;Ys)9#=D{Fg{F^s_$j0Msvc5hXe1kkT~Tz4Z>IHRUrMjuY|awgED8wRqE1Z#<`+< z)>gWYe$6%yl4Jp%7nsP+k|YKY@@J4hiG! zKPHdyVx}_8U%>*s;q&Yv=OLZkwiYFv)|-=dlCQanm$fD6&)mZ>CFm_Mo|K_bhfkMP zgpQ^U`|H#L(KGasgTyE2U|cZPi9j}G%9q!^%qsVwjUg-f?u!UWz((V($jvRK4OCIW ziS2r4fJj5bRU)>(?eV#!e>T#j75<_0T^eb9G@Ah)jp5zUC&6_^y!n}RwuI9YhKpeW zS1tkWBo2!dKI>YTG(>vj&hVE7o{!!IEu$c~J9`JxSE?%r2qa?7ov@f!+pQAe}(y?f0R3Fe;wS1WQ#QiJQ zXUecO@YQOwl8+c!T4>}O#NDzUP5;ZBc%^DZoybyQaTgcn9basRQj8Xd(Cd|mBd(A1 z3yWkmjP*S@lq}GfN-~c=XKMcVBBzcgS!k>-6a!@`(K-TP0!SUXQ@DF`6Xv#BO~zmu zXWUyID^!DI^ty%J-lG?1?BEPmYW1umO;T)Clu-)H`C~6--Q=jNR|dstcWAk22*clHy``KUiK22m5VGW$ zkUj0-6$K&S4c+adPwX&W%%)wNRJ!-Khx@6stL2k!>60~Y8<5`RL)re)FnGSijN8WG zSq#bK+|~?%->+jsw`AwFvgE_h$Sud#oovLvTB!cibLjy-KRPLoVZ`9f4x?T7r`0lHYYqn6Sp^K+)D;Vog=?}Kbi`NvhZ+~LXvO8%mGgh`1?r4%JW zPlUHGwz%Mq12TA}ob4YJ563Lqn{ixh@C|raCBtRL+EXxERV{^2Ag@EHSk6$2pEy&! zcb~{#@g@z6*zdz6{C@lVyyqiafBfaF9ETJk9onXsQ1d(qV8(xex`kw5%%s>XUt^8lyaBp@vVFN(Lt^HGA3-KqEtLZi{P~qcsVSLNc1Zxn-8v_iP zm=rjHi*N?|m|*4(o?HY*h<__dYO@iB;@;RkGd1uXVE9_rZXc8JkWrM0t62!L@qqP? ztz8juHw3}1#e!F5I-``!Vk)(M#AqF>wm)D8cSthk{X59viwl9sYegdk9!9q)<7zhYN!=n90RtOxJ}SV8e)tSIrU zhXZh>W0aWa*>Z?+rRxeFHq>ELvestNv@5c3qotb+dC5uC93{5vX*9aExjhXhk!q}Q zDGpZuIaGqiXYsT+8g$QdXS}yI-p%Pf?^iFHoH^U7f+~A3fWdHNlJo1tgdP;ye z&4g=CEPi?06<>)AL2#2A>*SJe6>0?KAxf@%VRk7hA`^AR9(YPy4hb#dvzj=ap%s3sXKwTbz&^s6CWx z_J~7q+s?A4PH>E_bco^C0D0|$t8y2l2RI%HS)sinXca*7bi_n!nUdr!9Dg6EA|Mr% zP3ixdrA4=d)#{Of_2=%@%#|{=6e*VC-lojky-h;&BRQRpAR&;i(5RO4UpMZLrH&m( z3%%@EVZm6z%m-pJqJr2utT7N(_DmB?7fCuli!-sBQ+@#9WvOo?EcCj!o}|=#2CLohvTt8<~?~+ryu+)FU7L-exMkmms&>{KFf! zTHtgt-^K4A>=2EA)%$mEYKaSqN|1q&s*8yU)zI)@CL@(V#&pN~!RykM3XsQc2Cii# zeg26g-&@b#zau%lY?D)%%lu$SNSj)0M+d$o_3Q|&3v>C6fli=V$78mv1a5@knUsrI zO@wz4x5aw_Fm;ds@zeOEKb=y0N73px57LBo;-J)ml=tuP_yV4FNMToXVDV)4I8M!W zzOAab4U@S+)p5X+GJTJmBTe0`FiLlq@?bugH+pUuV}5WkdJeRzo?wp{G&itR`5Xc? zM+WQYxXvgWHSSkx3Jghmvv5{p zXRR8_Ar!pSxtV4L;}S)&rK#TQ?!qV>p0Db9dY1uqA3s(F-cSCliQ0$06g|=D?Ri+M zX$P^9lmz{xw21jchagvW=>Fls0{yZ0MZ>|W&ZXAn_z zGdK@AS8XhBqpFdR=-GMO>{MsS+!P0yZ5EB5tL^pK`FUjfJ-ff+yVyg)@(iXs{O08G z=`Y7-4Sf-;nj~+ilK+u!8{x2kM}8SG{_(~eyLMK5tysoxEA`b*$X6< z^P%eK2);mCIS!G&Gz$6@!#@V})zl2& ze2L)Ik)jJb-PVVg61)a$3h!C`7-kCA^`XNi)R{)gPc^qz2@h$rWu`;9@a@9kZNwpK zz8(ax(k-rxzx2%{X8~F!&;?mA=|(6E z5`xLhrHgchub9Vaw_d=@G9*J-CrnZoQsu>IeKZqQ9Xo1V&!}ax42v)4B9we*e|z zs5wO$rb@%eBEL+uv0Y=j4hQKp@>Y$Fza{Ho8XdGgUoX}P@yx!1-!PcsxX zk@}0F4w6y>hu%!)1;2*sV9L1lEwl+5o)twSuWbAlZ?iEUc2ateNAnJ&bhb4E?e!Y; zQ^&+_)$(cf(?8a`$vo=((yb0gOY}_XuP^T!Zk;-g-N~`+!rVTm%}}~-1(rM)ZS|DV z-(>VblsWzV{!t@&c=lztsn;~wkLAi2+N`)HXv-)j0w;;snoma}XyTYhiXz>C0LepF zWeH2`8R-(IiKF7W!v|L>uCl$SfVn0N_njx(Fl5@=N%4y3uckb!7B*x=?MAfT)KM{s z@B%FGz2JP7QdcvH+A3i{jq&hQe!Y2k8yO;vyDo7K-@7}U>~ehd->Vo8M)DfT4Z$_j z%y(tyZPaT@9E*Rv-`$3Xuk}eJON;{e z3!X2^*uV{eup~6xW&a-kDzGOqQB6?3OzazY`Kd{bgA{r$9T@dC2*5EdA zMmNj3;yil$v->dBr`VXFZw^qJE#VOQc~&vhJ}_6XT5tb7FD$3pqM5zdzYWCljjw^P zy>{@8bjg`9p5PBoF#Z+&2L7LS%KAfuD%mhyctt9dtJ6M4l~i6Q13vLApKmBsx#(5T+^1#BFTr70BfG2 zirf}8^C^7Gq<87r5Y_J${3JJ<_suv*Ua67yEi(YS1yi?!7=^A}RKBFYevq^DhD6c_ zRv42Xg*LFJ_i@DVg8ueW0@?kPaB!~(ks40A7A*YC1xpcc6A0*Om$#<^f9doIOA%PY z7>xeCFaKBBEBhT_#6ypdJl7EMr!5jDk!}8mdUW0#BA%^^tk36O?+~}JFM3(uIGF6* z&c&>z1(ZJd2bG78t(%*PiuuyN{6QKJ3oOjb66CXRmPq#f%vjQs{MFyCVqBGt^}HQo zH)HTzKTd9FDcIfkXX4*#dV|~|qYa+9S3V1S`T_g(VlNvWh@7<%r-r&}3kC+Qo*0%JSy@1U%0U`Q4b{vN|>ezKF024R!0&pluQSsoOCtZHp)xo%;3|=tk5kp6@$yIr92ugZ$}|xT^fF z<3`P0fD`(WH}FZ^$@}sVKG6j;!~KKj^}a+s`S#|e!k&LX+37W^+9Iw}S12R{k@!wH zH@_}Krc-ieTd_ZQ%{;0BJT=Jkq+WW(F27IKt_9lS2}GMqc+STPbA!>rnqYs#+I6(m zm9C7m?EZ?LEQ{To@bv!jGU2Ww9Px^AbLaK8RL<&mz`Ayoe)=PNg6Qwf$)Ck#mI($$ z8uxAQ-%CTq?}l>**RLf!Gn@NDo1)^CSmW8wPlZUmm!zFATU9-ZE`QWocq!dd%?_<@ zMZsio|EP{fnW(Hr52UI}S*z{V_fm6{R^;}a&2{Sf#puL;(KV_kflys`xddh_8PmPPvQeBB8G(}uWsFvYb%vRKmZyg;UsjZ zN$kb9+}LtSECdeaE7At}<@&)FRn*O9_aW5L)4FZSziwCfhUjxIj1B7p9A(xzq9iy( zqNv4ib_|kx;t$aN6)y9o%duG+^>ce(IhNZSe$^J}Lb=Eom`MUyN z!LM%9B7RUPTkW#t-*HL%#d7hJhZ;77wnp*`r1A;YkjuXs)bpXi#_&WfIfMc~;(Z@? zvIwksRmSY4pe+ye+~75>AdimKGqfRyX=yf%Qx1AoVz4|NN|hHv*E^N|vL{@cUf3=O z_^^c_DAO&I>%qC^FhZb}1=9So-7mEr_}_Gv`+46B;lR$rbU;UKaLFOOQU#=&yC*{S zYGW>$ujDR%%ti-ABM0Nj4{iE&YjNgPq!H6pBd?^Sp5IhiEVvIbayI**D^bxqf`+LN z`txHv3rTcQY!zflIpTR6_65V|1)9=cN@Pxw(A~4qM-beKo0$~&lFMWz@WIrAZ@$+3 zUSZQ}`O2p*GnGP9-F9qmvHalvc9V6Vo`;KzQVG+;TyPX)S5lifF4}C({$zR?>gC_@_68^J-x{`_&q@WCvM&BF?uIwJ4e&JxYwYH6WSlq;ZNul zv_G2)_sYv9T?tU*}QI5;Kd zRk}v3V8Pq&>)x#%UKj!q%R? z5M=pszS!!&9KeKyvgdsj{aQsV<9sO*hRnOLUn%h9JuQPLO-{~1X{V_UPR8|gA`Z#J z!nfk@-&1Fh_rgo)4p-qz!cn?7p8!32-#SUOGbSvhU8WiO5MIjo9;R@7mOihYk|Gc^ zL=l$Sn^|wRf`XRx5~91tS%Am;>8$N!%a8vAPi1GthuwqN$3kBcJbihDk!U5?Q1AKy zsIVplH{w#s!2a=f+({&=?wJ^Ikk3$`GNNB{h6yBKm4^ya+?;gurvjH_F!Erf_{FOF zwu#Y=1e_rEE9rkic2V8JPK8Uii(#02Qyhp4(FPYB>5+YYKt9Ha2 z`HOolvrsT=da%X%HTY!`%28}>**%>Y>CIeMqn0q`t=6U{TsAV(8rf|pD1oLt%R3VG z_4f`3{~lNjZt8t=F5l+5VN?Ot<$OEIGp~ru<;=RB9@B_9zkc|nYB^n_fLGD&#yzUx z3sp<@@fyM+z?4S2dh>coRf(-fdiSGIsjsx0LBea>v|d@Qjo1tICV{akzXh#XH+-5# zn!S|%CSecrKXl+_ji~sd@89p|X+#|XZ9!RkP7J`p^aw){P_-j2#%IG>+e_E^%6qH< zt@7CPO^^fUrLEv`yOk^-oYK<3fd`JACkhs?o^Bh}3MVMrs8@%TDYBi~s#&=1Mz%(& zH)?Jn5^&vCZ+?#_2Rh+;n=x6Ywh)m{^74K>A$M**UjuR!+R58*C3ot;RSWVXoGlJY zU;sGN#R|t1KDuHfZ8(m=;vou((>_;}q;hJe%HdL+5=Wty-585N(>;An$e9=)pf$eW=b9++bmCV zFd#_ywI)m((^KHRL0^Y8n~8}hVnu-iYYygpAN2H<5tj|y!Ym^M8{4;u@#fKRn__z) zJP2?eqSbG$MPr+;=9)=(fjayqFe=0yE=H7wt*WqhK;1~34SS^6UI?eYi{k z`Zju=`gb&~cqit2{sc|D#jIYl6n@a7d(MIjOFAF7zSw)t^hF$_PxPq_$rE*dwK$Ls z2gUKkaEyYf)%Wn!;Ds~Dk?48|esA={OUswqCLcSsP`;+T#qWNK0#-}lU1*po1C64- ziet3Q9HOM)xUz#I0~~_SAso9v4y?NmZhIVP%hh}chD#`WnBKu3Ero*^ zPa*^KBMx$|jYU|w?>0bhXxMl3tEYQ2%blMEXhJbsZOwvkALDiL`bT;*mj{;OnfvZ7 z``VEwl_L}6KLsItDZv;g&GtkbPykXdJDw-rtz-r>hal^~h+)+0KBc`{W6Jnsz!7VF zwinibuCBN*9Q-6bz`X|=H%)7+gxrQYi#h#>ks72>uE8odSNmJ7h$co34n?yXz zuNU4UhYTqI13>P&#s)4#kual|ixky3T|JTSNxXM6`Ya(w9FAvm2t9YB%&>rE&3egA6f_iz=cJi7yx%(@u|u2ZaDP8h{!s#{ zm^r(UhEaTaHr3V%D~W{)^@+*(<1oNUPI@{H7Z)ea-6Ac_jccqWZjvu@KRExp(BL6T z(xBo63FBrZO+ner%Ys}<7#`exLzB5sE4+44(W(?5hIQrQW+vNeI+}CuOE8|zs3&sr zHN^8Yo_T^|=d;5z-9QcfnpFr?6Bd*$3KZ@=UCqfr!sW z1u+WFB*^I6Fzf8JzaBXSr7S;|or z!O(M{r^i14&1LgcXYo!2e86=gxHcklugm*!_r%d31u?g0Z=qF6qO|X8rz#{aWE4cV zV+8X)u4I}rs60d-g%@i1j%FZt(GO7f)JK2>zFUcKPE>TQptUpd|LxLC0dbN}y`5Kiq#tKJ5Gvq`m+ymncM z$(N*F8G~G`M+!+kiE?bnN2vZ0M!cKEmls;m4yBKnH;a$WOH*G``uYDYlg0`}Z$`yp z?tItoBFqF$ik-x3sNCQUG8|?6aQfqmI|?S2(MojXORV|O+Ck&ET47^6Zj?YJVjsui zvVZ=MZvU|poECBO3Hdl>SrE}!BTr|hi{@vL^sHn9jQiLT*@-PPtHx276z}=#L;rDr zF7F#p~J zay~|&`COgmD@VnFfQ5K!ThLM)Zlu1DL@CMDEd?sR4!8g}+Cn;;!r}&n-yiJ-tFmLv zqDUTnX@jI)#?|=++Ham6wexv12(0!bfYv~ zod&=Z$t^x`PL@}hodlk&;{NyAXDY1wkM!4=cP$h#Kw9-eAqCjG-co1&icBwET{s@X zn^ka8xn!fpJkEcqb$Lll3p8PAQt}>?QvAq`{O;FxPIF6-hTKlI3GUq{sjk)f{J22V zrd{59w8U1au?%c!DoTgz+O0 zhU1KR(j2fzOvzH1LV_G3c}m<((;FZA7Uu#~-;lu_7&fW7+TD|6J;~A?Jtdm#~*eN&rjJ#*m0CB?ahW8U;~o53_Q1Qv8S`{2x>_&uwZ0E?c;=rV(x zcH;->zkJTdbN>n7rjW`d7DbUdT)(|p0C7TN*~Wj|#$|cE)8u{xm@QwR1>>fPuA^~F z7t1k=ZQnh3ub-wntkm}|fwe(`{J&@4s*lHoygf*0CUlV?gPwV!)iZH1Z^Bk974wbE z%~CWu)Lx_#X?K*CMg#;O_Kw(cfP-6Be`r~nWk94fohX^i`4_t=w2~$SsS8V;i5^YM z$xfKw!%f8cSyv4}CYB+jM}VvsTP_Bo^b$U>vR;R0iH~RM+2KenxM?d`r8OiOb%BqS zj)SO0PUfKtjRIz628YyX?Ez|UbfUv9`A4}+VJRbRvg8PFUjFX?)t;6AnBx;37_}Y$ z9sdilnK~P-@3b););@VFJbF5FXgsq3|6{NwSu>Fc874z^F-mlz;Adjw5FN1OW*o^V z83?S#m+(6hWok+2;~(f>tvb%*b06VcU4k zAGod97l7y`JYZKsh>@jUO7b4dxtB!Nu{FbtD{toq=m2InVCZn4o&)<=^Wo&FwtL9?li4#~2werLQV|r@IA>UgkH;30TC?|E9ZJ zCOS-=(}1SQ>>qCmJ|Z%v7pskMv1*nGX}>xJ!QUXcy`Po&5w)elN&zd(g%cm|BSG1m zqr{QLs^t4q4YiH+f9(8S7d?yM#rzDPJV}&0S!K-7t9R|>rIvj;G2pTr13S%tuwd%L zbz(T4S)1SL%gs_1f^DkKv|%F2`kJorXGynXetWMeZ-1YUyA06aNK#A3UP_&ge0r8&E?Uihf4Id^oJ^b?O>T@7$$BSr zwuK%E#wf)cH5gt)QRU5tI9OB6l>ZUBoDbS`L!WXe{WfP}To- zI4hKB2@>wc>X4YC3egNpKQ)W(F2+I4+ha>d^=u_2f$TR4l8Lv8{ zS-cjLQ7X}l!bf&m{xjI5^yi5z?St)snE}Qeq}e3FN@$g)!A{=VB~@%?=PShZv`!Vy zD9$@RBy8!qE6~xeEpEZNZ;uVhK6xzvG-*e_>ArpB)cL2u0;N$aYZ7=07K@y3TDS^J zM@dSOuMgigMJD>17lL#=bhkUp`_UF_G14}{ZyTF^BI}cSD`4Oz+xz zp5cFx+H)}JekGhI;{Sx!J%WJZ3-~t_KP*gxXdAoQz$wv9J}^I`WiJBlhE5Mo=Q(Og zeA;1&^4ZMv#KVgS7-RbN1}Z{{A}m_qAD%kQd+nH%aoe!PoQeN|!k*ii8Ek(P080z{ zzbkPUjOf+b=F*2Er>1}f6{996-AwLXf!N+Ub0k)}=u6XNM>f>%mDKOK{!nPe{?je@ zP}FUJ>HJJ4;~^KI_8n&Q)S=%^Qv!!<)n*_ zElr>B#poR6O2!Sf%g()s#)?5X#Fohp)o^WZq$Pz}F59BnzZX1iyuGAuEU2w{rtM&Z z+~L{_09qoHJQ3YWaP&{zmlU80J~AT_aIhZ}oS!&d1uXp4ud_|gG||PpG5g&$$eSBH zUZ&Z0|LVzQx^{FyTym#bQ?QCv1p7OZVWa8@RFnf7s*bV!{LVC7S67SrxYfJKZ> zw6A{1@s!QXqYl$qliC!U9zwkS1*Ja%FHlhkkF2&vqai`M_HeR%Gqo{2j>UVL?Lr>f z)f9Ilxzy?EGAL2Ivjh1Jj%)NP6da$EMTryeB^%x(M{(9djyJ~fQE9qT{-J^ ztr`m4mAB&F#}0j!reujeo%D^45YD)xl6vyh}s zK};htrg^x}lSt(oIYm%7uC7rKki*A#gSwkSB>6+JMD-P+H;#AZmd2`n@cKxy$IHhg zk=)~h@hpba6o62u`Vk(@{z>RN*!mxKJB!z$#dwmGy36@ULid>qf$>hF0@@hIBLl1d zv2jojW2SND>^$@VxP!R=zca{2J@41Y(paa`jiUp;}{R z<=tRDNDv-HDBBsZOGTZf zY*PW2bt0O%+q?3kpMpjP0|k!HKf=JnvybW#{1A*4a+-8dmNEL|0%R=~&@w7)MY#dk z>>0=d6{=7{K+nQ}rI_+j)3**f^iWW|BKKRJ-&{h!*7m&lH5kVm+66m8d%md-3!#fG zwF{!nQo0(h9oq)I0tb?g7)K>e`EhCLY|0@8J!wuak6uuitl+CR!ThdbVUaq_J+C7m zfSDh~yBo>1{oL9W!@4?r^t%Cn+PX1Ndql&m#TW1BEtjak(v5h^3d;Y0ENE>otC*Hm z*DG%)FjguQXkBLG4ayhMqTOTAJX3Y&VJZ~V(C+hRy*!iF(Z0sMrZNV^qv>1^1YwJH zI8Rko{bMDqGX%BRGYV_dsxXJxfM*r?x_vy`C4|fm{}p^Hj7a#Dl>pc29GZ> zOSozrN{+!ZiD&$Y$g%qxdY1J&S+31?!)c;RrlTS1#15IMI-(%l`MWERm7gPQ+mXJm zuyyFVAMW?#@$^7rD+$0pnxZhaqh|GJ>~{?Gd!>F{rvuSQ_t64$!xTgU?5>Xo4E;5>Zf|hpNcSX+3Sp zaJSG(UjCk-91I9|PSD?yxo@LiG!@;e)(l6wG=)Xly?KCakXZz@0d)5GZzMpy-C!&1HI`h{yegtyZ7WVSNcXG+a{ z@Na+Y(m|YV9&~uqQ_6j6L^b3NWP0SxZrT8E6U<84*QP!pn`Uw0!=k8}57*Sj3qe^P zL^XNZTR}&7mS&+PC&O$36k>ma1)A+j#x(=r3I%j?UbpxUfx4%4GG{$PCx|1pyq}qJ zNb$lfqD+H((f}3y*)GsBwla1+-%n1o9L2poXfza1AhI0u((jW=d z|I!a|%-C5BNN%vT0p;4>p{=|>MZi$#zf%`!Vg zm@@ovK|?{Yk_$S9!~@4ams@cD1I*zKNlR1jk3;|KH<|(|SXpm(Hgv-75%l{eHb7Q# zWZJ0zpP^B>Ns58O9A({*t3KG^EJoi;U_LDbV$rPsTgLw1GSWQJ6V`80E1qx#vmoTs zsZo;KYfhGn6<5KUU2Tp{+5d+(p!g0!E3oUET>HQX3@Xb!^IcPY4=r`o2&jqIis|mg z^STg(WcvR_OiHQzJ2SlMj8XKT&naRim#kYz%_0UA_m+A93(p=z4bT?xYdyJS3qf)J zy$~(SWBK+#>kWw_S~-9Yjo^*M>fg-I?##a7qbe2c1ER3!?r6V2Q$>BPKyjq_7M7Nf zfazCB`nq5bux~rj0p*sAPcrnFkH2r95J6Xme$6lPLAL)f5OC@}FPQ0sY?zt{znaV& zLk#03n0+v1ib9O?MkcFe>;{;-OQ9YGMXS`93ruz!Zsdlb$vaYkX7 z4qV8LWt>xBf_S1?nQIi%`^p4)B}n@KnHdfE^&NI3$mR0sa48_sc+(hmdi=|a#N=$6 zMVZ*fkz?{jQd^WU2-p=LK*{q(J<`*l+hBnpTn*|%QFZ7m2QD!4S2Knz8y6se0+653K0K}t{%MFIqA zks2071*HT6Qlk=Zvn+|gLXei915(7m8j1u61cO9+AWJWKac2K`^XC2e=H0n7_m6w$ zJNKOX-S3{6GdC40lxi*9E4Nne6uWt_$1YX<+{dIWGMEXmRD6;C<|MB)DtUnBSk4=d zO5vCYP9d$Iv5X;@EFJfrqfO;KGg=WQK}yzx6>o><_=&b!B827vHqZgY20*xS-gHDP z2jmB+)rDA+MM(jR2}gD?yS%S0K~%IoHb_r9q)Q^#obWAmkEhORJJu&J-?$_+!s(k$ z^b;D$QQg=F27!wKMvUm9rCDp%36@*kN~9P=StmkmH#v~uWa#tPl_0*qwj;tw6?Q9F z0N21OImk+!o8`N_e%^C}?T{*8oE7r`Ia?~*6MmdI&TUpUo_M2xx5mrn z;)Jw77tcD3e$LsyQK!zAES%|kby$f9W^|M(ovY4Hxv)Y3!`OO7g+mwpMVEU802wug zntp(7U6Eh0mYCs8A3D8fzF#U2$FnM685NK`jNK{tp1b@)z4f_EQaQMz=8}tNHO|Fr zuH=DXd4gRM{mRr@uJ79q?qv4NQUssiG!eF>QSEXd(lqt!ww|J79!_Mb7l8+rgR2uP zb)0lnVZ8j_Rze-4L|f|5J3esF`MT!mb?bmL-fQiD-0-$H6gTWYR9}i5DU*hzrY4%e zJ^P~`Yu>QT-((AU!v-9-IbHjzuwqX&9(ES1vc1-cjJt{@6zNPpJ%R#+(6;TW1Di`4Jel z)F1TSvRn0j2XgaVsFTalk)3irW@PCi^Eki*F;**r2Oc5)1cK^KyFpSrk zkKM+IB1H{nsv9BSO74+uv*Rvu-GkiQ6+udlTzd5TyrFhsb>J7^I?I@gIPCwt3!RyY z7oQZ`JGABeYoN-KdBa!*@aVNhyMWF|nzUaSz6&!FUzB)Ubt@t0aPp_5-5?;f%Bur} zIEH45Zcx>xIK{7a)k1>BeC4^mnX4SU$VE+K&m&t%;7OGiMEF35UtvvGILR%;>;|_e z(;qk)6iGFKSvU+6WF-EFq?Zi04>TaIaAfO=@b0?9b}#S142n2|@&;}TJBuf3cWvX| z1^E}t3s0WXImz9};QPAqeZt8aER+=@`Bd9)=#>0yMZ}SBl3TTV>&uvU03mzI!7V|z z=-Qm)`68;(3rp4|shGoF<#7*c~(nPo}o&XyIZwVCD66Q4??r-O5&8yMf@P@_SlwYv@%MO7Uiy7MD!Toi#DMwa;l*N%>)txwJ(6&QVA(Y$+6WFb3O5d5g8w8(NP1fam?`P;X zZpQ;1-`#5yLw@K^+Z05g3^b7a%a8g`&=iiUDJP3QDb0-rMu=Tla7dTv9xOS}`&wor zsi!JuFZ0)%F*8O($wvLYxKJb&N}i@RK1O55d;p5bU6AabcUlZt9)OnE`(_>dx!XPl z=DMbJPz~yFo#Utw=~XbSSQ_NOV<5A{5--*fza*=%vUxEswx0FZJzAY|oql?2S~s>8 zC#V{58}`(hQ>VX^U8S}LF!JY13f9v1 zqD1$CU26p*|f^D8>EQw7g-fH-2%V$GJb>l*?NY{0R09u{r94K#tfG+at=*TcWm(z zcD4zVnMx6cU=$CFSLu2RkAOlkNmhL0`U(5*BK%)EP20VkR^=MeFm^BaQTg>SdSr%K z0b%={u07UZ%Gk2y|EJmiJOv(~diMgVacxZIQMIU?$>n99UC3p_IVD)Ji$a<}qu{sS zb(;$L4z<=<7&j@5T25C;NcdV+(trQ@HP@(Z`0mrz72+_R5DyI@71s*9AjJOsH*UKC z((LSIS(HYA-x|E&r0v{nhnjSq>PpM6NqAw0j~`31U ztd8-hRBNRTZ{y|k^g>Dvm0#()N%kZQABcGkzuKNGzrK`qY&>h|WA|D^sBG)nkUQ0` zGdSQ9S5q4CZEj&ac4Nxcjq!0t?$4U)g``|MS>zf>0}}|XR33Wt$ddZCw!8gOL&SL) zz4K%;``ZYKwBQEkUxxGeww+~)xDQFLM6-s7UM#y>Qpwj9HV0Wi1!inr`0MV-lRyb6 z^1|FoN^+3R6}^-bTNXQIkYm7by7 z8mVBIje27FwpLQols%NG3+H{vr-!+cQ}FNJT?v&`Qdql~^TV zTlg2wTeNU{a_7+ySIh?hNK;watnq!@@-pNTm<=yhsY;L-YrfG@FnKq|E~4S`o2u)I z;r272)8%1QL7MaQ%>7aNcRnnjL{O^GU!Hi0X{sdL8J2d7fB4uBTDdf|Aho=-kigoA zbZ!qcH~8=a9Cp{^Z@D3#ngem}Yp3e8blu@vJFJ0BMzS!{p(M0H7GsHj;)NYT{@C?G zf0KQ6qM7^c6ZL-hK>1+k@59r=fr1N33el*~C73KeBe(lBp~fMbi)Whdu)F3pHv~v7 zf|QCrqo{B{FFk!SiqjlZUE$9^f2`6Zj_gCZ=^3vEE50U3YeMSWns3j9U7eWnCN8QZ z1Td>B%{p*!J~G+~Ye4;IPiqC!R5><#{k{49ul@OFp;|)iOm89*B&Vb_d6HXzF|QwY d_zx)o@qcha7qCHXlCeU92D5R#O0o|4^# literal 0 HcmV?d00001 diff --git a/latex/problems/question09.11.T.tex b/latex/problems/question09.11.T.tex new file mode 100644 index 0000000..396febd --- /dev/null +++ b/latex/problems/question09.11.T.tex @@ -0,0 +1,48 @@ +\begin{problem} +By what fraction does the mass of a $m=10\U{g}$, $k=500\U{N/m}$ spring +increase when it is compressed by $1\U{cm}$? +\begin{center} +\begin{asy} +import Mechanics; +real u = .5cm; + +Spring Su = Spring(pFrom=(0,0), pTo=(4u,0), k=500, L="$m$"); +Spring Sc = Spring(pFrom=(0,-2u), pTo=(3u,-2u), k=500, L="$m'$"); +Distance d = Distance(pFrom=(4u,-2u), pTo=(3u,-2u), scale=u, L=rotate(90)*Label("1 cm")); +Su.draw(); +Sc.draw(); +d.draw(); +\end{asy} +\end{center} +\end{problem} % Based on Q9.11 + +\begin{solution} +Compression increases the potential energy of the spring by +\begin{equation} + \Delta U = \frac{1}{2} k \Delta x^2 + = \frac{1}{2} \cdot 500\U{N/m} \cdot \p({0.01\U{m}})^2 + = 25.0\U{mJ} \;. +\end{equation} +From Einstein's mass-energy equivalence, increasing the spring's +energy must also increase its mass, since mass and energy are two ways +of talking about the same stuff. +\begin{align} + \Delta E &= \Delta m c^2 \\ + \Delta m &= \frac{\Delta E}{c^2} = \frac{\Delta U}{c^2} + = \frac{0.025\U{J}}{(3\E{8}\U{m/s})^2} + = 2.78\E{-19}\U{kg} \;. +\end{align} +So the fractional mass increase is +\begin{equation} + \frac{\Delta m}{m} = \frac{2.78\E{-19}\U{kg}}{0.010\U{kg}} + = \ans{2.78\E{-17}} \;. +\end{equation} + +This mass difference is quite small, which is why it took so long to +come up with the $E=mc^2$ idea. Notice, though, that the mass +difference is equal to the mass of 16 billion protons (at +$1.67\E{-27}\U{kg}$ a pop). Nuclear reactions achieve their high +energies through small energy changes for an \emph{enourmous} number +of nuclei (on the order of Avogadro's number $N_A = +6.022\E{23}\U{particles/mole}$) +\end{solution} diff --git a/latex/problems/question12.07.T.tex b/latex/problems/question12.07.T.tex new file mode 100644 index 0000000..f24e2dc --- /dev/null +++ b/latex/problems/question12.07.T.tex @@ -0,0 +1,41 @@ +\begin{problem} +A frictionless block-spring system oscillates with amplitude $A$. If +the mass of the block is doubled without changing the amplitude, +\Part{a} does the total energy change? +\Part{b} does the frequency of oscillation change? +\begin{center} +\begin{asy} +import Mechanics; +real u = 1cm; + +Surface table = Surface(pFrom=(0,0), pTo=(2u,0)); +Surface wall = Surface(pFrom=(0,0.5u), pTo=(0,0), thickness=0); + +real blockside = 0.3u; +pair blockpos = (1.5u,blockside/2); +path block = shift(blockpos-blockside*(.5,.5))*scale(blockside)*unitsquare; +Spring s = Spring(pFrom=(0,blockpos.y), pTo=blockpos, width=0.6blockside); + +table.draw(); +wall.draw(); +s.draw(); +filldraw(block); +\end{asy} +\end{center} +\end{problem} % Derived from Ch. 12, Question 7. + +\begin{solution} +\Part{a} +The total energy is equal to the spring potential energy at maximum +extension (when the kinetic energy is zero), so $E_\text{T} = +\frac{1}{2}kA^2$. Neither the spring constant, nor the amplitude +changed, so \ans{the total energy is unaffected}. + +\Part{b} +The heavier mass will move more slowly under the influnce of the same +spring, so the frequency is smaller for the bigger mass. Quantitatively +\begin{equation} + f = \frac{1}{2\pi}\omega = \frac{1}{2\pi}\sqrt{\frac{k}{m}}\;, +\end{equation} +so doubling the mass reduces the frequency to $\ans{f' = \frac{f}{\sqrt{2}}}$. +\end{solution} diff --git a/latex/problems/section11.05.T.tex b/latex/problems/section11.05.T.tex new file mode 100644 index 0000000..a51ca84 --- /dev/null +++ b/latex/problems/section11.05.T.tex @@ -0,0 +1,54 @@ +\begin{problem} +\emph{BONUS PROBLEM}. Use Bohr's assumptions in Section 11.5 to +derive a formula for the allowed energy levels in singly ionized +helium (He$^+$). +\end{problem} % based on the Bohr model derivation of the Hydrogen + % energy levels in Section 11.5. + +\begin{solution} +Following the derivation of hydrogen energy levels in the book, we +have our analog for Equation 11.19 (total energy of the electron) +\begin{equation} + E = K + U_e = \frac{1}{2} m_e v^2 - k_e \frac{Ze^2}{r} \label{eq.bohr_energy} +\end{equation} +where $Z$ is the atomic number of our element (1 for H, 2 for He). + +Applying Newton's second law and Coulomb's law to the electron's +circular motion, +\begin{equation} + \frac{m_e v^2}{r} = F = \frac{k_e Ze^2}{r^2} \label{eq.bohr_newton} \;, +\end{equation} +so the kinetic energy of the electron is (our Equation 11.20 analog) +\begin{equation} + K = \frac{1}{2} m_e v^2 = \frac{k_e Ze^2}{2r} = \frac{U_e}{2} \;. +\end{equation} + +Plugging this expression for $K$ into eq.~\ref{eq.bohr_energy} +\begin{equation} + E = -\frac{k_e Ze^2}{2r} +\end{equation} + +We can find the allowed value for $r$ by substituting angular momentum +conservation $m_e v r = n \hbar$ into eq.~\ref{eq.bohr_newton} +\begin{align} + m_e v^2 &= \frac{k_e Ze^2}{r} \\ + m_e \p({\frac{n\hbar}{m_e r}})^2 &= \frac{k_e Ze^2}{r} \\ + n^2 \hbar^2 &= k_e Z e^2 r m_e \\ + r = \frac{n^2 \hbar^2}{m_e k_e Z e^2} \;, +\end{align} +which is our analog to Equation 11.22. + +Plugging this expression for $r$ into our electron energy forumula +\begin{align} + E_n &= -\frac{m_e k_e^2 Z^2 e^4}{2 n^2 \hbar^2} = Z^2 \cdot E_{n\text{H}} \\ + E_{n,\text{He}} &= 2^2 E_{n,\text{H}} = \ans{-\frac{54.42\U{eV}}{n^2}} +\end{align} +which is our analog to Equation 11.25. + +Note that the only difference between this derivation and the book's +hydrogen derivation is the replacement $k_e e^2 \rightarrow k_e Ze^2$ +in Coulomb's law. This is also the only place the constant $e$ comes +into the derivation. Simply matching and replacing $e^2$ with $Ze^2$ +in Equations 11.23 and 11.24 would produce the correct answer without +following every step of the derivation. +\end{solution} diff --git a/latex/rec/Makefile b/latex/rec/Makefile new file mode 100644 index 0000000..c110949 --- /dev/null +++ b/latex/rec/Makefile @@ -0,0 +1,21 @@ +# give numbers for assigned recitations +REC_NUMS = +# give numbers for recitations whose solutions should be posted +# (don't install source until the solutions should be published) +SOLN_NUMS = + +INSTALL_DIR := $(INSTALL_DIR)/doc/rec +export INSTALL_DIR + +install : + @for i in $(REC_NUMS:%=rec%); do \ + echo "make install-probs in $$i..."; \ + (cd $$i; $(MAKE) $(MFLAGS) install-probs); done + @for i in $(SOLN_NUMS:%=rec%); do \ + echo "make install-solns in $$i..."; \ + (cd $$i; $(MAKE) $(MFLAGS) install-solns); done + +clean : + @for i in $(REC_NUMS:%=rec%); do \ + echo "make clean in $$i..."; \ + (cd $$i; $(MAKE) $(MFLAGS) clean); done diff --git a/latex/rec/rec1/Makefile b/latex/rec/rec1/Makefile new file mode 100644 index 0000000..7d9a65a --- /dev/null +++ b/latex/rec/rec1/Makefile @@ -0,0 +1,41 @@ +THIS_DIR = $(shell basename $(PWD)) +RECITATION_NUMBER = $(THIS_DIR:rec%=%) +SOURCE_FILES = all_problems.tex probs.tex sols.tex problem[0-9].tex +OTHER_FILES = Makefile +DIST_FILES = $(SOURCE_FILES) $(OTHER_FILES) +DIST_FILE = $(THIS_DIR)_source.tar.gz +DIST_DIR = rec + +all : sols.pdf probs.pdf + +view : all + xpdf probs.pdf & + xpdf sols.pdf & + +%.pdf : %.tex $(SOURCE_FILES) + pdflatex $(patsubst %.tex,%,$<) + asy $(patsubst %.tex,%,$<) + pdflatex $(patsubst %.tex,%,$<) + +semi-clean : + rm -f *.log *.aux *.out *.thm *.toc *.pre *_[0-9]_.tex *.asy + +clean : semi-clean + rm -f *.pdf $(DIST_FILE) $(DIST_DIR) install* + +$(DIST_FILE) : $(DIST_FILES) + mkdir $(DIST_DIR) + cp -Lrp $^ $(DIST_DIR) + tar -chozf $@ $(DIST_DIR) + rm -rf $(DIST_DIR) + +install : install-probs install-solns + +install-probs : probs.pdf + scp -p $< $(INSTALL_USER)@$(INSTALL_HOST):$(INSTALL_DIR)/rec$(RECITATION_NUMBER)_problems.pdf + @date > $@ + +install-solns : sols.pdf $(DIST_FILE) + scp -p $< $(INSTALL_USER)@$(INSTALL_HOST):$(INSTALL_DIR)/rec$(RECITATION_NUMBER)_solutions.pdf + scp -p $(DIST_FILE) $(INSTALL_USER)@$(INSTALL_HOST):$(SOURCE_DIR) + @date > $@ diff --git a/latex/rec/rec1/all_problems.tex b/latex/rec/rec1/all_problems.tex new file mode 100644 index 0000000..f314bd4 --- /dev/null +++ b/latex/rec/rec1/all_problems.tex @@ -0,0 +1,18 @@ +\usepackage[author={W. Trevor King}, + coursetitle={Physics 201}, + classtitle={Recitation 1}, + subheading={Chapter 12}]{problempack} +\usepackage[inline]{asymptote} +\usepackage{wtk_cmmds} + +\begin{document} + +\maketitle + +\input{problem1} +\input{problem2} +\input{problem3} +\input{problem4} +\input{problem5} + +\end{document} diff --git a/latex/rec/rec1/problem1.tex b/latex/rec/rec1/problem1.tex new file mode 120000 index 0000000..9d042e9 --- /dev/null +++ b/latex/rec/rec1/problem1.tex @@ -0,0 +1 @@ +../../problems/problem12.02.tex \ No newline at end of file diff --git a/latex/rec/rec1/problem2.tex b/latex/rec/rec1/problem2.tex new file mode 120000 index 0000000..fad3569 --- /dev/null +++ b/latex/rec/rec1/problem2.tex @@ -0,0 +1 @@ +../../problems/problem12.05.tex \ No newline at end of file diff --git a/latex/rec/rec1/problem3.tex b/latex/rec/rec1/problem3.tex new file mode 120000 index 0000000..9ad2afd --- /dev/null +++ b/latex/rec/rec1/problem3.tex @@ -0,0 +1 @@ +../../problems/problem12.12.tex \ No newline at end of file diff --git a/latex/rec/rec1/problem4.tex b/latex/rec/rec1/problem4.tex new file mode 120000 index 0000000..1964d5c --- /dev/null +++ b/latex/rec/rec1/problem4.tex @@ -0,0 +1 @@ +../../problems/problem12.15.tex \ No newline at end of file diff --git a/latex/rec/rec1/problem5.tex b/latex/rec/rec1/problem5.tex new file mode 120000 index 0000000..64a05d8 --- /dev/null +++ b/latex/rec/rec1/problem5.tex @@ -0,0 +1 @@ +../../problems/problem12.18.tex \ No newline at end of file diff --git a/latex/rec/rec1/probs.tex b/latex/rec/rec1/probs.tex new file mode 100644 index 0000000..fa21ac1 --- /dev/null +++ b/latex/rec/rec1/probs.tex @@ -0,0 +1,5 @@ +\documentclass[letterpaper, 10pt]{article} + +\PassOptionsToPackage{nosolutions}{problempack} + +\input{all_problems} diff --git a/latex/rec/rec1/sols.tex b/latex/rec/rec1/sols.tex new file mode 100644 index 0000000..1596819 --- /dev/null +++ b/latex/rec/rec1/sols.tex @@ -0,0 +1,5 @@ +\documentclass[letterpaper, 10pt]{article} + +\PassOptionsToPackage{solutions,loose}{problempack} + +\input{all_problems} diff --git a/latex/syllabus/Makefile b/latex/syllabus/Makefile new file mode 100644 index 0000000..4ebddb1 --- /dev/null +++ b/latex/syllabus/Makefile @@ -0,0 +1,17 @@ +PDFS = syllabus.pdf +INSTALL_DIR := $(INSTALL_DIR)/doc + +all : $(PDFS) + +.SECONDEXPANSION: +$(PDFS) : $$(patsubst %.pdf,%.tex,$$@) + pdflatex $< + pdflatex $< + +clean : + rm -rf *.log *.aux *.out *.pdf install + +install : $(PDFS) + scp -p $^ $(INSTALL_USER)@$(INSTALL_HOST):$(INSTALL_DIR) + scp -p $(^:%.pdf=%.tex) $(INSTALL_USER)@$(INSTALL_HOST):$(SOURCE_DIR) + @date > $@ diff --git a/pdf/Makefile b/pdf/Makefile new file mode 100644 index 0000000..866110e --- /dev/null +++ b/pdf/Makefile @@ -0,0 +1,11 @@ +SUBDIRS = lab lec exam + +install : + @for i in $(SUBDIRS); do \ + echo "make install in $$i..."; \ + (cd $$i; $(MAKE) $(MFLAGS) install); done + +clean : + @for i in $(SUBDIRS); do \ + echo "make clean in $$i..."; \ + (cd $$i; $(MAKE) $(MFLAGS) clean); done diff --git a/pdf/README b/pdf/README new file mode 100644 index 0000000..940822b --- /dev/null +++ b/pdf/README @@ -0,0 +1 @@ +This directory is for PDFs for which we do not have LaTeX source. diff --git a/pdf/exam/Makefile b/pdf/exam/Makefile new file mode 100644 index 0000000..639c020 --- /dev/null +++ b/pdf/exam/Makefile @@ -0,0 +1,16 @@ +# give numbers for the exams +EXAM_NUMS = +OTHER_DIRS = + +INSTALL_DIR := $(INSTALL_DIR)/doc/exam +export INSTALL_DIR + +install : + @for i in $(EXAM_NUMS:%=exam%) $(OTHER_DIRS); do \ + echo "make install in $$i..."; \ + (cd $$i; $(MAKE) $(MFLAGS) install); done + +clean : + @for i in $(EXAM_NUMS:%=exam%) $(OTHER_DIRS); do \ + echo "make clean in $$i..."; \ + (cd $$i; $(MAKE) $(MFLAGS) clean); done diff --git a/pdf/exam/README b/pdf/exam/README new file mode 100644 index 0000000..159d497 --- /dev/null +++ b/pdf/exam/README @@ -0,0 +1 @@ +See ../lab/README and ../lec/README. diff --git a/pdf/exam/exam1/Makefile b/pdf/exam/exam1/Makefile new file mode 100644 index 0000000..54ac527 --- /dev/null +++ b/pdf/exam/exam1/Makefile @@ -0,0 +1,36 @@ +THIS_DIR = $(shell basename $(PWD)) +EXAM_NUMBER = $(THIS_DIR:exam%=%) +SOURCE_FILES = $(shell echo *.jpg) +OTHER_FILES = Makefile +DIST_FILES = $(SOURCE_FILES) $(OTHER_FILES) +DIST_FILE = $(THIS_DIR)_source.tar.gz +DIST_DIR = hwk + +all : out.pdf + +view : all + pdfinfo out.pdf + xpdf out.pdf & + +%.pdf : %.jpg + convert $< $@ + +out.pdf : $(SOURCE_FILES:%.jpg=%.pdf) + gs -dBATCH -dNOPAUSE -q -sDEVICE=pdfwrite -sOutputFile=$@ $^ + +semi-clean : + rm -f *.log + +clean : semi-clean + rm -f *.pdf $(DIST_FILE) $(DIST_DIR) install* + +$(DIST_FILE) : $(DIST_FILES) + mkdir $(DIST_DIR) + cp -rp $^ $(DIST_DIR) + tar -chozf $@ $(DIST_DIR) + rm -rf $(DIST_DIR) + +install : out.pdf $(DIST_FILE) + scp -p $< $(INSTALL_USER)@$(INSTALL_HOST):$(INSTALL_DIR)/exam$(EXAM_NUMBER)_solutions.pdf + scp -p $(DIST_FILE) $(INSTALL_USER)@$(INSTALL_HOST):$(SOURCE_DIR) + @date > $@ diff --git a/pdf/lab/Makefile b/pdf/lab/Makefile new file mode 100644 index 0000000..6af16c0 --- /dev/null +++ b/pdf/lab/Makefile @@ -0,0 +1,16 @@ +# give numbers for the labs +LAB_NUMS = +OTHER_DIRS = sample-lab + +INSTALL_DIR := $(INSTALL_DIR)/doc/lab +export INSTALL_DIR + +install : + @for i in $(LAB_NUMS:%=lab%) $(OTHER_DIRS); do \ + echo "make install in $$i..."; \ + (cd $$i; $(MAKE) $(MFLAGS) install); done + +clean : + @for i in $(LAB_NUMS:%=lab%) $(OTHER_DIRS); do \ + echo "make clean in $$i..."; \ + (cd $$i; $(MAKE) $(MFLAGS) clean); done diff --git a/pdf/lab/README b/pdf/lab/README new file mode 100644 index 0000000..2e28c31 --- /dev/null +++ b/pdf/lab/README @@ -0,0 +1,26 @@ +Facilitate posting of source-less lab PDFs. Usage example: + +Place Lab 1 PDFs into the lab1 subdirectory + $ ls lab1 + Makefile prelab.pdf procedure.pdf report.pdf + +Check that a reasonable PDF is generated + $ cd lab1 + $ make && xpdf out.pdf + +Add lab1 to the to-be-posted list by adding a `1' to `LAB_NUMS' in +./Makefile, so that line looks like + LAB_NUMS = 1 + +Future course-wide makes should publish the Lab 1 PDFs and source to +the appropriate locations in the course website. + +To add Lab 2 PDFs, simply create a lab2 subdirectory, copy over the +lab1 Makefile, and repeat the above procedure using `2's instead of +`1's. + + +The framework also supports bonus directories such as sample-lab by +adding them to the `OTHER_DIRS' variable in Makefile, e.g. + OTHER_DIRS = sample-lab +See the sample-lab subdirectory for more details. diff --git a/pdf/lab/lab1/Makefile b/pdf/lab/lab1/Makefile new file mode 100644 index 0000000..48fbee8 --- /dev/null +++ b/pdf/lab/lab1/Makefile @@ -0,0 +1,30 @@ +THIS_DIR = $(shell basename $(PWD)) +LAB_NUMBER = $(THIS_DIR:lab%=%) +SOURCE_FILES = +PDFS = prelab.pdf procedure.pdf report.pdf +OTHER_FILES = Makefile $(PDFS) +DIST_FILES = $(SOURCE_FILES) $(OTHER_FILES) +DIST_FILE = $(THIS_DIR)_source.tar.gz +DIST_DIR = lab + +clean : + rm -rf $(DIST_FILE) $(DIST_DIR) install* + +$(DIST_FILE) : $(DIST_FILES) + mkdir $(DIST_DIR) + cp -rp $^ $(DIST_DIR) + tar -chozf $@ $(DIST_DIR) + rm -rf $(DIST_DIR) + +install : install-pdfs install-source + +install-pdfs : $(PDFS) + @for i in $(PDFS); do \ + echo " install $(THIS_DIR)/$$i as lab$(LAB_NUMBER)_$$i..."; \ + scp -p $$i $(INSTALL_USER)@$(INSTALL_HOST):$(INSTALL_DIR)/lab$(LAB_NUMBER)_$$i; \ + done + @date > $@ + +install-source : $(DIST_FILE) + scp -p $(DIST_FILE) $(INSTALL_USER)@$(INSTALL_HOST):$(SOURCE_DIR) + @date > $@ diff --git a/pdf/lab/sample-lab/Makefile b/pdf/lab/sample-lab/Makefile new file mode 100644 index 0000000..34a84f3 --- /dev/null +++ b/pdf/lab/sample-lab/Makefile @@ -0,0 +1,29 @@ +THIS_DIR = $(shell basename $(PWD)) +SOURCE_FILES = +PDFS = report.pdf +OTHER_FILES = Makefile $(PDFS) +DIST_FILES = $(SOURCE_FILES) $(OTHER_FILES) +DIST_FILE = $(THIS_DIR)_source.tar.gz +DIST_DIR = lab + +clean : + rm -rf $(DIST_FILE) $(DIST_DIR) install* + +$(DIST_FILE) : $(DIST_FILES) + mkdir $(DIST_DIR) + cp -rp $^ $(DIST_DIR) + tar -chozf $@ $(DIST_DIR) + rm -rf $(DIST_DIR) + +install : install-pdfs install-source + +install-pdfs : $(PDFS) + @for i in $(PDFS); do \ + echo " install $(THIS_DIR)/$$i as $(THIS_DIR)_$$i..."; \ + scp -p $$i $(INSTALL_USER)@$(INSTALL_HOST):$(INSTALL_DIR)/$(THIS_DIR)_$$i; \ + done + @date > $@ + +install-source : $(DIST_FILE) + scp -p $(DIST_FILE) $(INSTALL_USER)@$(INSTALL_HOST):$(SOURCE_DIR) + @date > $@ diff --git a/pdf/lab/sample-lab/report.pdf b/pdf/lab/sample-lab/report.pdf new file mode 100644 index 0000000000000000000000000000000000000000..73ac72284651826e5e1dbd1059f1d9d5f59c59ea GIT binary patch literal 2322465 zcmdqI1yo$kwl0c0!CgXdcXxM(#vK}Hq;XG3kU(&EcXxMp3GQw|f@>foxAX7++J~nv@Lkezw zehNrSV^L9bAlT~9U=;r(2oG-lfAWw9S~^())y-WU-5?yLoE$tH!EO{hZ0fE+E0CqT zlPd)Wr>H2KEXctf=*lMRVD1k5M;A5)X+vQF4lZsl{rWnp1uhG}MIVP+5=+mJ1-$aC#zoFp>p-^Ga(9uyK zcKv(kzb)+MZtm*t?FzI;M`1@tp`npclSN1QH>*Qz&cpdnn@d5&<@=W=g;+q~-;{=Q z`QvJC4mK?c0rvkz6*IFPD>E~cKiWM14w6WPh7Jy}U=|D8xhuW+NX7XgOHo5|6MuZ)*qt~ ze5Y;t7e@Jqi~f#g6`;GhmASh)1@E8m(_~ZgaCd+NxElo|TK` zSh{Pw0)hWeGq2D<~n?hrQIkf#u)Qm#(U|6yxob2oPtCo7OO2xvtwEy&5vF2K&g$;rXZBf!bS z!p=j-&Q8a`rUFS6^Z#%RNM=D8{!g{kK|o93pAd&6n*<~^f$FwS?oMvDPR@Vw{r?g_ zbytulBnu%i^p^^v5Mt8=x;c5cS_1#hVJBBDXLCy+WJqbCwYi6byQZ8ZL}h_LDnnYU zyE<8F0o@JRAd?T9f+NK4QpRk0Y8G}tOLs^g1xI#B<3I5VY5Zq!C-*=6*x9uH^2t9m za)Vs|<%~aW`}dys!{l#I{EJCL7Ub&YPQeM8&i;|v90J^s3GDCOg-D>~?)dK`-701Z zrJo%$*p$WzQ_Jw9xUe1`oJ8q8HMvg1l6Xe&cb&WQsM!c_J^Y7^G@!O99&BDX|9orW zXnh|4xQagOCw0`MiqVRB2U?|NAGr{hd5NGnv~B6?cCOQ=2IWAh7}xtNR%ar#AK$*k z-{Hld4Zt%H-&$1~IeCyp{w{rR9ufRRg8_Yhc(%!CbI_Lmr5GIlsiXcDgOi8vF9-d5VKS3_w6(nOM?N}@WydDf4p^caeyT-? z<#8~NBZJdGQb2;nmXu$Cmym|Xm5~lEPvTs1beC0=$zrXxta`Kb;dBo6p8fQgzY%{q zI*Wi`E=$#>c>eP3<)gr(*X8BrcGqLpEmSUDQF+rMJ1SJvQtns9$RT_@T#G_vC|DE< z7%V7GpDI=sp?8Qo@xw~B1{=sfBeG2pV?kY%%HzH4SHHtpmQT>3#EJM3=@Xk=Glg8L z%lVF#ABZx2ijrtUG;q$Y;ar-z>+G_-zP&#ZSQ|u%(g|o_u*s4vV7~@s>Mj!{@l%!Y zdo7kF-Se9ctrm@!YV7~qz^%|2w}Tcxq3w`hU>jM*uxS^iQwqF=ff{vR6f$~#Lz0M& zFkeKy*e=^;008%H9FnKfb8AP^Fq~B+A_TEZ(bgoM;H4HC6eNI1pi_HpGx>|xEWG1_ zWb*p@BtO2L75e;KlhLDIyfrd zjeklzrLCzh=RK`6$WpEz3>G8XGbMYv_3^f0m`L<3!jBmpC{eBg?4B<%E+BX`;cMCd z*24J+Tv6i|TW)Q&tbwjsL9AuHfx2lyg*u#r(riTE4%oV5Ns340yyDs3-TJxl75Vv5 zYgcr>K&L7_BEjm=%(b8!?Em#n9|k5DhIR*<$qXYiKnN4&BPLA01os!jF$%JSPcXH( zqY?r$P$H#>EV*Rv0pzvh4ln~|LWHm#eg4jvkwGzi$X9aC4 zf71^40bWG{Blj{lg&k(zoZJDiqp!P`FgieMhtwOnGSGg9wiU+&5u>l*O7w~SJ&Y)Z zX%O9R=oK>zCUL(UDb_nmS!#Jf%`b`Xd<*eTWD(*tti)W=1R{(iXyfEYQ4_zoYM|le z@7iLgM~u%BH{zYkgw7fto8NK!!e>d^%q+tp^d;}eAW_L9M<6juisVJG%daRreQ^$P zj$&8wR;0%MAq~wDoGQ&sp@W$b)-_l)2s^kxs5ICysE-|HC38b56FaBC86U79vnIJF z_Z;b-#;xM3S{z3<`s)DB^_{-b1qDX@W2_jBDeX2@Pkt?Zbt1c>po|2l@J?fxeuSQY zVLnk;n-?G+m3ySlRC>Pf?$rO3=+yBPhdAm;8np;Gx6pXl_-^geHfO%rmhG6doz7U2 zEuZA%?D*|m%zRJ2m^nKkIMP=3-9WG2$jTJ|&{O*LMx_0bB`uFuYExQNDj9Ew!$Ycq zc{`_Ns#2QDq{Pv?Bbg&A{LhEO@wHZ!I!j1r^k)e6$y30Hl@kZ_j+Cy@578fTr1n}} z_5@H=>At~EGfW$^_In&Dwz^)RTo68@d8Nx8AbV??z}JL68g9Wk4QE=C+h*HrnTcBb z3j0C*cDLiY=qIE9+uszw1%DTP&XS4zJZBL#W}?z?8a%De7w=GW)BG`+<- zt7_9Sbdk78<=6e8@x$lWPp>5p7^JOl;@;SWLWh1O{S}^O$)ShG8=N(4P3lONKpGV- zL`p|$DuA5nnkAU|hJVwgSTG`MA`>xFP4H_ge`{e|W9xU1wi87cypH4!u&2n`^Q6j7 z@@4b5V8ebxZnMT0Q)G}liQG`6`z}}{NO(d-PMFQN&!o@9 zuBOT)r4xB8Z_D6Pb1;|4OX@)&UR0iGl-1bBFdsLkj)oH$~q$;2(I;aX~OUo-Nti`%Z+0i8_c`4b% zOU0+qR$f}x~h1;_$_^|yOv76cv$8GqH=Qojwn2F1;IYtK^wyXKK z@JsNgfmELh`#bxyJ~u?{6F3nJEm!yD3$r=&-yNrs^{@iE2yIkFl+4 z-2^ck^D<^YLab?cV1;lz0VwEd(_xJIbE;l81)-wV22;nJ>q| z#R24$W`N(|Ajh;|u;yDo)mGKu=2wF#aIs@#Jym^}dJl<4~Py$Mj*Amo9Df z#yW7R=(4?z@%`e%;<4TRX&4W*eRHMHX4Ubp{E-@)+HavIK9>acGWMZMzgnvuHlLiOrs;b0dFgBI&26FBtEM_6+#>S zN^MP}PK!&)oF>x$_{=??Dx-Q(MH-|O7_z0am^zu&ZfeL!zuVNhdmdPr$#bXazHU_@f1 zXH;agb4+loZJd9+WrBC2d6H+cX^Lm6X_|Ms`77Vo))|4B_F3WC?m4l!zIo~S;RS_- ziAB}L*(Jcz%Cgb&&WhE_@v6h>^_u6}%lfAc_>J&Q%+2I2(yjb$hV7ai-kq*p>D|da zt-bYq%l)$hw}YRD!AIyv$=}|7D?8>q?mUq_nK?B)Jv?(hd-)!6j&+`SL4VPBDSkP5 zrFV6B?Rx$DCi0f(w&afcuK!;Be(S;U;pH*>iRh{H2mg28}dMqjjj7%?G^sQix7MT zDSUuDfqw}Eas;}&f-L_H!tn6$aIv$gnma;@4{TZ<7Vdw_5PzYnzbg{|09I_eAS*~I z10wK0*V4aNeqTVn`3na^S$%?nf`b0N4iyZAjPQpbM`Sc4BqX#qD9FetZ?Mqcym^C; z_172V`wcEWK0fXnVp0eZQ`6GYQZxNef<{I{LP0`7M@2=)hIGQlg&ZL5vHlP~F{B@a zh>6Jl5D^6xged4CegAy^rr*6#SV*vhFjlb8lu$5O(6Ct0zXzf7Ap#;o{~^f9Ujzpa z3xfa+g@}ZVf(i`<0|Wc-pF(cH!oef_^$-&Z1{xL?1`Y-R5f*ZQaf60|#e#!^e}~N> zp@D#7PU#YW%Ndu4h*u{`)u%bT%Y|=oMeQ1RO(Vsv6`x;k>DJF9O_xy6z)PTQ;L8_)jt}%rox+y7Kdw;JsCTA;kyl&f?i<* z(p0n+<+X12y9tVF(k{fG7r*11dEmzpSbSVct$pjsn3H{Y7>gnw4tXb2|io=-Z|G@LiVJqB`XUNB2X?FC{aYpE4pBPnmRmx;LE=%v$5S31* zxoBD0LrgM8Ah0zIDBjB_eyY)(WQH^mjbwov&Lgo?j(9o(tqkZ~ZLp}G%HU=E{@?6m z`TeR-9e`indvQb->hvXNBGX8s?Xp;>c3|oRM0u>fusRZ(6F;ulTa&DZfFIejO24~n#jSzvjw;Rnx%#r2$^Wo$a(1g_COT~pbqyR)*uC>z# zF5~nu7t$+_D$&9GDhVCYw1G+Jihir;Ee{>*rq*aPoO5+@w%<@FBX}(fju*wYxd*4Y zIeHkIb#MqMuO~(Ty#HMjP;G;8M_Z#3mD9V3rLI6^Bow=NK77+JZwGiQswE1Al?3ti ziFr!B`(F3IbQ7)yHKA(HxWCkCf8~{{o1zCfS`4)nDuYlKllbPSd2GKPHrZA7}BNN+k-g(rXfVxG`Qkj33w|1_d}hC zI&OeOi3v^`&zklVbWATF7BcCEDQ0u+dj+gx`PY`~?eCEQMeYC5v!VK~6>kmOWJkgPwe8#PdJwOle{b}2%Mzs0yUD+BKY z$9}i#u@7(1`Zh@HF$8D;GN8dSlnMo<{8y*uzsmL8dlu1cjcEF6vi-Xvg#z34uzMW$ zUc_-<4KJ{pTWUz+b8+Q^VZ{qeq=Tt zy~~Tv-Yagw;5FrV2}j0-_3{Z~#;dcR)BfHS%rO%6(U)f)aWU1)7PKEX!?L`IV17fD z+X{UUsNp7Ix^)MmMLNML9`K+bVQ^z*SF}~HNbxq6N}v{;DljBvuB(7&6eLLBrO_ni zMGM{t2bSaWjI7!F7B2gGEwQSV_>h&_o(D@8)=L6oRY<>>MtHj0y$SXh(#ku0VO65y zuHoGL;H|9ZcJKZC(H5g&V0V8m!z@coEmS2SHy|tNAl|}g;U+1f$9yqN0P8mtj$QnT zBR5~r8AJYv2Mab=|7EOhDTBBlo|q^4BDm=cHKuH+j50Z(nxd`a&Rovl{Vs;kG(MLM z7vZUWud;?$hNf%DR2`rqu^)CXWo9YA3)GvcOV3LeH3|xc@w`Ta&SAH|8M2Ps7=Z1{ zP^N2Tz*Z4dwxC~(Rt;}r>{NZK;G2rmyJxYytHn0vXmQk3!jKAnFKr3{Ew){uYf$8F ze>3vTDBW8BA$asmbg;lyRge{~G_*<`S-S_oGi zC4FM-UBL8<4Bgl?HuX&wGx5u?YM&=&8q_PFV$Lj7DcF&`)+rLYY(~F@e<-jN7W7YJ z=H-Y`pbpp9r-~dSl9vBPUq~u0R6g^B6<*KlVc<&P%8kceb~Vwj|H1xMn;^e9#p!er ziRw(Nf}Y9ral_+O%n2DscNu%bNHpId-MG70BR|;xIt*K`9tJad+pec+9nZS0UcjdO z)JyQLd5W832yedMkt|W*v&BI?rSJPO>!&uieZ_FAnE&+Gfm1IyPl6iWY%|I`eP)5w z-*WyvfXy!r%o^7CMY*{*Mq@kB4VA(r>5SN5JeW^MaOV%{47R0-+^csMytk#rVZ8ZP!gqY^mkPF<_kWOkm6T8tZl8VpfcahLF z1{tGy5vL7C&~&9V%}Ex?hyY<~$#XKV^_q`pRK$F#tl;yb#SaRmvrUCdM_9*7Xdwzp zZf4re8f9;2-?rY3$s1P6vsiU^HEE%LdFbZ{3UMOV&0v4Y!ml z=k*(e;e<*xPc^~-W>r^pBtf6dZ?Z$dqgVZ>7HxcGFF(HE)b7oxkJ@Xj7c<67d|O`+ zz(8je-1y)uXV{>)@@a1Q^=%&F?&HgiQvRuZB}iv2eb|D4BTR(T2TufLDX?RQ|7TvV zG!<4K1?KawoM-8SnkC)fm*=FX5W*EbgOlVqJ^gplThPPY%wHu8<`a@de!6JO{&!j) zk6&isIsFH4!3<*FMA;IWPDwsru-_s zIaWi^cxd5-8YzHtDuYKB0`$r`%Q z3@<;L(n!(>Z^449_ zCSS!oF3(v4*Xr!~8t{I#oC^XX(;EkwFDZJOl`1R@7?=iQC03Gz-nxWW91Tw}s}Ijj zo{`$33bmn>BOJv0qP2(XLL5Sec5Nh?(C;Hhfff?1{nj%44;IBFXg<0-*~zJ7ws7rK z;m6-K(cWKhuV$?ICsH7`isb)N`=+a;&|XD@8P8(nTV+RME7~cn z0}#K6%zjf^OkX)Bm(%KSFAE#Kxe5(Ck zRr^ghzy6U5=cRV`=3XO6Q;2DCvw+kl&GJqHen>^@0G)4Oy<**-2Hkl`0>t2c7kS`VLuEOdMm4YFSE6XTeMfX50% z?q+J`m5WRi=OdQkg#&V33VEJ&KJIlQ^S`3dk|da2DwWm8`ZJd#;r+=ij~#qP>r?Pq zuZ5R6q|h|Kawt$q#zA%${vx{?{ZYNT)h{0})6$jgXLE1iLSc(9i9(N< zq)b<`8-iX9qOa>PrX#Y{p9zmU5kRTuLF_L~*WN2rOT1fOXWKHBbHVEiplrKWmSv#P zRFW^|weh6RiFzz1_!Y9GtQ_NTv}1URwLPiNzr{WHYOK4zT_wlpLgE;o5v97e^o%Yl z@hAPO+lnk_;XH>hlMVV(o0TDMD z?<(`)wpQ{I$WdG|Nm2v|J!){_wG_+MO7%|yTr!1vYUOorrasf5EEq*%3)u`%a+FH1Ag7T z(sewGYY=g3s4BV*(^tnK1BOUP3>;9}!BeIJI6fEt!V+-W!Oq*Lzg!do>&q%f};QN9g3# z(F&{p9WBb@DNPGuD+A3Ytp(2^z5D4LKfJ9x_Xk&0jWpzNOX84}bF$(+Tg27h zP*%2YM40s3YNPj+!@XIGTWa~#8^f(yfv%5lI$?^bB>B>{4}n2b=~Vf?-k1Qh%syR9aTLwc{xLCh(>zD9-{P2qCh zKpa6?^$BWM@y}*1S2g%MJq=;##Lsqe9w3e{D&^$w7T(}+_?bzL@|LWU#e|T9(wCQ+ zixyb{j+F~7#Z!}Fcr*&m$K5cQ_Pf!73oJfP=p9T0R4Swwc2zk2`Krv7@Vr9Hc$NbS z%Q#BjECty@VU-Rl^S+-N8%Eyo*^+JibjZ;D?n&f&tgBhoY47BI1=kJcBrMpOqx9tn z{@jZ?iXBvUHO6S4t{wMW=3MmAYs9+3cY71p0MItSTVf>hex#^ra%rRRt?p+qb>iSp z7>?Kv)goQ^RUfMvlTU~pCj}?@9-E`*l#18-AC)Dnva#q>6?Ch2my7HJn$X{xHZOpy z?{ep)(5|=F`X-^76P&~MXv*K3^K9OpO9IHCfWOhhFkuIZ-3&+$q=Z^hc<$OjXVA_t2M6mD>uOi+4bI7wsy@UlSp zR4u^t)7&4MubOd?V$LI=P*6Fg$H?3&1uCgPfpqs3HGGINT=MO9T1X*ezcb9p?tcQMEeK|lOcV#M z-Kb|72H{D)5H|@M*N>Z0FL$HeL2MU;=Q_K`!Za2%0$MSpxKUkK&ngyu+%Hke3e%|S zM_{TwEzGBxvOM(fE;)PXRCCeRtw{By&PJTGN^ofRZ&7Zz%hvHM?F;SsbY$uGv$xDk zI5*Rb=8PqXsG|~Zgaa5C&0lD=W$DT*?UyL7>vq2}p%YY=n62C!L4372Qw@ z#-#@nnE+f$12f~|{&-<*K>{&KI{ilWO7PldcwzsV-cdH;L98rsK%^p3N*1BEE8bN# zW8#*+o#v0IVoTRL=HyGeD|#!e+}H2m$x~dMiP(KjLG5|e9Mz@5@L8nx5R8iPFU@DV z(L2+VgcS;yh@bfz9G6F^V|{{D<4JV00pa$oyRlLoNqkVgc0;lo(Gv!`M5RB%$LIQ$ zCajfG*9A_O_1ffA}{#(qiL%&IcBCT0|4PMhRZL zcQ!6gZxO6Z+UW=xX3`_y5+DbV*DG-;j0vQt*?BizwjGcP%Be*jvB?<$p)UA181rPh8Yh&}K{1JKS_dElq08S89a$jc;^%k-@f zR$IEAaW7c$tolG^k0&%MUKjF3FnfVQ8s9AFJ{u zUwzlu)6gU9r=SCrgvC2oC;YGz$kDu(o#Rbb1*S@rh856(gBPm!SPrT?cF_?aPjh3r z6bkUAN>Fddj?pyh0o-j2=Q2TIjtwXFMv?d2i-?LTo-H>=&vX_lPH$!YhU$R}1!(no zmDf4HN086EWlg)+t7a=wqH?a{<``d3^}$o{MGv3JLD@MIksMKfv!pfRObLEtX|}*! zda{Qu%h*3*H09$utW*?lI_I)d?>hvxqLmG1LZBDnj=U;HX>DH0kKQAZ@HDeDXYQP= z7lNKRdoLi^N?w_Z;sx|9#X}}Q^}gx7DbW4MfTAXXTCsTNJP!Q zTSTspF$jN&xo%exON{X8tw${{OM)${{LGVqz$K&@h6clF&Dtnhvx-|K zk~eGWGs7hx+RoA?W;2AIVW!Qw#T~C z4h2)d>o=4=j=V?7QgFhA8>vK<$$GFWC$|#u^9hx2c({`5;gpYiiE^w$`N_<4ch#Vs z88BL1^>kW*F>a|4%t2KR3b*pgrf!Mm2R`@3@nZ>isNUo4E`0ZM=dZv{pV$6Cv8Lwe zJv&xnRMg1+9HCT_to5=enNv5M*?hJi8e6sR6RX^#AHO<%!Z<}NiH`|O<$9N-b`xx8xoNX8qNIkvnav4;xrCWS5_%x~g?%VBA&6_tiOMYj=qsC`qK(mRrE$`8cGp zT3e%bi~jk3;{ic_uPxjU7PavD^5}y}M*R^AQ zQ+`N;=s$kbT7LNl-~8)Wh-D@%g`0NS@qHf0vK5Rx;w{;;1X!Z2eAe z);$83AUCp1yAL=r&uQqUmtyu;1L#^>*~5NH_VzArEN7jz#A?bgag80>EKQiZR{pNC z&4z6bTl`0j(KjoIXwx)tX4+=(xVLeBS#mJudeFKvGJ-w&D)GeIFRg5j%k1t=?IiNACW1HDjO? zRmJ+Ieq-&k7D;H}NAZj=YdZ~>4DpGYo1aS8(eI{sAC?|2o*%r6gf(2~D`oZin7!PJikhp-Cs=Y+{$=UopNzA75pe_^gNBOu^IW-gEX zl^z@#N@*DJYatwA^IE%oexjwhULT`!@ap7|fDenUurJjJ*|u^k56@KZQu$4`3eesr zUdb;Auh0{R`ielZPDoIYt(4wh5Yvvsn8~1R*~7}ulS2Voh9dZH%{6$@)Vs$_fuCP4e1aMZgEw-h&TW3No{hry8< zGqoA^^zitSP_klS{F<`O+m1uc9+aEy?iE2cHWLFCyz`*7^^Ni=((zip!U=&dHzgIL z?WwxHm*)ZIw+hjI6Kz4ynsOx>_8{Br%oOuJ9WW2moD-%_|h71>4v-W{0$qyjn`YQB(Dh9+a7wZdq6&d2mPOMqj zAl(IAU?Kz47|nfrxe7>~sheU;FWE}(fL)xLKuqtso-^V8%Lgb4PYZqVQ)lVtgKrZp z>0O=gSXr9eN3uK<6OHMyPv?FeWfRBgZ&rSOB41W<~pi8J>_K_!xSCH z$i=_E_PO8o9KRQN@MuYAxoEO1mcwGCjb9l@myf48*oZ|>u*j=ecwdYD z&`>^5ZW2F5mX$P=RgW}jld=@4s8lgLc*$ptTe4No`zYC&E)QlYiK4~V1l=Oz)?cRt z++zn52WDZII!JWZ2ueEUroqWS`$-#NZ@Ax7$(GzY_dbVa3@!xrlHfkTTOM;+)3&#$?dEm@!4~2+N`3jS7(K9b?6I*yv!wF+fU z@UA~1hL-zQfxUfq{G?Ev;Jd-pX-0%g&r4l3>GI)jeB??6S?kTO3en=0IinF~=dawg zLu{qG!L=go!yE4Ce~etKdQ@!1o)lbnTxB)_%b=0URo3A`>KD&I!>Z>j8O_7`Aw_RVb}q(fx(no}#9N42*(mT42$iE6y=V zqS1l=RBD1t)vd^7Q3lyU+sLcS`$(#3SQ^Ymt*JzXiJ1#_;}CM?CaZ07XX-%b*SpfE z>xf2Ysip*3nL{0($!`^45eFX*$@WDF9hC4g#@Q3Ytp$yv0Z*KwSvUCFD?daIeR!qmUWGK4n&+4F3&o(*mP_aBRnh-bAOg|qpz$6HZg4{g~pZq>4Q>ws?*Ky1Ce3&hwtr~y$6*v#tGfR+W@;OKTG>wauGWp z%bzWWOS97ctqL?PEzkKz%nbtWhhJaHFp!?z4Srs|{6F1-71B0;4n7Lp^RT2T;OZU! z-l@MZJhDsKgNoG+ORhf~%!HUf%-w=-8={Yd8S(}f@Eigaa&{TgR;S&p#s-S7BC}#U zL(MT;02~iFx&;J%-7L%P%o(C;8T?%%8e?I~i$X=_>h-a8k&ozd3MD zg%?>)_*#@RTj)hPF^6AIQHp>`7E%dx4u{rVgh7HUgM+}n6|0tEczYAm1zWDzZ)#@P|v z==sq}9RkjgHp|(SobLlhE9EHYl+$Y$N~0puK6<0qVQ=R++4sJlxbBYz>|QS8sNORF1o~c$&(f% zgr%$6eIO0SG?5C8bFq>$oF?Z@o*6Fs)iN(*vdrNbQpxjpTI8alJkVc)>Lb9i%Ks~C z?)`x9|Cjs9G&(z5YMYWD&Ig^vixo&O#YIBw4LkhSZEILE70{0B2lv}+ONDk#Q@__V zX@QD+Bb#g3D!iQeIZMCbN1-{48zyG@d5*gC8YJg99d5E2)%&0~Z7wij&}Wr=8rBz` z%mj6xsyP5o07M={lX-I}pZ^8i^=@%V^~EsFFPD6zA3cgKfmM2VF7aoo}S--s##L2g^bk8ZZfVv`>y!7+~iY z?@G#zdgSPPeYejtZ`8SFF~$(d?!i%~8zN(_(Y9f(oo#%Jdu`gd#ABJ&7+Q;5u2x-{bu(tpLunmc%zeC_8SdCbBgE z*Ek(1R2Q{;ESt1RDs1099ipm5B~~Dfw33C%uegeN4@mj%y-kpg8dGunX1IDby?`@N z`!`g)nrdpX13)D=ph$m>hch>SRQv$p6~pAI_`h_+<^P*+_KQp`J6c=n@E%RDK6r zd>MaE7$L=qm%RuvXn~LYUhd1#UvQ-F2nKsFjg|yb&+n(MbV*>pTIh*l{`6nO4+(O- zdiX%1*4hx*ueUN_r%`o66&h85E2}Ss2>0e^9dzDti)bsu*>l_nRevqv93)FRgoAH; zX!kX1+jx>OoSVX9R_T5bt0sVG0iyh{Ib40BCEZ9I6LbF&(3-8Ob2o9ac63Dfm6F+Yc2h@M zQeQ_~2W1Cm1Bi~Og8jVlHfPDd>-Br${rL0ylZhXm`}6B~5~o|%uOy|_8F;Pf)|hzc zbj7A;*o1P0ouoZ5O}_4g$HK!l>HP3L_{mBu5^OC(wDj8z4+a^eY8o?a;3k2Z^9wXu zs}Sxu+GN@<(t0_Ya#un6;HlFQip0ih2JSp5BNSzTz%^;d`7)l?Y}2hMHELP&X$mHl)_A{%;-~JoO3}&&&i*>W)>*V9=c$RE zbk6eG+Txv{@2a3X6^2Whg`&YZMOM5IHUQ3iU!x`VKKowv^N1CYj<1{i!|ud*X$*Dr z9EV;2Rt+8XtPd%GS&f%Ed3K|yu;z5-SFGOrp0AtUlM75wi^0BHhCgPVA!=9`16Wal zKF)wXBlKcZch6G@{+(JBySAv#982Gwj_ucy<2=K#0QrHiB&w%hm_#xRHz(2L26IWl zabXrIiIF!W++Qxw*yF{&S0bYg9G@!#pxtVWOpNtOaJ?Nv@{`>ZziVVZJ6vRknKrC7 zRmmxuO&OY`D7PlVHQL9)*LB4uErPH)bXVJ(*WdhFsd@5JA}}>XrfkhL{;Y3>dHw*8 z+J(MS(pk#wMUdg@+EHRO>_$1FD#UM{_5-<4x6nOK<-by0p_D4&On_lh%Z=X8Sy0{_ zF<>J!JTExY5quj5hEQpiOMoRa=0e|FiCVNZboT_Qn{J65;4dW~$uNc}xp3*IQbt_W zot%d(w5oEAzu39@T#x~H}uaK?f*tdGtka?w#V37nIB<`P%Lq;GjU!08^z zdBnmwg^>&(%v@{Gaymj;ZvH|}GSB-KvrZ(CJ&sX(_Qxh4Q~h=?X8Efjt6Ap4+UEHf z4zjSQDl7Dt(KW1LUi3YL^}RCfwaufvQqTi_1WWnkvVy1j$Q1ePeq<>tDc;i$_YJMX zprTv6(uE8~8Ef|>$eT>XMHB6#M#UQnZSA?h9$|xRiMr<2mbS>TQ$ycFB_1E13BzEtg{GM)xxy|CX@&cX|m$sG-iDaS54ct>_MR$jDCijI678(&^tnE0}pXfi*TC1O1%zlhNsz5QYr6>51NNO3cr z<4}tVq6%FBenCM3kcO}yKn&r{9J}_YD?c+)3Y)RX|z4CjRP!-NQ`UI6$`-d|1|a-Xx(0j zvdS~DBMB>#k+B77d~WdZUo#iXhzK?;BUgyi_wFf=z{%5*MA{3?8nFywuFS8K4JU|; z%ZRUxHljc&#S(DW7%65q}(4w=@u*(CR!o?A^|Th_XeA@V?ncthM>nO z8@A)7JI42s%>~QShneeZmjE|xIL5tvm7H%TKvj%;ZR{EqG-&&9Z6x0Z6{3_IMa=)r zAO_&0*;w-x`&OreH4Es2kWIQZV7r{14@XH2SKjfQL7XI{e#g&i3^Q)u#u_1?53*>@ zhBrS^U?%;*K!`_MaZ)1*omv9&XcF!IRTRCtnLBi@zOR@qi!drC5X*|(XqFk?e-B~oHFhPT#SooK+wrm zo>tGmka&%*tZ-?g&^(^okK|caY4XUe45JL()_h+_ zXM&VM#-A+|Rf=;3)sR%oVwLnw<5V?}$3%s$ke7u_ z&6l3PsU{_>23+k_#H{RfxIPTZ@-0pkE!$9s*% zWCmh)>eO;1uh(?gt=970qt<-GGPbJ1Kq0>YOWe=-g)!<-PlYCQzUebs-GbXwYmOVu zGi!zQUCT12%6NrUunXLuS`efrLK)GYvBG&xD|H_1ZmNtMM}}omKM6a`@{aQvokyUzO%FY2b`I6 zo;lAs&)oO*xo&SXO>o(v9Eo^Dk_fGt)O^*TLusNmEBaZLX?MN64I zfx%~&G5l#bEfTL60Sn62`;2F+xLZfS7m;S8#I}FeJN%6D!x{6HBHeEX>G}}w>7axx=lJrMbl~u|m{sQXD!HU6I8I|YY^6USZXj#2sgQqyCBRoK2cWVX2 zlfJW^1iTYoFw0|n=GBo-^(8Ff&aYxpXic=cqs=SHQ7pU~lvn5e2rZ;$8E$5p#}%aJ zK4<&mLi*>A8^Wb%P+)b$g2vG(EZ5pw%KA4?2WfK#VsJtNmhMBz%fpsr%0b&G<^A!@ zM)vA&^UT`n@{hD-Up%IGF__{JY^WkO?lYJyv7O~ACF4aS?LD$KB53-6vA~qS3WRn9 zH}%+thoaUc?)lB`>3dNe0l8uvvjwyXMVoXc4XPzBQq%FhqWH|*lLzmh#qV$ozxZ6k59u4ei z&Z?N$3;7&*O~7+3O=cZMQQL9fx!qd^&H^nM19Ct4i>}6%7Gz?QS?eX1g;Ru4flJx9 zSXuL@u2fox%TXhSp;uW(k+Nh1R4twD{V4Fs=G!1XN;X$4@OkIusAb`cALXaC)jx4Q z@uXmCzr%`iR{3YT>scm$g%ElrzTl||P^g;STpp1Y9ZLqt3vvh52fW$kR{l|e6x~Us zD9is<&*moVft`-)P^Nyb(4hiXx-5v6K5O>29}r9)l=~q zc2lK=W@Z-O-wAY8ukRwX8-0Y`7q@mpeR4ec96~F#nIg2O1@e~Zko+Byu8nz^FmK#_ z$T}iG(+5qevj{|?1^u6M#P8N3l)o+HM*kM@tyf!6+bVe8OkP&X{Z25HjFIpxgF;Of zE9LUOF9GwoE;9vj&7MaUrq7jL`?w|#CUHSD0qJtssZ&xCW14SkspoxtihQd3(zQpF zX;cQ58Gexyh*jdJCHIsJ}%2>)K1 zzgUak=q}E?nxt7s|FJiJQ^W$k*U%K}QCDw#-iD{+dK8Y32KI(m9c-vqE;<$L1**qa zW@l^eVy~1?@N#Q=zm8E+1Cv8?jAXJ`)7PDOnp%n&xZ??%;e=0YhkXqxr7uTK6s5wz zw)E6(S!%~*D+*GkyGlWZX_Z-IRGsD6(Uy~veL6yJS~#^UlXc2YoUSzdl1)V!fV5$$ z?Qt^P(W2SE?Se5iZE0LSp7=Y8lFZtdH+js~Co9|Mm4B4`C;q5b1U~KwZ&s5R4Sm&i zvw-~l=6;Mf4Ein^nZsT)`iJ){1n+50-ZR^1mKO{-S*YvvDVg$^qcQuPXBAqOqGe9l zzli0)0#d;+>ZESDr-6@nRN;x{Tjr4Evzg-NWCa!FZzKM-)K5`oHf9-~FEAKbqXcu- zuKHWJDmkg0)>*+$>4)8KOhx(n_yQfT((c8gFF+7$`}LW-ocU2+`eFP&E$;jyS{+QP zU!wtLlD@rziYbPYAkR=_6;vK>T$N`o;8TRS_1!sKbv_g6KLzqG* z@OJ@k%8mwB zhv#e$V)?t~Q$$_RcA*8st$37X0kUfE_ur+L6hPhLwT7bTNeAQ1EqRi; zoYgmN&#HG|8R)K$lIz)xBL=}3SYHs25c^LQ197A`e_7iIn3uE+8p2$`pm$0q z;{GsIxlO-Jjc93;xbWhVTJyA9UG&kY5$#<=m7i~^{np(p7OmuwHQe|_dq-xgyw;e3{G?IX z8%dpCmkMH#<6A0yOfs?@;u{y9!PshS$o(s+VcZW~)y;#9hzL?Z{;Y)Xo*SwQ#!0xyfF7xvu;$2oBS&{BwXU;Je>RlMbfBX$3F0uXjIZ4t7Eh>2q z!Z8Yuqr1s^mBm8jhuxWbR3ws~F**+3sYDKG8P0sFRUGo#)pzxEEYm10$nmKJ_Uotb6}_j_4~ z{r(MEy7spA;{H2pg+dbSj@o7kEhFh`Tn^~Z>1;i;TcORg7tvgqsm?;(8}cjT3Gnw2 z`g$w4r}PSN3cu1Gu359ODcNNL)J)#}Vx75_ro8jj?@psREG&cu`KfZ(3*R>`v(Bj6 z+?D@QZppiO*vi|x1|sX0%mtwY@&*x47@EZ0+=(L*i0{KhTAUrEoe@e>Oamgnmedeoc#C{WDLu_gP$U4!tfe$7T5h?Lz zVS+)mZuoro9R)Hu=$w-2zvB&GxEY^;n4#F&mDsq8)6WlkF_@WkBzInE4FSG~ir7DS|G%32H?6Q<)ToK5?rlE}z(qlNr~YbH z3|%%3jlWG!&_qvlqr&~yt%ouV?mVq+x?4o*#Ani{M#Ic&5l=Wi?Dy|JEUuWwhU{_G zaV7OyE;~IbE>u1uWh*$$=gJ&su3FpSgo$VMkWyJJx;s?zzVM#PgFoxMI@@Ur^+qy4 zzO4pZm%yKE3aB%K2FV4r8b_`G^!MLr+U7+T?}!pQh-WFemvVVzv0K*en0JDB)II+S z_SDfRyg7~>tQ6N~>tyCIIskVPBewE9CXG+9*CQpjnH&+w(;CHFrppCYE6m)jadOTA4kwij*jJ1rjA zBe3E)H->w2=ssd$chUYkeY(aWtxDor?5hxFDdmaCx9;0G zTb}Jw&oWkA06yB5*qjqK@!v+(JeMVyh|T`11Esy}sW}ny%r&+imNzkFcM0*ZzHyt&5^seq>pA8){U|I?sl{9I6 z;RGEf#-mT(sy$zhCb!?gttI96LL7H=m{?is*oB7OB@eC?f57pZ%pr^&_S{8S9_Ow! zZyH9tZa)pdt$bM!?peL#E)O;1@*hi=X|7XD5Ztm|{(@mJtI|DQ!yp@$%Pb$sjV4af z`+ry;`8$-pqM^%jyZ`q6ms6eOLxz{*kyosJei8uUcy>K-rt+0*!9yFQTcufdHk1TdX<`SRc4*VBY(ao ztlUV3x?}d-JJrRsz&3aOGHQYoWHj#U;lAfd%7n(u^{<%xJrTj3i?q?mgM`cZMu%xqXc8n{a6 z$b1H8>dv0EcS@+&+)g}h1c~c3Ref{|zbJ2`kHZiO_?5lsxn%m|jJo&LS!RuoADY>~ zDaBGZDwfa9q@nqYE_+Pmw1h>N`LXn@PjyEI*w+Kcyg!$JVw1Y!(E2M=Py1hZ<7=sv zK%|P7K7f8C*9hnxMip)-Skf(4(U}jEV(*Z{Yy=JyM2=Ue%B^er<22tDzO!&ppqR2x zHqCg)nlk+C?l7BCTQC<;ho4;Kk8fu653Ab=w9xBkF8%U70x*r+ZE%q!@wsc7OP_0D zZCWr}ZJUK)kB@0yYPYizNHe6*xMgJ+Rin!?aaWm!B|0q!w}_pnrORNevV=}5K<|qy zC<>;G0RpJk>dF?X8s<;qD9&TW%sKr^C-kz^tN-fPbC0x^B`fIq|1H_2#QUO;FYE7N zabd3odqYlpIQd<;E4B%!e0(?mSAWJLp~!GbQm zf424skYfc%(*Ma-F`D7G8`0(qT2%3D7I!{)4x8J|IaOem9{Q`5+~VtJG!*yEKP)Lg zju-4_?$w&5D(l_z9_@hVwGdHGlZ6W2IwqeRxljiI1;9Tnqbo0u@Yue#MYWZM9t!)- zlAAC<{G(C`4bl4yC+$LGK;NBV-jcvmBall^Ms95;G)WaZJQ@Y?gxi_111p0@y-_Lf zloWWH%9@i#iD#3!e!&4}zWXn89ok<@W-V49XdLz3k!WpWR}nc0bYEE4m8Y8Kig~pI z-2fYT?&W8J+^EGYctQiI8h}wOz)>+@PJD$j~U4kI=y8Lq(3^jPi7x_ zcF(<^;f;B#BO{w1j~lW#)Z6iMSV+JShMtzU^)bJTP`_IxAo_Hg6f2uLv!VL*j~tpT zzzHF~Hf^kRw(?^oq&eLyM*a<*MnSVilYt|Mh;5${K7AHxnbU6P61(hNERd3t{2K9I zn`$-nVs2I}U?$Qon~%!^X7JnzVen07pg_Ux?rBDA)l?--fx z0>Y;XpYT?~FoFmFyF5-AuCe`e#DxsQSe@fZm=$~;r(53FVBOZ`d&Ns?#u+uH+v)#C8v`}2tf$!_7GxCd{8V(`l!(v{J*-KY1~|dsO_H5%yNVe#Hr-HI{Yi9=TKqmw3`oxbu`zQE&7?Neb1rY}$6`%$njXdwj9mPq1? zcrUoXW=^OeDe>#B;iDrgJ$JIvCO>|rNpXd6S{lwcZuKfoLz+jLnzbkJsIAc^>wigI zA+(IDYa{Tkd5j}YzII_{jxKM}OOT=_VIhlYz{;G;J2KsqTmfHgi}@@!Lz}yrB^qTTnVq(Td`Xl=a*+7k z&lc3&Btt5xNAo=PRUkq8FUQB#n?3l@k!;-POv%JqZE*UeLiGx#xk~x(r_K#(M)Y;|1r7SeLIG+MMJ~Gb#*=sEldO&&w_|a6MRnVu$Ai+9f`GTjfX4jgtTBBFD zV}!l$3*dxu1NBWsH91dy7kk%{Go%ggyWW4-lqk(O{d(s=MwTv%Za%V@X-{{dLa zENhvln2-LQIZSeeZ}hcgHLbYhD3Pz zhCRakt=BjNpx_hm960S$D3m(hjVT7)M<=Bg*@5sXNUtW@903$p&4e&Uh*GJ4d^kcl zu?<)MEnMjm{{OiX@&B+k;?*CUuZ=b?{g}r8U0L#EH%uc;_#c+o`=>*XE|>oYKEk^H zw^erLwF1+f>mvV`FFx;T8;ON}>c$%4>1GrTqJCyf`_S^O>tc-R`(F-kFKNb#qP-0UP*4dE2LY8zA~q@#QhAN`!MNmU0u z-X}G-`8#yeW@CfsUHRee+_z){8~uC>vp=e5;)J{P<1^uwt=pBxYnNfX^?!TK~fm)qIk`Wb!zX0z~~)laoUTUH@Y@#yZ8+;>U*5bVU=| z_p!WcY5u!`X^G(WWs7A=Vir=?LHcTB+cJ#3mtt7rHa9@c>0rv*&>+Xh3A_bfik4WX z(R?Ub?6cy)q&Z=feaJ@g6#GnlB%F$dRxx|4Cg79B6EBV^T|19cL7#XRQ%bCf9i|HY z-^>7ez9f?qIqSGM8-@b@72LZKeObY`Z-Fi88t}BIRUhsOiv%|&d zwhEhDq#jEP`WJG)!2hFVHCu@eTbp3cQW{RESKo`a{Vn6P>MQLr zdN#Idu+JeURPh{+Ub=5^e+&Y)Dy}?!7prvNN8PFL+$5Xvu-2n|`b+l-N!yrq;a{)W z3Aj#&2iO?5^ z_98M@dq*MxlOKwNL$N#;8DjXSK2YubbQbRI3kelwjOe`AO=$I>BrqZ=EN)s~cGh_L zhuF;iucjlR)=vm-<@F%r5M*Lsxd*09?_f#>ewPtR7glfinL}YZ>m=6MR3j@7aP34X z=~l|3FEtcV0?_v(o{#brZQZc3#S=BxD)z5>#-LziyjNBcaxqxYA1f)1%9G%+7Cpk< zz&@0=dX#ms%Jc(D*;Z-H?L|Q%;)Bei` zdrYHLiT0E6Z=8g?P%}+9V?Z6DuqI8MPdm zO2|JelJ`534O{f}07bFm*3GrG^?aVY?}ifMnp7>uEKUwLG$srk`?!yQMXv2)Da6vP z(=?O|%%F-b)B6}IYS`}=7gikw*GR_ROv@sZrV>7 zopi^o&WfcPdLQKtEfFkfWo}?jQl1k!)gH?aSBz9^3(M5^jE%qlE5wAqojcqDZzE!X zr;OHrHVnQMot_K*{q%`-690I?bq!;qm@yE%!&7r0&@-)t5IT>0!`+pjmSy{X#!}0N zure!l#>>v^w4J17;Zby!A7oJ=VP&ok;iJgZv8+q0#?9B&pnmt!^brQ^zqUno-A_ow z-U$d)L#@ozQpsBsA8+1w_-RL;L?BA{u*)7k!2tcp>+y+!0Lv6tPBJ{?W5_f6K9~i8 zA9+mU?vfc$N|^X{>V$O>|AluucF$FMO@J$R>=6LOPcUezuCb-7QPP4Fw)sOsItBcy{P+n$s_9s7z+taXjZ_I*hI$($`mew=01t zA#G+tI1jeJ@#{O|2jM?Xb^oxAZRKr{AN0zYQkV4T1#y9JhA{TBr`9jqG2@d=XHx%BeLU?| zj8o2XPXXjmI$CUZNwN~IAfu0DEsx9k(!R4B-6*)_qU|HRa?5KbudJDFY61K~kP&q$ zadoh`HCo%7#qiMm^ZFgVkbW0R3%y@mS^TTsC8&>&$q$pm^IbrB-Llq2ezHem00K`WM*PRHH)&Wr@gS%7)G@1P-`7SnUUN7+p(Nb*~F$ ztNRJEoVt1;NM=Uz%8f3LBlfT|z`)B7%AUzF!Wrt}T$5+THv!}0E3*_yCLdCUt zYw5$?#J3OlKkwEp-wsqBPs-VBuz9(JaiwVqsTms8vd)f&JLlRgT5-HZYT(?6T{#H6 z`e@$wQmEs+owhO8m$PkIqO&T_%G0iglg8IXsxt$8=?}k(G!x6UZMU^s)qYp`=?z*i-ad4Of38p^Gm>;SU$=3s z0Ul6giwZs`h<9+yG=C)ytD&UL;V3fr4>d2z9M+6+nxLxWCWZom zq<$pG`-OZfpLy#a;bd0aa7;y@-0r~6rk=+tBOhdAd`?@a+9&dJ-}s7Bu5TP^0<_V# z*>t(>o;p$>>h+wu8P4RZi`)m_1Da7Pvt|xlSZH~{0mWW?rOLOGFMFdILbtW2@4li% z9$M>c=h(=isI@68T5&xVR(FNy*Y{47j>CB>s<*;R*Qcp3fTM~W8x>xr{C~>EQkmLx z(AzZn`~58mfo-r|u3{BzwYjp-1&d()kg_r5`r};jJfVi20wV^nCdXsPmR7 zYwPPc9U%^k8xy*bel=^Dm+8g70{(9u#rAZ7)t&0053ApD|IbSII)ldgZ7bXLH7jN6 zb3f{<6)Q&3{&yZ*(Ly93Tn;}_R!Wp)@rgi(;H!t6^}G+6T292=IilA7dN!5{$|eSTQJ1C#zAp@5 z6gK0Y#fYpenRHE$-+hIrzDFa(kttoC?=&_=O@4!a*|#Cuvyv)$6Na>D&4o_%aYERk z#Lli5zL4qOt3pa@TFNLBnLQ|lazX92bnTUZy1Zua_u${Y#?2n#ZwR?aBqjwd#B~-G zd5ig0xS&TLEx=@tf!*A>kn3Z}wv}az#sz8xJ<)PO4dqnN%!7u#7+@diP!YB1#vBxv z`T6>hgX)}#MJs#DzJ+j2FlEKFM30Z&_85icWr%p3Qn&B^cQl7+B!H;WlMa67a{W~^ zB5)A{TYH+btIVZ$=&Spox21LEsR$LGyC7k6?c@1R>$0fS!=VlH`Zkmzp->M%d6 zn*6hr2D3<6_TTBctDV{Cx-T<+m2=0F&ncfqaCjZ%F~KsN3=X$heve)AZm;9|*Jl}u=SIeBW^~>>R@Y!_X%mrhF|Wo;kz%f^zNjN#o}R>|z36$ExSXm_ajFl) zKE-pK{qT#@2FA%!kaz;+NBcrQm6^GN&Y>}_+Kqa`=6(FFu3Qx~4Wne*$KWvLyTvQF zEHxjit}997y~lEI<}|T?0rm+(rGve*Vdh0fWU^OyKis|Uq{A} z7*3M0_f4EMDrDjlKLJ_mWbnx_sSnJvLQJdiw*6fAOBx;%NbTF9bM)POiq5i2!gEa8 z%iXI8k3-iqC}&5G;wTf1LAG=`@9ORMpP zQ-OL%`PwvdR;tX8cwq!aq4m0;G`aXt*R{%&@%a-~gAZsfDp0UA?FDcm5#0uue-omi z0yfs^7WHk>I!&G|I}Q*)T;xY-#gV#Xea^8EZ}>j4Bvz~7XWB3F+}7Y2L=toNJ>vz! zL{6PasC(>SMKei^$B%XSU|F(P$yaeQm2v4{ADAAQ@izi~@%en${E@lVdJ!5UQI2|)T{n`D1M;)^RJI4!Pas)K}MlB1)(`Hp=F zPO6AE-0`{&#Ui|8>z=lcp_Iulu+lZ56CVqsYvc~D_35nFXU#iDu=N%^uyc~==$i2W zRSEG;l;_?Wx*jxfhZh|uG8QA&f^tIKWTs{6wB0OoB5{wNWlWqYD@A{Aym-jtgh*N` z)j|#eQm*;&Y;H;r`xykoTt&R^KHTlxJ;%t^L zxTX6R{$+ELEr_^zOHQLAhN+1keL3|3*xR`x@fn%B&>C_2LEEN@$6ke@3%f8FTkDp+ z$Kl)6L#CrtYTA&NW5?dfq`kp%$`IbTeO&W{%)xx%QjhMkCgr%mhK7Qbj39(xn^|)@ zV}yS7F>?(MD?;^5BKxa<5_mIH>2henFKo0NjA(u>cZujM7F{+TLSX1g?v_y@_)>1l8LV!Ps{qHln@rH|xK7U`^Z=J56fbl!WXcq9C~$pm83+j?j@U*GDysqrqiZ9e(-k`q=Q`r0(A`-Yi^TAP4*6dABbv#T)1G?N$d`;CWY?WT-2Fl zC_1p{!m09Uh`)OTkdGBjG2Io&} zEMUV&RtJ+_N^U>*pvAp66XzPT;?;(!umH^nxXEJ7sz?C|t0EXav|c-k#9OLLv4Z`n z_@xO04_g2wJ16>r6Z0q^-XUp=@6A=NDb{l7%JR%otcHjiQ`USqYhnRi4S%^gjYt-9 z%`Oq(6;}ykMNKSFE;owAf3hJW%MJYFn(Uq0bjP>wG+hPZ>?Tg_c50yMvqz)6e%dN{ zwMM@BYQt`p1VY&yL+!^k((3m|VESXB&xb<`{^~EA?68w78fc}P)*$@uHP!b-*FSpj z^=kT;F%DPBgIU~GTL)a4fT=4H0xZs3tKe#}$Sw!UEjBd0ke)s>3A+nI*fqI!dD9ZZ zRE!z5UT!-I%>N4ZND(}z3^)XP3C2h6^}5jq>pwTc$mD@j=oy1qMm1qx5+WFbKy+3_Im z3pm-it14CS@o3VcuVnoLzJ8qH zaGC5>V8v2IMnN@7?^@wA(EIyArv7*IsJGpO#J0tw+Wv%`1F&l*hJK@prS7F?7MO%P zLg%Ip+}*Sj6Hu^%s30c(m_XCQUsVI3rv;dMR5&VlJ};q&+Mj#g#j`ctM$g+0RikJ7 z7Y!m7Tovu>Jq;ElrtEb{CU$zGo5)9p_FU=z{Afs5X{%XaZGlx7;Xb7I z&5Z}^ykTzN0JDO--}MmxRSqet7CcitA4o{3pfTyZrc48%&06BCttWRnEI-FNo=hGy zE-jXxt(0iU2K@%^M)=j(G^0w3pk&gj>hE_B;kH{ zl8S)hH{%ZmKfHOtgV;L)pao-=>Kk3c6$#5FFd6>%CmNN;0-+k(D^1I+bFS9BObDMx z86>!(vcw&1k=Yn8#us^BwL!m^AZuqGpNw>R#l#R5%=doBpB!xVe(^nxuTcG`*GY%g zE?tn@qq&Wu&9kj_aJ&)UR+Yh@S3W($@?9Q6l(RLRpYi`uI2J(p`+6hChx=uNhocTD^JLT1X?&5mnj zq2XxrHqM3zZAT!T_$;5O0^($bU&7Z!t%M}Js1r@~4~xXAr5R>b1zp=f&6##tYhc** zGf4sKH+7Hsti+kian3=7w58{z9gakIHYKOx^yJ*!WfdZ$u|X_8Bri16%3#6Zr`;bG z2>x{DptA!4PgRu!&{W=15y)^MokN*L0lqD{5KZm_jEcpQ0lSipq_jdrh=tJt5=J*yPd=G%bQ-KL+a4%nEH)OdyfVT~coLDm9>dYoACE*MAc7~Wjbw_$%# zHU0R_E2aH?u;B$5!ETzHfC$M#e$LzAb5*mWB^hLKuCFuq^hdi~S0Z*!@SPt5K>3d1 zqVzll)hN6MqD0K=3Z^!tIG((zsb(rzjpf$jI$!$P04O;8pB~`j{NUKxr~7%Qy$72V*{zIptP?$y!`Xa{no&8b*X3Hyo&iucita!w;BWdmSXNxUE{ zfja&Uy=l1mfJjlH;yT~Z4l-5zwxY92j7~-}eulZ4{n!*n9%{2^g;l(7wr4hrw+l-&??8dM`?!#E6<8%d1vpazbj^da z%wH;!3n>w>$nCVlYfq%wUnr%Y0p+@h`ZOWsZv$-&>)D|+w%yO@1Hx)7w>G$1TDeEW zdL7H56@JX|x^-WNos6PB_aSIknlwS4G#oMJ5^08CjQA>kj9Th?hR;^m+a{(*Tsl@) zc2Mx+)2()5cnB9(J@)sbNxB#F1U=Up^~AoueP_?t3Rva3L!zL5~Pi2WNIJ573tDTX$}n5 zBQMl%%iy0s`FZ4ilH7y?k(Ff3N?U@Bf5v>o&YJ~HYo1BUvZ0odK1kkv$piuS0@>7@ zU(pRS5a}VyS3A>*rtQV|-;JatVg<6;Yo2Q7FUSb!~O8c{+o^Q&z6|QyMs# zGqv8FI2tb^%{bpCMps~OoZQ8Qk8YwYFp#Z>MSO_|3Uf<$Ek@5`<_8J^(MM-?_|A8! z+dIj^t1?(Lp&PXFt%=3%z|4LykeH0PU5dOP6>DK@t{Z0ajO)E z$2;-AGOHrOu8bLX@OM_;mf93EXZ5SM1Fhy}$zR^ZMoF#x_!+0OP+1>k1xz-?ge?h0 ziU|Q8Bt%;_HQBs2t@@le1VaOSO)1M0J`{MX?qomSXFv!pYGr<+@&p*OfiW7y5Ic;YGb)&{rmn8YmVF!+3 zeFV;;dd_LV870fV#;m*Gk;jSBx3qU@1Iyp`u>!NK$Y?Fn-dB)i3x$k*0o~qmIK@qJ zPv3P=PO2;_(&!YkTYRsj#&SYT6KqK`;*o%GyZO)0skzRVGBh>QPiG~zU*_4}kF_zr*`aJ^w5AUhR{AT^ zGynmUzvH91*idZK=H8Cs95TmGawg(J-s~1@lsN{nJRSV~OaatxyPbDl-oDhZ*KLTj z)c2zVjZz|+l>js9Q98aS=BVl~f?{K!N#(MAfL!|TIKL}lYJW$SrHzbYz_8=8h_Ixs zYz<7HnfWJ)=fWh_#PCU6i(FiA0Ax%WwoR*vTwG~nFhRAw-p?1WpKlS>8B|3vXH5=P zzGLh88uBag3w6WNI*&fF@ZT>q9~>v%=|8F6{+4#v*6b4vp{?_=QTJ3QXq={TY=7`v zF&WbBa!UyD7WX<@Dpi80is2*^v*&F`S9Zd3K>=L1zRfgoB#ZePVj#vs_;eZAp#?Gsoo5=D(t+Ho2Zq=wIl3x z)>?TN;e;?*f7Q2us!E?3rdmH<$=%RXV(N0g->$j%p=BAn^tdI7MI@1KDQS zKS)|s7EIHfNX4~IPEpa#4V!p2kbB_z*Zalj(?5-Ik*p`bT$9+0cAS;CxhAk!DHOs& zcM%pw*Q9XwH|^%RQa@b=C1*mo)R}!2y32>YUzMlJT?-88ckh?4oiKGyj~pG)kF#lz z4X&QC3v4hC)UQF+#CYk`ob5Qknn5hh_>DK1u1=J>WmU``)l=ptVgImt$|Q)bX`HV- zUcCBUg(zS%x8@iAQZIXl4CE4-J~OW_5o#hWdRuD=QduoD^bG*jZ;Z26E2j<$DY=nc zKE>#3e0i?k3Om%MApb-_G4a=9sJ_ua&4+K8=}yjY{hpCEj)t|z_I*^T)H%4)960*e zh9F|n^w?{K$#5z&CKG9`oIO{2?ALu`GJ0xanyzq~+TYiWZi7#M&`9DmtWlQNgSt~S zClx!!^F8Y$)5|2XeaW!snn3@J6P-517tIz0l|W*#hzZy)gd?6_(N{pZgNZ+}5O`RX z%fAQz<<@#sxvv%k;k))&x`5Tv#~yz0-294<&>(!DQET(Q(=*28B}+@qHEox-OdH1A zHB3>ndxqVSk?0GMHf`a#{LMws4yIm(eP zKFj#tO3OFnR$l?C|JDZ7rML{?E77xZG8Hyl{lb|kI4#2ZuFo{4U(4D6y@k`}F^7_`kvi>a|W&oH%CSV)la*JI-BlEWO8}Z%Y*pR zxU?afc)sn3dM`A=Ys`l;<{4)SLoe=!+5s~)4%fS`0*9%=&c#|>nV$>*f@;uDF~pm3 zoS$5|;fSBscR|Pe2KElHY-L@TF^z2(W3e8tz5!tD>$Nay{-Zk> zzrT;WGWfcf`_(Dn$KSp5Fw%{e*g97YLcDpB_&!MF$nC0G@z&bueA>sSU)vaLt7?=; z@PsjEiGIg-#<98{NaQ`9@773j4ffve96}2rRG(OptCtqT{A2ETDU*B|OX3KBokol8 z`eo?@gvxVK9{Ax!!B`o>^`@Nr%V&;`GYfk8S$J3MltkKjb%BSAy;f<`Frl8aYuHdL z6}PHj&K`ub3go7lx2EKho0)abwZAdSnpI`UzBg)(R3krxcHcU$C^NY zJ_-&EBBtR&wBJ&LR|9N5j>uA$KObdxAQU~sYxR9poeCr6{nc<$0YJ?tF0{B9*uHN1 zh)h399l%t_ohGgx;O#80>l;G-O5-J0f*R>d(v!Gn(2uvb-8^;9-V##thM*B`uPN@` z`t@a+)tx`h=0b1lJb}d@5VL~G%tR!GS=Qo|m%R()!i#v{t=}ecNdeRDM;q!`hSh{6 ze!IlDCew48Q0H5Y&5hrG={$JvBY^}QY(>Cz!-{eQCIz)d>I>e@eEg0->e!BYH*tHZ z$xzg%4U{Cb%{UWdG3*D7Q2xWRN?+Amj+@sHx_h*DYlMErQ=|32aA@(t@a}#lyf6Oj zN|zU;+j9tBTxMhnLFvA;Ql$uB)R}3x(lp>uer&Uq9VaXtbxY`&2r#*rAmYubvEXRP zyojp)<#u^sv%H1M+!F~xN(MFENg8!(0h3bF&-IVE&;P`@&gRXx>OD)6T!rjis0i~m z59ppM)AIz8Dbw($EIN^@N!2)=^KH`3Y;nD+MxC7zZ!Y~I{N*-1T=_vz0EYHFQgh5-Ph)Zz{K~3aax?y*lmf-h2y*#G z^yIb^9c`eE45sHgqMO$Zz<8j9*)e+IrXL#hUQc-;r@aq`gO&RKiap6>4D2B#J)yS)>R zHRa={zADOG0p>w+%Lg-S6Y?AR zrInpjfIm427YY}wT+=0`_<1@#`jdG~Ds!AKzI(0mJd&)khxdvmOXYWc(E1JjjzUdt zXX5PQXV54Uz5#+?IsQm#?9Q~++#d~d@F3=A@qe@U&_D8XM1wnSD$CN6aUjZE5&y%b zIgUc|9IomNq%ZTfcJ`#+8QVy3Y4W9@&DGnOsZ9xgN;KePsA9^{dr_<>J3Psa%WHI$ z_{hVQY}~B(q$cS-#e3ZO&E`bHDUDLO-k$A3r|U!Ivi}X)GRl5gmhIifr--k4GN7U^ z7Nx5zweq6xeza9R#4l`U_BX$9E(x)tN8@;kq$fQxA`7_xi63gK(@9+8gkQ@^;}E=N zy`g@zzHT_g1kYFuZmOy;F$v8XJr;z_lHpjCGEV}()}d@IZN^%FlM%-@pqBMbZ7#h_ zRqx~cr5O$e2T=ufN}ZJ8aq2r^HtjRbFnxLJn^(APmLDM z8#0*c8`(}*tGO#d1%-@hmAT|E^oeYl{;ULX9N1=*zoZr1RK|)K%VFSq1h3C@)w&_x zww&lMvu6i|mo{q7z>y43w1}|B*A-e>i*Su<1wPJ>LePTU=5uTHqb{+Dius^)3xJWd zP&-=z`gQ&z3JdWFf3F+4<4z~`*?PQYW0tRR#hl+cHSWGBS1c-`EsXq7G} zz)uuZk+g|;zhg;EyiKH0ZCNm$*1*nG*cTsJ8$t$CZq8FR?wA_A|DmDvex+xtY1v9g zF|h*omB|@9XS^#sTO&V|QUMJf#|5w1A&)jcpreItdBGtaH@_xN^cbFrf4cO0b@83A z&Hi=4;i#qB?TeXU?V%|0cpbz5ZU0cGK+7Tl(x^8DZy`Hr+6q|6b6v-=RPvBgoq*bsy`8 zUcP?D#N{*8pX}gjIj>;_+2_M_jeqig!Rz)pf&9ExQP*Wo&%ao0iuWy17%bc;WYJ8m z4rfY?nnY==G373tbHsYVLnk>G8`&Ugq0g}=H%Kmu(S|GD6$drr^3u=OPkN`X@VUe8 zb%pYBUX8R#{l-kTzcypPx^J72vJeUONy?&Z)~nKKDYH@#JJH!M{`ROmWM;HO{%@?k zbx>R3+xH0+C|cY-1PTF)yA*ea1b26Lr??Ybi%W2KX>n_dQ?zJtihH~H?auqm?#}x@ z^Uluxch6)_a&qRLoRjOizMqdnxq(3~zv8YU-WpJOcWyzV*rrq?#5&@I=k1u^k|Q|Y z(5}05sAhd|nWjwLtvN(fIx)5*){=8_Q__KQ4)6!QpT|*ZCIi+KG z&nK9=%9YRF`7L`)QZzgrp&hT=mU`A2*-5a@(D$`%ZJ1JN?6_svFy3Oy$IVy_p0es4 zk*Dp1UI`>{1%Y?<7@>Sm!-=>lu@;E0G|CXgq@w!?_{l_x6;yp8E*8z#F)?mm2=2o7 zht_Hh9kY;*jeY5&=XbPN@oN_reh{_WE1cwesy#l_n;B2s`z6R!D=uGc91-XFpKB7K z;!?+6GW*@v^N2C!+kj5@LG&D0l{5a6$54jDrB;@`)r4K`*lpCU7g^Y5K4;7}cX6|nBkG)V zhf7}~2rqW(g&>PkAJ&sZ)ujEKkHGF}FDtjYk%dCmB3By_)NFAqlGAq10 zZW&E(3hOA!WH3q!rCZo!LE|lEjFkt>j<@uc`m25OQdm9&fAq*Y$M=zn;soD<=xJiY z*7i`@f{zDP5afCb4NkT(I;vjGJLtDx*WEiHUoQMdInXg~xPe2yj#o zcbWm5D{TRgLQ+^j9zEw{y_b@%<~N6G{W*%BLXm>doX$uSNov*w2rr%N=CjZgq=zwp zG_0#L_v+CCf6`(by9*(7+wjy#{PA`~kI|9s>hya3F+i=m(*k&{KLkt~^R|{TS9o%b zzd7$7QtGocw=Vdw#{oR82FQkmxtoi~pEW)1)DG~;namtpN3j?PzQ;jnTlnHfEZzMP z4J^No55weD{FP`ktx~=b1fhWRct)Ra!H9nkHp$?@WN$5oZ&~K+K?T<1gV&Uq*sLhj z=XMwM79Bd)7^z=j2esAo!HWo$!9yr(eo@D-1&)piH}qlW$XEXC6yFLP-cgeG5+)hE z)WlWhG;>!zrs)<=sc`9zh%S}eFUtcyho_Pct9@{L0X}Vjf_*_BxpIK7I6{4*EP>bA7wKgP5Nz*-;5uS;>QrWU-U$bQXd zD?oi8z&`{-yru%lH1ogtWs4xfzZ2yS3yA%o32w`v-VMCS`d{sKY(?R#2S-zpo=U|N zzU36D;EfLI#VHp)AT#&60TEw=_XiD{Jb*rv`34LoClS$c(>bjH1ZW98>nnl`#SB!N2;^yt>el zajtjRizUVsI(s%Utu=)lxi}PL49B5L-fWC;f|m(y2Iq{3^d2Js+BPsI|6V0H@o**0 z#1YIh6S2H$!AGKlr(k=AQY!wwQ%4`sRk9e(hv$8Wqhbi3j0@X3yNgasduJ~bw6sYH zqV2kk>1us|k=&mR3(7;Qf0=#?YFN6c)!#s8Ek1}&qurK_tG6Hf{PRxuriR40t7W0S z?tB|+AQeKCuR~jem$MyKDp`^sS53FI?lq!^>KJd|?`T%0##`%RfBnAMyRu%rW6IGCsPC4I**7S;=SFMVbg^Q19 zdbmMsX$Rkzl`rs4Cc4;x}H!gIIma|$1sj5iJRayM<) zYcw*zca}h0@F*y8CZdDdwzai0z#+R#F6oMe+|k||Y?T}O55ea$@lU@CzY5CgCWW7Y z>QmnO_@{XoOzp`3ma&Xz9dV7wO0O|jjYpTU`iWV)x3IB|m5eWa>;&$L7UL<}SJa+= zGxnPW($>+FyX4^63t|hhiIfg4m7n>(uv078lg-zB% zxQctaQZpb0_k%zDN|ugl=Qh!e8cG#19LO_dLzHt#C_AavB5nEqjA+%aXjC~!srGj2 z5i8KQHS;GE+D0@-@8}s7_)w}1sZ}B$J(X;=P0OM?RkXNKHmQtd4VOsMj()3vZ3@7I z`ACjdr-c%S?`p78lpIqP0E+5`+#Z;(YkfH9i4w)6X8-*Z7vz5>)T#2jc^1x@JMjH9 zMGof==EBCAez|P*^KGd#wWeCN$H-3LuT>+T;Ri*O`@dUJIuJg24)`6nbbF>L%6D)P z&gwL&t0(&L0`J>)qWFn2#_G&jYZl~sOM$j7Plgk>NXm^e;rJWCO8a%onANA!Ev}ix ziAK4l^J%fJTZVsBuuh^Zg1ccnRo_afB?=-in_zcakVwrw#6S>7IYEC8M#Fzy zWjUL)`v?*VWi|wqD!F-7p_I9bPD)8Iv<~Pd7s!?L5^3kw5P!r8`eT?|yVQ||gjr-7 zkjG@bARsjZ@YS16*x{(CMG7AbGX$qhl-uFyXV(MNB!C8)cG(>lxZ%yh);hP|YA3M+N7#%QS`y&g1?raZgJKKmzZbV=%c zC1pMJ`?S>ePyw$!%KM89)Z}9M%XR%BvZqd6_2IG58@0jOs&#{~qj9IyE?$EgmbL0a z+g}0Eb31)K3GeV&#@<&0o?w!3p>H|cT#a*PdK>CQThGsJ7RUwXW4w9IN!|3p-KS!@ zFh38oG7}RP)oO-yG|-z2_|^{t)VxzL4r`x&BF;P-{2J015c*YtC<2Nh{1%JU{hUQP zHt&%x<(Sw%xrVJh8Eb~cU+ox=n?~g?g22U?J%69;+_LVXv&aZro|+4m`UYuaUK;~+ zYZj}y#9t=SsAlRjxs&2WT&0x!yhSI81DXP!_=8@!21$5k0zZ=EDLPRF*O>eq+cXIT zy;Xj~`GloAW-|j^(|q|LyE!z3;ldlF>=$_o=<4W*BV!9+`?js`TSk;I0elV z(dh1L6>ps?rUNDmX1s&$=4^SCK{Q&L;(OayG2`_0sv`UvS-75QGCAuejWkA5n-!{z zF$L&gPG%0~bzSi2VY3b7P+koxyB_iY5U@3RMSkMC#DB-uoWf5=wBV&8d9Sui?~AXzyro@EMUG{1zJ1X< z&d3#~xQZe1Il1Cd{E8(`EE&sGwTg-oe$Z}i2y~ImrN~Y-pPaZ7cD+ojZMEo9r9pOKWAW%$GYZN*sHJGRR}QP&d%cwr+*|J(7AH8DP{ z>=&T9^egm5LXIXfCmK#`;u}(EpD(j+XQjU}Z%+bDPo@q{S5d~(+?#EE{nQQ==_`wV z2k>uz;rh?bO7B1;j6KyIet4dxT3%CkJaIM{s3(?@Tk2;^5PIH{t#Xq*Rpi|_ND7(d z=WZ6=&roVbx&>z{Si;J(sfZH4{c5uv`SQ#|2oIoOzg2=n&N0e%B+^MXPqrnA&H_tc z?1fS5#jfR>2H>pX$PftUFpv8L2}6}LK3c(>I=P?r2?-t9UWctGd6}jrDj&6b?Qns? zJ!(f!F!5(}BATHc>bIbaY4Vx2j;iI%^O$SS0Gl|w1gUvEeq!Cyw0OaHHNyqfam|9B z*dOdO6Bl1?y6}N>W%0oHFO%{~WD*p(*qlctN3$Djdv48&uo&M7S_obe^D(XS2W?MQ z^si_Bw{>1DA5f(7435+rHNho`q+H9t`}wC<>x;d7ZViq~KQGLmu`iS$@66{A&2KXn zxxPIb(V`H2qtxUJY)@QRjn)-ZVTsT~ic+sX6?l2$ywRK`K96smFT0+th;VDUQ`mo% zyT`Fd3|io=Gv9Qwhtq5KKFK03t&c#m7CP|XX`UdA}#y~ zK0JDR&%$-}@bC{IW>GJS-Z)1#Aa*4ufIM6J#$bGi9 zdA1NvvX<|b8}(N=r0knlH&nm#1RgFOkh?w1w^sCdlj@MjO@yQb zQ>Mb;EoG5kBm+R`@}Xx>f9XWMo1AURSoXfS;fTJHF#)91(!inO8(`TYy=bw>^Q^G3 zOQN;<#fuefFr9$SVYKYB&MvOlM4ZIGZe#KCw-dKPuWM-|*3v%&+*{31#|8S3LcOcP zR0TqG$r-|>>He0C8)u6ACRhtDB7HmM!H8y`)Kso_1w!{NHr-PTVQNaNX%u27o<2vt zz#%c4r*j#XpdIw6#6~P9mq&L_Rg9MQZisaSrn(89GkzboB%4?Q-Q=+W$`B6oq>j84 zUDC*Ia9%&Uf8EiuNiDxEhcdr{-D{y=qkx{fiqxzUm;aHDXw)2$ka!a>LEOo|cp%RJ zn>)lfI#XlZoAKA2jG6=ki_4X3DW}Q7IUlGj=_*LxruUcgttTz~IcleZpKx9>+sb`^@qxRo~0?ch=_O&UQX$f=FbmF0daxwZZQ8oN1K7 z&prjpV-e-;7zDQjsXwk@`fZIZ)KB`iaB)>Hn03w*(}-FQx~XT$js^L>$Sj`XaTAIb zJHPNz?0LKJzi&?%{muW`b1-5s^Z(8O{GY+ zXhPeTU)yyVKm~!Aq!Gd52-u--*!e)mSPNwEO!j2a)J$BPM3w~nO&3w^F_!Wk_76t% zi>ARUAjC@L-jy0d83&c`hF`Qj2_LQCub`E*BItPJej2KWtAFZ2{$Uwk1U+^HHS??c zIDa-lI@!>QO1H5?^coP556Ws>!|HaGf366yYD5 z0}Vtj|DT#oJ^$mVwkURK4)ICk=zguXeH{iiMeQ9dQRIjs;zicdoKuEh$dzO=Cj z%L4;k@kvbQMg>V1({a_PuI++NjJPfv#2V*&=%uF*i?fN}k*x&x>FBN$KUF@@%2u9I^#^gFUD?+{W+}!zTa%Cz6v+Fqd!xXf`*%u?lu50F-u|ey z_gU24+0fet==M52tJ^xsFQ>_gyX-#=gCMb`2bd2{j%SW3^p`Mf=zb-;Iq1)7M>}1O;~IH5TwEmuF|>7VtHP=%Cq%H%UD*H zKM|RK`Q-kPzH{m4`-Qh)ruPVIDcs6M6g*NEcTJK;MKu1^;KTOLW{E2zVzO7eyo`ElOJzn)*_&fGpi|x&j;_# zBw+d&>=(!?n0wpM4$8F`TF|#`=9U3|HcF8eCA0wr@j+X`z}KXL;8V;Bzs%KRxPs<; zsffphWZCEm1zSsFLlwNkh><#lax7$+HDx`)5fwldIqdEq2$$FYY5b+@2+`U?2#HjR z+08sjci=t!hV048{wZ30eMaD^PD&ZfHGdnAt=zmSOsuWo+bv=_#^5Voyl7uH{3C&F z{$<(44ZW)y8(%Pe2xEv_5&tbSFj<<{1nz=@`QDPUNdL%^(-f4vII2|wLQXJ=6z3PL zSamN>MH_+CI)$?q4h|!FP_na}Rcb|x&aCC1q7t%@Lx*cp7~9MD65uF-AcF>j4c@qg z?w%A#SP{2Kv*^b%rN~HmI?klVM0g2>-={Y132iAFMoLH1!N>0XxPj?k7Fbl>S zGoo7l3S-v|LgE8nJFLhthF>vcc}{m!9LR-cdJU(wp4-QmotqxqW6WUPGWnlqU|5^( z`NED2j-h@Ku85HT>SX4%oijBm9**+gvtlcbYH>szVI=0*6($bDC*_x$|sGTx~}0ityasUjjP3by7fa<>HA zW(ZZgH#;QMntliTA9dlw(_QtY1O_?um_i^P$8bwv5>f(bV3W3UWy2S{iZzqfkh1cd zR2j$d`r{y%=9@&ln2H;uF1N?fHHeZ4N2g6%m46ggx{X-^W5ka)J@lAocF)a}Ox4O4LkK+dqcxQLEaPeg zTIzy?K1Vwu{RQV(lkhETi~+d~zS~z|jL|Iq;#((^jvwc0I+Wqi`|&%3ed7>nSPi{& z&Zw7`5r0~fKMne*esimKW?t2{SgUezc%hzGXq*Qs&A=I2`enI0$d413QOC_!W6Aze z4qd$4986f__JLq=`&+)B>qF;K>!60MkH$$z`OGAfd64aPVktL{+PqBGeL~&vIYsh^ z#R>-YtcJZMEeQY15_+L6T`E<0bXeW1Xt_3m`@VYH<%rJFro()_=Wu_YSF4*7)&5rw zXU?)b<^ydcmiCnoyT)^M$|ZiC*`#HqpP=RH@?+atjS%F*P&4%_LrsawFJ2$3GU0B5 zBcxepdKyCT`uwLPsSmr8SSfQy z^TL4<=k^Kx|=zwaoxqVqZy6x&pWM2J0=!9#MMA8)l{j7L9fSJv&At zd*&Pl>G@wtWIyL4Jien@hHF=ggtI0ObU&DGyp`*k6AjV#f(mvLg##@UDcx^@aFB*r zC9Pup*F3Kgu<12*w1#sz;SaoE<&mX`4q zkfyNb45uv=)T;2A=@43*#~q&M+_VFYEoQAV1uVKHuL;r6%(Ot!@$Lu@i_tXHD+kLr zp7<>rfLes!1c$M>fwF1xbUMQysXuPNcFfh^vPo&Qy8@aWP7DfFD5A}fA*aZWwq+zy z8C3kkIuk8ywM$X9*{)C)zidTAR%mTSak(Xpb#&ah&sqhjkg=<5;*Fu4dqO-@hlsrz zOh(#Fd{6h2I>KPCNp{HseY+o?sY9y!9!V9Z)B7@A{2F!t&+i^0HjVmT=^5b(V@a2~ zx;iU~j;HTU5l*RC$jSd`b^Wbzb)lT*r0%^6jmBdxfKA1Apg zL$$8!H9b%wab9zR#RnOF*gL6V&tbW2*1zr5-#%9NRW55@FFYt-^IfFb)wfv zWwr7<%lxgHk{vg^PexAM;VhLc(k~{}0Vi4FWO^wD_*!)IBr(%ADG{Zh0{>*ot91Y= z?fI!>L3s)XRQODg9fNTw|A)A5zAqXq`uZXn0k<}xRaKx~pO0eZ z*2*p(VGLgGl15W8M8D`pOrMK|kQYs~-!ts%`=2ClPVVZ zOy&`uW(b(4%eU^gWN~&?oT|+6D3CuO8QJql8b^ zdx$e-wmJ}Qy|(GpX1mNftG8w4%3*QASK{8Nso2r}`4)%#n@yNNwzo%w3);9}29FQ@ zllnNdXKo8XO!QsQbA~AU?Dfu4lxNET_A}~@OFI`QGboc)hNi+0X?npr?cREzEtfER zhV$OdR=)DkNz(+Gp9YprOI~stdLpc?*f{YlO20o*^em&6m^%pKAg4uHL>|HPW1Pf2 zcqkXrGfyNvR(qtGohjUzy^ioBbaxj^v4JK>^KB9XYL}%GeODh;Sc-l!E@}65?u;VU zSU8YZ*a>df?Ie$zLK=09X|H7ij?+ICQ)kQXc*#Bk^1Ep$RRX)JB#~1^*jV7|^vNWH zxVq_4Hvn#1RsD&|i!7)>4Q6+D^@MLI-Qu=K{{gWa6Q`H?xsf&4YR*2^%Z;ct(S>Rj z2Sm8dWbtRbGG3j*Uf3nfiHGG?Oewnv%6wLzf$sO{4|kf?H6nz{;2=1x1tq;F&JfFT zqFL@#vw0H2=DSswKbICOK~2OXZ45Ek`SXTIjkdp~%R6b)ci(r>Xpxi?>^4Cf_A^@f zt@L(oo*cD1}|<)&e9|8o!rvGI3CZWxk(ZyRoOMXa1s2lZ)I3EYyzW)_o ztp2gZXC|&AkIxbOUx=^&TF@`FJ?A;eoU+#G@7L|d*=2xN8Z&Yvi)E~kkr`{n&#u@% zO_LCFylSHD^>*d%YWoiPLuc8Xjd_!*n)zNbTYJ~oy~_L(`tDRA)*thyZcJD>rj|n^vke9Hh-E_! zgF@j%d02}7#Z9G6okJS7*xK>k)ps9DcB55Uair{wcD#b`@WOuMY-^LJi%hGzc`>Gz zIgzr(_A@Vr?@|HZ@M-HA@sbR5!a}YMbyjg)4PjmPtNqwZL2^esD1(Mym93P2_LX!(K(B*FCo-<<$HSU;#7$2o*hzP#X~CzL%pD^y71=N~oa}mMx@e84 zB?V(6!Skg#L6(WdSw*cVxIxmIs^-tm^$EAqe$A@}*l$fn*ezTZ@;V0%W(MpfG0&!1 zgpXz2L`It8YVySYka_p~o|7HdFN6cNv*EBnM0cu^2i*QStG4!B>H0Zvy@THPRsgQF zb@yIeR)DTcSK999O!iI!@W}wwpWl`S0^e4hDC2k?Y*ic2*tpqAp)7F7pD_5YO_Le17|FeNWFt%00#@N1m+nFlRP9Lot^9??bD-uHus7hqB z?xIGJr*Vy1Ty8MKwwNyRD@kG6&QrHlBZ498UZlH;2KS9~&vt}9V-9its^X9VKc(`A zZ@bA?4SePZ6@#8Xgf1=JaOq!T(6!HafrRUO%r-!6j;iIfgm zF`o*8e4$n;@2L93G5!h=K8|ETm8|Krr>J@%XY~H-`#v(a7I0wjr7Bo`@hr+^|BUWj zW=%3k{Zh#UB94_3+BB~H5q}WF9Z=>qn#_7w!c9^%tjP9X8WU6&tG ze?OxmZ>n%}&~BGgYTcDuk_??XLP?U1b|2a?mH>%fK8;qxWME(cxG6M6TpqHB1@Q!HxQ|GD}odV9Qn%;{3QJaBc% zU(&>|vUa^5Yx1fnomB@L@n%k7IfW_~yjERLW|!sh51}h6HDLhU;}xr$i-Ie~j*#f-Xwv-_gy6aHR**#yRT-8bP0nQo1$QfOD{n~r{r_{k>`u@v16C?b~(#T0!>-QX_B)tWw* zsu|v9&^IZwV4>IfLAfbsgX#FU7L6)a1l&=%71zCG5_>bXA$v~TPVVrXYT65@_e~lh zAfxIi(!U|6L8i9-kN8qn4MXBvUjLy0&@h=nEMmKru%piw4q%SeJp6nu*0*6(;e*CX zqXpB>t3RC3XSQF!A!{L4L+lIW;z=-k)s71DBe+wKo4*)=7;bLq*^^tRQd)0+D9KwY zltYp@^0!C-;R`2P3u4NccUbRKjk-#GBtb<9H5M1!g9po$T}&!7H?AZqIYSl?zGAS%>M2tyi~&vx z1s5mLk%n>)ZL3T{XMAFa(c~4R>h6BzW{X?j zK5KMtlYd9~3jHgQ1^ZRV zqV(!EADstswJt$;`u#|T8!$S@Uv(e`bgKz&QSF4acesgGBnEjot}}*j>RFh+(I}NX zX+aW7_+Y~AkCi#Urot^pm1byIoxt?8eKR|`sJ2ECX(-Uw68HC;16e#;J-uz&j;&(n z&LGv(r%<&l$L~TDyjDuK>sLg8AJ@@$0erv5h>Yq^e%NZDpPSnxMdoCb>LY+{k(0{v zb`DVif34y~Wm@msvQfH{X6jkU)HH2}XV1PDF!?;V8R<+dkq<{Hm4Y(E>P+U{!%E$0 zV*epnw*8%+*?*SHUvGuxkRJ$-@*3?&abg62SEVP?tA5NKQtBn}TW{_5;ElCa7}?_|~V zXCIc2TVFJ>_>tCGyoF0`*apFu;kle<%=OA4lltT)1q#Y_GcTIUhK;{WVSi_@(qA`1 zmS5EjBbetJI{`Fi{8&z8+13apW)WdCGB_UemPquTAS~V)T8TL|`hFxD*!49Ye?=z~$DFt|?4k1$JgQBkb8ct;DTf@8k2-Sr$w>U?6zk0Hfv;iDQU@z;^Ct81d}0Eteeq~ zniJ3KW>KCn|FUvqAOy?xst-!K7Z(sy9;Xy5J=!S%4q=MrJhXQp%PvNYMW2>k4yp(5z?nQ*3T$dZ$-S`F13f6FTx zhe!Wgco z)c{8SmhjefRy{B`X%eNsD{zOfvrVVTs^K{kj-NFLfG`r|j3Q zAyiS*F`^b#-pYBiG2tLA5KAA$P$;9PRK`C12aMcE@4wT&TDL3O*I!;;%L24ItFIe& z>`*%qia?bQHLoJE)R=6eu#CferpOj+LZ0mfvrKdBsw)=!wIH%Hle+A#UaNl7pbU=D z-y@5?cGY3)NshzG+#rR{wD7VL=~#TWJU)bQc& z>4(K5jntDq=erAu9smI2_AX~8wtif+eI0#X1IL0NR_eaywIK#p&7b6L zopYDAPGT4fM0qruW%!5xA-u(2EvVLtT=lMWv!CZJJNdZe;-x{=@I}@)S3xV5hDf0@ zIGPcN#3cK(vmtau6NklK=P8b-LkDuN(Tb}eZ^%8y62-+5nM7Oal)f0rFQDR3Jz?e; z#nRdl6%cSz-pfMZpEks~jq`yJkTfl~Dw?EgqU=$#kE*aJWv$oz50M^tbYnpu4%AkiI|W z_E*3!XTH2j{fF@Dosw9C%ikxJuab3$)yFgt_XS_%p7>bk=F{KZ$9BKCAQ#`Al#R zVMV8vG?jzI84FxRlX6@vFu#(WV^uUyxo*~si(?43coh+jXr@-rc)jL{NYBt#J;;=6~&x(e0NVC)IBsvUiU-&*3_ZR9!~p@M`ocZX{t)D ztRO`BhY)s@_*B>Md>}SqEaKS=^w&}lib1@H_T}>+{q49U8SN7azTMne2$U7cr8~Kss$WC z|Mc9MHZZ=p03wXMr)r;4b6K?W@tfXU=69JFHKa-bqh zMfE$9_6-JyQG3-%_KI$1 z>`bd+(ck?(-rA63^1zR>ps`=eULWT;Yn!E)zQfcivL7_U<*?FfBZs^mL^!6j7d1)Q zsOP-?At-wsae*d|X%ov}+zRB_nZ4O_pE*AP=N%bzAmO}R#MYkb$rB@FLv^H_e@)?T zI-$We8Ox!4L()h}z2mkliPNTzq1O9`x)_~IWQxEfKEvO0g8guYFCs`2gX@pk5#!0!XMzq@ zgZVMmqdQa$SEpjGB%YMf-e{bbOU)iFM{x3E_|BiLV`A%V$PYVwWm*u|L}%f|xGZJcc2E8N6!oB*%yad`^f%&Dntz2Db@T^` zzvSd?ECb3M_T9Wl#;F)9yMT|eiB#y zM!#Q7yK{+9?zYCWi&m%*c})Qrf?t}eE%&ntb(vS*Muns8(D@?8z$DYAl7`Av>|z;H%ViTOy&;EC zg!&qMghBGq!4L5JPA0a8PMSs#ULT?xJYwyF>~ch?i~kFeq{cX;uX63o5aDTYWFvA3 z2BXha;d^T->t!stWBW6;)YHvan0&AC=*cfZ+Nqc`>K4i0VVIYBGW|sL(faFf<`74s@#;kA>gqt0G*I~UHcng#vBi z`+E}IRWfROq%9&m`Ql2)3~O3EsZN0!lBOUf>1Gl4lr5Z!Z6d>F7<4xzB3Cn-H?z+xpqj$>jC2*fvYmT28nuHpGCN~O ziVK%1P%Kib_a{}nR{xHduq&gH;vWNjIo3!Ec?~0c3GpqblmV45)TFP%)6j3`(7&X0 zMVZ2xw-C)2{W)-yszj+u_UC9KwQDm-aqR@YZhLO(Mo{o}oz{YP0t>7AxPx@csTpmY zsbKGv7xs-ebp)44f2-LJR8~5Z6l>pT8q}vF8M!v5OW=)0L0(vS$pkelxMc;x%v65}vuEF1X5i}hCl zujikh54Tb-E>wL#WZQ6rpAwG=Mig1!DG{xsRM&4lkUq9w)|&TrG|IBucmy5+&&V`v zPbgzPx{p>CKw9rBKocHj)NKJCW3pY1K;D^E_OdzB#l>Ga5Axb#i|YQ=+1T)d5@QKBDZwWKpVcg zgwhod5Wv@y>zClDzrz5nLUwmAT3<+bQ|(viaQ04tZP!63Pe~|W3s{*;cx)6C3xPEmrs4 zoJ}|AW`&>Plc9Or{PYjWh->csNttB`@2Jr7rScH}*&1`;?u`VpsteOa$5IA!U>h_z zlGQ$j@%Z8C^QIHvrb?%$u+E`Lv6@ksszE>^{3BX{D>{`9*8dPRx*Iua85bHs=h9^? zZaSP??1Q^rR@OACTvH|neTGNIxh{k)z@|wcVU%=i#$nN$=Rt3a3#qt@$Hutb=`;K8 zh^wDX9rM8-HGFUq>f>Bh|O9XWe$$B1wdvb%xhhiP5Pc3Bv;u*_JA@PCTPlJ-RDsKWT7>oMnmJswQ!4B zqt|*^N1vqDV93LM%&ExKksA^b>2!h<1ghq@GTotfAN;5V__JLo;+xz)=i1x#SzGNJ_(Md8itDj^*%V#x$udH$^cP5J6UP}Ejtdl3Mb9$Yu3XtFudTbik7EcsqO6+7?yAXk^uLI!=xQwJ9d6t- z(A|(YQuF-EF0Vo{o-~^i4Acy!iB4vxUf4op=jzg68u5UC*oqOk4Q`BWi0 zwh;={Fw8`@lTU6M1u4qwqvvk0(<4V=6Gl`W&4$t7KF7j4uFd?dcBbJn+-pYbx;>Y0 z5u*0bPYCvHE6I2l?f==o?g#gp?N|HdN8Rb`hBJ0EU!}j{AL#B{$>3c+vx8SY7cxJo z-YrXa^>HcjTuuM5yIdblRRmfS&z8bawDctG=TCR4|2jq=KYeS02bRb;6zKIvEWrt! z*_g`ug2vk!Z$O1aKO^}keAl(j>);Va{_GIt`dsz};;{Pf=V_rx+v@Ls?!V4fnzRk5 zGGx>& zyu}|qZ76kf?UBS}D1Gw4)9axw6sYZYXqTc>GKh{s?#R>|tH9Gdgz%Nhlg{_A!2I&) z?}TR76dS*tu~3|xcp>rBFbr_Ts4+d{vg?!I!)HQrDw8I7Rm}B}wei6R%fNqg#l%(wp6pzHtc0)}zRQ`z16bUpe3Uln41y#vkRbGPgmI9JbT86vLbR%GJsl3x#&^f z>}O4B79Q2nc6TX#YyhgSf70Q|v$jhYMuo-7yrF)52l~8vwRfuCDN)* z+2z-UOBop!JWxd+i{g%!Uw}MxWvx|)9-PknZqWqXr+~I6zY*#4Rp7jyzHsM2izzdJ z?E_zq7=mH%f#f%hugUQ{JXQ5;^Hebd|qA|3+>9&a5wF{ zrSFPe?d^Q0S)8kaz6^<3F)3iZ0gn-uuD9@KwW1>ypWFRV^jFzze#Rm{L_JdW5A-P? ziP!GGD*Rrkt7k}B@=IvkT$QqO8Bv^ZVv6`qufb2#3$1$=3BLSmOmel>U+m$$JB+B<&$IDno>=$h5vwHSS5pxIrxNixOXuPTSgAgR&KehS*#nrPReSD6uf760U^_ z)3lbcmfYWC8bAtax8CV{YnHm^q8s(RNg>5@{W&9;|rbuf*cxK7?It6#ws!1vZ$vVUKO$Y;l*IJ~g1Ug7GP-hB}Afr%~TPW!d^hL=uzjJtzP9 z7gTOlgGCvZxaO0y4^tYpn@5-;{|9?-9hBD-b_o(faDq#4cL}b+-QC^Y3GTsNUfkVX zg9Qy5T!Mt4fj|flT(|kYnVQ|&*{R*yKX$8TsGq?5_Pw`n_ao<=r~6)k9&Rb{bR{Uh z^SD%qEn?-$PnW$OJo)*WH|B11RTH#O>xc@&Vzb_t9Dn=tsZwDk7zZC4K2ZFuC$X>KjP!6|KG}!gZ;zu0z)%bptH%(JG8C?# zhQD~!J?G`9c5%j7lCzUQTZ8X~dw=f2$Qazi-ipsvG?zN8^V-`}#%|F6kZs&TE}F54 z-ls91fu^hu6T(HEef`zwfX}j&F7Jff%0j{sV+_v(^Bu)*Y2 zF6N*|6Wow7qg6zNQfEc_kk&ay`xD)BY%}(18eU3oc&$Jch6Z(}UEvjn1J*fDm&O!y7`mz=1&4mJ&wBw)M$Zp-xOh=8}X&TbEqP3^_pVZ>$ zsQjTa!X_ysyw45AQEV8j>)yD7SZOALKQ-1_|BcG?&Htr!H z8y3{J@pgBXvA2AYZRXfMkf#c;qm30A({AJ+;Yr#=VK=Rm^EQ)V#S`T#){`;sH)xO6 z{6))uq7x_Q(eIgM(R$%bx!2#CD2Ft19AAT7Op}b}DPGwG3caQ3H7XNNQhN%RXQv z$!acCtK-So?#UWkG&s6`j6Dq+Bk2wvL@lbBJm1Gt#J!W(ckZdacjDan{G42=(xFK| zHt)H+Ws8D2`iRDRF;q=bJRPAhZx&S#x%kp3xvygyB;PnpaW0&WblB}){(ajTmH_M- z;tNQyE9Xt)O16==fl9XAAD}%NV4XKHD({6=VmORUz{vE%D{GHJQWqoY-(wqAX=m}d zL1_T58xHQ6Gwy5(8S0KAY8F3hLZ3*5;V@6rBwz~-o)_ElhZ)h#!rMze5o32vs*`0z zCrYK&NJ#s^!Q+sPEyp6zXW`E|l+MCH^)t?q6d9Ut*bvdWyYdWww!Ob?X~MRNevC4& zB!P~tGeBUoieTn0o9KM7L zT-lyilR-OgsEY=F+splNeOA@g>B;EmNHX|9Mw#qqUFcO0T_{X30y!HZJKrl|i%HP6 zp}w3u+%tuEinFqiR#Yo8`XFxA*=tZK(XU8`aAx^1^$Ztm2z7M@Y8qV|85*#{ch`+v z9UWl`Em*|QaYhl@(YBJD{M~@&CTSSxBm-NioNohG;dChSjK?^KM>!MjCkn*C^51(` zjwhbP^RgWKxe*!aWcWWQA=PXN8|PXm8WIBiB4U3ccpKHLlvqkee(10`X6-LYCNt!z zM7&y_cP~hY!06ju24U)AN|1?ufJhM5GkOEYC6jI<^3ae>YAXcndHU~fpgR8kf8(o# z|H{3U{~HT00H1ll+9CsPt!(-7huoUzeAdXBxF>^lu%X3euztQ{41?jrWq3zvbNMhw(M@ zn2!}uze`x&(QP7hcbZ|xmwsd{lRJ`&T-rI(H@y^(KhYt!R{0?NSRdnZ@$)-s^}d&K zikuytK8vH89RB%jFz&XCI(VUPocFLJ3)Otfnsl;_c=G0*Yjm-{D%#9Y{;z=;SGv~M*Tfh3;xWsD`gBKGoH^kTeppFp2UCL*?Zl> za6|oW`~Qu@{oirQ|EF!LxFt_X?~;e6jbfH8Rg@g*R|xVtpKicbtE9QWMZ%BG0e6ns zA9iJaj|VZbx?fU$M8FShvV4tX&v}1etHMYVLOZ+LsoWn$<^wVil`#?%#FVj>z{D>Rz7a~aDz66?j#wYT$QfTs=NHo0@>cjx>I2r#<8WEzOHXa>1<6 zd9nz{C0<}(?P^?EHZuB#9RKi}$Dvuq?%nowCIZU5iX`4C$GUFKu7!Kkn!&~82st^W z^rez#s3v{c@8u32PfeACeX6maC5IPCG!^4D*#eH~(x*UOHv9)n+8lL`zsX9ab*+gG zb$XnTr6hvluR&x7sx$>xgkLIz=~=d&!nTD)iMUYL72l{?y~joty#o@# z(-ekgD)+CuXdjUesY2iuI@+I!uh9ZXzzU)u~ z5`zl{0I5+t)kIOyxr#{Oh&9Cq4|8AZOapT%)o2l&?3^kIK7Pj^H1FKZ4drzHbc|dj z2=l$hjK`2_Z^iSi==W|^e>KZ-YuS-^f_IX)w-}Yj5kQ8Gt&GuUj(6*{iJ<^JIn9_Z zo6gGLk~GL@64DY&X(au!bA$OY0OV?6Qal0h7lAweiU%h4ZG4K~eNDsMwE@5@#@6)Tm z{cb>L15yKTO}d_;f{bqKxeqm;q0$)oZgKivZlF4_l;BCbuJ0%Alik#vLf>BW(UU~| z!!qdn<{=ko$zOj1)_rCDLjkL&Ca6ZAq4Lb0Y(YnyF2KsRG`aj+9HIT1`Z=j59p=DY zZP2pWa#-(?GH@^X*ONrTZ8i5H1z7NzE_BZFccFBhnteu#Nmub&e-{{yx|fag}WgI#NVbJ$>v?GkQrA3OV`11DO)zBGEduOyQ5 zDVP6j$8Zq|`tzTSfCTVJDYTabdO)~Y67kTi{|q%+3~uS~oE+%Pvd}s0-V-=>`sLVo zFbI9p^$*SKfum(pcM^enc{|{^|NZIXo#q(8an~g0wEJKszy)|tVw!KlEtXqA;(s~G zx0jJL`mcYO1fV|nPJ?s*$HxZGP|-AC@WFl6qh5nWm*tJQI3|;SDq-`3u%` z@9Kcju{%0?y2*c%$k{Y9x}F3r>0U*-ckY6FTx5B8^)h`&VvmVI~U&PsSjvm{quJeL<>iAH+NSH69*LVo0F+63M&UY>3h*MLRQ#KD3^n?+5*#LbSBm4oX)`laS!>hA4q z!6M^eVr9Xi{_?A~lBunQnLCS?jX5|U=!T%+f4O}`>8Ru7F(u4rf-h$uSDUaB70j_E zU^vmp!=-1O-?OsfJ?32w^vB?$635;>TMK-4nHdsCz&D?*5Z0zI5{BR?7l0Qz-hRl8 zQV3+KMJ#3dbMKKMUp}9Ss<6gAJu(tLYrSxE`FYb%FyH=lg0%o~Lcj40nZ+ng|IsCV zG{&6?RC26R>7NNJ!QL1d>L*Xm11m}nj&r+Wtv?SRRUXFX0$@x1o8nF&N%FgH16Hqv z>D{_E*i`O{QK6thyab3PRII6>pth_bB@iemaY=?(P?2BCqp#_qprrK;>(e!%q0nB{ z!a$L-=^{W0o3~&<1&wyoI~dh3fAwUAf}$ivDE+!KTUq#W^r!Q7RVn7+m#!*4N)Gvw zL193@9NP3n^LN{wRF)4kl&ZcmL+E=OXeiQJ_pXiTq8qg~wEyq2Do zg_0K0W$<`@zVEB9jeY+`vbTc~Jho*F8Vc%03!`9aO2Ht5Eu6n2&e$dj8L{-4FPJE` z)`@|DfIzXlxuavn`2EAt#w(~5uBcQFXgYh3i^n2GxtU z&EKhMXab)eGV}77r@1&dT3T8%g?2EqrX3=-}v}d z4+`pO@tYo~JW_||E!8`>kd9Z--e+fLo0*y6#7Jb(w&!JL>gemQw>ue`n3#Bbds|vs ze*D-bkXlPPHaOH(a_9T=u`9KusEGW- z2ZJVB2qQgxa zDl2?+bX1zaCVHY}VP!R8P*TE=kfS6)^$Lo$Ek$#jl+NP#&mYK^3h{W5j-jEUni|Dg zceg;wSjjWfz~WQhbMMQ&%dJ_L=C`Qc9k_O;rKiV979%G#aaKUHh^|6G`L5pGeJ-N? z?9j?~O8D+>AXf=kzi-x(EM2aBYlY1k{2!ze56zuRpGPV4{3r~lL_$q1tyWn{Ym1+! zcr~ub^a1EG&i#<{lOGlz&2h70ai0P6Kv-$eXL!{Jncmt?eTUD$uFqjQg4s{%O$Y+M|P*4a} zU0q$kruN6ZSYV)nU=}wwH&<3h^cD*wrcYR~WoG=xF~DK1Ip$=cpaxuC{CVc( zw=*vRAC3P!>ipL4%n*1XLYyYFZ`Kv|($OX8UE-uQRfFfP`f7X;Ef(eqRSU*SakpW; z8YDN@p?xiZ_yc`ys_BTYfiOl9x%XsPn-HR0ssJ+3TMYTSr%S+=(+8f>YDsH(*265HX7T(ar7O)?fq*3JO=YgNsXJT^%z8g_)^oQFZmv zQmvk4bEYOa-L1NhhW-iheKvF@weB-&*TzYIzevoms;VlvmYuzQD$jT^{85tOkKmq4`VSPPk%Cfqy zju;Q`;OMC9;~!l|N5_u7(PxY2Wg%YOLbxkta2}iqO&^dTF0aAXT?Vz?Q#-m3Y37V9=@m2$=kp4l zPsr}&uj%~U+}u?JFyHd7W9 zLWGasT&Y}%NpbOZbav7~^!4>q9~PIEEG;a)+qZ%9<@0%rn>I=l#!2o>PR7dTx{81H z{`;dRg+^&Cdq&6_uKg5PavCe&1w%ICfJ zCo?N6>Aur}_!Nte3`@6PER|4F?%?16b{t=kw_;-`1ZhIMY@sS!Go+`b{pj{q)7NKw zT`YjTQrX+vd;ND41a^b+B{d8iw#=58ZogX)yxQ8^=VeKMTT`KV3PKF27LN`NRzS42 zv#Umq6-mM;At50m>Ty3*J&<6;nEpN04*(Thu>{e+Qteqp|oWShBU36ogD)M!~OMNR6b_7O<+d? z0*ssj?guj<8HDQ6<$dtw;^y|e{H>8PhE;tDO&6>QjR4XQg}I_)eBk?wN?@?|TzVcJ zm%#q_Oh6ExLFzI5J2NvgIXQXz?-y0^BxD6emreC_9y?ugTtV%$7WOIJkH5qRHk9l% z62{%sRP-u=M97f?UyMffPs`ZY*wfP!a5Rw4#(8zkEu@$`_T+*BB^b>7=CS;$ga0JW zp&%pI)Yd}M)3rd@;&HRFIsD%I+-OwBs=#H3$BfwWQzP_{!xn4(AE9V;Rk(aGRdH8~4RlG=iV``yYh2~dBH zq6@}9%H|(^%{Jj@X?LXLq~S0@u~ z2ws^Mi;9ZMy5sX_*Uoh#6ti%wUJRqO^73+VaynXCG{i8~N{;vMm8Hf=);UFD=@yD0 zFd`3vuASYDjkBw(SzmWh3O$eYPBfF#(`i!1{QUj5#Dx5AzO2*QP>ICG{*_(mK?)%a zhjwfPOeY@0=x9b4;rG#z2@@EUA=AdFC;}!;2B6WAc(q| z#H&)LZ1ngpFD)%?Y#1mhC8#HpN)jYk%lphNfo6tt4uL6*Dj2V=t(}^lZf|Tvj~TwZyW`{I`~3q;B-TQjfpiYV_&;HlI+4S`EqG>~JUMFfc zai22Os?%bDa6Mn9kS*YSesi`1r|>DcC}oO>GBt5lL?#x2YVmn!^OXx#k~Ba+-QC@c zOia9eZw*37CD9$0WGmIP($bdJ*1BxwsoB|^pR?Tf`1zIc1bF@LE*#d{Q08RONJuu9 zm)osp$tmjyxE)g=kT-B}`TU-5C47 za#gvsxCpG9BJn4!2Kv2QZdtLoLl>CIXf8XdZ+Q@ihMF4YyLXjM5urhDz{^r6_V_;@ z-zeor)_5Gu6ecF3fhmoRMLyV1W6~oQ^vlS~!Y3dA(I+D#0}l<26eq?6MlqKU8xzya z$?3WLn^Y_vnp0d{Ttx?(77h+hPM~M%hYug7rlx3r19I?Uc6_Tfkk_wYb36S=1<$g) zKC#F<>q-Vr+v|UiQ_9bV@zm{eStU=c*Xwr+0!eO8j=X{bSr#Lah|KfdQT^)b>dcJt z!A}rSfRWB1yuyZuVbH4UcHSCDqL6CfIsWqWc)zo~El!^Fd0N35@0jAxpFjRj51k-Y zDAS6=G-*o^f>`?N*RS@rw%_3A@UT{|-4V>AiR~)CNGy7b4ui|p#l=NhT3Tcze0-B^ zgil#%DcP^dTz+mcvMrElfQ8c0(J9M#4T8+PB8Df4iHV79Ifgi27+dk%^JM*SYb%%% zwpRQRgycBH!0EgXZ{NN>`1C}~<4j6Vk7!$c;)aP2JAmAHy*H5_g-HX(ll{*iW>R>N zy|uNlij|EG0;~Vo_L~-rXkP0#vF3}UB4`w1*{#X9<8yPWkwk0=^Rhvn&>l#rs7B3} zQv+d0EJnSt>X=wqpXj-ji@0VB#Bz`0Rk=a7HIUS;e+RS0z(^LCm%m;tR%_kg-&1h@+330k zs9ITDU>23-`@+H}E=^z*eK@sEIM;JnLF3;CsawyW8flHlrvj8{!Sd$)L?Xv$654)owW? zBqY(>m;eb8@hypdIDi4Y*Tm zR6;_;w~?VCbuBFtbujitFSds|{+>92+h&gP8)|tJd`)E~>-+cb+1bUW%a!tf@=1`R zNAqz(6-4_!-d%>gK~nz!atbwYS^y7}xxK`||4N7|)e*I{H8kEBxOsZk*Vjj^+}_?o zQd3FC0E9D+1)m6$8qe>!-p-dR&1!#kuM{mD{q`+0a41|~QH4L>`bFLZx%Q$a``Yi?pfCO{GL&Lo^i{B_uR>^t`Nupe&b&`W_oi6v5C zEp`Ql%&P`Ztx)AD1M>AXe%-XG1sn&kMJ~w#-ZBAF3b-rb7i# zV&X2H`ri^7J~4`tgo%sEP>y}_Ssgt+J9Bdmi*YQFmRR+r8CucIwTP&m-S7rpdqY~z zNsvyYnbS8vdrWL>Y>bT|d`$Kb#i_2YcJX}m>eca`F&9~7U0vNv?(3q4p8|2Ask|Hx z0Ve9rB9EJrR}twiS|gcs5ip5s*g)LT4_C3U=@Udg=7E8M?(P>OaRk7L z1_uYh&_s;p5D^i9Fclvc$H~r4ut$Vh{EGQ;qs#L&`ReKl0Kgi|eyHc0KWp4@a1l}o z#9JrM!+4garrUdaVFX%#^AJSEW-V*QHDwePnHd>#*sT=B#bH#(AMdZ(+1WvcM%uJ+Hm-K0tU*G3M+2pes*Nps0Jb^* z)F=`4d%%j<1>i4ksfZa6$l}}_20lKY^nHV|me%qo1k9Dxk&%(q)YMO(U|N#6Sd$!L znV$ajiTwg@2$(ko1qCa{QN@xufiNn*J)*Bl)%;`rNemuL-CqEt{REBnXkF-lL6w(B zR9flj5jg5or(|YjMT?Vb%wPaJ_>a8f_UoGnqcKxTax$qBzvolTBOB`Ynca?;kVFiY zYDPYSPL_%+r^T^d5+iE~U20DfRWcJr>W2k$I@8qX)JRHv>|`oLGxJQ<(Y#W+DEq8wF%>U*0%~Nx^&LAcx2E<}-0&MKzZ)VokHvqeM z94$f8(ts}2%mQX*y1(CKrNP8r-1q7jgoy%+p-A+cUDhgbj6pC!bHl@XUxHtM|NdQ5 zQ}gif@S-S;`Sb|n=3>b>d>&_GQ&aMrmK zNx-ElQphH!rUnNFoc%y()T+}r5!cq#*2cra5=UZXx12QA!fFn6xB8Z2GHu=g%(vO( zWTlZpNC*fJD{E_d9TEel8QhNR#_&LZ17VkHlQnPQ%NQ9GQ=IyG4!>tSdgbXtr5Xu9 zFMxnxV@zUc)3!PK`re;xbXCikJ|UdZ-5$D{v$3EZ3*W+}8;Q&QwkjE~*+uJh z+7v{4Js}_<5cGx^(-H(ZMx$N<8X7nx*yU44xirRi0$%TDh62B@u9lUR5%aoIl9Q7I zB~Pc>65!8j^Y^p%uQ5w$clL@?naeZ#D`bDp<{W6sZAM?DVbsMr#p0ka1# zWz=emO$Bn?^w?O`C%fgkHxBAAFbsTCuiZ#aL9qiSh>VPkGB!3=AB5GivV9PtzZgxV zF}2%&hn@hQR(>^g(646vRrm{1+6S-GAbg+zq@k{v-77F17ItW%vJ*nCdcU1@uK1TrFbySWmCp`j^+)Z^7wyX%t;)4tUP zlh?Gtj$dK~kYNIWTN9$81+ioc`tt=1CWb8IFzLpU2<1tUBK4iNCBD^Er56j5(>?|< zH|5Vv;o!Gi{??Y3GR0i_GD-SLI+|DGL6<)v1hT`Ek}p{omL8Xki;Iha0m*lQLDu3; z1`=lBd&M_7XdS;!zlhfAcP7(0M;|QL=ZA*Awg5hRe|N{$1)`QJdlIrN)IwUeThC#& zs9!JOKpw{{Np4yCesq;av?4MZmQ+$M>m&uQ95SdsdXc(b9H_(+3&v;}qZfaYn46h_ zlGm=qq*08;V}&*axH6a~xj{-q15X4O8MmO{TtsZ8q`I2lWB>-dYUHnB$l~H+6!4v` zpjWR+S)AyCMga`i-8J_kA01IKy&HWUgwO4W%m7kpV>O=qB#|%axA?-~1z<`hXDv4K z?@Nvo)#Y+C1UbX%DcSufsmaKKaRls3MCDPK>kWH!JK*ZY8n~k zN2$^HmB5;wCag$W4%NTGa^=EfGmlJ$80T(LE9OXhCI@+?$;oT}zLvRtmH=qx;qBDq zUyb3{@BK=%LgY&{HUpo>Z0Kk8Scs4EJ20`KlX>!40RyOI;_-;V;qc=8^p3Fy(7ect~p&!N=l%}Gtn zz#J*$?wZ(!g@v8QlY^X{iL}qk!;^syD3*-FxI|EQXJ=fVg zLp^r}93NzWuov#v*wXUJ$ZRC`aIO@|fM=KB-8(?y#7sOrubZu=EzQl13C0F#v9Yn8 z)uf~%TnaG+2Gj>QjZr>`WcT!Z;2D`ei*)#;wo94JT=M3?d}3mvSQJ`RRFsg22*^-p z-RS7(AYeCSBfg7lC&ez>QZ>m08Tuz9S_#WNy);$L=g;`7AzZpEzI1q!?Bw5Yg%}zp z2+unI{hFrv6;H&EjDkXU48j+L02c5$ZHE|qWbD*X0qLNpquXkqZFA7` z=1EGvt9>yHPp-g^9?1B03JuBrd6FNAgE36SyPU&Bfkdw#RahJp;;fpFy)C(mrInP3 z$5T`$j2EZxjWyOeM?PYTH7mi}f|uk)EWwX47G_;SoKzkxTC}Vc7K!DZ8aIwOd_u1) zZiKF;so7>RkycPZnv{dw`j4Tjn$9mST(o=pp`f%>B51wkNMReZnl2#V+?kx}Qm=Hp z2CFKrNvRGglkR;bD3+CR71SKg)T2hvsgB$}71JDmAS%gYl2x5>-^Bzz^y~GMch7FF%jkRg>d@y!mNVba%fb2%6Hmx~Cmx@?Mcp*zGeg-1^=% z8#f6UGI+V@LjHH+Qb1)$`XuStODoPw9)1PrYd8wQ`EL@2)MW7U9}c**umA%GXJ>1x ztD{3jNqO;iGw^t&vElG*&yQaJiB_BWGRBSmP&j~CK!AQu7k%F9aDO=65;Ha~2n&1D z!oiPFQTcQ6B(lOiWAwwt-j*#9nX^0m$lWZ4PQ`Y9Q)#-j3-2w+1)T4rUk! z3k&AW8wqjogM)+h&mKr_R<^cPWvAJJ{wdldk!2+&*4EZQzy@UrFBpdwJUl#Fv(zyO zBh@J1hk`k;IRLp{QX!A@pK1dZS!xDLP9+Uo&Efv0{Rj=_z1OC%e9bK}Ja zfa>x!+sm~pyVWxxFX0TNPGeVhcXc(ixFY}uffMQI=zIs<$z(8m7Ji|rx!ENI;L8ub zSIDTSPK#C8Uc)E3fB^saLHt<+_#20S`fg{SId^Hh|Fb@GB`z z2L(at>8+_0OV0WOstUqFIV(4Jx_~mOQ-^VX2#^hc%-{{C0fZjIHv8|vui<|51u9wY zbpZXiz-_KXMgSHL&TX^aNNAl32b&MTjyU2ES@@sWUxKwko6{z-S|vw0C>E%yUQ%mV z?%{?3UI03bh=>Ta4H#~5Q4!F_vpDT=-n~2g{aY7AyY%#SAnT)Ps;LcPGuT>L{o36X z504|@=5k!e^X>4tv;`)yZG()A{BZv_u+iw5mGd!>@Jp8veOLk$CRJ(7L+owiVZuZ7 zJDH|v)f97fnT*XnDNNBcN+Hcmm4JOzCVP6x2}?VRT`8S0`!lIh1?ush-sz3&UaM<2 zCjLVduww{FKqW`y@?T@$h1Lu` zfLbUSgH#-TSdI7&7}147069g`ijx;@TWRe9R7}cP0XIkgD-|7Ghl*iZmJ)qi$$Wly zECoFYsN2HEWF_kK*n+?fek?2i2P0SPcXt56{A_y|c;?r`ckkW-1}h>W0zU(;8~qtI zGg4fvFd9vqlw3olr$}!hL6yc@$aL)S@5Sm0nKNwuO*tlQA$igCJ0{GI}$_ikJG4%C7J4t6Ypr@x7HHj1j9;N{p z9mo-Nm6alS;bCEgGh(M39WH}oV{||!U}32TDoav?yPTrp2wlFQ|8EeG1Gk zw7IDX9-EjEvkmlYxs)9cQvM}-9Kk^{K?4`SzUuytuVFRZZ z7dIycU5^|U06j)e@}86hbmm_MB;!@CB261awp6rm=Fo&7LY*GcJxD=L{+*SfRo9_9 zFFTu{mz+UQSJ&3g4oGQ0woS}%MNN#1G#{yXxVr=;Nyhyx5ZHl5jE;keCIMn7_@Siy z^m5I~aS(ri$}DaU^d;#2yI1peyy7)hveHk)jy<*MHX9&Bu~Ky$K1IdA%<%aJ9u|1*FZc;$kxp#2p<^ zKqU{Y4AhidH(}7xFL~^~$znlXC~a-+<=NTT^z>JCkZcFn*6u;f2JsnGgpm*sL>R$2 ze21g4L975w?ce#itfFGC`ys|hSXfxozIAR9aq$n|Y@5#`48a-4qK#G8&M~W@l$X2gQBf5^#abfk%US10)WjNqlUqI1OT$=t&nD zc@eRBu1-|f(xLm_-X0+6(qa(VumYg)17IR;YfDc*RZ>E!o&*SNr^}8c=$W|q5a5!U z^@e}8w_O3}tk$Xr0)BWz1RM+uEkqVff{GKB>YQzJQ)MMWqqc!TZeCv9tTm8ZFHg4y z1DGupMN_?6&7FUsO{9Q1)mzYGn^s+{ylu2OG#48uCnpeKxQeKU$y)l!W`%#O zz1*Pbo=%h!x}WLmGaA7_e7~YN9$YM+G&~MqEiaRdj;`YQo*^nSa`OLV;}>c|7rVr7 z(9vg&;{Kb>S1^!MWkSTo#SKjUn^W9XlK8kLghWOjund3x?>Gi%E_5lTbfPjUv)(IO z*l>Go7rHW!^s~&FCA{6nt71O4sAtcrVE*g^f3CVxwX$Uw+t*aEG;rMM;}6V)@0l0jTf_2X2ey6WI0-)P3Dge*Qe2n2x$Zjh1>F z_<55=1MuekPEbPo_N@*C&c4kpmifb|*g>PQmSA^KKo0!cQ=EC|M2Y{iY{6$PKweO{ zNRQ*7#qDmVhL^$NVj2LMY*2&&xj7|2zt4KM2>8v;EGPzg+S?xkLg?@BUwUmgXghIg zu~K1sRK>G1E|p?OwsBf%q@!K0+)Yc72DaC(LKS*Xv^l*q(#`mV0$Ls6LNOnR1l5(Ww}vs9n6 ztco#*v8QwSBS`qz*ygP1xO}{jY3Ai4!kt-w)dJ+15E+R!(W+urEI6!HETsiA4#xKJ z;bF+P(#A}zY=^aH4~WMCpFu1!?E2_XPVu*@+L0}=$Q_FUNG|=pNuX-#r7j;4Jq-jP zurOllnJ4hc4~Y9LEG)%81OuPC!SI6u`PZ*sq|&T?`H(VP05aWDFs_G_@5 z{6Xv)yo>c)2Rswh&Cga70v$y~2Y@J|Rin)cl>e60G-#WmAwMi!;hjzwu5n5qUTfyLN8%_hhj?Ic^mZ!dL8h4$7N$wH8pX@5lc$& zQ1P*FaY5~Tdt|nzqN1Xq;S`M5fs}4PK0f~Y_o%3-v*mbwEo60Jutkjrm}?-lrqwaS zQoyn(kf!OJk#PH+4pFA2r<>_~S&P|%iT)<>+UEUSScy&hty6q~8{zO>v&kUr`hFxj zMM+dEt9C?bW7I3@N9kso4SYvU`PPFHFqT01Wnw~Mr9?6GQAEb|K68uAH4SKprN9~( z97G|Jpu0h?k0-z-dWv}bjM(U7FbE~6^$`w_)-cwX>?2Ub{!}2-M-tIe(|@GFi8S3J zZ40ekF*YkQHa0fJ-6#D$yq`mIw8v=Kb=}E-zkcvp`(ZiIfAhZQR$%&i8JY4Z*#KEw zh!S@Q|I+{Z!~j6I9g7yDrmw0`ZrSrWPtg?H>!XuOIoKxD{y*9r2q^yo0 zIgT&zZ1Pi}X#Sc=|66`_nvR^m(97zC_V#ubp4@q8h4 zFM0j*)MrV*K!%p&z{fvz0HD@^B{T~aDlRaEs-SENR6v?nyEMNz=jKY~6gEL(s93UH ztU`|tdiACjNqUhe^Ye&HTWNe=%;QT4*)3JB+5Hly*B$o(XacDT_mixnm9M?K}i*X)#{J znBg_h%C06c{WBP}n8QB01J1Ij%XRb9U2i3ooJ$R3eVh%(QVO@n`=6xp8zh{I^rksV zAVh$YW35VYIDX?~e4a=a!1Ai-f_A)l;wj>u8=YsB&GYUS(Xbpr;P11LVZ3%1Qjk1ul*lg}O5Ey(GKki9Ki*3r9y(22k zTGbOO*hq*{g3xPV(T1OabM|tE-r=uhAeDCqJZ7!sV6`@v$PIQ~@NP(|Fa*QVL9|gp z@pdQAuj!c7k$~I&o8k@OVQXxAnnsoS7;~lDhF*(xQedg>TOxdS`#nIGcm~%fJqF@{ z^(Uh-R`iAzdEZ14^6sq9P|8ZC(7w_d{)Yddpl1+k(|m24=j0i_sBh+%*8cc0i8Pz@ zPvIbvIbBg8uE5R%X)o+>hTML65tKk?^DA~ieDmR?ySK5#0ge{I4GIsDd9lp|C?XZX zjqjbqJ%pXM2EuNng+f_=CMG2X4;$|TMH|Hi)GZCP!OVVx#w+2?4FJM$C|H9jzF@5Q z>Sg^}|6BMhUN>q#v2|9{(;%y@_E* z{wITGOO*PXpf;XCK_TCZ12S!CyGbHSLxE8$Stz^^ooHNt=as`24h#{!NmChL;Fzd1 zGzwXt;o{le0xCd; zlG3VqGWBaTz7}S7_}(-e6{Id`pn(VX(BwS zaY9fQs>47d21R2lIJj2F4P97D@q905Pg>oUipyaPlJe@}9>0;lh|9Hl+zcA?I3{eI zfFV@GTi*!3r%k)UjLe^-LKXez1PphfR5T3HG50~ra3L!hVW~A;{pb5BF}7i4(sTfi zK#(RF&^s0h5Vz%!#)p{&Arv635Em6tc9nabNWOr+tA(z!h?iWmMI??*su^o6k0mE! z1C=uTYJBQ-b2Krx$cO^m>SdlzL>7;4=^a>Hpi!+!wNj(s?wA{TvoAtj*+t7&loW^} z>2-58w@Z)cx~w>=rDC4&2HiXDv{J2n`+{5|+L{Kx66AQ-VXS@%RM0J4{8wX)Q zBs5b`pppFN8ToY}(Cl!qmG>{0fjL`dnKwHr+(YKPzqGvOQ1D1CQE zP%6Tx9w|-HgEb?bp$N&?ER4T%ys5xs|D3~zKKfetAH3dyRcNS@=w6oQ<`=jU0&lNT zxD{w#GXXK**DzB2F{sM8e+h&=nFp{rLro{)(+&&95q-%*B%P4QIzrZy=0Dw_zuoaU__HrTbuJZqEVTwN5^b(ME5laS=D0!6 zTcpeuSQ(E*-GS2@C#o#2JgrwkT5U@s|AADZXnt4xt(CgY)oIfT#L%KOn)8l~o?K{d zl!^tVay%S^-4pR^gjmE|7rh^;i|G27^+hR$tQ)NO$;C?o7d2b&e&tbrRU8!k76OpqrSN=ZMEkEy)+Xnkpufa@!$MRm|Bk51^w>p0N5>hE7+i9)Yo~lr~|z zP(aaBVt;^can1M?+$L8RBU~_1ZAD~Gy0+JV)yN|jwH@sEVGfW`Z8}}|0^Ih5E^enF zXN6pGWIA~E(B{%c%KPL6WBw^gseO)81-i2!` zW$N(1=aLuJ=!e|Q;y3IlpJVuCBIP`zj$fN|*Lcx6)V z99n%6T9&PqF+qj9)S0s_8?>JaztjWOa5KUF-JX(+pt)mCy$SZ82%=qE0sSw0F_pyc zE_$!5>x3GJkOv5zX=u_qGe2*4LP{tdD*=*mF@xwe%Om%Boeg}D{;iB^f~sd+meXOQ zJCap-9bV@==&_e1bNAgXRnk!e5pEqPY%Ij>oy%b&8e&eyR~C46@t za)MxoVri5`B;q4fs(WXR3dOn`LNa0uRRj9jj<&Z_9S zr7sxC081&D^`N?KCVfc;y$vhqdOuH(uRTnMLzTjv)sM4KNmYcZhH+Ci)3I`yfO*~pU9fcj$Jm>pQ z(Kry8J+Y7xk+CK-Md#9RGFO4;>_HY|GuTgfZofx9*39@eulmqaMi7O z9zx6h8_TE9&n)N^HYM3>g;_WMPB!?jA#Y6$<0?sD0kS)gq?f`7%hgS^z|czbe#*b7 zBF?B;WSEA`*2V|z~1=mF$j&O`ua}h zf~_K(ly|Q_mMo(;C_m#Z7SF%~G#P^L8zXIP>!Eq1JER#KW(QMbmpiaBt|gm`QiqJJ zj;>!|5xp>zu6p_4kKOTO<>t1|NXIv9_#`nV9Eop3ND)4M zfPosOPY$2xVZ$0=23Hj-jPismH7MaXrAovsqhc-QmgiINUKP1l(`SsQL( ztmENxS$I^i1z0^vsR_)3=Y%iJv9npV_>g$HZ05u#C1U-xocXg+f(nv3XFs|G(n+hR z(pR<&@B;0EUIFpyi?>QCqH;zvG}DJ)uQP@_0q+>pJO}{%7muc3?P&aqGJ-1^dzhrU z``;f#a*8=T=tvVt_2ky_bY}8}6x%fS%oX2Qd+8wx_Qd7)TEdhn%PTcd$l-Y7g)YTE zWyKO7xr*PfO17RVBN<1JYWV@Cv)I=ZUOcSed_!He)tt5)4nt>l)d~gYRk!c(HqdWd znYfBMM8RU5vmOh9i{^i$>@B0J?4ovIy1PL@y1S&iLqfW{9y%nYyQE9Hqy+?}q(Mqr zLP0@k3?vkk_$Kdr#`wlK|IRNQZWQ*t*P3h2t5)kbBi0gUM6SBgZx61!iX$#4A(xbX zxyG}&RAtAfruhKxcwG;lhO?%`sAwB)=> z@FU9q-qWe)tUcGh-zFHr>8Pf_K$wQ-hKxN8D{!ssIeKd%*_^pGnLv!d$kW=aOq3OC zNZoPFpjY_#=O=eTs`uobaguX#{B_=DZB@!;LqReY&*3DmI3z=A#?G#g z)3jG5FOpBNWr$Tt!XW&z{76zC6Q<-xv;gdp;A;K>{i!L^qi5oeTp~v>JPjm%ILh7o z@N-gt!Ip~Pmsr}~j9wD8SJH3tASH%*0k$C@dl@}Pt9NXI93H?UdBnGMlvCk#uaM{K z7Abw=q}6+s`NL9V$}OO=Ha@4(!_-LVzMv&_jz)7SvMgkym_&P1 zL*7n7?<%4u!pK#I@;N_Bw?r1rvo3V+i-Z)mfh_PHzVpH`G;4=1s%T-ZVGwLtE8yvSdKO7%1&o)v3QeC%9xsvK?wHH9sL|-c+=4S|q;0?y$C~_iJu1 zi1S84Zz<_nrM4ODy%`z>rr}TbM;pX{^XQ@2UlJS%!$o(=ekW|foKL|jctQD|h)VNH zj`K>TPVy=F6Cy`R{ORqk`3Z#?yU61?v|i*-q;dZdJzS_7$W&y+v!`$J&Lt?|p&6`+ z2(*2E#K?6I4VP*g1BX+^hkkq;U0YS)AbDK1C<1*xnLb*TNp8dQV29_hRAZ#%zc1_$ z8OWV%w574B5E)_Nd}@z>3|5}w=3e3?qQkuH`KiysrFRzPg#6^){N&WX<( z9P8yUqV3(H)sRLdoTO2&`h+NJd1b1F9c{lRtfa?H&1 zL0hGBD-q%TptM-{h{3X);v)0+mOG@|w>lsdtZw;3d+JC}3-T0Nwafv4qQJ z-Iwf(rTA1&ezB2cw)EN_vLvwh6kJ_`|G_X8iy96JBm0tyG96h3RL#T6ytBb4tO!FgN4J{f390y8FBHiwc4S7DvvyU zXZCoaZ}!&HUf$$-35Q5F<1&eLLR&4MvN7B)T*qCKE5zARXfjoEx5r@?_p8nCpJz!c z;S`@V*Rl7$CID@^D3h=n5d9H|8GilUu3xq%lqDla9uym$m!kMf8748={o*F=f`kk_@nCe>`A&hYMwKhdaV+G zVLd;z*WDRL?umdmR^Zh2`;tsoN8|McrTP7l;sebt%N*2C)3_7K1p(UM(8V0P&f*8h zf4&5Liu~So*Gb;W>lEhvE=KMBS$&t-TQw!x`EiR+dq!c`hEoKD)6ITQ{xHAz<9eAC zJg(1snWG+{Ua!A7ilwIzyYoZ4%9=+nw=Ut8h~_7C2j_9R!tKxX7Kt&ylU( zeIBqjIQkS@-6rMiO-@&T2C&ozkU>D^QmMsG08{}K(gg^4@E&k{?gCy67zKC)E+7VJ z8>#2oOn@E#zAC?B11D3)Ghm>)8f5@Wf8(>G4gxg*kbeE6 zd;fZYlvw3m5t{>m0v_p>!qiFqi=3ggp#SF)*FpSf1*a89BL08U4fZvQOYf^>P5~y7 zG;(YPaqByv&H-@*a17L7f56)D_s`F8U~z!2497=A(uOBprZ_5Fe+}T=4UlGl^28#| z;`EV&MYS7%0O9|Zw-ZEU>CUeU9!w1bsmV}Qt`KjCL&Z;bm1Eg;ar`LxUV_i}4;{c$ zh6A4hG}>f|?JS7rK>Q*ce71kzk{d-9H=X=@JGdLzX&-nL@r|A7Zwx66Hk!Tu0gA1A zB5vc?O;xoVU+*zG2LnS7*g>h7?=C*^;CuKZIVmZ?5Zc*onhuBUSiO3I^Ku`&K!TP^ zC0r=tZt4*AZ5_OVyr%8W;AbHD`GS%?K z)b@Y>*!Tx*1w4)Al-dSd4SGz+5>COqL?3uCz+y5v(?15VYb=e1QwOl#sSlLii{yx? zbhaQgzQdno2S0QH`VIBr%NK%af|`~VFR(t`(WqYlhZOPrR3u@e_0_sD6 zls8>T|C&6Wmj~HV@Exln=6eD5OP~5mjXa+BQcY}$u)DSz*YWjIDRM(V!E?FeiyU~T z#o3#o>9`(_y5jxkPgQYBJBk?kiu7mryWlf3&f3gFGPzsni))d-uj)(eU)`{WAXssrJq-GB1!_wmvd0S_UartJRA*)q9SQ=-e4mqA za@!JAjYsbr&}%_o2;clv5>V5FkZBG<F;n7fKI57??K_3 zfPerz(3lBc^UkskMB_?j+}Kpr@8y7z(TMx)1MvmUXH4To3t0E7{lVuPh3{3q1;&oG zQddei^m>0CE0c>}63a_jTrycZlB?Qk34vYeE_riy@F*-S3|7f-5FQZUjI6A0w?Bix zYu}vp-7LsE&(gAZgpYi_0UQn5cDt9bzj#2uwi6Nd6GTnH!QGq>OQo+tDN@6wg^o|V z6l?*47*MxE=k%0X42kkJD27N$NbU@1jg2Y0K0UClDnf3q#7rMARN1(bv}N%tl}TfS zSa-qNX(lKeimp#D{xyw@WLm9G`pgmhs<7@rlQlB|lCz+Bi=xP?s$-Q+C`-2&zbesn zpiw=BZC`Qx4S@jmP~^Q)yfOHnCfu4#JJvq}6KZYyuN9c@3F3>t{IoIMPb|M;h*c)Se|RS{*1(K`peGZqvS zC^vSF+SInaNEZ+I!IcyGu_u7n1<%LOv^h($A>M#|(^U_(o9C5S82Ij%sYbavH>cs# zeQu3y!@g-Lz_wC{B_^O)=bHQeDQDID?>Lz<)je)&0*UDkD?!*LNDsc&iQ7Hxcnvy5 z*QebR=fG=pO~wOf!)aH522l4cD(3WBs7BQ0B37Cf050hc-xu7t&hu?;M zebBfRkzP4JkY>!3H+-v~e7jd_6;i#c7gB}Nb%5Rb{Bvu=8zKSY3@_(naKt?G1RkI^ zqA4a}3Yq!Ne}_9{eK!9%x`@4zmQp6HS9;;8-yrwzN+4TAQ?xZ#?!;Sb5>(XHD3s!q z(Pu!^@gqlrqxhJ%XAdO$?cl!JytVO`&jNWTD8 zJ6+%A1Ku2VtSuS8tu8*C9zr-0YhWUv_V^B&*T(9mK ztfqY9?EC;HV1I7V>>>ugpIKVpA3$JLy(%aU)rL@X>65XZ-isNgoCW_~86&vgStgA) zblla+vA0{-Kr}=D;w>Vi83f1ki)dT+21aJgox|q$=0Yh$k;>|d`4T>i&$JU2{FnB- z7nJ3!c2bW|O1wIm>hlE|p~&Ga;Rc+Def~#=Sa{0B34WRd0!oD`SaOQ5WH^Rfr}B8C z35Q?f98y=)|(mmVA9LeGSvLTuQc5+&LF`L-5)TwXqQ!5%$R-<|gG@^Z$;EluF z0J51}WNc~ulFswo?YxK~Ek`*-gQCW1$@}7d2`wD={`UCpJydnAhUR@XpMQ9o&UI}C z2|DAr{@ilL%!U>HY=MY+EOIIbx5XOVw*$`8o2(Q{a`P#iCmu2e`k>#QwV?L)s-r9_KY-ihq?BCa}B`@Ju2xzoMz4vam}Qh`1M? z>aEfJihL=bvk!(EMij5n1Y6p<5?VbX`~L)1yd_uE+cp>I72;}@6;!iWw6=|WQoR82 zMw2KXq4;1Jz!@e=L7#oUbMq_DgJ6s2rz3w5oKzMJqE_GI9P%}!+wD|I6d73z7%A0r zvYc9#_FoQK^IzS%se}!w9E@2JOD8Gx@AAh6@chzEXHO*MB|}#zOgnAJtgLSza87#M zZjUgYCQ_bQwQ9$_QrnBfY`Yqr$6nb#%0&5{#O;2T879czCuCumlA=zd_AB6=ql+&3 zMO>I47)X40=Pp1)QjHxr@ z38^I7qHoJNo+XoUf5A7-#{C>2D|&^Em^LB7R4v>^J<5IY?!l1aGeM^rp)hNg#i)Kz zLPe5BdJ+AqrzD!@I@g!4$XcY3+2&zoWtEXBHJ%g5iuiDhm4{GaeW74Q!o4P7x*DL5 zQTpVkzw17h(h#m}qW<+G#Ax)-6#->$sUG;8$4Umcy9Ejht>?+d8)SR(?Y47f!D2p0dPvO$ zhc1uL>UVWrI`w%qnbw!UzylYi^6aYQV&550(JXODh*?544zCbbi2Tt^EdxG>*0QFe zS430D1_R;YTzx~1z18SV#)UQaDUK|iS|wbPN8m7&N~!5*9SO&2Noj5W&v4PYn|PU9 z-=;HqEUc8!eTn+2lT=HRk&3Mp<(bLJieS^}7ApVR`LiC5^TrfmqkQ=ialG?Z>!2lU z=aGx&`A-yNf8`9jei}*OvwLwS_be2{W@wKsV`+>bZc^{jqm0ag&$4MgT3ypDbvYWM zZz(1a^%H+k|87(f%0~X1f$`%*NAl|^NEJ9w{n#r0d8FdVy9}8JH?Mbw`4^EbnKFws zXlG}9CosNSnHk8*Me+tk6?3VikKm{5&sFUXrSjS6zm57kM^}Hg2xosZ?d1ShlTfRX zzJA2iDh~g2w7sl)kk)2G9ME{xF{~AFP)#0k3nVPeJ-OF(T-7XxYydH z^)hlO=>sBSJ&&EjeulQPG8$nkb_}8IA?ZKtJQNMe1G-Xvj-niN2{cxufTLyZGm2Fz zH~ahOam&%!S^F!in<-q!lCSXh#ay_y5PZ<`>W@9Qr}UI1#*1)AEivtHKj4xIex({& zVzsO(lY6RZqMHB2EZ>q3d4yUu$mPKV!HX;+Cf5x`2`~#L#5Ph2B0P+CF37H<#Or*R zqDY@~49kTN$68IY$;bj_>Ufya-8l{SiZURNL3j30(Yx(u2=8AtcMKi;IK#hTn*)(v z5mgJQd7T$HoU8_cEfqC7F?s}29_e54=Oo$qR2SO5eRGq($VsYW8-D6m$bFsasKS+2 z%{2ZSnqD+a=_)40_4EPUyh+iVGfg3Xp7?{ZmFl=BK`|Wm*}0cVM(Q5|c^Qo{SQWjg zcrVF@QzBbBJ1J~WD$Js>_=Zcrtymju7 zmR*>c`5|?BX!aN;{Z7Oy>U5SYJ*LmXv3fqXLfKEN?dKHfZJMq>{(RpZvaCV2%(Yw+ z^fUVP-kZ{YT|bUaZ~L1kC)K;?Atz|5|$hj)j4ai?kQ>5crgYF$9)G-ZO&6T`b|MzW8@bLr+mc&@8 zG%HFok|tb$x?c$?Ai0N+aj4qHvj@3_mSiaI6^y->_X6UAnDSim5zFq2@ICUHEFXDx zcbtGY_EKxg-3SkhthuQqYvapZ88T0qdz?rw1&A}-B0AW(LW)Cq6zP&}}a z#K@|s`2@DjssejuuM(O#{25gZ#2nA7Z^|s`5&aC|qUHsP;}r5F_#g8M5G9Tk)#<#= z4^kd$@N}u_9Z+Y#e0`F1>7f|a$*XCX(bFy-tPy^xB~x>#q+YLqvv>ZUq2ltjS|`WF z$AONI%_S2#T~~^gKQt*>I`A(ItgP^f^*O0q>e$-f&39`Eq9e3vJ`$!9k=<%y359+V z?LKCr)OQpX2xa(hg&u7n{<~tN^qb~TWy%|*REjT4oeOgo(Ty-vqI>|&Fq?QFhJOw{ zTmA#j5?hq2TET)%hRwPtq4soQa!xh_FUSn45t|?r&=quz{tlM0?Sc5^Wy2VGHHiW0 zP~9*{kvK+iMtICoa2|nn)1e^U=}Rc;AaG(!(&$AV&xe9_V1!8Z?!6}y>4wfT&N(>^ z4ea|-%OEE|j+nssH5y|ZS0On)NS7cGhk?O@g;>v&?x^T61W-Z*LSrgigiFdICCP(p>dCC?0)Z z)?F;3Yu$s%#`6s41Fg$|#a{yAIha{d(vnj=S+W7cpmGO*4&=O*H!vI=_sU_CD}F_h z-*EU+hSRb25qdvV4FQaOP#qPxwMFFe5%47?xBtqql8}>P($NdBzsfLLH_+9cpPSp{ zagXT5b@YS#@gC0^KZ<0|pz15b511hKWj;Y#GF90iFCMi>nO2|oNCoFCi#dmOpumYb z9^dh&Hz5KLATu>C&vUT0%HaA?c_p%h>80F+j){Q*Y5vnQ%#3>iCO(B<&1rh+2ANVc z9g{r`as_=vHFH^ml`OHA(}_+9&iR}Gdm~ht-@^JJK5N9(pzNA0?pr+}UZ{wGc1Or&1Ys8oWoej9sy8cwT(rT^ zjiQ=$OSrqQgBZO9bDuAh;EukK7%-Vo4H>Ggl_prN$F4gXn~S`)_zT?19HOzcz{Lr+ z#hWPZ8Bql4P}=tyXDfBK!_K_Lt;p5v2MQ~?mRtYQhuHAt?g`Po>PMI>svz3fG4m>) zt4-A#e!PfMrnAddGW1CRB_QkD3yo{kgNJPik;Z0I_3muPd^EE0$j+#ChnghPa|i<7 zy3{Y%mY310*){3TdrzjxXpk_YqR!bANE$_2yvQ4C1c$Y>!6sk!%qVJq_?YNEL*piU z#uo$b*G7DX>!=BMU$7U7DJ32^J~7NvZtG+F4?~!ZeLtdD5crhZ2LtB8^-CYW68___ z$(SW@3?8*ZpzhO+M*6ZN?k$%Wy07hS{RdhW1huf;`$pEG zSat>}Swztx)fKN)zHU|Z#%}+f@Jk8L)P=*vTB3j_)5Vm_bVAc8(3<9F7dZ{VD2fRO z1BA|9u_$MbMBDFDerI@Rau|u!jU*yqWsLfe-dVMZ`p54)Y4Q75wRs~Bxo4vOhuO2O zk}lL3pWK5T8C5bO(hP{n%L93|Sb8$3mK17&S^Xk%(tSwE1i_(1NP`rVviqg^&s>&j zG>pjBHhW4sn9hRcO;X47v!ZH!kE2+M7&TC5q*X5|t4hv4T!!mYcRZ3uY@d z4XC143+#p68s#Fyy|gP@#&X!PHp0>t-lQZGI?mHy&IEq$)9mb)xwIucTiAtX+nRH#V5mT zzg(NWY9sG#oPKYuXf~K-fh&lv?_DD7B06cRi}z8z#ixQ5%D%)K%sW9%F(g38W5N42SSR%K~2YsTs+B5KW94n1?&4O+h^c33PXT{h`y*Le3FrXaIQvL-G=YQ}{mz(=2#k zWX$Sl+mp=Kz8jqtxpW@MxAGfqhy8qWJ7Io_Z}g(G+f}IyRKxg-w#!E%8jDl4X=!+m zacLzxMQLv~@7!g0yhExFEN=sZ=6A4ebFC~sa*!B#lN#ZhMA9lXU;WMDlcc>G3(E_9 z+75v$evcm;>g$8~R%XMNX-OLjYyf0%BBSA4;7!Owc;a`kY^G80f6?yHs_{?Mbt$M>}Bo^_we`gQ4pDb=e}z=L9)7;5w)iUW>?V8>y*H{P}2T z4o^VJjrqnz5NeI{-{Fa2XD_p+$=+29i_oK15VZD_C`Z`!QV8#KP!}yzi76x6;OUs9U4}0 zVHF8~#~V6g6xY{imdQ3`_XB*GqM;XFSLeL|Mq(1PC@N&)s<0I~D)fWKL?I2l(IUY7 zNckTw0aX*Xw@8{02u?2mt|%XPnCsoS?vjp&AB!6tIeK*`5Cbm>-NE1n(oQ!Y+YQptbcsAM*}HlhdGiJsImZjhf2E z$?Y>cy*^2ziHS|ht+m*$_ws#(P%RTTw;7wckHWZ)2JQnUW?}9|uLr)=i|G15EGez$E|1Z=#AoB*vpAa)?~ zQ<_-s{8CYmzVGj01Mrv^9*#iuKA~f*7#Xo-dnpbyU^Ih9L<$SH!7!5i+QYz?vOsb zK}AK)4ga$d@U!n0@w-_=0iSJumg)vVKT@2l z%xMD$CjmI16o2;^u$o|jmD8)!*`rz@U&8-=f9=`1g{F1W^!n36j7kbctKC~XM=wZ} z5I+W21yBE#54Nzq=$KBZTKO8~6d>|A)F5}=`U*Oz$Q1Eg10xFqP+x!VuB~;34my7U z$`swj*`hXt$t-~VQS61u%iUponfBpDZJDMwpM9pd=@On(WScMG%Utn!e;I-OP&O+# zD|tGIe!oT6S=j$jU#L{bWdZP2&5*;o=a#_-%)X)GOR&H{hu=Ple(~maVS_yIgiOOf zU{y@cQ<#N_vyX`tencIk9MtL1D}YMbkUtAZ|6b8c&(P9FNhPNhWG-Jab25x))QhNJ z-`)?;j(Ay1AFANx)8X0sD^3>B*xU#+tf;9$R6CHTr@5Sh!dA`fno=1X>W&2XT7dcr z$>9dV1>}aMK>6r0jOHb}0NCxXDdG!~`Y-i3w!v0UrT^BdtR7ZppI8Z!U|HBNa0@rI zO-xpS$NeO64j~PP(D7g)xP}LdUm*_1Mx-M^ur%-sW{Jkp@-ThMj_w0ot7J5G1mS|@ z_E}_n$$_C3NKsq&`?mV4@~N~fcR`!I@!Vhl?)}8Df8QVYg&hx~^Z(h3zyFH9w`Tnt ze$R)0Qh(N?v1RQP&tUiT!s=%m_%409oi((Eu7*fMy(QY3fBy2NTnNJkNO8r48z7Dm zZ7vi@sI^KJd_!;GyPR_#eLE>T?%FG{L!(zV57ffcxS1I}MHVn!``^=b(g1Q6 zCwpN){nWxG+mt2G+(+$VQim_MW`kBwp3JTCg*&;I_hGFjWkH4tK@tDZhEiAOJd z=GiAk$ur^QPF+xH2uVwWYM1KGb3>kemo-3be(DsfeM{@p!GnA-yZNYI7PHbvhq_dU zA^y%*-onwPOOcI(AXjqfMm5Qak#r6?!}E*JIgOkT>(HzcSBSDQkI=UZN}FA=1mFaT zB-;Pk^HciRK?&6dmq3a6i7wA31he?^7-ZH{PrE=>!cP2&Q}=NO2$sF+0>(=qsF!PX zA?E5X_cEYTXBvuBWLpK|FUV!6%C@|Qg9D5ZdpdZT#s&JWw^KT7e*EmM0vof7Iem>T za5`!305YJXsqJXr-1pa&HZ@?l2UvL5S8!k&FzC#s6Dsbl+^&tm;0GS|(zO`DGAOdR zNGIM<{fk80sUAgRcVd>UzXSQgOB0tqm0)RAe($GJzm1`Acgo}%zIfP$`S;t)*~3$U z%{?f-g9eC4P=P4eLQbMr--SfoS+X}ffxwcFNI=2D#?E@T{ZiBTO|Y<2QVs|a1~5G4 z8~!9DZ?`NrTVRXdAoE~ySko)SZ{E-s<;fbm^s(s;34DvTM#E(orI87f9KN$5plJ z@5*60S|)WIIK;}A>tu%MePGXyDl!$^i|)Jm```7WQWXV@b|5?Z_HU^=N)p*YFp0#@ z2pH^;3bhR%aBn!q&b7KnThI**W`FePafhzN4ex%uG&Ls`Qj!bB;+uVj8EI@qpF2GFSnP;f!C2PJWgFtDoHXIJo?&w`XOqapW-Ne4DBLe#UV3w4=t zO7YfD3Dly?a1KrlVwCA~kvSdeC?6L(WZf$~J6d@<+s1vkMN%6SlOyerqi5>~GZH(` zAvgCjbb#}zOo*;AIU+E?P zMGuL86J9ZA%$4N+h0#bed2^5tVwXYz2X%PUW#F2N-tF9~%?XI_0vQP~^WQ$p%dw#J}E9xb7^$g5r25-4&9ibq3GifHDQ zX*(ti10q8`nB0`*Pillx?t%t*d7q+2W3sQ^0vS1hzV=R2lrM{3AT#&*e-Uy)L*nZg zui+N~hvXnbwBrz1OkyCkLr(nwHrVfsa{H8LEkM#kMu(NxBsF&H@Xf1p3=cO>&MkAM zg@Ym`5BXt}NyQmB)H0hGTRcTtbL`FK(@k+l1wO0V*px?=ox>XXd;z$M?a&E9K~GBWe%Z2zNYKPf5?y`{5D^1dGnkX0tTMU@{W<>X}7rH#Km zXAFG$u2A^VcfEfBaq{KK+I3t1Nmmz-_jA(-cdQrrzBNh`$_%UFEy$Q=b$GCF%6qS7 zjbmO!!tim1;L|qW@lTQ=?kww8W0RI8mzRGy)8D8~NI0oyOVK}}(oUBO4^x*ueK3Vr zSddQUnCrA6)1$K{=CtedG}|ktzcFayRH0mlZO=T*yWx+N$2|O*1grQ(xT^we3N{js zXIO^tE9tQ5w?*ar&ucl2)(-G3vGUBE#?aWnYZL$Xw^*pM6+mP}BhKBc`||(i<+A{i z|NWaUb+3!yvyhI$hdBEYwGUD+{zceN~39v8Lzl)vHHO;6&_B_TUY0&@UB|#Br*5D zN@k_;Zmt|>HJhBOX=bh1NeAYxJU<2UAui3@OQF{tRpvw;Z7u90D(d71KmLUL@ZJ6P zlC3{1^y{Ca^NX)v>XA-yhK%wu|ziKqq|W?Uw`S&GcxRu(QvO>Qn!)Z)!yEIuBM>@duL|m z;SaSSUb4uI3d#>J1)71agWu@n>SJG)nvqr>1# ztyx`Ca>u?w@-56Sa8C#^5fLQM)M%H60V>uWSp>WLCk(0}HddT6vUQv-NgV@B7I?7Q zc(GV2Q;2S)qJnvTNU$OV!YSO{zrz``#h{^~k>R=y3C4F^*agWnuJ`o#c!U6tNt-=juR416F3=;)>4?hh*Yx!KgN_Me=^=QHU>guduyIB< zGqbWPoFgG4--!W1v;#QR&wrS=I_!Tc0alD$=L1T*I3}R{!t^pDNEC5|Q zq<-Vt!hHv5oNw*DLB#~g)R12V<-HW78*nm1rq7lFecN#gd`@0@okJQPA76b3Wew2A zzu+@_{W|_+2xsVxbja_>EvKpR?dLCnU0puTlFD~HoP!IxPWw+Z}8^rO9zI_Xkbg7`7d+@+WK>>nbkn}=;J(L7! zZoG{@4;B^S3qoJlQkqko8 z^?-yG7njIiF&fNPYOuy<;VH(f+zCA(vS2oVW6tImXeeB$DN zL6XRq2%WqfXdX$Oe}MD}00x-I;t6diAgrOgySr?jK;_~Qg&q!W>Z_KP@$vD_z+Z3& z2PaB)D6<@aqKsgA2NBV47&0Lc78NxXV#ysGcGA<+A=Hy(QwS8|0T2g3Aq9hcw#8`K zEa`L>qJoH3}^=N8nh<3uk#*V&7QmkNqR3l57VOg$&K^mu1 z;i;sA>dN;6I#|du0I-2R17MfCv~yTC^s%slAkPm{WFQ&5*9A#hC%!X)B(ucQMi|q9C31T z0&sGKIOJ+orp)WcxBN@>XSh>;S51qi+CtU42g1( zBL}Hubjh{x1B0|fM$Ir50z%&=rNKCvS%WXo)nS8@4Ocx}xIm~|f1A7&`rm$(wOR3(Yx*TXFiA-x;H{)lJ1eb6J3GpIk#dlMwIrW zzeKH97)5RXD&sBl&)5snaU7}V*N8+` zNMvzHVPRoa4)_FdAvs637t(FQJ-w>_LWu?eH`Mj9gSU#$>*`!!9)t!OV)1OOkm1r0 z*iPh8qyz+WGNy^!*}1unPEK~abNe9c4EQ(DQVSAGJ42Z0Enq~roj!bSZ3w{&=jZ3E zG_b`lAxhrQTuEtkZSB&iFUTJGnb3m=e*o-+9ls%O(+DTk_VzZA+1AN-(s>~v{f7^m zwHX1edR0^7c(_#8-}eAQ8X>LO6?U7g?a88DC<9YXqi3MQ;Q=jX7z8MSBG<4iBk-d33=s1-*_L~5t z=&ZEC*+z>^bY&%@rBDDvBcm0gcB8$>>IXRAy-oyw2Zn?Aa1 zzYK_VQ&d)lx@ux#QjT*v{uv2B))6SU(a02~RzuN21}L-G)53LJvToO>W1ig7G~zHsk}_D&s=l@$C8CtCgYg;%33 za(itidd})^_&bCZ5Y3d3h_K>t98WV}#s2 zEZgT*RWUM75X1_|<`zDgge{cIKn@ZtLW1z;kft^Ga4>CrdK$8DWNikcP$5WgKpAd| zT7g@4LUHUJ9piL210abN+KyZ(#>lw1MMXu{Hjsl2P2QFQN5TDft?I6Zm3LITx-D?S+` z3E^(%!qB9tdQCYur8j*>u;sP%_m%zF!F*->Ytduq z@<5^+4u>RQW$CVW9pZr!q^;@*mrDWHCoLAiZYOXE zeUJ(D2KF9lAL%Xt{Qx9WLH6lBj({uy63R1ie^*Fb0GH0_1=KS!y2zqdo%Cfu7|x23 zn<-$?oFv8WgO_9dc$5-NaH0j-Kn&jaHX60vJAVduPtSPn64;zAfPlt>{`E3hT{(qf zerbuRH7N?EU}pe&GpTG8U0(x_QRn&1d>XQUou;B3JLTcr(iz6mbR*y}2yEtDt*R8j zGzX)D@&#}NTV`QleKGNeoe*C0_Ub=o!orpJXCOHZy(i?HPPL|1osEpA{Y>QD3+Qj* zBUrF-k=ytPnQN=7wPi4Qf0>1I5U#PiC`&uZJwUOq3;g%Hse!Q_Ch)8vpka>}p^R0T z{&%q2^36*_BiYqe-;4vTwX^~)lC8k5@X^ycLiBA)#v`-V(>cnf(Z==eiaT@3dl$GR z#ixR&-e8HKL_A%1n_MEwp6a@lvWJ9kcwG<*`B9DW z!^E%SO9unidhhF(oLH!8`P+zf3Q)YW`u&7I_(K>tOUfU}cRCUokd0m6L*l9q>{D7= z)6DxzjsH^E>`=SjQ?S_nFK6uO-f3wm&rA-)nJ&4t*aG4N7pAq$D||$!Xyq%^8fXjr z^`+e|0HSxGI#nTyMLrFG;Io{{S(hucuSWFYMs0F5@rm`z4j=)j|KeG(*U5x0Cc z5U8WhLXPCdvxAr)ZQIduBY20v9%5nfp?coM96^ZcPl$E5Uu$#VTl4>Pj+*Ip&!Tgq;${+*AvzkgK zEOg&}fRhYQ7QyLan7{HZoltUf%hw1z0R$?$AVG|78~NYzh*>6MhMh#y405#&pOg;E zk*g%;lpo7~&9}gBF=kNQCL_R2t6~$zK&F3nidO0%t{54Z7W?K1VSA7TPU-l_A8qI9 zSmUE+t8d8(P;R%F+~SA*FeV+e_IE)Bb}vm4p?Fywz1hd$d5Hu8F^QGw*9Q z$R0o^HIDq6nL4&B;TCH44(96)^nVqnS-u1*41;l=ym#2W)H~(7HCAo0wTsLU@d#m@mVGO>FtGJ89iV``Zqc zKjBgE4ZP`A{qse-n3tiF)xMYv=ct+QhZ6Iqq?$FgPJTvJhadUd?Dt#wc(G$o67-0J zW5tOwh>i$;x#ARiigchemdxSX>LUe>{cD~Z0Q_JP(~@7*QkM(sF*va}#t}>Yksnmb zd@bxb;MIe?l;E-D1bjQk!VN6X z#nCPzHpEEimiMXG5s$dEc2(uin2r(UTAxsScjk6~1r9c+fgZFpoB4)ZxpgXugaTB? zU2-a&UNqLnWH5X9PqciU)MPlGMq)lNvQ}b_GIVUBKqPNQ4xSrRaHQ{T#eGy15aCI} z9@-)lWcwOPLUnN@;{^)qHow-fxsKQHcQjV63koM|R0_lzv5sd5!wC#!5lnnfE|%U$ zMa{h{IFa$)379zgrxr^G7dd0x?+sIocBKQ_L0>e zd2VY?<0bq%fj5?y!ehUvcWGg&^t#+6Q8e0IazJl9&)81&#H-Xe+?d1+J4l5g%CxVF z(C7o|1!ZIdJ6Z;tzZmF@J_a${y|PFfRQPODtjbQ-Wgu`yu7@jDArtX*NHSv>fGTXo zr(N>RKEA$Ng3;55mfu+g7w#pF=6KKxp5e4q%PKw}30pYsR`vYH!$7C0GVyHt=u=!A z8pbr$ROm9(eqSL-W!xiA&$`6Oqp$1lHMM>OZ;6dtB-2P+954+!`sHs<%m- zS7eW_5>oMAxT#M-v1FWkR;j72+Z1_@VK0Z*;$1JZPzFa*b|Jemfi2JxqpDAI zUj--1RLuE@3K9-&M`xKnBn^GOhCv!m$cCP6>8u-UK`5X67>Oj<(jw5-2jUVb2=i;C~ooZeJXF@$JsJLzR8`+C0YUUa@_ky=fnFtPhHL5Y2Y z@c{Tt#OUZQ=xkz+bKN|LKN! zf4s9;qoNGrx@DYD9hziq@Ks8ksY4Y(4r3lXBKqQbGqO9*oXW&@dy?LpHwK{M&zpB) z8?lZSeclLvZf8S>-SaUEYqAnE8EUP|Fb}cvYOUG&YEaP7{L>TE11l71W90n#+Q^qt z5(iigb@BuYMYKoc=ND4M=Bz9EwcfS=!SC7M-CE=N<6Q8g3!gS@_GiH7l_zh)`;E*G zG5Q9@1ySi!huV_kjy#rc~p#>AGwL6Wyxh~x-sbycWh z`UF48TqrEqq5%RGBu?gMZd9iGyVqdcI5j5mql07BeP2*lM4Dny ze&HB&tE^|l!X?f!no(BlEJPuXt!~jv)nRP>0cb;5^R$h>R%5olGlY45B#C-lpJv}y zLRX-bJ)o48XK`pGV`M(BccIQ)AE1UT@^NuZY8z1nlfM#0 zlh|q;a=zJlDpQP?dhmhkzwN(8eJc{Ne&1Glb1?l$}1q@ z4`2iwB-J3Cs9C>wb^nPa@$%Ru@e2Z)Cmm)V=?*YBagaXXg(H!ZV+v`NJ!RQVy;!)v z13i{q#skxKdd}{6wUMyz8punvqvI)*mu5$m$_Tx2X1NlI}4b7&hYH(cG>yE?c%k!r(Hxe?@dRaR{tI^DK zFkahneGop?rSVEpcbS*Bdv>XB>r2zJT>3rcTMaj*2KdBnhvaPTgv$hm8~4~$Sq~#| z(kB_Z%R}22vJQqxh4N?}sd+L7*zenpnkRBYW;F>ZX>4lL5Po3ZX18u{8F%a@(>mLm zRtzpB#JCA62|fox-%p_S0d>!&>TeASQYyh0QZ;;GI>NP{`nBD@SP5L_o$1_Ia(?@2 zX1vuE$uXE!NxaE)odgsiN^igGci|^)i`}d2Y_SsN-fx*# z4`Cci`?yp8Ze5A4Ha17#k*#l>w0VDlr=QdYdG z;NM3)9aZ|cg@^@Hs`=>_N~Q~`lffH2mcQTho|8=3IXpLX|MuQ1gzRKw%gQD@d&|x!o3b}O?Y#;idu6_il)Xn1 zLiV0zhtTix{(X+`Upfw1k9ohJ*LmK~!AF@C72|hVR-5n-$L8i@p7wGvAfKH4ntzv& z8`s`gT|HJe;$}S4TZjLJ@#kR2yT#eGHqm!Xy}U=*G0c5Dy2%&lCO*Ay8fu&71AH@z zQqg1aE^v|ymmVBia1Y!Uv1avsTz*SA-k<+S@Zo*^e_U^O)7F@u))KIoyGiBYS54g? z(AiiZ-DNaTWp!G@lBGv+$Rqz-XdPr)LEinF^Na0H{GF_Mq=?~-uh}!cDzK&63jO|StuLQL*tLJi1bJ3JA+-)br{;_YhoW~ z)DcsU^8*W~i3GK`;u>aVPYF~SB)YpWY@4$!jk54H{w6<_V8G!f+3i>GMdH<4LPUsz zL-7X~-qI|oU*c(;wM)>0Gf(8T+Ixv?snNp*NQNiCRzEtuH%<>b41qc}Mp4`33eWKv zlm?#b@{eCgXa`-eDiNvjS9|#Xavc}Wty@tTozNWSpi*8IvmjbeZhQFPp-H--nGU)m z+3MpUy6^btc8E9CMg>F|NX(+6Zn(SI>M|{J`v_fn2>gC5(!dhn}!ymZvf)`v8URq#TYNnX2aKReat@ z)=OI)!7fBd7CA2bEL{KE{i(`_(Vc+c$)M*qAF`19a5RdOf3o7^nu=m;;^%|6R_G~5 z;)E52EiD+{5UmY0^Ghv*pd*QmL8S7xV5`{7gLxGkta~cgJ#HNW{!QtDDdY?^(N|63 z98ND}KlkbD_YQvYwt+%6>ZZxGn@*lgA_BcyzQL3*e`fAH}qc#2F zAHN-k#(aP|4>v*)y@K}03ZWsc-U3@!s2KW-&)#Yw2bll8DnXjXP(98}J07%JpKl`4 zl%pOILVkQQCJXHQqJFW;iOMQUMst?v9PbUPI)gidX$rbH)Vy43wf=!V z;~Mbq!O=5(BHGaZ5B!WU;WRWc@#Ap286lTY`uymk``!D%n;CA|@gbTp+lCW_W(C&D z@4$!ee}Nr=W~6DJ1M8{XsTr0H%6GIB5loi0Uwb=m4KjtFHA)WHzL66sx3bPjx{|y) z=mP85g7;?j@C_7=u0!#H)BZ-SswRLkGM`tSUDm(P33y@rjWAi&!DD)5#b4_~*KTb^ z+#+-^fGOk4`ARgX`YQkR$r}!KqZ;77%65u;Y+eGc?ZWhDgO_ie{;j8*!CUp!^`&Q^ zrzz$2?2C^!ny#Gy*tqDqWA<{onxQ534-5rv%_N{z{_Vu&_LvS4r3s(??i<*4bGZw8 zP%Ai1L0x>wU3{&q_j;@S%-)@!PfXB54#lOvaWOy)jt!#LZ1mRMy6CgZl_>&vm^p;W zn*h>WXy1W><)7Uj+$86KTf21^G6TZEl%Vm7G&)DT8ZabKDFQB3kz;?KUwhU-xtoCi z_F6Bd#Px|bug~RnvG?}%pG7mkWW$`rEg{+LwV$V9MabpX7AJCumT~T%ywve zzkwMg=#u>>fo>nKH*z;~e4Rje0KxMgT%HpDu8zT{6+xZnn1LhxDH(&1t`%71dp|nv=XiByrSf#ro7Z6<4%~n5F=giWsh|J? z159zCLsx==I>6;5@ag|(C1X+10=)nSQqSNCc9OVQ&j<5DJHbOym!+T^Lk$fco52)N zszA7pP21}7>JOI$TK~7 zL-CF64beAK13M$faB}0!?>8ZT2d;N6*LGUoFAzF$e4?vZ{PN?^rJv;D*X8Sgz?+q7 zXPDGNjr{OCB%-;Rc% zoxN&I3&}9vm*!oFqkC-R0<-638-TdEGv8i~2SyhM!%H}_M2QOzwduB7JU=yS#4 zCgvJ-YlnZ@0~47W)!9=P%QKVpHRC5xsrJBLy*F=IRDK+`{#k18r|SBRt`MGLrdj;W za+=mGHf21t1%?n}DeKUF0V9;zM(2C92{eGrrZ`H^31P zr1yL{qXzIMTP+^jS_YVfgtVgdwqNN4lx;1m;N~g`9Hzur4*F_Uh2}$z_AHpX%okoP zas4bjFaUwA$2NRhWZt@Iu<>7ouW^3hAq$PBt*it`J`y59_#G|a5BJr(Uculwk zAz}Q0S+I;Wd2}yu?&se!zk0xCn?U@K&QgiDAgxBc-IkQ@ws8?`PxL5c?j++Rs0D(* z%Kv9$s73%%4Wok>-5|&ohTgu*hOR>FD;3~`a;?Lv5N0Jt`2sf`HEN5f9he;pBm%4B z7Y*ByH5ebXtuVdV`%5!C+q((PDS|>mZqA_gGKPkrce|d?&dE)O5!b$dw)%u&@cs$gC9`!Ik9iTu?qO~ae6R)I$yjro%Z#U zXym;(JsAf=)1+7GeVx+QPSWRxS3sWMv4)P;%MdjsX&gUc=2~H%Hbl&^m8*}SWC^V7_#Vt^-A8}&B{*p_7-OIK84d^0$NHh`zu2CI_e72W%4bq0?zg_ z?d-0kWSYHT{R?mItN$KG>QoJvDKW}r=~l=!6)jF-Q_g%dxq59#tX)qeTREr+8cS_T z3iy<$?9olovUZK9CXiAz^c77OLJ^ob0p|rD`aZr|OMl!xCKc?_PV5IS?25r3oI%9D zw}?Lzu3*W?5=BC#@LjG7i_@lnJ1xMJ>d8p{JCG`cN_csPTHOCq=ZSF}oI$t@k#n1?pD;Vfq1z$_LEFmSpD=8I)4n?XpbhI0p{v)Wq z&kz4luweUk8&cZf-@Lhhcz|izE4*YZKGB^j?ooGf`yx|1{u&QT(hoXJ2t%l_Sgr$K%hddU!~t=kK#dHg1Jmzt5&J3kw=s`vmaZ=F}09lMr5SD7aR6U@^THp}~ozjB~I2@cd^} znKpBHn#;rB`<9|IRAO)aL(nXzi#&p5>r>wblV}&I5_2pXxn^BOyzNPSt0PL^4!^U1 z{yeCC+Y z&{Wk3Jg^rcW@Yj~3X7H5`qJD?H9YH_jT+PRiAwF6*X`DI0)XA;6xeQ0n`&#bB&+)| z0*p5K>4;S?WH?|wj(U1yY48WSCvMA0F19&W?+V~DfhkL!7{7QZWcNb^JvVQIN2@J9Yp{$8mIA{d!Sol#J?L8|+P$eZJJ&<}szQWC8o!KS?;b82zc^|Nx%8NVC;Fk8Hn8g#)?as@4!&+cb>n}(qn7`y5o&5lF zTU(rSEWb8>Xgr3E?owIxsyE`irmQSV%~C4Gu5HV5dx`wgY7xQSPjQV-FkJSSiK})M z={mR5ux{qFU(aVGWF7TktdG}1!ip4Yrmwb)XNONe;A^%DeckX`+HU;%dpPw{{jZ$^ zK5lzQsXYG>*vau<7*RUeu^<&1q7AAROmu|IM(9uX8MBKD=(4pnv`AQ}#*gZ>?I%1jnKB;l zJeB{dMogtF^VZGbZnZqxLg&GOGMhn{&(0dy<5!5>S;Xe&=a;TQ-0#=VD8G$RLKO@;dWWIKn}AOvU)y`knj&(bu`L{>JNe_-kExk5VXYmH9 z4w4BD7lXfxRO8vniDHQ*RwQ|8OcMfO0}EcJ?R*f?1T%OWG!TmetT#-yJs$yfJ?cY%5-^S(Y9daU-eHoDDX$YT~Bs7r|g>T+_w~cpOZyK z)E{<9awT(>D)OcXG9>2-7Ols>bSSr)G?R&r+M-dmNh#4tRF}sUF`e7}GySJQ;_uC< z$l4ZL`tQH-zaG}jK9PldgN;hu zZ`^Aj5k%z)a(I3J=v*3@HF$e)HdJpLibPV1MSF z$d&fayQ93;=W5CHmQj)5PBWvHJTV1rat5|z2S*XJ)&%KTNoM{Oq^lP`XhAv6-Xm-Z zK{Y^Oj*a0{@&tYK>MA$@TP;>FP7DJgnsGRG{yS5LvV@$`36nM78+Ya)10n)Tq(`6j z5`9ggHk3pHMlZ4Hi~UM;i|!lpYhPo)!VKvy%p(ua%LqczUOWo> zc^IbgQ~*kL-|n3l(H2J%J!!(krw(%*WE_YW%d4oqyX1q?J;-8$$k8H5Od#)E#@1di zi+=%BCt}>#0yF0~2HP#rq^15`^S@GY4h7Ge@f&y6TIu2r#`dIfOl&CC(>S@%)&>LE~IL7T9nz!d>-v3(oAAIGviDc;Va_2`Sjzv`(Tpykz-XVU0@L= zgSqCh%%i|Rg_ti3xhAwXm5`K_%NP3GBRFwr?Gsp1utgR;A->iA$R3COVxd;Mim6Yi z;W2i}HG2$UPg+gNk2WOMABI{YhQ*@W#UBE=UXz7#E)$7@wY`^QPdmyKIpxDg9sX@q z7S#yN=TfNt2WVww@5hpFqW)VFMJYlim2D5hmwt2JA@OElOKD9LDB0c$=0%h0~RTR`6I0!b@4D1 zx2F}iWy+k`Z>WwQeAT=`A=ZmV$6NOc1Vu#+5yVPGw*Vf#66fiiDj~;N9w9|q&JAk< zX%eL5+YP zr0OJPr1;{NMWAx6&oIB$k}g88VhGJg4^_h&=`-&D`P0XzWQ@$g(m7YI2@6<_ z->+a?o}0QJ$1-`fhD%!=eE=ILgTWCLPpCfpyp}NA~YVGI?w< z<}x%XIZP5urSgv~WwHhlQO##GlpdjDZy(S<=lRWGu}Q&x^5g$*>?MHsy}-dzYd1PR}JJvF#FxZp_~&9^?}5QxVao;sd_5b42u z`Dv{0KM>Q!&!(*)c`e8fIz1f}fH+J>5&cZcrxyKDs(oKXarXGD+e*#C~BB1flTZ;YrFHQTZhhszF-zEXkg**f1WfI8ch#nLmVS0wBBXff3+G zLUKFBc)jTV8n6dnZs!2{s44W!_rIGymsx-%sK_ydikE}iCU0GzYqI;=QdioP;3G`K z4!Nyj4n(95cMIU);MhIO<8wzR4C=Y-)Wnc^0ZOyv`BLbcdjaPjCv`K4cvU$dsL#XC z;oDB9wH*?ctl>-jWqCr&p;ytgUGy#}`zSR%{Wg3G2Y&AhOp8vZjFA@ss9<#j=fP>Z zdKpjx)nKE2DtTQGng;9>|3HGDt8osc;N%GuYidrzIn|xK`TS=Ag1faiLNF@<6Akhg zko0#(gT6s3`*2K_&@}M+6eR!M>6%s0ey}tL$sQtde;BlQlt$Oz6-94BCQc~BL}P=) zbBJ`CJ%0uXuEzOS#vnwZV4iBgR=Dv3mH;m=U~00xx&&d3TlVh7?Jd?LS9Tg4iQm(v5(wxutS!InUI}uQo%-8T0hNlzU*i9l2WliLnsWY(7zT z*TPOylQ_ugsNu)6zvC+04^}HaD6z*@U&{Hk%$vqb-Uy$bZ+`myrEbQI&lPFPalWMi zu6z(H3-Hom9#du97)N-|??AfO4W0J1WhQ^k{@-1}v6fRN7 zuTg(mV$>76g%_6@btcjQy92`Bmtd*AW!dnXxgthl@+B2?OiWZIM&Lp6^xjp6DG2#V zczPf^s}s0iovJiZ-OF;*k)bk={v{DJAXyUp z0^J>RG6=mIcm!2Q!k|Tk`}0Yh*f07g0`R{b^DA(0^no3py*J+$*yeTmYu;_qI(|LQF$DY+U-JHb|<{!B**oXsG@M-CHMmcUTWJnqfkZDC-M80G2|$E^6_PiQut`k3*5KYM2mJeCk79wi9bV; zkDHQsZOP=vvN9t>!;WN#)qVKzp*Dq$?cvdn`T5FMkfSPvJSh()d8_ZA(PIdJ87vFP{g|368du{uZ?3H!_t{HPWetwVj2v28 zqW2pP1?bFwmhp8nJvCUr0_0IRt#dNCpD~| z9cTl_R98~09_YDU<-$0^1Snq&=vjz?{)2rRfFid%L4W8g^U~ZLi522|c3EsZvei>l zQ~iuPpFpD8M#>IRKjxQ^c&KDv9!>P(a}=qk;A{>g=ot(My^90e-@tg4CDc#FYkh~h++udbqpd?Q|PS>4F$?xpL!;eTf{qyH% zL0+D8Q(?l*6O972aQWGn5gDARI$F^R{Kf@qNzBkTSlYDfht-&iO6BpTFrrr8ifMCy zTlfWxMANm>1)e9_p`?-d;67f5(r6|YHZn2fhu(f#CMLt;-b3p6Qcg})`R3w7lUCZ= zqz91*>(yN4`nw`Ql<5o~E)va;kcD3*+dqE%xIIz)C|Emp6`@Dr1o65s)*aK3QjNK}T#!AHH)-|KoFuJ) zMbWB@axe}N^^V2^61pGIdc;>2nO15hZ@VBaEX+fNPHVw#ZCTTtdd~QUl5moML~qvX z=O&^vaw|OCL2l9!}B)l_O%5Ex?zb4=~j{l zWej79lyb-@kn)WoMj??h@er#$Y@A@3dx;u7fklPFXbPOW{su& zSm%iSM@~Y`vzU4d$ZY#ygmpE*E2zbmpMfH7HE$q!_iGCxO697;NXa#&)dyK-P10!W zKTU-JB{6|^x%!*uR7$N9Q`H?4>!*VeO;eigCpF&D&?RA{w50+(STIrkT9UOl7C({uYWFb-iF^qO(4Zdf2yL>))-|MGxAUPjHm;R0AC?xi@ zrRsl`8Sj?oRtwxsVMzBpQZ^oOL)Ijc;6kR5S7wXDL6ex97^&@k?3xz|>*+eKS-D~( zbR2?vVsbY`Ht))}Ah1BcMpT>NCKz|g*|l%ogV>~B5PbBgxJ!BnvZuj&H*iGjNeX_& zCfgyCV?{}H>tUop6DK>-=X$KS_mm3orR6?|j0*Ldv&)1|iA#!$i^J3^!pyn-d$l2V za5PbFVsZlpX3VC^AEb_-zdqxixdXtXC^dxL3c*yCE-BF+dlM3_YnII+>w-@(%SEGj zy-f5mw_BXdR8KD=%Tqc;Q5uor9oxqFCUkgB->&c@Ppd3GQ>%*=Mh&61#SpVd&`T=S zYx^|Lb+KYJ84P7jq*=^r7(UI+%;XJu@BsZ?`&W;Q&-yO1+fs?vYHZbDU#A;uLjV_VR z()SkmoYXJ_Rr=-tot0VFeaLOUep8e}n5~`2pINH9zkFDq7ER}{^GR&ESmD0h6i$`| zjU?L+B_-*DU$Hv%gaToA$qwY?2ET8=-GqSs+4(DHXTld3Lm1!78(Wt?W&P88^UCe| z4@W&8&e~$d6#=V%ql(cH7XRH^q7c5k7#xkXGJ@FhMC9<6#A$Y!a!$#~k8wIi?4&gL zyLtpAK`v~s2v8vt?FCt#S;Th&1%j?8v&!Nz z2q==NR4cS8>ot`7o+rIpg8dIS)_+gQZ{)! z=3&2SdXfQkE*UuQA-~w0k)Y0HWY3B6!Dfpf^I+CEq=$9{3GZ=-Cq*dAP&m6`OpWLE z7V&nb;1cTNJOO>iS7d7pk7^zbqdzV(O2%SC8hTAPGbIthy%PQ9fbPK^;=>STq?wrM z#|6?cn?+k7(F`QRYJXL$$dYGlW^mO0NB0kIUu&#xVFY%^O8UsRi>9LD;>ym&jPuh$mdAF5ip#babu~2%i(qr3lZ^^ezR!d`RN1|G@?)#` zpKBI&&jY<$Z8TX8j~7DmbPBn7T+8?|E0(;T5jh=d5#4i}AvsGsUzjWBv*c;*UYw7L zoqP4n)IVg_GNQV#uBy8AbSqIPw2l5$*&(qfDhh|H(}vw1bERs3W`5pAgokOpB*`W( zmFAmGPZ;IW-`JKqt&g2<_8)e?*9fDN;h6j+Ju}!gF12amuXl)&liT5Yx`Cxh()8O#h0QlgfI?#N2adOled zI3{4!eeza!Ro1RhS#A&K7)Est(s>pPXjOQrk~KPZ8iG5B%M&a;${vY+sNs0sUBMn^D<C2ziTL$6LGH{&+>uj4{2a=G~4-O^_D8NpjB1`%M|q zVlSBy=G*){t42$1x~q)RbU)$)4};>@Y_UE%EEvRN$W39fEe5KYdMK0ekek*;#?4!* z_6t7WCB=&EXXFjVj^ARHdT4qXdM!$L=H|C5d?R?qWymMLEv%YZQ?FV(#Un!C=$27y zqeP|3BE#sLFV8znPt2cD6T=mgLeOboM8=mkO67|mp2c{7_0L;(wLjv=j{^c!-yDDU zu9Ez6?Du{%pz3eS$G-tpe>QhiRr(2?9ZJR6E0J_welI=nQVvsWx(QivGmEHX@fS3) z#|9r}?lBH8y=OjSCJmn0-S>Hycv5aEDr7s>sfC80hFw@t&j=_`RiA09XFtvKcqt$^ zN)k4sciIL_7QMY%e7BdJ(!(e3D#qPtItvATy z2m2}>i3B+xg}>N+{E6}#=N)Alhb?Lug0viom6ue$9prsuVxx3Jq*={Isi6*^$||HV z>9T=T=kEJUItHxG968|DQ4w^q^Z_&7w(k3{z!VH!9bi->_OX6w7E7w7smY*kux*w1 zGn;X8V3b5MH%G=WUPGi8*6$Ao?nQe1BD z=)4=ZB;L#ruyi|q+dW-X{bN;)n{(}u?H6+yJ~3Kw{-Gf3eSWbkt@>5$5nU;wn7Fk{ zk4ic!pOGl^1q7=lSsq?;KC0ux)3v%t{4Ai)Insb!^`pWtH1e6MQrt8dTU(UUiSn<$ z@Xn_HM#&yK_e>=0rz=E-)7KUw?v1Fo-fhyq7T2{3UeIm{4@2^BSx&w;u%;c{AUa=o zN8YaBa7Npr8d(Z&@Yk-i3{zfESiy*l=-Vf0jHU_5eMhDDbTUP-_h+F;Swe(2eHzaI z;4*|+tLe-xL#Z7^xyrJ|hrcSGeV#Ro?pX&X)4R7{_#}kB6<9}{vbXlOzt@#(S(@h7 zGJjoxOD`8PTcsI^h1_6(PDuaoKd|X32_?=S>Ui1L@Riy#QWj)Ci~SGr9vnNLSXG!i zGw|r9wYU)*1S461-JGuSGR+bBa%7kugZ^qx_h0)^ub%m2tQ=R4JO`eZIGUcp$ z&4d5QgP@rs+w~`cx1Fi-7I=J!4{=e`_57+^>GOTsw0=|BZQP#rgW(sTpBA`im?7-O9## zd7pbtk<>~4)PcC31&SxbTEgMkH>^3}r_8UfpLny!K|m;Pfrd#MNpko-quoawUxUK6 zwfY%J*zw-cYA2Z{?}|DJmp%53d?8O#7Gg2uF&9IQ0*}4wt20099F$ahz zhW06Z2^r4`fd#dZ+qQx0f~sHuGVb-3jb(6fGgUitXi%33t*@KIrSPpA7|F-}_> zQUShaDl(-)6~>Eup#G`vLvY&o-B|Ug`(Int2L|Bn0(*pDbxQp6x*8@2o;rcpeXx<9 z!~=u}go|;8wDk0URjtEZjf_KvGZUN*!7~IUdE$4b%I7d%=lqnk5~}&{KOrL{wLt}p zM7xn&J5Tyr*6!A;)klqUH|=hEPKbebNhJ4X+w#lM`h{Bgx@+tah#Ojpdy2_MZcfeX zX$@JacP+=D&WNTB^uZaKw@8e||*s$V}o-ZQ<{zfM>OudfjZQovi8GIll< zkSA7l`?8j1>~uGFy<(0CH5b&l;he{RSE9KWUe=AQY=9yOFjGAvquHh!7Sgp_IT?_{ zARI3&-pZn&2xdd~BtQxNm6e04+tAYD0~+ovALhY>ft}z*o5I7|Z$P@leaPG>1y4oNT83oc4Ma9XUrzHd z?M5fKP=aGVurBwoDdW;9sS2oBbLErIgJSG{-rI^2!*$jZ9k*l*QCj zu3vooEYyDvLk2)CdxG*j4N)c-(i-XMopqBw)zQ^GghJdtpw#++t)6>A_a?(>(f^PC ze#4LdW}d$Tz;-j(3o^mX{Z;Z`E6h#02*fHNf&dPyj*-=P$uD3DC6qYN0aQKtMh*ScXjaMPw>NOtOIo8CAg*&)?qq8G}+?0%c`Dr4u=0>aBJbdogI7xjOp*seqxd(Bly^#(0Zm& zC3*lvIX%t)YzEUn@?wpY35eS^4B38112FbSWRpa2@t6aaT5PX6RQH(PXrZ9TKL6ZtQJ<#3rRQ`vRB-*v_$==W2xs`h5sbW_0}I&SOB>m*7cRa% zxi|0eU9EA>4L79qu=g&z$Q4Y9)Vu?Ml>7x^3%BDJh&1edFOC<3K~5*khP)?r_2u<@ ziuIRPhxxyzJjG{aeFj=Sk^6e8zQY!Q@KTTrZ4q#DF)cvG7R|97gyTmL4YKU0uiP2lwpc#jZ(JKKAAe^i8S=WRgfc{803_YqekevNtIVlP1fF(+9k%u<3P4~kj7 zJuDr+33;nrep7zMgNa;Sva>Uq;&V!sL{tsu!=PyX6P%pnaU`rt##*^>ZZ0m}=?ejc zH{sg6c!}O%1yPGevyPJ7aM%?n$SvZ~IYvg|y$y4gPd>E2&r24`GfK%RyjxM{@+7cv z=;5cBDt=RtVYF;Jl%IY>LtG1TztIWa_$G6b3PLg^WC7@W_gt5PF##o#_YaOh`ZK?i zZ%;bZUt=^;KQ5qPXt8InN$O1q>!b4>MjEPL0PGO7XzEq9s(V!!HSEB|G8t!|xqGPk zMZ6t$)k#in;E3Rldgnzt#JoTg+^4LCEd3ev+O}D)7_Q?`4yipRq{n3nFi}(||H9`K zUn=kT4IqvDFSlZ9>R25vFt|Mk112F>T)nauO{2SFS%DJ)<#m8D;plOIblW4~+3#`F z@A%O9Y%$P$Ym$yccJNYD8+rB95tGe9;#tY$EDNPpzP1_$x~>uC8oYyo2vnS;3*a#U zk&}1}>W497eN_L!Ea)lutL}+MKwXx``z3{H5W1S<`>XVD;@9>o;@H4;8PbnTaTIv( z(9Z6i4T+Z&wZ*Tp%yWj5MIk6u@Z6qsnaeP}IP3pn^T3L>mxLcnQiY1@t%coNWlEA{ zP1Y9?FRfH+xoy&83db*fpZ$8BBc>l9zTq7Zzq=XmEHFzX`&eXge{OX5Z}02+G2jBX z%HG)tA18bGDd4(=q!03aRN^bF?Ma=A4d85xA#zL&Ov!2$LOa?S97784W85e0DMJJOqiCps!+ zHdhe!YGpm6+xeU^>ugLE)^=xI`RvS3OLgD3b57)l7%ZX`@3(*(T~ttzpf@%MF9(>G ztB$W7tCM8$T45;RzauIFc7c+0f8xi-`O+VSLnKejpNy+Q12|iMxCs!cA>3>B{qebDy4a#sq9@vc#v$}q&$irIHZQHMwGOz}#Z=i= zQGLNj`{iE+_A=IQbJdsQO|Di2RHUS#zp?nR!U?$zpF=YJybxZFfSS<1qZ?{Rpt+)L z(*7q9rmhfSX&1}_0-MUZpwu%2DtXJNPsv2v2+~d_Gv5&M5Ls_1HEsnI&_Y7>7!^7; zHnttYoqzt5ikez%R8)SFdo4pJW0M7GSJn_02?YW0?jN>z|M^9GlnrsJW|Fog!6H9c zDpptXU}C-j%e3hJ!e_B~evGK*xZf#nxBq}v5QA*WXs528BR){lBp7hzrOwF6IE`BW zawf^%QtHy?61eU{jvC^P8MN<^73AH-q0i+miQB_#^-R8Sd2?wDeCi2!a?CPF0wR?r zuMR~uI2LUPaZ0HRTf)c|Kp!(U{s)u#j^tP01o&a`$KpspBb-1nU0=4%Hg8c->-a1DO`Xc&|Rs30KcW@k!ny9f&-G8XwmyYXJ%8GN+`QhMoX*(&;PK8QW zq4@zL-aSsQN%2RS;b2sBG&s@~kwZ1((|2=o_R&tEsbe`2rXf}eA;m^DkRqynWd2S% zv!!!1m`M!NGu*z`(Y#Ii?@J-OtfC3ajrH}zrpii3n7mG;1u?B!yh0=~iIJv-N9!=Y z&H~x=D;*OH3%X~LaUypt|7+2nvXj3@>ndWjVai4&W^EE9&gcb1LKE^j`!M7y( z^8Y?Q_*4tMn5vB^Kor;NgIzQv%^FzE^h28C?%A7gm5PoZnNgI)1yoDJ@6ura7i6X< zRMx;2O61?kHfcWe_Edqj4OV;{I$CMj+1X&kmIhy7K=mPTSIHL|n##dBR8>_4-eq{15E2k5SX}Z=VKz7}v{ISg zB8Yze{JA$&P%2qgQW9tlpg=fvvC+{?`g$%bHh@FP1Tq+0a{ztC|E)Ys2FGoZ$3~x> zgp@QnDQRwQZsY6wHs}cgATE$LeZ0NF^b6l{b7Ldm{GelC;KBX-o6z*5F6wgc_2GlF z`r6tuxES>fWUmm&A{{{$5O3A@ZUt8X1qDUfN60b4c1u)P*ucn0OB}L9mXPkt$W;Gg zZHxo&I05Qd&2+ijbB99unuYYKl2T+;RHq$)fqPTo>j?1h{7$yML8H;$-ky#QvpOUb z?ydtHID&~P*$Rw(;Kr@K+i_dj680UQUPo8~6}shVA3t(O!b;5=uyNg!Fd=80k)eg< z7bxyFa7JRN_)SbqU|$%)W@Tw&$p!e8gx`j7G{dd1d`H?Oau3>FzEzou$wkZ#d%SRi zSHr=93%nWtP+SG%RQOwO;2MQ(tcRy3E#P_eCO^5s;sjQrOM39SD%FooNlhh|tgNWW z|L_4qO103ZEh*Uswjx?_FCzUj=%;|EMYrmsM~(32ClxBq6npIihMa_#U~u);HhBO~ zhG_G_D(fj|-BJ=&jD~N@G*v^LL9Cxd`i+rMTOax!R8DZQu^ECfFfo5lPXkjLeE=w| zmP#ZncMezK;*89)maWtidp=BAMPzgjf*)e%uHaWECME{^bpG_r3{^0rcHH6NA)F9U z0*=ql;JUYvmX?P17?jp>07;kLueaMYatKn8np#@<-|T=J8N87~1uy9MZ?L8b4GC#F zy1DkH(f{n@iDv*u6^;neH3|v}tmD#>lUINJ`t|!afWC7Q6B9Etx7XGt3RUhTu_h+h z-nQN>LGJ9(9JbzGX#hBeU?h}ieSdClPT#|J3K#0x*;!m%9I!EOq5T&+aPRPl7VQnb zZ+|c9VrO7r08XR`!h3O#+H?mrYYX6N=0-FfneC-}zD!ji?In~Sd_%@o)$`dPVTA|_ z?RDc4{4&qx@`Ta23GjR71)Egzda~Wy%tpgTu*VkulUje3BdNY{{N+2cx5-1OxsHdJoD2o4tU2C=={0fBPR_KP(0gAn%qw|1%z5X~H5REXpZtJa;eZmYNRH zE^hp_$KOo1@dm1?p_eN07!9COc-_EHC{lZ;RiLQZRW!bz|3WvcY$A^bhJm&3yTSpE2$ovlgyk3Au0E!$& zyBFsp2**RgNp=2V6#373`_O*I+#5AAWiv=a!;gY!_RD7rU~7Q&0KB_b+QAkJ?e@>j zexQk1bcR7s0ImgH?|Uc~^nmrgVj^Rkebl~G0sK4q?xQLl4d%PU`rcH`8@zr{8FoLC z90P!r9ssHUG35LXhao~X1?!)i{DsfWmA95ZJQ;w#f*Zq+jBqvxQtX8s2Nb}`-kmAe z=Wa1;m7n!eco_Iy_>Ia>RWn{d(s*B-?HfDrNQa<=U(5f!NgeeiO2+Z%!`qWJJ)(%SeqeJ1lGq?8U^og>#a3-2)9#K=~Mjt9D#eM zi;~+jcC5V-?yQIup1;don7uqnwkH0EE9lwBpoZIyyp=z6vmSeJn#8O`Vxic(l=uGq zJ?b!8*^D{-+a-f6<1?ravnbHG1a51dPxCY043bfJpTRAX}>c$&3fDyhIqW~F#xxc;rstlbXEaTZDACqJBO0)Zlpn^yBnmt zrKFMWknS$&MoH=J4gu*_X@N`J4Ntx>BQxjhv-iK&`W9lLNiE#EVv6x@h)a)={~i@J z_4XkcOe^LI>kUPkL+}Oo-|DCj3KKWo{>LR!4@b}gPSw2jOR*~F@1KT%nS7GX!g%LP zCOAypfn%&rmG)$L_LHT?t#}`({BoJf5!lOa=<(gH>EdtXN$R$lExP?9=Qm*OJAV5N zUNiBfmwC4hIcv2esw5{jXz&k$1rTG(wJ+mvsis$D!Lod&u@Sl~lIv9lTcO)PRY@P8 znbYtuhi^r4je)$W0$@LY!z9*Yod08YdcOUDgWjfd$_j~yUn_EoW~j?z30yb8#+ZWL zLE8j&Mpr&yK@5=%Pq<`EH2-x}>^Eo0uDhHg83sE<+YFgFBD@R{CKxIz`%*?hd5HF5 zQH1swy^q%ztLzX#fl4cBqkJ06D%jalB!F#PRAhk-a6^~;5Zk}bWZpb~Du266Ef?gL!+)LF4Xt~j*vG#H?n#S%>M7tFz) zjm@wf4zFO#0JAMY+`Sq#-8GvT+~Z)U2tfAnBClIC8kv;YVz9o-E{1@0*I~UC+t38R zQb{4O;H^D~+5;2oeqSH4cBX(Eoo|pgsFUdX!=zd6e6qlJlx_;9nPtt4ayi2dpeU?& z8!m3k%g3jYK_P`ftq5#5AzFR~RWkn}>4c*ZQaFdtLh5b6*C+JpB(wmNh`SurSDkY( z?+854N1P`y;(vG&_t#{@bVqXM0t;=|2Uow;Y(G-YR_Qmiu;@N`&9O(ZGvH<|V$`~WK_*ma_iBcTqh zVh<17rZH-SYe=jikurw9NPcJzKia1BHEq+ZP;X!pvfOQU^b>U1fy2OI5R^cH<|{C! zgIE*MLsIu>A_T;y;)@Hr&7>fK64nInVk|oC?zTDf$)f=|l#b3nCnwQENT~iYBGN>e zs&nzHbb;_f%7wd6>;Q8$HoAw))q&Dka=$~`F^yt0F5_7$k;)P4{f81+Y^r`2;2!|J z;k7LCHM8*hliBH{4Jd8$@8+K6mLL82=(Ct_+9jFkerC~6pR`UQ`F3IxpfIaP z*wZZ0{(4hXzP6>k4%gmL!I4a1^|s6ji~55I!(=*pKDVK}eL3-UaPT>vVF*2-D95g- ziM=AkKhyIJn#|>~k+zgZW9t#U6=|`V4K`!Zu6~1-!>B>$N=)|`*wIU9zH?L(V-H|J z(5^t2Ea-lHut{r`glWIMST13)h0xyG9%Cz z2mhq5Z5F*2Dp3v-on?#?ib}z)+h`%@1Dj=WJfUWXu*JK8(y)v78@hTtp37>Y6}%pJ z4pJNGhA@LxpGk54*aC@4+3?7YeP8L`pDAQj=LC*@`OvTkqJ#Xu!1+Z#42+|DF_BO( zL$Spu`;JH_VzJW>@)Tw$JbYqb&w2zxU`M`#zPu zk0Drsh9!Y=2uyk~g0|k~Vh+m_OUNebuY)bi0XU?pxoN&BvlJA^v~DDQEF`AnmxOAw zKo;KsdvSxXpUBwyA>}R%vyMGPdFB!5jSLM^{JPjdA^LhLHI&ljOpXv!nd>N;0R@x> zf)vs|YqU-o+2fdV@*Ok0EPQobe5r?5?L@ATft7@^)N_YWn_kj}TM1)I!Riw4+=Gn0c+w;Ro#3W5d(EL6;JbX7& zIP!C2gS4f`(M7mh6@ekB@d$2e?iR<(T}#lC z8BIxQ!v2S%J@Xz#y8Vv5A2bIIto-@ICf!umsFwU0r<$!kPu|5sINkIsBeDF#Aq|%G zLMN7m$_UXU*JU79s*y4il(K6SxB6$?^lSM7cvqM#%@|7*(VISWL4n{45dGVU;9ebq{B9z|6) zW7v>+0KhgeNVH(I@+ZrQATkPUJSP3txQ!IrjrhT4CSFtgJ18p5!guE~9cvoow$i7c zBs*bHv0&d+nwFU`D(*s|F4+fQ)l7|k+=9wYAWHT1@F-JhLE!kuRF=S#74p)#@$1(z z3&)HPLd)BH;E}1U?&Ba_ z;+rfnH6FY{>`4)h!HwQwG@SS$fI2k-b$cjE(~uLxErIW6f}%7(bUP?Q!hxzQO&>|x z`4ihRCkvVMY@3G`$ko?<0UctnH%W|?q`#YX|CM2m?!nsW3AsSGe> zuzHlkASGN<^~!5S^w}m=IU|-&rA;P9EWxcbM~nhxQL*&+E4VzUGXB9DLFNHDRh5=< zob_~FC_@wo4%@uxTt2O>G`<<}JQ%tZRMY!Q%sHq*mOU=#y&k&#n!%DeE#m53@-W$V zhihgWh8JT zxG(s_*!@N59x!qm!~7PNLjI|!*HR*4&Pq~*AHHzYr?j#qyN~TDZ_~3_rBD#x%hz`v zgGf7O)GQ$9}~n0u`Z z!YC%*I7^H>6L0qM!F>3&k5^06N7-#yAUL+fQzT)1?I%8C&|J#aFVqvkNJ=9*evKgx zy)Z-~ioz#6J9Vbpk4W_9a`(wcIFZkyl5@j1j4dqC51I!}a=sp0#GDhA;!7~nnKT5Eky+ibubV&%+Q}qGU`g>WkivbA5XJ8 z7DT(2vAm6Z4mH1~IL|4j*`l^IG1%!;Pb6OrFV7Rz`E(>#_TKVi$Hj$<$_OkLDcf5u zFpiZYs2{wmT+6(i-?Nd?K&GAw&YR$-w<~h-@Ze=Fj_nmON!L;j+Tp6@VqlHu8DzQo zb8mvKRLbd{rzhv)<76DD@|%H`v=G8?!cJ<_(V;Y6tCRp=(~<(;eH#yd28FQh~Qv-F*gT!&w8MOt#6BO&wYG+ zToIxH*rujx3h>q>`3LH(D5+0>{y4>(8rhWHy*Q;ju^Sj0RFqR7YepdBRyf!YDwUKM z>;Mt+yC(O##%6)ha3L8783{&35YZZDxF~Wi7`B!B7qA`C*;7W5EmK$si;8k{47gEL zaP{(QxU(3b@C-1|WnnwR#T4Y!h(QZ|elH>t%v!G?bPi3Do1foQmVKS|ExNi!OS4o6 zrbZS{#spEMNlwv@ya=~OBl`iQHY8s_O-K=M(0_2tc?@;vuLf#~9tp$BH1H8QtHcf1JZG$xOm|DA5+{9U4Md0KIO>FXQ71^CWZD zlM>Br>Xq5Av8-knX;_RcilYJk(B43}5X+)*14h_&5A{Y?-9wmyp0HG)nLe)(ITd{R zI5i-8hv8$9bi7B3 zU&Q9j%$BM!-#_>XOiavNp56l9b!y3u^H83%GhA7g0#^D0b#WUs_+2+fC7F(y=(Z%X z-8@rO-ksD+-utW!8p7yjeZy}Y1)Sp&l#x<#l#Iuzf+yo*&RhbLC}s;3SReKyF~-k- zDY+NdkyK$dhtFFt8O>Uq1YL`(tPK=YawHHx?TCsW#Tx=vf3@Lb#X#Ox+qzC`&agh@awt|EHCl5;#G zae*bW*W2pGHA@o`o1Bw~r6%OEoidn}i#=)YqO6^#Mct$v0h8DedW^@Qs^1qCcp<mD(=Ga8GEGi@f_6G9`j9a&ax#mW|B?22%&!Z3f&K8A#i~mkEW{rr8Sdl_N z6aiOP&JA?XOSq!;2tk!7v_S6q3YVN0ML`SNcDQd49dq$paFpWz*a0~DtjKU^ok+_# zKlRX{d-&&M7^*MicXt`9_gIg@GhKOf4ciy*%)gbAtA2Bm@>X0;hhI6ufnso$4Yn4; zdTAhzfJUutCY=~)GD*%_Yyy?im*~ZmVjn4+7LLs#?NH6g-0ud7z;$9J;kdc9gfH2b zA%1|DlIHQ@KW9rzT5b#JWCjXbA(noY;jI$N7&Dd1(hZm^iso%rgTY<1=D;}$6ALh9 zju$@{Xtt)DAo#YS&nQj=|#1^nWT2&!psa7l{TJY1(u#!Xmbw%9PxWC9!+j5K?24k5&`U# zGe&)y(t7L$ABhg-v{o~Y`Ah|VyNUJ0LcD(hW)-UX-?TIJ5wt3xDGT0f6gKwCO#OL! zB7F*j*^{Yk=oCL##zw_agaRG-YkfVz4&S2Iz{u!Ztdomkh7PYLMKnRm z?1X@zCrM4G-c0w8Qv6mW2`b|-dJ8dIZp5#5oVkzZO5_z-Ep`OkvW+?X{$dR*<}RBb zJQ7kall}IX)0URB@tEyeDw(34T?L%ztFo&TCDv)E47Z$b64w$Ci_(27 zda)*@R%NY;6${5R()`3u$kTO5N=1KA{i}*p*$4Ak(5H7SoX9-1zpk!MB;x&gvY?Q% ziVBW?<-%+-Io5=Z>l>rH;oduAe}9+Km76j)=c}6bqNAdTrCFRx)kHs<@cjw8A=Li{;Si$4^`T6A4^M~TsvCTy614-A=#O=-434>7dP>5(w+Dq zLOxzp`spsEe7wr0=loDD#j*S`I@q$m>ax%nQ|aAOsNI#;-Mfl$rM@VIKZR+ZWf+X0 zqm%FnsSBZXc7~?q-gOp+2*cs>%6y52cQ31yS&Hr z_Bs>^SikBB=yt1h%ROzM`uAT~k&g*nm;k)+a*%%H1_Sd4Y7xIso4XLDb82cZm}<5F z1Lp(k4%N|ksOjzZI+J@z)|iQ@V#>$=~-k;KGS z1JHquk&md~hXI7|6N==xJ45{GX8mnl%Fa=ZSfoXtT11=&-{k=$H8M^`7 zyS+&1B<3$+iIOAL7}&+XKN(%Wt;y4p7et}<&DiA^@JgdmwlYs}1kUc1mREg?^~3EO zmO+PD8mdxKxmv~eJ$`9v8>yE>LD#kPJy~~I!uIO~;0K@?d?f!uqjNCAUlOR2o!Fe* zpMzv*u8~=aO3XSsr=;TNdV6O5@o2nHde2|FFcJpOA7xta5GG@Me*gA5hT4UXLrG|96>8rnzqX$G;9nGvOqH+hJcaHbjj9h>-ei% zUK`9inx+I#Q#6zd^>+{Iz&Hb(yI+A873!rhm!VpS7$i0T=m3VC5SKGx8wL@0p9N{r*`vHR^7$v+1CR9vs$A7T~xBu}L!8_RwRi z?qvT4AIs3|kkH$$51D>|a1~f4!G|>kERCS-I7ZzD<;TMb^K2F9p{M#o>bfGO32Y<* zz))#r{yR~;@8yx_%>;u@Jo$kn&JL3dTOSFIU$ozqh<*lzlH@bT2!{QOGHD^TLcQ7i zJ8|dm++qn`0WR@s@y8|rdL6mtSFC*mzGoG|oWEL zTqz4++9;pO1V3$93S7Le??cXEB5J{Ub@m8MvcPDt^HYkzFw}z8IwAkqYzlxKTrWrI z-!l9K!u$`AH~}_{Bqt&K-^8NTAg>1Ii(P>4F~>_c>r%uAEo*)+NV0zPtGnBOkku*u z=st%1M}~;M4_F5R?zRyfHo@c)n7oGshwi|e1H66@fGq#Zahqz`Gp;ZP5N&e*>sf#| z;fnfTpl?1;%D0*gvMvd)Y=S7=_CuxbVv%rK7H@fX38naXpBn}a=fM{hx|5{9Hd^lO z?!i-Lb(G)nr+pkE&b%K`wUGm?uxr`i=9BVeJO+H`6JW!xGHByUl9w}qL#Cli8MXbI z>v6NF(+%*^mCB9=E`xZPy8-Q%`0LcJ>t*2MNq#|2l9i59@O*`R%lYK`oK!@8P`0qr zjxYzL+XMvao=WYS2TzAYlFZoty)i%?&+**!29lLPqY-KD_AO&4Ahic;C+sKz$omZp z$hFIm0LXJuM-;B8Qvs`^th`S@=dG>{YK?C=Q(D%toDe$6xdFlA_=8 zGhEwS=Xui!0f#LBbubcf_3Ho28miac)9V-W8%Y%m4*$E_L~k{#*$AWwvNIDdq4iz$ zAQ<>yTto~Ym+d)Xz0ko9f$`kC=eu2OU#>q{)-=yGJ3oOi215j0Mg36^-(J z)5jiQM`tH`E*n;eBUzI8OdYxD#YcK>z-rS89Mm>sC0Luo9^Q-rwoSSQ=&1c}l8&=| zx+>y{p+vI85wA3mkDHx=JWE=@pGW+$lauAkCy{D#t$*uoDnMCRygO@}{s#C! zZ|E`33!AApS)(a;*?-(o>3upbO{d$`VKeH~%>j^>Z2;eqZd9$=!KLz~$H|hw0oeuz zpsjL8FqSrg;WG%dM_e~3Ceil!>l!Hrf9BuwyC4K#7L*kYg*j`-CE5B?cL>|?7xH|N zAT}F}7K0jb9{5c!bFj+BNEi?|(vV|6K!;OoQJr zsV7u~bDbLfuE`--4G&(aKwa#*^;_Vkl4(z_>(mD-0gj5W%MhXUx^q9e;xRKQVPhQu zZ-T*nmB+Fy@Y>Y)(`*ryt4g4y*dsrzb-Gz$+*pu?O z&_Sk?K?&fh2y}#+28-PX8!n4^h7F(78X$@7l&nDBf9tqE$bNUkOe@vOKt7xfLnOiQ zTKM3x8Svtd9J~!g)qZ})fKdb|2FMf$i`<-DDcO150H}IKETP`5mU6(uG5t~+U^!xJ zeL&)AiXTGkq&5If8vCsQKyL4g&IpmzP9aR5&aXX%H+r~ui zjjhs#Z+f8#QSUDs7!_%uu#Yzp_-_+vC4+6^Kltw-ucm*hRZ%VXS=RiU6LW~HFG&c4 z*{S2QitzeSZvt(9az4gfw--QRW7?d~`_{}+Mi;mxH8$Obeu08h)D~UFPbJlT`^)jQ z87mN3Kh#hL`^Un5QVWoNk&lmjU4@BpHBm^Z;K8+THYQQv`nEJYQb`Wa;ZI|wNiVj# zIv!HpMDvms9_Qc8B#d=O_Lh^npRA~%X>lalp<(Z^sx+zy)lil!^pzs5-*`$=ByK^Am@e5@ ze!tGwm2cN4G3jbNciak3iAaDVc6M1OA|N!PWIrqO4sCY|{SeF2Oqqdt zWXk4A!qLt{gfHER2w!$QNT-tb2r3AIk!0D{5)%P|7K9#9_li!T?Ch4Rk00Rb5-5a# zEy)?@zw6`v;17R2sEKq|mIKN#47LboTvj|vxPl9MT!Qc&fcW|d{1ho@ z+#6d(#kT{1XX6o1bSoUczfknw&yU@452SX$FZc9tg9A5F6|tzRchspoNuKOT-^LZg z2OCd_vDsp;(`-p}K|R6%n<{$&5+gBugTFiya*iO2;Bi@jg7W(nz~tg*B^DQChQ~~O z1nX(@2TMsdPL|hp&H`Ad?o!^%6U3p6JAU7w%gBg-fk(l0hPy|<7hkV@r8Pw>^=^?K z|HuB{rwPb1z7({VS85Gb04yDtA^6L2O5neN4s>Q}Y zrY$toaIWBJgMkB*WN0n=xHn?&j<5-6-kQ>WV))%@$4%5JeiR@0!nE`hJ@~0y@lx7! z1YwMtY|nVLx~3-X%a@;#OYk-hGzyx>z>N6jFr4Isu{){2DW50y014W)RU17Um?FoD zR~=3;;&7r99p5p;SzBAjt8VfN5)_V;b(N?(y4O_dOH`GAOCD+>^0xqx0V$ z)MFBuJ@zMVC<#c7K(oi$M=_-lqZY**`qX^QM1y}FIS*b)E37lh^YiCC(mB+>%s@LK zRKTruXOEVr_;UfQ_gr!>^#yqy?)QgzY&tvaadqB>_+u2C3-oX^Hv_^os8kELVE<^! z|0eY6VU2*Jwx*hpm{_7wp2)63i{I94ZUMJ=ETRD`&+?{j&0lTv7DhdpLKE(9TX4Ay zn|FlmnGJIc^z6wA)3-1LI>{#txh;qvEc;`__|^~+xgdBPhDvO~0JNjs8DU~5D3`g(hJ1E4*XC3o<$%LB%sw~*mY1pN?>+jN=Rfvw-?t$Jl zG(wk~L>?vmkS81GFQ@Owlq->pIri+m)Srr0YRP`Zecs_=t3as@KXzq&9{Z}NA_rJ~ zL!N@h=(0lj+pL2yhjH%*`k$XgVn11CG77V}?E;s=N)YA}1^+md(9C#-Y8Aq}&=@~M z^24yswl?HawXd;^;z$z*KtYV{3g=o3Go{VB?O|U?S4e?Iw#Et1js+M3HaxDgG}6Mp z!PNi6V@Ry>Uv7ha3`U{v*pXT8blkx~gUV`8zU2u1`RD1wk(@;dE--X4l&1Awbyvy^ zRWBfIrX~{=csrNjD_I)sBF+!EAe zR56G))|+?on=cgp5|~2eS@QYKHJ=-;A-3{&G>K8nN>?$P@s$zlA;VA~=L8JbjYzzJ z29|py<=@Bt;xLAd5=4cro}u;9GBW;R&O`%-9WYGeF5+nnHLNQJK`1Vv5`|cX+wB^M z54riBF#IV|6RpMsj&&qy!G|R=2T=*O2t{4vso-d`Z*W{kR`O5}si=r@Z}_9S=c7Ff zV_{-h+WnxA94up55f=C9sGn%hOr8s3C)b$6Gij*@S1;3R-!Q{~n!?m0BUmPN1tYsB z&3I|@qs%18ETR-j9#fnNmYTahDPqZnnHuuaHPZ|gf!T_z^N?}0)g2T@-&v`3wRJKD&JT<8^>AJ!Rp`d%oDiJ?L!e-@y zSA;5Km~dB*yDKpBbAxY%IzXLguy8js)(+{?Rmp%uV1oV&(+x@du=^Et=bHm6oK#~V z4l4#}wj~z6JEX!JTKYmY4VW+etP`+y0-1+cU@X$A_~D6Su+z-QueXK5pq4tJ6k&1K zwcq<4ou0Ziv2=K<;{Rem%!IR_qqR`3#My<^YQE1At2U!irjcRwzdH{iMr-%Ei|tin zph;VS7q8mlLT)z9#j=tM6DnfUqzklE;*_P%+M4L;fr_ZJnCJ-}L1Gn+iyVdh=k$mz zvWw5m|sxMEEY(t!f_)-^mL$Dj_EJQsnY#C!egxT5Sbm%Ay~LLXt7= zfIYSXAyoMxj8qH#6bj}DiiIBokIDQF4Zrz~BGlO$qPv8ls$$QFGs!rpr;LZYi{b`m zBy)82neK2Iv|3ZrXgJdXqma$^y6@kYj}dUl<@6#^Rtn?FiX;5@gwxU3iGI!IJYF9s z|C#@)lLS@N2IqP|AyH`i!R{99nmM%TACSVF$zk?co7_eIVy%2 z2@1-<=o#bKM*rcESOkRu`cot1|J&a${jHivUogse)bB&lFJ43C69Zj_TGX%|b)<;z zYGkITuTRw(2XPn5Rut$nTQDa?ox#h3w*F52lTE+AHC%F7a?aP?eGf&Hc^!5mDZfDU z`%fKK;Lw3B(H2zxyj~6e2Frd+KFtN4jC;TE6VLqoJPw>&Gs`NH$*yok$Ugz(TT0$J z=yB;1>0-(%aE_OP?n!&Aj(CU{1(lwjuIDz0BF$AgB9t9uFK~!QiP+$6v+2@ix6;O; z$K;3WWtB{`{?1hk+sqFRyPcejY>7ZlsAaT;fX=5_i|}LyQM%#GqkB zVx_PQ!)NpLrXN4pMu8^KI2QSb4%0os&}@OO5=2>l3`qGO+Y?E9N@CG*6B8!lyd-Hs z%3b+)t@b$xXKF50ltiaNH}716d&$G!ia$y^xCrCr;40IJG$MPE*wGAd3%7hJ4maVuh3-_qM{UmelG3F9J$x%&QPn)=0OlC#7nZ3X#mhpIF()a5NnDBM zA(n1apwjb9zgjAsuqf|W8?1HfYYIkax=uk6k?^0=n7bjK-F8^jCB4v$Aqg@#L8uxK z*H9=~oWqBB43k_Fp=1gyYg2B&pma(!sNudW(!hWJ{!x?4ET4Xgq3kXQ#Ec;16Y~l> z$s$#vnAewL25ufi9sujS7&J;?d&{8spLvlD>~n#y^+htQL$K|ZN zY1fVoX&h-yqYEVi8>DX?T*x~8bUy|MrHbLKX-F8<)-XN|1}=D#UnII9I}2p#x#j1R zlt7@^%gmQTcT|P<8*#&nO9vIVg;wY7S}e#QeY9|gk~o=h6YX@iE=nicpeZF3Us)3> z$R?1TJ8coo&!b(vcLXSDX;Pu*d%!w&X3pF~No9ci*;4V_y-7o8woQG~0F`9>xL9A| zyP4!ZU}zUTtyB*G{_UG4Y9CdmBDo!!WfkYX(#VDUr(VB(dGY#VYP0>yLD^qs7nKsO zYKc8|d@+G{bsT;)vg>DxH|NG-P|lVt0%M~cIpws2UlL7!RE!ngNyR3mQKBO2v)~hN z%2Vv!VJ#pXY2*nqU~^bgVsXMFR7`s=0GITS_dsnL-#B#_(Z~3HjQVQj~50 zSFuaqJXrl@!d1ke!YW6hQ>|Nj$Ft4n{*o3iC~Tv}Q;{Cem6?r}5_X~;Y&&fa4-cKl zzsbU9gB$Y0;;uN)4~ei?ZfZ@FNOrb&q1kC@hjxgbM23YEuT>Pm`UVH`1Ct+;{@dB< zQwY`Oobz{jY@0O5q;L4@E_8*pt@EFb&Y=!<#^>R}XRQ}2#5ixm@lR#k9^%3GdH-x? zcO>pBw2{Y)Gas5RF%kfz@}A5@y|4m;dX3n zE|C3M!Vpbmp(CCq_Qq1dWA$I@!g||3oGB_;=ZF`!=2Dt;t;8ruhe25c99Tq zi9kf5)T|{`Dpe1ejU%yA+8Cr#;~Hg&6ANG6GOnNw$EyP4p}h#ip$Z!x%$onwT7Zq( zHCCx}NNbhCP!qq-7BXL(m)HPid}QCJGC2DY@lgTW!Y)FFi&rhedy+YS0>gG6 zp#+;=Y5bnCgNEfpkeGhhMIGpV}g#vnVt zyew&l1&QR&*4sbX@8-2ZLf(+uEtJo;xgBn`R-;8eWzEy;b+UT2B%`6;t0|gT;K}-Z zNSHM=9mY0&Pbi1cf$`kZ>$ZgWv2jR;aboV^+H@|+RM=>Uo)KA3fIyskGxTC5tywHO zz88s7Bo^J2*Pa7m5lq@B_pA5aRXd~bUhre6Vk3l6Rm_N=M6rR_-5N0bDH)R^Olio} zr~0jUGmXOcP_cg%KEbWsqD| zvD5*Z(SJ$p)scqwhKGMj^i$3T4eodR?7(~O@bk^#9hUJ8hWh9kRpJNdPt*Q!yw$Fq zS^PT=LdUPEiljNxo@e* zs=opgq~t6R{a6KX6#4a0yc)p#c@KtjuQUjdvf|zJ+Eo|g6aO~X8tMuD9S5i&B>)Zm z!Ldclfq6WVDHH(lU!!C5N_-nu*^crW+j~Bj01E+J)(dc&c1R>^Wd-HZ_U>jQ;>Tle zr9MBA*OcTgeWyM(EiI1;BexUaphp*CRInwI{|M?qKeNn(5JX9{`3IQknS_g+!H9(F zi>MpG@&*wIe=zQNEh023oi`6fPJaXpi;tWN;O!+=B636DUzAZq*t;I`*t`d`6X1Hr zB<5w=Ou=|}aSH$tUVys+1f14cX=2)Rw$`m+^LT*+Fh>DFja%lrPId51NjskNIqyZJ zbp|Oo#!!bO9j;Wbm+7KXZ;M^PYyo4^88H7e0*H1V6wo3WKn7AD05tN}?Lbj#0rpZ4 zlK5nO;Rr+s9m7wH0EZD159Wc(z^?uRa3X-6J=?HA`n`!h$%snutiIn>2{|*YP$EJ- z1jR5|x%N1^z4P&M{1uwL-gadKSRO`x=l=laf&|2g6J^L&fnJgNmwp5_y7myLB`~y1 z0IUK;mVKvr*o%Le)_H0a<&9)v>%XiVw+xPVUM_~oKYZ-E`R{MHaiMq^5TE>>?+={| zfTI_BtH1%o9*|1GJX^AZ?FkIT(6HG$T;})@@O95kS~-dn|9vBj{|3M%O1!HyqSK7P zWnQgQN0z->7ADT{7pNVtK5!wE5>Tr4IspgXU>Mon0%T^&uY9k{3Wm_x7CMvngv{Gek z32~4NHqw7e$o=#x7yz(27;7;z$p6h!_O5ap0CHUbU`WNhMkS{DvO(RV2Xz8np%*~V zShrmQ4a5U`?VDq^JrnK*P?KI6D()0uiXKk3xOa@LTej9=7pZF=Oc&5-I zD(HSh(LTad?SbD*T?8l)3i0!)y3q-L1rBp|1-0<2kwY|+D$XI zEE*d0mu)6Y(n4LkHGstEhIz5CZ42l5HCFOGD+`eNt+%hRCZ~?y2X(Tk;h1B?=xK|F zU1f@y;uOg1E@l_88D|v$jUet4jblq+@YQ1^#VbKQ8${e#FgL$|FtR`SSm4w)+Q-R2 zaGz)y+J+adjcF}mzRo+P z#`8HSieY=Wo>ze{mu5pkXUw!al(>LI$1>RLXoOZR$(Q|(qH3I1KCC2~2HA}*bRi}N zsm@e*j%q_sMUB04 zX~s9bj`T}hCz3X$##)vZ95)dhchy0iyU^OobGiQBdM+uCT}rxekU5CYpf!OfmDhOJ z3**GI`_Iy;EGpD;Tj+bIKC8gws^-$^hb zot=C-TfwGx0t6-zI0~C0pa_fNou8;*L;nndJa*r%*{}ZdHqeTM{tfDX_I6B)fNqsb zFS!L0fs`w+T2h4A6DS8jB=NyzJ%r@XVB&`S0K;n_11aJjd4Z%57FvC=`1cj#5U8D2 zpa^6-t~Qn$doO}uHBHQ45YvHp&g{eg6?VbG@?b-uK$yTdN7oX7hcx2*o4x-WI#G|I zya_rNYB^Mkra_LU8T@sDVnXH*&V2hyci>&FwWp&(z#!};#f~E1EixVT z_)1n2hBn#EQt|F5Ac=7fKy0+c211#Sp>sza{m0``1Z7#d(ek5k(2E7MCdKB8uzWy zu|e;hD0*CRV^+gPCV1>S)p2&fBZ!3JYL2eyk;oT_=Sa2U=YTUzU0W+Cey-IvXW?iD$h3#X2E{J z-uiqvZGJGO&!Z1=u3D0(><*#KF16e(-m0Xi3xu_)abuu)SOzib(;ayCgD6%3 z64*3}jE~)-!w!%ul26ye?3=U0;|f|JBR1sBK>}ZO%Nd>d?orB32{b!}bi{=dc8s-M zGAqnr@MfcjWVF8=9|tAMSdO zzU#~1oCEj)F^EeDniUuWh{Kb!@F#c!&Ik!%IT>By=Wa8VZ*9ytVr6JHfz&x)=n_)4 z6w*w71iX+Ta<)V|!}qX%7mCpO0c!_?P*NgJL-a>UNvTvn5@qX5kU)-mFSJKhpQ@f| zx#Y_?>>&`7zJO2YV|(NDk!TWj>^yA2MA1`@1dUG$Z1R`xFCozpu69Y(ei7{`>T?^) zIraD%^dZt{?c=N_8aZKV4gqy!UuV^JOzPy&y|^YuEnrnsc?=MwNEt>@wC+uteckpq zBF5p+ct!|jW4t4K@Y@pTEUVq|I^AlLZ5H}s*zfZQUaE1N*`{b@L`2bF zlFBLeWl!!KfBbOjps*K|m;U;w{myANX>6z=Lt#jZ&SQysOfGCBcj1GaSk$)3%@Kdr zJSt^C`FobVdh7cO1yTpkl)k*GvZug^AtA3 z{f1$li%46{&WOi>lWN9=iIC<2dF|+Wru<7mj{ue^JF{zw7>S+42{wtNgTu_v2PAfz zX8o|aXuTL)#7RgFADW#b03zEuPAYfkqgh&p} z7m!^C!@kW=aUEzdXiHovS73T<_&cqSpcTSmL-;ok{!K9a)>h2WULBHdj$niIzcA)5 zV*SJzx8@pttgf?On-%Dpd$JyPijW{0#-jAMr7%X$=x_z(Z$cNBI>v?JUE$F!II~y6 z$wZAjwjkXcxO>|?6mw^m9&U7LxN~V~_!-g)k;u&r3S}HTvKJe1VhFd?8ePzFtwS@tS$c4 z>D$|8hwLe9ITum5K+}V^%E+WxLU&KaRc+~U(bX(x3SLoSe##Y2)9enWC>%ki;YzL@U}VAk@e8PN{{8(_pOY+|!AqiiU9oI`o9^Mf4?; zZqH%Is`&zgOrk%`*2zgU)0LF>E*EY3wx)WY3`@YpPFO8X=$s3qRkLj4gI4Q8c$N!> zj6*twqpV*re5t+vPS5AbaT5rVf|+8pn(o|gblmF1R*Zh>&?2laO}sunVhigmxOe5E zDQ1vImhTO$3K^3^YHyiYLl?NKpUv=)dl4!r=44Mcn3oeP$WYe1J3X+kau9|MN}{Na zEy+KfVCx4@?EWx+k)n9=x)ipmT@YJnA^VaMF=RnZQ#jWf<0BETj~2}6dV}`;Eke?d zrT;LNLY3_S@VG%#8kT69h_(3n(|0n&1utlrlwK^CBLZs7ts9Iw3WUViluzqBJ5+Fi z^!h`F(IoQ?j_&T7y9FE*wTxWAa@*3v<6I-OQY=T=JvDbWq9ehn^3^2s`S~+W^x)e2 zmDFRX!vBhz+^?^%xeNc0h$8+G6?0${>;Ez#VJ#yglY@sCH0Q!nS5@VPw0fps1D}nl z^(D>(u2TXk<;3W8k&Ila#Rq@r626WSW7_cB$E=JPx<6+ce z!mLgb6)7Y&G~OgOJ+xdH8U?yJFB>|J0Uh3o04^;Tuw%U~0+~YFLzCz~XOMf&_PL8!OrnQ1UP!hDYf_KY}zE##4m3ucJd{xw@^H64LEX%_IJ0 zl_7QgOA`<^7KzyKsKnw?n-e6D*e|Txs?@%$P2J(kFWwY7HU99~9YE*oTppc_8VDtL}4;qm?8S*40f5dCq*lYlY#jPZ)>BH>DTL z{a8FgZPTFsX6N9sFI8V|^jNG=^dTiSfRGNg0Kuh-xfCPIV%?_&SAh)0`h|U(`cVGP z%4u%PPHUgpgtXA{qmvUF5(pGUBCn}#q-3b;xSp)S2;x8EnBx{~&JJRM>)6}HJ)VJo*c;_ADKV9ts#@_>2;6AEYQ>-%B+?X*t_eXKgB!P}28 zL0AT8x1?JM&;^Qc3GhvvIvj+kNJOx2LRxDO+oYN7Xe7w144|(`*l^d3^Qov0p+x`6 z>IvF796%d23|dA;nK(ysPU5SQ=lJIvDmf6GQ68tQC6Ln@ zk-qPk#lyw;xm8c0p=9-LxtER2obR?N?K4MakucnEluKA`p(dFa5j zvBa$FulZpE_tKawvK>hvAdcckW~9ujrn+SFRW&fUqj+YUn^6=bZ9jh|D@6SZEShh1|E3Lav0biH%3nS>%k6igz4tr^*a_M4HBMQ)YWvxf(wMJv^t zx|qE+l{qmiCfOSncfpN@C=Ozl`Ph@>S_-F6<)KtUN_#pJwY*3l<58;@j!?f|tP$MM z9aAvOEmQAW*18kSMbJPdncStQ zQszT!zWy8g^)Mxd&~MH3jZim(N$OHRyj)PVZ)#1)r9>Y7)3`aB&(P!z_D7Odlet>1 z6zhpKFOB(w&xC-uTz?9%ja%^i#WWcX&Am}WnV4pR_E}LAJKs{JYWVl;BU-Xd;=t6zZF09qA}t2+;kR}5EX6%f8jO;mS!T|x zhAqfa+~PRUL=SQ!u&_6Iop0ZQGY+b|m%11Pvp++vqYt z4|?!{==H+vY*3-aaJ6*|EHacS*kNp&UXEsUud-hiVz*1mhK=W^fmk<2b2cg{;7Z<1LZH3Y8ACQF&MEJgi4h5gn zXOSnW)j2i={4qgHIhYkax?|8EIT|iW$PFaTM0SYeaic4i1q7tTd%VB9 z?z(@#b-in`-X#p<%roblXYc*}Yy@1Sq79T)t3n9h)+UKsw2ed8*S%W1feBNyb6J(> zvhr`mqk=?-AB&2iT7_BE1)J>MIt$*sLXIMwkg^!yPRQX)$BoG~o+ZymyRfUg$!87vRp%@!Y)C)Lbr@n$=^|sxuFU7Di_a1Xc74cjL zMNWlzs*OzRE>HRqP%Waw$M{0=93gtwP4R3JKPK?aK5?zi)7mMrSHxCrzv1wDD&@Y~ zf`nWn>LM;#jg#)F*=3DoSm-q?5np-EEoHt#ZzY5;8QNvow$-TU9dX3q~&s#|Pke@-eSA1y1?PmRu@CiK>!!W)mAD}sC{0+M2^OS=*&${S)2Wu$v} zN!dcqO+U5R1;&{Zb^SM*|JoA}*k@*Ele^l^Sc?FBv-RBA(&C@@2~dDVv+o2)nvAjS z$iu_Kl@&t^3kzU}7r5tUI{k@;&o*Du8sH*UNj^iLo=nYbP~@(yF&b^QAatB_tmjdj zkqX7JILO$rr~IDYNd76;FiH2%WTtI0y{hSxbyFx|Sw%%|PR{DuTFsUqJ3B@?Hy2l3 zT^)8v+g$}5EenJ5dKf!9H5JC@wYR5&+>{XjqK3TpB%J7MMUTHW@)VF?W&JWjnLt39 zUZ_H;N6zwsRz}*4ecwRp|Cx&OnV%c{S86w)65Ips`@Vng1)3QsT={F2ps(@pXIfZN zQj&pTV05$+Kv$hVXx}q2F-6A2;8E}ot*+k1bYjqeEb}R#rT3L5B&dRE5Naqik>^w3 zZyxX@0iX)toe-;`pMX9LP%V#-k04LzwJhb@A752f1+<;)yu5=t_dx@Tv+uos!O{oF z73c95aJogA30827;^wXgf!NH|fy#lHGiHC286x{QJsRSUGH zQ!Zc>0EsU+I2h*zqBN9*;@>2SPGI1}_wvoZr0Jy}KmG=+8JDFR=CgzX01=+AMF=>a znVxbAZo%hQgXLn~mKLo(nBz4@}_su?J5{hYwH z$bOHiqDdv}YN(}^5)~ysgP9few9*CazP`S`a1^YkngCN)O@IjNfBq)~Xmd8B$@K<} z-+C3FcXt9IYI_B^j^E$HLH{Bq4i586OZFAEuMnYIbI>gs6NAR`w?-|E2;=czhdAKn zfM$+g0=^elz-O5O_g^3pBOQU-=DNynf*Q<-&k0yS;gp;P4UbDj2jJEWv`}Sno1hLy zK@Qe&^Ro=zjHoo{DvSo{0@4MCUX9iOAPxa46nktak&>kfT(lOrDbBuKo_k=kmXz@h z!>DNo^q%2(l0X2O0k|vR++^qGVs5zq1B(D`N@R%v(0~&jBh_e1Zl}UrgYm{T)^&3(Ur8Ce%s!Gd%aOMmsfF%BG^PI4Vh~N2UKX7Um zaJHJxZ6(@vWpUUS-t1Y7KR=op8*&y6B`Hz>@nXA*6f1q6;|-HjLYSx2&0gq)dvctu z9gD|1i9q23ojd*H@e@zgX&sf2W?YFa4p6-O!0}EjafxfiC45P zF9HLokbP%LIuC@zjI5kg*If#lU=6I#5Z%@uM_WCBJR)cd+D#BE5%2ZIn%+1udyoh+SF<%ta>U;M`aJ#1|)H>BFpyL6rH z>(%AF&2%s5lG-noiNaL*#KC4)y`VU29^qu?VmCYy)D}v}QVP6C7G~yusXPx);LW-6 zGtP~Iy^(yH&ArGSq`)Dg!2Pj$0ONN|+$L?#B&4LMTAK&s{_M`@=Rpmel)$9e&K4L`AJY)pyi^C$9Y0C#;m zGf@tM!E`SGI+Py!sxu=a1MKs%+$&oQub5d_7%<1_=*;(IkI6nFnH;Jm*lVE#KuTHE zbB9Jpk+Pnip03m=vCN0>{Q3azr5T(3mdFHORTfm`@-Pm9cucWW6eh{>LOGT<;&%Xl zLS2(J1k2Q{KXE7lfps?C+Zx;mT*paC=YNE5!21Fm?*9N18mHIjy*q1)aL9^vrXZ76f+M;ke_C*%4-k807@i zegpz0t&Y-iv0s3o7n@aHZU^M>b9lbhUodVHSp;UwK;%DV9Wask#b`oW|uY3beEeLKpRnF;`n7OE5Sc~Q|$iGdkn0*V2Z{u z3VIBKMAh{<%N3K904vwd#wLQ*gOWcrlqixhH7RIQIk9{@C6518r)I2QHArW(9mOeV zhfVS}4tG%g6PyJdG;9RaP7No6Rg)VXK1L){Atvx+uR%^4W;#Li7C0_2hq#HrcwbNR z!*@m97(DNLE(P?hg>L0l1SnDs=!iF!WEnqNy}qgfyCfP43haHN>y(F}2?u49lBQ-Q zwsa?09YI}qL`7sPSls6~9G|dJGN=r0F6Ll>b;DYLF9tpROY9!t@{IvQ9u`&(gB!u)}5)7q>|CEUK#; zS9}YtE?u!XW2U-WMF834$k=OtO4^Gq^mVm&Jf+luSad1P2JInNF>XP;juyZ^fKs^9{|%79Aj$px{n3pPG-{}sQKNH_ z&_RRKlvEn#7| zDQ0t|-sm9T}&BV!TJYr2O_F$`|$e>1KWnaWxH zb@ub8u}dur-Z;`2-UvA2i55v6F8CrglNGioEOsVTgYG$4?KOz}&&{Q%GgBb26OnAm zHXj~bLCwWP zmea0}AHj`Qt?g}r(%@5$`ZXcte;*WxP!$8z(HPOMo}SDNyb`-FIA25?EDojNE*^kc z*K*d>Hl@L@M+D_UqpTt=pWjmUT`{piR^BKj#iTr_jlm`1n% zKn2^ORlQwXRp%|gtIH1EnPdijDF^;cdcspcxicY^@(4eVn=bCFFO!W1GjK69n(+Ue zwE`I_gXDNL)YTD)2A0T=6?8U5;(qou?#NzuEe& zM+(^@H*Rv*JzVU>@V#C`9IJ~Po*#^XvZ)+4?Sn9`E`pA4n6P<{sU>1LOuRy%gJnkI zRK5rwdtilZK}E@jg=3;Lhq{=QMaD{3BE>;5Q-no8T$*zTL(&InR-l7xP}yPKyVT;+ z(${ynd$LS$E%syfq7?#*6d_g>mN3d8d@6$dgt}jfq5zMCIleRV`8neHMYu6G{LA<_ zh7sbFQ>X~uM|Om9zz+5~w<0xOKoa*(@!pO|ue-oG9B)FT=c2WKImI&-(9;ltpO1XG z>W}Gsc6#bq+12%5n5FadK75uLjjOin5o?HNOQm}U{=tgY6*GNrL?^<$C81&SZS2^G z?lj~9%|VElrq+9oP?zS!YBJhN%Y}Jo6`B_uB{1nZnuhNI6aSY8>Z#X1s zV0eAhmYPx@#@h*NLN~^m(!)T6LRV)IQ z0P1&EUZT@Y3jsF-uJBAqd^@*FDqU+nXU?`bX2R|bR*y8!4og9U@2i!&J_*dfVDKql zS{9dX0~ZeQZx8FTE3|A%KwK^Os7(AGA3In?DopF#Em#|tfsfok{emRnZ}%`<`wZS$ z_yl9I#FtrM%`CPLE47!T!0^44~G!fWRL@@%gdQpPFmEWujAl`q1~Vqq*(2-E$hH9 zDZPDVoSW0oOf~r(@PtRJO*6OB*+L8-33Ys6a5wI3m67rGeL61 zg5GO-6*<|1*dMpIhV0iSj~Qw))ck6vBU&ZI$rUQx*)q_Z0i*jIenHduu$KCzBettu z@nOn0qt8ecZ}8ln*|ksIG7KBW3~1)D&btH5%Oc+y(gQpX9qw1d)a0hIrZZh&SsMEK1J|-NDA%_dhTgU=&ez;JVCGA1cuU}p(=%NXphxzDzM?XV2|w&z$2`EoFnn1nfQF(;!L*V<>4XSb52y8XHh}P+&~qe zY%i!>*5cZlm4ygPYfX`nV&zuRP@=?&N4YSpO?&k1c?_5~HOe@Dfrr8138_ED6x7Q6y%biGz1tbGZEF zi(WcA)1e>-DGepVyX>r1WJv~r?CEBnM0@Qy+V4uzbKEv%lhe~la(X>XVPgX(a1u#^ zZCUG6aGOeFJosx&={N5C0B!0&J>A`MI3=GuZ_0J=8pSC5GpSp=87sU{%d}6^^hbvm zT(CsF&ljooRqd6CGwKmst;7Tq&sXsj(}~20o{vNP)hy>wvsDw^UcMA%z1NEGh9fL} z;ZA;cbf;umX1{PvJ}J3NZbYJot>;Mca!Qixk|VCor^oz2fG~!GQZEfJVl2`gtrk^)0<&vi%O`RzMf7KTqkg~Wtitb9KtbH+_j(|dvn4_g`yL~CxBd(J#* z4c@n~fkW)zY{=@fpDUE>&y(MMGp@nVfn-FMcWotd5do9-89wFkl1_fH;|`3D_8Pd+UN2R9~+gkECB zNhRyjXOz`wQOwCb0`6vZ0EwIxL`1NNqiC#~)g=o0BxR`&9 z@Y)04jdjD@V+fZcrWzKOP9Hhy=mjj)SB4pnn_)`zNu+K^NhJR8s}_LVu>!7)ctjK z3MiEiy;4o^YTN&N;Oip9^+rH^=1So2aqqIe;iDdQcFvY?w^a`)vz6g9jGlkX7pARz z21;ve5KHQeyeWk@?9TWS8b|DM=jyKo<6F*a=52EJ-X3cvKGTb_->^QlO4MjdX^b*t zvpkcv39-Hkv8PJ1V4nx|DgcI5U|iF*DI$y*E_>0UgXsM zD7r@E);}pV(J#GR`$dZTAH%_M?OK)U7rl9<6*_CrT<* ztdHnVqyzBq7f1oi32)yT>~NG4{k)#yybZPt_}XlP<`%;Y?%n=H7Y`2|UzK~}3a=f7 z;5`wkJmt}wvV+zY#ITp>2AJTBlqJ;w9DJd}Ux{`v2Vc;UKm7mrmKN0ZL091ez`Xhv z|LFTazl+Z0wh$N0O$KsauK&;P2J;QGx{`aK%gcD7jg!8DuA1L&+UKe*O zP|QzD9p>hkl-PFzqPW%W4xfF$y4bNCJm6KKQ0!+DmMoL+1^v0#>)A?AN|MS+M=@!2 z3-QGzH?i(Ata%0P1>mCQ=F3+Rh17K7|2Z`#DDdP|B4a8vfS#jLpuwL(pVIr_K*!aP zlam9(3-`Z&{yaT(eU;=%oc%5>tp(7BUcdegY#2M8MSx)dK(3h%m3ftH75j`qe?W*jgz^OuefWUx@iFpZp)$41aKj+c+&fUcuZhxjwU>^;? z<}NPkP6Psg*pk9dq_uZl=XF4a&Z|X4pP!)tyyY>W4(Y`ePR;iQXsW%sT~~jER0MMC zzP~5zvY*P{0)Gw;DnF95a+z5!d4QhYv-#4P3sY_{FxmiIDj;Ysy$}6>MRx#7QGjDX z{o;-IA7x!#;soH}lruY$0e!PkyIci`N4q(PO~1kaf*kgKFz_vsqCIWhYfy#fYO6irB%C!x=T< zB~dHw7QNSq4B}i|iN4_tgURyX;P?x4BO*@IDIoe6DjBIJMkDONeV|w9v~4#0{Q~O1e`TEed>m(;sXR6t&D6?uy(Ryf0)`UHvon%+eV3e!fC#0sL0~y&+pB90>m|Q1u;gB zzV$pb;?{F0fcOimfYamCMa~ygk=H=^%qR*Cg`5Z*o}18{D&MF2sYQVjypo--?H;AI zwVcCDVqyWnQ^k**7y(ru4aRLXU{p>E;}^mE?3!OGh+im3BQUGaP2Yj~g}J(cLcp|% zzz0MPfS-|Fvq3EfFDzfy*+xhD^K&INHSDV}s2lV#fo(q*41dX(XP}6n(AZ|@0*6aw zKr0am^u_SNN|4L#0gMdvpf%a5sHlKafm^!;C!k2n$qj*?V8e*$Dui{y4bb&*j1VIW z`)AF8H6}ly8LUX44HQG-22Aq-6K|Z=RnZ3-;s3!q2*;xmvM|c4*aP z5kTtM8w*_f^`PtMP2Vvv2s=AE=F5Q{Gg!Rh!W6tQta_W31*Cb!mlNnVEGJv~9Q2dC zR=_#9B5~hq_t>HH9uD=xrY>@FrN0ssR>Rb)1dTaZpz0<@(wi%L8BBV9<1*_c9v68J zR@!{f;585UO-*DPFT4-6favYisuh8mn1J3~!UV$NhrsciM$VG5;cCnMFmz=@Tz-`* z&V;%}=PYLh`rrfww1m}hCjrZ@FEWbLoy&n*GKf4uNp*mLghZZdP&EM0n-1ZyUx~27 zEQ56}8|j&4fweP(4{&y5Mq0o+wdtJu4)pev68101L-fFFGTm{gdF$wu@gX~8cZ{Ib zx*=@L9jh2-5OKJPDLL;gJsQLuB7%r9lq;w}E7M2KZq&jQljirYL7X&EhIWa3P67DE z<6xQVE)VNhd3kZT+6B!~KMzxiL5-Q*^ZYn{KQ195 zIChyd^QuVJqRjJwNGIS!NQdk(!_Dx;Ry8_X2nwA38;3F^bMI1(&&spp0?&SUe9X4% z(p*Lc@s$<{(K$EOJQU{YK;|(7UDEh9lJTv(`YFsr7HM2!0LIY+%MRMd8L9ae&60FI z#=4CTE1*HdV8-(P*>C>oQguuzTKs6Nx#Yf5rp=`0blrsPKdClMfWIo@_v!);SUad% zIgAqo^@sr1g5eW9Cf0zu6pCCi2KIN($}nKuOJf4u8-p3>*h3tQj*N6K?dV{75kV5C zuDqLLwF~-kGG52C#!ZWNS@t6y!efBr3~OoEF=bGS(FqR^uQJ$Bx3KsQypPmhT1>w) z!Zj~q*oswue2S;rkkhN=*V$v+2YVAf?N$FhD2bF&(8U`jAYTVX9PPIur(Y!4+Jd2I z=Pn(Js8NIz85)YH>Dtjci#t|D85$JCsM_&*EYIwul-aFHT~W)uwNabdR0tgi^W^z9 zCVvHWzVY#S{dRV8h(hDQ^vmD9-}issgjlBcg2DNqehUQwZHgvvM;;zLv?Y3pcq)aV zC=fc0jP%=Vf_F%akFQ^S1DU6yqQbJMG=H3N4Dz`hDa&=S+r`DDgilP2gIHwPI*`JM zjW{-CXUB%_wEh+g#ll^T4FFq^Lb>>U$Js7l<3{q%$e~Hif)hcRZ zQoB{J>$$IAll0)26fEq{5V#Ur9K%zM>R~>YcdV2$#Cc+R(6y%Riy$;)iNwPWI>Wj%0V#Bk!ddpqyj@k!_C?*;fz0-oB{WPVi!G z2d#=<-e+q(lQJkT|4OGk0_WY@-$#w>^N)ZWCae)jFxPt(hxINWs=Tz$GL9OrtgLj$ z^KsVJf@q%(2mgrrTP0n3#3hA*Q4GC@pi^4;_>g$$d^M(WadC#z@@wZ2Eo3W2MB+@L zzTQ`1718p79o;K^B)mIBdT3AGqtr)o4rweReSALZk5zju^nRM)6aC=S6!w48JPPPl zay*880iPalP_59n&YrEOAhJnSuWWe9U%Lc$7AW@h4-t1`jLPZdcd+O;rM|YbFiebu z5@@R>-CuV}dCY~Ms-cOE%3^7eVC7IEk#!4^moQn&)-}DbvCJjzo7E!2jp4S$S;Xgs z&;||&iV`wZVpQ1K)7mnruqYZ*&yS21`FMGy|EE!^5IJzZU0)maLA8Lca%{%@GtM^x z^FaSIDTKFSGFFfv4;xX9zl?uU%-c-}`&+h~=T&qYIvFhNajaSu8m8simCrFm%VV=p z=3tw;dOE?yJS&WeDWvNh94MsDDmby+e@Jyq(l9YhZj*6~8rHA~FP4c=ccM1gdAhz} z^wDyIb58jE+qZZhn$smc#%8ZdIUrq|emrA~#6LI62Rsm7j@x6(F~@Qf!emHDND#|~ zN<7_@=)ZV{E5_z4Yu4;mp*hK<#`jyC?u!{`4e{Su=M)ywcvm-#6Mjvqc-aiG!Az~F zAiSq-A+Ty5FH%5c?vFjEpR&^0pcUOV_npHyoS%g)&@Ckf5zEI7&qxv@pbf zmbdD*FAHhkk1;5o`um#q58}JVDY*079e2&=6m=lgg-zT!$jM9ilEk!{f?eXa=rP0P za8M+yTQJU%h|@{eEW$dHc%RL$&h`hWiALKvBCDD0@#`lCXVLACshId%2^}4xj!0@( zSgr_(-;Q07QZYE$R+ik#0;NsU?B^&0n_0u+Q4Fz|+TJ!SCKhwl_vg)_S|0b$VH9=^ zq#%Y!@nFH;3m_!eFJ7LbT_WpJE_;h@oRdYn$Qq(iKoKF=jna_jcvhxy)V|x5WK(ED zBDva03$n$-2#Wg>WlXl)=G$y+Z0sgQ=!%WRtsMsMct(gj^KHo)LC(SD0C_1xQ4zCc zg-8+k!GAZ3_tMJ!aP(wxUaj`U?_k0J1aNh+8uO7389p$fHCuTn`A_&>P4Jq!;x|cE zE8*Y2r*UPl%dx||vX6^Z7E44~oH4-8CLWDq?1wK)i5K^g1vO*MF6dsK1nJrG%}2T2 zR%LE5ED~-tmdIaCM5ORqjEPK|IYi5_wMv_qm{gpsjJtf=ECO8qHy38Ecj1X8h0P>C z&XJ5ZDZfQkLk&DJ^-%w0N~hA>&!xbBko=mXs)|H*c5}mRuod02NBBKY+r};#sqT)f z*v@!5p-s9G#R>0R>6C$z|0MA*D%6YWVH4tvxTWLjCooL7&QgUp+z}IWC9mdAa`tDv zMqF9y3=9e~jQ|nI6Ge%K^_=B)gNibRFDG1Ynibo{Tjdo?Wz;bRiN&dQQ(bkK0KSJl z_z1siZGBz#Yz~Hu`b%!g1WHL#zK7uhOH*fc*O}WLLsxE&kxQh>@SuE)qn0KlL^pmNRjyVk6d#DP3cv`{1zPbX1*;->$70ufb7ozChaZ-fRk&g}<9HMC->~L2)ME zS#gv=tqM8FR@uPa<4qmU$Y$LXde+xWjf?<&nOEivI_1ATIyQwn?Xo$d5a{XY(PMWH zi`)~h@{y0okbC7XONxnwnOJ|M`stD|$d5(8)sOwV}_y z_W7DvN|MpZnwe2Eew|TDKyoUGNGrmBiH&*&$7&|wVMN^qQEX&sI2_)DxEIzXB|vQH zf&85`XqPG>_{|%cn%rEU2k>9g;?)6U-Qh?P}ON zQ>35Z!wgZ+=eB=O5zm5fbOrGl66!~uoGE^u|0+m}3V-Sqt2;j3f3$BQ4hB@oj;K6n zS14A+@`c+%0TIlRDT#wY`6%KxDt06~7woD~6yB|WK?cFh>P?pGIvSDfM%9AEI9;2x z%Od!&b*dr=ApHFK({IjeY|6fPQaADn_SWqqjKCQI6`k@*L1O!;g9{rMmoO4Jd(08@ z;-maaznR~2HrTOzD%*9s0^lfNi~Z9y$w3tB*HKP!F+J0v6e(tPsNWAM1FSY|%8dNe zsv`0w)c}|_gK6quyxVtYyVG;i$6XAZ&oRl@Kv zmG$J{Ef$tN+g!b-F`JK{y1REpqPW(&Kd9xo=R}2LDBMOp4HyN>U9J{>C1J>vsaPVZ zT$}SK3;*aWd&5^Z;Sj-^ykspUrM>t;RY1b<%FzyJ*^ zA={=W-s9~|Y5)tncsX;K(mM**=!1#8FW=(f&|(Z%p0D{}$iU3poD`vLmo2ql3q6Z@ zc^!QuEQGg9?D?l+a#qeUIGn^c?PcuI)|T|h5v|?q8v~KK@|c(ywdp-ieN4v50!IC* z&nz1bO}SeIsna}h%K;!&*4bK(z&W%kyxE+XD81{XJoGV5S$o|CJMZf) zBa@?QGE4;xE)$IDqMNe`7XrAXSKs`dep7%JDEh$z^5Ute+EI43BKK;IBap)=O=sC^ zOnKGil!T#mg)x$0jku)Qr5Q&-e$4aKq*!|`8?zi^xcldWf5?~igB&lerF>|Q#24CL z|H6lkA3xhRe*e5T&(h@Ss4AV!z|V?jp?0WY=3!?qu9iL5?EkQl9(jxPAN6<{W6rG^ z@#CpBe#PKR98?orjf;6=W!D)v2?LdY!4nQ4^VdNZ6r*34#tEO-M_B}V4~dtW z72k(3xLYNFdrY_TUH01+J)7D0?s3fIR2Ya3uibrT$ZB6Lmxa zqM1exzx<82+nRkuSth$3$rva<*wx|?KY4NVz!4LGs_10jYKB{Yi%BZtb}1B~dRD8( ze|B9B)oIrgaPusEvQv2mexg^Ro7q?u(qY%*X}8(PdVWoxN_0JK zTS+y$?}cO2kND=xIUO6?bUF9l-JiGQFR+J;A99NbU)k5{huRj0!?#84XHSD;8~LoY zl(eLORR4`@bW)`-+0rBZ>>_1{q&YF(fG}ERhq%VXxSU?wEOArOh{1cTcB_A7vUed= zkER6MSF;J6uyqzie6cK%ha&_V8BuzrVqAsdsbc)$^|bxq)Jna{b5}S|T!#Hyk>Tu_ z=hEfBlAx$@l`A^wq!K2^7`uJgtnZc4BSo^#GhZ}I?1{cP8dABDTL{LIrCR>`=N-GK zfqtf|dn9~vgbO6yp?ubn-$6cdNX}@L=8vX3G9sn0Yc~C4tDT_9M+D4d1i*!Imhb)Y zcQ;KHHUo#ViW=;MoF-^7nt4J}yJvLQ`C3Ux7gd}+~QI}RpkfXw^_G#){PkQn=1E?0?rno z0yS@Wj8bPUf{1nRs(l_p*j%ONyPli1lOZBa(-{2Fw@^{fEHhtr9-b#vJFZ^$Eg4;& zZ*>QM-M4N4{$4!)&HWL{039ebC+D|Sx=CE#NCzAp_r6dBP)7Y7;5|5RWW-b)cHhoQ zu$WE){HOul8=j8GzvClQ@Dg*-dAwAkM^f^$_wOgr#sL^acc7@_3UF1Z_DaOqjj|`j z+E&^?;QAkrDEw@qx`jwyZ?zgM8o8CBD`3M?xorDlz7DiNBv%PeK2`h$_oz?q6ycYlxyPd$($tE8e{;$zP9|)(`wnhIaSkFPVGtjL+ zxR(O?2*7px#I7#Wb??F!<9YvpkZlPFdZW?!S>`NIoBv^DjGhB+8cEdu>37>1hog)3 zF=j62-x7-$X=dR{t3?YpyZ+rQXxbu95-0TsfS6>KwMXgq z2JpXnA1_tOcHVlzRe3syUtXE|gU9Z^7@-12iDK*uPGxrVH~#}_S&M%~>&srV5+4U~ z{|f>?r%3Iy2uNLbpzOo~RD6KThqeHGnykt}pNU3w>L955UTn0W^?KPnO!^MIuK;h9 zpbvTk{s_#96XAUW7nGlW-pdc701jsU=5B8!i3;#K{XqrIvOl8LTZtPf9(j~cR3h%1 z@!{lSv|BRx-2Bg@WLx9*3GKl}0@}I}HoHC%Z{Pv5Q{`b-<()dTJnz(h? zRcaKR9|4_N5F3c3sb1B6r+g_3IiMN_Wc&f3>$}6dV12~5qWjqZ0ke4j^zie0i9D9G zMesHJjNIsn`ZJ)H0ni?omLk*xS=-$f62&qCR)s<0gnb7P#0HnKAoPIKtOWHR8g9%G z=<{5dDZl<9&j8A*`=BuJ$ESxMk6aw*$z>gco>dWIyD74Q8uBRCm&!7c>;l--0f)sj z`8ML`H9+O`?XU?-X*RG3UTWLoNI0E1^Id;A8X|%Qb%#jhWc&gXTZmhENq;$FyO7;$ z>pyr>FnuoHu3?nD`tjECYctrdl~db`rr*8z&Uz2XRCotwfeHTzM}M6z`%#d1rU0+U zVf96psVBz8=(z7C6+G71s0*;`(6Gt1z%0TfPZu^86oAt(pS1`qgUGz>nYO_aXZbB4 z^Znku26aRf0H##(8sNj&b{sE2yG;5x7`L+U9A}0d1N*O@$7u~lz6;6*VAlev;~#qV zr$1}_r#>!IH|G6gqeCS}vbRbr-XiEi9vVD|^PFvFMI{bN1k_ObkY`{vo_akL$Iu|o zFmQ6P{&@cp;7~YTRIz>S?))|Lp9ix_3xjqxnW=k!nR5D~?dQlOF#kl5weYo65s!zy zT`9RkkJTNZ#OSNR%o;EQv+27->uCZ{`LG!jxMpR$g0x-liX@~o9cx4WKG~Om4gmcT zKz3q6=>^ibABBNu+WKuQt_c9ZF~<`VNR^v!x(YeY(HT;ydmk;JaEnoTbNL*A;vN9# zLv#ie2W+$KN?4o>@JBH2a!hNx8A+t!{s~X~Jal&w4jJBVYCm9GU09(@0M~&JuyD}9D4o1O%he!Y36Cli1(1oM5EI|J5=i2!kE0dwA z>6FCn${FZr*a`y6{{`1`Q(mKmG>=dc0w=Q#%ylzX>SX&V7hvADF?5sUE?a|w8NwgL zMMqZ9OnvD}sUAswx*{;qFtle9J)-&EQRLbdx^M8knRgi>tv;l5u82khjPY3NMDUecjg9 zg&PfR!QUOTwgOO}nkoe9v9kxdkk%gN6=~^H-4_(}jJ0Z-zb`CkGgA`8u3?8`>FT0T zyr`LNC-exF=Q~~Fu{kZVH$BpO-TxO@ul~z1*iaGo)0Jky>B3{-7T()Kd}3dX+z$75 zY>4qb#TWUap;Gwx3N+^U4h~#|=yr^R8m;L01`D2l|NOPl8_zy=^3H<88y| zVw_IFp1??Ik{ffB+08+miBD#jAljXtPg<8QKIidIxR#oBS6PCd>KCjww#zc2nCKD zFue~m^CAX7qvO&`Ds9o230b>3l>|k^eEOOm+F!Sibe_Xt}E*0 z`NlXlKL~Yv2V0t(8P$Q*e@mFTN-sS>ej(YWr3DRKb(M_nJU27%T9UD@eyf&0Nl=c} zC3b3y!&)%(H$hR6I1HV3SV~$UU5S&#;-g!EI20{P(JuV0GecXUt-0CV{Yj%@U9?6R zOv#`W7Rx-vRTi9ZE&Kgd#-}8D_3$=&I$#ZnG3!(z%^VL>ziA8!ZW& zra(7z#q}P+*+LsmPGT&zg)Bw}3*oZ$<;#OZ$rJjTVUzO`$0n|GUzGu$#b@Bhx?=i* zb8W_mi(Ak^!RwVB8Nd-G_V~w#%Z_ITBc_QhGv-Zce~#xsClf3OgJS==oMt5$j%4{E zFYDIK0P!ewReUqRE$)B1!smJk5yTAuF83F+*VMp@bYxr^G80B*P=hzGbTwnUKPR`L z584fCn0trDMB)){FMJM;J5)l>x_)ZbHkX#=T~_vrM|UrT`aS&e${6fHUsA_CE&~O& zyRUQJv7A%rBhC>MhUqk6phF@j85tM$c@(FXp$bx?r?5s!y>d*^a&h~|ndCw6<{M-! zr?f-5ZFMvr!Kc+nbnx~(q-M(#`Xjpb#89o_UVI6LJ3;bCnbj#(;d zJVZzv^`hwhRqIXQ-%c;+%Y}$wCHE!aHo1^x(|o%H$U}N3aO4LUh~&4sAIKDS(P>rW zC`4l@Cuxx&SU*f01Hj*FSh2TzoIWL3n<5!GB`L7}34la44i5~u+sooT0_&6AAUJ6- zs%|x~>r_Av!G>vsYe<+a^4|!j%(Nwkgc&5g%cl96e=619-M?BJAL{ruuiNu2on9q4FGhCO_Hvzl9n8+-0B!!gfQa~^5X^t7Gu%-X3DFf=#8?x@B& zy+iSPHUGoDBQ$Js6BD334Q|@r{0Rv3s7w5v(%wzJ+hodwpxCaYFRY?L@0_DRwE$Ut z0B7GH}ZRr|%+Tt9%KGeb%;e08Bw zCTUL)oe9M%U@<7}`@@`N8vZl+rL1RT33 z@p%JpT(h&q{rM@~R+{?blmraRS9UdtwI~2#cx*xZ)fc}ZCQ>oS2RI_goTz^WN9|W+ z`W{7Km`TwV>e>*;3U5_0s4Y!Yzv$Z2p==%TTu}+SS;B5+-%@r&aSzzCY-;Lc zec0(es)4AFld32hl{iHfvHkau-p#3WnxY6S-r~UudqO{~I+EshpAV!OV`SSNnO_ss zEyjU~FS8 zy0uCzhn})s&B`lLV(P?r#L7+~#m%ll-g-R4Y%O2Q@+e3n&m0sBO#gcPf*Z$Hp~lPS>#bOUwoT%d_4Vq<3?`wl zUq#uv{rJ!4cqW41i|K#(@WB`qB^Pat{8($NEiWH_k2drXljlSn^nlfqB6+5n&!O6a>7*gA1v(|&_L53us-0Y?4OK!*LGHWT4 zPfLjfnmM;2m_ zXUx?+lm$jq$_C@PC7RgJG#b2gZ=C@zdZEMJ=fdO~m-vg`Y%LE={J&Rf<*4nbBAm0z z4CIQ{#A5&bHwu)rH;;aLYNbgk9NCpc~)p27>rNoa==x}0}NXD!58i7Z}2)b@I|-gH8ZD9HTb(@v;XH?uK!kbbp?V2 zCg}qM`1X4P>2X`Te?PA+!ETiE@8@-Yf;%`}o&WP_h5z@_3M5MvsM1u*QB%ak#1xXD zs~Z~|jxG(wu=;~Jl(=4!^Ty*e9bFeI&XD0cv~vJ6h>=lk}Y&7>iE=br}q|gw+b)C zhljMT5-z#@Io@ijsVv1-y?5*rHH+J>^F(}s z5fFxu2I=mQ?(P&xrKCYX8f0k@krqkW$De!l98~7bi+k_)yX#FFi&_7kIT!CrxQK-H zW*X0AXW}D?wj&PP9e;Em-XH#!{PS1jrU;Rj4Wz$5gGUfpDVyMJ4>$y_?ecv!q`v{G zMgYi7Y>l0zRWtJ)07vWyUI07Z&d$F8ntLRf%93aZi(I(beOI9YbdcXrhWLV4@eMe4 zKtD0yc#C!G4_pA{r3oCq03Hgk7Eg*kBrjQ1fXMBAIPH0%hJ&t5jGxJB^D_CKAjR5X z`pLuuA=uVN>+Kp=~0+ z`W{CCE8{o2;2`-Xb~Obuw19zc5LfTm@Xvl?Gz}*+tX(WC`nF-lfJ3NuU(=l7@>6=& z8MF7VhEEoL`x7ec^c?0t{_tR z(gDi{2B6KOOu8zqAr|lJ%l=`@VVg?hd>xkhs?pp7x65p6YXcS{UB@~soaqK5qabTX zX|d7m>jRs<&kgIn&sQaBR2ni;I>Ia@Q2G5y;?YX{vC-ZEP!&`Q zI8EAPUKSQ1mxUPMHvYFH^fexrwjx6o2oawH4%Ri9-M2ndVOy5NiGKlX0}#3d*U8_r zB}0~jnSsT)0(M}(#hflpIKR>$P&6&YdKmR-ge?>4HACd312-pqofwyInpg6d) zhnDf_;p$Kl$L#UtR<3v@_WmFF2w2Hf0@N?mjUcef*FHLT!~#N&Je@49(-%<7N*(_K zMghngbpIz1V8mRPfHuMruH0!r5cIhk>{3M845hrZt=cEv!C=E#D@dB9)CmifDAHfCzS@i_!Vl*I6*Tf^s;t%q@ zimeV~UR=A|%Hsk{j7n826J`Q5w^r1HwXc~^Ed#r!u<5@KL>N&yIhy?QSi(;!ABwZW zuv~#?&VXXr?e%kPU2aXKgdvP?y9&RQ4OgCpnU4IXFS^hDre;IdQBG`tI!B+Z1>S^101`Zoz1L)r9B)lgeg)53-{`XKa0muNd z!chPk-lL^NP226UuL4R}$v6=f<+ZJmQ*7YrSD2sQ~IU;u3!$ku_t=sIf3I9)-BS*F*+OVFP9Gpfiv~%|RLJ zlp^`DxK zlQDn5OX5@prXQYfsaiYSFv=CQfZx=J`CWoj3NnscM+xP3|iF9E_ziFK7T+_283#Ha?d%}a9#TSvTlAYa}_g_ z?u-Cd&>hPA5Fq~wVT(TSzA3>D)7#oX!lK*~m@FpdsWD`CCf@k95L51650rbDb3X(m z-$_`im>VGYf|7-NIq6ojG*hiWph^KR#E(c5SRgaqM7I=XTmJIa6YoeNv~##){2_uA zw0-aiCqQIHFZW~wQuCm;+~%4!3lgm&i@ug?P@CO2ZkG=4@nj2fJirfS(;LIEt{|#hRM_uyLj=TIVx%--6=o)xjBffK zca5`N_|$9TWIQ^~@ZmSe7RoHl23n1xl_Edb$Y879dWCs=(79gPq|(Z_V=&44|9kY4 z(dJ{0fb&ZA0_`Nqm~XiKu$TWmJ?Kjt-^so`J~j$mO@(ja)>s?Q6Z9+wU%~rTm~H1^ z#LP4S@h$0cGg{0y%^;P1p-3dcP9SP#|EJl^{TqzTf*(gHwT=6>5YQRFZ5TM8&@sUZ z<*oJiShp|Q0RDMtwP91C2Y|hpIt#pA)61-o=Y>;&>Q|MRmmt`e?$nk|-+rrCy9~9z zTd>0Py=hES21uL{)aiIs6;H%T%(`MPceSf?KF8WnI3y>?-JTOWr~ISbHEdCF4Q&g( zj`mpg*%R6{y|nNNGoG$a6%-B;9UBwvgNnX4@7SDC{&%`qg3^aP^^MK^l$@S&g%r4N%r6n^$bx=9KWOS}!#@o-}@l8eeknn$p0 zs<&*~VspSUr(qdv$?b+>{&DMruBs7uUN7mtVr(2EAB6HvAB%~5K%ra z(Jz415-bo^8T*92Je9+TL9OJIjZnRVo^(#jiW3>n3{RYNBE?`0p~{bd$UvwM`0KS5 zYQU_Fxc{}3=f8J!pTMa{CD&<~LLE*X{QR%)J=ip<3`ClAyKd(=Ac=z6LT-hjfX$V6 zC8nmLa+!b)ldAWv;1!Y3#rH2zxJOE1s8n_c&W{HI=}CIYyKwb#SS{Q4*BFZ&>`JT~ zXbg`}ijU!3k9Fi)hVES@pQm($4X|99U4hlmS;9;c5TmIsfGB1?;1S2W;-ljQ0{91% zt-uNqe$2pt$V-l)(_*u;$LSG%NcFDBV3TlWjm_K!_q-^$!R;@Y!+&&~4tF5$hhs3L z^QUadKf(2Z)3-Q}$9BZ%jXjnsK(Uz4{HESYrJUsk|05z1Fw^n`oIj)kLu)a*URlr4 zB#W1=51i1m^!ZGB$lMZJHdD0xKhrFJ@)8kGn=izCvTF4O<4xmaHM?!7$7({9qF!T( z*C^srZ39sL5~m#k_R(rm@o3&RA@%3D7wO2{LOvpY2^!IF7x~QrRvZE39wgl%RRP{;E z1T_XyZ~FagFO)cG2BR;*eSmSjx9Ok@#hOy6YR!DOpE}i?VaWSk`-haNYldLLZulM)gq64m)v)v3z<5QCnD>d% z^jSb#f6`AnQW%NzPilAiJ;$1SuGKWSyj*)r?iyT$w`-n#!kA+Fb>5F#v!)9bIR2^oIlv9?;TbNvJ z8zCJ1KdTtAY(`s0VvNoo82;x}YB(dzC{6>Woj6vjW9d|8UsYO1^(l2=8BIzdSr-xg zm}KYRe3oA8pZoU}vwBqi1Db>VH{pN+X?Coz*~WB7gao#iE*1z&5gdAJG5i*$t`zG7 zBaGDV^)~8kRR%mgmHJ{Rr|=*}po6a5hE>kT!V9d1q%;UcOq&O+EWWH2vl*~<3o?}1 zXi!u1>2ci|oTpGNbwgS5>%5gDPtdGSr5ZZ{Y1`Z+@TYI5j-^?V*>YS^h3jUNAGna4@n~8R(R#4$dX2>$ZStk9I z({DFh&VBs$)vo9}8WsU`tamK)^diD;NBopc_{fI$Z~lE*X$n}bZDmH?%3{%jrxC=V z#gWD)qhSs%v+Y+w!;zD#Y`MZ}Zb`7Jz?RF)ARL((;Ud?AC*TN+kw;agLmiN5$L7$> zzH=uMF*^$wx06Vq^Q%G@`diTRZ4>lNFRc-A8GOv16R>gDy5=se>cnsB(eTt}2a^3> zp=t&X(OxTgE#81kcfX*%JJ>G8epzDd@8}^<3YPgU?mIzZjwz_9mT}HgfM2*>u+K+u zUpGudqi5rM8g$AiPyJIct(E0o@et7W=p3lE-CqR9;`?3EiOlR(5}dV#$q%@T95S_3 zS;&82nhKTufr#IleAHb*3kL6Bn;QM2371?kMk<;k!h>ATlIn?7G&#eUZ6;3aTs(QX z(^AQX35mTD!b=n?8!+Rg9Tl1!oKeJIPonD_O=N|p7Jt=DL9Ts^0>dk1Xf{Ia(yl0I zBp9CkN(wKQHc^MB0>((Yti+>BE4~)y&pFjr@w-of`(WA{Gn7FWmL_wRRWZYjFX}ep z6YuWMFx&Ix7L0){vu)Nc7!G_LHE4F~1DIj(+gCcauqEV2sFhpX1jFx>tXHf){zNgm zGPv2pn+{b}SV%V36iL-wWe;U!XZacw9v%+1-n5XXzW=)4vH9XxlF=vj8n#duphIpo zB;9u+jO%^(5i`k;FI=v7!=2o@G&1yO#(JOl(~kAc-7|4S^bo7RGasAi*VLdcl9nyR z;wU4Ze~8wxlbrX0Cw;e^kj?KN-RtKqkWekUUcM&lA4k>?62`K^IsZZwzx{bR0U%{nN3DBHsU~DJ~_?=td)8$?}S3wky0Ul{I~7o;+;* ztpmoy1jNMDG#ySnA_C;ZBl7dNcr#SEC(B*rWRy<83+G2njGkU=Xd1A^hlI{3wrO=5 zPqrq!`tBFd4iwKSFzo}vzsi-E)tQ9Xz~5BFFnx0Up~GYs;viS4(&!bsORL+3;U@+< z!8{71>D!Uis~)*~i1po)*?Jn~XEK4QI~xUoX_6)g(_+IJK~~i!;pC;RmO7FSdgJ}- zBGO|5UFQ3Igri>a5PU;cD5mBB_J>SbY~2>Sa*50Iktr=m^~dlJp`k`tmyT-Wp@8C= z+uu;$gK3ZV??|z9&H=NS_^GjMK)@)xzZ+{UYg`Gd)p!xeXhVKTp$5~gs1Q=-G*<8i z5t<;3l(kN+9QvnY4Xgek3`OE^1O06TQ|_c7Uy>ZjMY{;?((WcV8_neqM!+LIA+gP4 zD6tqka&s784BU)tUPckp+a%Agv{%F!Ixw>R@-354BVyD6%@X$q;M8HmMG>RhTO6OT z@KIoQDBi$^3^1J7a_=?hy&C)E!8WeL(Os)RV>QSCIc=KUfup>Rr9tkcrY6`)#GZ<^ zON%Jhu)E(I$7_`NS?#~nEb@mzUJKa}=#-Pf#rcrWMte8lk-L>~n8UUh+k{>8V85Y` zW2H2ZAI3OUg?p4M99w*aCzMk2c&mjw^$Hj}Q09l2@vkU&3A*^)VmaC$b`aWN^<>6k zj3a2z!F5BqQ=D>db=dA&>Epw)J}bIs1$Oz%i#Y9o{b5{0?3ZZs>sI=A9qt7G;QSOj z-7~km9xCFcSqLx>|NdSl3Sx*(le&WrX_6Of3XdR_B7FI-ca36^u37V;54=xwBv_Jl z+DS&+5i4i2OLr;%!{?rv7eJYKaI~%Z1sgHQ;|5K)7QEe}`D3=I!)^A{K^i`jnYK3y z>KOss=)`f{RHmJcy-=8wWMDTeSoj@fa9Ki&RswC~PYp~V^O@s2%FCP~FXYT$rLuM> zon|_CXX~;iayQ9INh&pzns;~O6f7ZoubrIY>evIC91CF8?DT(i+2h2@q-J0qHyoHu znbnj~i@dGey4V5_Vf}cXJz$n`qauf#E{FvRYRkler=wWFO#<ruDFE&TjnKd z4d<5v8-BwVCW;XvMf_#q{mJhrhC?|cbO51SQQA3qIv}5hv2OhOLY;Z zD|gF5ux(oIEaCK!pK?+g?Hf?d^XiQC%V-UhZ`xJUyF~qG06>b zc!z|M%xF=zF>G*Mvcn$B>f1x=yp|JskogMgFQun9 zvKIP05%Q?puaZ<`GDWr#>Xcc;W);D-fZ4bQ2_ASw4*8j6Aeh17z0`GI%?zXZwpw$S zsc##Z=(pEL74F;E)ID{M3a{UDnWzegW{K#tG^dkMF*;6s>tfM%9QzG(NffULOAR-D z&w;;Z73!g|^iSc8g`PaI3eb5ribw2b$+AOo392r==}sfn?Bg&?kmwVikJTCfRO%72 z9C^WNuA*(25SZqAo zWVY9)mtDeLylnPGn=F3k#rc;K&j&&GlbRLztyOo{oA{+HUn+S7@axZU>0}{)EY&JH zuG}Ua-03VnlDkTHC05@_5Kc@sGJUYjYw=MxziZxtUI>o#eZ!gl%R$FrSfJ?hhZWIO zGBd^WG}CkPYi7abZM-h+)?`N-b}>>-ZV`kWnegp@8_6>#CA78vJIs6Q=Ov=-KE@N$I=YQqsiZ>>^tRgjY^UvuLu?5~6Jy=LE27}fX za}rUVhW~qhU9Li9{4Jhl1#(gdorS$>l7qf*Y6%|mB!(D2%fx|#;7?W+F_`UI!{^{MMjN|KC%7fK{@E7QBW+B%Yf z?+aq;9~tv&OFT{D7`Wn7FO}zH8Zaa?fXWYJq?d|;}%J-xnrc8B^YVH zsYsWZxso@L^VDf>6Dx!ERvv9X2&IJO(Zpn#(#aYMJqP}R-oWgv7Mm2}uJ;8EVx0*K zLp83idzqh^ZpvZO#L=2*LEUI3TANMItkW>teup4AHgzLYl;5)y7-adTTiPFQOX(+?}*784kM zb~i-Jdp1!T-Wa$&EwEANe*p>d9NX79uO_Z}G#jUk_K;zljzf?CTG9*v{4PL$xP$Di zzIgvX$11{yV|ROFK;baR0c3MYLevnQ2+LWl+zTeIJWof&#p?y~T#@yE#$`cI_X1VV zc~C-+aUFqh*5{J-aanyPPgjo?z6joR`pbePvBNNYSphsHciuBoUCpYe`ZLnyFp6tk z_Wf(sKElp?|2oenp0?n2y61QS9v*ifB7(E2$-L)A@ecBPbYui5U#)?69xH!<)(Keb zuInAYfj$hFgj5t1<}Ehz-uIa&`Gtj>;FaxidjpJXARW7{wby+4@_goh3HD)-*95sK zD_`H+{}euIsoso?j*36ttQVau`?!4ACq+DG9L09G%0@+%D-J`CcVv@=x0^`A7?hR| zEoFxxX*FD-#_njXf@RInY1fA$$S@DVz#HRM$`Ef?r{t$!P5#{rd}DHr%^Zu;`=0-4 z^DoKY-o{`5UJKg9YrP;lI5^b#fr~+G!dUkR?GXUEodED#p4*=$!zNG_^3%9>UjsTh z$bjGx5%~bq%OMc(rT+oZHIvg^6d=!6-~GT4v#CDlQfuAJDL)l^Uv%hwFaeR1Zbp#1 z{5vi5-^q_2AE3n!RyFgA>dN8hD4qdBA7rONxEjSd>?S@oW*d^0gYS_NL&9^Dt91?{ zp7e~2nB>C14-2oUslj7ZlQII=IHZ4@$z(#9$g#)(?4CT1JR!!1k<*i;tBb} zJ|N$5bII&7-bsDHb%;|0B>yXrx?8F<S{YK5ybq;U#4}eOe zprD+pC@bT90yz>px~~yc;NLb6@E2W8pYNT(Kmp*E1cMMjSl*mfnkmq0hS{U>l=zC4`1DhQaaI};On+?X+|`TF?P#|l&+`~$ff46|6X z{+OmwTC8%NYMxZ1ClFIr5aG)e0vOcgS3s&Q`8IU@7c?v59%6w~OW^LKhXp@gDE0uW z3*|4TMX%#9TtoFakkpeU|J@c%Q=FQ&+M&3pX=+*moIJ?vtHXe6=#nwe%>{2nw?RFz z;E#TxA~4o+NTt}7>X#s04;3JH9dW0IgLPjC0ADt+s~v)Z0`{%ef0ul94388bDi6dF znsD=kZ(|bY`6Nrw-yn5m-U+p?96>_ZAo6^~y@%)TlQbu4bLUMf?Q&X!DeDCUj zAs3E_(HPD4a|N7*ujf;EQkRIit)u``1U&QKf*tR3^EohrWkC?a7c?k)*%$=)-<;fC zPI4L68}aBRAu*%yj`S+KzdIbie))8>!PB^9{Uyon|Hp~@7PzY*JPSjGQyoF&SDC7B z4lKVX+0$IoTD_Vb4Dxkw4F+opU~(90ze$4Fsr>8g>sY2jZoBPHkd!W61JfC#dgemF z9_&SA0Fx2&NZ!W_Ke_tNrt?f=75Zw}1Ym0yiI{Q6DMdVn?|`SyvsOF_@-Cy6kjZTD z!&{>l&{uj~e~79JfdDu<=5fp27us)NilaTvlu@(r@#*h>bUmQaIy(;=X8Bs!=g|%l z(gzaX=v^ZigAnzpJRvTy>6jQz!nK3c;@Qi0aE&fmY;X{m>|9ku zGf*zxrBfnN-0 z@fQOdMQ*5=qojF+(4BA(44m+qPG27{#`A2v&R&647Rjs!DYSlV4F{%xjK*VJc#BTt z?~!n_Pi6pYG~kr216wr_MOQki5gb`^IUI`@Hwr~+Z&9bl1Eiar;UJ+jsu{(a z`b+(dU@)$MZGn@L(b?Hq%=Gklkmu&hA3wbv|kV z1SREZ5P)M;%f`loVU|#7Y|diV-pReC65dG^+O!g*O; z7qhT+m3O3B4#O0?VD8cO^KRJXlIs$m8fOG;wQkYLB?~i&12Rirt=v=DKEOY5>I#Y` zE_aWQ&+l2R&EIuE{}bt=)4ay`im7ZBBa}PCF@x3p3uJD|(VIg&=c+S#p79(8t4m4= zd=JMP!D*wSOI!>oiMs*wAkrj&C^Jktp{6fOxgcc=ju|qum)MYk#&t;+fgt(qN!z!< z$5O`&#!DI6T9a6iKh;zE7`qe<20H$9Dp2y+z|T5v_KIBd`GX?gzg%&~ZCm!cxMATQ zJgKQE)XSvkR?1);p+D?%zi?we3-us@+G27un-^h7YnpZbe$BY*vTPSf(ZEY>p{4B$ z@9f5Z096mi;CTWT0qCGj(6LSuF0ZKIh!v|;Dl%zz+@`uwE0QR1Sz1|%|&5qm#y`xL`JSGgLOMmlJ$RlvL zAHY@u!DmHrwK3AR7lDJH?w2X*XErWVhO}besqUdY0RLEaY2`rFqJR5!p&w$A4lgW& zO&VLFH{cXb+o(3kwO0@AHeHA~bPFN{+>t2d?=81zRO&gr3?Wr)3nSp5W8o>h zMEC;TkR(od3rp+ONqIhKEdb|GBXEjFnokAh&B)#=k|-Hmr!?VL3)Oh(0pH>$`NS|( zIzaB1;(QK$wi*MjBVzd!uA3PJaok7FKk092w>bZl$$f-tg&VXfJs8I|_NErXIr>7E ztTdm#20wkLNFXw7!!RM^!-Hb!%;RH?R46)%(m15cA8uu1H@BNh#-f9H%+9sQ+K7+G z(%*b>aiP&>NZ7c_W!x9y< z>{sMR6$LKvswkO?tjf1i$))1z)0j+ws3(z%>h3SI*0>q%3c_^GohILt9n#dwhB1fN zX@MmJXJV^=UUp`j>z)awJ4lna>r#Er8eBrZaRcj{3XSjgPB(fj5NWPaxgCdFnb%Il zuln`Rk?Du{s}dR%nI|k{-(Xi6*X+YkpGUx@+~m@VhzTOPw6n2?E9DLn3|DmxiKJMA zfI&C0=+6y^`sOd)2wZqp#JyC_&E{Eny*dMqjyLnOD*f2x1Ih(s8XN}-iBrC|r2kNL zStlU8;Ng-K>xdqMio`zT-;bBN{c4sXfe0prR*R%0?+LyaB~{mm7$MwdkW7;U_|Z>O z{q9EdzV`Fh$z-utz!bsRhN4GZA!F*oMu;P0%&$#?!6+q|mA`myl~q-*a!5eeCLF&> z)UbrVGARWuz|wmlP4q|&CJG;Xtcy_R6!{ve@-2%Z=%BaQ?> zYr#OC^yHfp9a3B`E-JwuULDE+(hHxoDQQHk~d_er9r{B-ROrcR)nBK=r_)#QB=H45{sv)gem?vA@Ys3w0BEb- zuG_Ss@X~3wzmlesXSNMBHL-RoTZMn+ro7VCkI2s;E*@fHf4@D5(4}}arY57h&uQE$ z$Gl;CYff^y{z=nCq!BvHaPSU?-MXXt5)DfwK#bUj{tJ2YuqEDbT#Uz;(~ONY4V$le zKJ1`vqpJ(9*39^DA7DOevYNL*I49v$kTDZNe$jjOH(0N{l;q4)N+7*^ z7e9dt+fUU2qg<~@z$c3^py{ckGFAiig2Eu3{ZT(QNk>rCCKypf>KFOVIwo_UD-n{f zkc=K>=s1XJL@Zc}+p>ckjAVJPYi$E%XQ!S)U=h=qbRX>^H5!}JNb)T^>-7IqD>L#c zX)7b!6oC_8SYW1kON^*l@;nqy3;B61g5kuj*^*BnZwi7#@8d6o9^X)0_hl?YjtJ=+ zw(_i8!k63_5X@j?JQoXT@@$bra>q_iDV{dRYk|KgE)w@FVQjS|6o z^fg_MF=jayKI1VopKTG+gp(HXrVE+D+3E$-V8X8W7a<-Vh@08*q(vNEao zt5;#{_;_CtG;g!*2=U%eXIL$0FT~5*R_)VjDy+?_(xlqs)`sU3V(&p3H|W$Xd&lN9>kb;hri)QOa%AvH{&qTOPQ1B6 z^8ovkdOfQs0Y(vB<{!qm`{nytPru{`P>T}UVKg@tRv8h_3JXhn?z_e#m#~#T6ReIZ ztUrmZpjw(0p}o`ZpdEHdZ4b_xTfIBJ6QKVye#_xQ3bhg4Xn(sdxC}G=7>PwoX8@iB zWW>Z!`%`@FIBsLgf$%X1?<;vqmu?o~m@`=8DL6%RI&Lw(m2inMSD=<*zcxH6{R!XG zvLq2=$lW)Z(2XKyBlK+nznP)v2nmKOsNx^L+atgjTE!@9vQi7SC!^dD@zb}0+$&1d zTnH1Yl7xMS=jr6n~mS9Q|koyy#HXjb5(?y5cCyo}=gLX%5;yp!Cek zV~3*ByK}EfgmHPrc>%a(>JF+(W~@$zlg`CDoMU<-a`M5R3JQ8t`3J@@UL?70xG;6H z`Nc(q)OMFvlac|Ly8}GNv`yT!YPwor%A;_Wv!Nr&ony4cRIN#)TInXjIq_egtn#U> zThbbTI+C-4pRW)<&v(i5WN{LlomW{Tt3y_;oo57=UKj!^GK(jS)$s$AJYs?S=KSDc!(CmS@C;2nP&WLEp_UEG)u_jV(~ zty6aI>vwZ%H11z)G<#Ze-sIx_9@18Jq6R{=Dl@H;7u2TxuL$-U{ZNPgSQ6uP?D{B7 zNRf5lH>a5armT&{^~0a z`m8O5M{Nf!*o!L=-@EiHfv!O*5sTydwQxkG)>zMgfSwc7A9?JFkrX9xf&Q|Ad&IlD z+Wf>5%_WZc04|za-fp#OKr(@3lJUhgr4$dUT)Lbdti;4zwVDwuEbop}bUDpvwpGIh zebtHU+;hDJ_jcDoKKYFDNT|013=+8+F(3Msd?=_UBZ#mgB2o4&lQbO{H&kPtwM_`c z5#W_|13I-ts{BZxZ5^`|7pF6m=Zdi%ua zBS>!X#6sd%{%u0$J12%Y4X9uJS^DZ?e*&e-^N7-*9J_Y#g92x zra^Wxet3&NnmOR%@Kdi>JEq3-hTF2A9)^)|4~p|CkH6K9okhjR)D&G#+Q|%ZZ7>Vo zI_aZ>Fz#Q_C%1z7>bs1^J!*XnA(v-&R`XaM2r;kjfmo+hLRj3>DmM}XZ`jr;9a zZX1EWM}z`S$3{SJC666q`|Adb8nnLbpxL_Vcm@D{ z_QG}r6Ze_>Mu@?p8S`vDPDuRljeg}>?Hi0H=DwIKJY~A)@w>6buX1ImCCP&>cH}PxSiI0S>2qT6ygjJC z_JqycTg8t5l!|9Cqr>-$s|A5|b-Y$W44zoJM#N~w0=52*i^vY;PpaQJ>ym+d3q@*( zf6ciA?0RtT3;m2k=;4Lk68B#P9t|t3L~8tu4Ik`2{sG99rsKUOR!CO`b#F1Z*4%e; zm+mQX)WUbC4j@aCfb<<*NB!hlEjv|VshgTKss;$fM9e;Mm2WwPIkU`&jMDUZXYWeo zBCuKYT;IR{Li(uo`_ssRBK6UK9XpcTl`^8wr`0-}?Fx$@FU?|Vz{ZN2W01<4aQ+FG zc9*v=CC4M%Tq+zsm&V3DvwkkI6mU4~T!C01JD^ zhr&Rc^kZBhdoGQejRiTE!)u4rx)p4YSQ}pqXfO9?VX)C};wx&~pPgcHR&D1K`Jji_ zYGlNirCV!gnPKrk)4OC~rU(Fw2@O0e>7}}Mj`!fZx;;M{@z)X?vx(a7KfQNt?`#z? zDHEuaC~i481rK6M@6(N%w|CZ#k1YC2q!@7Jzc@iNsIHuzb71=1&cvD}!umoMzvE<% zNbL{Zp@;E;Wg?_}_+-A-|CVkW=|n8=v#4?&zfUh#QWUY?E!{GeEgCK{mU{rm9LqBo zCyRUhQbCJHmfwDG9c^3hH8;mDX#PA}PBS3sP;hQnxJqz1P!ZFqq264@GJ1?(m5dHPe=8RoIf}v^k@&nr^+VQTlS+3po?X9ny+Zm8W z!92;U_x~QrQ&C>r17hN>cZ!Om_(J3)BwZjv4}?(Ad3S|1UFSOa1Y|;W_e&7K1Xq`Z z&CSil#XnECqT2V?{!#~>H9#4zuzZM1DmHU&>}#8&^~SC~K> zWO#R}3Kc&bkSlfMh0k7r;6Nd^aEP=Kr3*-Eh;mZW*lhMv6I%Eu*P$?E6!Nl6)<@~nv;a6N!v*Wt8ye2)>0NpTO9@mpQo5$6Z+vo`=agTJ@r_^C(?a9MN>3{VbTn7VHT99{oQJM`Eq)0vi zNffMBpQQjGb%Eb9-ax&$cNC@Y7>c1$XrFHfkVrPcc-k+ajKICR+mgiq;#Axn#)2bp zM@m8vY?^>Gi9Gs`nr4M~v#d~z9au+Kz-h^ibCgXXsmC;+H&Z{c(r#yRT5Hng^2f>p z*4_)x2LPz$b~RJ*l0Bq@+leJHxBHv!LSv+baE&+u4ND_tfI#6NHdapE|bb6

lirBInt~PT0+uH!SxUh4Kd5bBuT1f7RrZ+3MPAb~Q(#p6P$n2Z@CUX^ z86B9w_=D@@G?qehTnD@s?Z$fw&{qt!cdCGsmRsz{#`inR;1cnXa9>}hUW_ijbS+kb zuCD3t+jh#YoZSrhi8d4{vENE>pDsu!y^0rs;;Nd#d;xSt#$olWWn$)x`w?JanPEKx z@2hwjlq4Q?JCncrb(dF^m&g|0r_cpH`jQTC9D$I!6;R&;Zce%YmPMmbtR{HB?JWqf z5OJ7X1MdsaI9hZuSmDjvC5$Blff)trm;=FRC1~FD1#+ddGst?y{OI-b1l_eT#RKJl z0et`vukXQ3IYxrg(n={a@~AGDE`9(z$1_0yC75OfaT*}It389M?Xy}HPVt$FbMVo`CH)g(_gTgF`vyoXr|Niw|IXDO&#JWUD((# z`<-}){Nwv<@V`SU)>w&W?43Aj=|B+?SZGeO+kX-rx6WXOombI~Q4?O36<0CVzjprPnYqWvPj9$eUGO=r^N=0@5>dHiRRyf#f5wZJfAIuFJP->FlN4c z52ggom^j{i{nqF?VN5pW0~D*C>MBBE4sLU3tG`#-m(H1PN+~Jx>G8k{RN`OX1-(V` zuz!*8zq80r$V1)+rLV;iNvWy`GryA*+m8rgBg3O~Xl2kv+ZKL1$VOcS_J;z?vP-Wv zT2NSvl?ESMLSmbrZBur5G=T)Kb6$hPD+BT7Fjm}J-V#uuxIBoSXE#)pCTG#>K1vd+ zx`_*2cdd5vinX2sRaur<)VgS%cmq^(_K4cvHzrU8TOdRa&)C$E&GHQ6C{y*m#Ub`1a9KN7ybjP5`ZS1cwz2);S2` z6^jjrXsf}w&h^Jw!;r$hn?=)bf2cQZd(6zuy$AdPTIzc^Ji}gKGlej>w;re@N(0)x zwea%GJd(dI;^#a21z<{mb33WkeF8vflwJJ^Q0A%;JP%nv?- zc41^BxAQNINLHAXVk=W$Ie<5aD_kx`{T6gZZmM$i4Qo68==1`Z{C}fdD@EILVUj!r4SjGV!v!K==3Y3d26EDV}Alct3V=1w2?m4e@w%egkDU zq-1tvTgB$`oyfhQl4tw484qH{#;}wz6(hd0*yH2&?6h|)J$uKEY$$MK1+Kr3RJm$Z zcGN9LC})li%tN8b6sxf(z?zKCM7B#pe;wa^`3TB5KBn&AMg)R^{L;!y0{6zMHst)7`aWJ#&6#%*E3<1_yjMn&{PcGRtzB2`Oe19Z~Q zg&@(5H)5POPQ`{MH1o^Btb07z3>$Xz(OTzHXYYh*pUk#})!}2J_d`tKQ`Zr~nj%cY zD~l6I5^~H7e~*Kx4+Z~ zUxwg2)}ZnSht8FA-peWz6T(6ZSTwbbMiD09`(Z7h9G_$xO0W=05$AGfWpcIJL43kV zkmexpcc12UiRi)%8dopm%^U+EVo4NrKs^MW8r{?^qBWDa_ZaNm&7huBF6~cUR17Gj z(6PX{Ihq?PEyzG&-{LIeyusmZnZLFK1^CS!4VmbmH1hk9_~9AKd+zBb@^hk_ zzccHhjI)UciO)YcjqX!`wb~jMjT60*Zi3EZj@TnJui_zX_Zhn&SDxKTmOOD3StSKcxLO{t28X2Y|FrOAbZ0_nTPd}xrDUN_qehLBsehNdydG^J=vAm2= zJyw@XSC-$@Co=(^!N7f9=Z&*U$tOQKRvD49I8hlGi1o%fhVdkwAz z*04}yIHTf$hqEuqwbbPp6YxLaZ9Yo750K-wSIXfqKbO=Uhocx|2!2@jiwJ?S>FVk# zuuZ-k2s&Vwq0Y1fz0z+&L91ADH!B5V(fwo|`S-H;MlZ zBJckp8`3vuU3^?84B<&Z$9Cj~FzJ%v5L=4@Jf|{PZIl}eL9Su1*qZ-cf4Q0T2mAv!q z^3r4O8d@3_-6FeJmAJ#1#5|wCbk$`T9<+7#Dz8MSZ-6_8i(D*<+O9R;i;WQ8TtPG1 zk-QXTUdRvsc~U$_7IBs`O)DyZl=Iv|NJS~iz3jJp%oP#45p@kQm+Y8)sz>GH1r+T_ zp=p;SU)3F_&V&OCy&(Lr{47U)Klhv6Mck&cGPwP1mKvq2Ev=udqTrRGADdtA1btb4 ziA_u+$S!cSA=5)Wki*%wvY(C^fphz2-hq;hz*(7yP8zbt2OVUYWsiV=r^k zlELgTE34+6I{qyt<9+RQJKnsQv1BVpEKnneIz-cRimY~39n7x=FN%}`h@dRo|HT#&_ zpF7MZJ#yDeqD%kV^AeJG*7NcUjD0G2YiJWv{0d~`s1=Y#VYGX*JU8tF%mp15o=@S5V^M8eBK<8oL6K`dpDCjQ<-_1b zhV*!bunBiVA%>2X^$}!i-_*=KVH0d>4+xAZAsbl|8rZtt#M zLrc~dC%W+MN;2y=OE{ff4cRHh5$O-DE+G-N2K83tN58Ff9aly;PA=f9 z(b~IW@Y-3qKQNdu^<)0m4yOUCcoMU_BTXRz@83(R0d%o7CHmnxv~u9v=HNH%1m)ZK zCz+op+t_60p)Bx|re^TIewiPk`uIEM!ZOSK+QK|(qc$2)gv4_F>uT^A_^;C)ZqMYz zuJ?pr4>|wGU^>pLmII_=(y(dMe0J1!=@mF%@d&1;lhadg(wt#KuSm`j8aEVSngd-rQ{5hxsW+oi4ILh@xpieT`iA z-9_8eoAnx@EB zNF%+w@q@>`Ku&A{c)Qy#gGtx|k~rEax*V-SgRE!2C?2EiCUSe7S@Qz>&z1Tc`rT&< zf4%2T255Z_^T5Lr#aq`0RbBB73C{e+h8n9DEV>r;;{m7DU^HR%5;FsgKI5qe%N2Yi zbTu$+<4k9VFbnKf4G#$B}6z3KYoPs*&OBPY$MleVIgsW>tb-@x}Lx__c5 zvSkDcs{|v!9cMjZCRAP~P41gcueCc2H_Xh=eoe&UN~DFLl}!<1OG1`2YQ-5gUZ`N+ zkA#7|f6@qimqEN>;1WT8az_lP?Z^^|s4RNcFL%wfkPp5CxBQRh$oa}531i!oVa<~$ zfnyHTa3dcRT^KpUu#E;tu#jSHi0n$(U<4Ky7p*MICd7gri2Fy?GXjfS1j01>O;Jv1 zd9XQ+=t{LHmGS}H$$YPZ(q01j>kXiJjoRqb4!om`T=fh29$|r`h&G^{23IB`rnCy{ zo?PXJ>^3?5lYqOjJZlifbfUxyKtQ@Xl$Mh2ZYh!OZjde|q`SMj1f-+{MM44TZV*WYK_!(^_Rar& z&zC*U*?WID=gawxhi5q8S8J`g=Dg>1UqO*eA}Siv%4ER!qb}Z;B3?3#!-UpfR_cyB z8BVHsWI^oRT84R>5tCbrq{H=fN|Et}xZuAON`O?Y8KRJzt*zL?8Ia{rE=_ z*o1<2=Rq!_yZyM&t|Mn~0!sW5p-BJS#w#w$rvBIS_Re_fWOwYS&Kp*vS3b)mvt0=F zkw_k~Ahj}?{vgy`Ez!*q3f8>c*HEollps-UI^I{(KAY@yR&n(X))rGTK?lY zMS?3wMgY>RMW5Pd$Z-%T^Gxe&g-A$&3Adv+7p-5W#pP45g=)SHl-P zzBAlWw)m6U5r*AK`A}2UKAQC<5w3SWoVO2nKFUKu!?W?FBSc(-*Xe=xAnhgcN$x@t z4g2pf-85Up+O{@kvI-pX;)Rh&=Y9K=T6%g5eXDq)wcI>{ z?Ne#oalZ4W?QYUv*I)elv9~uhs*JlVyNWLSBCSzbrpwXZe(+j$?EAmIaoQHdG`jR! zf-Im{Mhq;v~@ zOS~u|Tgv%e;DYGBfbLg@m*(j7l`Uz9u5avu2eIRk&6LwDzT_1PhS2PV*EsB7t+h{M zLg{FU%M$2RHe<)Z@**OphBgFE#lj;_Y5b3mz`pE_laT6G6wGcm6u$fj4L{48nh4%} z=U-njbDrYlF8wVG)PHfGy_O;xG4pz}$H&M6O$kHbVKP72)d! zKHsL)^W%)9prTrR<7#GOvjf}xmyh!xg<25E+K{mg&?R`9ukollj)B2BAjmviT({h3 z*ziLgx8e^?!*}oMIN8`fJ~f<$BqV5J(R`|@sewt?pb^k@Fl1N)1%UreA~~-uz?UTF zd-bug80nWFB`7T|g(MI*OiWC(&ga~KD46k;_m;z{f`h)MqnGSBh6@Wv(PzMGJ6cs= z-}U^+5{Nyvov?8Sk-@Fk4A67IETE;em0H*XnGzfc>_3E~1LFA9+4(($eS)bIe8b0& zA6r>%fp7snb76MY>+2{vZ?5txgwuluP+tTlsequMARpi9pFb;e)6=1RFddnwtM{NL zdX1=3$zN%!%5e_>|3Kh)VPI7}R#XYl3z z1G}#W&ETqj@ILSLZfTtHq1_kEu*a$c;_t9VWfzn_WGzsG3;$YFlS9lwR zxntbwNIYzBXBV{t{qim_-T^JcHLvGaRe%30e0qf{e`o~3mjFMY31}S6&FOT!1|$b= z(zCr87>dFznIiPp6Z|j37|=p#0zQhg5`bsf6TwFfSujFCe?iKs9bL5h8GJrJe)wRI z1#$povktH>OJ!8?c&Oh93w|PXoUv}baZXA&2gJ;Zi3I@lWVe{-9ekG-S8$tAny48Q?s2Ea2%xS@f4Ezbw| z@+WN1DY0W_1_lO3MwDLp`(|AML%^9n`|v6sClxN-A@=_4Fx((O$1RD3?j?9M-HQKu z%@2=`Nz&HBAs6U8nUeFw*8f^OmFb~X&T;2f3 zT9}$a8V`Ac5>8l9(4*>%52vP>ac^_DEJ7i%uA!m9Pla++r#Vddd%XQkmB056%ZHk^ zomh1b`4k5(ZnY5u$fX^yPg`DE`de)dXC6(mSETiLp(JG$q&X$BF#+c0 zG)Uin{7AsaV{L^qko*d-t_91`fs4%kj&p)_i4ENiP){yDL384S_h|wqyput+eFZ#| zMqi;t6AxK>3%Z$rmD6y4_j;TETYgYJS{EafhIudw`aXccHnp~nIhcj7M*QbRk;*aC z+8DO~c?w#njT{>a9Aqy~X$HJ+s5$wRGTS3(gaWm!nZ(=CVk*a0M>VA^jTc@-XUKAU z6q)#SM9A=xk^iT6csj2ji5Lf=QzpL7 znWO8g+A5Ky`-MC|jO;6C;~cpJi=ae<{x{rS8Ll9MIXpY7gL`Ox;8B9Wa}as9IPv112!fNt?<@)ytG*0eG z2F9~saXrYXTV&52A_u_BpHK4pD_-Tj^G1(P~X9tN6!RH z7{tbCZb4B4XX`@|%)^xt96kgD1XYV88El_I=I*&8LzMA7YU;5iRaMpUY719S)y602 zFMyi}P2F@>o#C%RD|EGR=!ws6dolIvpF!{C2^NsFPhL;N3kie%aareW7&Lj0(~V0! zIRBKRkZkVm+B@c?_0Q%@n_6gA9DpI<2P0*adMx!VNP$nntt6HRn^Mjg9ZG;U`qV!? zi{4NNU#FAzTfDC}GG5$s{`~f~^qYOKT%$w4n-DfH1a&<{McKW{8W+@WV|fb$RYc5F z+1yr&EQU7q2H~fp)E6q{?{e9KPX54?<1(@c#a$d|xK7Qm_*r5M9bPtA- zodAB)E%gE9RLU%x+hsZQ}q|j`CG}b_aV|%yHx82dgmj5s zcap(_oIGY$Gn_tswn)4GT!Be$m_^ya3M9GnCqyEqv ztR=k|@Blso^DGpt@)(;YnURk@ijQOIg)RG{p>Po6+5Gh@$p$$NWs`QCki@d0KaF4W zd85yJ(6M3quh=FTHS)f^8~G&26JcZnL##j~gk276$icb; zq?l#Hj(`^hldzg20HD_rL!e!THutAq_R0pU3}tg?+)guBL`{^Dbv` zIgm&mJ*d*;CVFDOmoWKQRaJk>CzIW*ON?ya(esr@1`RK%Xau#ym7YGhAZHZucX_7q zz^E+i6ip5T)R>Bb!m`d!-M^lxr&C(>dz6F*8Nv1<6i&YMNigrLXRfCEAqBIRVO=nG z#!xoT#bdGJ`n*-d&Ie}kfc$jM9uodycaS8BN|$zn=d^oUnJ~46fx(bjuO!$?PltGU z9VKaH2cY2Z|e(FL`@#jp3Ou>;z#{8P;~D zklMGBE;>5WxF+n(-3-`&I!LU;vXeXww=B8L+&ljD=Zm(FzC>XPOF@4xy`$Qfqx)EmBR|n+Ka}u0tvW||LWcI|8s)w@ zh1};R8_a7v+5$IVP@1E-QiGMqhcCB|Dl*nlBwJr$PD3aof6RP%4qT@7wgg~Nd5|)O zad!5}jS6{wjeiH02q=pdEIU1hX2{r79U{`>QVi;WZ}COx&B853Rr<(78C~v61en*9 z#QPqU^YuOWAhCzA=P@?+B`#`flowe^{0EIQ$o zW_C{Pw*rZwq2Y78hG=o$d}!jN%(R$iAr=>iwoN{ZaDg%=8jybTDrY>@fWnShfdW!beRVrsJX{o zcBZOKDkL3*p5AzpxTgO4^XJd!aR^oq=KgFM=kU%Lvr6Zd(}+h*!aTk(IawTJ@T!sf z9S@;r#f~Xm_$9W5FQ>YpDoJ*Y;`J;MAJ*x5Qy;g!Y4ly4mk7_5@pF9UUhXA1GaE5j z#I2R+*gGZE%G8#hwwFDkipF4R+4__unt+ge8vUf22>G{NCc^|x#^m3C?0nyU0hPRZ znrEzd9ORow<%63rQ}J~>sO0TR2ghgkgrYFvPddJSKTBVV9L87fry#YiLK$j#SXHJX z?{wy`{eEp0r{@br@SO_U>`cG|ETMkgQ?~n{?~%eic?D=t@5&^{xn-T_Y3oVJt1fzb z-x9WJn}q5SDeQO*b4z57b~d2~#NJkgGQw#62U6M$C_mXFJ^VUey<$5$8ZZOgf<6q0 zes`0X2Cz7I$?kS6qxXdDgbtBKr^gXIVMU@j`K-84mD!BPZgszkZn>hnyeYW7V9ORm z(=2*1MktufkbA0U5fFf~MpZoXyMsO0s~Dw^pYUuRf|Dxu#CC-962fXgX{SDM=@I9j zAImVS!-hYk6Cdk%-9U{I|6bf{0S3M!+TLR`(^xK1V$}P-KjP4Mdpg5t7Gr+3ubV9l z8e> zZL-TgYrCp7(5KI&?ykU>xuHz`$bv%6b1*$gCBn0Bq_pKJ%QWKY8WazmkduOdl%_bOI1IJt zEzE(*GT+H6?HN;tQWNnM^t@T1)58?S<}3sZ23V$+bkw0tX2bu!Nx^O0&nw=+V|s^= zxGIj9)$h*4V{ujzz3;}J6&MXQHJYy~N}uu>ZnJexTjnA?Ex$riUqe9LwtSrhzAlv} z(y{Yl8i$iS342m+?&!#_!h#bLDcce(F-QHp&&SM-PP2H(JK=pY$#cUZ7W57pPOj1s zzICuMZ>%X}c5A2LA6FDlRJdb+d;;UbqWGTR!sKB)nXk0dyofVw<_|be3ab0mt!$+= zlQAsmpN5j_+9lXCcu|l)l`8M+eV`y!HkdnxD#fhqYK5JSsJZLQtG4-dCM4JkI(h1s zfKHH*ed&=XNU9r+ftb!-L9_{*I1|!(zEEG>Paf$)m`>&-iSj3XYKR;3&-!A?)j!9t zF9Hp2i>WKBtKy#BhCxiT#x`~&8uvFqA>w4K#zLA{mdW~r`@;N^X}lT;APke2U6D!* zdA5Djq)iB8ob3)FMoU!4wFgBNav^LBQ5HH6UBg4(dwYAc$oMCSDW^N<+u+(QjT$81 z6DO(vWVYE*=-ey)K_0DI=|d!TXr(z7qZb6RXLite@Bfx+Da-$8o9&wLgqA=mlEtHZ z&pOjBxf>yWQEOUF-5bbS(ugc#+jKmo+wTmC2`l>xDk&CAOiAH^TJn|mJ^8O z`XY}zB0A<>Bi}JhWR?EbN7pcOYJg&xE1N@WRBC|a;q}f4>F08zqgsv`OmK6k$HS%# zC05hIY8xy=ie{cO{-7ov`0v_a!BeY>dJZ=DyzA~?bB=QgjjM%(>whEI(kwsmM0A@R z3^uXYSEj?mxl;QOqMU&nknR$URzsMET!(r$6#+ZMF(AOYfsL=p2Nlzrfm-EvndIlY zmB~$ekzNh;^#YlWQoq0rr9O)rP1;5D5b*=_+A3FQ9~K9{f1BD%VW6e8j5kE_Im(X= zcdc&99t+LRVFePbm2UysOB|!A_h@t&($DhHqV=QR;ivCOmy?L0&wbFOAZuHfW_w+u zp^@IV0Vr=6f7iq?skwf<|knW-y^aqtPbf#BEU&ic9l`WqQ4h_?}@3t z4XhdVN~!Q@P8U+VQ|nZ0y&7gj3*0)oPOdL1^&tk@j9#f#;fr?!3`Xu5Cj~jQh3ERx zRZ>tBoa9fqM^(xGiR9$@#A4EFQSk@7$U}Z_I*`-hDV0~t&>_7TFBBK0^nLl^qh%?p zWxQaZA3f7|gV5QSW!?9+#837V(p9}9WSPkqH1fue2=NEKpFI=2dcpc!wmyreifdNW z_@j_1fuiyG?;n)i+u|GE1&RY|ggG+P@onozu)}Rc{BfC6_V1{%H~PW)&bqm2OtQ^2 zqg>ab3&D1QySMI9x$Ob5+q+%FA(Yi2A<-#3sILG^zfW}uK{AKrwjdy#qZsP}8J1VB$(Nk$Om>4(PkK_5Saqim1p9>qzHj#r7JM7CtSIjus(z=@%0#P^ z%T+9mreG-1v{H&sm$u3wyUHZPp|=Z9(R@r{Kxe>INug51VmW;LD2~ywiUB`CBdRRt z53k9|+DT{kmpyG)--%Zz#zEI#FFsFro2|T%T=?UEgjDFIR>tU4mvBeu3zO*Pk?_;t z^9Ku1zVe+8q0FD4L^#KE_R)yxPgIw~GVqlbS-*27@hJ2`I3mKH-UnVIi#GP%oRAEO zlWhJLB9m7DG(j)t(G)F@*;P$UAPoiZ0R^9ncf6VSmW4u`m8J7uh16D>LcxY`7_lvQi zUUIax9gyBhiN0bH^SwZ}-j)ld*<>h#>_d+_bueCmn31#f(pWq2!VgB^>JYPU%%>H7l+_-wm8ccbEdixyPE@KO6Gj|6=a9zfc^7 zAPAWP4yg2Jz6zfd_X{7Vd}T7hOubYn?Pk<+;EVo8rC`~=a!U14O(^zEYG{*2_Mu|n zu!!&JXy{Ms`Wa*LZ~>HG!t+`r_)3?Q4cAO+g*wr1@V6_+2nOop%!gEBSud2Ead*`5 z+zx~M>%wZZ8DHFEzEf#mw}@vvmVnWjgS%GXgSky8uz?)%!UwmHm$-&Fadq<0u zYjyU1hoo7Pi*<`QCD#;!xdP4@VeO3{62Cf>5#9|o-ak1aId$tpdohqgb$Q9)5n81$ z=c>urkLsl+`h$<#QxKrE6oeVrPrpn%YqadgKt`>RK@OTj{!Bp7hLDB01Rz*1Azet) zkV#_ikyjvUtL0vEk|lS=+=>czSr492gcn-aU5jFk@t z3p72ALrz#>!}c=qel_UGw~es)=McL>gxJ-mqhV2tfYKD#ba03~F^NZeYJ9juFok5_ zTdY7cu@;^7)S}k(y&((8U_!8HGHs1$c3%-$>r0I?{A8CyVW!Uip`0KIS>M=}bRNUe z&HxI|FZIe1;k>m_SFJ98ubz$h(wqyqRt{K2P3_EABkLtYr+55nj>?ou!s)&f-l8ADNK;LdG zH8^q>p&2*BrFvF{q;lq!GHKkFQnbN!jee?!atF=9!<{@GHTjWctXY+nv_SYxfm6?t zp2jp%H{$9_w)r%RVhzoQ^SravdBSKSsz<$M8Wko+rBX(3^9@=JZ-if1zn4qic-ziy z@V7=O$g(S71MPI!hDVHb;QhBqIAgvhsZ2d=3YQ%bMukzVR8~eQYmNaKs z-`XyD4n-PP_bojJD{W}52IJ=2{Bo?wj4Nuku)eTsJD(HMcCnIOv|;!(TtLVDvwyB` zU?oq5<6SoNnNKgi6>&a%Soc$^%}BK&N$hwKhQ)0H2>o{srk$M~NQe>E{kg2kPy7Wx z59PW8gVW%xQL8OS$E-d}cK<(VIwz?M5S2jRumNDbIchbIoA=iK{$oVZx*8f9&^{;- zMTgu9mPU_Pyi8+gWq@T~@a00p@%C{LGe0?7?+nNwft)B6cf&N%EH?WL|ian`h|m<(}&-A^Y6<4XNMhhR3StXc2dz+PQa)F@3;YOA6>By zNFV3WQ5@@29`k`;Kgf5J0c1eRXfC?#eQ6G-QQHB8``+fU{aLh1dRU#2m314qY-3{s ztA#6|Lls;^FPn8{RRV`*tF?d?;01xhuHIR6llLL81LOuPzz43S_Ge>dh4*=vnwlz$ zBiuK7YmYMze*u<3;Ty*6x?#vx^j&d&->51}EWHMGkrZMBB##GyKV2K7 zfIMplY6vv#^u&K<`M(85BF=f}kdY?O#@Arl!Ij=<%`yhvA6W!!vI{Cq{#EJwxFGTx*9cl15&7Orq`|-zNMXLE#zx}!_Q$H4}S-nT` zWEKNcfsg=y2xs=rW2?A-xbgPj{`G!s83x)n7_umRWUYMPpm7BdI2DF53`nLvu!FjQ zvxIDI%lJ;!2Z$;tRO{<-St8@re?dwiG6^>VMI1;`yt#WmLE;zMDfEtI5pES2KS8a; zPaA3?H3MiM#5SSmc7cTM_98(jyC8I@fd7Sg7KSTv+evu}Mur_=};nQ@qzF%;o0FUKXLI@2X3$%5JW7W7D1LCiq@GCfmrE@Thi@Bere&22A z7Z`*+2ZdJ>IWOu!HC8h-qC_zd2;RnlhH#s#Z1GW444Ez35v=vLlo_ygh>4H!9u-S8 zNh#u?i$q7Ml51O&ha5l-+5Lws64HVF-C$45cPA9{3S^1EQ`$fwHKrMdx~sr@-r)Oh z$u2#(7e_c)xR+<8YOzwzz^~51h384HC>gTI!?ovI33mDJ3IONcegn^O;ZNE+8XAb7 zi{ppX{=nX&GiO$;-QpuE;S#79dMMg0en7UTU_KJ&x_xd~8&J}1mwHgbMoS>Uxd&Q( zzu_nq%$OP|2zPp}o$lH&LB*dGHpo!;x*72>7w;I?T<`Bsjg-7 ze{dCY7r0L#vjy}%o}X(O8YNux=q_NB5pG=WddVa71X5KZ*|fB@+;?CFOkgu`f>i>& zO|QYU|5!|3bCHmx?BQk&OC(nGUGx{wD*hCVrGmjv!I9s3fT3*Qu6`sUE=wE`-8kK*H3|#N|wK% zStjJlMIE?ZzHu%-^C~ycKqlHyp86T%FS`IzV&Vw4l-xIO{=nElw=Y-ej6s6#MwIGn z1Wvc*88XttnkUN2bb7EirTjxnRC*u#`P{81OGokn_z#B*0#cowoD8}|#kGwBU>Rwt zt4j&>7j82(e`6Q}djxukE#;OG%EF(E)?nOetE9Bs?M|EY-Veu|Ur;v?5$*D9pB_x;dky8N70Fkb;%uBTZXs^ZsZx19nA-VEAhvBKJJ$g2M}A-* z_4G*1CXJD^GBewQLbx3g9Mj}9Y#$)-&|}0UCVmx~f~gp+;m9;7s&}@xp|nenfLOF- z@uSnz)1xEWX-m(ay#CeH#zDK2w08c-6^QlaV?g?>N~7xzgapeCX+~%{2m~dbo_ZNi z2yZ~6b@k8j@p7kcb6(yG5G2$+fhLtxbs1tncnr7=?*iQF+t;s~nA+1o&mftDusS&#T6reR@;>4m9%a2yX8j^<{)_fCtV?>7Hx9~!i_RX_Q`#`wcI8Fs~{ zy0KCM~y{%raOm5*0{42e4dvSQuCHM43P3BmJx7_WI8f= z5ILc8|Dk3St|?{2R<$ZT{>;a=ut;PT$)E68JW)p|lBXy!cdX1~e{672QB95M`E)$} zEuRY7@v(#>^R}1A5%kC%a7Y=?>kdeAKD)7pmk0?Q4pk$>XrV5pm0`Yr?l`|2UBSm2 zmM0n@@>?B^_FuTjzOqJ#c}r(!Czt{xb0~QN+D>zCv-Qg|Mhb{Imp^}gF0=4`1@5>pu|H&b`SV4@y zD^*Tmi@=kK#-P)~pbf{HAIy+JqYdZxsKAp!vq*p&9#2M}{(t^c>AaPx7tmVgOrooN z54Se5ZlB>OUQtmo?o;y)Pva!{Kkpe!^FP1vfAOCG-~LHs=3+$6!NCDofbD!mGSSL% z^+cs4$vHW`kZ=e!G8nV8!=x~0l8D!e-Juz+92N8mma^nuHHt>@Hz(ho3_NR-EmeK| zxOK@1q;atK8qSc>7J<{0f%$dQ6SjpZDJg}8g*x2w?(Rpx)}o`M1Im{><4wP+AKahd zu6}-X1-w%2{&JaFn{8!UR#Ji;AWs6j#?6L!M;SidFEH>Qz%cRTw_R#j9brGpU3U8k ziN-8)JIByT0lp5nDn9r1)hS@Rm`I3=GXlqlDFRUlnoMon+u9-oDoz1wu6DFY99+2> z$s4o)5)zVSr#4v5JPiyDFM*--^SQtOo2LsnM^nM0(Rt6ezkdDt?b|n}mj~*=h!peK z9t3pv-1O&^s|9neg+A&xe_*w=8>Bc5vJY|t6Y8gJGR8P___-?#8@DFRxSNRD+FDRs zf|sedkPw+Kwb=7RK&}I%v)UT~%+mLOC{D82JUBZ*hEVI?bpY~KS65d_NeS^3Ng4?; z@sH2%{s15Xo$_l~XiQDlfTQhR;r&d6gowy#wVfO6sTU~1@iO3u967H2+%wa}BM`e@ zDNh z{(k6#O2WEQ-5mPQ@)}w-cGlKl!yeoVe5@EYqgKbWhWhQ>)HTrRI?q;3-E_Lq%E>3Q z$&W>t{Q?G#lfcS<(P^*${=HEr$7%;UEl_pC!^4ZYIDiG(@uX*4lwcK>3z+_a26!JI zA0KFcE+Wg@+uM)^OUKPU)!$#SSRZ=1T&g!SQwzd=E`~vj&Q8?2F;NyV&dW# zK_%EHrOohtJa{#UkGRCeUjU`Iy(u)!at$cR@l?X83?qzMcTrHt9~pi0Vlb0{{gpb$ z1_lht4$WD)^UtvN@qxmco0}VS@AMi3s2w*^M;O0GizI_av$>&8=lk6oe~zZYBk?So z)ZZfr=wm<*DA&BaiYODM+R?W(hWR+?87W6VMJ|40;ypp_Fborkd zD&Hp~2Kh&M61Lkg$WNazO=}xf+b5_BW~J9p>+U}b{Iy3eDq2uB6XR{0G_jxbOYG|4 zBtT-~*~+gjKf+@)EiCrEogEuTM+_}yHnyOb%*1{s`>hU_@c72Q20l z6#)VNFI;mRu>k^PZnVLSa51E~ql@d+)z!wvMwl+YfBz2lJ%91^=*l4I*aLL&WRkwe z48TPNf>=_F6wTr9-_Sd6E-buf3T=d|%S$>}W!ES+d|d9mpFbtszWDn2mEPI`MaWnv zDh@)u2k8o^P529;p`mb+WaLN8v##RCH?lk ze;*zlr4se2jfg<8+=3EeN?u2Y7}Lw!I|`dJGLc>(o{NjCXKrAiGO3{7(j9#Bb8?nI znvXAeclrow+2qeqgHcmcAEkcU0-l8L^XKMQQnP0I`q?QdFv`{H8PIZM>KV3)0=)76 z;(c+8&_&JOx~v{3L`nb7YddcFBXB?BJtMhF4^p|z-Me?Ie!EVbeA2sAZAu8@_?MNQ zksn zyf9J*_b1ZdMMo`Z^7hh3$`=BjrdDXT>4~T*lOFJX`R3FPRQ$E+X@Yv~le#^ zFBYfwE0U&OR-YzdB8S2X3k9GDqx2w=2O}*foR7KL*>y_HYFIO%$z)YrTRW=FV?CIh zn23WD73Ry&&(E%|srliyC(k`OGxOBd^;6H>T*k;wQ|KZGN!)8wIIRnyMDq4NgL&27 z(ed}`DKjgprL>*h1HSO4_Dx1!CS?mu)Y^9~d(Xwz0N>Ha9BsT@9M3FaVl5*=CBSX^ zk==Z1Jf-BR#TIJi0IVyS{iMWG}KsW5EHt*fPeHMl!gSG zlT>o;V)4S$Lbtf?^shgZl$2z87axyh3{T?5?Ul}j8NZgMB|9g_KwBG`(L(fed2zAo zKdO_XuVa+X&Oag}QQ;CtqyMrLA05Pss8r`251y|j8URxzQe#OkX=?I+?FMPah=_ z787&PG64Mi_wQe7qY_>?JB=Q}jfJ6+5hyhBa&wDmpJOu>K&EJ1+{l}G6@twkBgMP2 z(Fd?Q13W;kCEfHR5=&gH5IWVTdA8F_3f|O=WO|~DEZ;QY+-efbeguCMBrqEAfj~K* zzs*UJG|@pw9jWK8cc!E`2)MZkhpI@w)9V=;7`S&B?{OTkSmkP+*Ng`y(z-LISrz$4 zGzdH@fX!@vetvN=jZYY|^dK4xjBDmYK1K!xAyHA;tfoxTGzU{tQ+IcFDJg`GR2pjx z_<)SwKlk@)ySf5rt29!xbaZr_ot@!agX~AqO)(D6(;Z%3UKl*qmvxT%?ptztC5GB8y{o;rMa9Ovhm*f zI+wjKzn~zniMPmrfSQz$P$1^pl$3-!9(kReoBRFOFX(U%2RtN+gWAW~)bt)1*?F4D z5W~M25rV#MoZEYCv7trAwMu$C_1f49R(`Q)$3`Osg#jo|fOL>RUiGr9?BmeT9+Ut| zN=lT1E-h_s5U^n2=O@Bb+0fvsuTRE9&l_>t{LxnZAuVn1@USDOSf-D(E*B444osBz z($Zy6;?EQO+^59zi$F zwz7<=`M~X*4Lf}%wS0Xot(p0Gz*t)j4xC_EkvY04eFLlqAPZPV&yQel`pBuT_}#me z&!4Gnw>>&w)`3qVTLowq-W)V}LSc!CYCxWo695!7G!$uDU7z?^SxrqqK)|%oJml1Z zixUrxtMT<~e2fSn<+=O#D3A_O{3Zj5ZwXF4*E%eIKtWS0lKA_5j!jQb@B9*wc>55_ ztn>)a=B6fP6%}_GWnW}kEm$Y0LK?tHo`9eUA_K(5->0V&=~p*5pFo*$xV)ZI3pP#0vj z(YFHRG510V4Wf`Y9UZ=7x%~ed{7YRp-YyPYHf&lTpg#}XoU#lG_ zK&yuuOL=4;{^Yg;aO*>McEG<8aQ*!JEKNPkt%qQTS&{-*AJx9Drsfj-EPgGwVzS{OuHdk_oDIJstI1MpeyUd0d~AN_$f(HC*~!ve7ePK?J;D&r($)`+*4S9mtw zJ1$`%J%~!74#64k_nD^yA}e%WnWM8fO*<7;RUvhby=i0F)X~u~*%|-HjR0hG`nV}1 zCz+XUIAREwH0bH+0S6Pe9VHvi_^$!ci6APaFD)$%6AWAquq+A= zE*6$3N-7uFHAats&ItXfg=kAgX6F3j;;nkjT2Eaaq&{w^yBhX!A2*yJVJ9)tXhW2e zGA}q7fePWBxnMrVrta>GVyNprZXMzMVfZHPH3oXMgoO7XMud}{LNYbj(?i40PaHBk zGV&BiP$3~9(C>*&OjO90SCh-{k?bh8{}x zpSv)a4IV(rMs0|ZqdP}yV`XRW^xh}o$x2Dlke5g4nwX!Tzk_9-)PoMv78)#xKhgXE!w`4hL_XdE3?YS(R`kJx2fBo; ze-011xVcmKLJ3t=R30T#p`#Ru`QC0hKt$2uwKom9GiPUK0GUOd#-ac&C2N+AzXHR| z>gm%spV4*L#zAq;%;-)>0aT&Q7O=edyK$di8t(zKS3y6{R_;j>sMJV@L8BzwGbFtTGzL zY=#Lf{r$6pgQcaM7w?5l=s7LvyS^$gZNZFr>pmUh17{ip_IG^9xQPnnaFBpV113_UQDXrGKhm;fFjZOmnS1jP% z?b$OZ#p8bLJY}KN-}-#AH}mo+kfIe9FL7`OgxmaKFRv7wLeeABi+}J(P{IAx7@OJS z8$Sl56$Egt@u-Q3wcG7+!c?xN_~K8WK81c46({@a!ogn9)&iOM7HPXsyM%lDwoLV{ zTR&f2TZ8Skcc;o)ho>FLP?MT?E(2iC3&w2qrtg>O$b>|i2ypbezJWID7$~GbtWL=Q zDac!>u{FGKuGMrul#H~;CzOp0pPwqA2PM=Z2j~88f5OvB>UQe)GmX&m#hM7zpb<>M zB21BB%}6C;fc`+K*4_X;N=+9@>anhe-{}j<0=0#Og)9>^x6wgmwWRDHCJPVWVXU90 zWFV-g{jYyUh$l8K0@nWgg}b-u=?0wd;2p<_jsJY~)&Ifk|99{I|MuUhzy6_7eK~XVT#OLK6Xk0pa}R>5DH9XUD7=5oZ7U=iq^6 z(>{zxg#Qeb-K#*jp?Gozl@S)7RF?nW5Ak!mvlo&S37IA+FsciT&u#}Qo{+%*^`@6y zNfY(^x+ERslpiN7M%wJi8vK{9o14CF*l@fn)!LrCyGp%1OCd3Qj=4NzD^c`qVak4X zpu1uN@z-D>11rwz359>M?7zXl3`kn-u$v(NQ{KJwd^eE83p41O7u!#o2O3?U`?ma+ zBJxQdvVk^GtUyhV6+1SsYEW~duTMYk5IDq34xcO5(N#*Syp z%u0`dI$Sz-dFgje@wrgglL_Y1v#BSiogE$ID^s4PGCpK?+bkR&^$!3bSk_tFoM1

OOowpk3IqE3SZCCJEN#)x1-1xXEvBuNIK zRFdE{!3Knupn?)aL2QEBHlf42;k`Y#(G^CkwrYQR{qB9Y@44SS=li}h0WMQ#zA-{t z8(w73Sad`925mYVcOj1B`edmCA2M%x?k3O~#RxQrq7xIFXHHTf7o2>2V#CKlbB5#s z-3a*8cLG00_*hXNM(7;j`2YR(5>h#L*2s(Lgv~_02WDVSuloN6n&UXYc1DK-bQ{8+#nZeiAQ)wS}Uc7(!#H6<-F((lFA zJg=%KuWcNfG?;U00X1fUQAG`p$m}&nkef2-Z<fnb`%mlvTAVRdcPXt-GnSNBepb8h^(-st1g72GAZsyzLOW_+rduObe9*_AnLiqnZLO&n*?0@)ABgK%jKpiY0 zcxa$NRX}NZ$mn^-{FKS!&%dU_jOT~$_Y;DEB&rM5b9g-j!WoC*#zUR@`I6r)dd;es zf+kv+QxAcGqf}!ACkI_B)J#b>i11f@*~%^AG0>Q=nA{{w6mxmADIvTCtxtuJ2wF+N*rZ^XlInA0okXvnwGIzUxRR2a)uh z4nJ*ma|)>8eJ)_>>BfPLnC}w0FSiluy)@`4X1B@+;Nu( zJ*i2hh^8dABqmkEwF(RQboq=;(H}S#5Wv zUsB%g6@+6%vi?Zh9tiZGxo)?K(ynRB=^}a};WBok3M)zvSWRGCf14m z1LegfGbrk60EH?>1%lK=%vDh^T~+{DhK)|(1|Reh6yegIFGA#kkiXu?w*mXx|LW~>45)Phm$vI(g!`NO&TDQ!T3C_@Pi_4&Juit}Wb!Adwp(~;e21>qjC&8l3cKc;p)`=(I#B5k= zOX<-SgxZGllhz5dvbWIe_n1Q)H+LdNrZ|u5tM64*R@`Hz(1I@yONZyY@r|3FnuNbo zbj?E~z1uHebJn2RFBK)B@b!w;cUe+TB^W~s`hIyKzwi`-Cw7v&SGgP>6SEN53jeT;1Qdn+GvNgXL9GO zwJvK*FG|)Ae1ualH*JN}ZPW-r`5kG9#5&u(l-oB2EJ6@jxt|fw*Y&a%g0xSx2;ze+ z2V7R4%xA1O-xTT`kPVe&fyF+Ibu4+5njlT*wTH&A@I&^Js0>#FqU^<+)&L)2fXd{m8`PF4#FB#3Wxs_zu?K zk`vy9ziRg=-qzh`wLOj(^K^SGS}NWZ5>b1`-b66LvOqjcQ>~5Z%Q>QSDQkDCqp1$> zVex`dX+1$J58<5w#2n^^-6pQN7rX6Sgg1ETaQB5Ay9(M6gB*QSr{4K2DJHbfI=9Sy zKiTKFxpj?QD4cO2E%o=_AvH3wF0t0CpVKKW@$jR{G)?ODaIdhWLx{|hW-z+Pj% z8=ef=g`~HcjN9!cxTWM!@!lI8TD2}Y{qRGo5;bt;^28lc2n4jo$=%3EVLtapzWh02 z?BEb+hLw~nI7u-vq`d-I(;apst>z}Xd4FFNvf@8vS9wsB=NSi9j5apunAGWXrgkRn z^sn}x)-hh7C^2T@co7do1Bif8p*0?jqhbv4s6tFc5EWFA1~pXV@HPvSTMk87VC7hL z0a11r_ki8~-m}m1?W&3WV`0Djp7(iw&+oa4R#}!~Lkd7=3O>}bk*8E7+Lm!4W-VQm`M-=(q#RWg`3ru^FZ-}Iu!-~txbbIFz zXq$BLPU|&s_5&!KF?s;ns(bM`6TzG2W?`vXJed+fkGhHcKxew^DXtI;jpSYo8MqnYgn9 z+Q4|vy3UOYv=}L5n>Ka+S6sdw91T^rl~(QEvv+Pn6OL=|6)d;}h8-#sTi27%SK65^ zJukSDJ^e;mp4gi1PW`Z*)0pcE%X{M!*hiPDqHgn)h&@-EgA=|CoppfxBX+qXYsR#i z(L;+?B)MUOV(f>QEyv_*%u_yZ(m+$iaoV?2yuN0OkhRW(^3NbXhp^lPC5OxY|eHi=% z7=&l|1-3efc&08iZ!jDz;mbM1$VQ(Gzrg60{!FCGF*%jyEeQTwXo`{%x-ofkRC`Lv zw%8=|=okBwE$rO3gF3jLwiVvcvC*5A)os?gu4X0;MvJRjCSyPK=Od!QulxVhP6SA} zV-Wbqe+BT=O%!KMXhV>$@(tmgd*SadxQbRH&}!L@Sn1tNrb z;tszi16%{W0eT|7eqEl~OWU3{)OS0;bg%pkEkpf--#AYD38`jUkV@A$epGod2cS^hibOfl&nMU2+UaPpyTCj zT)oY#Wx{t`>3>8Igk^88UI#N30nV75JkqPcNy9yAYj`HuP~CHmn<_^Qf$$ze$tl&{ zNQ0Z9dJp70fcd#qfyN#H#;>ZRmKAWk=xJ1$2}C?YNM z(XQcPnDLmpeZhL9Zmy_5K&5j$m+FPOpE;x(1HQpf-`F%P1^64d?~?wtSGtkRC1#VH zgon90K5$}2jfjp&_fxf5uF^kd2xJ5x*z%wdZ*dG;OEkNQX2Ua0u ziW+{())9;gT-WCgD$Bz=m&7WfU;#L57+LZWa7* z9)0*E@i=%zN!u8;F*+`O7gif2*D0Z#2+5uUi`1+ES5hh`J59!cVT;r5~JqDOb_R%3m)r57j^0z-^Sp_TwJ2rU<0 z%l&+nLcB8lm%KI8XF6sEcmkV%OTNPgf=qO=K>_RUUOJbPb@ogaW4_ZUK28lOAtnH3 z_k;R}Lj=k)Bn#z#W{Shot?%r3(9~Fe`&!}Eyu943%*>O=4t%jKAucLv&Dz-Y(P0s5 zqhp^_1UOFO#7Modsy0lRe7M(q=G}Cp$b^7`c1rdaNVQJ|V!@+emk@qXR;60`ekYmE ziBZsjJhQ5zY|G;w;%s4FXJM){j&!=z@SPx3hclHT0N{`A3iJlBHvs+MZeS>l`F;V0 z0J6~FqX!~{b<9@u;bl;)S^1rN+R7W1tyrWmQ3q;&EV+@BpP!p`_H0Vho?TluZHSKj zOT_9`%flm9My^}GDRy1tu3ZPdJajTG^Yn%9^9z2|YHRB6H|UIAeKr^7fK)S$OK&|u z*#6j0{KPA2IQsMy#BamV!z)YxpH6sCb?e5h+m|cUat%_WK40^xQkWlL#0__0@()$# z8?ctqHmbgU#SRB{xR)J)*9?pF0!~z?YLWK>ur~M=`2=6L{O?!5l}=F5fKC= zLJTA!1fvijAx1(-APJEB_uhKW`vrCF?vI2dyx)1x-uUZ}Z#zq?1*Z?jlkp=fkrS%SnsG9lqf!2~xZFx`S< zH&!i1jD-Uz@Y@>~+JBFS=+f${D_3f(uiR7doFNBdBni~FVV1eOgHrE2aoFw8#^NFL zmNWN^T2QK{hw&6-1h^~#EQ;xfs{u# zH$NTZ(jEMr$bLjqh*fzOE(JrVu;R&KdFHhUmHZBR>o^h>$s#PGgq2uaIwRwQGhwkx z+H&gj)+qK2;yaQeS$`RX6o^ulRZ<|lB`mVwaE%Od)5`#RI@{) z$;~O)v1iYLy$6o&|L)Xxr%Nj;&t0soZEWq-YWoHTO-}|N4_I8`5D+z84S;2cM37JL zk@EzRF0e!Vr3=X_(dI+vs}IenA}mGV*buxQ5*#)u+#;X)8lG|hdq;Tf_e(5j3izCg zL!d=u&^xVB^$C6eLY)8`!4s3b?q#bNidK|AL)VE}9{Ykx!#B&KXjm}y%w3UAO8rb8 zi4}nGO5q5wrAge$K@hikN$T-Y1 zlzX!z1XJQ}S*+%@$H8e#KgYl2e$G`tchM&J9^u^oMtjTYoQHP106AyA8e%>Db`CwVsGJLM2zX)Z^6ba+NP2 zO?jrl+}O7P_PRM;i#uqsGNg!LT#`FcH%20sU}}1**(D{O_E$EC#CR zqSw-jy|c{Hfkm&YA-v|5^t)h)(^BXn0xR1x#oylLXKJ%$#*N+m*uqP>)GKu+BW8IY zY&1)lvx6lb_Mf=+$ei+3-dy+PUOFP zijldG&&b;^Lnhc9@N((^lxW33Pprf@+y$&P+ob>?+|4tsjS*PLPy$?+>S?jY4)G2( zn`efd%p66n(xkX1X2a2|^MOv7cT+XE_dNqi(9mO$aMJK;U}V#~vw{Yy2p@$n!dVZb z86TkOEP7kP;H_;fT{O@c7d%tbsL(o(xda1~=<>Y2-G@pK=p8;J%9XL@#S8t}ZL~xL@ zC92v0qJ@jY0w+`oGaymDa0odF-q52eu`F=sT0693$+uw1DSpm{Hv$WtZ31^fs-0s4 zLB@S;iuE}};l73Wjkiq~8>s=ia}y6swYZXfxu4d9nA-WrBl#nY%au=IFd%(U5)iN; z`%@_k^EH?an0%_d2TxFX@Slq0fW{XkaRs$DR|N~hkmO>3TM!B?=y$vSakvj71FMx|IciEYe;^LyCIycG^s9c)dST>N5@7cI*$Yki#J-B=4`sGXK z&z>(SIdS~ZzCHQ5IhyQ0=M-%IV3Q_qOHSVBR~4L`i@|Z32pG#sQg(1PJg6IDC>fey zWzZFU@4;bj6_yg}3G9SfC)F$JHsG-Q4n0iKc0b9Xbt$<124N+P1k!_=K$zmG9Qt5vMgi8 zg_#S*`kG2XhO=%C{$ftjvSaXRDf+06^@MbB zrN1Ay#jAUipk@G441J-(LPo@8e9Mz6p9tC70!0gUI@Bp6+059yvT=oYo2&g!lL(NR zNn%0BP|$e<#W)zEi{Z!kV)zcRhSP%Hh4T=`!QYh^{xgAUJ(WmkrLYMkKa`s32)Y0k z5F(=RmBc9U2E+AWM6BXlLMr~yQy~Lh%_Q5v&(`dZPW;UV0+-4a1Ycwh1O*Yskwvya za8M8hQI>A#21IC&XhLsVA?W>~Eu*vwCcklb>iA(Wu2}#$JGt-M6e4m?h|516BsiwA} zv8iKxbY=nH(Rc#j2DFNCqZn-!B2;F|p#_YQqpZXZ*Z;|i(?c41@@8yhT2d^{%DB&O z$*}r-l=GnV2t{a3k>8gpQ6{#p}x$GXPxaUIKu~)ksSr z5M4rAJm@900@E+w72MP9rPduJ;$_;EP6b9R2P0p{LK-xX3)wjQ+_;n06WycfogI(H z&~4#DzdB%8(`(NS_bC+*kK^oSO>|H5@HvdNVabQUgJ9 zLk$_W6R$eq9UuGg=dXk9+fp=}N!KNQyDo*cK3-h`36P2RbCJ$%AURoAPaaR>5+QLXPRV=`i@^{6fp`5~@h)CPH%d_YZ^&?0(9CM7X-Ahl}gA zj|zO4bJJ5#$(*{F0%;B~7&zJlu_QZ8jCJ1%a3=!Sti;hnol%aoKMdqA2zJHk>|m zI@)4EM>?pN^e29<-}D+7GJs(%@BYmTnB4mUjuP%*X5L@j8<9u+X}{aqhOFKbe4xhm z6gw<9D(QaoZ;1jG#-S17f35Ba-^0Qi2m$?5Tz)V(Z47dDyA5O8d& zfdbUb=~^}m9!*y57*vb?2a~2HdWq`{ZVti!;iPmxCqBy%3`uiaL>^t;g#%^1c=?{k zQswvl*wXv_aZ5mb;>^n&;aPwt)pRX^rZ`1Go6RbDSXie&o5HEJ7I#^ZS4&L}sEUpD zlFe%#;+Bp@Xt~v6RGUpHf&4ZN)UAi8JL$kSxQ4A!Cm46hH9e`e?mp{-`46fqpEo|X z^RB8FT`gsg9Smjb>l#}itr0H9J>c$w;MfO&VeB$6;1eZ3l%dHIE{<|S__o`D8)sm$ z8bX;@+nb&V{%&PY5zdyi5GSyvI_-ugjf1@X#3_HuzB=K(pzDE(qi2rgkeY#s;o-1G z1W&VB>KaNk)bb@$)kIl46P5ZYFCys4DT}K zdOmY|`v|s)9b~#D?ecvw^74^e2zOz?Ud4HT+1y>Ab@dV%Pd_d#W=*Q1#l=qfGj?@L z>a@;JU-#*^o&d0ZdH0u*kz2Q(<9u2|7UIqmp_>1<3tqQtu(z$zYPOnx%*el!{oS<- z-=07F^}bz^TQ=|6{rUdmN8&GEz8aSpe=Q~PO#I2@_#3GOnqmtMtQOUz{$&MEm+QDA z3W~GetU6+y(3G*Iwj0CohhUE1*SqzmI^A=Bp1UjT_9s67J&*7-GbKR!&9kCO$?JZk zQ*(b*t}pnwQfIcm`cN>Xjk#Y}{711jvVxf7`}am|+ZDZM*TJ39Q9HJ5ij4ln7kj=s zd@SahO9}r@x|yDq`>3SGYUymZwNCg+ZTQ4nhJY8rfBixBxxKWjZ-K);S&;q&9a3f8 zOy>8=*RIFKS{U;9x$r>B$w3?U)<3D7MSd6k5oVCOhZp2KPMG`R;F9lhBviq2*Rne02nv{f#8*x#pg9^iK_0TAtUN%d02YAXV{R#*o~=weqh| zJ}_JoP$?l)rE2s#0KWNp3>flQJ>n)JM8xEtod=J9bNWPOz=x>1N}K;u^S*TU+w3FH zT3hPco9i1awbiBf?qsB;q+Ct7c>2`wg9i`o+_7D3kMMdw~x+D6_6Q@p{J^k(V z)SMskhJ^xWO&LOT<@9)me2R1?@$&+hlqGmolmmZuaOpgX699vN=alqB6&X3jU+V=o zlarIsV@aurxkcB@AKa-!(>B!AHq_TQG+N9xW^;98Q)_3JV`ReT$C-VA@8}jFt|2p^ zDX&Q)O~I;9>_w#rkdpO6$>%VvAAE%@5%hSc1s-MKgwE#km`uT&Nkt^jl3LU%a*GT% z(YR`;)m-%gLeVUv7s5#Rig5B78dKUZpbW!{r9mW%z;HG$+&2&S0Dc zI#R}Hs#gT_Du&cV!}6MDt094=HdjnDCS$N=cmqY_)Ulyd35~A_svTucje)?NVZ|D* ztf|4vAqX6%h`_KHuf_2a?;oV1D&)pww*?+HjNf*$EY2xMpHFFOhE*BC<2P{3BDBsfeQ#x zASgr$R!|T@1cb{=MP4Eg0hNcmF5C;>ch27Dbe|7Xjm<9%+{^5<_u6}{y*7?2baV!q zG`HkDBQr-w=2wA(^k>7dV#?>If;0!H=0Bznx}~~CDU@BBZS6{w)j4GZoCYo#3>A6>Q+T8>Vs;LA_J4Z>JFj*v6kbgwYl<^qv}!% z$K-r4$Y3}V1+3F>#D8|BhNxtHVD$9I-(;?eY1?#PJUx$8Np#anNI$8{+{LlV3-kqc z@M(owi}+#U-YJA58<9yX|+V6J{7Ic2lL8#YUx~rs8z^0dAerxio>MmvPX! zt}%tD5Zi#Na2ij0&RU!8RKo{dp1?vQ!$R7>SP&h$CZ=+JA5YCxE}DqJ426?U$(@~x zCz{nHfIr9T6`aj;h>#3sGiu8AsWgqk^10}U<{2Cwpp9h_EA1YE%S^tq71kyr6s0}f!-#B zLryVWVY#;n!;Uwyg(GE>6fOl7LXsj^kKy-dCnO< z<=?FMQw?0oAtQwd&wps0ofpy4QmymTuy&cI&j)efGJhHcR5sgM#ug1CfwCL0$`iFE zj0ZIEXD1b_ek8pFVgmi%6y0PLUL9K9s%TM=PeX4)Z_-P=`8_if--N!ZZi)0ZfJVM% zw(!7LSL?DZJ=W+}lm&F>nAsLp>I{fG^_kz_ifKVjBf&7Lua4n`!CJ_E&Gn+b$BQM$ za_}K+oHAlkxob03f31!fR_6}Vd0;zOe33Rv`axDoU0e28e4C8}R2V;TN$XbKmcb6R zt`Xct$o=Wieo~cMZW3w>xDzzHsiI(38QGyQe!u4 ziy8B7l0HbBuKW=dNt@BTp9pW880rUA@6B9nzTJ^n;E4T}co(4Xn1PM%0a)io@6K|= zzRiovQ(YoTmJ4|=UQ@-p8+h=<@zq5|ebl+1(F>T>Drusf#=FRF!>m%<*aRhXAkg}c_ZT=g0v>6)#7a|1EJd%akaH2oAJQL^~^Z+@!X08 z^tcanrfx6ckrDd!MBpI`81%uqEsWpuU0b(s^@^RpcT{XP`DPI?(3&0A79w*lh>ZTL0eUA3hyBZg&R4b+#4^(Dr)OX z%bFhFuNHY}e1J6D(7N}bx9g4H61J2BkoM@rE9{Q)gB{Of~H-on2 zs|h-E6@J!K>{y+CEU4_$Kj+W9wJ4)!p&fhg35DOO|;6f4SK96NA+IR1h>j7RRyAPF} zIQ{;+b0U)+$j?77J$2*{4Pf;4UsH9+|(DmkQG4i`e}>65m= zC{DHoO|gPjwB(lz8;HyUFOMZ_lxd8sC8L?**L1#_I6;&jqe1SurNx=9hzymfIqGllUc|)E7 zP$4a*jSP1eLgaZ4!49cT11BER8L@>LJ6r4+dbW1;U9VqVs#yJN;H5!h zS>dJ&4Wty}vqs||DR}nUbQn;#l`=n~_vsjIQ1YNi---XTQImkZNMU<2+cc7q_sG5w z>-I%}fmpm)nxl@hFXQRr{2haj`*9>!MRFE{D|K5qU2K`EThT2AtW#@ z;MA!zI*vc-U!Y^LKZrB_&=IRZrBJI7Kr9qHfGl)j2ysoy_lS^aC5jJv-~#_8{W`q@4>zO zu}!a+6#VoIW4FyHSvybv;&ajR7F!kEI>GukPyWo>FaQ=B6D1$KTW3!;4~7Q&12(h8 z@m@7$VuZj1J5*gJbcYhJ*hSlKk?7gAqs^uZJ8`bt_~DX2oTXlX--b{u;s+1>hayE3 zA_beTc`=&R41$0D#TMerSEH83Wxtw~a%{c(l$!l*|IUiFc}?Zp9v`^Yw1sghtszl~ zhMaQupsT7swz;T%xTQs^bW_^-!oJ^oc+cj7MB3LgD|w zTLYAK6s0?*>p_=P4^SBeGgFwEBB=-6~cb)7hRuovS|vnMUk#kse`9_}9q;zoMnvJu{n{AOAX8J}T^`8tH8IwHxr zTPC)WsdlKHqKBCF0p-MVlwu)Dk*!zoXX|!s=UZ((x;pFH2OoVfN@zsqp&4?NSb^!Z zXCo!VJ4&A1y>Hg59inCMF(pWxMK^2I4R6N^6*8Lcev4GMbrX(`7SfOhUqFIDKcHM` z+P(LiSY+G4nTs-D_76oWX0S}3C^T3YdJA&rFk71%&Blq5Tr9wX;HzFBd0zm@u%>|x zBA;S$Q^wKCFaAFuGjldNCL4Wy{oq-@96{qM&`p8>cTM89gmRMDL~a6KrwHXG4!9E0 zIDl3~h#sJBx+JpV=p8(sCgAxL4-3YE>;VfEqPMF?Eu3qdIk z>n6gO!f|FEQzV@m5l8P+%3uoOl%?XRP6+lngIBFY@kX) z#uT9VE($&}%G~Xoeo409!XEVA^>Fho>LqHcFz9FldLA`*l>xN|jTk71RmbIw^vo{Y zo>njGkt;>6oGM%C;Emh&IiasDW!6`Fk}QI_3f_GfXRQXQ;ea2KL@7@$MY;kI!mJdz z?g&hUlkzPy?V+Vp?3Fy_U?ocK$4R{*kftKp=xY5m+l4&s~8XuU}3?o0;Y5_2Czui?WfZf>@= zU0cNn`qKof2a4_Q(U=Vq0c)Oh5K zwsb7m!L0D&aY=xu>Qz|8^}O(~zjHODV~gwj6M2njbU7SGtm#8#`K=&128PDUsGOmN z>wMbiXV0K84-2pzX(hnC!COJA+20^mtkTL1(^@Qj|6Ua zw4$b%(#c*ikySH84+qO?a``j;9cw@YUCs41w;Di>r=f0|Zdc~?yukWg*)Qm5-cVRs zJ_UXnb>yRA57}tY?$;}nxL4*)9rbugms!DpBy)jg#&d#SG2ZO$af!hZa;iCgBLFmf zBqV59`LV6~P*}}~?AD8{+KaX_uxFB|TOrZ4Ntv~*x${YcM2YRWB9pA?&{1g6kL#sh23$ zR5%x&i~y8Ihu@7kB2_hqIasMhitQwwd{IpZ>|R2b+C?1w)jtV?AkPW zzu{{kVW8O!)K<%7aSw{^8!=TmE=YKyWs2pW%*agpS7KezSVo_*dMKI!>dW{c zIK;y@NlUxp+C{`mHbS6_mLus;i&0x(7#n0hqW2+bI!SOm()Aob;e6gjsx^ ze5O#T&!zOYWO0y}RWjV7xA)}9 z#7kF`v%V-Qb(NRb{Fn18{f+9n;xo3#fD_tE4N0W5A1b9E`%m;krP5StswyEE1gV-T zrJ$rFYN#5Cv_K1iB&^;s7#kCecbhR@usz=G@iJySo-wwcJzmDk?Ax1pcY8hOK0~NM z{ZI)TduIIZ`JH>tZy6hRr%~`Z$`41EN3lamNyrrjmp%bhi2SVCJ@A?W$7lL#H!%3| z=|>DPb-RTALowOca3_F5EPC&E*4%s0k_2HTUWgkgBl{JbIBI)vE8h`rtD@(;nnk>fAW{ZAH1HsZ~uGy-}>d-Z~f}m zdw=`RfrIZKJ^I<-zc@Dny|nOPB&vb+ly(Ywh&v1UPLDI)$P_UDOoo9hzGYGX`1-b+ z6bO8=e-)WdfrkbvtP1ue-5wN=b#n@&)uM&`DnT9-i4fcu2ZA zPek;WTWZ_7`+A2)r@X#U%#s%Jp1|Q`Bi&-BKDnVNDrW9XU7HN+Rhqb0b|M42AsyxS&`N>5gWu8B5zI?J(^+_B!|R%;9_VXsv)-?)s=r-v zGw+S0ubI+~$RgKBO3lD5k0Z- z1-=LlF#5MQjX8iK8G1W45elqXdmQ8T!Je+}j@rtq${R&R4H13UgLe+@JCK`u;KO6$ zUvGSQ`O2k|yn?G0m9_1*-oa73vb3V6nUqh8@-MOwDCo$KrDc(kMfT2cx^m80eS}Ai zUWbup-TENB)3fFC4G@?#xJiO2gg190Zkh_tJ9GMbdm8F$E9%NC2%s2wci-Nhzy0UE z@4ol@_YdYCI{fj`6Q{noaPHFOEBOV51$hlk^^L8r2=oLr2Dp#Eg7FWN0XSOxAL$l7 zfsDL}fuUR{;YW;v5fFps4Ke$qO4wX1lRYid1pUV$sM6o?k9M{_tiM@y?VC#%j(>dU z@S#Kd_W$B{zsddR_^1EQIhS{_xTNS-RZA;CHgaLMZcLdFySV7?uVepF4n2L-f9&)~A0Tfe;l0tX)%L=D+{AAHKg3=GS;tf_p&RaaGVG zNQVHQ#9I~k<~)v@ZCtFvGnponnh7qt4-0~ZJE65ZxEx5l?*HQe3}1L-=AmKm=zjOJ zXJl~_7r?|OF{QuER#*KgCeL}U36;h&AT=A;ij1vb>4p_FEFfB541dU(3Eey~<4IPB?<=ceFc>4;fB;Em3Jux>MP}P{%{(RZB-??QI_RR=Qa5^2*GjX&uo@JN{q01!$l)Uv8^|U#mj`R}X*{Rh9AW=G}AwubVXDkjDi-ky15R*)W z+Ok8u0OBsr43b5dJ7i(dR}~DpMIJv; z%>meyEW5mEAwRQI=*z9l(B%xU8X7~f&gpg$YOhEmU@B4^Z5wVYKxC2SRPzcz2a^L#9;w<3q3tnJupM)V&iI1<4BG1X?OfNjG`X3*wAL387SGx?ZRH7VYmZ( zkO8kw!>en}qsyZUP->QJ1Cdn##o>TPV*obZ>VpTfEXqrtaJHEy zXCT|%A8!U5uB($iPKQ0n1Mu5!;qO&Qa6t>W62zH+EVn!Y{0EMO>(2|8Mb0OD?O+Sn z33EJVNI#o-Q_-yCXheYU?GmxgG$YG?bi61?x~y1-BKI&lF_QG5$qCL=^0=jQuFs`{ z-@(00K<1$>bvX$UF3vBF&cdg{_m=Ym1hld-umMSgvq*}G(1>SfGDc(0>8W`N$ko9i zyK{Cmtn%&1?_!`tq7m8AB~IGnaJyO5`iP3G@GwE#-$zT7m|q8y!7Jf%1K|oFgYFUj zc9lV3W6Zxs<{D<>uAvytgm{9SIj(nnJFBgA`3Eb8VL0MraO>Il7@jVtJQHmIYJt5& zX=x}`@PL$bCV-m24;J6BhQ|Vvk6Y`SZ0-=aKtQ0LtN zz@-d(lay;dWfQ$TGFx(UQ$fRtck zkx?cswyrY!(qbt+1e>knGHQt}WpDid<|tLoj!xP3-jw5@GUJkW?X=a8H%c(z=E zQdsebzJu9rb;s-_YyvkAGcDfrJP_mkaUn97f=?7AgLLvBeB!6DO^yjIfwgc-(o`f9 z;q|pe_tc}&(Xrv~wwA_*dk+1!)SstZeFN|*J^!J*%AcY>@9=VXU@?=bld-i5JSDC@Pnn5|(ATZ*XA+Ib>Om zWf%5)yzl$%^Lf8(A~v02S8%`kzMtdyJfG*$RUp}!XDw}?m8)}MN{B^}%bm2xNsr!T6Jk< zUH!z%<;bORY0)IDa8{5xXVUn3VVhi@9qH}r7#u}TUMZZVzCv$8OvAas_Oxq4)pYlu z>W7Y*sK4Z6rgo(VQ7naTnkp_YTXy8Rn7eAof2-ZEdmCZ@Gz(Mts`GN*i8^&j;H#0@ z%*8SEpX3NRTDcf3B;9afkftsgTX<*ArPSjoXHOjbTTFC(RBZIF=-pA#F>$*SP9HjP z@@(4qjI4_{s+fYpvS+R(h59Ji8Yu&$-X`tz()#`eSXe04g}K5Z5bs{oEy7_?_YLC} z!6zE5cIV8T*XO}0Qh5_M(0&*wz#|*PV$V2(yXl-GX~8?5+`nz=GBl6+_&U>1rM48+ zH{MmaUe{u~5BPYh)P>$b4af;$8H6t;MFCz6jQ}GMW4z+H;U{H5{2>Vfw+f^|$O-p3 zdt2;H74;9UU(CtgoSK%Joc7i6#C4S+SJ_M*4XoO z%BSmoDha3o=oS*;^isg~rg??XvH)_yxbFul6{3_q!~d*RClKgh^&N<=VT`WRibsgO zLzzb7!b1omlSYX5TnDEG^D5UT2}vsFy_3zCmN?vvVr=G9ZEjEVqr72U-Cj~`Yg^#{ zl1AGSG<`5n0{ktyq*m<>-{by{d)Ip#>+4I43a?(x%Ff70Pf9-a#pj6$dlWQfy{JBT z{EIWm$tf2v7Zu)rrL>}^w!zxu>>qnFIwwbug}`|7Oe5#}e6A4a?4#V&y=%K#p-O9O zySYqCyF>xYq-gCBV*x!b+CsB6Ot!@k8~M<@;-B-Y+GK~lmvTqqsu4ue;g{%@P`s+! zJvGqW+S%IF+)!(6Y_wXxt#7fl*edJp%#dr5dHzZ}`q{@j<02v>w31&MwM5w06aoWS@2zknsj(qjZJ(ezopjt z*o%i$2N;>ztbXn=*62&bCX`_?Nd-QQkA4od0!zwOMW3E__0-#HtmU=$ZWU!@XJloh zrD$NzHx1X;-@YC7)*s*f!?r&~?2J9|&%=j~oIRD2k(`yBQj~i&|9(YTU46qc5FO0E zLUL;XSscoxR0q?2`BD#njqZ6Cn7<&i&LLdRghf&yGF(Sr=9mjcKd%C2y5BQ5J>1IT}LLs zS?zX-?(`x zJM(`9g zQA1N(-;ke}S!gVrY#FU`K!uU{!l^#F?+5WtzRv(TX+Ya=ppAK(*fTI*>QPd00b74IA|9%9kSP5Gnn{L3E}>gcO@BV zGIK7EkxNqk4d$mk!7TD`COmlGMKdNsl`Dfp!J(3J1IKCN`Eiv7xl<>?#r*_QKx@wQ z7r}fdP6!qH@D*;3H`X$Ls*h48hEao$mQll|l?PS@Owtb==`n&LkYR{W3VKv|pfEyM z?+HiX#9B(eyhfNunki#A&KY)jChhJZQlFIYJd7bttAg5T>!6Cjru~)0U1W};K%A>N z8_C85Yp}2goVhM%Ed;L7(ISvDd;pjiOiTh&pPM6;tuok1=>l0xt}iZ=@70iyA!d-8 z_J2Y$#ETLA*!w7dUhBPA0M<6#nN2;Nc*qhlO(&K#>sr~eZbqaR-Rt1rN5pM~sY&Ve zeAw8?y;(!RXYEbwvT0_h_Xn7a$YE{ke>|s{5xEhDuDu8hJI*51$-w%IU@3QrZ!J=U zQ=2_71hv_>R8M2MEv*CM+A%XR#Ysc$L5gbyU%235{*zup(;B_$$^uQ~7$HO!?fSPK zZSsyjY`o5Gce?vDt#n!!^LJ-?@55yi^mq*$Vg8{hrut``OXv+@<9XF`C@2t%MHuoo z86+lJt~|1p$etuXxCp2aIYbnEuq1}pgeT8=#jY+p`|C1*IDOHfN^UTM{>o+ityYbV z^u!NL;K~yK6*{dmZ^Z6>IZkR;>w2h zDXar%cQD}#&C4}bv+3&GoKDKs7kW>K8-j9GE}l)koTE_-$#tM!+)2iZ_*%ZTse-#@`v4;Ht!nnn#$*ZlobYvaGm}Qrs}fwy6VbXoOfL9(3s@dO=b9v z7+mU9MuTeF1qne-79oga(`r7{3S{$*n=dU>pB(o0^*(idtMYCcL4F6zFS($qpf z{qP%TVm9IIL z#B>L;-zaWJEOxh@*+8I87HJu1EC$6)`f809=Srk1(Ssu}znLX{l|qLHmyxh@F9>$C zCT4bcA`c(1fqBb!+-X8GvQfVf4kfdMp7#{0Ad%-L(Q~RZHq=kUz?fQFKi_hrdWa^C z#y9z@7xx4+fx=*Uo(dH7bqrr5VA?R?LNynsP*c=MMqBR2pUm8wW_~~l07!bey#y{; zCJP&<F-GNcjTI4JVbSbtUea7A2mF zC(NaQe|9;pem8o#qU>zR`7aM1_~7Hu551R}@&1miKX1>?Nl!og#h$m%I_rW!)jv=Y24(HhCda2`C9ee`XHmt3BRcp*6C1e0j|VzorNwB z*7+Ld>@v|hrUDgM@NSGbyWN+YVN(K49nNXG)L@$J}Qq?1ZAh>|9W{x`d4VWz>tAai$5 z^1U|M^soJjb`4GVqcKb4 z_9ogyI}yov3@3m+LQ8_$!WJ!D=SbQ=nYyzc?2qpum143){l3Pf2SmeL{)NY@YaCZ9 z&$&QDDeU1D&?Q8Lb^m6JMe$u~B>g$nf_FsujexNFg&1-b<3|vFDb7e)TH>wB3r)fs z%{TxV5gHaJb+Cq~Tl7mDG8K}Sf@RC7$1hgAvvZ5Cr>^dv_TKKM+M0_OD=s_)WN#MM zpYn3v&dSey=fh799{J_*FOL-!ep*^uS#`Cgt-Zt9H!%@_W8_vu(W(mGiNK{EQ$d9Y ztF;EzL^8W$aO!54Q0uNP=;}H6z*C`9u9()Ry&iK@cO^yytjQDaB|$5`68u!kDkeG> zu+@WmjMiRk)>cs@xSv}n_HPJS$U{=gChQ%ughn=uxB;GBXYjD!H)#=>q%*q`Tlm#O z?`Ec@ZOhBpn)B+`t#544E7+C4d+))oju)LNKUG$J`9jUNOXq1{Qq^M}PHu_W+BrH!8F6xBX(>1}KGfIk?DPNyf3L()V_o&R;*#S< zpL}xki^3y?$4(WV{p$2*2lgD^yC*L{J2N9EZ^tPdMRLZn5OMWu5X?e2gyJxWJ1*(M zfsIr*DQBr=37&!S*l?a=IgeC`TbBMKl`@qwe#3X}0^trq1%UJx_Nct%?3ojX4-{nO7UXB|&wo36TV_Uj&aSrsRC^A5bmVWv z#T6qMn)M1%PcH;kI3yu$g(iZ3dC@S1Mi)}SLKErsaG0oyW>l* zW#wnQwKeV4*V5A7$lP`WL$QTVx3;ylcMgwwLs7Q@BSCeehsxVSJrc&G73LsjMZbA_MnekXU+>wkDN z=e0j>ODov_HeFY?CjD4hT%+YGSvYHvZF#rrUMX(0QOD&NB|I8 zl&(!Ia;^Q9+J@Os9YE4I70Gg@r7P`YD5Z^yNL-V&xmd%Ps3DgtPGOAnk@I_2iAsgtQ^M$tYJ%bfRR7NwVU>Jr?AaYs2#pu?9*@U_ z3Kq>^kM2qA=4$t24@D(@mIPO~fC1ILg!{VMG|pHxIq@J6w9qxD$na{#B=v<;tP^0p zRAJV(!rL~PBkCvkEiw}@(Wp-6z!dio6qo~Ef}@RcrDuxEk+w-=^q-`*u!wC-0 ztpr;;<9s!o@3iF!)d%lNVOUfZOvA8loEVxYMay@5SxW;+!zlHM7rPgbuEoLwz0CF> z8^%gYtHv#&$|;D&4U#oJS+V9Tg5n7*uNf7*srlO_#P5)io?c^y$|~iHo>70m9dtth zMtUAE&bRoC{~lsL{LVe#u=#Jc%k`D2zV%zmax39LH+3DZXo!u9!U8#V8 zZAYEjb+$9R-P(0VyNK3nB_Zxd#G?2nYnZg?qS#m=JPu&hNJ0=NGWP z=s3oBa?bBO*YERr>cy|xNJ|+K#BG{mP%*i#6?CC7($MmJS!h*;jm0lwORek|8@*NI z-v0Y7mbS6=C&5~yYfw7aIDW4_Jf{xI_2H;o8u7ECk+N;-K$qs5yLI(V|a?} z!Zx6@VAC!uDpt84J81vI_M9N!@G~(xPTii@26v>>-&o;*MLH?Fye}WmQg8UwevP`y z@{DbmW;Tl4hc1KudA;Gs=#;5p;-Vdj&vyj0v7F?XRFzX$x6yP-oN_kzuKMRjd?+P|_Y=y*t|Pz|0ULf%S|VoJVmkP^bT{MD4}U zJ!K}1RHXrf4rE}Os7f|+mRaLWYd>=5>x9_}++WqjHd7GB9f>>?GUKZRE*PA6QyJYw?{nDVeloNs#tr`*Ycpkl-gansFHYpgo~9yysaz9 z^-Lmyq54dC&1cFl8lJyRVQ(I3iN0*DuzVxj@+@vp3T``A)jq4Z&$PnLTLzf1I>z-J4pp^V z7}&(@D!%v#tY0w`2kj(uLOH&Q#x|3^0+~|iT;Q^SgTXw~a^JI?Q^Rr?`FGyAeapS# zX$OPIDV4NP=~?1)E3mko$yb9%3$vt}6MBfF$dxJHnJDgo^mKOiEzY@$f}=xbq-ViE zd@$)M9U2vNFqJw$oC7cmTb9{6U@?m=E)uiu9-fIz4aQ7Dl5LDfXu`d?Fu+Ocxf%8A z-Z)U(4P6+E@byKPbA!>2*47l8i!WhzO&Zv>G-pZD4@4GXcpEXWeu;q+rI=w|H{rm% z8E>E7YQJ5W4FXZ%4cA-N&1mf;QRobwOlpgoW1@3nV0zX?B_I<8fstlk9S6LO)R*j* zdMSFJHBR}%JlNLkj1IYrHik!oeNC%e<1+uLLdTMSytTc?|B}7W%R`8Sb@x8gKbbKz z;Miaq=rMb6HomPY`|==xQ6kQ=fXWn29I&L`m;MlbKtQb#Z-i5D#0)0yd687EWHQZtU;vdMV7w%|mEi&c6t*YCLT zf4i@42HRxxnUG${Ab?o#iAHQXq<2)UYw%BqH~6^E3O{Fs?wHjzWZ_4H8^We#%Eae; zQHRA=c%=EkwAoSJYArPNjd(2@og(2;sfJ;cK#~-mpF{B58os(}iCui9-fL>EkMB!D zmvltg5e04QPL6to^kVBoEMBVj!q1#e*YJ~?>XOpp;%is0Upe>Pna{J1Wys8=<7uC# zWu|_X_Qh!lP5eMKJaIT0+dI1kS4LjUu337)Vw(%7UVLq;5M`v7A`IDF z#rR0b4Z#=tO(P&gq<=D6pFhQ{6=Pu%7EpnR#ygtFxkhA#Tp0CDVI-W1^=16Co12EO z`_|J9OR^-r3277JVyDC&eFp7CfkpY^ou|({uJ)FDC3lPS@^b!n=^rPKXC6z*Ff_a$ zbpPj4c6M%dPI=z_`nHGdUHy|&vq4SOQtlEIdr7;Slp3MPOPQdz9Qbd8i0#nF6w=lg zpZ+#k4j@y54s@BP!B4>xP19iZh3By`WgjhR<_ze@N4hm0X!TiD?*g`@)nU3;HB)eh zpWvDFi8!R?%h5h{|cfpVluRhl!93OKSvvO&~oG+*CWYG*f1NFW5j= zj7MGWRpOXfXt8*WrXybuFwhBALGulzJmsKxLIxOzTQg>O>e}fj3EMvfy)RhxAbg%%V=Q8 z9=a9hQ3v3gsXkI-y~ows=D1T;a{ESJPHxWCAI|;#OvdrF)DxFZ9zAsIk7-|h^=W3t zgb;RT9yAZ>O=Rxg=fl2@b($7$F~mt9$yp4eiE2Z{=O4O%S&@=c)`+-6bbU<=AbFNx z>LA2DOBN6EJHs0f=iym&h%r25)AuU5SIPLF^)Vf^H~FUCL*pmJrs6ciNYUoX%3@rQq&&PY#9{p{02NB(^5OJ=GMq*%+jR&YJHptQU$=Rs>n zd-v0U(P{rmFdT}RlnaRCb~;vUcNRd1Dfs)io?BZp8gI8D&^t(7H)&RCO4)MQrWq)V zEAT-!z}qdX6y>;e4~|-|iQqV{+tUU@Pasv|c;-XSJe@sF9nQMy8#l}Ii?3a~{NIb; zee<^yUuI@y9!*P0|I?wvfB52SCr)Ro=0H_#Q)j2kH8|;;4H_{tzd>(ed#I;K(JU%; z5{TV;0+UFST1!AGX*W_PwpsW{XvvOukknQSy&!2`7IHyFw7%Hn)z@9Qs}ABpzEw>l z!@X{2b3<)KZgJk#@Asb0N=wg5%Q|%U|6Et;Z&cS6Hy+#AP@qI1B(2mw^?kD?XkzR?=$b+ zwddTi6Nr$|v;E#Z%RT3}9C?38WZ{O`{Tnyx>y1rqZ9OB9vd!gPSxXeMM2H>!Kox|x z5to^uBEn~-sS8S+f|%0ap&)l$1S`q=J$$;hgmWBdUaA#?-qM^79-|6g%=_ub}}_Q(BZ*ALd>1T`>JNeEq7*34`FJX9aopA-Gha0_T>yzGP2Sg#h!y3xBAkVN^Ln z*rn1Nf>x(p#@p9{&_H_`L?#1pg!_qyL_lmDlnRTb%=KQr@N_*29IeZC1vcLc%6QFA zNFlxr89c`!WQE8lgm6I2eS%C5H-1t3)PsbfV$N9+{WP)@^gsw^Pv62W_$EW0kQqeT z4!L7CFG(l#mC5Q8lI z^@sNc{20UoY9QxD{bEj`9`hM>rG+WzgoD&^?Ez!c*X%*cBV&#PNGY&}WuU!Y%qiQ- zU1(8|Vs~@BtspWccr^&QEDVF7F|2>YMHCVt-KGM^TV*d~R3li!I`_hSfCnk z4?}z@ZEFfjsN{+MRG7GBb*#l#oSS=8TF(`09uyIw`4mbx(s^W!p%hOG< zC=c_T5Cd+F*>j#1Bv#)#FHWf!(=b2AIkqyGGc_}2w~hwk?3C4<7y0LR9J~*+ryybj z-cA+mPI0m9E8}iyNZn7;S$SCWwssW7LO*4#Gr@kwQ%0)RO35C|laRDbb=6xHgnOq5 z-jRX4BjEOTbDJ9tue$exAjX0ZZN%KLPuBC{i2D_vCnHnz+L2 zdC6^CY-NeYVf6C%b)M{Rc~+D=4k8)>(0-wkm)J0fFt1DD?$$J*mQ5=YZdq;#^I7>b zq2G=z#re30Ccn`aJ@JLn+R;GIL@| z-&kWKn-QmrJBGTmz6pTuGQ~?s8?OZW+`!1O&f#R=wH%xgSS8~(NI#33f$ENic=r&AgPmrI-f?*Pn|hYLnuyv7VAXPlub(RmkH~E~ucIB}PFW_#G0i zb@eH97;#B!&eP>B+WTyFILwyr<>`!{a=Kk`LB7U|{rRar#@*dv60h?@=%^<(&}!Bp zt#bATi_3jkYo^mvOpPJPf{>@XSGqT6+R_?9KZmNsVEebgil6B7jXp>XsZNax!-d{9 z1V4caSu#$^%J7D!la$LBBRVSo_mgSzm!cTnSavw4thVuy!S-*O?%cV4?aIY3 z&wu>qcmH(qkVqI?3><&}iieWfGhKDgWB zXG*gvKICNt7)_D#uTZlBM`$Fp9B^6f7CBN%m5<-9kiCSgL)PB-$537q_&~&yzu~#pax{+XjaR+B=)->g%qa{pi%`zkWQ& zwgn`WzlLuve)h?^PrkTx@%Am_pmEY^cUwj+&qjtvE%y1U4RO_nz}k4J2N`^p~JkO<2J>&wl)@AZu{_%+43;1jt9{u_j>>M z#_O;D=E(1k9eL-}k3RVO*>j)%z4cM!-g07)B|U@(pg4tT+U<6vxg$14UbOO_=hud=+$ zvMgDPwb_=g?tQnO^IqEx^n*s4tM{Jwtj~F#Sxv>2n5I$yB6xB7D}v*b!w^C#l)I*) z@bjxzE?ziw{OHjmfB5zO{RiJWaOl{<504)^ar*o}KfYF6e7kB@Rx?{iq&%JCz^@#+ z=e8l(BH{vSWeeO^Ja^*&Bs&XNki>j$2Caj}-iF4yM~|v2?v<9-lw7}F zaPr)TCyst_=$gpRQG+XUt|3#Kd4RX?t*@>uuef*TcJU`y3QnCm`NsqMe*TM} z{c;9D@&~-^Uxk;73jb4DWoUj{Zs;{xjgOxWIA;^FR0KN##1JwQtjRG(^O#H??m@f?}TNh zLR&H|8TU`|k-fIQf!_Ac`qtjg+WMM@N^s6bcck;8`XBD$PLYfx1r>>ukq)Y;PH!ps1j7bxyV_0+Rf4 zjbVM>@V6GaNt5bs7h8j&QC!YB@0hv0p~g^IzO&?$(;uBY@~1zaI(4QBM*CgPUfw9V z{l)FO)pbug&E|fyZQ#}DnA0-&%3?H{%me)vi(_OW9Fv4gm!jAvT~3+ufekS@Ruo=@Zib7qyBTy{HdT2{5*<6bzI0E~%>%l~(05j+dRe?*|(fp&$L&JvkR zAt_>9rjY9DHI1hPZccP#%bGsDf}=4foII{FyptgOQJh;Qh?Ifwgri8j}0S zlA^>pMZxNNlbd|qs;pBPq;Y4;+;htfNaPu|rzlW=DQqR+crbtem}fze#T1~I+qvkq zaO$f|!&MB=J&%r|{F9S3U8#^@hX>%Ge}?(RHz@8P-!fF4n9QIl8U-fu_3OXMsJCOO zB`M)=*$1a!XVH!8L$dX=>BVVa=~=5)QS^Yc1sUn?;kpMj^%WU|Aa*C)7a3QZn^T%& zSXDH&K1#p^hlLAo%`Fdfa94nDxu9`9uVqkYEeL@*p)%^C(={CdNx6&njLf7$R!>kW zH|AbOK?KkR1B+xraAbH`$nf;MBcNd&E{0ebzSo*tz*;`>n-wkf4;!$VMI-t$BXsWVdiI~Qh=HepRmqs36{+g%J&d*Y5sQNap zcDGOa!VVQ&rG3%$AdO7LB^gLL6mT_P@>{^-HE4qs$1BHJD%EXHkiHNm^WQ!Wo+dj6 z5*$6X)V}Cwz2n{Tl$I@%1)~DeYY!dkObm4`jXaK#v?(-U4@}w_ddh}|XH21vG*irM zy=TP2q^BDymeVSc#}xaMu0^JZYyqT)19#lc##@t&`CNogf#ro|#utXQ1mGa?1`vK{ z{A(f;v1qprYA?K=2PN*wGKKo=3{%XmIavh!i+3+-xKYFo$!mstJ%N@^B!|q0l|imQ z)fITsQ|)C_Ae3mj#j8+a=(enM+rxk|-v!n2Vg?prL;^0LGfWAk@rSbjTv^a6evwI^?wE&vTkN$n z9s{8e4FG8m?2hTynuqYN3N$HgUxR4A&H5vhPQ6@W;r6k9BW(3m*YG-*vJ5^MyyAaj zM;}55k(vc$ZBl#Y4nAFpO}J*E8TxFB*BFM{zr&inl!aE@F@SylEY5-Af`*5tRKOte zklkwA>|l_^C-3(aH2?u{^nnlsz$~^$KykT@Y0cXU3598%Ob9vCPD2vh$wUo`Ae$Mw zmjTh|H{CL|wnS0Z?q##rZ7tDATkY}<|1(LHXu_yLzh=`lM06mbf%zEhP9m9fKB`2Z zX(WR-y^bw1NPCmDzN&T@gQR)upq2tIC}18ao#x&!n-JgOV`$2@3@@$BsaObN^)Jsy z0VWl>521a?l2wf*=yGdeVC<5g^U3-!aGh*+&k7;D!}_8C8?g!83%0JPPRK2TP|i%~ zZ15Mtj4o#YI_BH%mW?NY`g@_=Kg3Na7@2Hci#3)S<7{SkM;-+itkgYyR7OiQ8bSywQK=;&Hn5-!a=&}SJYKsx@#3SB?T_rk%-T`b(yr z$xQ!GT&fV=qoo6Dy5&+BC6^Hiq`J+=)T^ER$HJa83}t30;CYKV3Z!-b+>I z+>oz&xPJpuDNUL2Q#r)?K&(|UquD^qm*X+c{A{%KV=a7+Fiflw@rhg!H9;gf9=WJKsEIP~@S6TG`V zg(U+`mF;asYZ_NatT9b+Rch2FtN2j67-I zdMQW#LXObYqiv>H)SBt3PY7cv(Tx7JpvPgKbVi|o3?fiCDxIOX!!m<3x08@2v{9nE z_J$HmM0~SjPREFSsMpfnV5%-FC_I<<`NixDpMHAk)bV47PSSMY<=r&nX*@zL33aZl zu%z;COS`$%JlJm?@+^tSo;d2G#ba1r(KHlGGZ5v1)s0DeiiFPSCS;OKLQ5ubADtt$ zcY4qR*+T4&ahwv$XsI^Ub&NP{R<@4h({vui-5u1Y+~t9i5>SYe?4-XXDW4+C_I)L| zw&0pTLSs*Ck2_kL?^WC=E_;cwElD~Te1Bj$d|?04!^cjXIi3AkPQlfjoRS-5 zmEC1uHg6H7BgW)?!7-3%qcpG#YABr##H)veilawtx^jxCK zi;1q{=T5~R(#U>oGGJEYFmL=dL1RgcMmJVA<{jgG08Hp1MW$u zW3bQM(%#g`Lb`F_*pWXT|MOAt+t)IGpLHlR>&USqe>wf$2Nyp2W zq*;^(MP|o%%d@5;sZ6=uLm+BHbyaC$!PUG=S8}f9T+AuC@{fyGKFcjEEZCicsgrl9 zu&}7?R(&D_{v^89h-~QufeX%!EU5rdK(453*d zgn0TNJEqHH7V7};G(Ca^thc2d_`epoiub(O7th7<0!3^TwjvZkVv3eXXR?_lF->s+ zD4Ze80$&_i3E_}f6D$o3g+%`2`qbx8COm_V(OjTO;XoJHKs8@4kAkcZhxsi2rYgaN zUcEHFDkM*_Osw!XpYKN^Z<;figAv~xXnuxZSC_qMiq2eD6Z@-?L zB+JRy?13Mvxb;Q#?T0ZQF7-n(y)2lzj@buD_ZGES?atA9_kY;2Fe z^Z<|6IoQALS(2P^34I7ZfZb+9uuEto)n4L&ga%EO`Zxz5$Pj9vtGf7l?hp=mJ6G>j z%++3tO(UKR;q}oFY4-7Xbll$Mn12OT7SZ-~?yhrn;M89dYE5r&anf=x;#)!K70V(>&pVz?`?Vh7g7IoQ%Tt@qOo<*U~AYSgmZ~YVj~dK{dxr zpKVVd3WJE0K0;o*xLC2NY^-Cvm#pJn*Mmr~(bMHycZ3neQe#3!v4tpJ3dnDE7nKJU zaypV>oWQ92jwyfqX|e+d#oJVHSwR1`V3D{GOZ5#kRz<{}fz_Cxrt8mUetpM;9q;q{ zIT@z!ZbTPteH5ez$_W+zauL5?5wW1gx~v--ftSy_@vW^}ozeFSyVY`kerCXVe?Uet zseL2Pm71z$s2@GWm9i%ERR02;R(jx}Jz5=j3e!hzZcKy&f^SUASlMKcne(wGS6A+^ zSY2kG2^H!ib?gELs?LoXialM4)7Z`@hc%toI+L+R^|Z|gDq#2ubC&owABLBbp$-F>X`?tpljXbg;7G&U;F%AtvU& zy(#pJxxdZ|_NelXPowRY(F%oWjd4a6P_SD=+>Jw1iS9u^QjG}%=}~mf9@0lryfX-Q zrlmr&m%R{qw0t9>k}xz9#Mp>EJ-+CyYvg0N5NwAG0NVCK`zz++0lfAvwyU(M$t(+# z0NP-e&ek(k^J%KO%0DqRRZ}$|`onZ}%{bL#Yb!M3uI*Osj6G$m?Ko|Gb1i zC)4(xO3`KzR{Bm&P;^+4!mNTu^cvehn5nF}J+ZdMTro|}Jl@%_AZZh6;NhSf2nvc) zwa>WaaZzEvR)eq#1_JHHguBj$w>l)qX6E2waPf5()vtn52E zIVFXql{F3RJ^hB)LnCTThLM$}~l$8<3SN;d=j1*3+Ew-b$4Axu_1j5X;Jha_LA zhgpE?XUEwLj3?_$Z*WLnwnnj8A>6mV01tuCVVh+>*BlHF`5@5X6d=)tzY>a?!uFiD zc!UHJx{8abFQgsBh;}z9zK@UTBV_Vl%93xzF}pZCFl5v>Kh@P0m**^D9){D7q#gbu z_27x~m#+Rh>rUR?{OYRerY^n7G`-~TNzgM`vNHNb3>S=>km$*H03moXmIeF+0U5`N ze`LNAz7wMAmf&}9OBO&ZtS1m|eWIG7N6fZq2%_6g)yeR}xGZD}5so5_sB$Q<=9-TNVRlbsUcYeiU|Pz)J%9Rb zdg>p3|M7vp?fL9b`q}htN>xbd zaU7~wjNVTakFhTMTUry^oVWZsat5-rDB$aoaqp-t1^ANaY= z>WmPq+yx063xd`vCm_DvjO0DY&(F%dTX;L?+P7D~`TG0J@2+3Ja`nm&1$S=b-Os<1 zotcrDu@K+5=ji117hUOaW)awt$Uk*BJS?{Zh_*Gc4!-72{zVKv&$mbtWRK z(18s60d_UInmKNU%q0SNsAQFDaGGi%8Z^AK{3my`jrO$GJh5S#NtB8Rj9nlBwG8R= zXRw9s@j8q713Lc_)@g-E1TqWY@RZ~g=Ro75p26OiH4VDja#s5D;`;>|xBqeO*r9_5 z_I|wglk|v+;eAN%-p#z1n_p6-tF3El@9XL5HBF4n*%kvK&nL|M=0L zQ$GDX<^0*5mv7}&6g_;>*wfu_bYT=4B!0Yo4W@`w6OZvD%v)Iqn|MqK^cO`;X91a? z;s^yXBF@EOA){KWfr_Ogg_XM6*7jC|ZFy=LA!)I)h#0@yMWAp>04gbdqprCM8WQ9; zO&|)1l?^5Xr3Zt~q9&fGUIKJX-)G+5>c(*i=Vgrtj|j8K=E)+rF-Hkku7ZQb%2G=Z9$P=zv>G2yP#oUylj7d7Z-^b-+fe#in1*10-~K&>_Fk*x(2+dH0- zmQEB*Cs+7(*=%~<*5`(?2+mFw+ixeOQ=)nqG|#igVSfRc=eukLMN12YMb%Mbrd;k= zw({)?T!T_JNFrOEP9e5{BE}tD(*Bvqh)dw_(W+O2I&@e*u#@( z_1D>T22)?T69hGJ6hx>9)qB|qJOj(giq1pSIv;a_;G*S&jw#jMQ&2tzQ*61@0eqV@ zTUfP1nH_xEJ3ugtnaUpUWV+bnmey8$QHGG{bQv2H(-5AxEE97p-f6fJzW^3k24HHv z1!`AIj{%t{`@daQfI^g}MOcua*uHZJY>BOR1)Cyc4jQ5)`beTq{wumzJX`)!2=L>VPS``uu+8y~pi+;||b3V7Nf`$E%fV%nUYU zZN{s}<1hMFBzb+NKS}|pk85QG~ z!JW(${qsOyP!%c*We4>T=-GH{3jyT2T$T`tELqn)K!B0g0pbJPNsGg930!G13f#xQ z%_h@X7XUXl1TmY5k@i{-;!dE>D}Iaw2q{TwlcF#|LsO zyuFDiJc?852l}1>%SbhOi3Qd;t!|Tb`D`aL$VE$StpcNMf>rMQ(5+%+3{Q>4keEFY zV;5yU(}URv@?2~jzYvmH$1z;_#625eRPPKzY_MesFeK1noP;>pjBGx!*&Vj-hY!rP z<>@!mv#$K>{JHl|A3d6U{P4*?>5~TOe?=*HG0d5LV4%fxZvoK@>KK*phAClvMX

ITVc|6|F{yD#d{iK2e9`TAb{|UOkR21UO5DcqCkz_S`hsQ$T-&40Ym%Zctj>l~s z74;x)$!Em}7yxmolRSEiznVacJ$z(#6!u)PJVFa@0Tv8 zXWlU8RyH<1derT5_D)XDKiyOz8?T`zl4}aunxHNsoPw%Az$5Zj15&8s7ocA(TO4*B z8}eW#+%XM!oWfEy5aT-ZUHn>AfS5<=qEUgpWnjJaYec-t6gTLZ>9HBRmmot2V=AE9 z-i=BqXP{XL*`aONqZz-5O7*OXSmtVWN{4_H($J_9W^^|&NbnZ6Kf!IQV-ZkmwB}ZR zUPju*bALYZ#;3^#fAO27VI7V|7Tt>)Me5;<(#C;sGj(Zd zu=jDdHWp>m($hV*<4y@cev~}b7S*^ z22+{wx-soqN?HYI!6@TsK>Ua}&z|`zCB5#}&D`?RQd6V3rOn`vqbPUMLbmbM1A@sQOB*3^ibTU2FY3P&H(~;yYY=*}o+R35ErJ+fw>) zsptZ5;)n2xYC-?9du+(%bhbZid1$*=S6W_PXuNv${P~YhpFDcpA_eO{T6^;Nsn5Uq zXKF@PZcb5Abw%A>tF6mv@8&)6-n9sNgTVb~~Q7qT}jHKX4pDhVt;nP0H?4fOO4y4t&% zYfaTvw<{YpRBnxbNJ>7CcdmPGaN&lmI64 zqm$x7_e`Y$&)a$Bf&Aul)C-3cViY?88$iB8I}0yJC-_|@_A&3M%hhRXxu17E?P|(j z-#>mNG5Nsn-Z`AO=Rnf2YhQnMKBKU(x}XY@_6qDmT#F!Rarea`AVAwt{s0IQG~y~; zU1F^lOK_zo`;k$d9AYNd37pnzD(FQW;{UTxq;k^%>|=djaw~G-N@`B_&08h5uE);7 zsg3mrl?a5!c(hCe@{BF11|d#8lS)?R3nXi^%n2%-atD$PMfMTrbI$}U+tDdpI=hn} zL`xmFzN|#5gxvCLA_Wi)KBHid0cQcLofIv|+F--NGSN{^^wLSe!gLpE)@Q_rDe}e( zJEmn#z%=JRaS8DmLy^P-EXYr>te6%Qm~|Fp4YC99a;EaQ9pr<*Q6LJOWq?^dm_>)v zQF+R*0fG1iKmnqbfQ`#!7sJ(DYF;qS8jI@%E_%QbZ7af!&y{J4C`We?0K77V=DYQf z=9Ni;NED+?l&2R~tbn%Q&=CX_35%$}qYYRTP1cd4kqcs2L|LlvXoCa%i6sv+dRDZ- z{s{m*y7Z|0&giPeW_LpvFt*DJDtz;jAQDoeu0Uym@YGSUD#Hi11{g(folhgKF2Hjf z$r~eV>+UkBkp$uzE57epuPE=>CIcbFB?(xVwUz3EdzGtaygWzY8k z=!UB@oD*$*5PY>IWZ7oZBFfzy28Gb(kTiwQiiFvLZcAvkGh#P|XXiDbTWC49qa@cS zxN8Ir8(6sg8(lJ6pm-vdJM-H|tPkh}D%mic))u#zUu=p!JOb-YRU&gUbiJQoMV#3_ zxZY8)sj-n!jHk^zZetuB>jKAuMQ~mln1YGht91nzs^1hgr70 z-GZCL5)C$oLL7b55hh)O_RGiVp`dmI%+idArh$q{s9!9Z1wOdYL}x^T+Se0ibNAud zli%ruBnChz_?sU02Dzt$FqOLdu&OmO30NKJ zqU-mrm-Wtrbfau#nrMynMGB?CTN5hc?uyt$y9+@(^jfTIg0;h)vD)Y~a3dI~|95<1 z=s#pv`%_fs8D^ISN|NywTicm9)0uYix8%pPbpjFPqCnNbYK*P1jj5!X)Eafv0FFu^ ziXz5<3KCHSxwFV+L14Kpu&^xba#{Aq?m6G(^m)HUJEp^BcF&&u&hy@$_j#f)hrK;f z)W*V>zK2-?1R@AyqE`{ohS`xhXT&~1HfPK?7>$ANYhm6|G2MYiiViFi`0k5n0m)mN zJI*#U0qp+4>aqZ^PrLy3&Lv=PYrTK&UQbv|8SjSlk!2pa`)Qf`=nz%J;l5ZD@U|cNl)hZ>)NMOxv_ZfA`LLaa% zp&Kp1hNf}m0Pto{XF%91L)A`wVP@7E)BIi|KG+#iB4A^P9A;>+r+>n+xEK+_jFnPq zm^4A)za#NF_+tcfZIMfBZGfLFYMv8w+J^-Rb88E(ZI+RNH8wLnr7PwZPPgzIYuF&0 z`|WIIMmkA{x?saZNL#~6){9auQp%iSFI_KKBeX*y_*4@_D(bdu3-9iqfvGIOI$yM{^ zCQL7ZB2rkwof}$2OVv zo3Zx#c5CJ2nEheR-A7GzmERSdKUetA{I6fKsPQ{qoSvPYb0G8JzP!&q{ra2I!mFj< zSKP0wuWIjV?dpCx;R^&-%+LsL2E@uev|r51Lt{h1K|ka3XrL9R1im#aQCl5~ z9Q0`DEsP^*CxFU!e=d-PL}@RbAO3O2AJQ^EPTdb7fBI6q-}q_8Lec zg{QBF2a_nZDi7scLyVR|R1bY?3a_XsK(6O&+J3nGpyo+k$HXFJ<2K%MW*VBr6Xc^| zAyzOk%hStqv18C>)Q$R@%TLf23g zRW(^a`A=#SMvWsBCKDC>g_3p@H?R-^-9X&VA4p|_4@}aLI7`&)mxH(-9-Llc1RYXC z_)BUOxBYU(#X}x2o91!_D0`AjDJ-K>d*Zjc(2K-I(StoQzhh5DJ=)Ery-wgN6C^KfFEfA+_ADbpBgfPXXD~?7+Dk~zi zc@lsIw4t`NysQZp4LN%Itlh1htB__527gOe3RX29Nq-@dV~&zYRR_e!c=#Jp6&jm( zX-JIrM{c)CvGmv{R$CHgXX?5`(xa3G7uy-x5@=&E9@D&zNr$t$x3{OgsiD2PwssXk ziPe33vv#EI-jlX-PsaYkpXKMD{p!rI%NM>ax>jCQ+tAY5)$bVhE2o&mqcY~wIF)c7 zr4Hl@ST2%vL(rLKYyx1@)(55B*d~-%=i;vLw=r&S)ZKg2(ld5vWbDm5nw@((|C=ug&KF#~Qd9!S;2hY5x6w|p zYfNW4QAv_e`%aK^M2E#0LU|xHM^runtM8QnOOAxgFm87J5Ar&D!|486>d~>uDO-1a z>HT}9B}J!>e0t(oX8QiUyEmkLyeIR|d54bw``o#LVh1p9;mq%IqlGC%&Z))mTr*xu z5sz^IE5JmNwo>%vr{W1ao@@pZCz&s$9$=qS zR|r*|iC0h4_^Ymg7o|Q+T74SPmK)~!tQ}^iX~)rTsa*r0xTfI? zT%`;kg^AJF8HA$2NbvrILTK`pmn~FY_aQzejS&Z)!0l34h};om2&^7eX^DWOsRVis zV`_25Q_xaX)oKqzI32|$^J5`cU zky$0khz$-i6s&f<8yZB)6J>DB*5uU2j1As;l0rWPVd-uMevU~M7Ux)K8&QbRBFRj9 z{=iL=5P38yfrHC}$1`%sUdI=Ng>LNT$j?WsPhDviYivNy0WSc<%&;G5)_?SNl&}=NabG zG%18-?V4`Vrv1{bKkaYWPt{aSZJH~T5R#TvNfs&U619ucw4Jt8X)1CdAq4^f0t6B+ zX$Y8$xx|JT-vMK81{>R8Y>dHId~BcdUC!R`GpyAlTb7THzwh%uOi>4T4VmA)+YKr~ven=Pa7Owk5}o!YjH#}B)rwU> zO_m{kN6kD-@}vXA;ge3K*)wc}P-}luQPuGHEgy3htQEJYi_wvJOJv1?a2MnpoYDm_ zktXMb6vgrMGzCFjp#(vT(^#6ZL#`NUWt|lXbCz}d!80%v$`0nrUOY$DF)D5+HLFgic?d*zT61Ik!0E6AJ0hfeM8}?WT zSujGIrC1({A|ZJ%-}qRgv6ZPrn44UbY+d$5Q&^Ii>twXcsb&|RR3e#|%WtH-^PQX#WTadXr9^ZDl*6v% zEzA(0{w60iH}-1hnw5w!1fVR`K^%Q97(58efgubC(ApZpHvL=#rrGJFY$+2B1hhj< zX$aZa{T$lh6&b6wa5iH?kDM(G_~HH>in=|Ru6D#Jz}Smlnq98sQ~)v)S`5k&P=XH2 z(o7tim(k>)HnHIl84PsJ2b}#nMv8gLnG^C&Btf&tJZM19bUY$*u2&gy6O@Fg>KE;x zX%vs8q40Xc6zYnBz?y?WSdp`)s}?EQF9G{gyp>?u3q&Q+n-XxKjJf^$84#i}b09?R zfjVW1bVbg#JqLOMaUJXg3K%n_tC4!<4f~~+>;5G%XyrJF)rvf8$h?Y$U=jy(Nw&kY zPTLp`8oi%nVwmB8<)R)!+c=#4fGr5b#2r(x5lrVBL~F)@(e@c}MJ2}2v_8df{8nv2 zC>2@_`y8Hm{n%i)O08&n)L3<|;#OH{R@JrXZE3yTQ?z+~(nly?IC74RdSisRy4nm- zmrT_Ng~>udSO$v}F*Juj(Y;CHdX!QJ?H;6`(VCXx)A2FuW)$|YEak#_m~&#^2A;4} zcI2ixEWpRb7%!1=1UNP7fWeo<&BuBXgi_|Zh5%UTMtds)qGPfS>=S0H9n#Jin@}kx zAT%?P@{cQ)f-7^nQLRcn)K*3j*D5OO z8e19~6pxjfAxdmc%apWk(hYWqaN+Mj2 z5&2i-A+!p$Lw#|wywNW)CP&3IT>Z0b@3vZJ7}4MH|8)C=I&Tfm9rx+5|f z8H$qOMFQE`k1Tpj;`0GQoR*~Dg*S}8tp(7ikRGRbk&w0Jm_sDqDH?(kZY~4nKf=y| zVFRMSBEYD{L49D+C#0BEOY01r*py%&uyui&%f7jC?sUmV$9{M8aMAmJK6dE+cMA#* z9yoG5|Kj-zSFT?Fp{Bg~p&But2~5w9m6&*VAv2o6v}vdK|3lb=)mB!kO>>Mw<98B4 zqW&>~AtcK`LM@n521Q52)~HL~PcUpM%F-4y`xiG*!n?67a2+Meh;!#YDmw?lm?Wo7 zK;fG@xIaV2G_B{e>0OqMcl;y$is#QBH`djDTUB=BKbJoH^y5>-g+~q@`|G>!eOUCt zf&8NU<97&9ETwzqv||%f^G<(gPm(Zs30{zpeE<)X3n(G3!w{%Vu!G#8q_Gl?^`{9( zgMH(y)>$HpWVhB9T^Z~b$SQ=iss!%I@(|JgR#v(cEV&@mGX3E01Xi|tJJQtN`-m$GPu>1mVm-@ zWd;LY9zCXH`_~A+B-7u+he)Ida=X?Y3vRo`VCYrVJgB{2Rdu`cn}3gRJY@w35C7%J z;r!w=MSuU|tFLd|C@sHTalfIZz3r)D_=RqCY{KdeA$D|y2}+i>O)|}6i-ET+*euqc zT(DEvlxZl4sa7W9VoY`6wERYp(znMsw)2~)*#%ux$`c+;JOq_DoT?4e}ZZ2lI$K_9l zp@E*splzUFxJ0CUgRrE&0$m^5%yZi;qsmTY-;>&=n(7WVCT~?09y(ocFdvxYlM5Fv z{`1PeuH7uVU0zLVbK2@2wkZ00dS8w$M7W&dCgD}gR5vU|lAWfO3?4)V7w43JbIO_b z4W6{oqdT#21(VILw9CJtg0i=vwxQzQ&CBOLJ9Fx9B}WbypC~CV{NxuOe}4VOoqKf+ zZCyPo^$gi!y$lJ@LX0KAphAB@%BPscyd0Ej(H-^JBv>_ z3**iB7YDmv3dX+rD(AEK4L(P=V1hT2^`=@R^r52*P&`>Uufh$pc#=4-O{~$w+iQ-G zc`m&ULNxzL{)4gk0atL=_TN#ySzzcD3&ydhWBq;Ds|7Da8{!W(9TmcjZoFFzgJ4vU zUR)#dWO4rgeOs4U2?O|__X865@8o;3*nxJ&9==gif`b3%ZP^HJ)hI@F!a<=s0DP*! z&r~yya6H&^dIrN zJCtYfE406YnvFTA9wErrqdA4==~T;2h^qK~ynF2l*MCJH(cxC)Vk#Qy3G^C?@kARk zg>33zq+{brJ$bqOsx0_5K3Y^}3K5P~_B<|AFzl1rtHT8EjzZqgMb}_bJ5244(|9&E+Z{sYr3ltJq4($^2+o+k9H(N`BQe<4c$A^h(s8*7YF_N64@ zIe#Kjj4C!d#NU5V;}AxKTfjJ1#az-8*C8sd$V5^x5hpo%mrdfO%ggcj&RxLYXDQ(r zrcRRELGw-BeUZB&=RD!>!VgK5S1uVwPNfe-3;vP8_G)Mg-{j!3b98c5L?MZc_w$g1 z@lm`E^gk7RlTSwNz`00pAo@iVV;Ktpqn8(NCL;P?x5dR6JvCghTXZ`w&b+eEYBR7q zF(AgtKK=oz`38+&Wgu=ZW1Zl}9^FQc6gdfMz-wB?zyyv2Q?3{(Bm9$^H3SMzeC4w8 zT)=#*AfqNyT6PXS0HO|ie*qGH2w(gN_aH{|daMvm51tBWZ^DgR)OYd^W~HSx;M#3* zj8BCAzOLOKkD>Fe%t(VOG%Um`pj>43^OAWmni-^Dl|^Q9=|Yhiim~fjxpPRBB@c`c z8lOlpvzL8*X4URhXE~4l5g90Gd!R!Af$&TbYomWp3HkcqIOI4M!*hIyqYB+H19QxT)PBALLmZOCUeP9w}8=Qh|@f(*u|6htVM z4iPEY=#iOY0^^ftYLhCq&V%6G`?|gabBQXy$^S|<*R8e|-^pKi8lf`^>m_p-6*TN| z1ReW!1~oiLtkBE#DNnLO3pDY{218Ro7#-ffV@DL>50>Tv|1X|1Eri6lw3ac{4vlQaiYh2 zi;9a%%F4>S1vFh7D4X6sSEvK6BfhtepFxPsx+w3kG7ymYr^7|+`^g9I6+968d)%gS zuo4TI=JarGhq?#eIaKPKH`3gIhVw9%)4MEn;}DUvli={Pio-5R@D_A4jiz-kmTR35ZW(zTPZA|Z`4sR# z8^pgW<=geD3Kio44YHq%~UYDbc* zmxV9J1fsAL_y_cKGO${^Zbq(0Ai9h2S8{nk=6RYm`N@dMw?<4zjIF!tH6kC6?z4G~ zi3kZdLy|!pv-yWl&9@SH*xZd=vA(#^<}uuuuPb!2%%-lDa<57YCJc#^EG zZ*8b3FD&a325&NP_pi3ZIq6^WZOOe0s*iZx$eUlL0nS>C{Vo(91yiM9&~+s6^W!LKKRHl|{y zPxZY8o*8&=pgwxsKPWUZ>bXE+TK@`RG}2-?4b0uvqHIO?dzFgbHufwI9HK0Ub2Chb zmOTz`9*@w?XYAKOkd!EzIH$si0e zb`5R#Oi5gVVQ`)j5@zWjVhKI8Oed|3glelqBKleO{sOt4Q+e--Ch6<_Hv^>u)*~3o zgcBL%mOXS(n1XxzDSxlk!$9MFt|*adsZXHON8=wTg6hkdJ~i^#AbYCX4b;F#xevv zP1~)WSY%56rp?XkoU5YETyK465mL9oJmLK8!|pa#$*X6XKNJSc-p1B00qf@KmTjk? z%;DQkQkICq_YUh!@Uo{O6Iz*ef$~Yj={eTBjKe2YoH7~;O58LI#}_6{Zt9tk3|jR) zU>ZgxW#mFN6KUW)3HM&m;;{@qj%D(X>BxPXWtlIK>GaCauN|{{)U|QGCr$##ys==F z8{BRmIqLVJR2>y?yM@%=ztdWhudY?A%e3n9R=HLEWT16$m>6&rK_h}gEQp#ACT;?G zv|jUdkq(7!k$=A!@17nQ5PByC)uRD5p&i)@B0MCm)}tLTL5|3JJGK|T-v|2thPY5t zbuLv)_2m^$8Y85TT59xL!g+CKA_g@&jtQ<49LPo|O+n&cRYqxfHy>-!|4q&KK1O#yf z1c`toNFoqIkdVkt1G0cz!aWEH3CVYPZ$0OYENVL$NC@A1-se5%yw7=_c}zvtg)SJp z{JB7j^^Q>#!2^&iP}b-=BKTjfSyW`r&ReWBk2f{EdaP!Jq?jMpw9y@lR_qJdl# zD-6HBaGWcm36tLpr@;_L9YTOVjD%H`Y@DiMHJ89(;VWUigkU&^)xNC4--$F>la_HU2)>67-k+cv#O$wwcJ;&=4H|GdR2wRQoctie8h zTpHwJ=JF(aCJgX#5=6)yYNM=vY^`JzlK2T zY~ZxZ1@Bx>>ugw{jaHC7k25qGJOS}>Y#de`wI>XAQluG;fhDnERrwtB7r726C-VCr zbMmN+k+3D(HKW7w(WV|09|NTw@K1D0WK zQ3@Na(vKgRArF4;fXZ<=maPghoCu?7ir~yk;J&hoF(}UZr_Ko8c;%Xl_V<&qs>eEi zQpc8H@T)IDSjj!tY2T??rizW4rJieSI~BH;fV5e7iOXGA6FCX&H$QNIGK9rxCLxw}&5Gl+yO^g~?1ek#WZ)2^F! zuwXQB@AlOa`#^P{w%G2cSavwtq7A$ZQ|G3F_5TBjoc>!trMaTvaWmfl z7+@7uSnm@gORRxqP$-@!b#SlOKr7pVj1Lc2nkKmm@Vv&Wx6J|nR+5Nn`VM|*`K@1U*}nO`@cue9EvWH z`0#eC4~}6M#h6M|KCI1qk$qFymC5A~+j(^aXN*zb-#gUE%(ozNb$-VLl0T z4CVu4bX>aTViHXZWI{-ChZciGqOhr7ZeS*F_*y}?FG8jltn@yyL(`1|qHi|H2)mvf3LYD{H!?^qfdAGF!q zJWro#3yOx8h5&`G&Z5!iRa_2? zK*z=R;YtJt!;H0klT+C6unHty<acZiZ=qe#$a9D_nCrf7gSSi6t0flTwg5Cobo$s8DXh}RIBt~ku1XCh1Mn?MBg z+^p@brcQANzFC1{9)m2LxZ9&I%ZbGoqNZje^I9AyT6k067x02k9nowf$K z6h49_K!5232GMHh1E%$wOKd~23dpfHc+Ldr9Ds9ED~pbEV;`AU>B6}?3iFgjx|sv3b_jR9wsL<&^a43nMD4uNV+D)dQ%VmmuS zUu+Ky??t~NEsnM^M;Z8QDbnP#Tb*y(hp znRZ$ytubEEK!6ZpOtlkJHIu5BH+!~p-ZaQTR8f|)u_df?~O3ImR2`6VFf%K799UAo}d!*f~R96D_(?^U{hdK*hFI7`Q!0t z2>P;du-50;WGX{8$#cS4KA$C*Xu%5}Eiw&S?d$%-QF=m5ji(9wV?F$g7)VZ8I^ z&H6deL>OJyf*vw-aPR{>!tBb~DzAH%P}Bc|1LNXf>M7IzY2*Pov;#`3eM0g9gw=2Q;fdXq2Ms2B2;7fE6NsThe5#1Ii`mD<;A6inQ79e1o+JEAsU+#~Ijo%af`m6gQ|M2e4 z$XyW;@9aBr;)~NsXH!xxUdt{muQt`xHnl(Q?;7!FdY44a=vx8E_(u(yZC*H_YaXUU zDx~xJ*aet)p+3j42qDn`2X026h&rBh%nGX$8xf5;t30dVcCFde@Sw%Ee!vC0qKYvp zz-G{3)Dg&z0A@g$zYw7eO${d^2vYVGj>S}=kfq2~l7I05HUKy1b9bN&4YczLq-YiE zwoIdw;a)6g=7rU5z&T)m`n%wFgY(~obK~-!@+)G|#XPh5_XOXYgk&;Y!*VwtD&BJgGJ|JkSMpAqTA?M|)`K$45k3rk_wNIv+Q zRk(6YFwp#&dgb4Q7WZCwc2%74%&Z$l zlMa z$fUU8I=CQ9dh?90ag;4v%l&H~sRpB-#(BHy}-*s6EKRklnUf`{_ z%~d+rd~S2&Jh5e6y5klMM5;H-dViAVFO^oia$Kk|oZ8a*A)OF`3%e>qBAu{d6MS6I zE70}8)=;Tl`7_~5vy8olbW^@dq=-0vt&JbwNTq1i_9jG@VdWL1IAq zg;i7anmmsW0p>pq0r@v1--zR#g6(a;`BM1?)6a3R?g6KuMsYjOPO=! zb9M0?fN%-}hNsYKI=DO1VIG|IUYi2Jz+zTiMR2y`{<~8BwTKU&(T;?vE?QgyP}hiW z-<*Sq>Zo@Nu9g|tP(KBvSLR@fC?4sm0&XW|%`JqvO-Su>4Yip)I*M`0vqnT^OAJH0 zUQ}}pax3*@l(=+8m`0t+Zm~EOFx6qG-!uhTDteGIFbYZL&katmX!YS> z20pd1501cUfB_8bbc&nEm&8>!W7GLAr*Q#THrHO~;d-H4AoX?@I&{KB2W;2B!aoV; zD6GMz|Dk5{LiK7x#+vEzGFz5WL(*oBbUlDP7%j*;tfc^S;fJo~vjBKiu@aYxfGxrL zMf@J_0wcw;WAOI5uAo?u9$k2Cx2~(0C1cg zISOQ`UkPX6`Cn;(FwEOK6MLY9@=4%|mqcq(AKO7q9qUWq{fX3t#3+NEjQgYcqG+dWwp#)R$CL79?L!&$^tL zc;e$DM-q<3gzwrB{nuSl5pPAF;-=^6(OUX=lO4{+5*gOX3wdL-XE*x(Q8p zQ>cKDsa}R%&>}5rZVI8*`vnb~PNJXYl9xfn)-%t8y2gh4w~8)Z`8G9WWAd4=;*ag! zy*oBGCL(Ifwyj$>hi`ssd-S0_?|%5ve?Ck6I{92$MovzCaYePsT-(^x)-yEafmVeQ zhGHCeE>3nhUPp6n=R@*GG|ydWCGPy$g-l0%CmFr2b8I;%UZ!sHK>+A_&OX_bcV+Jk zOS(?B`v9nLBz*bRx#Tm+-+YsGqhLcxWwqr|OZUK&;VHOJT_=$7F!)O~ooMJ4Hb7ta zbzSwdTm};7$Ep-noMXZ7kK+=8B8@Uzh6F+>!O~DNqf28X3<%k1g#7e%1}f@!xQ-&@%q* zUt*w1n;lS0wqClZ5va!Lie~9UR0(TJt|_m+T7I$YY;p0)V~3A^ymjNoZR-ox=I3TD zT{taca>mpt)6<`QA$9bamnUXSnOs+8-xf`t<98H|ho8@DM4t}zY7U6Pcel*~x7I!x zZ)M|XzpBcdST0Y;3Ha6rh)6>(^MveS=>I>t>jUSsnA!FjC%vqV4 z^OrAMmb-f8%J=d%Y$gOmplzw*p>PVV}C#U&tzqmEG*womrtS zyD|o53jjNKSG*F*-w9Bou(O)#H=Jcfc;v96NQGn1?+TIFGaX0Rh=k~2ve7+^fz_<< zj%v&b_jwcYxf#v00Yi~3@Ssyo>HaWY9S3*go<3)UDkxL_eJ%rzqyLn>9#JWpVP1Oo)fY0Og`+WgVWySd$vY+cP#TFBCt%PreLYFD5 z;+KE%xcG&}3LUjMUbwRvx~j;A6c<#LxS%ANfdqd*Q6wd(OH5XQvdkpek`geEi!UZ| z+^Z0;r^&40m@UP%PYc}$#ii9Y;)8Iv(QElT$pKk{$6miA2W1hH-wrY1xK8@trJH29U!GCLWXEcrZj4Q?PJn?bJF^gSWTFc_2q z0iRF8+beO{ygnZ{AJk28&4stNfTs>u*8taN?XronQFNWYNy*fmdf?&j9@IrpG9@{` zJ?U!>b$6&MC<)ZH4J8R3UFqA@pZbEnOM_@Wt)L33p__D-uF);fe`r5#r|~qIen7)$ z2=#;gVUQg~X*3X*vO`=ct%YQXUo1 z>+}XqpckR%C-fu8q)=}Wb21Ib_b?ht-=N270OH`W49EL1NN|k03I8~C13JAh^KplU zf__K8hsF`&`%xg>t(gWv#|m1*l2~{4OE!k3v$0f5)wF}Q(yKHH@%N)Afb~tY%^d6n3%d8!XBO4hir;9*o z6ykdtlIgUNa%mN(x=dWme$Z;C=0XygnYdMjZ^3s@F|U6qq(#mQYAo7 zA({1t_o=Ku8_asJcxe9;na_pIHF$qQpV2O8+X}pQ0qGJ%S4JwhWzc()K7{NnIimbC=Hy|{Zy-Mgo{U4j3gBTG)w74l#0)R$NMotg zi2rBc#WwmY{GWp=oJ!LW;c7^4gH5jg5$Ju2C9@H%J!V&s8#B%Tt?Bd~`WfnJ4suqA z8AlOMDXQ7aIm=62 z8M=ZjzX`ps0ma{9-V)FbQG-Y6knkvh{!TaOIC+582_QTVS?@z%N8VFW2h)JfW;#g! zK)hAtW)H)LA72&VA4Kk!)31=5(a6pSngNUoXd_08=rA&0##~sH3Ov3D?taMTqKftb zoArpX6dshq?lC+iSP3es>L%4AGiOjg8-d+;)NCJA{*!q6fSv(m!p3&m3Hw)3xk)U6 zwMV3MIQwBz- zpmyg2{d~wTgN|&hpE;=iXRxmNVm%DNs(BvYQ;?-Cuy_C!yC3fz$nR|6SBTo10Zq?| zwLB2Bl0hk0t)X6*EIJDBaXp>?oRUR{Z22D=O962XpPA%z%fzVEQ_ShrN@HTPG`H0m zog~EL@7{uvo4rYFWvgX&$cvCna+q|q8BM-(8$H^{_HcfA3@wt0qQ7;=zh212v%q;4 z&2&9Hph(dTTPICdhXk=3dA*JGb+@Z;-MCtD>B1N1&J>?KcBJUQ-}dhQaN7qP))nUG zt;)?^u_Sv*cGf!!7c7|nw)uyF3*UJ+dr8j9Rjcy~*KORidF%F_yZ7wf|H;9_$4;Co zDLq$q{=$Xw%a^ZQyMFy<<*i$0wS60{p;oV>daFTllgDbr<7S>l(`|bUFE!o-Q+0Q! zuWe{>yYa{knp^kUzV?1Os3@wgchogaRf0imlmW|UVv6Oq8?1U)b!}~(Rqx|Uy)KX2 z;|Y2-pBi9tK$i^cp0=WEhHhz^ZtI5HPLXAQ0A~V)sTvMbINV&~rhJ$}gwbd-WhP|+0FRxQm|+Nn4Z1YCow49##(K9*#XVd#eTU(Tz=Daz}LFDyRN zHj~ygow5BFGM&_PMxBO&+SF&Fc1Eol(Sl7B6%~Aq3TP1(%*wLJ%UvD{f{CJt3KC^e zf*M6Y8DD@rd;|q~KX$)+&$;*Z+=VKVOkXoFu)jUu{m$<^e^)Y-fi9nce%j$A7Ol0Z@<;L(*N#n2<$lmwDeB!NgXC=x1_Bgmrud|m0YE>3+=JTar7Rf|ghMbRt#(p*lOqjpD)~HRHr!kcL&1ZR zm=lj)fhLgRlrl>L!T{_3%^l}Iee5J|hv_39lF_eVFUb%8 zF9+4q0jGzcEQ$vH3#OR9i4VHIZv?^r_w#WrZjB!Yy$lkbuhCq3{eK72g~L4pFfk!W zl2iE|7-mFoHEWqZ3^S0^gTswR0xlQ<42%T&_>TZeemNX4$ing(=q13cTg3W0FFhRT z-Da)KhoPN>GNI-BaF8Loh65cVpS4k-g!n1-6;i(ewT&=|bY*V+q2bRZwia=Pk&g7F z%z?k}vn82w$nrTuPbe&}%o0|vld3()mY5P(zaiNkV=5!Frz6b}zFm##d7~6Z`#L&> zJH^DvtntnF(!EarNSm@M?|Un#m&d}5GMX!_pwT4Byq^8QJln;!xz~f0LX8z$=-Q&# zUJohndmIMHu3mH2Ij8FJ`cICS-)07x;0rWr>{i$EXF^u36WV|0k%Xz>1)hPv8^ zclyXsy^RAWQukJJXxkeb6|&B2{WBL`QWt~pIQw{+9z0cB>4H|0K#}*ZVV-wCqMAnK z1MO6JdOnV2ZfIdk{T)w*Rn(yw%K~HXbJaHT(Pm=B0liS*pLb{-i z(j!t3c~rlYoGy4E3@-I32hM0U_4zz)d<1ByjmGhF9rS?6h`n-e&#usj4O_dU!u~Ld zEw*k<2wQclWzEc!47Sg$%%1vrvSslDAujl5S6ACDs(W%FM_%Xalq!A)GPYSj{ETiy zn{oEO#5v`>yowxzzNN+FfpflFIO6E_Ud<&^y{BDbpj6p4KsQH5D-+z(LFMxk6b}}V zw<_AEQ@7cnnN=9zq7u8TylIeg_4Z{TFYC@6&rZ&HLJ3vxLQ%Z66;5wSZ2vA`)=|R< zwA5C-wdUhIoq44bvJtNM7f1=ElP?&Ux`zU>r)?D*^{5Hskk=lo?D5pf1C<5AQ-! zI!kUJZ}d^duq@+b1?{L*0}8fBe*KT#nFp6JI}v>g%5&2)$cf9>Bvp4|r6zinft!e4 zQ9jZ-WqlQ@cd&U%A5GvVL33_375En+s&SC>3Am3`FsbVO(|KbR?aT>>gY^>DIoCsv zR|H2XWn_HVsbu;IY<5?ZgU?RPb5hGpYv9Hej&b2smlvNQ|L~!JjDr%ZXBoZ6phMO? zoC|pM_EZMA@aWY@3eStuCf|CrN;O*6&DO0X$*qNHw1e=GZw+pqz33x~@~==jXLnsq z;m{KX71PzGYz|nqh_SdP6B`!mKb1A6KaOczmxXMJHj%lj5LM_T`dF)Sf?4v z{uzzu?@-hf#QIfd15L3pu@;Z+pblOr0W$9|kn&WmFR6!+%SM!&*sFBcPCLaS{Nu=K zLx^pu6o_OHHIqt;i26Sk(~uY~q3AQGp@*L6pFg{gnoXEPGjzKy)^!A!#QofGt!gO| zUl6(`fU?S)a^cWcGU-kKVnVSH%S*|*OqAz8y>@wN9?hJD{g8W~KgD>yw(!=?8(R-!Gt|49Gzza!<7NIf(wv;J z`U0Lios#=((s!+{_&F_l>IlxG!d4nOp#9Np+k>bWT|OUm3G{4$O?tW5z?z%}2dpTc z22zppY6+a`o-f1>@^_J=~fbOa1!S3myb4Aq5^ z(99qI`GJ(TeCBd&dZ8~M%PIWmPKR%1RO6Z)z)KMbu48%a+YNzTQ=2jP7k7 zi*KABXabyB<nCM-a3B27;fR|6JD!?}@HsJZbt(ch^73uJWiTuPct=#)(OKdU9-gPWo4q zCg=2z7!_HE%~6rMAS4;8D2jp@1){iMfG89<6skojASgyCp`yfKl*ppi~hwf^*`<1=lRm=ViAtOnb8iUq7 zH03B~bx{v;wr&rL+q3u8mE>kZvXf6L1;x?v?Lau@+{0C%CiV4qN2$50($X_%P*8FJ zm{4L6e4=tz6WwWDkiYBO>euNq z{~Q~lr`XT_x-Ik?8HtQJc;iG`4PzrUHC?^U_V>D=#ml*n@fieY1d^VC90SDzKTtnF zA23Tob#f?AhG|OqG=LF6_!+81>>$e!N)9+26}=HrC&&?Re3TC1C>*naxmgKwy|fi~?tj;dsIDmtGEVftHf!jJdE-)@wC@aY%GQYlvJXQg!; zeo3|>8$N8^cOSm?pgZU;Zh&X0u;VU1dnD}A-`LhIjQF%wn#SX%%li1QU4p=-largy z%IVbzi<)pgg^!8`MsZeC&^frsNvnG)W)!5ygjq^F2no)xM!2l0LwWNWDPS7soMQr| z#btOg3X4ELNfc4^<_o(s6H|*oM`IkN-?-!fU_KMl2i$|0+A_kM;R&{7yHn<=O~?PU z+Md38R992_{f#EeI9!r6p*@Dhl{kS89}&rLq$1kEnb-IZ#p^7{A4G;WgN3(Pd5({N zMtWw_>O92^GCIA5w^#uOD@kZY4sGplX*9t~FTtzXoW1DeV%Wr5z{VU#ET09#!ik*4 zsc_nKM%G*hD?%EXo?wAgJ`6UxguU|OT9JOVj-su1Rb3h5q&wCzFhqM{Z3FCR1s}f% zfZY7G>Zut})#~)@7D^vSx*t5(s*=jR!OX|%*ZdnH~y&vLLNRPSHW;^|f)rV^K7d;~-9+}ETpCO{to|`;l z217oRhu9@3gdKu27^Fs@c#E7dslqKQm($TzH4puS7V0QWKvBNrbt#lHzE8p{ld z1j-+R2$j!N#XzZ{<8fzgt7@jE#&M&(e25=jp6~Jc3p>7&Qk}ynJL6dl0rPhmr!POb z#H!*3C*+-NxCz5V;n)AW_6{FhlqiI`V+U3t#1LZg^lm%)7W7Q;i*CUXnvXd-&_cVC z_vCGl?^jwjZ45{pWy#t7vNs%lxrv<=o{|MjtBQJ>1c&`TP4UIpcoaVn1N~)S%%1JHo#zT z0S;n}Svg`%e8iRIuHjkPPbY{{w(7*rkQP!Fn3(3V4HnThAL!t5Ui;)Y#XjKXbeHXU z3kvkwQaZG1Cn4U;m?(7b5`38tRU2JnNo{yBUgiTH<%29t12s+b+Va%PI@b=CsmWIh zP414J&qrb68LY6VP%3g-wNl|+U|0^W!v{`jN8K8nk#014Of)Z4p*cpy6~+% zP{_NzJvXuepa3Za;I)EW^co&8ejPA{M+)Z6iQ zGh!4k!7i1=^jm;D!Wj;t_1;m`>=2`nZQ53LUYlcH$>LqA8T;{D5(g)X-%t?I#PoXb zd1qTwQ(bL!Mak8|zZK-?WM`a8PB{=09Ub}Q9^3GnfP-C}1^OA-uMl&n+U@SS)5Sa-`Gv)0*URoSG&J9D>+T;mm`9AZko~#B zHbIfdSBm!_helTJb_-J&t$Z=v2z+W2bu9o$hjn(rAYks&iz#-1QMa=+2nlBaGJgT!2xN&k)=y z85HpzvzQHo&)eD`Ha67PR+SbPX4L zz3Y$YDfuZ>r;qT{WEO2p_1LVEfB5QZcWV1+oo6VVF_%xmL}k%|QG!hod5b~v$`<$z z3Le=2lr%nB#r z3riSpUswZm+vaseF$4r#*k+fpktome1{Ua%cYoK?Hk#$N)9TGE8W+ALJTf$7`lj`3 zR|a$4+|3)-Zi?8uFCq2lskF?joZQ08SAQsbpfK5+1Y|B}*MMoKsqkl>B}9Gb;}}Eg zPIJ=iwr(`YwUv#9ELhsDoNvX^W$2?es5m;!>! z)WXb^M2FXZTP{@P4y&>SwZdi6AxeI~J33BCnpRPDfhN)V`-#Kz3+RIYN{2kUaTz7w zd;2G5Lc?I zbYHLpCpPTl5PSTZ zRMGFfd(XM&p6&ZiYFcW_sicIM#J&&uDEX^z(!PC~qmMbPPuPDVp<6IsOiYgJB{=us zB*RCB+MLYW6GkKA2lYU+gfGxIJy z0NHS}qJ@$asR6mkbcFUMp@F{zh@HR!vl$Gt2>bHb_#SA-n}KJq`Z`*hnmQY*t1HWE zstSsVuj+DhGgDLJq9VUPa`>>uPwgMz<*yF%SE)96`KY|M`1 z;P|ln0Dn78h{i61za)=9SZh#g1q9JV_`8>u~&piTTS^Ga61g`djGYisN3n;PzQ-|uf99DFL>Eq zKr3PyN!j!{%akCKt{0nxU_lWt7Cr_9B_dfeW6;z{X)F~UvGgRucY_`Fgl4&&)9AIhbfCp!hj+Hg__Z zo5`%gB4~pZ6>$CxGE5t&*|_0`=`=l5#UDsj_Su|a*2E3{;O@5_ojhm2JQ9icSD>3P z``F0JDibqm_ZhsJy1pRJv{)R$On_Sfzw8t?PR)RUMLcK}Xe%4d45q;hS}|oq97FUd zdTnaoTOrd#e%N>`YGh-r5JL+=-$T(h1$$HAbfU0~>^wuQrArHOcwXCjEO_3+7+DiO)aC)dj1YZLvMncDduKM76K zWv0D_|5r~jAUgq11@PN0eu-nWO8}H*AI*&KI>fJ6=}eX(40r`S{rpKuVSXOedHlIP z#LAlS+xJ=~Am9%ImY8GHA2A9L|IhEl1vxmSp2^awto+(c5}g|Dq!mRBhW8!2oN-{o zX;A-#K$`8{AuS2Xv~#*6g2-GG3=2Yj2pdze*cDSIjLC3cij-!|FA%sD^w5!()`2P6A_)BK?cPCq%7`#XXFYaQ0b+o7f|W86llri) z_Gq@3W1-beCRZPPPRIVK2+`P|JtInIf!D55b0Op&;K*w#sZy?EN0SnGrPF!_d2@vON`<$;hledN zaOWJ*|0O1mKFhcD+ArUpp8 z2pM0t5%gN1k@Ep-l+u_f`64-5V2NB(YC|#w2;TLLq86Waspfq{+7|m>`9UU6j0Ayq53Y zf)7dKc~UO_;WrJ0*-)z3iK$VhNFXB+uixEMt`NgqsZf?vyhnQSYs4knIU~X=WZcdD zc&{{?d%Jg4*bq*erp8hzx4(dCjnbh9GHFnE!gfiL7HaFc3yFiweZ;J4_>Lj2Tw_`iAnU*-Pa z=R_)D(ZFJt!_yX$pdDfku@z${nZEJ@Fov~KGmOUQoUWR7f-mM@R-fei1BAD$*x3Ju3Z z+(d@V#woG40%}4t`;y?E_Lc_zMg8?wT&c@V?Q1)mVv#bCu`e|E2iR^-h6{4qp_x-6 z*?I_*H;_l1Di~g|32`U_pmg0yP*OYM6H6euB_bEcevxKd4SIOX((E(uCu*C5sFRF4XlC6W+mZJSPBae0S#@WnO_IB_+w zn=z~8CsuigT813M(T=z9ntjuKZfWpGXo&`6Uv>@5FUe*E8%Imoobe0CUWj?pGM~-O z5MA@3jjLRrLIz1{91`HVmZ-TeMOsN7#1nQ2=Mj5fm~HR5E#H}GdmaaSK5w>4$FZxs zU%U9DibZvXwR!9k{F>AKZMD3I59YVTqamvt(EMkDyi*DGSjjI_{r29a-m+pyU}Dl){|c@Afr5i_yHmV?j5#G^)f6!;!*1!GB>T@7G~CH}|qQ_sbA| zoV(y3M{~z?$v3zXw@@L!_hB3Vx@ei}H}Ft@%Pvis|Df-dy%h+<`mmD?I0oJg7=dccOCHzd}lb>a)L&L$5JL~ z&`f&JSqP_1rrx=k{LqIq-r1n-^~9btnkG29o+l6vIX}%c6mRGD)MyZlr6&5X873fm z5Y0BnnIAbXfoKwDaN)e0xt^AMiz{*5%H`%&EX=W&G80ClMQYUnA;bq}v;P5pcUoGO z4hm!9+HI_BW-trz?A3c8xv;#k$+fytssXaHv*GWqEJyLG?mM1xxzHssJ_Vp)dNtd^Pc(*KhEh z*HP(ua3Cj~Fn|Mxh!=LHPYG6T}3WODqL2Rny)aF%#h_(tYMXh z=ibK)-FJU8$?-?sXI_i^TIus3_l3(B#FC=mWrqwH3QanFICG%tYEH$o;xaw$tJ7nX z`Bm^ipsDXeyQK{OkfQ;&QT#+y!|3Zzdcz`?l@=?GJ%ZIF`kJX9-}t*~@#Nq>)lfnofK$iLv{+Gh1R@n`E+g=$gzA^M`b9RsiDqez5$ZX}6 z@?U|EA!C@1eKJXT^a{!nY*1u9sE>9qD9+nZS>*|S*5Ic85f+5fmxxN>bo|)<@9JUl z9Bu~;VZLOG4t^cL{XHl(Dt;?i1-3SBrHK`RHNb?GmV{P;=FO+p!l&P?7iI=$Tr^8n z9o0jkGw`)RiETs^NTnDqWDOSZIc)cvg(ygv4dkyE6k~>#Pr*-HEE@dSBK)&ACm3(1 zS~-a68f7k*yf=#S6ke({R|-?NYOmf9z9djo39~ofwN$lk(G)TPE)>9vx>ilLKw2pw z8qotIGjHcg1&kLC9T%_iHK;O1u$nEADWcD;10KV%kX-QpjSkQvbqOut2J>zt@h!9k zwidiCZiPrp%QgNlr&Hq3waIG@%eMIjjKc-gN9l=)iS7-M%! z8d9v3F3R`Fvh9Zt9M-g_bB;DzD$gvt1nrDd0yBt{o%-e0LM~GQ$;ZT&3@)k)NriSJ z>CiqYY~xC@Yqg&(nt)wh^u1$hdota6FTY3OZ8kAlO+ApQ~xV zo>_~brVJMnDNDhcs=9n3{ZxGPq0)TsiKE7X3al5D_t04d8jg0I|XHK2dS%qdf zlBeBbdv3AU$t`eXZs6K=0scFpV&O462pcTv3`}qb22KoC328MjMZF|JNn7G8FDXCYouI1h;DlDyd@K`tO zx}dkgxop=nI`0(=d2*sf+NDLrABp~beDcYZ^vwL+0-dg`Kv(so^igehb04LN?@;Fz zJJ)+N8b9xOi?k&Wv%LZ!0^6mHL==YKpkXEq4_Sb2(@8BVg=eO1sIq!BL*iHe4ofGr z?|L17m)MR&mk>{_o}0QoaUJ$BUT39YUXL1DVdB59@R2Jc?1-V2D^Ro0I6w_=-8qL_1Y_ z1OOc8Ek;0cz*6DOWTe0l9wV~md%M4a88ZgQP5kr(TcJP+6L!4lD7eI6PKt3j%n->-DH2YGEcFe zF;iw1uJNNeJm5h44z`|U}$Y@7^C6!a)~g2-{bv%QBy#k{C( zEFcDE2^8~b{1>FqFK)ZEAg#mDrZfjkis;H?pq+*JGL@8B*8+(pnPLzdw zn7^%g2qep==R7M|JX>D)9K-3e>g@M5Uf$`m z3mPTM*6t4t*Flxzi4gf&Vy&OjWpR&^y;l2Wo(<$!Y(vTZhQ2*!MwGjQ@=t_%Uc)89 zyCv8AG%p<>bVRUnbtxkX!aC9Du&@kN2*x>4YGqRh3aZ8&_Z;>SZmeecdh;h)e*N;pG4$e^QUofcm6Nn$q zD?P7R22P6w#UOrv$>>_O*k4P)a0~w6R!7d-UvaZ@6Q(WU5Jn_&F%)r`f(!*n*Ip%| z?AIiOeT31<0)q})hkAxghSbs*5YFEy)k4_pR?-MY^Qst7uMCK$Y{XaO7vS%(4D;kU zu6J%b+XtxyC9qd|r^D;j_p(a{VYg0vsMmy39Kec`3FPgw^hnBJ2H!#o|IMb$2)0Nr zqp&z4&Nh?iX#EZT5G}g$)g1p&>eqtQa97*-a=t=bGQpRW8g?4eO``h~yed>D8^xsc z?mCY^B)&Fbcb$e7$~D9^z_XwfA%z?@V0~Bde_D_Eg`#8@7=IEJ&O07CDe@>hBceD# z(URm0Cn#=_J|%*ZwgG8Q-&tZ7DbkvE1Zg1l3F$=IQAOH?2$~>mCq%lvQPBx2=<^f~ zibrVpV){LX)g{E9{jOT-bz-qCEIcG|EcCr9NVESTOuta1=uH#*B)tWD1Mf&m=ySZx z2XM+e2G$6*i}o)#^V14nQ(5*)ostf^Rt^ds5ezOyetwqah>C3CD(*F6&!fbnO6)+@ zAqKZfJNsO;s6=2Q3XVEWV(6}BqN5PIZAlPyy}I6r73p8i?n-_#II^a6A&x==ak04w z#Rm`<%?N?`u6X42&PsG&_LP&eN!*I`qCw~v@SciYu|H$Tkd!@F%5L?@y<2lc`xk$b zleLAmx*ucI3X$^nNS6kU{F9hIwMkqA0krQlXFQ+uDTWa+Od0^Gk1V+;_qb5Yx!zXl zh)jKxbkY_m4CP#B8v{xU#pR44=^bRZ-`t&E>1-kAGbjpmi8=;kT_eIq!_Hj2AX<;j zS9Uck2E%d^AkL6~kUp4eoW;u91ZvB=tOp{{`mSlRvRXqaJrOg`1zdDK1TnW9{#C&D z3iWV=1wsagoF=*FvLl5cf{JMP11`0*mb=kND}OL1?Zu^%59H=g--`PX*p~#O z)W}w*?=gygItyJ+?SQ_1MyS79fD;Nn{7?k0ri>~25sI*m>_9UAp?I70UL zC2m!PL@F*@nB_$Gpl;L_8(LddJXlzKd#t+Y)r(9bsPS|>myUCSP_DeMT6qy`O zA~@Wf)O50e2JSxB%2S@<0fCNgQx-+012RCnrCwIf6t>c_Knn8C5vY>@B_Sc`8*1@#rdWP9;m`S7A2!?y58?~3kWyaccD025LSHG3`0>%Iz6EB>LE zIS@`&!+gQQyj*8V^LR5L$yrR1-sdz$Y3lmR9+NsB??%kkI2;#|nYWRDK(%9FJ~Qe< z!An%0e(stHb{7}FS<25XAQ5Y(Bxe|)zQ_F=!%vn-1ANYqtZLZc>nYfZ#wx*$oy9f)gr0Z~#mXL6)U;4*hEy$u(1e-;f@kif@2}7;(-C7c3R*Q9G5Ud#=yta;pgG9$J|K)#~x=(&tvv? zq7dS;6RYjx?K zS8I^#-F{^U&I(9s92IHK${o&uqY+-~H|%%nHZv67saBGp5c(!8CR3eFTW=;7y?WD7 z+c|Ns$AD;E+j|5k^W-`PG%}OwxU2#J&Cm!y0wZJ`v5-I@^FP~EAZZH0q}ZUTo8nQ{ zpKP;ILJ#sETAex}Fc`TLfnduW`jw0ODtS^}CNPIMH4#`61_IbAA0dHIFTc7WsRrnz2}EF8b*=92#=%sa(TN2TsmMlPT>ca?tl$cY4qzChjaan(lnZF%-XmNnKr z{x{jx{uK3f#dldisMa>oIGxTk(?6j7shLctN!m&4Ogo*_nKY9aLySnkXLRb6VVtIl zhWcp4X<7)P5MM>tBq)Le@C70dL7poMvcdwpyq8^I-~0XEd(Z7T_q&SP9~Snz-*eAB z=W{;ir3p{tAa{-MSU*ls0OzE{Vu+R=k>^yKQFboAnT=D}t7r7XuQlTHmM#)~$U%|GU5bA&rUmUVr7I2k-v!SHI~T*y0khJ!4yTRqU%- zAy

b7f!u_nV3aZM3OnR?|njqgY4v6-YY`w>~1jjtJs2{(@T_GM=l2W*Mi!62F`# z8+mBT^Vr6yG;=sE!}4WT_PbyIVr{-wv^FzuNBThiwLMw;=R$jP^Su1@oesE!YL&(33Fr;gh-D7ZMO`1F*Xer5pv*(m42Gs zG5G}1GbX%});tp|V!#k+6AZ?ckpraa-nb}N-topt;WQRFhot076l`2aRcpZCrAY|8 z1n--bB624v=?>J9pq4X>+TCylmx8t%++{Gpl>MmV$!$X2HdoIfep~fra3U>7&O7>X zrqU5JE?=A<(eUKxEwqyTooC@5Y7<n~mSF%4q0RPmxN5s51UX4}L$j`(GFptspZ!bMuz1IaF;3+@QpA z0+KHvifqn;p=3-@z~%tuvB{*yv*KC`~hC-L|61V5?(}+awu8%LaL&E7~QIa>SZk5~>EJitbZ{ zp`_xctCWi%)FPvl@ za}1{^$zI~rUGW{G6BJg`snS~#Oa{O38NF8gI!_jYs-%T7fmMA*Rbxm}YOjICVKR4& zdyF5hsbj3w*0C&OvM}*8t_8fqj=_gLU7hXMuU1?s zD?49WTwHkU;NCsEwxp-O|3TKq&F`drusLgik%5VlCPrp(RW(eUe1zdXH#Qv!#YiY@ zr+RL=RDCLm3LZnh08Cg`rK)^Ck-R@hEO$E3ZNJ~q?;09gj8G0pm1#m6^?=MaQ$I1m5;THhdII^|@%fQIyU~1>($id5Q+NIA zMpdp+Din{kcv-?+4>8U&M9DwhVjZPg#_UYJUP4D8I>JB)Xk2)L4t`aHG|>kFa)qma z8SPCfV2EC30_Fwau|HkTUYCQBBeqj{RF#+9S>1B#>ErGJ}>|>89a7YEXwmxw4k0ivGm7TqC!CH3Vy20l})eysRqW%yqndG6>4ZEot#}w&wLYJeFY^`74f4L7&Xers-Gq+~uY(0W0 z`4&kbt2p6{+Vz0XJw0Q$J3DW8_qMg)Yr0!kRZ&)Yrlh#w$Ul!CI+%YTci*mzZJD2> z?ff)jQ~Em_Kl;no%pKW#k9_e(ap{E-nngng#O0?fh{Zu#?|<~>jY6Cnv=p7j97gO> z{Ct(V@MP(!GgfOwUH#p=?cKdy{k?tN zHg_n9g_^&BgcZa@9G~zjfX0*wA{UlSh)0Q6=a!V^&KX0PNmAR8a328MbV4T9Y>=HexU!wJ^;hcPk0qRhXH)6Zq^hWwcfaA zb4;~4QBX{stQDH7aTfNUJM6JOTwe0zm`vh9TZ>c20c19xcPU-l#Wl43L96J!zIr-* zH_TP7uKAX_W`nypKxJxr2GtFHHZPu6*IF~VV6zJ<5eqR@+?la4GMP-!G?$5|ZV}(k z`fK=0YIdTxi+78nI2E0lwbfDXq}py%&@WwNaPcYl-Ppu=A!ZT7l`U2G-E8MA@j@=x!6!X4C%Bn5IepZL)1*Qq!i{q}{Yhb=UO*WWBqMHoI$EyIqT`ZWK`z zJXaAA5IhhO1r?CXf#DDYVK|227=}5R8JHR7_}-(>@BIer*+1r+?|k3i^E;nsitELe z5NdtcLM6OFD85qE)=FO914T2RTOROm?G*Y9rcLMYd8=l-Zq|Y){V1UYmJTMh;e$i@ zFL`?u`+whHT3Y5Kf-lz^4WmImYSFxIbE(HxGZmS*9gaMjl5+Gm zHN&Si$qhxKRn_2nZbz*SZ+rhZ*SxE;)b4rk1oxsZ$F?Ixi`pB4nU3BXbS+m+1PNg+ zciz1bfFL6Za8h^XkyBhOuqJVVY2q?j|2BS)+ z6fud8-1fdpGIx$9`f(vGC1{$Vb{5ZPZ$$`vcU46VbC(Z~cQ#EUArt(CC(i^pV$54# zZvr=jBVaoZ)r2XEblYG`p>xtiQX+2xE!)w}XATYMCVa|ma-sj1ZBonhX+n)X&`y;G zb`1KmA>6YWwD{2*6R7b;B2-}niM4lkP7=jRU}GJAjc9@JkS>B(sgdX=#p;Am4~-d) z4T2<(*gJ&$p|Dr8W>h1)?lM0iyH1m9>@BQ5Bdpu?k+7lmep@EGP*g;EnM^b#r>;#& z+4PCQ30}j@G*Nw5O5-X5G)Vb;oo%4eVq?Fg2^GVQ)To{rL_G)xvM5Ks<-T2f59OHo zAFO1NKNZp*fS@xClO|+!Uf%BE!ci6J9s>&NP4aK3YVuesGg5V~5q`xM7xT~evJ#M~ zt$+GvTOSun@@uLveFf9e6&?tRtXeIErn`(kW-MUzTdC^I9UAMmi*U7-wYcHZ z!CsDDR#%@B4*NkXVyx)^zY?LzIR{QC zM_?>RqO?Qk@DMl3p(r%Tvr!ezzsAe<9111kiS9&R6q-%G$7>$9R!noJfiXuNG^VS| zS~tLX`;_4BX6%(9Cd(}XYA~MGqO>p}yON$oFMCBAd3K$Nc~_#`-kzzfX}tIF(U7JO zMJC^kJS-}{bm2@!Mq1j}pMSPvgwxS+B$m1MyEnVvw#?~M2KZv1)fV5#V>Sz%(zbC6QZI?&sUYasO?Y1O+>=1M}r-YBVr6M|(|uH7iBs($#Wqr=iN=n4^c ze+P#!R|=7bH4th=mqjee1|=4W9ww6P(YYxO%g7ziJP`fqij&WKvj<{P8n|r0Z%8g- zE9|_w9sF0D4yZkOV(Xa;1($D@mwRc75gGOm44`E!)cLos$7GsS1Sd%Rnkhm?v(Afu z@=4s|fQ}qa&Om0p0B){%E#>S;_8|;>@#RI0 zeO-gkBZ+rYwxp!)_$qCDR?gFqWN08OVHx;*$Za)sbsF26n(L~nO7EAKmV9@OX(*@#RISf*&FB0wQ(N&n@ zy*>LP{hvLdWIUj(q-Fjx&cjhbt5%?)H}m2u(abq37cg)7;S+^!Sm3~oJbFK@XvFSm zKdGeq;2$yKGGP$>x$j8LDNnxq-4~YUzVl$~%Kv>!Y$rqZ&(RE*8u`4FTI+%CDD9y> z1wT5#>3t>-f=n_)Xs#h9oOoFCA_Sf;2Pvz-tjP0IbY5>1YRQ97=a%GiOM264ujU0M zDlks*odnMA9hNbw!QF1Z@rs>e~f;c3^4F4ngv6*XQd{H1m;Hn!O{WYj#~T*;Vj zz){n422gX=VJQnlpOBAy$R+g#s$ae%xX%=z)U{CKWs#%3${6vYG4fSgh=Ya;K^sTg z^_jGg+C7qfqUWv+*%mLfOtUUcPqgdmQ>s2ZiP%lo)12nJzwHNUVD6{Q!^R!JgggC&H zl{4vD2PHyQ3z_5v8`5Pb9`!;y-V5P!x#+x@d&q!W(}g#iDvL~<2aCG={)SvB!mSmv zLWUYoYeKh6^?h>K8_bFmqxc~9$+(a|5{6s-1zsTo$H%U>1!ivcb9)1MU8@DhH5Uur zTjw6x^t7#s>?T1pQ-6!r89I=I04R31;Who zJDE*Iy#6)uQnt#92$@pi5`%?|-*0kEUJiPSF>t%xa9`-+f7!0qpeWBP%(60yNt&kB zB-3f8f7-vD$#goCq-i>nnew`I9sc9&)Md#^p`-8G=e4`A5u+xI-@yyraUdHjOp+l4C9jao!<>NllA zYCEeKAQ4ktv%|#}^7BF;%z15ln6Lh2ldx=*1Ilbl$V8{dvt9aM12EgRr7vLzt9n3BG4L#v` z$e*^`oo$fSTEY8kTC3oMMMpL6N6)QkN80q58sZ`)RhEIc0@tO(7Vk!XH=zOF4>vkJ z{*wBc2hfF$Mk5F~Hf_ZKHEv3BSnz7H>&8H}(D!QzN%SJu1-Ll`{_0Wb0G;?uLtsdn z+rsm3brrWzT(WgIl{96npD%Z44UE;1R_g^k-E57=AEDjW>T)@vVIM6ID0;~wDd!r<5kfx*~i!hlbdd|d`j zcJa(8M})7=J7DAVPZ~fdbAzq%iQqr3?!F6m%UX~VSYti8LS*0~vnrkPN9@oM?-!J6 zk3KsQdkfVJm>8}HYlQHKt?XeaVfc5d1icR1nPxl8906E3GFo=AvKNw|_$NEBOe zz-m%W>VK}_H{@#W*anKT&!{?LwIIsaV%v?u^@qS5zfQYoV?FiUU*PkPY_>|D|DH#9 znwb(HeMXmPRPwqH(y6&WDqkvmubQ&fzxbeFN*i-ORs4ss*RaBqar<^}`(#IC)Q*_# zk=wRzTptnn)~={S2V+m3{@=x~lCIsz$bDE+V>WfRw?3WlquTI^R{{cF1b_R3?31;; ztJ8tQK3J6gixi~F>baZOQ!Xc;KWk!;$4`X^q?{aV-;QwR9ozDHU>i3g-RFupcuBcSwFfVu-L;#Jj- zcqusW5M~g&hZp8M>W9jJR>m#c3Qy_)qF53f08xBU zKU_rk)Pc;=jP(c+Jg?>+_sw~!6RPSdx^b(Df|d)z`05H^_Sc}O=VX4;(KkJ0YH6|< z%MBB35UY4Eb4b3-N%_(E(tt|>R7wavRyF!A0KOslBrs&G1>z<`i15j%?J;quj~}Vl zd=QnYwD~WHcgES*Y8!d-w57hi*#)+@ndl@F$cD9-6A&1$Td5* zMMiDj8oB4lv16x>f0>+i>+8H>p}?6_hakFgdb~qcK{}K0GXR*BC0HuT{&fy6ou9!C z0D}O}Dd`DSWat!sNei!~q$EL)C8Z_i-c2qqEvSd4wbs{JEf#Bo$yj4F8X6j(cG?{y z6FxuO*_-e^+ycloXa{N@NK< z3u+#a3V{PdnE3WQ4ysiue#V!lBndjf{@CCdASk#x1XeptKiWLS((p0y$0IUJ8BDQH$#p)8cFvVyDg`Lgrt5S<(A31w@? zV6NRmfeypdSK#2m!68sla17H2FQ9wSr~kbLu1)zr9aprcJHUN_#gY!?31jE+QU%;G z1>n`+K-g^bE6>H1!UfaPF6W`l*t0^FU&pr($rUccDBeu~!c6S#Wf1IfK9xO9F|#EI zG@$q}sxBIuIRuW@vxamv$$GUau;-APejN&%a2=zu_T|XA?0WWnKI0Y1=xFu%?S8V7P(;z@9>VAuX50ou?OM z-U}v-Ph5NGl`gr0?Yp#yXu0iNg-_~e6t1*!8D5%;#EFx^c?jVwG!h33?g6g|hk?kq zM&jTdi;24}cI!iL!_98WGs>A72Bl1}uwipw6(7ouL$J}zeg1bh3jUPbx2azAByq?j zv2z{EJ&S1`qP$@@)81WR(Y>rGRXpps7ZRbIxTUV99xhuH?x}>E&@+!A0#nh8^~j<+ zLoWPc5kqpV@hWsLp-iKipI|+O_$Pxb!WMHJq}RRxIlM8vi;?(?r{ns!yqg&RakBND z37TDiDjEiZD29_^8AC(A_1Uo#*a6C){DG3Uy&^83xKs`_HHqx6!W?24YmMamLq_)w zF-zLFQyI)bimL%W@WXx&of+`;K-urDzXu5weGCclyH#8m6K)^W zF}Te0b6{lHR%BY36c5w-gz(A`)vRl*se+{)jkn$T^MPX<(mwrL9b>zITEh}jFR`=N zVZ@>PrOwmMb->KJhVfk_yTT}tV666ySBJN zUdn|bEQ}vNuk=v2wO}h$td`tGY6r7K=LsqsHq}&m6DG`8Q4Q{mDPJU)y9F!VasTV~ zn}vhjwuc*W6ME6Iwc4WF7JDeTgZiL>1NkE?5;vpI01mu)Vq`#2y?65A>D}k)MOMQl zoI8KQ!x5Uj{Gr|x@15ZZ{Tse0&vc13E|FSEszSwk>3HyT+p7Eb`>}H$;0=)TT8gYl zx@&fAA`dXKQ49AeRbvcFVJZWEgk=`<8)Bbv8gX2JOc_?ipxuoV2+qh>IJZ>@8^00+ zr5-|EStV~}!!X+1-PJ4eE2@bTp`$Em;hmosq?E69>*?D|qX17LjwTQ|+)uFTsc9Ba*7%}%C|XFpDZt&ar8)E!117pvY%7kn=P13RI9BjY8$uJ!X)E!*=K>*Eb} zzBvetZG#waX*ByQ@g6-{>z*|(ik11-bYKo0%|DvK$WG0S=;vh*I{GSmC(J6C50YdT z?O+kjsP6V+FRe0r*`55ZJm8q*;{YH)m`^c9{#F*|OU_MIY_zoduG5+J;`nD$ys8j3 z%>nWvD#Z0Rg%$-lEWq$uepTG_=?cndnit;aQ54KA>B{bh%Hbp9DTgL_7&)F<>JMk!P6GF`&Fk4&(3$J5tTfq0 z^dW@O6CF_g?U&<^YZ^<-S{fdiWWhx~gqp2u-G?%|n>@ChG#_jq5v%2Jas>rAdw%qI zE57TAU*=mf^A>)NxGe`KFz6C~6`AmSRo1bfvgLm-bozPz)xLQacwHh1zv#0`5I%zV zb#`c4Lli!%@uFCNn>RMG&w3yx0nVfX>>ES)G-elo3w5S6Ueu(krX9R5V$%SEtjOHy zfrAqZhd@`UAs!bcUVjSgPnuSJQpavBHdAxXPudb#6D#W1^vt>H(ploSn*FoM1y7va zYhWzFcmK0n{@%vG!)3>RY=a<_>RDZtolBky%f^R(V#Ns0aL-xXYv&Rq(2jWsP0u1k zpu!9EIKW*lPKPw&CmjLt9Bm8O;l?9J*VCygZ`{cLMGDd{uJ_$nEmX}BX^W;|91B6v zk|8WgJcwjrq0)(cGQj2!@R0%(S!X%)T{H7VzsE@~1h0Dv(6=6;t2hhGs!&S#9IFn*pNVM-=D)72{%B#~`p+#3gbOY}F_lOy_%F#BRjK&Xl`Gx?ER1@cu)1 z_{X85<`j)?FmccMMSRVL>mF;0m6>jiop40Me5f)P!Lp+(mDPREE79mcMNtqRw znH-5RH)^FpJs@~#(0ERS-RUM&3i(a5{)c#Yu4|SUqHIOxN4{DnK2dc@+6&d2WW1b5e|+oFW#}~@~h=igsdD`y6saV zmQ!_1kbfiF1f2myw*Hu0u7UB&`c_RbzFxADT+_1~$P$-ut9IY0F4BmSGd zR(EHI{e+0rrgP)EC)wv}<|fvybu+G8ULqp85D^C$N-e#6Q|Cx!nr7)TV<5t~2C$6) zaggGEkon&O_$nDP4xD16P|Fj^B84(6^g|Stw&pL}=dJh=exX4?oxtM_fR^ zjY2V<2L;Acq?m@0g1xEP5y`3#g5}M@3dWbWqn3uv{wVp}A-B#bIrdeTciHNKy3#F= z0yFBo7^l)|4N}zpRNC2H^0>>XzPP2gp#kJ2y|l!8&%Yhw?H-0b=G9!}E-PGNn1gB7 zq3)C*T&4B_DLZ*t7TK<2N-3#o%{eSjFDxOzO42V;yXXrW+gdh)IwwKFusD^u;x(F_ zif5UrPt>`I$q(>UE2SMt=}u}j2p7mZSQ!N~y)b=}KYE_kR$HJz?G|to3sm0ca^AHw z+OtGA3N1e(3NV!v1tWl@YcENvDZ#IOv=h?5;4Az8`%3ZdE5%LicYM%w`}cgas=Zo%En`>s zu2=LL@hoJN93`&6OSEV00L6P6MDG4!%&bin4c(6@LE>H1SzX=mbX=hV9H{qRAak@j zyxKv44j%df5(N4I%LSe89q+#dnqS1Gf>qx?6si70ca=Uxm0wYyg+Yzun9K*OW|B&( zrjk$jC-N<3^1-Ca-MGXtGmh5GIA+wENp#{qE)iTfo>3_K^UOfZMJ3+ zn{H^E?$__P<=o#xXF?@aBFlUI-nsX8?m6e08jJsUmBwO%Taddr?b<}NDBc*$_yR0g zeB~P?pK>7aDjL`@_EQ))?Knz?`2Po_XD$lH6oJ=w_9unJ7>Fy;ZW08fYZA95v?uW` zlqT?TTA^mC2Tbw=ynw7CLKjds9TG)xa0geSitvv2aZ;1SJ`w8@Di7>&!f+SbA^FHhP|v8dDf=P82-cQk0#NHIBy!gGQ1obb%5b z!0;bX)nvk~ly7kgS zKM$(}GcX-Ogr9&)y=cs>LqfL&`^E$fRd=Ofygt==(Bd3oij6j0ruQSJhe#ilib|?j z@kRRej3yI@Ol{STPSgcRwwo3ou}GioE455?=fekQ@B5hk6mf}YWr0r6pyyFDhZCq3 z+K7RISoK`Z$TY_#8+njT8n_`Z30npKIx`=$uo@8|Gci$TgZb8igzXd--+ z?FMh7mkEP2oVPSWLRYYeG;%9>aB{Sfvs%|!BPW#g70giicv)04Y9Z1#+!6`_EVYGc zAys;S#Y~tXKod-|M2pN)t0OD4Fuz5e<9jTx0A%5j-qfV5A*LaR@kwa3ikGTC*935Z zxlg3WFz-zd)2sR#^3*4>!sbdR8IOi4{pbZ?im{qLA*<^*a#&Ef0GV-};MY&K&ki{F z$QUKnl8_bv8a@&d5LTRw%0U#?G$#60yx~fZN)0=3!|#SfyHayqW_xc-uTCsI4i1fA zlb$Kc?>6~pMlL`quF#CzodLsFj(4@=rs;C#R_{E2WSF-cTBKPAh7)8o)cesIbHYkz@TGJ~gqS?w1Iyrs&-cMllakek7+R*&3>y46zd8HM*f zue^id5Ne4uzpr{_O~xFQMp@6s9FeN(m&KX21}V0Ubn;C#5p?$oSQ@o6@M~xa08x$E z(O`C=k;UVT6}gD5!ky=5MCj%Ic0So_=iI=;pe8zWkchp^r!DNu#l)=;fJM8q%E4G6 zf+|i>8{U$vIPaCzZI{D0QNm*C0}eAn9en)Bf87wJj$$-BookX6x7tj8ar9w(UE2AN=P(4j(^%E&b}vJNX3@(TyEX8h=%0?$6-9Eef@es~Wbz7yzrefPn!_=1YI)Xekl_omA3-UPQHSQVAZJ=y`nsSr(&wnF2Y>V6^|tYX z7qs|^u69l})wrelnf$)4ILAjuES;tH{CnjO=U}WR0%2p`#LzIC^3wC+cs{ZPsTm0! zy+Zy*p+m^`6>S&{%ca&1W|^Q8S}kzfGG3IQar0{0#naz>`Nh_cR&HFkVf}^=f4};} zKm2jkpVn;JylwaH{a+tG)r4Ngi|Lu!D59s1Q|KYhEcQF~iYsfU0ROpO1{R6=kb=S| z7o4P|!iVa|Na;Lys4uh3LwzwSre&Xsjlf#tqyCp+lXOgm{5Vls0ZmB2l`&5nqdGus z5obnGG%~7)p=2X&OVIFxfx?W8^wiXpOIQD$oO~(e@|knT&Yn5&*@0t6j~qRJ=*Y>h z_MbZ4I-`E_u;6h`owKpIb9mezj5nk{CnTH%l3VH&yuJ+_Z&`@`3f3>-tqaSU&Q5n* zzduF{qMjO8^%N((o)R&vI}u0S(24SGic*Mo_?=RnN&C`o6%Tk{47*$Np42^fTvnQW zwIpzBzj6vt3{A+qq-i=8ao75@W?phUTvv&bgOgR^hB~sPFCZjJyg*rS>99 z(FruA_!qF2FFtQm1V@YFQY%APYMF|HVrX`LTu>;bEH^E~?&=!!yo@nXkQk_bPP%Dh zt#)0|ujsH@V0dK6-R5e3((t6JqM#(_ddm6J-<~{laPP-^KFX)6?(f?5$(}?1`tEE} z>V-?`7q4aJKQ6OZ);jB)E!_hXFT+u;7hXKDB&;b#ivt{4iEhMp3t2qZ9Hsn|j#5J2 zX+WioFdknf5t#DZ2Nn+il2f(|hy1>YGDq7pSA(Ovrm`UWZuX7z^x_${xO~m#b(=PB z-1PAtdHlWak}o7(y_|Y6GrORo*4fbP@{D-H2G{n<$o}ObDil8Qa~)aq%A$K`C0)&P zUNj?StzHL6X1i4bt~lm%zEuQm8X`s)k%o(jR5y!EKkryl?{pLw7GxIQ&NNX))7o{b zez*G5RcqI8-?n+ojRV*NM_LEr9?Dmk_R@fshagA&H$dvEy7E5+}~h zxjVsjocR8I@9o=p-Y-B0Xg^Gfqr`swz0Y|r=Q-y|m=5Hhn&6uCy;xsc%Y&Qe&L98u z^P>m;wBvU>cKrIy*MIS|xBhtGy^qR1uK4WqnNt_8HQxhd+ZPsFc9$u&Nm`F{q;$4W zPqY^O38hK%q;ym{JxN?&Y^ja*Oki|d=VL=~aZ;^;vagea)Tw zJtO|myv&=#)#yxepwg*z03y0((fn?t!twM{^d3q00^tsaEMgV1HF2vOpR_%57wpg( z{9d+_bO>KdV6l6LLzKfcE#T?7-DEXX=L=$e^8Iy~s8wKXA5r7~{pGLm`-L!%QK^&+ zVY$<&kVeo70Vk=diawmCc5@G?B|KA@+Nn8E=q?Hf2_HskOQdc{D);|!0huqVnA7Wn zMvsks^NvEv(h5xMP$Sk$VreOs7y6#(l5oi$2BK!Wti;%13f-21wge=}OXiO_Gh;ai zy%8E2Z;e!WQ!|<&XGsex7hf|3>23}QY=-}pVgtKFiYRY_{XA;S=c8%i2G^P7=bf<$>is2$s#*r!a%#%U&R2MC71{t*PmVVU+s zXgR^P1sgwHb!{xTVJ_h3#I07wH?u4o5jW3JYb)(o`A}OC(rU zF^6`A=0ZTd0OBSoY?39IB|0$VH3xxSq_RWqq2v>w7Sx;687O%!#3~=Jy>|0 za6EVQJNrM2+duvGj8o)lJ&P_HMR>jZ!SuR(3Lz z%pK%G0p1|&6ih&p9TPd_Ggk%R-gdxsCh`&_@8 zN3;|5H#=9R9te$9475bj6GqNElUrIxMKXQi9Q&U@X);S>?&xr`dyW&(XvdubPe6=X z#o3{}V7)P_iIdt-Glf%XH~1=e?OJ!1W!IvCRTPh>d|#iMXSDMi&<&<~Rj(LS(BLfX z_6)n@#+boY{FpCG72zS1O^{v%+LR$~f0vZgt!vuTu#IJ{Fx3u344Tuc!*Y$CU&h@| zo*jp`YZ_>T47YMa5y^ca;sN}(S;acTY<0$r2QzFq124DG3;u&*k=FAIt4Q}JUL|6t ziiyC4Ao__`j3f)Qed`K~Z<9(z4Z#*-q1P^&TVgsNv?tnst-&l&d$AX6{A{w@7*x>4_nprPW`o zLghgkD634I?G1Zd>Q0}iPEO*~+VzDKafV&l5Pt+GBE@=Ms6=nbJCx$7;n9(44&=EW zuYY)QX)Pz8MShhGB@vA(PR>i#l16n4`JIPc6|VUh;r=#BqRjLPNQO!x^#q~>@SxjN z?0!zbun7@cW>dE&(?M^FdO|%$E&^4pS0>Hn_E^tFADScGkE$2bW28~TrHf<$?E-&m zxcOFfm@dd`WdhU;e-uT0CS40AAGlM0+dY!@tGnf5$T^W-Ks-QULq6QcUKLyCH zP7U0fgdwEOp&rlKR@D_}lW``@(WxwBW~8DY1k7yDs5F&}?Gv}7yndQTx`U>-gYkS| zmXUXmq&8*IIWCngAyOch@hKtd+U1~Crgf+wEh1^m=`0w96#Wlm64ODkX+I{Uk?fgY zoCx%HdU|_0J=p9&QRYAXa^T1Z`}gm8>$h+2*}r%9?tOnac<`@(`}>h&<&`H-o~mtY zzVG%dJ)4emG%kHi(~1<=PbF*`->iI*+-f-ZFfcv`Old8gwZ1}aT(;qS#kcTq$z(h} zZswt5mON)O!q%>I5Xmy+*5#Y`?&hX0M@9U>MEGA41o0U{L40 zl$i1BZJZSxADy9LoTjnSRy z!4YEbLcwTUq>EZ4V!6_v1|%(*mnDx-Cz(AVr zU|r^Kcl)x?^ab)5+TX!7wX*MLCdUGemxA3MPxFnsix*FysjNJ4to)xJzISlny9SD~ zS+%`?=)C|UQAFe-aur!Ff(Q!&E_WAL7FhPe?tb5U>vP_3lZv)8va;;A=RMDP&w0-C z%uM#Rwm)ufZf&e{G&MOK4;mh}JZ!0|zvU&@qH(@v?%TF0?fo^WsjD~d-m(Aqp+l!n zo;iKyT<-1a@)}2TZC7vC*m#8daj2cs{Yk7S>}^ze36Hf$f+Y*SMrdk>cS*e}yoC?z z98ZII$Z&y?d5a?=TxuCxAT}X{@gx<52Os?iY6X^57*Xc&OgkG|Y8{nzr8kPQa6>>Q*pr!a=1g`@(dFV>^&NC* zGMNC2gONl$nHXuOAyfJt647=gULFvBXdJp{U0D*Fi?f#(6irbSnZnJi5QcAJsIR}H zvvr2cpn9EWezJGRhIQ|!XQXUSdF$;rev$g-JHJj{oszaTBV)_fUEBY0_{hJG_agTs z;SVi@A>K{0rs$hhkYv#PhDoR)8FgPl256%>uNl^d*L~vV;%XMEA21_2H|rj7K58kx zTJU8~_Q?~+4sQQr#>V$Iq@}J{m$7-r&Vzsd{J`NRh76ZWw`(fsWq?RF6tv6Zbx%l{ zge-*iCgdVy0^JR9)Y6zqBz{WbT9A=%3{!6S=2N_GMJGww`ch`*pVn^K_SeskWPWk# z@|C;y8=E_N2O`AG(&Q`1meDFlt8g-3h#J!Sz8|mT`xGcc%Y1zV_vj)RTB0i1zxc2M zZK0M}iE_9S?O=)DY+6FwL?@nbl5^2;z&BFgxQ-ZW0vk#kw;q}f=-IRv6K~fo{ABT2 znd-DgE_4{ZB=vhRKkW%_)9<SmTYgEXLU=AyKLpAB9oF=EVW4VXp-MXV$6m9^3eX+g$t98+yNChhJxQlA9a2V+Rn8b$5QWT+yr>65DBE;2{yAkL+N z59MHjO;}hY&ZjS&osS*Ea77?z_y903n3x14o13F9TcY?-`8-)m!2)6Oy(R!D=>;_N z|D>ek^BKJoykF=udrGf?wbe{^v-2??vaRt@#M`aRtOzqJBUV(}DgK+0Xt{nW^Gt&n zRI5br>;U?+t^m8t!23n|J%h3koau1Wfl3CGnFKjhEeg;)iWMGmT5%2Hf}h?vnXua^^hUj??ue2VYGw-=jqce7fZ!U zib6*ECkA_>F+ef~C{J%ldT?JxR_au!J7Xh@kyz=u z*4y18LPggq_uYn^o9gq?x>a%Oa3^sw>^L$BzVMmJ+sZhOwRaas0U5$gX|lEo$caTc z6_4~RFp$J@)kMUY`r%9qKICOJLfmE3ITdZAm1Ep>2t0?<-Kmx^iB5#E#*LARi(ix5Y$X{i`+&bXuC`0qW-j40_Znqd8Kt%GC!a9LE$+#M>EaugLF zcl4Xl`e9rp>JbcuW}zUtx`{}JRfw-=|AI=yT^^{O2$C1F_1fE{QHWBkkoD&$P2+lm zFl*yWp2H@ep)ms|=g^!!y98=$w*uBiG8RUTyKIn`_voDQ+p4f!P@~qqF z_MmZ11Fa-wG8@dh{8?`1jAh=`vRhumH4X`{TV@gm#(Bp8Ts~^(Y`+KK%iXzH4a4=q zeKm~JlSaTy;i`&joYp9|PO|hA-RYX|sPOnDwT&=cPf)pHO=>TL$JH8bSd`TURr#jf zC&n6qK3P-;Ojg^#EF#b*i?j?h7K36YeHE|8xe|#=wBZVj3lpTT66o^aGGcaarC?Rp z7L3N>z{3{Sm=}}+0+Pe6ZXy>% zxq%wISO-{HX~@Z|0qik8Ut(w6F@!2CTks0zESuFV%(adXXhb6f?gE#Ztf5=*=9bGA zN>(yLr5qeX2P|pKce=}mu%Z#gLz*_OoSVwdhbn^DFtiR5I-6$6TRm_|kl&9ns*v+t z4Kt$yzV1kH%pil|Z@)h>JwDL$xVb54<5yk+4EJK5DW9V-QnZfSxv2I5GTD;Q<*`wJ z%rxo_7h+niWNmdL=3Eyuivuh>8tJ>(p;fPtal+y$8M5d=&N}+~M5LpqrsN5_nuoe3 zsWINQ&?0W&d;rgx`EEk%tSl~_=hS^3t+;6F?d(Be0HBuYKahBlawW|TCzYplCH`ud z1UwN>7`_?rL@2CY>o3U5&B{K1Wba2i_kZ^BpVQXt*p$8{WBt06lmmx$ZQt|Zr=J`; zaeB(eZ=)OwFO(z~5^dDmMAnBDFW6^9$2(CBt{v zd_niE$=g#_nJA8-unJ6gH^!P;`>y)I>d^r=C2r^GG3gIqE96S8+&P{9Ar=_e-S)1{}rVZ=XZ``_j z&)$!k!s?aj+D6Bt|4?3~Pf=ZYlwDAXnKGHBW~M5Y56)jRsg#+D#0A6%6Rl+OVMQYi!l3;~p76hTFCq1gq5W^bUO*}G}FX}ambq-#HESL(|%7VBC*TLH?%`%QB6|3o)!I?*oAsvw&}&9C7Z)lN4e*tPxZ

  • zgyi<*Zi!rYj}EP zJ!B}}-a(rvCt@-lLI$wMnom$!L`4f%XC&<(Pt|!J(;wGsGErx-_}#!)4+af?ynxp$ ztCMQVZdx&h5?OBz#wA3B(cTnd>$o-*lfFf<;BD*tp+^|~LJV6A@DKyP2sx65l6af) zLJi^VdKiQZgqp!g9VGAr20aNwrb6-(SQbP)-i|CTxmK-H*6yB`SKW{9RaaD${@4r3 zP8Y_Xk7ggr$~p4s7iYda`|AtepTCs%ZBbEKdF^9MOIt_Z^t1<#ksAR?t4eq$BA5H< z3JQc@CTkQElSL~AS=YOSOsRFN=q2&NDWQ&BI;XO|4SiEr6QTjEh9`a(2d((7_gm8} zXQIuGtzNb=T6?uoSw#_>{oFvXe^10h9+FBnX76xHXk<+bYnZbs8uza_XABx92Us)` zdwA{NKg-O>*njlk-t71G?)~uNqq)a(K0o>8d_)(OS-Atn4%IK z^G#GjV0fM@J|pFYWPo?6-M#qO@S#Y=3CerCrgV{tLkT)(%Km&2jX!8WcuQx{f%|R_ zk)Thul+>I&hcgdmAN}MiQW1YJC`4HP4g<#RUqf&h z#2q*3i-Q{}Zl<|JB}?=SmdA$6gyj~FLbJv9A4e&ciT0;9Qz*%vq(Z|@SUob1%GyD_ zfaob=JjGFJnFD9R3jzpFB31xN?_mQah1c^heselE>qu_S;lJe^I=nyg;DPMphd@*( zPJeawp9KY_V`!Rf5~%0go(P8|q^(dy@GrYHT_|=T6)e;s{n+oPQAIr}B1$a8sn23m zSAtGt^gksyZpXN7>%m&^rUOk2=wZ1NO(miugfkSv9@AM-T2hdI<4R%vwe#oBo%-vs zBOm2vWoBjN9QH8y?n|m)*LV_uc28 z9@+81ANOUy|EK*KxyL?R^UHT!51v;yHg~mmb@dL7kI#74!U&mA#GtH~YQcc&x&-xK zT(r)qqm&|#*&?o?W~ryQk^Cg22DuM|q&-}u_pba}fsM|}IGlGAukq}Ytj}|g9L~!A z%juI}$=ea9(tk-*4~#(zEMz^_N- z_tYfXMw4vW^r9?`Ehxn1a*E#siJv&;$NyLQ9ZD{Slv`NGcM+{fu;R@6pIeofA2OKU zR)a+&n&pUJf_d&$RQizy4bTfNi8fLx=dDJeOoiQ(LVLBY1{5cv`hT|Y%lPvXTX#q# zHg>B$Mkj>yUYf@q-80zD+OmQ@B!zhE5Zv4X22|A&?yG21J7d-O*o$D$JgZBR;Z=&s zR9~F1PGjn&3jJO)yzL`>Oum66zu`m}Q1-r0Rd5 zNuq-LZ#0)CmLdOP(ZCQmRqbjI2al&e^))G~CFT zWyqu8ct>0jZ*ymuZ^GHomKS9oyeq*lC@ScN5mh)L6j7p*@3=^&hNNaRRmKZ!ZXDNO z{=ru)>OayZii*nZ293&Dh{ZIMHB3f~-GOMpu^~JGIwC?1$fJ1rO_u;A1FRVVfAoYV2bJ_nQrc(ef|BEa6o!9WdH!8v_gSH|F|i*j%XM`WPH8G7dq#70F4~D%BQ+z_Ed8=opO!rHNLAssmy_3L4 zl(Wm64+}mrzueO|I}={kfGvUB7oq8XlG|In7m5tD09-?IyBNF&1_5bw^O$lw%|BsyR)h42@t8IY#Up9 zI#0dfkh_%Bl}7JmNY}5S$Q|f1@ZZ>2;3+y~W|VYMlH`kRUImsD9TTf^3Tr$~m$aGo z7kwV*g3Wd=Jl{=We_?A5uUV=Lhm9M(t`Mc5@`*>jVU${R zBkk2?f{<79&^)HmQ=6#I zjGCj!fBWsqik_9;R%j4&M($Xu?p@{!D?r@J%#FdLh}oo?6KaT~$fYjco+|AI^>lPt zT?<{szKIb%*u4}%d@$*%pD3xQf+^)&q;nw50*0Ym1`TE~my0xO>gZf>W?0inlEgC} z{5RLt{?yc+#iJoAKC7$S?GN4lwC&7J|Ca7+X0;V12xz<3(XP|Z>~__4R$Yhgtg95{ zA@Yh=KvteYf`9@6VjvRa8RRVlNOL5d` zXG+vdvvIKA0k|*`W}&5CdqhKx*3lM!t&1=tF%8gK#IpqA2V@q&@CV3&`eP0xFM}P{ za}NSoQ1tO})p(6uv2w@)v*tYwDbe~VWTA8L=B|#YGQqni2WRJdu?0jjM`A?Wm+}CI zA^M`wW3a= zTS{D6wM8@{^ssxtHeC6oab*aJQ8L(4fhuD*!N9V7Uw8v>0}`r^jfNQ}N35U%K%^2d zFGjIGJtYQy>FRg3HCI~7N(=55)oSJ_8zCq~uN{|yumsT|j zd;NhEz8j|-=Ri$HUvM!BFbIU0v&j}vI*51Jt!oe;=kKsr(`xXgR^*JUJ;N&8jIkIu z5KJlX`EJyvYCaZjZfOXrL((d$Tv1VzowGF(l!Ms315ROf;J*CL_DM%s<31U zap7&6ea&bI>w!#X6<=n1s^Xd>#wTJLYg#}x3&amP z!6*gaM2wHPh;X*#R${B1huu@r=E50G^~DyazyoX$-tvI>I3tQIp%$^`wjdN-#wIzW}HY# zj}du)&-qzeA@t(H1fpHfxs;hHTSR8`86l%vPboc+bczhA#{{pQVE zg*S_e%4=Kfot<5tz`U}q#gNn>QtD^~{%!%K#as0>U=P9B&_X}s1EWfOy{Zl=9k3GK zx47!s>W=eC`HoPk3kF#NArO%WMOR=)RLyeM-@FJlOa{nM2_xXH3Gsk4MQ$T##>)Jf zYlA&;7VUNVk;lXXOC@W#9a(5q19pO4&|WMF&Pe!uymbAa-(LLY{E4GyQa<_QGqX7( zEhRPW+bdZ)XRcnndgWGme(BwZJyd9TLq*2FscMa23TV(C9kDn%qM?22>NxEaJQJQof$o(P{J4jD*Zy$NY$D(%(- zF{=jEgJ}hOI00~_$d4osJ@0+iVSDhf^oQbt-2B|^YnT6WKK-OQ^>o&k#}A+Qo%!t9 zPczadIXBu10P~={$(qyka%4IZ!fkOtgFKN*ro~}3VQ+AK|H1UHNJMh18Zzzx{=P;4 zh>@8TN`fBQ9^O#c9gI9)fXJf5ng%Z!=vgUtOQHV@O;FPIvrW7QjDuYWb77ckbLR%(LX)xc0Ym>1nB{$38uL^p7XL&=mQB;A^?J@8sp*DYG=@ zHazR+bID9h#b+UysFM_+xmIwi9Ox z5lzKbM}XKt8yG@hvKRn4ae76C}uMP6CPeG8c<7O!#6D*>8qYA>V@+ zS)!Z9MqEyNyS2VDzoa1h((ZGa=Cn+6=HVlsoo*K)s1SQlP*7T0XQ{4keg-c0xjoZ! zYtfJ@L}Gs+3qsk5!>l4B!fWExQ6i^6rs8lBl?fHWbb7y&4}7oV9EUY8X~f`Hoj&Lx zV;8~}48vD=WgfoNzZpuU+{Z7SKK6&-o;h~PoOaZF{2%`ox3(AGuc&?Wq|3c~ZdFAN z3{k2oc(@JupVVbpg=sO-iPV7LItZf=*c_;AdHvhzObRXs z6)XU zs7oUfUh!Y#U?PSMuRMRG-XjU6#%F8p*R_rW5dFXaa(mrC5p~`!r0bM%XyOR%u`y|! zydd~8vK%4$CGicR?FhK*it=Hh0rxVBU=ZL4=M#;r0NL0t35%r++iqQHn)ktuR%9)K z%})+xJUMZs5dS~&^<@r6CW*+J5H2`#k5C;?%ddamG>!{{&K!0k`o-16q5Hhhd&&}K zVZz~U0MFo*%_9?H^M-r@Io5=mAWuNjkc%)M9K3*Spe*A{Mlp7tt>8KdR}SKfCgLZ2 z4I2ya0LUO)zWvp`)>nAQIIw}R2l-3a2J*3qI)%8f20UTE=E|#NY#^`ywZ>PvU28z4 zKpGl=d%f*bsEWH$qTq_%&Xww@2wLIM*Wk^ko7yIOXPsMuqdc17#RZ9SvY+!KaM|Toc$;GiFQDNYN zz!@S{lYCenphWQ}^_&N^$(pz}J_2}WL;(_&v~{uBXI3C`lThtYg_ztL{S)(J78P5M z4<6V{HsI-4RExvzVTdpKv~EBMCcgG$V_AJEclawNV!hg&8+u~r!jKl4p?%9Y1_WZ&23xLI ztUisk18r7u(u9l>Vk1+UY4%en8xGh!*b)4sz*w|~;ULy%AI5^%)M{z2`XAX<_SDvO z#s!GQv6I%F#7@$grtP$u{sn#PoBPszu@mDZ@rs?8xQ?A>+KgLot>Z~(5==3%0Rvtz z7_gC94Hlb(1QG%vHUVPak&plh>7KRUcO=p@9Ui1X_nz~uzvVuNL4o^$g-gP6z&V&w z65p6M*UpI{xswNlc;OG9EBcwN^^@Q0|AI zWuUsyrXYN{lVFb$$T0!kPv&+P8eY}+?I6Zx%Ix8dD`8Y~3XWlxAsxRaXvhlt`O;F> zOsFo%*LsL^aXKWqeSwX8s1HUj^g!eO#*((M+;kAjO90yclgW2jGl;NZr^4NZ9zZR7 zL?>J_-n_{B8amjQ{LLg`qycbQl067g)2QJCNmi%`tpiHx zlkr*!bAimXc51UztYvPg+sPeGHR~f*fN!1RC8UiVGYu|aWN%fozab|GXG}~IOI?WI z;_buurFf-bG16Uaza7S*<3!VzD>O1wy-cElX&#;oNtrCg064hD;F6*?DRvqPDQR#& zaS=Lc92TnC4WqqCqNaTU4|&M682TXDSWO+BQ#VE z8Kkh4R*(my4he0Ytc40AE=BH#=-2{%+Sb>+$UOH#w0D$p8cTRXzQV(eq0R=zT{Vlu zS1=4$FS`TJ9-1@=E1vCUKKcB*ZLP{34zwf4f{>@l<27@=<*N~behyVhg8iDnj2~+Q zcSayIq&hV&3>P|P2)+jyGQW?K@#fixMgqy90A`&a6ef@{#b+;XU81foi@9r z#aLNkLX@e_v*?cbZa_s!IU@2E-u5+{JFRr6g5o!Ee4w37A5)|Or@ zhA^*CZ`Z9AISjuuxrL8(`5pCc2xJ(l;<0hss?pjeVg<_wt?UB{9*NcD1?qP2)oRY_ zCSZ13yM;(u9a$OgZvw|cp(v-}>Mf#s%Cth)fO)`$k>v>S);|~s6T$S#DWHl1`H1of zP?skXTJVL2kXw4YWRxk*rudNS2r!x=<=0WO0!Kv1{Mdxk)@3m@)|cJQ$-VVO_SFj) z&%BrR_M7_-9a)y-Z(x{&*UiX@7N_D4CVF6ml3@hH^i!) zvJlxAi*l81fn$Pjg~a*&F5GAG2Rj06xxyb9w%u`HDwBhK9aA{q@nk>c$}MS-^~+K; zIDDPe&Q-uU@H%ZzVGQ7C24E-2R?1=}L?nf!dLDyB`$Fi@LS+62{+VI3y}Pr^Zft&5 zS#`Idups;V2Wjc&KI~^P0ZHXg;GK+resuApk3Y-E%QYAc9o=0nbE~-Q3SQZ_o<$;)EJ%_Tg;A0 z_u2$ObpZlD4v8p^fyKel+GEP@zvBc2*cvGh!Kj(n2_FLSpl3~R&xnkV%)|RBJUBhA z#N!lNLz>mcm}9QejeJp>HN8q$BrC1{Kjwg?AgC}-+`n1PaHdX{N1yE zyL>G(GrMq2bu%G~NJ&wN1K;$D=TZ=C5pe;v5+t&fNQ^xI#g0cRk^}@o99N>-v?+9B z7zD-GhFdR11(eN6;2}M;K&U-X`YCAL7Un66Ft+??8mF6Xg^aj6LUF8#l5z_5e<~(B zIy>5oj~qGL-b&r`$KUV&?e1b60D71xNfhO2(Cb63 z?e^Y5&rAqmgwuG%NRq{=4-v1X8u17PqGFacxuldlwi}^u36pEuOe{(>I&ok5wnWW? z&W%d_q#KUV&>;!MY!XW;qNUPBJsNyV24-WM>?J4*$mgiG==BVCo2%O`qIO65z1w;D zw{B!-Ub&Qh@?_fE`*#20mp}j22!iBmBKIE|7e3GUcTQo2p(d}wXzpw)sj>8ruKG88 zI0;~eP?=y)j&hd7Rq>z(iBSuL)1+4)ROnUDl_*jBF42J~_o&jBA`uN3h8eAZP8h#w zVG4jwL-0-S^uRe`Md;gr%rqEFPC|h>w{Y&TwOWj|_2pH@`qJ{^J9&jSvob%qcJ*FB z{;1;c`{{o=b1@?$C+9|PUQtz5X+?#hvd&>19G_jATjgN}8EFt%8~`fQq4hxDr^z7S zdKSl9r6(CWsKlryTayb){0hRcKi`PA6sCzNcekCd!_tHY`#saH_S#3q6}R)YWnFpq zRNCP~@0>h&x)4_Tb-`Qym6iQv_RV``59{08P3<;|z1P)m?XX+h+RW`1lhx{Q4lMhX z;EGyN91|h8M@LqzOjMLX%rN!p>jDJ(BFb~@3p<6gq()9EBZ&5A4k8V~J7p4C$^Z56 zUlq?TeUN_SKvDe1NbpBnCwOp5*VSi%l~dBNS%A^o!yY#Svc9k35Jl8b40ZWSXl=&yyBUNQ>^ZfTuLvoS4STXvOK(I0l=AlY140 zcM_yOigU{}B5WXhLJN}=1-A!K2_K(3QihxV+yO#<`^^&G000R2|=%mSK9)|3-+fjST4|` zkUu%3au1j$4T# zBJUFvqfV~?UDhW>)UrhjwE>y30zB?5bDomf1qxBuyZq$UsG?3y@QknJ$Mm&+V4|SI zmZu>7g|QWc6U6uX(#K+28IwU?R&#C0%xU;u0j^?r?y2NN`zI#JeM2U(z97)SsE4g+ zKcTpT!V#!CF^z$zc&On+ZoK|=Mniqe-8n&jkuaQsokgEt9~Z4(PLI1mrI)R>N|*uZ zjWIH)=fwDmk6X_H*+o2UK@lC9*FXnDX6^ou1!#9 zH3q*kZP6Cx4^|& zXoFSzGrKdN9~{dNLmVITWSB#yxxVoX$4t!~!+kwhLoYL>O%W0>%3!^=Q)ho>a$tGt zPKp#v@i|*`-o`LfHtFz~;(Y}skFj(QZ?Bz-1yNHc9Cd;{$W?$>~cVo1`24Nka2lrE2Wzm?bEJ>D^Vrf=^O>UaO|# zPH2y)x`f>Ak3bGtgZu&qi(6vhX_Y+v_EJEd^7w5@E^u6N0L%OmT*t5n7GY8lF0eC9 z38m>aFA!H5w91NBN*`_Y!GF7L9iCt(p@0U6R1dqu-P7I%-&H^+6>M2R^D{P@q;z3q znI#@OM~$%6*IbTuE^Hb6l<@2S8#~$t9Yop#sM>`0+%)lMH8tn*LNgewa>$r~+V5bx z5M}XIe+p=S#fx(wyP)BrDP;(VI%J#D>z#j5*(MySWrVl z@Srfw^BGOd^lWDi(kVp`iX>YaZ!7`yRb92Fo^AfS^&Zh zW{`k3QggT$tOHU}keerT%rh195Vo#VNC5h4CKp1UWuMhLW*r{Y_ug!3Yi+)I>GZ|AFAo0g(B~y{ z&#}K)zldFJuWR?JzK0M6{DN#tajg;&?@qCvk6LzeqbFw+ODZk{IEj( zO}8IK&rdUI4a@5kA zGIlJ}a@r0a$#T^})n%6LzhZ51U5GL@7}UTgwrNg z6i1*~imm~cTRApgHO8mt;(*|B@2c6P$2B|Uc;<$K@6g)a2Wmd5srk#FcfP-S&#szJ z_I-NztACz4_wQ>rTH3oF=|@dw(}V=iT*?$isU%?~IBIJ~Ciq35$VhnZqcc?k=TwFUdS zbgHH-F8J^P*yV8u{uZAe9~^P#APGj5JZN-uti-d*sG5#0hrEseYMQOQ?ht6)4{P>* z^zngT9XWdHyHlr59{b0U{a>9udh**dXRb6fwhlkDPAamtjiRb0vI2$kt zKnvA}o+tFGJdlMQ)nLGrYla6|EMKMlq8p#TJUx*G{}k0KnDMd?n~*QLGX2Z|>7#Ap zXhiT&;Lx{Z8+6HESi05oHp7#-^GyL!awpo3wXQ5eC!6xzE&!}X!? z3giaDggq&FZiik0s%!)rg+I3_s~Lj!Yn?*R{+ID;YijE{qgWt0*cr!3nmlCk(3#Hk zssEtUr@r^5!3Km8!rUbg$XtZD z3v?Hfj?US8pRR8U>@;nsow1B`bdL7=_Fmum*3vk_8-H8SSW=@=|Eho9HrYQk@^rAj zx4o>QslEXNS^vfC2L}$m`}=)=$T)E1*zvE^~dwNF)7vRwJ z7!$%MQ_0(r4 zE`ELb%$3}$c?G3+DjHg;z_)}{dreanxMP}TOomxGrRA{Z;`#B>N78I!{FYInZ;8_g zyF5kSmc}caG^yRhT8ab7uqXqHtd8-v?WQ8DOtswu5cPglMR8$4cHZTzocx?iIXAPu zxs>&7Zed};%Q=`jd6x?duiw7gsDz-OB)1xgE$tw9!MTYg{RI++?CllZC22~r@O~?2 z60yXCsxgLEw)go*5>^dk_OQ04+uUcd$EaPmMmzqcz#7X#GRn)~zBFU#B7?jmMLg7} z<(M}1-k~d+ToC5zf2?Sf+bnz_@HE|mAF!6oIPib{KsKK9U|rl7#{-1eB>J!85G1GQ zCyY!slM~Yv7r??9;w<>ZQI!xj$u+@Jp-?E~KmI=TIh+Ykr)@MBXwo>)#SKW!i=W4V z_(sBf79S0Xpdwfr9S~N)$PJJ8wcV{KS$V#~R+sYR3d9f|)YDo?wwDPYqrOn_iH5gV zSM-;7*xr3L>m1o~$~AkC$4c+ss48!c@o=#hj_EbQR3By^C~djkW*v3d8{Pk9J@|TP ze@HhB=3(~2nlj<3uQf+$HSX0_eV3SjP~X*WhZ@rHa%xhn8MpS%`2(I#*uTbGqqHVp zt+KAfHy+l7#^DEewBE-4ZOxm>38(18cmwV}0D|2@8>{k=1}GXlmElPaNRTenKvz}K zwcKHB@J_DYE1j#&k4*zly6~*i5P7i9=h1O{S7P2(oU({^__({?^%%SUs!(ez!6j$U zy~z41jy}=jWE7BofI@_yC=$i0rBjh8xWhcv@U7b+XPe=jrK`DAvl_ zxLPzqDCo>F(`P#rphy#u;zy`!Hy5k@DjR=1X`$%2*VPaSwk&q7`)pyLSZ+}yiY-R* zVo-jw`+7+*K}km{i~}5XS2kUpoJe*6v3Q3HEeq(c3l@nBvD|pS#+nduM_?@`sOg?w zU|#*DsZl)78|Ng<_3DT&+WQFPBAgRW`1>Widqc#68tbz9H6kyccjHxCzc!=q6{FUk zy7`#_N8Nx#;naSFbG4>o1@1>raiwes-QZn7(lQ2`N267N34}gsbCVJd2=1SjSedie z%=vh$t1EXztgW!cDHZO+Fn$pORp%xRhdo_}-Pp;UBbv@@9Z9TFJ$17|1r6U|j+@@i z=J0Y7>Tm=kU0*@JzAA$47BBbJl}{2IdBiW|o>C(c))G3U8nYvB7LzdLk;#s>n-~CE z(|U`!>DoA-peVL6HREx)8FR0NbZV-fu*H^03**DhCHHL);;v9^Y>v_9+D>r~)?`&K ztOYi+s#T_$n>fLZ;T59PVhnYLNrkEFtvnU*AuEe$hb2QLgIlJ zUQ9&I-t{id$1FWF!A`H+yXagKw8^f|7%=nxF6gEoE7X*S>?J$%dMal3R7F+j3S_5cZazfo2HW7Lw=+i6KUi}(K&m_ zA4&7hVBDEzfM>t`FUX@Menll?Xd;TSu~B1u$x+|J$8jOp0UH3e?S=PGn2QGRSkR>@ zK}S%+_t&{**l-^OELXQn^A9OV1Cu_$U;P4uAYCN#Cu!!?^#PC;SEZ+x@LegYkmwWn zJ}v_UUO|wEWL~G#v^9(L{;|<9>k~`&pdZ_NErbQy2^Y;O_PDDF-#%L;yAVjti=>voc83h>|at#zG^>TGr!w zDqBj%hBTrM3PY9@w4qES)Bt4J)@SMJ=zH{i#f__1&YeDX^ytCAytgl7|MA07MgOT# zOS5xw^Ye>~ZkOL{YByW@`Ugf_9xp-*1|#`0Mq~OG3gz2{z9x9z#Qa3FQyP;EuMqdE zjRSH2ZLb)I)X&(&G{%$jkuN-;tT_|ZtSEQhAJQW*I%1pVvn}Dx0Y3^2PXUQx^KC0e?&_Dx)S%VFU~9vTL%VvTI#FoZr#marF|IA zJe>K*0~zms_{oV=f6vY>$SbU@sJ!3VGc@#UbL8nK;r2P_Qj`&M7vj`dDB7TYi28mmSiz0L!tAWPqD%Rw&z$=DZ{KE}KYRA%sgoDK z%RN_cy)ZW?>q^#@g^<2$b7pjU*~jQ;jY2XIAc5aR@rt63ZwTe3@}&!lDmW9Z*XHzBJmvpnyUKr}Oz$|%z#?dMH>qv2{c#ij zi#AP~ZIkY1)0%F*D%$m2wYs`%ciXDlCPrPmf{G}IC?JXshjKY`$UP2>Gu$9JzzA~) z!whrJ`@ZvB{eGXpE++i}gL!$L=X-vRo;Z!Ya7-zl2{?_mGigEuO~YR(;IG(}u=Mwt z+q>EyRvGS9+`4h&dO_}~Z;t+T|DL~W+x+P#+YbMJ$M#*j>LJ)vzAp>|p^bH!`dmx) zm`Y#+IrszIYIHR-ViYQu4#C4D6PAi>s)KCM@J@@jdh`zKZmz1C#WGWk$qcL=AOUq8 z;qzU%V)j9tC;b7NdkW`tQX~SHg^)ZI)$8hOywh#zeOgs-sIK6p@7*dY%=!LrUmW;s z=byKHyycTUF@ouRK=bl)uU#*=U1F%NZE7`jclX-H2WMv8p$KRN&K0Z&PHrkc6qX8% z^EE^^1yw#gpNU`P0)q8HXEwjGrVN);G8xAKNrB;}JT(bZmem3R)AgChBgl=oY-xfG z^?(T2#3XKbXTZH( zy;gA7@TjG^vHD3zZ=cQSiN-09XlON|p-2FBOvWV?mXfqoP&polmOyL?A!iI79w_xy zF&d=gVmuu)$J{ez4M;TXbFQC#QTO0sWogOvqN4l(hO@5h-nBh@+tzJ+_8mR(k8e+3 z%sGE4_xAN0d-AO(rxIw9)|r6bY{rV5Ux zHVQ-Vxl|TdWT+`ntx8h}urkH9fK0H;aoLO2IY_TdT|JGJckkXT$v=7E@ZRlz`oph& z`%(6%JF<@-TYu`}jk_gfHI3a}&#WHIA{BujyPt|B63ix&_y~NfN@1hNlE8j3jOiFe z7Gy}FAV%c7NERxpwJMlcHduVmP~F_xY@S`1T)>cYI9XKEZ-z`1UJ1b@=~w1j5YUhy zzgZeh(B#-)F;IGNcw8jePhBa=erPL$pXAH@jorGx!W?+N4wCVSG5F)JSltgHCjYPy z3gnd^&%#Hfn)9pskH!r@{)^+sR2Th!U)eD@DzGg7nN#Jm%)mW57DaChheON+dOL+1 z-keM&{L0G3Cz400auGz0o)SL=IA-g(zxRIQh=P1s<-;eUJoe^gS=*$egq9OOBx3Z_F|k)e*-`ddtkK#Sn)h`c_7mQKp)<*+<;52C?BIwv;F7M8r8H@k_mYLp4J zZDC4eB%lq6atn>Eb~?ql0trcX(54A^EfHi^Kox;r72zfT?ncK|4e%t}5G0mTU-LJY(ZCUjIvINl*qBT7baF zqcNCW9XkMEo)!G}LINNp(d32$X^Gi$P8nNzbDl&~L`;iWquL#Xxx|l|yTmsr4{pVe!^@yN3}a0C$>>y>V~fl$LSh|fLv8KP(S9@x%JDc735bnc%=9%6vWeO-Wy>G}mE(Ou1>)aG zo^-+@2)Y!e#A#j}GloHh@I^SmT9>$D9Rk5M=$Nhmq9nbO2!C86+E0ng&)8hsV1zJB zJ@{H_!|)sESRIgP1MG6(O+qLk${`EY5T;!6h<>sNeTkk0uSGPlElO3@bCn~FzdN@C zb}SwXA`6e>mIgq+uLm&FYUW8Zz&JH@%D#M+%nWMrw6<1-)vf_3pFiZ#urqpZUKteT zM@pWFvZb0QGYaZl9GrjHY@6J}J`AA#HeWeF%G@L`-pISDF3SG&2d{aMQs zW9_}%;@tf2&YwBG=U{gB&d;{(`$D&4n7);z;AOC9=AogdHT6zpFX&_HO$TfV8z=?z z5_}Df7MOiyeH0ATMygEPUOO};Kv>+zM0Cl$J`&f6D#dDAQpZB#Ki6Wx*Yht1`>dTk zm38H}N^ckC=X`Ve;E68}762xG;5@p2-<~5UzrIkId+AR8)jLLGwXwBx+-@InMpde! zy<-xi%T^63rrX&x8cwLKSiY2iu1v$#q7R3qHp^OEN|>ruTJW4h!apHX70=nS&kr7v zFKR-0@zQP^HzpD8sB1RI5WXFsQDDAAFQg|q`O zyD3n!G|AuZTL$nmBPu~76J4I47#rxf^mR7Zbc8_Ko!z^6clMU8+qdrAz3=lc|9S30 z?$v_4!uySlU0u&C{kEy8SKgoo)p!p*k%TE2Yl6Ora0;#h36IEE^(djrejxoaIpTnI zY-A2A;drM3k5d3uJ<0RK+-3P5go$ySy7N@PEj_c<`G{D@R0sGO`^2<)o}fa9%QRrM z4a@hTo#8e$YKF04UDE-PdTGulGMJ^UUj_uCkVePVIHPMpK|-{E{shrBg(=|HXm!cW zqANLPPaog={;{1~e*N)|oge-37r*)NcYoZxvVT#+L_L@-Jkm>bUN)1ZD)Vzbad-y z9cOiS9c_2&Znt$hR%_XI#Ni|F9QeuGKm748e)Q9y{knpIz$JEr!Dt$r zUi63dw86r_$ybCLNBu0)Bp_W-^}$zpG{aGQ@>fy@h!yU|LXtz90Dnh)PdHUd z7I;B_D+-%kEaqd(KG@Yy*({C&6Y{H=h`pky*gI(E==P#-!5x~kTJ1Kwd32y&XR+EX zhQ98BCtYm~mA5Ky+$_D(1YR(|awf@tpxQn;f2p)gckhe4jrH|y-F?r7Eas`_!8ld$ z=0!si77@#Zz-0@GfCpE7$=ICL@sjj{QMZb&??FFB4`|d4b_PJIq59>oGl6n4AqEMC z1^%{$^I({`K9`1ILR!(&~2V`E+AwQCnIo_qh)@soOCSl=M+ zr%s;!_|jjmm*2j7N2_gV(slG3Og4*|jqM7p%ZLiK7G7ngBPA|&m+(L^S~zH|fD3Df zcaFPx6?e4o6EFv?>VLFI!MZaBBegSJu?d+;g(*dXjly@Jdc&)x=of)hoqa`FZJ3i(d?eA@G?`aku zjkX>?df?!(gGY}2^5^dyI&kRl(f7`szi{Qk-#@RYxP7Ne`>3_^>EI+(|7%pVk;n#W zvQsQTL13ajdBR-ey>Mxu^KxGWp}u!UI=NLCF@l|d4IsY5I7?rOPQcyF-=LuxyM5H~ zthf5sjccWUc<g_{^cON`*;^vi)E|%BTwbV94(O!dHh-(oHE$+TzBm`(1 z!k&O&f<}zO(GU7Nc^HmVL_boJCx)1cbpmf|lq~qgJmmiuj|k_M2egm(`wA@i^405i zs=m1Qz+f7;P0ej?$V4y@24jVy5U4W}!VN;68Y-Nus25n)0Z|ilIE_{m8yV3@j4iw{ zur%jWm;jrr53*$*>wndWG;^`#*Lf*08azfI9tF(;QAY_z5O;$O3(F*rFjXT!aw?G> z=viL~ADR&-Ue1LUcLJdqi}6p9pD`67JRpL26t5M_f(BEkN7W!Y01u~GR-9u#_?-cv zz-T#y)j(JTT!zk5JPi!QHh~I|wK!~CD!LesX2SDAXxe?hljEWX9#Il9t9`Sg683d;LYX78Dl*Z|jJL6@t|4U z74Q_PPs_(5%G9J6NRNbv8~-&E)f+5}kOqwH>QWY-dBqTM;ZY-SH7WQs(i9cxgIWWQ zQgNNnBd;#O=VG&9ng?`%+X?f6*fwMFlO|k+x%qc|fbE|XUOXO!aZK@jVsfaV|eN(I` zQPbtIb&qY^wr$(Cd5>+|wr$(CZTpkA0pV#UxC=GHtoM-;M zjoTVZ?9o$93RXnLlDgR?gcRo;$y>c!^2qJ$zz-BkZ;Zki{O%FHYq3)LUD!}8^8k(< zr-j~be$>B>Zsv*xMw^##Pet&2zW?C^v4ov5V(9ow#YTd~Xv>=6UX115=p9tl9oV&7+&101PUjG@@r#-|qKN8mP98TDk> zumX!yx)+DhX@v}ubuB}dX(**s5fFBx7OXVXZ*!ksidR=WL8j5(SEK^(X-^UU{yyPq zC`}m6bKj}Xlo>=sIzS=pHHu4-n!R9wS|h7Z3n!2expBF_U*X&U>Kbdi%FZ$p&?5AS zzcbz>?1C{qdbAZ28?eqcNc2RdxKk;UfY@a=Q)DOlZhJ@@e5XJER_}BP!VHyy=`k-_ zKko;x&5aZI#C{;&zmtOa^0l8D5JVeci;VzPVLZW&gxt&9-09??MjGzxD6E533K-SA zXv!I;KQ>henx4_J$=g<$LSL?}12e&In+BPBUv#2H1(KZlG zUIp#-zI(k~oV8+BRYn`}v zs3o&Y*&0c_L|+fwwt5;P%xvXf0NW_d#HGcY8z{>7xdfWh_f>a+2}}B9o7e$o;DY?k>&a^sB+vI*fo{tLCo=wz9FA1@x`aeZMaZ9-4|m{vsmQ zwwN%BAgO)=FESoW@?oF~p|pXph38cu@z%#tHhqbo>Foq0v2W6utYx@u)=v@Y(`l@Anl{=XOig$O2f%G%v9bEEr#T36>+yRa`X`yX z|EZ8lFlxBUbUFcStoAXOd2H(}HdEi#_4*unuISbNxoXeY-z9pD>Gk?rN=G`~;rkqY z%>5S9QmO9V-O9(COTR9Bxj*f3XKXJAjK152ESFI@S_R61>r=jU;1NM}lndi!nn5h8 zp+|P6lX*{4clV^g&QoJ4Nim{pX)%3>dxhLW-qQq`FK@+5^VY<=-@k87JmBw9>qHF*c2IpB>+Acmbk0;7gUxf_ zzYb5A{e3qe*86#+sIh*X@v-u<(=QO{Gw`ep*z;EhWhdNlT>fE?)MQ|! zQKwo?A=@oY$M%4wd9eg9BmM8$lim4flMB!vlzYKthGq#Snd}kiX>+ZA-7ZMO3K;V7 zk&FWE#sh4TTfrPRZ6PpmGp6% z=ldWlPb6nBN5pB97eZ$?YgS3}Y7OPpx8pe zkvV!Q@>}U+^0Lt>FW;2$p*{2Bx0=*kZjOI8%0kuqAhNCZ!PiKF= z7MaLma4FXHo;n9!|7kh3di_=MzWXjXM0hx*OPw_&x;fcTGX)!2qFhFYqgj*h2y-6e zN2K8PA>vLGE@!DxoM9PCV~V-Rx1$-4%K$ps*nK$oJ3W{(+S1d`GB(os{s@h0p0LcG zD+~2!U@A51dI^(Jm1_Xzm~cs~y?!Igv2LlfYZ&S-qyVl}9-_Sp5Y z752HAt#+r)`@V3|_mioBTVA`X^=z9*WYk;SzqF_0`aIEWTc>+7WqapMlUEbFvJ<_!OIR=G9+)ExLZza85`y3JvYaVh8YNs zqL46^7IN!1anle|r9P{T1%>E(qOqg_M)C$y@7(t5O^I`ZF<}wOY9RFD%TIrg|H`P2 z+{KOZ7ByaC80QbcdW4&?hQ>agtk2tedSq(tcDIhg=Gwx~)o`Ev?35<^0~8m2s5hN7 zN>IIg$*O+?_GXFoVZHF=g@l5@;9lD8)>nQ5gYoyFON>EAZi?3}c; zKm;Jh8-+@}BH!{UcfHDw-}C((U#-*q{M}Ei{e6^qkKPz*sX66&`SWV6%rWep6JH{A zs4U1Qi9>}{r%imRJ(sR(4Wz%w3Rb-0u0>uyGtBeHr~l2EO>SdL+k7W`Q0Qk#(cNO_ z*sl)A4?y*y=dh4`#++ zW-a7jQ=$>)Vz}f(@P=DJ77-`)B*Fx6IY+_6ANB7#5OqglZPNRPh1WQ?H7wCrGsW4d zDLQr>92I!X3d+e@pQlo$Tx@Rpue+b@;afb;x6i~<+26-Wx?1Hne-AdZ`8z1hG{K`R zP3%|A`%>g}bnrSLX=Dp35j_RUoV1~7Rs8#e_k#)+AE+>Qq_OV8Qr?fZM_(OwHMQOO zc^xix&ibCQa0BAv-HH+jWjrOUjIR7Ch3Sg^hceukeY9OaKR)qbC0fQ>2la`(vMMZK zAS*Cj_+LC!4YLbZUHqd29-PE3syGGQ2mxn&kmwOn@|U@#d5bS9Dhj9S| zB}vyHqatcSqWCxwx(MqFSR6bVHDm_WIMSg>mV8ak;w9!1W$D2q{rnzU3J2jos-T`m zICCwXQ1u-P^UWaB3N{I)Dhpln3JiIT@}?ZJpsdU~K+XCl)B(Tpl69_W$t5^qb}F4< z{P)s>Xl;@h{7}$^^-K^Vsqt9uL4xLvi<7!4x~-7Eq|x!9IenLkM+ogiV<750g$oH_ z5=xLyg;C|h$ua^`DjLv#V)Z?;Oqg*NiK{I4Get^;waOSD-QAY^Eccv|Q>pU=WHAi6 zmMxbkU{-Kc+QM*Vfsrgh#^}LAF`!iGc-u$fAGk4c9e5utnMP*#!6ov=9Mn59)-uzS4IE_QY>1%# zXcqZd$l=w*5ewteNdB7w?X64mBm#|qaSv+$<)0x#{vs#g6}y>`LP7c3v0HdS2|gLoW!&EH2s`H zB23fO$LD60kig9i?x6nKcXH>l0oZ)th2nyfWPdyjRIlbp@H9W zKlsP=O*YI>z<_C0-n{#pOW6p`>h{{m;I&ft$l(y%vK`>OWySk)o_s<951=9+(3gAt zf=yYj{x`g6A6F?J!pp=OFjtSIYayCuU^{BV8Il8d?NLU7cA(GzQGX4`%00=Oe%MEr zpyb-T5#~6b9g(r6GJ4j_v!v%@g`RCwy<_Jx(zLB6@sfB$MLBUY)MiSagd)!A+B|BF zk6U~zrriPcErx6q#7VlSKCmUSW!T-^4|*1z1=RVtf~HV#&G;>IC=Q7~&~~^0y8}<) zYTdevsj$%C#)~AgR$>~9OSsBM=i&VCQ^{^|a8#Y)Pqp_Pm8fn+(rCGoS~y}xfjpzZ z(FPVyvVe9&bgOpt?U}7Qf$4oAz$$myI9wfE;>&*B?((CGWP%5Y(qUqkre0Q`v4~z? zy6ZW!;`R7(zX`<%5A*wqMW;KFpZ1LHhjTs<#7a;bRNitpxR!S;Jsb|wlXFr#kihluv4F{o-@Nk>_J?NlYls+k(;T9uyz2yTg?mtfA}@HVIR&0kNjdCi01nL06u1UjtlF*pU1M_Dt z8HdD8^T5x8ae(=5L^g&)`iQzd+*5V+sx+A5rAomy;UC7kTTqK8aH3ZH2CYsSCEjE-r(mET@!Fb369As3ZiL#k&i4&`1mRFgX z5?pLry1?0A)*`B+0P|<@7f@%e`YrC%3@qTTrLPi=UKwI$xRz$hmNojU^xcrnl*n`_ ziAfx1A8`-H4_F0skwnCyW6@O{h6Y0h2?hlL1wrY;XFKlEb_LWh0F9q?Ox`4%Y@nv@ z+Bwy#|~^3cIYg&I9ntF2%h03_L__wj5e0j$)C(t|||If=4<8aEWO@ zo5Vz$v6qp@I@m+Hr$rtN0}hF-37XnF`wOx*;+Ixrgee8O`0iv%zmS@&F`I;T91+O8 z+VN+!)|pgrtHu95f97XJ)5pQKotExVwBp6_YPifk`o;P&swwB3B8PW@eW(qa-7p^? z6mG=Rk?}H*cIOxc+ZGjYpn|FVrNbGEyaRqsna1IAWa_)&Wnf)dx_8U&4U=*dV94XuWUS-&`Q57)%h(~c6fZDn6ofWV^NCW&O zyudQFiO7hlhBGUO+sa-m=g1|x+g(@5f_ydEn3Pzz)00KWB{FvX=%x>cSMLqJ3pSd=4}p7FKFjMtnkoTVq{EQHSKOwvn|F6PTL65x|@Bmd@lgK~#fz5Z%!eL7@## zQc5Rye959{o{jW#)X7l^j}0X$qK6M{{s(DbWJ`wiB5ARlSxYOyzcLhCX4!=r)8^Ij z3{PT5!^G4mY&?BeiqSOpT%AzWebX{Jm*FB!Wn)J|nlq5FAPj|(-9%TIUGqsL?3R83 zCn~m?S~{w!ZWpFV14BjN)(`LxFzfXO8up{Rda3WgM*RRzX=NiK9_GYW=fMb_nygnHY=$ps-XJb0OwK+)hQXDlvstQ#k1 zO6xm{)_yp&4}iy8{gXZu-~zsjph{NIi$F>tSvE4AlRn@{kp+hsK(g_+*GD2gY*F4m+B!PK`;}_vr^$Bum$`}hLbQ+vOV^900SqhgV z!my(mxArqy%+jf4ZFpqcYX4{50LR#z+`&Qytlm~-?g=mZUsFrR1q&PHq4L4qn~fHh zKD)sVnM&2a_sPGhR^DGeta^t0^;vZ8wsUOUHrFj{sBP#IQg;DS-OzXZ?S6;}oKb!o zAY9})5#Usb>bqO^ieGn-E1HG+#E-BxNOTc+9P0o<%<>Rhh4skusP}-mEii#l^-2^F z_b|#+aZ`Nq$&T`d7YF zmvo|H!y{I;#@kfn6qPmA7FW(PFznmNIvGGrxCgi(@F9u*-B3u)l&R-WK$wO_#dGw2 z$(X6@j|r-3*FaEu#0X$tPpgVEra2qOY5~8PyvQXR5_YrVW?r@H%4%xzIqobJx|Pu| zd=3qQ2jLGooj;GTmp(uN->=x*uH1x#+@y@Gyd*?akG8rN8ZyN_`Q@vk_Lpm(vh zSB4t0ez&QaUtcTMTW7bYogV+Rf52bx-haH;f~6c*Z;Vg*7S1c4ZDe6QbE?2iwgr)N zz-c)3A~en&j?e$C*qU{@laixT{Atg^Pg`oAdxpC_*kM&NF>u`<)RM3WhjhEk@Gg7S zLObeQ0Z%jj?D6@8$NApB3N9N<1IcNkXL|P(-6{MEp!Dg~nV_&hJW){Irbk}KhHrKs z$L}g)KYggR-N(^ey=CzHQn6O-pX#@37@})$tivavAbEKRCi3cq-RW=|4S5FCas_#_ z@ip7@uM3k(O;loZdYE*XT_b*BB-R#+Bk9W%^yQz(EjUA?|JR4*Ch0OG{cuk8)@wgP za)e@htg@7Oz49-ozd&J#Syx$nIe=-si|a2SoP=Z`i}*ouUe%>$bPhyRnZa0=mon*4hV;qfsBEmf$N;YSi97 z5VJK8qsTEJY5-H^Upo2scJpOPloK%5Fbl|GR>4Yn%O7?auX9%s7Wj91vqHLNJh4z! zSw0VroEs-_*MOGJ)Rui&q%NKb(mmGWDvE+S0&uWvc5_yMd*;%s2D>K{uJ(S0hc@&M ztN_t&@g8aPIZ?#7y7Zf={G<`iG7vebjX!IlU)mH26H%!h#L^BLdIQC608T6Zl1)Iq zclZY38ZeF^a=Zjk7L4`hjBt^vLHTI4i2Z8HIUquX$6nE7={tME3{Gh0xyW04uNqL^ zsd#bt2PhFh3G!U%K{Yi^4^_TsE(ATI(%hM9aB05BZU{&qQjJ@m@DLAq<^d;V3O4gT zwZ|0dq>MXrpv~aJ7l_V=9m=3yh-Ypivh5ownX+)OrbS{+X|SNUrbe3~p!zrH=azh$ zhEdYW6Eo`(SD}gF-r-a>+c64M6j2!(;gr%QA`(P~kvd*9d>@_cU0@asVi1Z5o3AM| zf`pp~YM_bAk`D*kwp!?F=Upw_Jv2wosKDVJ*`CrXO6|@p>w|5+r%cA5tJN#3(v3Q9 zZ0nE!3JULb)xYOr59pqC3hqv1%s&s!0KIY!0-^gO9lrle?A2Qpa-Qk6I@y_R}4sZm+D1d~_5m_90SrA#Q1 zq5UE#v93rNY^su?) zj5f?<0`K}M>S9x#?+&k_lAFAO3o@{^++~}R<(Ray*w(VLppv>Wz^~tkMZzY10+V^Y ztP(#(ReLzlJP9Ay9ACj7ryZFCS%7vn9&1>D11t$p0FL9B7d*t@;G}!Ed3!dG^z$F3 z-O}aix6AA5F1R!Z5{Y;ZDbty~qjVMwMEkMBiwwCKw^m5^ia*wV&)(+QiMKvI0}Y#S z@dhelE)-^Z=ZHN+FbOk=Ud28Bo|oP%8Y7ylN5>n{;;!@7)7kyE$tfV`ah+~+VJ#fy z6}umt7gwl;q@jyxJ8RF4u6_-#^YJLYvXuFEtI_5`mb#K~W_x7Q73l>r;9VE2+k+aLEWX11^ zm1Z5j!x*p9*;NA|vZwj^2mEr9l-G)6gBFOj#MGan%yjDVPonk>*u510(R~?qM``Io zT>QYH)?h((b9+p)#r6$&*96IKlxjN49F!Fz@<7_4>69yjigXSM&1x!j(7N>}g&GHv zbW;o$24n=VO#Gj|nNbDZ?v~8NOai|f$G3Rbq`2WwYb>L6?BGo8sj$&fehgf7ISn{H(t_9gLs4r+)QreG z#PCb3y>mQ1W!EAP>65${p-Dcs!1%^?oBT9enf&NZ3m>^YUOe416$|`ch-VAdj>PHm zO7b++(sikOJ}=7Mue&$Tq5eiymjNdCvilPDjjMb=11zWqvY*Ini%;po3AV`K&HeZq zpZzGnN~ZLK_~r0c@KV`!aw8xC9e?=Ebvhg)FD-KcCnM-1t$SllHz%7`&da=G5^OW+ zPa4CfV6``ftgOGra_lQ|@uUe+W9sHyq+i!p+0?WRli^zPXPL@($&B-$AvPzI7i@UD z395JjS$#s>z<8X&KSWu`WZ!=f&@os1$)~Wj0|klB3-rwx+1Sc61ink?w`@$z`tA4B z5ne?(Gg+_KTQ&<3m%g$CfdkAu6IPfq%A`bt@?R3DP1Rdq`knn|Mpf{%w`SI_8|`7n z*tvZMFa!Eel_(~Z->-7uR^CtKfj{p$?@kwHX|lRUUEmb5eg=bgz!i;oT`krH(SH%A zf{m#AeNtk*p|t7Jy6j{En;!K) zFvb_hLCU57kyR^&>Y55G$UDb{pHJhWqV6Y`0hO5OMvwK`!!La2`#CHb0??64>MZR- z{%tY`fQq{V*?t^UVoo0x(<%Ij4iU49@S`bhJGMBG%c9kixqEQq(lxZ+PG$DRpf)P5 zwn;?r1o!nEE19mJ(WQCcU}mjxql0hVPQI`1_MHanOdA6oec|L9sm`=hivXG$_ITbv zPs>d5wc!MrRM${sMp6pX0-x%HIZ4#WRRRGe>U_q&f)@$Jv>vn#M9?&x;)AzTT^|t(RPHu z?w=^8udjmTYKFtN&m>m?!Iix%ToH-KcDlQ&Y{k3*IK61vuA#)XWQ|RLT1SX4+&83{ z1&Qo{Byo)Pk?jG-?mX!OKEKobggxLz_AL($j8`lC+R^cWFy5O%;R&6bx_3BN#y}OL9g01s$00-PU@U2M#(~FA9x$6c zxPQzC&3w7S8bR2G+XrM4U1NmYd)%es!6nHgDCXBQcMI6Be*ecD0+(lmX@pTm&`w~U zKPC(kEhYQ$z%)K|k1xcMeuxG`(2ozBMMJ*9!Sat%djh()b_zquQ@tT}h4OGa`f$+x z8#7$J^BqP80?cULWGb1$gU99jhj5A;fe|18*yorX;eF76h@h_IF=XZ z0?>qS2l9Eg$($-6PpOW$DqpBT`b6d-zx~`D_eX*ZJVoa zgmo8iX!W`tkqWXS%t8+L*l=0Ji40uf83cU*K%ooJ4PzgB`Dl_u*!*N zdc7k`W!a?J-NPcn^gl|j?h>&uv8_ic|3y~=HieIi3ICCTRF30x{%c1xs%@?(PV@8^ z6^9yqq*WQO_J$H4be+^k>cb=fu3TNJ?pM{WctE$fpiPc7`0xv;M1O|VVcl%)&5x=< z<0}WXRLMzDpQR2HD_q*zvm_MlDJxaigh^v!{oL_O0`s!Zc|uSIyAq(-Zalg?Ky3=s zXJJY{o>VL|RH|4^ZGnZx1Vd8v@DH{y?iM9G3l(T0ZCULxqYb;j^nnitU9PLx`E=Xq zEFp%S4LH3NA&EZ5i!kv(WXYH=xTpBO-ebNK_Qb*#Xb@Sy#RZ}JBk9A=QKrpYmPYi3 z!j`*}Gh}rok&PRbiEiTX$im*AUU36P-@nN#Iafxg_dQA9ekqr@d}5jmCybh`P?1_0 zg%sixhiQXcTV1nw)ah3ie%K(^X%rR05(AF&ZsHOFmXQN80LPt8Z9@AvMuNZg7JOu= zdo`3Sa(GxmP0;&ev_QFH9AfME5D{dS=i|w?LHEASYVT@Erzj~HDem%#IZsEaM{?pD zP8&HnxQiPbco*>Hqv{R<*ng0$WC~rvRSH=!K_j81`{Mi%<8)p`_`!`aS}<7i;UfL4 z2m1Wz2k9qYeQsC0dj0vOy-xaIroMMxJ$AirAGy(@RyMch__YgX8%*P#h&i>W0UW1ABlKbjja+~+0^yPP`wHuo#=4FsX{FhGCr!%aO5Vmd=qMVb%eD9DUB`vZ z!SKEj-=A`9h6V@|Q;YSv6UyD~CVlbVoSD!O&fuEUU101ZD*8G(E zE+XQuK}IdkCW*8fd6!*UoECdJUcUddDtT%AvsRNqRfW*uZqbAc%_{~V_&3_iyJI&UhV;(1JfhEpe?_~9LB|x zrRLVg8qizc)jW4N21EPlH7fHYzsF!8sPctC8H%V;@d3iXCH`^s6Z`kgBZn4A&~!K5H5TZiRfg`#d+GbhPAj7k?ffXmp~yh&)!? zEvRc?Z~ot+h}2E5kK9*{tt}{Lm_hKG`S)eFYH5*1Fk8X0BRCQ;wD6IWdr3g1=D}6y zj!jUuZg~+qcibGHMu9sF8kITxuG#R->*I-otD!S~Eio;t$ozsLX0mHpM?*uw1YUxd z%FB7ZEDjHIxifIQD>$Bdv&|Wuj_!TDTy7@Xa{&{?a z79eBbDMmFDgK(X^spoLWk2AL}{#S)H|8A}pk)Z3%?&m=tua@hGHH?PWq59d`oX9Q= zC#IXrp{4-v<8~8~kc0;)7!2U|K=!+# zU9=5-j}1xB3Dt zgI0lDUuCASS%yV3&@0Wg@Fh3db=LdEBAN;L>;Eb1EHk{Lx`(<<(X*D-y0<|<%a~n) zgKyTu=ASieO}UXae0lSv`Q=Pa>?m3y>J9jQ%}*T?LZeN3CV^tTE)7(Kd*BuiR*gk3 z%M86mz0->7HjB?)z5ki@rurBVAHz+*xU<4^0!$hSbsUFz5a!VL2UoY@s^?CZr6G4( z2*9f`4BRao%bV&ScFq^n%F<@x4FKi$p#TXor&$6_^rC9G4EgTTAKlpxPdpmO&&pI~ z$jw4~N%RP()uwt#`0WO)KQcxn@F>^XJq(6z;KyE*KDfWj;NJ3A$YiKCMz(Z;l~(O1 z7BPg)yYhBL*EX`hh~ms!5?MdHc<4JGbY(t7btJ2|UHAeyhcLYlz z*MZ@gYul>LW%iQJvKeF6H)#ZkP@v+1;;LaqQye)x_8uKEH)R5#^S=1yyIR{6Xa^3O zO_>yl#V$)C=;o5{@yAxn-bP7;Dk(v489$IgO`(X9O7Fq+=}4z}bra)bkbmjGze9p@ zB_X3lwaTvsa^`N=8@rj@ukpmLy4F@k*l&_iiZmRHR(#v5P18^|Dkh!QvOxNAEFxMQ z2-&F_ZCU1yU`=4re+Ikwy)aG3+@hg_VOJ$-r3$+EaYKzaQ<6Y^o;e!wdBqs{Gs6USIo52`T@9 zuVNiB>m0Eo4%VK0`koM5?e&^rLYbZJuZ{oGw3yOEy-2W7e1v@T@GPXuIvIc8MWbb= z7G;Da)Qyjq7M}0r#y=f#S?mvTYH75Z&q+9)vzf5Exa?2(S9_E{2=ftui9$*!cW@jp z4E6yL+fe1`G=?gsD#khdtVu6k>A*?p%1+X;W_=2WrJ(I=L4n3*{`uq*c!jZ1yq?cX zonkKgsc_euAE89~y?kv<&Z{{*;4xXt_CB`a%lAI^IoyG2?FpCFba zbFly_zY2n;P7e%c88yV>!D&*tl0o5U7fzUw2#B!ud#1)(Yr$Hlodh2dkn>As%Em{0 zmSwdzH|DoGd<_7V1rZ7Z{iXt9 zNs~q~dqJy|f?g5xUImi6Jc5#S@=d0n;kP0|h@J7|i5chY2=I%T$Z zaI-NH(a>;^JlhHyYA;MPnaO>z5Nfx|p%pCJywhDT|0plJ1k>dO9I`7Vrc2{7*)V;B zFN`<+Tr@RTmmelFAP8WF%TA?9TV`4sVv?Bq6o3*EDkMRK1#nk@CXGHnJOn@pAQMo+ z$G<*$>YZLS;^|oBIt72$=~iQ$INoY_<#zXWzi9p=nP?a*d-jdl!T!D1Yq@1)N`i!_ z5U|~ZGskAy6opvntcu=roSvJbUe-R4)Ao4n9vf>*u2icI*KFo=9NxTF!0YNHFr7@P z=5o7TPjx1K7FK-;9$4^IQ&UY^*0Q2`cDs)8?|~d+jtM&+XWt~LHt4!&0+9Qkp*yIfwv5B(meFYv4GHb0;&=@Of+XJ$fHyVkSXmyG6oHqH`(qaUp9mI0AF1#a|K`l%17Ey`l zoSOvwp=-v951AH^T+)Xep!hqnPSmKi>Pla=<5Nb@IhPk-F2w`&s2k>m3f2FB3HCm{ zdDluQslSI>^#WzpZdfj#e$b*-6)Pe3GG6H_n=igSY1_#=@n9xcsY6LyMK66R?hCLA z$wj|IGZ+^Jsa^-k%Q}WK=BaNLrkwhQ;a2LFNEO|5;=KF4VP{Q}vOh@z)ip`##oTOQ z3`Tq7R|@LZ;IVO7gLF>g{<{E<04t3~S%;C?M>Ms=5a4nhxxK9^@E*6-z>rHm1LGy~ zJ+vl#GuY)i?BgNd0|%8ivW9rLaF{Ro<{U0dL1oW%CQiblBqkxd>@JE2;tP>X-4};k zM++eij#OnXG!MyOa=;@RAV=ir>{>xSw*E_zlm@pTPmEBRt=?4YlX$crMD6@5-du z88*jBEsGNAP+yA>-#U!f@6t{BiFu?t?a{GTq9}-BL%2S}qXU?X5t58uU#DwME_jzp zNB}JXFNj_pm-n%){~Do)2ZuT`g1Q?@G>570NAF3zEIV}h6_vek@4YEp46Od5?UtQb zj&_Y*{yH zuilvdl+$@V7h}(42r6p=RwLj(@-2G`OfcePsNgl7GCy@2Z1}kq#*_JDu`HTj_Zb%ISVC5?+py2uaf_RmK{=k&MsCWATp5emS4aDx;1$^j z1#S;bq`q|p@&Zb&?oJ{uRz3i>mskj>V~s8(+5Y?OxgY(Oiyh<5p<#41kXqM_7Str( zU~s!+Xju2aves8wbB?*>b^3s=$Z?QBqkuGK#GVIcOEo3ar_hNZFHNk4n#7}Iflv*7 zYbs)Oo6x0oRd?Zh;^3H7*A116W*IlVKF{AS0ioYM4MRrNP%0HYvyN1G{_B8nJ9-Uq zav$YY%l5^274;+yJ#AIpIB!;>Pi4b{968r3@ih#rc3Yb%t;-d$ZX_SSbl~N}_YF7S zvyjGl;RuHZ$sKtyNQDO6%2h2buJ9CtReT`9(Hn)S0MmK$&l36S522diSTc*wnRvFm z2%4gqOqZ3A%T#DNQ(QSIoh+?nZVI?75`Ez4?|YMpN*S#cEz1Bj6vKlbyNZOVvC+ZDRMMaS!tn_)b@6YgB*09Iq zpnzJzayrazTk2lb3d!#@#fM+yYJnDm9W{ivWNfsl4QZD9hMUHmDJ7?nx3Ge zNVvfe(;aZLgN)6Fhl;$QlHw%(6{iMQ`KMj6O3Vk$j*1@+{Af&+8$iY~>_LSb9K})*86B|NqGKTsCLGQCuKKyl=f;ZX zth8g|6zIEf5q+~_A$@P+#=VGvX-Jn^A(7vi$drS>c-J2WPTy-48nKDc>3n?db~PKn zZ!}-3iiiyl581AFm`t96zufY9GgDB!>*<{upXBs9H*aWLb+a%Vsu@cbW(bj*;wq~# z1amx@a^m07L9;Ql#dS%52kSba*LTOQy9xU|Y0wpBW-i$PTr9_fSs6*`{dWI!Y}%I9 zrk(B8(|2_;=IwcCqrvt4y-Mmsb`W}kG=fJB0iksxXms2EV9dgvwH5c*K_zsQJcitJ zgv<>D-!C2k+cFFEh{DP@0&>f}x6dm{h0_U|A*nGcN7AI+IDvcuY5^m!lU4?81?YM- zgd(l1lPzf@FM?C%c+?f?5dmbT6*NieC!F)=aEV6_ITgM|jTCq@0oC5chzurgFjVl^ zwLri+Lm`*F(-ZXfkpUnR_C#=$KGjBA`T{WuZjX3c;Eg9VNkfRBUV}T=rM23hG8Q@_ z=_8r-Pl82$9SFMTmdGDxlA0FubyJ21Qrpjm@Z{BmGgS zJ0Tm(v0cz$rGPk$0)B`?x&7Rn4O9Y7L*l-_v^w}32BYMs(bF@k+rRrtfGMut3q9|B z0w#(cbUyAW$D)L+*)O;I`IN44_f20$U`Xu@hWqKVmo~#&0&suy7`FC3IJo;#r6T<` z_m~mZ3mJQ7jRdLhsemAmW<91U;(tY|`(|tvasm|djb(3Zjlq8+?&9D1}>y2-?&yJh~>G6|hplXtu{<_q!@bM%d zAd@2y#O7tcVymM6!%F@LT`c0~_X-A*FRqkhboMEp_)mi!i4P*S{q9@81p|4Pz~Z!v z><;vFkSYd^;TD!zDfHeaEgo~BOAe=x`SUo{z!5`By&pVT0KQuqgl=9~2M}ijD6RV- z^0Ny3Dv)F;nuTWC*U;}+_pC%50O=R6Q81`K?zgs*9hdrFhNOpqO;{1Y_k)AieK7HB zzoGG&L5X&DIA;xdFOJe#47oJ3$Z@on;VK_wLz&|18UE+wfsGXqnb#o0CxSiBi96X+ zUEX#;X3h%=b}{VWL^d&y%lDveaJOmjUN2`7x6}YXY`{t?oSYD@|4*6XBEg?MLtNpvrQ34?Q?C}fj@7_p)$9EW_86TqG} z38!D--a)MhR)70v`~F->Lz^4C0yw+ST% zd!Kyrim5Pz+E_`xtEXQ}a>SG_Ni$M5Y&kvgpvE$LSG6H>a^wJ~p!tLm)9l3u#^aE7 zdo3+)u{Y&D+1T6Jn%Fwyv(pLLS=%`(*&7&{&$6ZJhouZcg|N|K;yuW9x*^%D_k`?`UFdVdQM*h|kE&ODAe! z?QG&mCu(irZ1UglM<;G#VP@`(&&I(>Cv9SD=4_77NdM1I*1*PuPMuE4#n9Qq-h@uV z#=y*kPWit~bvZ*z6C-CjH4Ec^7yo+(FYo_&IVkb)s|5i_0D73dzIV3ma)@BZQvBGd zz!ht7`<&4-kEo3Q?Edo&{xc5#^Bepp6#OR={y!H9uNtLBfdKw(fnU{P^|j~+C+KXW zZ5$)h47M>2PEnagTiA#H|DDnTf&mcrMM3>PpcwZ5g<}2>z~Xqb;VHQ~kAE3Vvy@tnhG7Q=7|GcMtoyDLY-Z*Y|7ZbZfW!_51JZj@t~dAFa&1 zd8Gj=fQn`yFB1c*R+64yJShMSxgUfuz!*w%$5K_0wVxC!UB9IR*_|o^fLv{+DnJcH z@i{u!4_`eBXE&f+VvLiYqDp07JJRWdXW)!+ZhyL(qJbegOFb?h{!9v~>TKg{)-1PJ zrn*M4%7Ha!qpU_T^Swou+A4+$I}ruD+p>l7GrQjKdhvpKasPWeMT;a!Ehs>7<`r0S z0gM@6*7?VkG~^640RH0gt^GKcwLA;DbZUa~CFV1xOFE#Fn!A3%oIC@m%CcGo446TO zwgSN_6@!FJvTThFi2l!v(?ObLeGekQWTu@B?JaQM(5LI$0oUt(=1K9C{#@|;$I9yJr@1l| zo|3@snJ?!TRQDqB+fasPpGv7=EjAk(spf{upGl2J2fyI?S+FXvD%$6e~|es(#f z%DIXrHz8UsW3*~?t5)R_I`guobm6z0%vZDl-~5;M;XzC{SQjB)U&k2m7#}S_k`%D` zKC3sl=VB|eB(3;pt_R%f$?0F&x!J}6pORwL!koxNV^brj!XDedvrig8KzTr z@LB#`2td9FKm!8IVc-(@u*QMjb;#uW7-c}7^6;AcTxUQ$`aEkOA^ooOV6K7Rd-&+! zc!5ZJvwPfch}yudeZ*;C@cl6EP`UyL!U5 zi0ZJbeKPiBU2wPoV*5UK25%tVxIJKU1MvGAAo$EdvFwC`!cpRJ%tZhcB2VH}3(+uy zg=2q@&>d0R1EdLK~{+fJm-M_Y(~a(RM3A3fKb&!tC)VH0I8^fS<}GP*L&GW4Ey zw;f@5WJpY>nBJHYor25MVfC6SqSr}hm@1wkJ;8rOcqDxM6FJ~$B%$u8N@W$~lH?M| zGI`PeY5(wW*F>J#IWD|FE2aKIrcOLhu8LouU6JK%C6*#>n3b%Xv2a_!6HwAOaLXf;nYQ`Kd4t4419U*o|>$X10l=S}RU zb_?iD&kfTJ*3G~AUj42sGdr~NvSzKrH%Z$>UOhfdKJDLr-=#0`*llp}aG0Thp|jXO zG3iDO>Ljc|*(0XdHaNvGqN6x5NHMipAhH~?II`ebH|$E;!!yM*z%yjoX4=@=iaMIw zFCAOX#cdHfliF;ZIW9gYr1q0eTF0z6u6p_uagZ4xUZAbp7&i(xEH{NWYCK`MhOtnw z)wp_|133aYCOJeoXx;j?`gGB&sx*Q@1H$M3RUuVKL!7kFQT^Z?SKBu=*gxAWfjykZ-JWRPrco zG^fUiKio+Om{=RA9}Z`cb$j$e zYyEY;A<%A)^*zbRjjQ@>6ZcFBiO!HH7lc$+8 zF9uwOV}?&d+|iHW3nRV=A5zFf>O|~Vp##LjjziJ|j(d*#e=8GY>?CDKFQik%U?i+$ zxT%Om;|s70Sd3ihf-PFCiO2~})aTBOJRDRW?C+V#v&cRZ^~&rl6fQ;=*TFT=&CsKZ z{2A0XMjP4A0-iD-xr|{L=NLp7zLUr%Eyg+12c{?{*W;cUIGNk2K2)PTqiIfzsp(p2 zom{UPy4t$FJ4b}OB9o}uv#m3$M|c$YC`YJQ)M+}{z3z(#=L2~IH3OGYAX1nqSz4Ce zO^)YeB2$DO^ZAB?4!ZX_2Y5#o4+`(r;Z;Z72^hh`^&0o`7}ePFyz(MtA1besM3SFU zx0OUoSj+Ge1ruPCxE9122Ggy_3lG=Fvy=;zyj5@YjI|H^DD4$(7iB4h)pI#DEw#2~ zJw=ZTF6X3H1D34IQ)h|KTvquTB+X(l++SuF0rT5!3+yUr8f=QMUA(P7^1z(}oA&wh zjSe!0-6cUKyDWv%5hsZ>F*MgSN|S~u*XF^RQkrrt9IY-bGIVm!L=Jbm^#%OJoTjd(9n=LtQx}85CA!V?gAM4*T-)?Lrw%pu)u+H$_z2)YM?frfI z*O}#+(V1kSKd{Asnm^KMZRy16ap_+f<{8VGf|<2h*jeFOui3`g3pxBbHMuysk+~mv z7I|y=V)-ovqy;I3V1=%QCq=47qs8pSUfQVj!*?2R=|Bu!b(NX-!~fGr*^cdh2F zduVr!| z3PUr)Qo~~-q9cQ&0;9cSJY!wsoa5~i>=Uh%tdlKMEK|+XEYr<1tTQdMY_n~19CID> z-19vPd<*@H!iytI5=)cIvdi-;Dl2RMjl8#js$Lrgy8NTBm{To;O++v z?tu^>aBzYJ5?s&0odCfDL4vy_SdifEUz52rbMKqEZ)V>2zP0{q{fkAP>guZQvfj1# zZ|_|_p+E6$(tL7l%5G|J+I{+BCSdmNENl*UE^(f8K5Kztq4XQ?x2EqB-}@HT7iX5t zmNu7NmM>R=R`0DQ{&@1EaE)`Vab0SCa6@lnW%I@6#m|r}ysh`!^xIWC&v*KEwRczc zocC__BMyiT@(;NW+m2L@=8x@aT&)(SI z+yIOvO7g+wKVdAN{*Zlk+d=6aY@CyW0Pq*|eTFk8H(k zW5<>7x40qKtu7`fi+G3`sIn<5RAgEFiWg(5cx?eOmOAmy%dz5)RE(mr(11y~%Ctvo zC74mr4n1$DLM?S$A#Ydd5%qBnZ}hk9HS4EB&0oq&Lj9hwb+D6^^_+Yi9SYg8jP`(2 z3EY45#o*<#;UH0jCHsS#Tpmm@0rcySEcH?jG3IZ%2gY6%=Dqpp4K4O*HY~T$WsQc9 zdIu|@?nkd4;v0i7nSpNy{Ucb&!T$H|5OsDHbM(|>X9d!Le*k?0jsSMY%5DI_eh#hx zfCwOf96$jzHgRXi7k`>r!NkQ?(a{`g3AHe%mk{7&XMYO7ew-ZKJp7z|EbKgV?Cf+5 zY>EJQX!57`0IE;){d@@F4m4OfP{bVc`D9O zcL16s=lgZXXFy<6vv6^Ab2hWM1wH=`i~=VT7M3P%cCKpDV&oj$w=+f!$gSe+Xr^xA zs>h}xA@vu~QrzILh$T=))}9@hIDg4|dv8bA+o!R!sk=J6nYsR@JuZKpN-6;4`Rv(W zA=_V_`Wt5Z=h6-@&)=t>OxQ4v3^Su@S^3b3+p()EyGj|b;keW43ga>-7dNu=y$5|P z6t2#!NuR7rUIofO(;_EiOG2=zfS(5-fr`?xC;r)7xUKwufE)w8^Iw5uI{<_J3rOtf ztl@0p;9}|MZ2#8;7jmvYz{fJ`CiXAvEL`+B$vJ>OP6IYoDU)AtGCL~|4?8 z$SA+R3M8Q1xr_SiA}$CS2?YiD4l*hl3UEMnK|)5sy92sQfzKhTib`NY>GbLWXKW@K zxLk~?Rc+`y*F)1?YUjW`8gXv*xU32@mo^>=y0_Vtyo4I&uIG#Y;-% zRB4Vt=!y524mw7c4=vn+6LPCN$5xIk-9r-dYCeyz9`i|SS$Vuk%CGI3_;JE7qiyXO znp{xVJ-K$u@Kja@>J|2`u>Q-``Wd5uoUV;GECv3tXL{ot4`>fi%e%mC1gLk=QBdrG z_TZu1xvlYCRiMVGPOoA)Gs|}$v<`iz5(BH5I`45&bBhN)j8mt{GOK7qa~bAYlz2_3 z@fPTvM?|!|lEif8t`NTc?8nh*Rlb=9VWa%2CLTxx zwDn>}uPxIo68C;jhG`W_MxTJiVo850FXPXtO4ENCf#YB|P9pTRS}eSs(%{d2y4yia z0tv=>E<&`%iU%$VMZQTfq=MDXi)$~|MZQTN_MSI2-^OlJ)ep&UKz^l{=)H#~w~<+n zvvNpUyis@ai(d5CS;Gs~Nv2S9?8 zk+<8tSst zP7r%`R-<^Yv_!qh{GqEd0oLpfFw!3~bB|IK8+%M|pljW#dsx6ygX#4>a!K|vB+oRK zft=7dw_A1LyP6Y3VG{p`<_Pl&uECu6og8F*X^0I+)=y<;-o4K+-w%1tHcxETP2tws zZ_-ehLS;Qp6@8sF-0hIv=I|`fD~)C_;MpTwDEtjgi;M(j6u)ji_sKh)l)ctUTinN;4TU#ji?=Wo%`y zP6(T_6sDv*Ybw|1;ssp^X9rvHIWgvhVLjwtqE4SfXk|J~UPKxxRwsN*bCWg0)D^&A zcrtnVoX(pRLX?W6V=G{oO_yu&qLPOwKzAE2P?!;I%1rz_On-wnF{)hQ$EXD>RV118 zqChSBSo9NL2tg{Szj!?+w<^Spaz1c8@6o&oIo80p!-UPXami6KiwRMRPw2KEAj3Sg?CBIAX z*gI|yM+nNVHDOJf)rZD>ei|b%>MEp-m&n2*5vxEUN{v1w_FYnyB$`@$k_@Z1hOvv= zXS3dITkSmL>*l7BM%@unb~1Iigtbl~fz*Rwa$hsQs44oEJ?JsJKF=sSrNYq)WdYiv zQ0huIES(e&*1&s9Gyt0MpG7E#Hg(0k@-@s~bl(avoSEkn ztxJ%^NUki2>O(?prs2;jb8JnmqtYMmRR%h7?m986i}JP4hFLQiP0o~nH%@9&BD>x# zSJu^}$OqRBf2&ccP!`F1pQ}xOgsr<=;6RPc=uR{w_Nwdwk?SM40bCzilZa*UvgeEY z-5kw*_7y??!w&hrC`rVn67HGv4M=H-#bJvFQ6PDps5T5WXtjK$B3zN{Sx##BfzQG4 zDO*o|4P*PEV1pm>j>^c9rOb?S_@*YNf!;{v`^r>T?kD&HDyLColhEZeifFNspS=kE z>WaC(LNyenzMVbH$oFNNZ|ci6Xp8;GKIF|BcCSBz@mg@=!VS}rM^9^}?n%N(NS?5M z?PS?<(+He-mp=|>z1!z+eJK-@pnJ$H?WB;l+Nlkx$+d7R*r@cgnb&A+I4>x>L*!s8 z?^dIdt9{ABL}19Bca&#X`;zX{h}&t(!;11zsz8j6`~>PBj;?L&@l3LevJPRYwK{or zkTC8|+G6HJLZ+vUO;Lh#jGp!U=M7lyX?$u$u!m&EW%ND{lUF>ih!b8Tv$65$(4-*a zP&iajdPk3Z^YN4<$t>oCq=JpTgLVpd^SKDlIWN>}%j$9*O6=7hwbv!52Ma5iHola~ zQFSULJV4F$$KI!8sIHNBL^Kz^s976%5m9zmy6}a@*3w)3Nd#^jLy}gs+K7o8dl+}3 zdDv+?TK0oBIf47Oq%mc>_j=VoJ?!|DmXJ4<H`gz#O9ReX5QF)Yc$u< za3uIcv>#S(`S83#Jl}}A^2$C9ql9=~rpa?DM7JJ0fLw>>)b_h-4aU&?G1k-Vqtg#1 zMavJrP*Mph#1ux-Nl4OG5NRLo#9>duWmg{YTR+6%wo7{URwzrt+%3-iC{LGP{rD>t zlsUx`QPl5)J*?=)?PzTpxs3n3EK3@nGZ0DV={{!zRCXYqYK)&2K zAMc5ptS~^36VCWZJPpiNhrg(I>}%eQd?uh7Ff1R|>*&Zu)lV!lM5bCy_~8kVVt+i96bdXJ*9Wh_5uNgA z-KN0tcHJRX^F*J{xbnI7^@1qll9x~BLa)j4+ri$fcCQD17&t7cj4lq_UCA7lBEUf% zop}Uo2#Pp$N@fkYy~&GjS0wrqJPqNg1;oSiUk5ajloIDHoG4&yL3J^FCq+N$8==a+ zkT^v*M~B@mt{|VJ!%X$Dg>cyp|8lXH5pqkA5f)l`pN4Mo6uCPv9o5H(OLzxCaQFS( z)i4W_i%5JtY#%#^l6YB)8;}VOrhkbu-?C;Enc~N>(w{Txqj@Pm4%_eul=>>z8R*8z zc#zC87nQqBi;ka~z4PkWq#TWs69ubx21~zs&}ELMIBs6Ozms$WYU>_P5k90#H zN*{{vXK=$+c-bm;SLtf^^JDcs=S{>)I3k(lM{OD3$h+UNAnl5;z`%FmKKmRsM|v zATVfH767sXV>XWzFs5Tf0QS9$MjPHG3%Mag#P9vWwN>|sNLcfFc>J!mN&AKI{@ z<8o(a>0qqkt!QYLmUsFNP)e`#t9}T4ZS?|)`d*(Mntq6%zk*{AcTGbgZHl7EPzaga z*OB2Ect#;hZxrL99n=*Yw+y=_LCu5QE#tVv#kR>uZ{%lUx8VTzI3css#REy3O6G^g zG8r^~b)U;F7Yx0IywKakS6po(QLP`P2^s$(dp?nm9+{0V*j9>vEy!(^va3VYbvcF2(3>&V*a??%-NU_~xduDNMF^-V5m9Jb00e%+Dw*hjHrhneHYv;G4bfb>$X zVQ7auy$Z{VEYN+uBV=~X+cDFZW@PyBL-N@yAU*Mz7AD%U8gY2}21w;witZeRHm?@3 zYig?Wh^jH7&*D019{i_FNG1;p=VLYM5RXKjD2ZfmwwC?Kpit#6@uU{V;dvX%P?|%) z>hMg>M@N=oSb}^aCSTVQk|F9S`(0n55Z3u=3Vxyd~px-2xwN zeY+zS(YLITC_<3vkl)3)q!_ZQ3|XlYlVo_XFV(zD-(uW23CB8=EWOxYySQ>#x`wX` zNM>%*ObmHAi)hsG@iGQp5!gxhx&LUzR6ScGnOz@B5yZCA6^4Z8Xu@*C5}h`k_cRxjEv`zG5>S`u2N$5i&>_bt z1aGv#2B@Kb=R?~@#CIwm-uTJ(*lxW0+}WlxAKuv<0M+7CS0H_kXdF~~kj3m4qivOg!-;+`jYl^WUS!8q|MGTB)jjrLlyf?&dIS&Kn zT+SP130ZlTdIP|@FEs5Y;qQ-+PdJhtOl7l$)g-a=()v|HJ9D8g*P;%5c!S7=AGml&^NThuFxe_NeIXlgcQ{eD>}?Vi;*nV9n^aA??PF>7wi5d z?)ATx8PW$3MKc@ci^Y_5&7$NqSW zKPfc+^Gg1{{?-<&ME|rUzt8k%t^H#j_{zke_RAl07B&7$MDWkstV`q-@~;uaKQI4x zKvH4!kJb7^Z{_`uB=UbQ$A|pMZ24~<|Nr|-f1D#0q<{?YZ@}IE-_O(aKc83?6$hrp z1j)oJtA8Of@YP=6EuUb2>Q$~~p>>NsyEy6tXunjwv@d}3!&h%%_$WtGVBr~d-b_jb z+tkB-ZVSiTDgfDZyngG@aTDO0EgOK-7u`|}i(8Gse-1|d^Qr&W`@r#+G>40++2`hG zTFJo-%moohHz1m1Qp5Sx>1_((qCz3XWAm`rh54@;s3<>qzEP~Mjyz=>cR0dg3VTVW z@C7@Ts`eZn_UWNlw9cpDojiY*hA#Zv+^JV)st-O@#iz+6jl|}nGP=wmt0&kfF@D|J zVPWk<*b2F%dSP>+e=r(}eL3pbk;1-xA5wgjup2W4I5-80W9QM`$Cm_E@ZnpxHADp3 z5DFAWt~U7PDDpR@oewJt^qbxTPd~C(6K^yxTT~RG7@<(gN^+1(KAKBN zz|?&wgRkTLK)%{uhiszz&H09)Z3PK(>I(Y>RrrBE)Wx+C`#=_PH(Y+0T`^;q%p z%j%q=fyZ(OVXup&Iv}#^L1Y&726AooJa(njkyhoL-DSx9+=U#T z{yti??AfE4d$w|;%bs=)YEUzzG;+C*g_9go+3NGj@@J8EJ0}wItE)q7-{q#v1ZnOG z6?rO?M#z0GvIb+cq)glBmL|K-iHioB`*BX6<)$nW)=EROzB{7rjC0n`^5S!)S{>$TMJ}3qqb`17%yxZ7G*H6qcCo-F zmo#kD&wPArX)6l;LE-$C;@z37(G&|L;>9H1%pDSY%dhrQEF5f!(@R>lUY4;A5v8_A z4y6o^1{?mW z4{K59H~Lwr60D9kAH5Cbe5zfePM__&H#BX-JMqj4l|?eIQHQw4P@U81ywR5*_!x_K zI(ptxUOU+G_@LA6jt4utXP#sn-(wpv9!B_rq6?lw~6!F$5EMsW7$8 zO$zJa`snbntM~OuMsM`$>OwaxsmED}d5TA4t`w85xPmO<>K}aUF9h8nYuZLdo99Ze zFqIL?Yt%tONMuq%(zFzmS~m2vDJmWG`eH~3B4O^@gZ zE0U3qc6$h4C!2l)S>6!4qzC+J@#PnO(H|s!mWvk(dOFn63S@On>|H`#ql|a%E>$HG z$z7F%1RQO}HZ-vDFd254JJQtKb14Tb2;mU)P`pd~#&F-?Yh8X&wtJhY7wqlME>9pg zh>9u!ahKZ$_ui%U#DBBhjWuaYR-8kqMI3R?)$eWLW9?v^NJWizrH?)>yNyZpj(>k` zt}eLiW%Q@&(W6@4^Y?)#%C&mXzDmLSxbj~=y-nZ@^Mu_yp>Z!^95}ENsTgr1(PKf? zYcHJD{z6(|%OR-$g>&v4Pa?fRebd`_s2jy51V=DTDdmfku`5kp5=OK>&;NaX-Zg8NUL`u33_yXOA$<_stekWg6QBL z!pjP-JY^B>K80Rn`?Hc%^Rw%5U2A1aR0_KZi=x}w%bEss{po5=ub)S451~do+L@+V zs!e>M=RCi=%>68yW;F*HD!u^rma_Zdvi@ z)XF{0)55Un^=p%~83jeP0hKr(d)n>!wJ@1`ZjkeOQ<~FI%+Y7mrlm41#RV-NKbc4hTsey59wEJ zKQ=rgiumg9`6Cwlt}j}RR*Gwr+JRnU%6!k_Dh4;y{+so(q^Rdt1;@_Z=tUKG8~Yis z z>5;$TSCVLW6~4srTPBIY;#s`n$6ijWXin;|CaG-J?59y5aw5e>WRv7ZSRGk@8jrF# zuDmNwly%TXA4y`0;#3`sv3Wk@JswEVlXBHsArQ}JM>+CyD;u}hl5Bc)=6me4Y?Gy= zGs;0ou~JsmBLsi_*!Pg><3;q`MnB;?c}Kg(6}DFDZ!o#hy%rGOH5HV(;aY<(eIMT->M%(piZgB3xw5 z&Rc%({thk;d%u&b@;6pWpXjr9^9Qe6*fc9 zDp_Hsu@LN`GD@4bC86;IS9w;QmeADU^A$eGGmYB73$+l!a=K)n=+%{6d6Uc|xH@7sVz-k~ zt(_f~b!vFuq*ca!VRUl~RuS?4kjbn-z-s>;(d93Bj9Jt*3|Q$`t<67}$C^D0Rnv;i zpnJ;}E&7QuvOn^O>PVPXd=$hXwOQ;M7vq@Kes?k7Wor^zDiv!^7nog|XTQn22cstC)1 z5cS-5#=`i`U>Qd&N-Uf-DcZRSItj92qDx-@%V1i=qHiER;SdVCDn3*_{up&T^R*=OodPm8%rwg5h)6{ST$NC`OoXj4m~|B3D&KT&bS*ew#a%G zDY(@o2IV(=71r9rQT?lIg!eS4yaMCGjSBUz>?7W@gi2b;sPV-~SjJG%A0^n3Y}xOG z`G>nsL^>Gj&{p1nq>da$>1D2KyM|YZUSCh|&)8h9(Ht^)VLN{jZr7LWqZufaMec@2 zC8&VZa9tluvsHhh6)MkRkc9EVz__S2Qj~P(#m`FneRea>1~sc5!Gp+bVc%5k9AcO2 zeMsE=%)zboiLxbb8Zw(0%Pf}fs6sTaEi^J1 zp^Go(gzEEY>T1afFNB3z*$vvS``sB*DBpPR!Dq_@lx@ zw3ej;qlt82F}<^%d0XB_AK6T!0%^EJ1-IFIPW-Im0oaFzv^Q&g^VanVMVjNIT>6In zW==XF$f0SXbN4cfII|n->pM7f*2qY9CNZCD*3ID)1ZnIYi!wvDw6i**XeGjph%A1G z7Y&3-6INVu+RbR8X_6a^ab@IoHcpy{{k}FHmh|>H50}4|&mI|S4x{VKFzh<>Fnsz( zmK<~*Q!!5ayqNn$P1MR3&zUeim!|#gC}WUV$8dv5LP?T^71w}6QHYcWLw}!1u7fk@ zXT88g`+l_Ou$Eyc^2Yi19X#E+X`+l+YS(u(VR9NTFuKe}MVvV_J}vc6Jp5Ezn%kE* zjir|wbVQI6UT=6;5}au~l$L|(u@%mmGaYekk;QwUx523^mwASngWo-B{1D!9Kl{$W zN+j`ek0nfstBX`^*y{~VaNp2G#OoJ7b(?IIqg00Qr#I&1?;x`k3$M(`bC;}46NWy} zI$|<3ZN@+BRJUUrNF|V= z{4qQAC!=92OxobISFz!;6r4;keQ(JivC3r8s<2G|j_v~_M|2;{`iEG8BKTI;SCCVF zzU>XM{bJh-?geDg)$k^MsrK z!zrHk7#7ZjMip3=3DX5xlwxO9*PTSzxT5IT#HjaU%!=&FTG`=rZnfRnW zNS{!NgNPKj#hz?V5f$eKgk_x;^Lof%(L~<(Q`N%kXD@31dA}H^ot1uKv3}~iQ*+Cf zP-^OT52R^iZH5w_n+(4C#F$W;@`I2s$q^G!?u^)1-$DBFE}~bc5h5%=AR{C4aJ000 zL1wgshyDj2Z@>D`U~A!MK?IwU3lU1LSHEftwIobAdAwNu6DE8>HPeL|I)cMdz>`}*+)yjH)cbyOX38LasMc9f5# z8g+A&6{Dz&h{+1552Ur6=}OY)YSDFjKOSe$_#Syyfs97%b7-tI=KjjUi6`GL91$WI z*n20KshbL%v23eYkWu{dG7S1qb6n*MS$3Z6%N>Rf+R!#0O~hVCqU=45rz*B1wESO| z@Z0vl_aDn8&;|rDh)FSa%ytRSo)_mP=DTdPbjNycn^__7a~0dkjbQP)Xd!efK2Mp8 zG7XGm(-t=#iaJuY!zwqaS9MWcw07oL|Nd2Uh0aqc)~2LTQ;W`fzZrLG+!yTo1Z6q8ADltT`Z+!33fB zbda@xM<>L^*tQ`*Am>F!oa|HFqE5*N8keHF=}Js@5JDVZ(@i1wt9MOQ0ZYAq1S2~P zSJc!AF&+hAFb0*}fL2^PpWY|0Z8rj}zdi;$r*j!uU_(~0(5o`Rl7qhqXHY@mI7M_v zwYcteGN)(-$TAeVTN!LhTGB}Rz3PPgqt3D7H3Ky=#^dK(VFR}IuAsU|3#>u@f`!SY ztPpzjk>H2ikHH|-6Ksgs@Zmfk{kK?S%0j_C08kn;)Gs_hxoaYsJ>W>K8Sd^#Ek>0{ z9Vww&u=yn(BJ((0Ef>`hMt_&iA;CWEsK2wy=*_GlGfcHEB=Z@j8(pz-N1O z58DbK_F$b-(lW^uy^VKU4DJQKP49mCd~-*EGfF%6PRGVKH%41nX`i=+W2!GCSGDic z5jip=wA%arhy4S`lw?H3frTkxvGC`rg8%pu;U;fVQtV7_%4Y>W;49JapQ&QsPowCs zpdkQ)e?Rrtvnbph14~CG6vj@QOk31v0_==<8IvXq7rs}KJ$dlvnuiE-a96qAN@?cH z6?+#iW5NJhG98kzo_1ojaX5>%KO3u@^w2w#158kCuW4*SRzZk5U@1$bb&t!mkbU^b zUr~Lc0*Mis1e&apGC01b;iFE7>lJ>jXZNOdH1`Hn(Z|^j%bkCd?7#A{_d4cR%3sa~ zemmm;^qJqnwRAM*4D@6lUC2JJ{M=RrH!a9L53)?UCj|o!Kw9YtECppb zrzK|YouyE3;wzE)8M%|<_vy!4K$|rhMN6;8wldFjx5ITRo36)FWdqVX#?p z6AJbp_O=fJv|Y^`=j%71=oyp!D*q*Cr!b4+&*8)i&kF(=3#zFD?h2gWfZDMSObb26 zc$&}ax(;=t&k@N}n?^@YK-;By0j2D1S0!G_>*Qa$2KyDiy|!u9j4^2M-P97%DdxZ4 zGFt+yPrL5?R(;mJ{g!Lg9vYln8M29dW4;0XOyXNZ+ z^AO+IolU}==+lyc>n{LsC22I?oX6(>mlD{OT44E*cfRO!T8-R4)kgfTilrW{{<18D z112;*C5FElj;GY$QmvG_|68cH91F22561CeY|G0lv8I1E^2B8J@X;r{v&2k1V#J#ROuIP($r66U^0*dut29qSeQRn_JQV8T84vL01yJxM2^oDMst0LN++-xhKke#_z&bhR0lv-s3p7^+dlsWO(3j}-o zY#W@gDHt5Vp~jbqPoVysY0^08Q~gpa_e^rzAboMO=+@?9L3&YE-(EKa%pc7BoF-EK z-sN4+pWFAwJ}PO2`n4R3m|soed*z!aEREz52!QV^fY-~Y74_Yk#zs{n3AFVgV2zkT zbra>2YsTpQSI-(;Za~b0Pj*%O$9z8@fAjAOZoL6npj~Nps(O`i^Qm`llv)XqA9=9H zJoBY-IW>O&o2m>i&5L4bedddk?!*WOOucK=^9F=1V+g4Bd+&B#K6r9u1eR#Xu`!fF z&qi=$Jdy2*($2djQ+9GO{+g(^g*k?t(1WsTP2OdDK>P1uNtlF5&wUXfoU(9@ScE5) zGS2X2$+(}2!xO(7)bD}DlRxCfyvlLkjunhnrsWdd%I15NbGy2kYM@nXeNVkZP*fAcb-Q}yZX!WlZ?VQ;6QOs?s@ zt5h_)*(vn{+0RF-@CM|R7cg>hdP2s(P;9e&AYkf@9FQ7ZjH7CZ2G$s}ya7qbv?nL7 zj}y?yJmAK~N>W?8aHNnmZ|oIkW@bsu-qXBZp}v^wzcg_9 z9>Sfc18!R|>NDDJx3~exRsgRynWIskL6KeaIRiFgXR<;A6c3jab`H$9Zs4h<U*BTPRFse_4_O_z7Ij&^_AGPFCI zN)C<;Z_Z1BVT*0FeLjOY+Ar2?@ThV! z2M~PkCWRCWxPBbjaxk-WO?kAe8RO*qSRA>%e8Cql9&ku2BLQ*lX_--{&_Cz=m?4PV zfin?R!f9*k6LYsimR=o#Pj5q(ss&aPh)T;Uc0qq^V{WvWaIPhv;aDOnUiJ*`_C(1f z7iwBn8K70V{no#oZ>@>%T8Di1ddokLF)Jl6iL`>Fxq5M#>{%A_J>+e#3r~y3juOw8 zZ8YHngH>zKxid0Y0yWz@J@kI_rKzrYOeuQZ;jaK;t{nHRHFKzGhg6zkaaHO|U~!du znC+cdc1pjytns#~c_y->V02*kC`fWj18Kr!;jt(z*R21U4qfP2k?gvt3*qHN(ly=w zBv_z00d?V5ULqCCj7}Bz>G?<>##SqTdncxe2q#67@{GbP1i_&3>}WsiV^x2=3z8@- zvy?|zM46GTgsPTPD4H~R`2^RhDJX}QLGTQW^8tMe5^L!A6O zaMZ<7;Y|BuzIRnJCM@@6@xd7y_tCuFwnC=LHKI=XyhXK_L$-P8J3l>vrDI{fs`g&o z^Li`IL6Nx4L801*nZm=juFnH71L=zf_`#p5&`C6y(nssX`=+UgSz1Ntb42#?h$0#x z%w*<6(Xz>xnejKE&&iAfDpk!tjx;R~*L&jx+=`z~mxf^c#b*Gnb4@iYx@f54d#`Hg z+F}KV6Dl#J*#2bSo>h4x{FZ$a{#==F0HWdx-B2c!C&{DCD9qo+F-!cI_jXOvj=YgW z;sIqURvQ{l<@MTeyYD1i<@{612+KsSH%%lNkK@qE8!JYo`8Q`MxNlWLmWTItbXj-X z^9`knuPeP3lzZyDzZT@a4^|z0D;kP*!5bq{NySkN;<=#AcYXmjLW8!sM#Uy&EqB~%#?9jCtWRm#j zG>r*RdjDH)aDN8bVhRlvDds>4U8e5%bZ_O?1)E=xKM$Tto%HmeTkll&oq9fslJxtR z89CvIM=ROe81wuEV`ZhI??^XO3(_X4I_FgF!gqdz$5V2);v++Cd1 zH!Fg|B4P4F%7>)rXkSi}h~Jqqz%2lQ@fR3cPS{W_eVArFb_0s3ySFr4calOKmS;(p z64=?Gf;jU0H8e~(}PlioO9QuetpPq z7b2xOiKu70?{*5+y)bcq=i*>*(d1DS_ww9ZBL-)3W=fKGw;f+vJgnW((GIgCQ`~L7 zNx*HlQ%fG3t3W5#TtytzmX)2k0MgeJ3gh0}BV`ODu!|&)j@13|)bp~;AA!5ES!?i_ zC%*ySY@P6nRqVv@R+__EiD-}Sh-2dm*~|}%4dr8PHMTk%DC<4Oa1+2 zn~XTe;^&L-`tm0wy8g{eH=x%>o8iAF#iGAAB-_CLvmyUCXABBrZCqgPeWF$YW=|wh z3?m`LFZH!RGjY_ZATMLSJ@WKSmqQ2wKL{08jmdCqrlEQW;!psrCrk<5)AgRG6_xGr z6tT5@_(%}G+NriMXghy?dIK72#~D-T5|4n9^zNL?I-QpR?uT#tSL#;C!>>dcE^E~= zC)PU&duy?Bu$K%m0lX|K5>f;a0)? z#Lju=ixEJWi)Mv>Qy*`>0p#VKt9XlOHf@{}`;(CZLx9!f0t7GnLmzo)qUZ8QOQk@) z-gjC~io-ev%ERpLzh1B&fM8C1v`EX)n9CLciS2nPRh3R!?6xd?Z=%M$6OV)B#Q)^Q zTi`2Odm0&M>SAmgB<`%<|K_s14S2CoF`JW+DjP=F)CkWOV6JBJ%R@S=JTVY&_v_YaL?w| z_s(m?m?a;zt`FbYDUhp|yI8tW*B@gKQA@uE z?rA(4I(#+!dD4I2);aZsm14-B6T?3+5x?g~eow#tyf{{Mq|u>Vn;!+oJJ_YVGzf$_ z5#N__`SE)c@~FMT4|5+YwM=T549(P&u|<^f#r|Ck^^AT@031xnH`>g214?XAK9_uZ-BS+X{|=kJ<~cNv^m-6w z`C?USQIY7~)cSKD)ANXo^&KH4>)gjWIEJiw2`9PiT$7u{?CF~|zVS{Jh zd6Wx3Q@o%jCLzDAPOsRCcYZJ&F_l~2^%|#OV~yYFl{0oM*v!r=cynb75rIo~s!s5( zu5vs|l#vuQ!^7;rnOYH(9ug1h%+r<-XJ*uQjs3(|8qJG%$&Wi}+m#1@y<*+`Sv(nf zzP5<~#DnZx>;FBC4rLOBT^6s;D12?tvt3UM#YZqC1gnj);{Lgb?dG9pZT5~tz7qsh3t9Y}o%}K#lP#3#Ct4}GrJoL2MTG73O zFt#qRB=%HAx#liaZz0h;irP?#yg*qR^0Gbj^4iUo{+xw4neoyj??IY`XL{45%|m=Q zpd;^3fH)6GMHLDV_V6)!VdKn;AnNE2Y?iW$hT29}amLC4>aT|I>+Hk`N@wnj9R-iI zQ~)PwGV*WH@t>mATJu?|T}SMkl89VTcdE|6UtP(8ia50}c08~fn+rD!!UHfL?ff0& z-Fw%vJo)qNjcc{$>W7^-pgupn>n{}{;VuhW%~Z23B9OXHb-qZ_!WS6gUu-82OP8YB zDzlWNrmIh%31tFC^iRbl0BIUgeFn(zI9IBj>iUzq+)$qlt^BL^{%t}Ws?YDrX5=cX z|5dB2_0LzI+qL;`sPTUmnG9Yzst&TH=>^}P#e?Wfr34og02|-u{1m{381d3M3h}8( zyErUrTS~?~eK5*dwp@f$$Dj8*u4xhzt0BKRZdyVm6iYJ#UCsJU>=a^agg29o|FM~7 zER_X8==+>h@Joh~1gQ=U(}HR2$@{Hl=6b2lZ5S%tHedTyWQsG=gKG;b=?|3@lyws#zmFS4il}$Lo2)+R^x1Hs%c4D*rKf20DtY+*^0VG< zEwJR@apyj++l3y*K-r4~aN70043@77CuS?ZP&{E}4C`=UV`1?Of0rFv?fJ$yXQYMT zldXHBgOP3&|GCrQhx8wYGRc{cmA+Rh47!dA5T*Hz`JY^R&FpW&?IiCZ?I?BOH#DCY z1=7@}c~B*7$H7sr3}6N8OJUj=--G1#I1=|Q<0RMD5q@d@8(FUoS_$`hc`C&Tb>y;R zti?Exx^F;c`Va}5@wWMSFHH?TvGUJU&?mWyn&emP`drci-m!6#GP7XvsEm-zM;}Ib zn%+kuk7Y%i+sYl1n6X$@pvQ=EJ3xnYWa;WBPdZg~{-84Wo0|N8Au=hsibX^-TD5s{ z-mW`c+~>lQ>94}wla@Nn7V&C5wl+HW#R=feGNgItn#wa8Kp2SL*+MEwO22aa>`8+o zHpwk_CAPh?Wri>9$TGyz6-4^^4PZ54YMgYytTtfE(7BqTZ@Be85&)OX}3#*_(67;iYXE!pWfffbb*Vd&N|cey%p}e zF-8x~p2flJwZEk0hsH~~cdGE#o*c-P_vgzyyeTTCW=89y4*GU^Yv8H@aNR1kwSr)-aKYJr17}yKu0H}4zR!cnu>P8R3V~qFWJB=;_da)7FvDN+v_j)0bdWb zfg-QCfN(6f*rufG?p?+ADXEE96pnX5>aPMlQaGu!Vjs!FqI7&C5jl@osMMc+i*!+;RGhJ-+s@S*hy7vuyMsl4Ge$UkZo~Qr6lJsr~ zZ&`ZZ?iBBP2gihEJ!fJ1VXcsgo?dM8Muj3iZ$EyxQ!2{(F*JXw(~3l}NWSZR#Mh1^ z>dHi6zg;PyaCuxmHr7|Khctj`imK7OPOa6Je8_N@Ua!+Zf=G$hx*xTJqx}tN+1bBe z8_p1U*V~xhF_IXn{b(gd+79-N5@}JnNm03%;iw-^x~o99;3N%Tn@Nn(9eoRJxj7{Z zrr5GbJnAFg#~}wA%zg-V(%A4CN00c5fgA{9l%);8$ysUV9Ki2MMg8d=$jj*0I)kx1 zep%0a&%q6$^7T5au0E(DW_BW)mdeJ{wC3YNVzK@3{5_?SkqD_&DLmN#2f1Hx9G2RK^`$m$8HPc_-y#e8`fis%}o*;jF(gjx7BSFMh z1@(Qa*?=SDDh2OAz~l~kSPne>sLPbsv3Pqz&2AKGGkD@kGZQESMb@1ZkY*hT7ilUN zn-qpKY=}rl@pjzz)kvggug~oOMnLyfs8NDP+mvrt)|al4Pa2D@(YVUw0)?kaT|`zT zYl&s&{<^DQ_hsa|C<gi(2KUPC8>h>2f|J5DYZ z23K$8E*?}TSgKygc;PhK2iNlQk!2OtzU_As3X&+8he-wO(?w{Mg0CI&$%MM{BZK(9 z0qBR*MD}&(-fNwa$cgbL!E1eC_U7yz`nz5P*9S-Za9ipjNoB~`Q(Q#%D@{QV(*jTCdC$J)dzOXI)Cyi@7jT+pDe+rfZ7wHS$j)hbA7E zCY`EU56k=%y4H%a_`4-2n^0T)Ci`iL$SWih8^2i6d>XnNrZ#^GeRTus;Pq2%+9eZF z`6v<)Qg7AAYmo7mdl+}B3r%WWlh;sYjbG$KkDj)Qc$>sKP)o)jqkx{9h%qhVC_w(F z{0%^_|IP>egU-~<9QHIRsGx#Hbg=~wBJ?VAmkRJL1)haafJ}Zd4*Bk>Ox#mlN{AHv zQu>K5K=qfD%Zw`R(a)rA_YvZKKC0JgM22<60W4r~y1JijVm{~RLY`kgI)ZUeX|Q!8 zg&F8`BeTOEuOv`mD)Q1TiHHR{$*jnVTK9{UtND!%E+W=A3)tBv-rGD;x7L<=z9cM( zg{xgk)^K+-a8I+~cRL_e1pL)CtQ^C!nEdTf3M8`o4ihnf5f0hA5(i=Wr(F$CHKMYQ z-v^V}4_Du6#am+M8|J+4p-|g*OEXX{G8{(}kFqr%n-=^RSD1L`-(YgS#Ouk226Ej0 zhq|v0>#Ir9B_tsPcMndm;2JczySoRM;1DFZyIXK~4<6iIf`mYDch}o|J2QKCXI5rs z@7`zsfamv|)2C0L>h8Cy-m2~n%N5OyLc@568JKmxc(okIHO39S_AGOUL8;UI9UOb5&78ovw zJkCFxsQ-%V{+o8+zwKuJwU_$(Zm@7PcR`~cBFZ=BMWO~_{IW> z9;l{@;Qf`@>TZ@Mj9}G1xaI&1G~EHdH-UGbl(=z@&*7`jGjH@R~z z4~dUV;NpUX1Nbm%K?d?eds?&U7#~Sjo|e5-!Zs;2g-n=|1uEjp_KnvqtrNXMR~h#6 z{C#UMvvUV%nzhvj;#ImkUQ?aRtlLu4^IfpAH#n@$`_ct|MUJ3qhU)_b@Ij?g#1CpO13 zfO%=7iI;P?`evhBL2_1^t06ZmV8$b5Fy;}0scJN#X0p<}$l2X-_n}xHVE8lZEYpjs zlCdC{%mTVk%svlLVpvY?SH&Pj1uPnB)rM-Bw5UZO(1@5i+wEL2$~D!g0>`c4Ym5ho z!T^uvUG_N-RniJmhfy>XS`H&N7XBl|^MX5#XNWXgojI?zqXll3*siPvfqyRd2=U?( z;#8R`F^;TLF&L8lf+hd#`>BvEt^4Os*zde~x;U93v5jBKv7j8Bl zA>d6!N@I;@y}`}^Ni@!1x-jz2W>t;{JDxV}YTCZoyf>L{)3QT+=VIeIQ8nH&4?PQL zCCY9Ej*T)5Pk*lZM+oI&x*Oq;2h(;|SLKBKYHq(&jFOH}-5?TDXM70#f)YRima4GW zG|IfYwly{-n<&X~B1`%@|CaP?PISv|+ymyxw3&ShPB^G3KTYEe9>P|D`~6Aj(r!U! zyTeFEw4PG*lQA4+G^Pl$Q1^YNIu z(X8Ilc&-V0o=Q_y{M~Mtr@iSt{yIluJDwRkTKKZ2~^KcH@ za3T1xN__lK@QhxTNoTHK#UsR%K{3o;1pM`6Ynf6IRwhxnS&lPufXiX5C?K)n``#%w z(JR5}d5s1(M|-UV16cq8{{5l%gMsUW~*h# zUIbor%OzE?rnx4EWi1jjI~WU#fKBZkgQh0iBbPzMyQ+S0=?QKG$5hZw7fIw#=#}1x zF+XQ)WQX&m=WZ|PKsnt>K-T>Aeb*GPh{$UcV#q8t33~0`yanR2a|RDH)a+R%p<}lS zJrc8Y>H!-CWRo*X62mG4uv8?}uUU+kr%3i}uEb!(ao9Cb4 zH8crdG>Ig#YmcIe;zi+cHY7c@kQ1H^_tYS#V973?>2@X+)qBVhnI%ajbhOH$<`u5^ zlG;mor8Z=*@LY}aN>MVxAF*pMLqBP2*b>&ujVYkj1(g!k*FH}`haNqE+Ve2R)BV`2 z;q8I7YAAQGF5%e)MOB)@dad!a(aE3rfHDjIjRRbHZ*9#SQsOM8Xpt(YZlz=P1DbXH zDADjv+oJDLXK=zM22=a$ucId3Q(zHz1wz%#&iJP+)8M0P1ZC($S6GWfU`BjjIAPvd zs@Ab~Q(_wqW$YqVl_-evG7=AtSLA)90Z41_pT8)96eM?6hE%$Wl%-{W~J@?OGH%+d4Q5ut`>bwn){oxyMy!9`S|| zFrcTn)(kPV_lX3jFUjxYo_yeEFI(%XsWr71`jL2X$cjmjA1c4Oy3g`HW$9P>Yg1)9 zp#RMDC}yuG*+=mfzhBc8uAb??a=`k2S@-JUBivKARGyAxy^K8O)1S#D9!+Iof0E{$L6oZB|??pe0&rN07OALz(7=JJYaMnr=>jIiiA zOl-SJqdN<=dQS1>(KQSJ3sY5R@f1;g#rKWr-u$d~v$Qv$aC`1#btdj6AK0nf2aga3 zAFou}!Ag)|y*$w0_o$y2)LP3UaAj`E@^tlL;o~z`hJBC~j%0z;9D~G-?A^OH1*JXoCro`@}UX&DX}(>l0hOY(|Pcxg!cemgY78 zz2K3tS~{;$>{&cgR&rcxl%eAnLZzHuqp0W=C{c+0?R28taK*7mNc=9e6QAXCH6V;4 zCM|fi`nr`hwrv-5G^E}Q+w|i_d8-5ykDH)l>P?p69Qx%ex9w*w5nMQWUZ{lKGZcV4 zPoS_LgjGRLeWXg>=op>2@iV=_xZNBXd>CZ>q147w7UtT*(UN}D^hDo7z7alALnn}E z^iv({Cz+4aaXdTFYF)PR_!A52bx2EVIWAROtX0WO6%LkysA1cXZ__9`OpvoYsFn8J zm{S3-n22n>`BRe1i4d1sBxdI2Z%yik=$os8#_@c^&}3mNJ?QBNLp75nX$orx!;p#k z349J3%*(M)3Q`4`$BNT$$oNPtur+KtZ9Z|P6qF)y4T-#k4t_?Kc&79mX5ac;b-(M= zHtP7xXVK1l22(M|PV6zG8*k5YaGVaa;NFWd3(0WUUMa=L=FJv4yf|JI*%6eYQuKz2 zp&z~7~tuS-n5}U*YQ1D75FWQyhBpm70xY~Pe>ttLI5v}{^7yUp8-WxwE&&`o>ifN zH0I$LVH1yFNN;Xtpj~Zy*l#K)*}nXSuv@9bQhr{HR17>2nOyB&3pMi zF43*FZQCdjDw#W1#I>@ zwf(iGqe=qn@(U9r|9#i?-|>3?YqyNxriLYfaijQWN3{AQhy#?KZ2z@GXZELD*12jU z*{3Y#zb^6jICy_8fq&%6&?i6$#DRbcbuS&T5&zgH;xDPzr6+&M7*j2FscPDI+7Yg3 zeFXp<#Vz=ffy1Y44%yv*k<;GdDWK<@8zt!p^onls1#p3R~E z!4!$Ve!K+i9PuA7WB9Xi3#?oddu$hpzpu?8lz93NCN}X@IQL&0#zLi_Fl!Z%Q})#~|_FTcOy6u(tet)PHh_{7<*;Zzr|Xq#GKolm9Oh zw8S5RPW?wV!uscptp11QCjbwCdn12dK=R)jnydbQ6!e?8Pi@ZK{@*p8TNqCg^8R;8 zd3{;x?fRkp?&p3Iq?E+$lt~1`)g3}JTdLYzH~RlopW-t?a&}hC{sKNXUiwJgraq0_8L2Wd=@1kOG`p4jwCCH>)rA*T`)rK7p4r+2@!W$pb>r0aup-wi1tA3>_;REMh zPg#GUaCTWjear58t$?(2`1{Sb@gdkGQGqPgDkBZIFW6@Hcf#UXF#5E3Gi523K6f@D zyqQ^Kv3b)XtkE;OZ#VNj6eHTf-iHRM9uv| z))6h72K|pRt<`$%R=4Y&>EgLhn$KCiYcFx0H{iDKBa|B(R}u{0*uzdZ*x!P)hG0iE zWqR9Df_#h*F;>NW9UY!UPB&00}YA&oW|WznUGCOGaX`1#Ii2Nk|Lo*)8chJEG8|zA+E=A8}8)KM$w6@xB`~HP){Lz$n{7Al?SG57zWFwH^!ir{m9;kMivKdV zB$zh8KHr|dw956(Nv=>wX>3X}@($EjA2h+ce4h{fy7K*SRSO8$oAv#s32&Bb5ct^f zp}8YLlJX=C=1>>bBDFrrbG7-6yW%_R3DHD1X%RudW9dzW_Kn**a2DPPsOTuJvAiuMe2qr=7s3OBSeK-iYzw{G{zS*Kdy+v4~aj}ElL@N$d^L@Y0#8$g8r-!rS?P0 zij{Rkqr&K&$`>RoMFUlKp%F~el1_*}RYPE!3m(i0n5cRYBu$FKM@_SVf>sAEMZ;#r z#KfQ?1Sq@_)nh1)6$dpV^+!Iv0O{eWT7GEHoIhUA`+wC0{X3#Y9yIAlM4i$XiT{e^ z>4ijhf3)jQkFjTso4mt-_2UQab0+%h`_P`Ywzl7h6ABRop@{^yz4gP)+3}}f7l9n9C4ZsXm$a_hKEj_Qr|T|LvS z=A8`I?V6f3Gkz+}t@hjUelX}INg;P#L8wLpv4z?#Hw|{1-}Jk#!H~3SyLX&7{P^)i z>!4h#$zL^=Mgs$Oe=v^Pc;tG3_wg0^KBd?!#KJ2a68!7NO%o#tTNJM}jroelDXn(c@ z;2RpH;>)bp@d6y8yPXSOk9rM+HdmxXJ-@m?t)gT3^Bco6&$Drn!EypSmBGeGpq8A8sWQXy0(VGQUCoDV4&i z=XTJr*?O}>P3*ZE#@6U`C|%HYcQW|1!7k|c(eF<7LX~oS{a}QZ7b?ZdrTh;lYuh1o ztserh>5@G*hLV1F2GD7Ks{jkh?a7;Ec<=4OwIMi~qz`-Uw-*kcllL!gs~u@q2;A?_ ze?Zg1e2tfAg_TryF=*(nnHU*$j9u^YTfe(Lb^7@!pv6IiWd;}9=LLFTx@gRsA>VI> zk(*-GXe4QzPQsAQNnvE-D?%o}Tz6@T+ag8f!K$ma`w`AVE-=RWDBv+@)CFBHZv^E7 z5Z(mShQ8s9fBATKIvRn^lqVMRmYpv)pl5q5^LaTENemGy?0^tdPm0U|ONsB^kMbp^ zQLfJE*kl~|?Jgqqev<3--2%Dn5`<*-PsA_>%cZ!{_gMt4RT!m?p5=+S3NqGhD;(%PxFn~!u38tF$m9S^j;lv`cHag+3h6)!%wd}ne)U8$lBV<(#7dO`ZG3Mr zOMiFNw*=CO!%jcccsV;(m2{K54lDe=f3`iT##(|Tp?T5PEJQJz9Hsp0gB3&R&q{;d zI?Dwr<&wUc3RF6Ys7`Wnjgch0efFtOi8}RGZ}|HmJ+9Xio_{rZD=5d``1!XV=2$qG zIh=_hEm>3il%f%^81E{YMGT6t@p*+PuN!?g{uTy%GW@;W#*vWy+~bz$uZ>_*qF5UB8p6$mAT+W0YGcIcfSWP@ zJ_46DWSIKNd>Js-Q@o3v4u9>5bg(<@p#65g`W?^*@0U+@k)Q5y6C=Y@s9cKUKG%`@ zf}%DsePGZ(BJCDHQATFom)M&7+sjS#n+{z$$-P$yco}z^O^!4~`wR6E^O5qg?1f5* zZ#cTzA*M+X=|A**-kYriID|?XRtQfCA;*nsB>lrM2+UAhb{8=5#`CmWT;+Cv7T4E% z$8J4Ufcz$ke57+W}*>X;NGN)k-ETe0i; zPHzN3xki0iiW%txkmK!s{ZfJ1d*nF=f7Uy}yksb74zodWo4_dqe6B?2t!~Uhj^_=G zR94XSiON-)mj{c3;v0dufppS!=+vcPj4ae!8#C2eFMTz5FJg6ZRbx7-s#OQA@a7vu zSfq3z1)IgJE}0K@zt3zh?CJf%>Y_Ds9mT=57}6t46EEMh1f(n*>sl)G6-EpR0IR zJmlFC{oBbQ7Cs+k*XIdePVEm+mm3P5XQr5a@%M*<;lIHiWk(8Tvfq*&`O*EuCbX`6 zXDlXq$L{g|a^YoXAO~J}pFo!oCxGeAbkDCbWCH2#7fCpukCxlJHx)KzZQS*pawV&P zA`Vzq-J_s_i7G%Xv8pSe@OZd3epZnVXMILl;d*X{ES=0OCdTA`b7o%NQm287|9Ow$ zW#^~fH}#JD>N?LB-;+%oA|*oFwpq+EIzTgoQBhQa0|nJ7KgX#`Nl6{}?ZpWl5C$m@ z)2i2qHsp?;|Ij&%{_46@c*W-}c77HYMEfklX3i+VZ;)aQE~JVID`Fzec7T$CquGCx zv97X`A=Xb=GKE!YzqdSYgmP1B$M~y@zryF8!hEb2c?2iEL=onZa)-lT-1x~!(&I)- zMnatA_G1IVj@>VM!d4^`>4}K*fB5S-Ejq+@YlKP#ZB6mq?o}K1qcHR;7NoQ))B`wG zfV*2nSJC7nq<}Ux_@=3GF*Zzg=I_kuc4bq%Mbh#4uqC0!uh-tQbT(Tg0?huYA3qdk zp+`O9Fn+0vk}ZcXl>g3&tSbr=3B_VC8Os1VZM5CBm}#FWKI1fcrna_vgu@&lEhG}J zSKcjgNpUd%=v0HYt*j8|Un@T?6nvFKA;fDZ!l7q?+STFuu|(b}gvfK1ag9#%mVnVP zkZ%2q!%aj8(sU+2FE7t}snw!{XozG$K5G_DM^;IR%+pQWc1UX^kwHM_<#TMZrT7qe zQhP471D&j)8hO{|hnw9Z7Ron9apWFx8dS_;2ZzDv)P}8QnuU4%F%C&WK_dahy@wf2 zjToBZj7Zr%@N7T7@RQLa+V+zr2!;h*(6yY&uTaz&1xiq!GA_G=tZ^FiP!$hseho$!#p4__MA@cKcD8uJfZ^;gLf_aoL*?5+k zT~0l2w#g|oEgK?uZUQ&Y-%mlYExA=&9N&3bvICW$_9bb5ifej$T8JV3%9w(wG**$e z@Rsw_N|&gq4A1o%s^3{Rrp{haTfu9Rmg62=6gY(j*D|8Ut%I(R$g zqJ2&ABT)ELcEEc#^ge#wo7ukId@*l+%*NH{SQDN4$y49JZYmX1+nLC?#^rQlkgo0L zcVM2%TU;(W=~&pU_JjeO(D631*$?^*7{Rac#y`EX>~hZ`%zUY>WjD-Xk>STKatxGS z)QV1x$#^o0Ids75!nH-GrD1ODm96BIlzU-ke~K?6;dt2c{AT5?H)e}3Y<{_H-UEwU zu~UEp*rjwZ(H1TevON(5GX8z_*OtDawzW8dOf?g}t&nBkR>L{FFf_9F2A*#UYmKu6(G$gMtfSWuCKO(dD=D#rYnnNc^n zIos}OM9a%{1uCESw=b%93#Vq7s`r%bw~wehuyoCY5R))pQIfpW;qlm!yfk8Ye%TJv zkQNpd1tYGzUo2Sj#!%=WbE-_|%cKMMXUTQ9^e2Ig6EKlEke+FTgaErSy=AOw^Xumk zX{m3{$NIR6aIg=N0tgLY!2<%<(T7)k-{s+dMWUH)jm^$t#Y|ewOxpsR*yzk+233Q7 z`OEV@f~0Ig9nX7~1~>t7R(rh?tJ{MnIw6CxE`c-$EH*1V2h<(lkm$Xx48vg&_gftc zUZoOs=nh8bD(~EzF23Fqbz$z1HUG)CbmM5{jOGCo3fvnjVp@YO!u0k zALunTKPxS*wEDy5)9{Oi&95nHv0IYg>`@SlS4RyZxZ_!FfkRVCiz%QMYX{6;R)pTL zz^I=Y_Sv#G5xft5sHHk>zm75m0!}{lahdVkwE~aA-uJ~f$Ol@j#@Mqy7pjlYBnnzu z+y*^xHNXO~PL`Ul{tUDm@NpVkBt`9i#sc#h&u)mp)6n_~^hOf<0iqD_=c;Qay{)CkC+GHDq3jGP8Sfp=Dd+KqZ{vQq(9u)0-x{4CMpqC&9uUF@JtDMX zE~aw1RN;_J-O**XWtjuZ4pc9ekMjjw_0_4adFYL8L)4rW^D`W z>R3_eY8l7-BR$Z`C~;;oBDRg`A$-;BBI$j<7bhT5tHDexfun%m1knJb(L#76uIs z&F7lzVuQK;msHG1hddeOG}#&EJu=AcGrNLaW*F46y@wlaupsI z7xxCAm6a7R7}mf8Uu<-k)C0a8;4BX3sy8$EeEi{Ym6epH$ui$M!p4Rv7k$rWx96+j zp0gX}UVXn;`$HRjpZTg6w`QSTm}*{P#c=#hfL(|$otxlYcdAf&hwB{;R;}ei-4n`> zq`n_apgUY@do;~Ys{?*F@B^DV?>M2wnt;R4G{U}`o1ne3*i=uxVQprX%;{97G^DAZ z0H}vVkNX?7%FIln$qck(wMXZ-BbM#nFM)P7v9mh`jDfkixk{;et?jxvq&UOw?k*V8 zr3;P}9Yf{KCj)>9NPF~b^lS5*$hmKUAE$j@w%{Nut=?cUR|O`#>WE2k&nq}A+3_Cw zN8`33AKQa@c8|7E$@swDXqH=)DzvKdm|P3L%8zt8f-{wv(PTtKWRw!|g0YKOKJN^m zeS+Hwnd>S~SG0KSbS9IQJ}(_BY9lUAUax*#I{dkry7c}>L)jr@GneNB9=w<*ll$#- z%CH&}?VVfMkPu0zPMgQ{_A^1fzP59CS_STgRdMB3AdOf`1vfW0Dy5>ct?}%{M646Nl3tivIFx4%uO`Yd+-=w71~oC9v&>`Ymk%Dj7T(qgc*Q+i;J6*?h$HH?^bq) zn@ss>9k{G?I<3vXK4$Fd=pd$|f+-b+$<56rBPS=|_4qkCiHb+9Qued_mjwb2X4iPl z(bpy0#X!m6F~0n?q>MX0FTQ`8byi*Mr0c>bbz*`0%43weW7i)(+&9QU`)CPpQh>P z3~8TPb%*=|Iod$Vs#mMc1J(^zZ#&~`kxp`qN52{k#=Bn~>Fv+gJ}b)-3YkcXimJ3- z9{`u5_+6-7YWyOXY^Oqp{jS8Hm!Y*4*2XuOlzgbtYP5e{uWxBd6X|fY%x7$Dto2r9 z<=IlJdkDN@v!tiEIE*N4kN1SSuHbS*Qxm~^+Z^3?Z+pj`sn>_qz&ix4J#6(L`BCZZ z#eSy><2vBjDvXDdS@=v(+Q3wakB=YfUR#mTX?0VpGVC8oa76V z245np88m5cXSXT~c*4~LW7@&?cCTe5h76y+p=6d26-A`zCebKjdq|d_%YcJ>4K0l- z*4fqW^Xe2`MMVY7)UB;8f}f@0uaRkX&NVbCM~N*?8crT(CH<*$qwsUKfTf7!0XUNE zg8REW(N!Sa;nep`jEwRYICJ5XFS2#z=`#g`Pz=1St!zme}`HYH=!mZ{2~M~4F!)A z`5s9VST(AtTwWV}Fd6570t5*4rElabcZf%Ep|xRNe*PxFoatx%8e`7Dl+%Y3qvvTy zD^R#S2O^FvFnrr-BMeAZ!lY|jw*aDf0JVUM^zrt#k$1aa>yN>t)Ak)^5I6r(wpeW} z14Qla?yffx7#Ii&LOy_A?#w*^7&^-P_~KM-u!Uzi4MA(41d(+f3MpcX z)D9CT)Np0uSQl$Fp5(^FP)2GAq*UXut2_eU!amR@oyI{#L`1;jmdNG8_$6af1L6b3 z-PzF*1ZtUPLx)aycz7%#y)9@6kNXXm%gKuu&oPc((rGsrXw=gRd7&A<+=>>;Ft8z^ zr;kJtu#~q)eJiPJWY2jAD~x@M7UieTJhRd!&g(!@gd~|l?T|!{uB{Nj7>V(IU0i8u zo~3QNE1Q8QpGYZX?O7>0K7OnFt>YYGKLq!)qH>)!e0p7oBiPicePFUJAJS(&S-CKp zJ(^$n46LoK)nG(Asq12+s#*ZONPGn55xFMiYr=+1;_oYtj*e?o*94fDB0Y`YzMUN` z;)WaG!Y$ij_5 z^u*HX;K#p+O-)Ue4V^+bfY=f!du|`-nW;h;7_G;`##SF18v6Vd0yLk331I7Uh2iLb zvOCmX(Y5wqT~tdt$NUzzWEw-6U&d+^pPZLxk<5Rcz?Xqmgf*5mR#W-*+Cw2!5_Kcm z3^Jfyb#E3Ra0c!-lrKX1QCxSpxVWD;N8X&_7V@J+^D}CFh=V^0oq>#Gv-(M)CWtuH zeRF1Trb^1ff?f=5cQ3J&%xX!+F~+xqWX*`o3(j}802T1Os;xxu`>q4*0i%kR7Vg20 zIIe0LP4W=k_aID7fmiir2$R--SI5JhgV z`Q4F|lk>zQvIdb4Q6NMW=S(2O1=_@W%QQga<(8M13-$~Rg_`@>Io!bgR%$H{q#Klc z7<`*lGI=HL5)TWR7Mrb@His5`O_MU*_3Z?7Gc=cAEmusxwzhWcd!;smUWD%=Beyc{ z&ry#ea@>8O;Q0jv99;39E9rIuMBP zyjOc8Rv8+WK!>I;4+&aNs>bc z5t5n~D;9Q$Dv$K_5gMeWrY^sHFk5Qn)6g-E5`75p-{k_gY>Jb^&RC*DeEunM+*aV0k0tbLl9(Jw7WbZTLvu6f(kv@AO}J zJ-=d|=mNXP+8VJC8N)lm_ANUP56?SjXe0*OKoweV72rVWuPiS^_G0~n#J!v7 z6h(pxIzL$CR9;2T?7;e(Bsvcvdq>R?rtJHCN>6Vg?MPOMHocHiCt z!o&`S+|~~mX?qLxbR!-0OCAzoD+~{Sk2MLLm)AMV71ySGbA0fl*p=tBBvtjb-;G6c zRaBiqQc-hr+)a#`mOJOL^RB{*eN<*bkxsR08E&PNa!*FLajUK*HfCDHDz#mxTUPYV z7+rTVH37#C94;5GoaKW?Fgl(mu|!(}osKPr#Cx!8XX(jR*)Wb!R^vnby0K6u=pt6;q4;*#8P)=WyNJpLU(5G``%)#$$31JBPY<3`)p zt@eC^jJC@2(SwTAC@Bs$hIz&Z?|Vl)RSN*eoeN+@k_0*DfOzc(?-*ESDXCWHW8%v` zqonhD5RwOR(?+1UKwR$O;nv#Qr)l|@%vY}d<%&JBtp;SqmEH2Tji11ts;mUL0UQLL z3J-+iY})BtG<*a`>6sf$LfVQBH$8ob;-S2p?-SF0BCLMj-g7x#dD#n0s-Oy8xO$7Z z4jNPj&7^Vy_cOU>clh(R6IA1Sz$3xYVRu2>aGvc0isQ`7DJki>LP8=$MS3NfQUj#G za5)?gcP8TzwcXbML;^~NVw1rqmF?GaP5`Kw zxdWqu!WjsEvOmM*C8{Hl+;-&3)r@KT$`Ev{=P4K8^cd?(RwiIIak}+A5S166g-xx$ z(*@X1PwWMtP^Z!XRMQL44iNX;3RSvZ?9G83gHZ$FTw?AdEhfY@hh?J8PaJMnM`c<~ zt$?=!k;foYrnZyBs4rX-v1s9IKS7ZFm=>@&YrsJ_c>jIq^t;z{E{~d9AZpb5dhPtqq zuECPgc2IXtv$N48>m%k@BcI0<^)<6WlAU6AAn3{6J%ot@ihkYN^W%zA^iNFqO-l(Mq{fZ^tcl*l~ z>Nc-kj=wS8gZP7H_#Fsm_TkX-GvvoJzQy~#9K*hbjG2=zS$u^$H`*!uuBs9kw;vyl z$x*aR785@yZQwFce*laFw*Y$S zWIx58MOTdQQt*0%)ScS)!Gte)DeWq;TNt#&;HW;H5pTLY21&V0ZN&y9wM%(Yk=!%q zYH0DQa@AHo?b*+l2XdaljMY!7e0>1jkuhnl`w@W1+yv5K>Z!#$jmptrXsQYV|IqPo>PL|@*} zyo|#C8m0VqTzQG{8PbTaFyKZj!$;cGqh;?b^fY9YhyUZJW z4#K!_CD*UPrxbAwCzygwF1*yMoyJ3U`Z92w?Y$jg*BabG6U#ZzBFZU^^pO25NV-BV?GeERu98`|-{+HAjW#;{yoe^)y?Za7X0@t5LEP&}l7z zL7M`I1ozWnHsCEMtA6;gPCZr=s+I6nbh5J~Hm@sVil)>_hxDGHT0R-2IW#J+Y&FN! zKv_I`YN#ZZbhu2kQaYc>OPN$GSx6$+s(!(dx>Q>yI_DxWE}E2ui5i@y!-@sRk*lo1 z0De~wf@cbo)F{Q|nX2WZb3T5|B^4VU5*M3zw{v;hqHWD+ne>q^YohBD;wtr&!xO;81~eOsGuM{PHVie$D)L-I#i`gY_a3|mWybmv zY7JjNqmnBE>0#(7S!g49xvmzI&3awXfOpBFD|bR0i>A#X4bq{6JXrjmO!Q_Z-P6d!Q? zRa_Z^x}174${dYPtt4{rlqL@k2t}$VBX)CsEVMXw_%0SGpQ>RTrqKZ|Zff#y>UsIm z-dgcA^wl(5X11xFb23w9SqC*>wo}Jb8@`Y&ig)RmHh1uVQK63i;ad99hTlcwi4pr~oyQ>jwAzl;)i zVv0F>FobXh{yc=3g0tqg?Pr=WVcUWDv8N9&DHnUz4dI}Cqzm``LI2@kieCanvE=#a zUTw>GQUa*1VZiaKoAs5X;vTEq_=~IKQBo&}FIv^-g7U-I_@?A=6W&`-BeC4Xvr<>t z>}$<^t7tM6(EjcqgX`^Bq*|d%$0-*Uoc`CO!*?6pAM)?;sU7^w7p-$XW}fG zs99wEg`u|RC`%RcXUt;pQcpf>QlZbaB*x*uR?Fiw)xK-ZnlG2|(_wkFbluASNo&QS zWq$gOfjYM`emdM`(Tm)9d;K9fPQ9tGbv#`)Jc9ggF`mD$ zBjPG=ZH`%7y3}=6eI`Hql8Co8tVGg@p@!+0;23qE(IEo9T3(^MWXhtyI(lExW73iA z%}L2ngiM0?j&=JMAJbW%Dsh;zD@X2+-AX>gE@6+_<{0Wl>-E^U71La+wZX5@y! zY4e`r?9k03yUZJ@X_@PMHri6KXQV~aV2LDV(qYLvVJ!J-`N{s0sXZKZlv6Xj2&X6` zbFTgCY%CSk+Qu^b??tulp%eSQTaxSdZ@8BNf{B8ubE5QQd>1piM*1e5+G3Ier)I5M zokPDDy~-K*sBiWTbYGd!$Usd2p0#pbhM1IM+1#&anzq_cT4Nbg-xA{{il~yPO~;>p z42hez|EnQrL63E03gD&&<&W`ZXq3dOrH>RI5js~jq*O?-WI;H=&s}HD-+YYWl!FO*zgOcVJOH`<>)KEBY_+p zQaF~9=3GN6{@?J&%0WWege&RZ^3CUD@_ica$f3a~IkK-DOkfmF85N}9cZQN4JJp8t z8Eld5H zh_qfbgPMY3%S1$UMD%UUOUf1Oa8P#pgs^Odtq#Yx3!*j}iQiUY=u_OEe!|vP?ec+o zB7YKl(bCmSg!TWn+8m#Sb=%Ad=M7e-&4u=d1?SD$8|K+ z8ipAek#7w_nx-1zvzw4$#xA9xUuiD1`!Ii0;60E9)wqGi+B2_V{o3d#t@d>)J)`m)xv$M9|;BFsXFM_ z0sr*nle4p`ii&6pHdEr@(_LQui<^HEi`YMZKN0C+#y<$$v;y6X_einKb$=AvOd1_dBNM{_qtXmB^A^D5;Na#l@0O;rSAL5V+l zEh`6!uv^|Cik0S&LPn4$ zi#c2bvZ~-gk$S!7Wuczq<@gOMS#4jL>vZc@V%p1TdmVdQ^Rhj>n8i!<=oMr2042S3 zqODM&pRp9f6C7e3ASzX^}1vS76JmyaiJVuS|rvgR6sevOrRj@4>-!H)zGTdR#|=6wih(V!!Eb~ zJ;q#`& zi!*?vY+}C^x$ig{y+19S1YM5QVy|J5%UclQbhyz7@5YHPN9|+bpKnO&Q4qHn9C|L- z=Mp(JpYN``tf^2I+@GIev&OXkagk?Ep1-DQPSKLD)l^p|WmCc+y>7m76vKoE*+~Kp zKB6wCYEg-&_+cqWz*S%& zhN;9nswmIl*V7~1EQm=XsuWfFxiy@1PPRXCeju&NTFT88r^W;ubCOlTyNdBg07Z|O z(_707bKZiuw6MDg@olRx!_v6h#v_O4~JyaT1mK{S(%q+Hw4wSY!&@k0vA}^kyI0R0Lp}Jv>qwz!;Iw z<5Is@oLv66f>rj~6to501OI9Wro<br_L4Vft-5) zloKpl8-WZ$l>(9d5qwoCi+4LHb{*DX{ddCa6TZ*R2K7@ z4nNrQ`=_-G4!biqH#fj{yV#y2-@wb`{7^dNWG_}3F-&DXYz);y#dM1 zf<#M!TK&5j zq#rH0U%t6;pRLd<6_?v<-P#|!WQCjmY`FAoxH(>^;_LDkK5X8bEs_Rz5G7m!iSk8C z#a}^+6x+?*aEE^@NM>vU8KF-k|No)sE5owNzPIV_Zs`W;lJ4%7?h+{h6{I_)OS+Lx zQ97lR5D-v@MnI4h0TJKD|98D#=9+m%pEzfqz1F&GAFe!E>qk7eO<_=Q@cSkAH3v|n zvuT+=(1#Tej(%%##3ng=^|)8=dib5d_u=mH`HB392R@*d2K)$fg~5z{!&yOL2n1Fl zfZ70|`DN7fABYGMt!4h68@!D^y#<|%Wvde|^AVVQSXfxrzayR?CNYEnpCh|=H%QPY zU-p2*<9!nKo1iP7%ZROusa(O7rX*_7iyxmK1Hqm`I<^6_WB=QmD^NBP#Pfmt?qu`5 zPJx7xd{QK>!z6*Vka8=aYH&@*<@WfUngRR=^(GQt8Tn{9H3hjX3Zd{L`Vn&mFWclh zAA*T>FzW2rHdkUh?cuYK-5G}1KcKd-rTMS-d`<)W5d>K1TpvX6oDrRxK|;w*tIlSs ze02;?ly@H->a~lcdt7E2BONsd+~c<7d{gyFxR6`L-yV&VRC6^)06J^Y;bFGenvAzU zan$$k1$^r$j?w_b-1JEF>1X>w?`O`5uq%3)A3$QN^?f5g^#C=2ifoiO;2W$1YlQ%t z!W!2F30bjqV84ci&ese@?0p8j@34ITd-K?O%SP2TrE{aVI6GTnABggiD!^JTrhuU& z4^Y`xzeI?Nn%`(!+m|cQ%iVDsh?^U&Eg11S!I=;4cU0_;R8683+=;pOVhNO-X)GFE zRmG_6npRJ@N$)>t@5wsvtgJ-yz670+oD@rdwWrYO(!Yw(?rS1f(Y6h%&1m_{8FG_9 zfRTWBs5)BrliHS?scc%}h6`{sAm=a#M(Lbzf^pzG5I_VR-HMKeGvO${k-;@Wgjl*Q zuDKj?L!#dE9bjXkeBjTmXdr)Q;E=vtL-xxTbWYC3VoJ0B;g`j0xzZOB;v)6Bw zXwsd|_|T6ls2gjf`jn=Ul)Mtz;uumEa(qZ8Kjt!#&&@4@iLRL3VDiWB@AaF>* z`&NHwZ~px2`*(Eo=dWb%>d`c~){f=<{X3?aT}03wRo}V&ySZvrH;&mbwzfV}GFd7z zXZY~p1L)dZU0s1nYKcMcWu+Zd5#_b&UV2Bri|Xxl3GQE~>B2*0O}3nt{&}#qcw=?B z@-|L(H9h2jDl!M^)hHqTM$|w#AqjO&4_`0FgtO3ltOH0~Z zG;`!|GVOyzn}DBR5mhi)c65RLc=cs|e(Sy+9slh9oo*!E1MQa#NW-L_wW%RmEwhr8 z+yuYB-5nCi3Kdq~pe?4#3!|*�ywyah%)*(OEQK=vLb>SY+sAUT`}CJSp+~qK?~( z=Cnx6d+-*6!<~{zOxDz@4l28xlRzA{?0*S!JcXc`5zY0HL!*ry+(nmZ#^fVs3~T3A z?7*za!N%AG4O)-ycWo-<^$k=KgbG4_5ykDM6~^}*Me`&G&UVORj^dtSQBvXF-rmN15U~(Vm8Hln^5P~?fmjE1rY=u5J&pU+;H+Od>owndY zabIO3D0Bh8_KluQ3dcPJKUi^G`Mj@U-DP!3p>(i%cKqvoBFa%N%#O_L?A4ydWNLTg;}6fN{KcgASj6Z zHLb5r&@(DVmg7mZqp!C1M<}+P5mc8*57|RvEZ+KzpnU#_fG1CcR(8APbrx=hP}~!A zMMMkF{IKKkpmri#1sAuM8>-B5{Qxge8gXEAD*E~g|Z(;Mjp@nNJjc|iTasI zVCnhciZDHsp3;tIM z#Fv+ycyr-EMFmjT9mghsa>;&vBooNjSFk?8Byv-Zi=(a>PWmbRt9X&^O&Zf4nVK_J zJ4yb7fMg@+c?OUAgZAfZIv92_iCOy}eGFgy*CrKCW~R(v!@;-8U}rMq?~hfvjGlR1 zU`oW#t6}}(#Vv>t2~o(s8U%(;FLH=MeHRz{b<8jd{bF0*v|6m8V)1Rv$&?dcWs1ee zxfpegf+jhocK0N{&C~747w=Suy-L#x9|Z8$W}xs4qb+DRxS+E=(9+{T_!V8=#HUWm zJAP__!kmZulhhfpO-r(!qE)Z{XDed5zq>(VQc}{~K1zX@_lDy5f^po_n$u}gy9WLd zxrGxY?`Kh8_dz6&qbybT@Qt?Ki0gjVXFSk>gzH$!M#ZZ=@TM-&@H78>wkm~aU}>=| zPM1c_F!(5cmu)Oc{8~aviq;3|A%c4l!k8@gg9p^QrYN5D{C>jq*re@e@Xgl~wPV_5 ztn69EiX@{8a;j{QnhFFQ)w|@cLCOmKSx(7Gi6i%GL~`3{(?l{fk`qjawfduC>PlN9 z`n8+YG~vY@sFP~wVr&Tr1kVBJH^Y$8 zMHMV5(Z)M4Pis{Eg@gWnxl8q*!@%ok>g>!;!Gy#buVbxi4+R| z>kXzR$GGos@yU;p+rBk+pl6<8{;GjE2KLCJ9gdqx8`Yl#as4G|jAwNvaqkcck8=^x zYMBLm91Ka~V>>R33)yrEFaMjHlYbK!CDkDK5me!G=P@nf&@d`whr7&1Odslpav3EQ z^DiasE~#qh={iz;uroKOD%E@Z`UkM7pjT@j(90>PX~X?yCjjE+?e+|{^Obh@9(NS? zY(L+01-?8Fb#y!2Kh52IEeuZtRUGcU`h+ZRsH+?L*{)$Lfw$j|YTytfw)Y)y#Y6!a z7jilzsfid=w;R3clarI_?npi`#B`n-e%X|zvo(#{SN;`|XN1kVAlGQsL&T31p@PI> z&Hl;&@8)xnj$IStqWDICIVd}tllV1%HJG=re{Qt))KhxF`RBu3YRN0_Jb{d&oi^z#cGy1Y09>33gSonM;aNI(m(_E zh`uLWkE`FEP%?!9a;kZ6yc081Qx_lC_nEgy25a-@CAPM-QaH9A3C&8@_6iQTrlEZW zXv(;?X#KxHAyh17M6-=95fqM*XrJuML60h?EOL2t|9%IT;dk&?Mj6~`&-@X>p9p5( zCnY6K>8q)U!ws{SMC#L>WNRQHcp)b*(9e)EGd86C>XBIBF?~7(o^mvy> zwDjc~$7rjH@_Yn$EBcX_x{xZjtE1$k{iRRr8Kn-^%4j##@CeS2rBO@KF8Qv$`fOIs zj5(t{YpXEyJintt<{k-cCVS}Xp5rg3iycN39vIFAG0VVqof%nnz<|I``E>a6M&-M< zmt$S#2z$ILBVJV$4ii1*X&Y(SEB$>p6&i8qTI*TRV6c@{h@8iFWu&~RW^G&x_>+`- z!SswFjWxKu)KJ5#IUKqoI(|EpJg2n2v1pez&ybIDw25a0r%-D?0+oi%^-jv6^H z0s#h?^bapt$q#Q}x?RH|i*>f6MqlH|G;31R*gp`G9+Ou{-^W( zJqg+cVu4a(e;UdaLq|D2Egn8h;P6Vyxx{RKIvkvM-$lFMPaPHWS%RwUSCCco zM=$2S4;>b z$e)7)54!=i{Pk;l+4^Lw9|}%S0`JDp6f09xiZ%tYOIg49e-y=p8CWwMcJVRQE|dD^HkjZ!D0;2o2jF|SW)S_rjv zPmPbuDH0JA*I2O|rYK#+4o2h`qw0D?`7#vb-@RLf3KgQl``d9%}s)d1;GVngkM>}G|y(QUKJIe zqAc3X%#4D*j*;I^NAWl zjd~K!vUWBM+ z*2PNCPA+A6PifA33ZqiXC=s(aZVRuy2#fe^UcA%Z%}Wlw&PV@m=&>e-uYPXAn-qv; zVZ->fo*Cq5S!qX_5HZ1i#X03MK}=7_m(?fpp&#LWV9F<6;t35p&8J^StPiuZg9i1T z$n0}x92UtBncY3&n!7WUMr`Sh4Q>ekIdW2RS+k(zTF|7_a8u~$zi#$ymK&#`B06SGEZPSz8(F|y`iobvdg=jsUHUo#Y+hR)5p;!u-F#j6b%mZ(dVugOXv) z$=->6_fHD+icBml&roY862Y?S;AWKM?VX)xPoI*$rH17b)rYFiMN0A&VdaC5oVYBz z_cUqS+*aC^-X&LYoBn{9YO6ta;7O_futBkTRd~s1*%}|b>D_y3N6&@-?*+x~eE%02 z#?PqogZd>Y)iErv+#Y^6HGOFN8PSKNUYg z!n!ztOuKgy3yThwja){ZONt<>H1p!3YDMjg{m?7QD*BM@p2x|S30?g5fXi<~rIIxY zL+ctFp?F0uTI$m`L!@m2qN2ZHh7%VTZ+BZby|}oYzL5z$UfcUrMMy{pa#4^^!vWp! zQ~2Qm@ljoCeb&zFsr%V4$3v1Nf-x6FdfnrTTHg&&F#uz&t*vFHr6AK{xuq{|Atd{G z@&aVlh=_=Z=1n$oaYQVM{yM9pR6SYY5AJ@8uT6=Cw#~1gKk8rEeSQfwtUp1m2hE(V zvNBrz1~fS!osW>gC_Rv#CM#e%x-+#w6bCKfS!ON6nC7lNhm7h2jwSHj#G$E=;doiR z)&2K-4e`!rQKSnx6NOh8-lK>Mt^D!UPiKnul|GMqAoHvK99*W#r{e zJ_hKOoP@+-atZ)}Z(w7GUqsGpv3qp%INKx{QAQ2PF1xTWdFbFE6cO2l4RQ-CVC)0z zZlVGHz_3gAWFM@6^PjD33!Nze3zaIo9-~w6r^5qMrG#C34_Bx|BH%ql3 zmjr$oK@C~UCoH1pVKI;>m75FpsZ>amn}FacaHcdiK3?y5oU#QtJp6rOh*JQk)0YP8 znLUu1yXx;R*8d1KrZRj{_6PbnnY-ww2=v?#uvdT(-F3D!YEje`zw*YMLf~L~JM)O` z!=vy5nUEKnnwqelJaEiJ>^@a$K}W9?e9J6LJ-`rhb-I0rh^D2PHbbr*T)qgMa-{Fv zkm zK6(vEak4?LA(%0ynjVV5e@VfAw;E2TFkif5QEki@dQqc;)nRCU6{Bkozse7q`ZjsP zOR(V-A6=%m<{jz%%S2z6?!6UKxShDK$%5>N*8I75|4kWuBiP)^PD4ORt7QOJ^KJ0l z`|&ND+1m-~XhE62SP%F*?(@|Q*tX-(qkl}39uX4}xyS{6>HU+wXz=NUVspL zSGephN9a|4KFx);UrZM6g6CX$9M9ghLen{n($#1j*bn@6`$e7{Ea~-Cv7TAwO9!v4 zt`?1^i^7d$sK#>Qw(9P*NxP4*=)gGM*3s50hDvRk*M&mH)S8G!G4`Rpal<`#m z0rS82!+%kF4f+%!FcyeBS_wzRrf(Z@64On0*&{-1={<#~FzRWfk5Y+?6EYIgLF z$uPBQV&(MoG(K{)gQMeYm25Wzr0v|NDa^_m#eu;QYo>x*JQ}` zQ&Usrjaye>-hii*MI+0Bp6kE2zHCB5=YZU}_`&0U@$*{(77m>x#T))gJ$R9v%be|f zcrQX*5HL27J|HN%o-j_@yfzLO9CXoEwZ=TG%rUU3 zs^sYAkByB1B?moNG)~Gpc!HRg;kjn0o$~sKL)7y8x99aRgib*A8Lggd@ty>1>4D?b z3$-Tc>(HP^r%x}pIulC=8-pBroajG+d_C?DY&mu3+Xsth?)DWyX@6?9SkhhIOg(#&YgQbf z=4&NWGHbrKRXD~|($?a|@J89t12!Aod)y}{n<`@i<_B2H&z?z;V6ljJex=9^!-4Wr z793T~`-+f+WcUa`q2fDBDO56Ci3(4AJiN+>xx(&bZJ5+d4_y$;wa8^f{WgX%&oRVJ z!3UFwyIv#{LMKS(h%t&Gl@G~E(izy=4?DfqfqHYLymdzNm?8qQ#$NpPw&?FO{N|Rg z8)DKz?5^g;8BFSVHgl0!@o!p$SWDwtFa%L)g^B&T=Q2>z)J+l+ho=N4CzsX@=>^vY zx?^Td1LeB21DRYWN?UFTv<`!o@OuvgeSI#rrV5>Q%tAaaUi|hobC;U#>iywNxY;~a z2~;v*5%0FM9>O(^5dfwaPmc?aM&VJ7Ddcs=5wq<;sRjg@OIJ2tCVIsVtZJhV@6GZB zk0w%{vL-?O!Y<`#*5&+Uu>S{Yq*61?Y`~wKAFZxl!=9%)-=HJ6{r&rDz-lnPslNV3 zHyEWHPhdgqIs>DG^$0Y;03|6c0bO>poo!7VL#%6R0<$;rh33q$q+lDptX4j z2||KUqLV(r1fR|G5N*cz1;k_Vbb4X=J7)~bjeg$+Eb^HdL6W+D-kVcOlqXD2A3VAC)3SZW%ua7-UX@nnxN zNnnq|VOt{d>Y1DAx`CCr-S zpY9u;+F|sh9kDkbQd6oiEz#+gRn^hp~1K(Zf7nVE4UW z?v|t>un>A>%!T$XV%4@Rq^=L1J_l}(lamvg>?rq})vka>=>g0MiY2*1h1qo!{X2pk z!u!ybD(mMCT?C1YwQ~iOri%@(fiKjP?v_^GXdIfmQsof!qb<}hM|e|=f~3&??p?^V z*jw;UySQS0KEf!A;pm<>o;wXW%QF|l8WdepXJ z?%?>%d?r&p4CyZ3CZ4auE=LGpR5eEkbN3ch~grXS0#Y)e;fpPo5I&Fe3zYl8-!Of2JByZN~OA#?*+`dK}| zV&YyLLzF`J^Dx;^qWWlitn#@BZuB2Z3)viM0yzvym7@&#(gO^*5&1#95V#hG-r@Pp z%^Lq{L!eznTCE3TFCq#pmW^>Sf{&U!spVCOR{0v;@yT9Q5o79$(8qEn@)Wl0u4-y; zxWilnR#lRy99Q9Hn9>{pwQl-G}G{G-6!GC691J?{q(u~*>%JirD=|(6%AdcDIextwd3~yuc&~nJ0C8jxW8BsCuxj*a&E~5iQYPoEZp6QFWQUwQEiIn7 zj_j;Yat0YE)(}W!v0haV0>rTB*1if)Wb=EvhmfB~2?`aNYr~lB6iLHy?n?-#q}+K+ zD;H+NJn^weMh0{&r9=-O_xv&@QeOV8_6U(ttrG~NUm`AQ3y?GVAHvCu0{+Re7X7ZO z(%^6%zzC@_B{%>1ebRa@QA{A0qp`Q7YWp7VVCXAs-piTb+L3SZfT?$ro#ega{4Tb?w=EA66M>*L!MV zm%F;YY5|=N?Jg5nnXp?zU7fE1%lQq6P|)u)Y8+C5VYw~UTn>5Bh3XXcWIcs_O*6CH zc=Z5N-1;D^jff4lr{77vjeRWQ#jIlwl zq=RAN71!M$XKQ2G`_&>?`1uV&B=vT(jQU+Vc{;9-&{Itt5sUVs_e8$<4rJ5_cR54L+t z-fsHR2g(}FrUUXd8PCdU6GCHoP9)o&%n$pn%13t0 z?1q7yX()jZiAf^L5fzF!-JXuYBCg+8%e)i zf)_9|sPcfUPv6%b3e{jAaCKUw@QOQLWt>2HLnn2x!!?aoM-@ngx=yviHM)G}T?~L@pthejZD7a6w zCW7z{(rOtAYzm-4z#ibPS>UI~-#_uRO137q@Z*F-dCd6FxT1AI6w+?2A)?>%q2p)6 z3tLiH_@D44G!e~;#?Kr)bBIc{1B3%L*4?xR!}lmPiVANugG}38^xzqBqEDYR)*)LV z`p9kh&d>rJyNhg{mcSNs^YSjP2^T+}E&Ypow|Q5jGvifbv={Or00J*riJs|u6XzCt3v7bp}$4K*;3+`IAb|r`7 zEB>=BPHNNn?T0O`ddO75D(D{yrT)N(y<2SO+`#^-sfM8i@B{Tz_QG6E%x+k+qP0r;+zq0_#djKK#^y$;wscYB?Cm=q8i;GP&Cq>O&FJy<_ z|6obZ(9NV9Bl$6Swvn!2En7W5Y_B8D&!5blFL!*@H8#QOnwt5`nPKU2vHTSg)q|KF zo0JmQbF7pUJX&6$#wCyDYYgP%>qdSE`S%Z)=C8zeqgvMr}4F6NrASG(rLeujRD1 z6wOw;c`T3v6soe@Xwbbex78DsD_@wKFyT^-kNH^)7p>ElJE zF7<@E#6?ve!|v!P?HQ^P(^*}JZumJ@F_~Ev$@$y*qPBu9o;AMXl)@^4zEO^VA4^%O zA2p?#pr~kcES!S;7AgA{K>^46`(wV*DDSEqdTQKib^!uXk|CzGglvo{0y-q*h!{_8J?g+)d0-2p9K@RWrxq(_hH z2h4qfgL`^hYCM;J7Ihc#;X9MQr$Kf5*C2_tERg)bnw^X4X~+0n%s zXizP!Bxls`PX-qk7e9W~cB%c~6mfuugHwD4b2tTE-9N4uNuM#d@2T{e-cDMnj0X%% zJzqaEPxaoH$6i#A?!z$RJtQr8&C7uy@UE*1@_QrmFk)z|Rg{&hN9R#E1x&Fe#H6Hp zIy$nzb`OXIgpE8Pk_qovURW?PGgB*&_=mA>Ze`UAO9BXUaD~{a4FRPM^YU_C9k<{R z%WYlX_lc>p%O9d7zd|X^gbYPl>}*ayIM(Ah$NH$fM_|UJmf$1ozd~HgM$yx)YiPLm z{rfJc1u2{zvONGXf#jC39BaIJ>&{CB!=RdrRA!q+wS~Js>h`GC7%-)GICpx z^WN#VzH_3R=GGY9v1Cu5EFD93cN9_}2=DBZU<)Hb%wjJ<5yg5gXlDLi!ELPEIVcd} z_R~!)X6!e+<|Pl2JQPFFtoddbR=?ei9~mAVD`S-9`X!h8HsFXZ-1l@#Z5UB$cWaB8 zQqbmgJ=IyLzE+tJ&Y? zSJ!_AzX#qV*wo|jvKOEkB_}2xeCraO{~7pRhqP1pfB6G0x>pg-u(x@5)P2??n1D%; zn};XtLXW=$J!@lMX^ED^uucuF+mm=ycNFxAwF_9S%gf8Kl!nP1o$TyNoj;IDQBYA$ zOi!y2kO+r(b$y$L%^apR#c0+R3_?b`a#&aZ!OYF+f2xifm_c`U^gB-wqd-=J!%WobReLg$>^}{6A9BD+0=veY2_jjzq)>n<-ZW_Uq3pU%tSCF}Jq9=N8abd@1wv zv>Xm6tQ?U8dy5586g)HDFTC2IT~mHb zd2M2BtgNDvs^`+?18BLM8^}Vj{^lTF>?*p&u*tizTJuvN)n&d4YiMZL+1ZJXj@Es! zfqIF`o6V&hb$Mh{53nfHcl0lh^%(HYOir$UxqDd}8!sLla0`TiA6|*mF)S-pytsM* zjpHiSJ{+NxILOM-P?3Z2neV?^00uoD0v!y|Ei?sqk%i>HkF3MXHO zMkHn^%w`bn>Y=taUU*zl3n&rc&ZVf!Ip-K`Hw6uQf&tM`vd? zPOaL7*LrG(#Q;Irux

    8y)vLMs+@o6!61<4F_;y%Mc z>TEqCPxXRzOHq5yCi!V5udc2Ds*a3A(Tkb$h;{2cOeH)ieidauZcb^jba(-IVSq$O ztq@A-8n3Rd;vWJ6BW9FGMRq4h0*nsW@)_kP5Ec_U_{pg?)yz+yY(s>ffA-6lhmgae z!6gIPaS&s6wn-dquEw!UMmnm(Fy_!msj*z(%rRl(!D-4Rio9g6qjLu@Q&Uli*!w7z zDh@DjnCQPstig5ZjKZ-=^dai&1)d%-l_rw(nMjvn_I|cEUy|4kwvm}63EkI;wOG!m zwOAy^Wu>1$-k(E6yU3=HofCJM1nL5o2mt1>B43+Kxd-owg|~D<>loaL?~lrV@oyE9X__OvPypWGKOWu*VPqsn~2QZ z%uEjdsXSe&T-Ig0-eu(a`3(o+r&40HnwlDjpTW?C3v@Xk5OAJxipTt%`w$y24!@WY0 z95_fkOiUg5JSSe8Re3!V%Lofw8h{LjwH(UPK!B=xe73QEa4_xi36duf)dztX(%ya( za-br#|JcOAZdOL57%?Hs9n(=dK~s&~Xk#;j(Trs!=W-co!sw8Kxg7H6;*pb6G{(Iw zdMN_DQM)vNKnL`7rTh`8P`tzN;|}?eU6PC$8dU>k;@FIt2^n^()Mk`Pm2WUZB6rfv z2M{)p7`h<&8}<;d2(+n>9~VD=uBxiCXCe@`d)}R9zMg4O8cg^jd|YW+HKQ;s4e7Zl z1P%Ow#(#;)KOPsH65rOn0IN zX|GmntJXYX;=!PeidG27Pt%`-yC_Zm%+ehqA?nIO`M@;AQif|=H3oV7xS9pGsOMWm zA7qJ?L&(zJG=zT)Jt)sl)GJ`mk#n#h!AgBL%dRED{*zow-Yl~8Kh#fRNrY0cn=^Vn zyvr{9{2BfF!`K)cbm3!eZcgwW{Ut8cZBLdfrVC{m$ItQRYoU#@22C{7)UB@(1j~qZ zm=EcBn<$m#2ue_QnHkF55-N=hMOgI|sPm9CaE94ka3xMMu^3;+WvptBp(x1`h4)R* z+VC-A)@90}ICf-E8#HM65OcdAss2kA@M?>i(=+GA5h^$}6v|&YFSoG#NhqP(IxgKr z6BvFgjVdzV%SVw|9M+yTV8cg&6WnAhKmiu+68uGVv{4Z-L6%pQLNX(Q=D?+>^ z`lpB9`XsuKf|rR{EQ!0LYCpU)MNE*j16dLR;@=<2!~cnPI$HCS2&NMR>VLYve%IZQ zJW3feqn@UeXY9n86!Y)}6Z;egYc@z~ouATe2RNKBglrbKA18|RIMqAwB@U&3m(z-W z{On(hY+}7as9nHmmS{`7MLS{75A^h2EEFZe;yyb%Gg0Aqjz9RnyWJ|5lI0pBrRr-h z8#8?_7)#@6Q)84X^^v67^i03B7z+$yo&LgC_;ylPzm;LN*}BvJ_`)A4Ifonf`Uwjq zhLWI|u3%hUrk%Xpt;_r2VfNl1Obq;^c~EVcMyZ zt#V=MlUB_H^le1GZb6^I@}Fbiquzh|Q_5|?+*JU2tDy_DD{AGY_&$f)#>|{!0Ivup zz%~U5gprYvP>qD3=p~Y83IuTUsV#KIAP%)gpQ3PJgR1?|-=hP{xu~eg)vJ%35G?eQ zV5p;`V{2UH&44s)%LnQhYh$$jYbrs*nQ}_C%g^HIR*IY z&l3}aSpN1D=AE%VXS`3+@#a6FCgW&=b^6rsPLg}%h(%D;!OAgG`y=FHa*HjV2W#^$ z3SERO6Vk*%sH$$9y&}tHtZZrAXvNT6k_I`|KQ#ZJiP)Bu#QdX4%A2Z&%xGooXUvRA z7)uz0srqq_2B@Eg%sQ=hr=F!oI#V)i+(lgOvB~ z^?`m~U3~&5!mkyX$$n+zBE;TEt zn(BG``U>JIOMTlm;?jy~PW$DXIUL$%R1#lEb!N-*VKmb0u*s#~f_{gIrqsN{X#dDn z&8A^!V#fS!216ew&OLDAQBv*+6G0FrIQ#(Yo=<~d*PlOsLeKbRZc@;eblPoj$1V-@ z0uY59&pn}*f7NyVgVb~04K-FRQcgo-5=J+S#4Byi%uQfp=H})O{Qp2$>lou=qxEA! zUGL}5A3P=3K9jT`bFKJ5J@PcGLg4+Q!^gR{?~LQs1SD2F%(>c)^Dr`vRxDzERkd9D zru2~x5e&fD1Q5}2nwOq#U}g35$?e*j4K%GleZ1=h-yWs#GFkl16{R{r>weXs9qTF`*6lop@H%x8^0LS_`D(A29Rb(( z0Y7+;jR9W&+UZ^9!oC5}&=9PNQ>Has=Cn&nYU&?{hu_{jzQ<4=G~%F4Xe=aZfvm>l zQQSVK*w)bjhK(JdmHFJBJQ1dXrasDs`q#ZRQJ+g#c-8pP+0RuF^>l=2N6+59?&|sj zei~?|46|K+tgX?Pn^;)Tpgl>)C#dxbgdskkil>;h<*nPjCtj=|QL=-vD7MBtHvQz~ zH%}OR@RIj-5G$Ar?{ovgTj& zsyF1HHs)P#8_&8aq?%YYvyzWpN^;Irr(H#So3HaQ8*c`c2y>sqp3RD-U6w07EiK%^ zgub6&{1)yu1i@nd2@em4g|>iSL2-tDFA(TVK-~uE8)q<{-+g)$%Jm@scr92MpMXt;>fq&;I8g&8smTjL^nhUC9dto9QsprGb|}GQqrgZ%eMq;G0?`)CwTq^ zD*P@u*}}p?w+@Q}BN{X`a5NhcPsYi8a>F)muk@9b6;NWRvBIKrgwLea-374VC5`x9 z*czy_0uZ$-s;b~LAML&3mX5x@A_kpJH8farn5`wKh}hJ=w#>dV5v#jGt|5P~+snYv z#>K_NG{o}>A+5Ul{zS?wT7|GxA4}POi-Q7TjS|K5%GM3|HmNDk6G+M<0zaFPn)t7*6T3av;a*)Hw6}S#^!%g=ZG~Z?(fsgis3i7#KSwm53Uy0NIx z=a!J9nS^WC=0wXy!H5>v2 ztb%M35_ugKh-H#yjKr5@*jHa+_X2^YnRYo(L#U%p8q0-k2u{BwRnB`hWo6|{iIXO1 z9VK!V>^(d*<-;*)(rKI0wJ&UW4#mm0a{RlX>21O!j9T^>Nq-?u@BWlDX-6!QM(5fa zyKC9vdJH9b>WyOOvhn!6N81XOv;7)VB$=>YA-1$`Q62YF2|Q890ia-cTU&c)edI&v zy8KU zr{zzdhKvmrnkW_cUd|BGu+NR(YDQ<+XuskbGO36O3IN%Iz_7c%K9Qe#suJ6)CTDqh zB;Onao>m5Km8xUkI_$PRN$(95r<`4W#MRd@I4jba<&d@VYf@0)7vEkQU|8>(FdOZf zIB1Y+5seC@*XJ-L8wuwn3JgaFg<}(uu5oRM=9iI>O|KbAGlWNR<-9a%Bb4(`e>6gI zk?NWs>kl={%#707EK+9)rCxDXjOwAcV~|M;#rG&nn5i7o09 zPZ?KzKG$uJn~AxCR8~R#z_hvrX@&b_YJwz(NiEzWvKeDx27~Wz*T1{~fq}?pwUTTY zl?MmqiGRmDBq#=y4nti(SWL0ga?WSxm_%l%U#OfStft&BY#?&!DJ?CnBStSN8krg? zYQ}`>m=>dAcqFZj3toW|G^dG&YVOeeq3 zSLc-coILz&tbHt*jKzkN!mujZ@M~75(=zE|tF)wDA3W6(y4)pZ-$GQMRT5bSY3vYt zl*yBta|sIx2@Mh{*SDc&9S-6D-+yx_6!CID?BHICj%5DYrayGgrG9>9rir`F_!?R1 ztvT=Cm_^8DldRmdu;+-_7|Sz{vz7eb`hn3&qot%)JZ5bP@$pbVyYE~A&j380n!-8n8jR}h zmR#S0;MtfVLSo{G!j;2|JK@xR85Z%f@P7D98>_Z^-Bye_(|nDdCgx6>_=YbzaMqaG zy5+w$zQkSNcQp4JcjHiSujv1Tj~J^g{knSeQhWsAv}&yJgAAjN@>69cB}(#-DtKYy zv5qCD{`Wi{JKikfssp~-M(+=1Z>+AFLhOZbfF-&qCI^x!G}jKE~?POe*9>)Gg$N>J6c&4esR# zD=!~5_(Pz+^A!>ff`Yoim0Ozjd3o6^mS09@)!?Bp$?@xQ)$$GAIeHKW1i4v}BYE4~q>;rBG#NMTrZeP@hu#goqip+i$7MTppiA z*Wkg>f0?Xv>mW%3$cH&1jSlVAYe4(QO4`~o80JAfG+I$=>B<;?bG~QrlcIGz_|@%S zN{S^aWiET{RE_NW-BrxpeC_3@K?x(GtojJ$F zaJ_iCMtyX$cVs7EQGgH=zNmLQROTFYrx__twKt$EV92&;tyy|(vxY!X--ZnB20+0K z6`|!=>s_NceU+6v(5FHMpB>C7^E^q2P(CFjB-RcuF9RDtLxuoqPZ_y`atZoIGiXBy zZAeH-M>tDkGmOJ;Z(r<#95+k(pSTp=G`tCRa3|z70^{X$)o&`4YQqhkoRpO1d}~ET z6uTYd*~4iRi3thVE)1C5=5HOw({65V{`bYithj7fKtl?eWr8P@^pdOC(?ai#BVw->_fj2`oG@5i&R8T6xK-q=C#XyF4ca{VLnEt3`u~;pK-q)?G*ie@ zkyjwD62?%?if0{f-pGLVG{_BD#%4kBm45M*i%!3KuA0g34ZXcE13uHvr&Q&Ej+y)2 z8eh})%8L007VkI|?V4);d<9oEe2~9>DAScAUv>!y5Dhqh!$@EZgo8UEAj7ZYy$9+? zRZdocW;U9}%&km$RDeoBN-7N@ZD5qQdo+LV<^nOEX?}Wg5;E8bex}9PkKdVEzbq~q zo0(xAzMtFO9b^n2=$G3ZA0Ae`BB{SQ-NrsqhH0D!R0h5x*v;Fp{xXsuW)v1SOw#n- z(2ixMS5Ix82nh?9WL^?vS^zx^+05I?Nk9A}R0mutKCB1U`(0fG!d3}rx{;yb!D`<< zk=S-6W7Vx`YD_t;($_n*R|-G9?CqJ>XFw7^tRw_vVRz6~3$S(2uwhl*n|Y4-WUCP= z;ALmH01HdhXMW-y{!jRNR&RzQcPe6Dx)gS8w(IlKF$e|R9hA$Q32Kp~y62hrzg)Ko z7W7{0m=v2@Ci8!-$9C+0Hdw}+VcW5IrBeh(r(9IYl{ zVa@^~-`dhLF*!N1W-UFxxR}Nge0xL5Q(ae=VK^xeH%IIs9mXdKaA4ePJsxLqq+cfL{bfuRC27DZvxw= zS4P)vlX&labur7XIp5}fOl)4p=zb+=n=`%mk2lKe^!V5d*2WJ!T-;yh=MD}IV?J>I zOJEofVd+H}_?uV`HhY%WX8tV&EY}bsnFi)9a8!?`sxfsk` zIT2OVN!N1bsgwuwJe}H-no;W>F7Y@?UiMg4H$(?=y=(tnEyP)eKc+&h(+S7jEl79aDSy0CJS&vmLl2!Ou zm$3YbR5pY@&}JzF!x3e=ZMwKYs9!MtA4^{WmDSp`O?P)mcS#FK*P*++r6m;*r5mJE zy1S7uXr+`6gAM^fNd+YS;d_6Vr`9^)!`^qyTs2?1gFf~VP~bVMljCtk z^kSP_k|m@v#VQEvDSt5Vny^s0(Oahgz5{-7b8CzLuJ_)as(<(H-g82S&}jZwN;cN> zxsuOB)HdFEtu&^(#ZqR=l9=Elb07Lk02xIl7gfbC)0U8LD-pqMq7sL%Z~vQ-?#dv( zMfU3#BHWT> zzQa}Z^SGLYla+OpNDLG`T+RatEs!yG6P6=m@>;=>^ zjvvz97qrF^ms4zeoQY3(`lPH#U%u1gVvsMR&sQc4{n>lea6ULy(#>k3KV?$a-saMf z{M;+wH0=Ja9FH?q>SdA5J?)73)gm{}WPJYP-YeadnyTU&cFMU24X=u$J8i`OgV~gI z1^tTz;^CAcg4t5p-?k9oF3b<5Jev14F$#12VXqO1!kOIE6^-l2&YaNZ^Ig=Z_`kE6 zciJR|{MlHW#a?vW>b!}sbxT(4JTEo{icS>{Jfe|#?1 z|HgAgiyT1)@#aMOb?1qGDg99KKw$!LIebNk7+bL0C1|y5Y>K}fXabh0rY3I*RH`!P z#`-#~gul$j{|0P~@V?5;t(qZXd=Zbi7*iAP&Op;3SdjPr=E0ywHal~}{Bsr_2KKCS ze_6sS{9=`O_Q(mG~>!_Y- zAL6{N_LW}c*P&agB}=N-nHE+2We`Z-?;rokw#=ho*`y*>Tu3qUJLl?$fo6AaFEJ`nA|)hruzwo zRH76;w{|`1FG^gx`Cg#rMl}|vbg9r-vh)SW#450SP_VOAAMBhQtjFFM?L5Kf^V%AH zhrOXx>a`}57eidt#~+8L<3vb`D62#$+q3ditLpdr4)j+Qj~`5*aeM5|OG4e)WiX-l z5oL~GGs$I`>v}kpc!nSQCTBSI68p#clb|4Tj#X}ALqVk8RcIVxjr|RL*UHN0!6+#y zS>>a|knYj(rm9MrX8Hu$5~xPqAzKdA9(WGw@^*2_$h3vA>wNK1N^-q_e(mooIIzET zN_hFQgdFhBCtc>6d5z$MO3%y`XXb(z3z~}i+}xmZV1ALAmX-Av3`s>EB4f+T%P>-m z5c8+STmRK74?bAQ*KPr=Tn3U~f`onwTMLhbmrfwazim z$^Hm_9&ql+8^BV4D)>XyuU{TLD^`}4wEClzVA>|1mWyM4Q31-Pk%@`M+S*cu^0mPd zA)yM4JK#evV&C0`i$oB@UAlq}R}u4)Vni#QUWTy{i2PJlQQ>DLV|Pat?+LzL2E+wg z51>${TY)#HROFnT*Zw^8s!Z{#eoN=x&!44%1RGYdy0-iDI`D1)=Y^8n-O{o^Uhpd`E>-MIGUXR)cXxLv zd2*zKrJgZ$BPdg`aAs`pe`!5Ko5?PKM%<@q8lDVDV>BU%S40(!_mDRW+oc5Ka)Utm zZYVk`DylxNRAG{iSIo&{#F0(s>nZcJ0*Qe2Bmb(`c}3USx!LUXZJ(*n_KSHDsHkSp zO}Xqas{5&^sqx{^0j;WYdB&iKgv9sB$<@FAs-I3u$wBvG+3sSHt-}}W@C_WgB0-|qroxiEC8SO{exl+f?N*qMVOv+)rh3Up*+vA$(GB5Gu^RZOkukX6FdXp1culV{(-gsFsWz$7&!yB<6^usi9$TfWh)jb>EQFP>tX*qa~0q zZ5$M!+N^sZD0l}xRPy&ttilq71{wP1?5SAoIIf^n-muLDvqwf?S{|#-ljRy4;XZcJ zL)q?^ZZ!7>#;f$3#W)LptwdEUGZE?AaV|mCPXZz$tiiHW9IWSqG9D(WC5r!j^J~*>P&k z{aq8eBSN+23+da6oK-F?#y~djaQWuS{|5EvTt&0~VWO2toikH-+y{%c+{fGO(4rBE zz|*Rg-yeBy0$4aJ9N$TJeKxN{RYQsQQ@N_k(pnEqo)rC)pnx|V-i^s;xc-9+vb0)K zAU(TFZE|F&uA?LC`+DDxleN6qoge2-;+aZuO@qK9MmMW}Byg;x`?0t|d>g_16s^lS zc^ssL1S%wAQ2mZ295l78cKeb;I+IXxCy6VG)1$5JuOq1_^t}QDBOMD>`Fv zj0{mPr`0|z#8BbPZ)o5x+1uF(sfZ|H;EEc{r~AzC0%uhz@SO8=z;yUYK>@A#R8;Ap z|1e6XdIXmvgM1CuFgMD$Jr3$vza597L2F=4K3AKvq-VUho?>yI#;%&() zGLNH^m07h6HIjo!zu4;NUfb*o^iBJ7=8#FVljIB*=y0pH;C5^zk5@4;n@FXoSNHHa zJ{hK=-cB{yA%9lA;9o9V4qOi0$ohtTd6oPORtsSpVu8Lw9|`dtNMG z9~n11c&(O&^MG5(7FUK+YY$_XI|VVb5>{e^n7Xk%-7X6}UgbCXfV z%W_6R)*YP#O2tYcijp1ujB-PPk20k79|kjr;6Mr3RRJ?bZ=Y|HdXx*2xpaqX;~T zV16td&(Jecs9RDfF=<*&2o#07NEKc2DBZ>iOTirL>@vnIs)k8%#6%`#w1PXU^H$lP z)H&nFa=1T=+I0uA*~RMBsSBPl)fEdRgfNk1?`2!FIy=n184J9gnT+9SGjyTob1Bg_ zNWH9y6p%yN9*y0^!{!O_0y%DkMAhpT!x^-9US!mM@FLkxFdE) zReBAPn%dZ+IT^4*s3CtZy;;~e8f3QqLBM(tq&t=;99li$q>(S0zC!rTs>-m3pvM+*hfI%XKoCoI!z#)>IX96+K5Z?`4?sn z`9ic2wfLVED?gl-ZvRAmA);qy+p?(@QCeCG!U0If1#bKlGztHL-b47!0ArRvEj2aB z@b+NDEMWT^r8heA3mK5tlHnyo^4D{Jjcng;n6$XS0JULjEOMKS!9^%2D44}-ksG5dEEFd5zbA5qO~VDp zV^nlBoZS5=GVSN!EZWr6Ez!w+(%fjofdh1n#-))iJLH$YeqNzhnOXU(A8FO4;WA=*}F)-q& zISEM>zssAK@Hgme&2-;0i#n)o`1SKbDMGx8O^ zc|(06qX4sw+X3R=*>QS=OYER8-AL1>wKodAg)TxW1-<)XI4+qg;kQmdA$tVg^sKB~ zxD=tJfAR{FE@fqvlsxPb~xXjo!1t-=?uOjv>0@f{jrec2`sKK`SS`}=-LI`gWpf9~uQH57+l;<&mF%6$No z0_t;nAWdKi6|9Eoy*AlX{q4;1zOB6-d?cWY2KiZYb91Jv{Inkss&|;PuqmieCP0}~ z+XyQR_MkaTNCOvmHv12Dj=Y_U@c;jD?xBopYisjCxJG6s*B`qVOq9Ch^KE<5E@&Qc4>=I<>aOnh!MuE8A9GVzi-Bj<_fOekQqgKRk z5z#f2kf|p2hRv&@A3>7^Y|7K8PfJt5z!@7CcigUc9ij~kN#;g{68!{pqm;^AwY9bI zW4Soh)8Kq}*|dgOzhlmJqQpD?ESqBb&LsdeQ+MJ?%+u4?hN;JpobC*j{ic2=t6%L^ z&!{Y_$20J@j*w!#0Z%yq32xd8N^@^Vy-ng?pr4@QChCO1XVKBuZ}Z*N)%6-MXt^-^ zsxHvDa|*fWz}`cc4hi;Y@7^AjzP`RT_vZFC6*5Ty6&3_s2Eu14kbIV!mWG=pM8F@h z0jG6(8l=__K7nA08xE`|efPdF`Y+AQFl8`lp?^B*=oBO3PecIb9v#L4oI@5c?9!?Y z_@_SEi?i0TLXS@NYd{o0@`izp&Betf&knP@XPe-h?EM3$qOh-p7zK#drl+R(pZ+oz z3ai3Oc>#UYv>PO&v$G0N5fQBy+US?B_cWHeD6#Ed2AkL+oCL9y!jcqhGZaUyYH4VA z3ECAAToz6a4l#KDBzs1|WJbW&B0b{1ifIbtBi0&6t8hpZ)K(_L*_pN zzQh|t73#MCaZXd70b6X?@^HmVLX^^Smg+&DmK+Q&Z&UOV!nKIInOCS(urtOau@Z z1ul6Lz90mwzsCuoE*2Hmk?Kp6;BaIRqDT_SJoJM_2#Be#0BYt&S~Nl8e#81>xHO@^ z)zeGMX8WmLD3vdA`tr-|H>W+DtNycrl3~BHB?I^qWd0{-eN z=tj|&*x2IsY zC*bhqbndeMn%*oomYOHeI+?;3+a$zZl(LZ*E5YwR7soq zjcW8#gLZ`k%Uogza3XvEJNOlV?}&QjW3@kphmlHyoTXsr1|@4N!43bVx5Y>Dj?JrW z1*7(I7e4$}9FfAvB~t@qj_h*n_ND3lb9)iBx$QyNcapzgrsU`!>4qr8UCL|OD-|kKhMxP=9v2H**z$9|ex(2zYL`5at zDai(ESIJM@E&eQ^Qf1qCX!DsWF{S|8bp;7-P`r0{cY_}aEVOXYr03>-1)*XHP{te( zUc)acYFx2MJ~c^^1|4GYn!$Ov;h#T$UbnaFu)%2;bbFJ(07F4I-{}oZegrW9+~K-v za4opc*O`FU-VBC(Lv|gQ1J%^jpo*pj=@ca;B{?}{*J(PR#6JOt=Vkj}&2L2+#2CMJqx3O}qaDbo3MB#mz`RJhZo#f!-|Ii*-Vqt)Xzo z(WsGA)Zrviby6h2!dg$vB)k9i>;u>R(*_chp;xL++U)feJdADS(=}DGi7E-EY9|W{ z#Kb2X&i^D=-dg>6ke`+}nCByrX5T|TP$20FLZ(jze=WFj&}<;%CJLD+2tx(O-SjO| zQTuF&4^p}3GpLgb3JSnvrtyJK{IO6rT>o|T^`9mt9z0U_?K^UHa|4fT`AQqA**?KX z&M`(3L#}IlFC&mS0=#QuvD9yLR||sjbxu{9>Ah)nDdYP&()ufyZ4GH9P~{Ccu`Ga! zXEO9XM3Z3RjWbEmw?oV9I$!4{-4Y{SXLyNa$hCo;jsDdcB!}wifK77UzptgLDj*%x ziAOyQP$_7679=jO|E@q)TzzqU_<#W&vC=2@DgA9YRpDLKU^dNe)`w=p<|1{L3Nf6YST z;;OMjv|=Li^71fAhc=G##!uu1@*dlC!{U8)D~n@)Nf3BiSy{nj27htm@FzXmDYqAp z(*f05Q5Cl6*LyL~M{H~epN^x~lUO-dV&bjeo4S>?hOY4N$+Ktwz!Cvc-J*LBgb77D zkdcw4Z_b&%cfwGdVXUc$>Y#Q){1}Os;x`aO12kOK>(@{EE7>_L9;vBeucv}>{ipRQ zYUx&D!7oUm11l@+NQj&O8eoU%i&E?4CqC@zg5qju04$)`-GI~K1&mCYo124bw4il% zW=4MNH8>#x4FpGs&VTRi0rj&{6li&L;@s90Lvtd_g;;(LksHv^L5@+k^9<|l)dC-d z&U47!@_g7lWr3C_V0nqh)o*InU5g)_-GsTVF8woeZif-)NutLGsigD3D3X$>G1pawCG+|3QI{)jD ziaB#E)%C}Spo--pVvo!}%Jeg=mVmQyj3Q+#el_`V-;_n0Q%dj)F6{Un+t02nx5t%* zFR)5~L4FB%W}2J52BL7^ry@%sj%&GgIgF7hn5XgSP9pj$RPAg-klGZ$8~-lm%^nvQ zG{>Ou3g@oNPyhV&tD&(mcq_xm+uPfTIyx$9@?nD$qro85Gsv3D*?l;KLhe~E2x#_1 z)hu&BBE0on>xbc3-4I}jf$F5%6c`b$(WmC~h^EFetCsSi&TZ9z3Tqc^8^#IFAGY}_ z*zuyaQcf&wCOSHy<}VWy?;=QHV@pd5U$E7H`v|mu&}L0morV(3fCELe21HgI92`n= zS`F%?YiU=VQ{TTQ(93Y6cE5R&ylO2#{lsf`nx%UPvJ>28cS{zv zLkAH)DXIgk``-im*CX+Wl}Elk!ueI-tseDPx^!0TjwY~S4~$2cENpzVbDkX(+%TDy zq%2_3$BAgpd4a|lJ*OH^VI$?V1s4kh8kIg+_7DFwZAUBa>m*IFm(lA(Fb{{pl?Q+=w+vGe!u?)p`qX^7b#gn{UElYKDvB8EXpq&-p!We zvg4wf)e9UA-dL&COp3+w9Ky(-O{*UYj1309)aM;&yE;yJAChuqJwClT9*C=!aU7i4L6(3w7h$P6r|7h@~@sImU-Z&oCdd^f7v?Q;wJQ&+m_22V26`Jjec66{aWfl%O zmX?qhCl#^ll_+rF5PXO6+?l}<=EaO=Qz|DIEusqYF&Gt8l$G(pfT8rl!lYm0+=4dU z^?*-INc~HwtmC?Qq`2+l?VU|SMP;iKMtCImnu2e@eKJ%P8z+V?BTK*~DI(G51Jo3v zgVF_Exzr6W&*q;&arIU}p{zDAmHmqm@uT zvU{I@v9m@@>WMcE)f61xlPfC|^Tt^S#<`VsnpNCcIXTs3TLEFb))!qHcRWhj2LES2A0u5D$%Om{w84O=ofqQ|VV2uEFarU3lf}v z1L7?AnN~7TfsZH*xcIF!`W#9c8U=9`>=zW))z57j6Ks?;higO&Yp01kXJx<5VjB7N zF^MQ^649`W%!G1U)VLfgObWcf@bH^IvVxwy71Pea-#%;Hk9t)6Nn-;+|K1ZQWmaJJL~TK0NujEyn3l;WyFw zssA)1jF7N{64EJ*&`7>Te0P0Kv(5Yl*~cuXyNw4%K#Y}E1@b<_0ZF8GUoe4eLbi+~c)~UzM`^~3SlarIJ9T&4CdB{%C4Y_!@ZKJ|8Fo!b9e6gh-r-9FvV_#`{gv^t8P0!NjlYg)4;6=)R@l|Y#Y z^%1+HrR6dxxom9KU}xw-M(DlvNJTfB|9zdGsY-8^JtS2W2H(Vr0$Y-G(+p$Wx*$ha z2rB*($iO85QJ145Omf)=-2l{`kc=Dqbd`*(IdV=FD!s6mZe-3ZqyF3Dl$V32r>9V* zn<`(9LLe!`6aNLpFjPMvqCZVlFDV1jGN5$IZ0?S4kvp1VSlPX*ah3%C@5jXYD%3{g z70~zdW+TL}3nVRvzbnhjHU4V{ozdOBrh0k=NvV)`C+^O~V-ML!hK7b_X4D(N%m9iV zan`4#6dN#-A9CP04@We>=RHiGDAeK zFJS3U6H&8ByA2GGH;vqW0}VhEoi? zl9XpJYWHN(l)^2hMVIgHhr#w(Di);;G`j@CK|&mMBErNEP6{aq0z!g2*Gn(t%8#Ff z^9V^!`jO=ax;9kSOay#}2p4Sw)91nB6AZz%GRwuX+PzK=GO`qyT@gFy2Y@vv=j2eD zmyCSA-G~V8C>D@s2q5HM`8|5y^a6lR@SuPG{5c^Z0S1mh=n5~Cjpc1^vuSGzI8X1& zb^!Zr`R2B(Kk6T|Lg&>#FaQvL7-O~183r0!Fm`E1D6)>qQ3iq%j0}b8AD_GZej??? zyJ5)G)6mjJeY;){xhl^9DH{(^AMXN%7i2Xcf&opynh-rvgSF;GiI2Y4(aR0{cgH zVPRojo|~)OrPaH@4CtdLCwn6X^+Xl^76d;d%d{&%ApcH)xWIOQ-aHyti3=HPor{O< zS+8Pe2!z2f6CGDKHh#2&!uh!R(&sr|^akLkP~8LnSX`HJmuIa2Vq_ziDj{WBF_j^> zD`G8mbf)yv7M)hO&Pz!?M;h*-udTklOC*QB$+RHf!_$*M_ItNqEtd^rA4ocYtc$rz zPiC0=;#$u9EGiEfMX<9^J7j9K7x5{gd%s(gc5tw?J$x}QMuci-EogPX2Lw|%x_{bW zTqPAS5u zi zf(sbCfFh!;S6ao9Ln$uJxKu$FbhV9cqVrYQTb`W-n4;TzOLe#j+{>U31eYr`Z7q45 z)ovK_aErA;H-u$>H~Hn{FT*xL>aXrVg0|^3Pjir|0Z0zzMPRUSM3q#)F-n(&=W59P z-RFNytIageqNYCH`7+wuQy!+!*F%0YAjwc%440QnKF-`$lmr(=2i*1bc$$)WFtrj^ z^Dn422Q|?4YD=S-NgHlSGN#tp>t(LFC@K8!6&GayJ`5$S>{GxjFJ4uamC=j0GOIJ# zJU-AaBqO7`cMl{@kJ3Q%*iX`Q0FQ|7;S-!uhg%@X``u_lZ$PsLj-Us&suO^8G(P6= zJbXr!nO1Vf<^OvSisKAFUHQ6^s%3b`MMWWxR@DN@9a2uWAEVdYR{S*EiUb8yc4@9guFt1~`jFpYJ!z5%iX)T8>=z#;;7JPo)s6(wbC20{HG@7Ct# zWKT&6(!bRuo`8F;vDA*x0k8s#>0LtHsVoo;R-tv=}w+DAD`(3;X`y;K<>gSaOXN zf-t}cq&W=Q4S=_DbE|7=7KAoNSel!R{UmsD4UY*h)FEsMn4|?@0}sz9Z`#W4?m#$R zJ>UC&Fj^M}Dz6nV5=xrUtmM*Sb3y8t+~7#Mo0l~(FfbUJz$hUh0ZPMqmiEAN`*18LWU}|E+g|pG6~F(1gOmM2$doZTBJp-1C$Y& zhqku1NapOQtw$L>Y@uJ{np^U)&_`GY}C>$eEAY@J&Fbl|BUTW1kRV;Yi-kh zW8p;W#6n0xP0b|W5v}DH1gD76__KPFUL)vJfe(S<40YM<^hlTQAuD$6n~7;_04CD( z?5si%z&>noGDXbI&8%tVeSNaI5~teThN>mP)Ju6%lG?fK-=55=MppkR(v>yxFZimF zhF;^oIBTAi5cfy_+o3)FjCBqBHBW_fg=v45bERvpJwY}GYCXyG>bg1wTZkT&ptiCL zc!+;ndmeAd`Kz5&pZL~y$fElJA=+fMmU_-N12^GT>3Fk`W%t?sH8(f#Y+n-XiFQ_k zoJb(<`*-sO;|SfOr1bLE(Fe2ooJfJ4gP5u;Y4K?WgqaM1>25AnqpEclIodp%B2k=p zEdd!+D!7F$>*wd4-gPZn*CCvh(~qqj2u~LtjvacjmEGY3!pxaak7VoZ4fOY)o4@tv z7u2puz1S7u<0Am;8#_@d+~1?KlO(XX%V8-!6ok1`aP?Q4WpC$qMg|IcI5^b&t?nVa z=Dk_`f^J%U%b#e7hAOAP)dwI5V1-X0Ng$D|mtvl|wEMFl?ygC2WAR>3WA>NnRP~G5 zc6I*Bnx{)iH9F}H@fEffxkXYOZ!{UPP0~^sB6cr|?d!N+eQ8VefXIvJ#{gwHym&px zR;HRb&FTV~8TLO~45XMC8D}|rSo@av@q2t%^)6)~cNxD%7GHN0qK+eaAo zn&_F@qgCl)1+W4rbibh4<)j6EQ33o;i)XV=6bk1UYHODlDfSVv1JjLQ+x%pXlY|^H%qraQhX;IcA~_*L*U`x=3&x z>gw3B7#Wo%1yrH3O?Bec4SO+V1H`;4$@dClJ=8=MK3fpRD{E+EPzZ?q*h-0^^-}+Z zcd(t1r(e!5VpfJz?O|4CE$DP9LyGuKaxZ^tpR;sE?_v2(O%i8SBIRFug0j2aRda{d z0CEk%HWAA2P>aK$`vDOR=Hn(B3GVMm_)PKIWYYuPLb0qRs#kJL31OK-$CJ1(NjanV zivQb|4Jh`Sl4Z3gQnVWN!y4k4pSGweS9vRt&|NwkFn;DV{omy?au*Bg0IU(Ua?Sq! z+lI5a4?IsbKgp-$>g~ALT3i3$rbpH;s|af3o2dIy%ntI7Du=h0F<8U#zU^CC&#PPz~F$^CzEUE^JAKt{+8{8&PK zhvetMDw#ywNM+s>@1j#3)tI48dI3v82=WZWzd(a}rv8X9~8jnL`5^;BTE zcK8Hs<&-LNxR|0gMq(B7KcEJQ9V+X_%0p$X`<==|`>tfPoyre;;aK=uLvl{KD|Cn( zw%#7W3Vr~JaSo)y>la#b&yV93bY&#TMG05`%ci4Wg}Q<9nDr|n#+~7S0k1s6X?<`o zqNWlay`0VO>hI-LY7fMJ#)dLn<;aSfFgn|w|EJs;M8N*P|K0wxcMI`az#tksw$@Zu28RfUoTqF4q`32)7vJ6!SF{@(e zi;9VTfwOUDh8Pl}0GkHPI5Q)IKdTse27n{6Mu5ZQwQn7>JPrBB5ueF=eZV+jPgv0U zDWjN4q6##C&`p52W@q=Eil{)=*cr&3tZSgPL9gWvi@-Aq`=(i$mhG?CI|uw2xRL5% zAU8E1(|?MIja?%keTL;6X9{H)h*jL&_Cca?aq#;$gfaaG>9)V2^laLM zPEvjiDWYXOmTT+#maESe-O%=^B0(q<@jiQkfFD&~Plp7%Of?wHp^}wJmdW{Vnz`dn zd`8(Bq&P6ee8NHn2EZ-b;6VLra(SFhA=tZnU;Y(DUJD0c#z z23j#6n5!H;AS-T*a_@=TMqdKJSQU6*drVj(ttE&2KW;$C9p^j{{b=9JDBLz$2jv1@fY9_5L0Y}%O`yr zI~{l7ldE>`6o#SbbRhf&9svv(Q9`KS;Mqfo4C;>8ZeP~xdqdrAR60pr?~FFxey(zI z{r!L1DAu*UZ|fU@TPY)PAZe7!;8Oim|Z3VDt9M z%IMD^xynxOa>>}r@A@Ratq_bIz_A94cO?qbD3F`sj6u(Nw_du6{Omxvs=$69r(1764Gj6 zz&UK8_dxl=*cNEjmV=O2z^cQbH(HKx*+hUS{Vv0g(HrZ%-*yL-Ut5r~cMmUm`S$wX z(?z``{9LfJAs@inCC7~+yUDz6E7I$c)|-UDET)aG-F{r{#UFjv-VSpAJpd(*xn{;I z{y}o8t?3&m?w~zbWuwNyd@i!!bEf@A@H?}5XKLyJh_T-8z~u^=BTNM43cV*efSop4 zL6|}XBz083dGic3ZK-CaCe+!N7blO5jL5|iX2GuyxE4q@VM`)h=hXHpNVu=?V=561 zcf)89aTr-MBCu$wtzGnk+6jWK3W~13@r3#fyyB)ZYI%4j{GIzlmcHz$q^sr-Pl-O< z520L&{~1pGe#NN>m=o+i%zKe#$3O$dp=D(%0)(QjHvCLUC=S5Uf1hP>W zChW7uswxDLJB=BH#=}Uwh*cIEP~%Wg43Ce)#lxHk`CMddM}?bog`pg>{+hTiKsIWF zRmP#LY}*5ioWiI2byQ(Ie!~7e-MiuO&@4Oe!c{yxto)An6Lg3K>@BQvOA8A>e8ubO z>2TP7P?4<+MgB+6a#LmueXZ?63u6HJ-%wZifi=(U1Z{m05fO-f{x~$$jH1`XCn@>q zOx}ttLqG8b!T?V1M#1k7v)B(ovXHXhOgF_h=?#)?hxI6vt=@&0{oSyeE;%UJjW15jp_PTR|hvzn)q>(rAn ze&JuT$H*?ZzjATEc;@iMhsF5`0DiD_Vd;TSc6ZREavmB`d zvb>~(gv~K+7#0aE-~Q=DW{6r-Jo${=n6ZB=gqLY*X~Fy&0pyr#3bpN*`b@fDTr1 zpdk0jM>)+PAP)&tXx|z4Lfow*w|=ekOmH+2R?dh)?@C9PblZ9QbK(B`&X3)_0yo%% zArtpoe4f-ytQ@gf3kUFVGgDKNbj*;Mm6;i2d&Mr)LHR;750F z`sKugt@8NvJ)*kvwvLTqE7$qj+y}E`-4NL#$1)c28a|$yjFWQnz>`B1;V-4;roK*s zib|1m{^b~YW7amB3Aqq$MAh24YP9o z{`;JiCxu)?o&08*s+G=+JuP0vat5KC=;~SL6z%{-qTc+ z&sz;2MzM9zDkdeocYR~p=I~_4Mi+Gd9RBDU{QYob zQL*Lb;!rM9lOmLiDcw^fyaaNh^w1J;5GfjD(QTk(=nb73Es{Yam7^shDlTaqMkIi`@Ch)UCrmEK7=d94w5-T%X&Xi#sH3F|zwrOMcnt zY)6{Phgctwet|L*%s>xo!{rehsAq?JbnhvlVM+(!yEst#&m(5oQ{8<7iux-bYkNPx zGeBaXq5u^-z|M4JWZQKrJ&|nnS4SJ@i7(#>5zzDM{tgYUD6oF$%9I`oF%$C9J!t{k zMk)eE1y4uPg1d^R9WO}i^18K0nU^`{{lTsDYr94ciWtJmfJet69FUyn<CW8;ePmqz5gH`4^_?qCz zqE=l^d}+w}>Yf(8WS`TP70^xtVV3F_L5{q$aBNQX0mj8^-kEF$ov7CHvPQKfeM`$5 zAhDn?ku}Nm885QBE#5pa{#6-KnB%1hZ>G(8298);JG-NT%Fm~7L4XB@`s$boo+B~0 zqiq$g3zEOb9W^z3(0D-4`3gc{h{SCABfvbPkQQ?ELVS}5&ZvurTy>bY6q%L!Fm0-s*4dz(bP}tKWYTZXDKJ4%0(sGo~sE_QI+Z zhSRD;Jy+z38A>uZRin))1ST`*%sj%VsxX)Y6XK5VDvQ$8CT+kQ#~ZOfX^|)Ew|RpM zv}qpD3+GVMdkkDlB4Y=ZXKKpd3<*p;9GghF=lNi8+2hBc0{oxcUtfQ=KN5R{W|h$p z!UE-ieDUyTsDC>beg$RMDP%Y`XlVI8pRJ#EKk2HCZhx*aH`o!#JVv|K80W)&31ka6 zT?8L}9v>MwqAlMeKtzUxF!GTRfNGr zZiIjD8%g8|{lY6Pw-c1-rWUyF{1xa0%K~*g6z8PCr|ma`s0-EyiZQg!sVr*TPb(fY zRi3Sg&fYI7ixEF9s6jGN-D4?mFl7b4hMkvJiH=Pp_Y@K(d0A$`j0!oknIG6YzrBO214tG!TDSNB7m_4yt!UH=G3 z?b*q-waDvNI3fjN@tP!0HH&Aze#JUqN&&ee)W8wxRoUs0J7L2tOYCe@ff1?G-f#lI z?|=2~FH|#7En}AS{`?|-hUSR$7N%}K1_hG8QfARO^L1~|C3}#j?B2W2SoX@@{Yo)$ zz;%c$&dm+IOtqMNlfnjM>D_c)lng-n!$w1=`}M&df>GW%JpH+&t1Cw$QPCvw|1tL0 zQCUY_yC{6qog$sm-QC^YNH<7HH%Ll%m$bAXNOwthOM|pD2#9>kXFu=x_Sxf%GtPf^ z{9@HyYsNLN2_VfXFV0InYofJ?Q6AZlt zl?*|M%eJtViGcx>=X{OSacpQ}lF-#}N30_+KLYlK&zV=(*YxqICiGjmz_ACc=+EiS zENXTFwrNx1dzg?Cr2)v`I)J_-g#uYAcJh6sEeuJ%`U}WRmT8i(8$jmbh{dP<$v1${ z3`vO4hjyRbY&Q>g1O`dPSHagBdWw7=H1q+;J>b#?o3`5oP#Xb>@o|d|vVN~0FzDDc zfCH8omJ3l9aG4x-AjlS8nX{eBc0zb*XlMvWXFqU)LTX?)yTR>5#IO1wu6dB(3HF4hKzxe9<5kt~Xs$rXbt`yjtIF zftgnQCfZJ7lAH?*tN~I${s-J@NdT+@R813LEP#Z@4=($qZF^DdLO_xzssP6Xawmp; zA?i%pycl^JmUQA=#BaRrADH{eLmwU>*z!NsK$$1W#abi9^v^E<9wqGci}(n)7eM;0 zTX&*|04Kc*-cSp>Kn@2RqJP*&oi~y;ler&=fsX|oe=7MxM~&()k$l}?EE)RyfXM*> z@7R7hIF**hNhOmh3~Ng-l_Q;a(6h42pUX(Xk}f+pl{%V4_6AC z)8Zx4J&|&3wO7hQF4I;WtewV7;e^GG0hSy+G5)JpFgce12#`jbG96cM#&RJ+hM$aw zjauE{KjHf25KNAK9(C9;Gu}a!k!f<~hrB<7`1J97QWR#Vg*eD=p}6@wWYP2lRe$<5 zzZ>EfeRXA06_`^&(96R$gj(BWoDb^;t^*~yG(6!_-?-@LB8-&jk0IZ&Zwe)SeSLvr zR?DXU3MmB>9)xup-r>Hf1DyFuSD0)RCxCQifpC1pZ3JX7y;qp?Zt~TTVzCIc@DdiOLpUzqG%V z;CTO^ogq*Ob7s!AR6OwwPGfRaCkTiGbr59jZ2{U70A7|!^Y^o%M*N_%?E4%|LoZ*dUQqLYn@TJgjvJM3O$g1 zHQYi0J^Jdr5DS>;4p5Y((O4TlM_6oe>Mfqq6{+patVfU!`!$j2l1Nn)w1Xu6o-Vnj zbjTr{t95F;f`XeO|Yzi0sEaYaTNDl#vLw246>qG&5|mJvC<#dIVD?(gjTO7eJ?_TOdDZuz*D<^t!7PVU9*m#H1jl!gs6u*`6&$=8kz_{NSD0Emb!u7Pmub{ z40)r5sjz8Nz9qD{W2S_Rm^OJ~$;mKd*+!O(Oii4&S9$0kRRp3(YE$em9pq{RkgsIs z_&5zwGN8D0tuk+@zbpf?7Ego)`M$@*J=lAmyZ*F1tT597;mynoN zD??qwjd26!`YUvwK!sL>hrI*BTr(&M+MT-1)M!7EzZGAXNh+=p|`#Fn|kX zp*rmwtK{ilI5ctF(%>eFMvaLrBu)AJ*vNczVLFur5{%3!UmKHY5NoIqYj9j#5o@^6sWJ3&2uuq~ zWY1;%r+}FToIG-JALCx9EJv&k@cY^+Xbg;YaSbXKQjk^eZD*gyDp<-HFmoKsuff7r z!xp9unOW3O$pG%Be-sh`8UavfC6sT5u0bOCIFu3yjr;;e2Iz+)y;z4%GHnE`T%Lhl z*n<2Gv&z%A83j$6IbyfxUjJy++JZu)WaZJfuYa*@QDGX`v84WSt|&-l7zKc2fI}f8 zBLnpu09_25SszG2!;}H|)2Lq{T?{ygfFpYpfBeq9cau!hQ&+XH1TV<_w=9C+lR2r* zgygbx(HP~?nBxsJp6aYL{B`|e_4nn54R@SDcN|eT%YUz`E=iNJGN}1hUQSC#N5{+@ zS1GN72DU{rL|1(^H3)Lw3DA>(?FW3adiADsXSx_#MQOh4zuTeRUW=odYJ9%Q-8TS% z+~23COuiD5l1T|Q_OGS@T?jxh8`gkh3j+fqnrIhow}H|91A=tu6~Y{Ara~YARAHJu z1Zy3b48Z;a4tii`01}E`m1_aJ!|K>t3*#tw{wgBzI9U}FR;BMB>q`XU}BEGcOJ zA=(bDx1qNYZQTrySS^dS@GAh5R#l~^+S{@2-X=6Nb*K3Z=6_6^efzDL zsn;}%O@H+lfg9owfdTR)er#@@|NIH>8DjWrwFxCll+jZS=buFgm@3xS1FWs# zn`m)EE_<|Yuog_T6v~qNR~@d#(AMp(xTTn=D0%ZIm_oFhl69dr2o~vMUY{HY9+A(F zu=Y;)Tx|7%dKmxkte{ju=o2m(8ODcQ64NMH7VOTQ2B7=b0aO==djv`=xom!yoG%A4 zD77gNssXwR$eU9ip?6Cg)HzxpB>zeiL+UY0pW1#QLHYLcfWUKVsbz#=8jeY#S8#Wn z_YUPO#$@fU?DbcAM7au#M<$#n*#t%JQE0}gQe$FbfQS3~=H^Ge1%kJOy*=_NNS7b@ z*3$?muK}H1aH^USP)R@(VFyXO6zS!#Cnf*JB;A@x+5~BVH`XDYxVLf6MWAmKi`KYc;vQVbtY*2zVop7Q$yLrqNn@%K{ zZ~!I*VYN<#y|_=p{QOb;sb9eIM{UOPAq?mOK?=RK4j)d`qC8MujiSt(ko{e#yrNKD@=1yEa%@5#){dhqjS8&Ldh5kB+@pZ@x#A}80w7>+0WCE`o*-oObUjHf70G#w+8 z6cgii!LAu##Yhis*-8L~d4?-yG)+ui06chWYYRX=sm49W|M-Yf8xd|UEoA^24Hf`K z9RL3P;`&-Mncvk9k&Xe*&)c5&&%y^0+yGf2V0`_HsREh?|IOfF2xYYV7y<$Us0hGD zus;jJ$aZ!W+N{B7#|i>?+<;Oz3I0yr8!E?F#nr?u2m0$8rTK|q@=YGqHUTT`i4Cko&N`{yuS6 zyNacCBzAhS;NnRIYHCg+Q2wlD(t38H}`2Njj7kct5K+C$nvaFxOxVAX9IjY5tog2Bp4b(og;LxY%F5+jrj zf?Hc7*x2qMSqH>q$@3)`;dt19YEhczdj>$3|Inz=v6=-S%L}vugvH4>08R~f2Z-op z9Cj(}p)d)TQKfJ|K79nLIwr|zm(v<*svHRRz+pcCmJqNt0_qEWX36L%OAFxoY1khd z8>_~#cXl4G1n7EX@}KXTRsk$lpjM|(1l{{&ky#5c14)A-SXz%WWmGfCJ^b51897oh zP*;Bsh&g~esS%{7f(Q_GB7@#OVA}^$<~bf6HIaBBNykkXmym#=4GRqmi;(LN8d_h^ z?$41L2WT3SSz=60;+$MTLL?55LGf?IJ&|R|z|1NKE)ZZGP2({+J330cCa0$EO&dfN z0ji5ykYA+%y+Q}lkx}_2Ilh4!a7s$fM)FW*9118{Za6uJcT$uL8AJFRJeMb9%jfWl4w zQ%rs)ble4~wekozl(v?#v(ng2w8re>JA3$IpMY{Wt@=3TS&)|(PEsjQk2{3*))mPd z`3WDGDoW7y)d4O{@g=<}A2^8w5l;B4CU0$^@SfNk;RFqR>a zViHoW*UF{kwSTqCjxwK^hI;xsB@62q0S-%$J@gOOZ`LtRT2V4ocms=K?>7osX=+I! zy5>S}mbr&zk(P5aGY^0L@^o{9$qT8v94G?{#WX7ys328OnQv+hz&b*g$h=$F{xWGL zGq$F%oa&6Akznn7sP7%ZFNJ@ciJ}8^w!uB1&Z!yNTMNWjV1?Jydk(|m%hE^N_K^E- z;g6eZqV^I#uB_N`RGR_bVo|~`5x!_=fM3dwxFU@Xd8yHlOEm-)2{AuR50;4H4Gkrg zDVinh$FOkBdKl<*2)2X-`NyonqhDToPi0z~->TOCdObab=rkGCw$(BexBB*q6t+c06 z%|NL$W>FLGR^VIZaWx~rlFrx3OdI}1J?u4#U-exS((2CE3b=VXTjPD!=0z)QT6puL zE8y*`iX0L}qxsAeVn4O($`>#tX-UU;bzxZzuyu{|x`3Dr1QLd?WCPX#IBLPBO5qyR zItQETzbdLZ^i;~g9hku+$Htw+B`!fbk!qePmX)0IMm|r;<>u3kV;bd(x@w9QcS-cD z%sTfo7safR;w^WovG`71xzg)!{=7i$I{k!_w{8{JfMW=>xw;TAOBJswgdWxaN9+Zl zmGt-xs?>qu$(G}+3|&%Hu5>*GBF_RC>v?twJIDSNEC~Gbd61oC(cOUBuEk&NTA}Jz zpzOGfTCoA$*TiGdgS)zC#@5%QY2g6K$`v$07_KaeEr(OK^GWgK0e`lZ<83|3%!%Ti zk<-qizS~2iRNlgu@!n)&MXj5bp9|4;6Wr~_ph52e>V8Z8ojHQGtQ=)d6eB}t{7UVe zI>k}!!{dwwT+D<~xxn9a)!IIR`S=uSiS(B+pH$Tc)PkIFc`ZKI%#w;ibP@GNu5s)d zw EvofY$#z6pP1D3Pn>J>Ogz%DAc12)cLR^3^uVgKJ3W;t#06@P&dU*e3-byR-z zrL6sXl7K$%oTX6)@$yOLvJ*~c1rhUXly6)Y9lp}!JueIZ98-0)kKGat{@>Z;au|>FL6nw+oi2Ief2Dt zeu%CChvDOX+aJy)qp^A-RkK~$H@iXo)f+hywy$bWDjniG z(1|2uMrbbN>m&)$RY{@tE^W7qFZ5}R=h*mcO|L^d=v1?Tz(D6z71hd0YBac`s(CG0 zcSCD``iUWH@G{?819r}a!Wb!rT4>w)leRIxI4yFgYx{a7dlRChzX8WS`MTEin@m1$ zY9^=@SzRN8h*~Z-#JkFGdPn5KX3q!sci zi=SO8=plNS7OHLpiKyQhpYn5C1;c8x^{S+X=e)CB*Zo$?=@4EZhc(C~Bpnhfx;qt{9XPdYou*_+4>=a&)M8EIeZbSp8q; z-!atPbd#{S9)(C zT3P-8QA*OMO7W%^+jMANTd?O2;D+Fb2gG+J)x*dax@V~3f6}#1;(>`BwEn7JxAf{o zhG~~X5E%jqK9Vp(fnTmIYXLWqDZ9C*5-g9q7 ztC0c?6JwA9E}ET3b_TuEGo5w3-!ch+G#IyWA{xR zs#OOU{CNVx30PD|>xXT;sqWkc9?e~SOR9d@##y8cHwt(T(<|Ji#&)&GHc=eJ-QwCw zQX)=O>OU$DOQRXnMIh7o9oXqG#y+XKzD=w(j2XLWW-EM|x^1TH{dteTI$#*yPU|-( z;`PLVq|n@y4W%;VsGGbzt0g7M80&Luc{k59o|%7cEbV)n=CM2&Mxn#s;!KuW+}Iml zr+KU}C~Me7U&=#xd!N^tQBf09_`0pfte7uA0ISQoqDdNMpLdWHRl41sUi&TElj4IDRTGIgyP&Dsbe(%iOD#^Mu?vMPhxB6XQv*$Ro@ zOWlFP6)kvn&xJ#%<_>P=&%^ore@Ftih&tHl>#S~0q7K7HSY~S49GSB#!h)UaaHGO?nwXMGw#%9+U|Khi7#|<|>lc3C z(icl&lZo*p-Qx_QW2%2o*lf73ycSzTD`u0e(o2mi-dgIo^xYh%X`A4VLw8^wYySC@ z;OohhX8VdKc9K5LVtL=cm$6U;3_Q`r=tGDuOC;9%C|W7D_W4JdUWlGfnT2)t;B}eX zXOs9H;$B9)z80CI3k5xhblrUK+ZvrN7-N2u3k5zj?2%x4Jvx0h%0{on!$lKx>jWNW z?Qp&DAJgbL!bRWq?N|~D-1xwy_`!`oR@N_cE*0|VFGg3AHhj-@Jge4Rt7+@pmj;XT zcm@6b;zqi3ZKaiq!??*~xT?t?qiX*-8D@$$OEcv`r;IIJONJ%?u#nu<7&Zq18`oia zdIgOV=6`3FV~j(C9LzVv|C;ry(OX|(AO{f09Nd34IlyOCaD9DUUkrZAWVupUNVBoA zu|NP@B%AtYMkokm)`5p;AT{5c>xD- z%T}7&fcp`X&8Z&buPnXcrC7Q#>>;twzHjHxFXBl7DkQ_H&F0l?$X_o;^8o8Uds6X{EOG|s>`ys&nT2Z@K!i-5D`z&+UIK{vC zb@e1|aBf&V6{TR`U4&yC#qc#@s4fd`)owHmN4oCauxGorw|=@Zj|3!>FC!xZ4-XG? znUee|(P;FQpGRVpH(lvI^vsHz4-cOwxeM}ETFk%k`#b^&dLAD53887l`ZDhM6;R>P z?Y0}oQ{x#>YrZ}&ZrYL+=3#E$k??VvZl$?!XwiSo5TAT7J*|sMUvIARpEl98XkKf5 z*DTQDwRX1X)z4Vy#sX|u7M7uSXkUsyd&t#AR+G&26!9l!a3m$oXnE8133b;pq^o_G-Bll@HKG98cDZkj3#*LD(q4xWB zP71?4lu~{cXuCRA>7A7k4lwqt(78gerPdwhw6QA{x%yZV;72+d^aty&tiec{&K1>< zmC>92MteGpk~Ah368f=+-JU|1`yWMP7WY2blXlegnvAcSRiZtnbX4XVh04cSuA zrQalP_DsbAuL22_U55 zXP$lm0eODNq{s84b8A=KUAA!NFTI>zBJdZDr8;GPrE?e%mKg=eN3{Mg#&vG0P>}su z@Xd}IGSG+(F*iVh)OVe0GFDZN3L`>r>_I&j9-_;m1!RO%1gt zKSCj5h5w$qcINqYMe9E+!^S@Uz%Cm-QnIaeFF(B9j#|uU3YVvWO^XOqD`DJ%rJ^uPE2>uQ9VZMF<( z7&f?9Z}Waa{XaceJL3s&a9sOO%Vs-Wn+(9EhDG2uqKHDf?9{RUtI7WlZ~E7={~5%J zH2PHfj8+7wV2M(lMUVAwj{kXlz-GB$sSb1x^)K*9#Tupi(K5ULjEHL;?3PHGU1hv0 zMzZ+k{gH7+8f4(^Dd2eUdK}#FpWg7GO4?h^asB6^|K9W1r3(7Sb59NdWOT6JpM3KF zO&MHw(*M@`xzWhX1O6IqZP5SVP21+R(qd!Amz;TpLRjys#w&_O>@9x$2#UNrqox0A zgurZ6q&cqr{GSmc8fI^5u*?46yIv1;YlD^lcB-GPM90%8_`Ty^J@c%w(L=hAT!X*sOTmEs z+uCp;bpQMCgQ2TYo&%!t!_IEszNzv=;GPMhRs@8r_{T0p?0ve%9ddl+eJw+=%E?*N8KfF*FR z0M5g3Fn3e4oj^$Yw-bM*wc0=hW1rnWE!d|my0^R6?b+oVJlx&!INpL)kuVOh0Kgy9 zVq6DYL=|a5X7s6cB*W}yci^Q7;{bXE91a4?nsZzpMhBz_fyLmF#)xNbTe|-!8Gw7{ z2vxquy$&|Gpc80jz>BHKm{CAS1Ic~*^WfHIPzK~DzytN4*t7y4)W2ls{Db+?YXt@x z2or!^-2r0E`B9wVeS5Gj)~F%5e+C0vci9kO#NDZRwX}$lqS9feU1{vm#T0w%>99V= z;t#s+aUm6av^CzJ^3^Z7jc>NgZmVU#2%vVKo7Y9A2y3A|{7r5-*$NZz&GD^vn&S># z0FDIWd#^<_u3&`6)3#bB#T1?BcfI{n#$VA}C(=wJsKZ)bR}*;#9vwb)(INl)GYWXr zd`>mh5HB}BIem)#lAmiJ9AWnTnwTsZ{Hw>yf0b}$-%lq$-@tX1VezOt_9<)f0 zy(ccWLw@@a%GiqFmtz(va)ctv|?4Va;S6rZP~y{4*DV8Iw$xZxx*Jl^E1`u|ucp)}~=%J)tCooHx0q6Zqmg z=orRKUNZC~3m1W$T-8oEv;v0XuX?xTbERhR`j#fA-TINR3|XO66Msjw;An@GpI5^; zSu~NO2iix&UW%J1C01m7o7l}qY$+EW zANE2-I57!K%rssM&lc6wSiq!FOa1-WwilWdHQ$mLH4q5tr{fTOAvc9a5 zmIt+bnRTO>2wuS77E@I^x#)W?BTvw<6T^FcpTPeV;o5BdGu_bs@BTg?oLJ!} zCw4hiZ{kHPyI%7w7WiZGUJZ;@iam$+EwL_zDW<%y&WhU_rKH^)EKle+D1p9F}ytx=8c|`*RD0 zIabWyotvCB)OYGoAvg05()RDuywb( z+6(hepSs+i{))di_mvn~dl8I#as2h93~Z>EP&w`;Re-mPx01I=8S17ITv92?ZG2Z5 zsG&)j5>Vc=Xn^g^b6uwY_x)nb<%)q<5KE{3+R-J_dpTu6yM%cE-=ht(%H^6$OCOt+ zYfb|yQ(W!>m3J3XTedmiuYJDTKLz@Bu`v8CyB14RsXV~lr7n?A@HWU{o!a#o`o1jj zK%bpzR^>ouwYk#JTlArWWQw$81do?nx{S=~YWFOz!nCX6?|c!{(M0+$sAm2yek5XSK|BkiMmc@S|;<2NO$l^aNR0g*cZQB zFWyP)zKdm}eR==ltL`=Ba=nEf<^NbBs%q@JJ>Je)b}yL#FXXN0cwQ`m@|)g+>1DFJ zeNz=KL+X~vzH2av*(6`wnShhu%eyH3^>`$DA6d4L-U<>4d|bZra=D_%gSF8}^Xv8{ z8*1(y9uejb?vCw^lx&3;Lq;2_9*!2WsR*R4VCW7g z_;QImB>a+T9M|s|&0>02w<)tXOBrwR6z8&dmeeQnOM3H1c2}xo8snA4sneS13@lF0 znldt(5`jQ=Nm<5uo-wV@>4>tIH@7MR7g5j~Vb3~N+RwOT;e`I~69jUzSo4{r#8Dph zCYJe~Jw=#xfKd<0=J^0{@Ith1jy?N=Y!D8m~aP6YB6 zBUkfx?Np3bX?6Hdb85->qg*Nd$lkUVY~*p&W{#uteVzXku2`SYSl{ZII~bjRzCjb? zc%%v49yWV+mwu2Iobx1?a(h(CxGY<``F25(VJr)&M@>S%A35Rhv7RF6g>4-tYitc; zD0z1*{W|!4f?8{f_jT+`~2aKzNQcT z+538|`mzqyNymwSV3UI+UoWt9c4xM zFLlt@L+i}Weyl7HpMCVzMri2t$PdPP&4-m8rm{2qo$=Hs1Kj(v#Rs$e-o4t)HSl;_ zXjEHj_%&bfj}MFAuh9oZ57l2yjvIazkEPlHm6hs0BOVqee~}FJ&>b|k_FA-jGNF5r z92;*LTXfrCgj>)l@X^Z3yP!eAAah(%Sk`kGmX*abd1q?Px~w&le%t&?M5Mv z%8Rou(2Q$0y#&3Q_0)iEhGQV;c_x83o%^0d5l&G+5k-+E{(&Nx0_Hml)Q&k@6@>2R zXd+DN7~GD~C)CfStdb3+aHf%J3BAEk8!+0?ymI6I0R)X=Xh!g!G8Cq}a6fk8ur+!D zu}hdU2I$aiY}oC^79d0}u@PG=@eG)F?1UdyKIv@V+$p)VW0nM>VQ!jkJ;FFlKs~jn z5&r1YMEw4pb%b>i!t-L}rs1Y}tq}cM=@u2IkMmmNYAl8z78RAL1{Jj?HWmj}xmt<2 zI#%pi|0i55A}@<+$Vz`|LomTm#QowjepaFVO5$_>=ZFi8V$z17OnftIwruv^i3k`B zIx?kDiNqi%y+5)}=Eh|+yMx}qG<+d*Z z^ae6Gq>K5ZKTT3Ws+6d6l{H7mf^yXB*>hn4d!e<$LF22_*>CUfF*rdn8Bp zkL9X8P4g5^;JW%K0i~@`AfO>Ym2pK8?w&CEIV{>1`nmV(DrTTo)i=91K66`<07==V zbc1&_6^pt=#b@&}c6o;c)s@ewR-v*b@>VZ6O+`HO@onm4$I8MK-KAYOjL1H*;Y($O zvLWQmJ>3L5KJf3o#E9hU)R-)h;|j|#OO3jRe%)4;)DPDNYFE)?{Q7){1fN3lu>s*t z^-+1*roB)|nFcX6MNBjIEHquX$ma&zot0*G?)#gV|6q_bYxG&LJZwWTw`1hJqW{z-9I?lSQf*mi7v;M@P1L` zt105KD*=+Yz5dpA=k~5!2^~KK>Xb#(I8f=+pcYcne;y>u+WM!1VHA3FJ{29qOy5g?*T^yvPi` zL%t)9B<5KPVT*?JdrK|gYcC;g8hvJD@+~aOFTdOpjl$Ky!S9qlv13&kPEe9sCuq8A zEJt4ZpzU|Misv6WgUVL$A$I(Ow$OxRiUGL;cFzHQLSuxq?jyH1>Xo-iJX2lp`NMZF zj=T>)2@PU2+a!5i;x`oDef-fhaCU}f4fClrH$7xqhwU$F`nD-IPWs?pa0375%*l_R z$t+^eLgb|D0L7Ve$PizEa3Z>@iJ3J4d#1@-bI>7W?q_X5Iv| z#n-v>-U)t-$!~XDLcMg2T>b_NzXNji#2T&}lDH7hH#ljV7raVg!qC3n`=hFA1Fx?3 zcmd5Z{FPHEF7)#^vECcv$-;Y>z|JCjqfXe$*@C;9;|&k#z=;fS28AsXjurQjJ8)IcVq4~s$hX>-`N#%!pZhaTAp3K@-i*0p>FsiH4B zDxP<7L~q6p?0;GX(r@kTj{zuVdwQD3HO(}Vz{mp$& zbzd^ZknMO$Jn}r-`;TTl`lku9oK$w8@0b(IsgZi0mHU4&jZSsZ)IJ)wd2chRW|Y&% zmD`KvVh)F@{&BgQuSlTtdRbK{I5pMr!elZmdUh1n% zQZ~YAtm1Px4G&3gkx-gX9zvRb>{J+3(trC2e}Q03%$f~{Pk~T-oJ~DrH=XVL>yUqo z9pYD>-OO#5sGJcOD@%)%ZH@}Rfx_>lcAQEh2pspfLifz;R;e61PIHV7@jI>^s4`~8 z);}L&g*<8Y)7z?ay~ySgN=Q@%{rtuXa(;I%3U!WVm{ldBG(M|; zxg*M|D7Wk>FXwS`;yTcy5>P_4CH+G`ROzuWATmqM64{GVU~RD`XNh*RSKDz!zi(BW z_l$94J;-^xPtW+b%IQO@4~qFYJx5L0gP9@Am8DaZ=+*PhWz6D`beoI5n@s;}GCjEi5er|%zMF7c!#I!f-E1wN z3Y?$(of4$1u+F#ly|BU?k;uR4lhPE}qO%bC9Xy{Rj6Tj@kFv3>=pJ~Kd`lju&|ll5 zNokPF{L6=tfw_Ynqr15C{nTzOp=~;wHO}$We8a0EOL|X7w&f2? zSx1LI=hr7of4mkz#<*YFj%oRR_>N<@AZn=fmNHELUXydg5X^%sV> zk`yo~!x0}S6i+@BEdDhKE^KWN>a}@cQ?m|=G8eq=rDxACuB3L}_V;0*ZSr-9XR`@3 z-)pes&1mMm?VvzF5h>BT(n3(oMvRVRk?T6v9P+xgcx)|f`^!36#r1jg1a;VBh^8h* zv_7TeMIdk7J$q3{Ok8{>`gN65+>XqrQCwWw77g72wAXl+>WN0uu&{7au(0!nROIA< zzB^317S{68wRMyKT>mluyhxe$<#Bg1@7({u|G+5!J|O?T(0XgaXAXfr7g5QI$?H|5 zu>sn{daqX|eT*oy-1>+eQT8?a+mz6c!8vY7QiESZNEd1LXn!OJwY}zC>I${DlQoti zJK=x-n?C5kLbq3aawKV(l@(8tZyOf}r~+*Tds#N$wqI11*0MOA%-k}Sd!1T#P@Gbs&F%=W0K3K z#;2mo1U>dH!Gf@*EE)3n6f~a^*u1@*(Xd~8XZ*(;q(2ouD^8BV*v^-?8y3|GH`>B% zW{!-JW~exhp!iZFzr}>lG!WkBoyBy`9WLVY-fnD*KhEbFv)j2Nboi7P8*XjgzW?T8 ziPlcY0xeru*_{mOJ4L3d4)%F=e0iizr~0Ppm7A3~*P3?voTgi{Tfcd*MonT8=bEQC zEE~ecI4qZMs0$n0NIa)guDHHA+qbO=yN-pM=KxX!X{@AlzY~1gcz6!W)@4U|s}4(X zd}#Y*o|h~ffdPBG%rEe9F{HB}^qH$e$2Q*|XGDg}H~l~nYvdra^|YCvo0eYtsw4+z zVK*T!h5yAbYWeY13=iwkTwXvtLH5v_W+dy$qB2Eoi~y{V=Q%Vndk6YHP1L;71t-Ec zRZoP<9x_tv2Gxwc>_NrkKfMK%<1K_J5a|L^@Q9%u6@5iDepqH#Emyby zA}a|>f7ytXmaxiD{uMT5mmT2f4@8a;m_^GuVX5~*zfN`FN(|RRX$e4Vgvl5p&Zo!s zwuBbG)lmF|`UV|_-bJeLBtXhY7U7MI*?bNDVS)``kfU2d!$(Q6H=j+}Jh?3D z_1D}(?Q@Fhk1o%6ok@~hygW}NCh9{_;qYK!^T{0%qI6E$A78_sIr634M4ounhEscn z*96(47aioLZ!p{!;1LB32{#YDwClzibwaz|R41H7;VDp{T;}L>-xO^@!z1-7&P|(j zG&5XS9wP>TLS(Raw_*>PUrytfaHXgWmIc|$=~T8RYqUxRF?Dh$s(-CUZLbGiuOIAI zhEEcIpjEUkEq`&-Icz3U$zpl_cPL%hlqIxlc8G*@%3 zN+iwREU4}?QWAQ}svdYfJ&*kI5@uaPobZ7zos}K>FoIB&O~%K*}vIlzGAmHAyC_Ku4`>C&6)*Y3I3#Q;V>Fu>4zx!6{n=$da2?GMuF`!x z^s{6SrN&$6T;g=)SjO&~imCTI?6wcPWRnSelSn6>(`=&Mg)Vt9J&_e$3kXY7L-%IiyxYsbyT=*#bU%Yxbf39KuqY;$ehMDmQVZ6= zxJLinU4C)>7R#v2LqqpRN{M}n!W9R`X<)|R9qy2_Y$50*MjB-5DXb;r0(_>X7s}Li za`(>o@XHkc50I<;w^6^Jg~r~$Mn3!YXbp?g+R*~P*3G7^`_1Csmvg>ut@1nWZ6_(3 z+FY(QuVFOCim1@R6NcL%vY7-yyry{vw?o?z;w-N#VOYCxze-NIl5+)I-hNe_eRZQ< zzN5AO#tp+wSbtnxEccI~=Z-csk4Ku*Mti3xEG6xKexJ&0J7>k&vGvF`|&b{wmKh|Kte-z@ZE<}xtNW#4KN%#kH-;jRQHQ&vKtUP=5E927jHqSGeEP((wX<{Fgx?{4ExqsL?_LoUNF z8Wo3guX{z;7QH6X>Td+e_8sbsI&ol}g2-^T?_dU;zY@+zc$j?_tHF4sr|`-4L-7@v zjwB(jUB#c|0A(&#S`&dAR-6#Vbw-I?l;zzf^rW{_DT6h*{UiVi9$$9oFe z<=S1>@)Bf}+5^L#32_Dl!!e<(aK? z9&B8<9OMt5x7aNA)H(%8Nqn$aKeWZCpdd5JEXFNq%EYU(uY0kN6Ml)`dMi;SeLK)? z+aYMn-~N?dmGb<;Dln*@{dQ6Dr$O1mnIeY2i7nY<-s{tlmqy~Jrqd!Dp)q3G9AdrU*NQZPWY}76n(CqoA{a!F=CB%Ef zW5?v!HMycvtK-bbCG`y~ysrcuc?yqv*xEH07*6)G`yy9WBL7~SG<`YM^2;M1Q7kMt2Pg~77p9Rmzvls3!4~XJ~>v+UI z;LxT89ESK+3(VmfSH|0bv&?@5K%ViFh4haWVn!yv{HmzUv_Ug#Ri^IbsR(-H$<;r!Z3Ck7BUkYs&vMEski#R_On8mb7%Z2znFqg9h z;oy^iG_5QkQZVoIZY4a1Y0?wlMhGwLpRoTFYQ^j5je{KOseeBS8&Wq)>i_BEMJony z%^-W}Ux48R8{>u!Owj?)AZS`-PYWG00?^U=+-{e%qy6TX#%~*HuYO(M)6{(VO0P>k z%XZI5I$gFYf@$mh^4cBITB6z75}(O<(H4+CjVni|_;1>q{aWY(=Faw=oezEgKu~o4 zoAY}aTNIoTIW=HrW0l2!+4hOs`dGPn31UaEqU(co?`>TB-rLI~qriPj7cKZ{c*Mdt z=e;_AZdj=0_cLE#7Cs|vb|hnNxcqaxHevgoq}}V+<~G6;yYk;%CMMbvW~5q^_9P^v?nz6Ei?waru*;ejw=2#XpJ21a*^;dZ344-K;}eq;x22|~ zT6gbCI%H4ZZnaxuV{OUtJF;V=*IKjE zzvDL!A1L|;2`VVoYV4_BcOE<3@cF@`SIbWnSM*hseAx!@u;gqvl%?B!@EAU#=T1ZO z&E{vi?gHw@OhqV(_>tNVPC0G}WKH;B%yKN^G@9TzB=`>mouEI-jWiMB2{?-#gLb{> zn+t#k*b)`sAEWmZWP?jM^&I0yvSF5C)fD{lRPe)3gr1OsvXu4bnD`NOPTkn%-~~;n z35|w3VFTe%h$WQp{#-=uP?@<%HYO4Pu1qulI{7eGg|Wv+{5c{rQQ^(^1{xQz!M?im zDic>hf(K~0zk3N03_mn*4Hh2y4Et5~_#T&~!qozo~!uTyv+atd;aO(h0=xD^CqmwbfiI*mLNET|mm9BAj zs7eYqMiJ^k^OGmpsOuAL&{4R-#qM!^1tK(zU$_W2VRk7rIB`UfAia%3u1A)TjQdDD%%~Ld54nTj73`e0uMryhU#C&qMT%21SPVM+$QtQ7#w#v}5qTeMF=|O2ra%3w-A=Oz&m-#@qmLt5TNH`L)F9MrnNiaH!Chdl@X z@L(Spd1JuALdt!o(MACB0zB6n9AHzLAV=XwC;W8j*(!L89@?s;W`to2`HbF%y#}gU zlHbLd3N(5P@)lx#L31ApMXNh0T1gtECP;%g#u4`+(xe=1%(NiEo9n4VBaKP)l9kXR zr5gsxZ{Z`+x%u z-GuK}deH%r(pfnF7rvUcr zhuKdAH{bnUEPmvQ-(QvCLwq00YjC}MByll-#2+BR;<0EF>avDeB<>8}s)yTD!W|gv zL;XW`lVNuVsSZdNFv&GNQ#uB3H&H=FEJ6Jpn>4*G77h;`Aj7*1VrioS?}6}`ndpPn z0@DQ%&m}6f!T>LW7-Jr}G->rCT74%aLv@OQlH|w*Jyh;qkXQ$`Q*UA2R8>r(ii(mK zO)xK&KtH4eBXv1%H@2(cPK z!36{ts6-GETmk|D@7?=tJ?Gr_h)yzXX7mpCd*64zv;5BQ{7x6_K%z={7{rS@>jxq< z33CYPQlxlB^H(DRNGJA|;ym5Zj!VzrntHJ24w51 zgpD@q?iATX-3VDBJc++0wg^Qe5AqZCdPBo4UXWDLlE6FV3h6 zWp_nGEVR1b5~MIE0gVpp&Rb7{ms| zF%+zZn8N~Yr-JWlkHLL3)9 z-@m58Mi>zxqt#oA080Sm##tADafe2!kaz=s2ggmua2GhlbneU{xy>l-sCs%TJPf0b zXd>eTvA0P%0oRRc08vH~%w5t+PDoXdYV5>zzd2{&g1dK!3>qB8^-R$cUx zo#{qkdq`&tu#oy-|G?7g41%%wEvK_W?~FmG)T9`61^2{n$t{kjacbn4RWzW_OFgHs`Ed6 z8jIHHF}AlZG+q9m9{bDQ>fj^n&`V3Tz+#`Nhw%LA>c{_MB^#}|j?41ZW%V^}v)$UJr?afl5~2ZpLad@n?;&zk6#%2}b?q zOCNRz5ObY1BP2B#CEJvVb?8ioafNYRl4N!hyrH0>TA8k9GPvadVy_NbTSn+=q0(H}Y=bMicb2T15_UA+jq5cG%=|-bd3jmelhPZvM0Lrv z>kW;?#Rc}7@A9%srE<|az@ew(z`=ui_h;2X|L!5Ry;BoX%0(OeiSyv*{aEj?t3$c- z=ko_gw!Gww2| zU?_QQK~&pj%Y8v0?#<&e&^+yLq0AXjOvX0lp?|q7b?HZoX05Hn>Kiqr8eJ_I>fZwV z*H0{s4Ns^m95-PjJ2@l3eD><7xU~%zB8MzJMU&ygr5lpYaVQ6mj`ab<5AIE~YzNf$ z(6^4M-xqpGg14uO0qZf-IWa7`%hLXw71F39VHTS&Nh%$aWHaScOl`e+Ge{@X)eMb; zI+N-(Dtv5VRMPxyrg4U>4~rZapYyvhKqB116yvQLcGNfY_!M4O?BM)GQ3d>#v>Qto(is?ww&b1#Vla@jQyByrh-M2-)zRUGoc5Nw2_MDtl}lMOQ>cj0YFWh&&!AJ zl-D6W+o4@Cr&B5fwz0Bj&~fG`YZ|4v^~%i-RuS}X!S5G6hNj+_Uncm!qV2rB^iIPA zE^03o=<-?7jTeRYgn9?M`M|WIqIzfsl}C@3aqU{>nY&UHe*OKauPUof<~;`wd&%~z zxve!9b4w2uHgo0vF!R(m8~1o$+n<)zCM!Q&o|?_Yk@YLm7o_h<*t%)f-vz&z5FcBA zE-c_LN9=RVXGF=w_oJt^3H9d2uz>lKy)KJek*RU39XxTDs7*$5cu68+k13 z1cg{z&{5@(%JBtsvYi;dv`D6B(eubqz=eGOh z=o`Fa@?-s{UkTlU5f+Y>!DSUOgV&eY4nu^W##&CcS_Y4PSQ)rid@{kYBcSrBZ%xy{ z6_xEnqg%3q*%eEHwsDSqixnVUU^&J|rfDaqVy@oQCnd8>)_f7Q)!ycFP9$w&^M+{J z_JC%T0k4Gko{|^BZcF|keC6Vi*ZcAYbNJ3#V{Wk%LyN@j8Q-Q(x1&7Mw+vrT`dymt zg-z2i#@S(K3Fpi_{)1up>`w4wrn=Sn&ym89kM*j}wmxqQ%X}QWxHijrfhRB3&s!?j zjBd>_Up^Xmq?Nx&NMc`D8`zR5+I901J|l)1{8~}gC6PQmI(l{IAJaqD}6h-c>{!4CXW|l!k{GHWZ5G-uI)|^xcj~L ze_DL@NglC|9rx|n5f~LcEKc8QgSspa+9!OoK=lHnydmOK#CO&UZNA~L6DMZ#gn#JK z@9JV(P$RYR+fIH=SDxp?OQf`qDR1;&)mPm0E3iMeCi72&i|a#oXl3DrQ2p)zwh{R# zqMw8ZpT^i8w*Hf3JUj1jM26aR%t5zi|CvIVle{0L1b((}Osbx^N!+nyKlfjDxK^_ zX7o=N|0TRigQCi=FoMLTEGsFKn#!-_kAssk%5KY|GQ+sfOw^1pD$x;H6%}n+lz;<* z3bF(gMJ2+NgP=Glg2D{bvZ&y&iips31C0U=ElbtqM(Kq`nE1vsX8MD32aR-~RF=$u4f+E-umrG9LQ(u*2y4BK!9xKBqMe^w} zTI#~*EPecv!zjs-&n6unm$1hb$W2BoKiaZGsIjjhUb%#rdAco?^Y=vfwAL?ood3I|^N$TEeP7^XLQ8 zQ0!5_BpLc8`~}|Q^qjC3?JkVD?g6%l*RAEZy4|>4*-o~f#7|wyMjWHcuHRDc4(1Rh zie<$^&-tM3bo*MM0*-wR?zw2sDsVYRq`!FH;E61NmxmxKF79zm!wBJrPNlVu=Xr}o z<$MD3h#XvFx`@)fiD0xphOulXPW^aHxA-(PUD1BrE(xPgH{j1!W6u0EYPqrLlMK}6 zq~X&RnE8z-Fr&Vt(5016aN&)zECdN+OZUYV1>c?}>$C_v85H z3ht>xK6xp}X|j>c+)a=$E-(l83bcXVo|S4F+LC=iJ(RP+jJ=J=L)CurVT+R z6oA&Pw!DZUhnBXcjz@VbDGA>6Olx1N+viYQxhP@`*4R%h@M^i@aGAgHaZY`7Uc$nX z-3$E`hZjfO`^R68*Lr%_LADT0s4U_BI_K zenX53BE*i*lLzaB4iEREjRnar*Rj&eKCtMK|6<>K9Q>tGwKFB=i$bJYV*r>9p&qLa zMg<0xU_2SVyU%YM-*F+E)YA?Kn;bRp591NY?e`?`H`r-Irn^03{v z4}@kim<8IjD>5kASmNiO2H{Ng$F>|y$ALjxRocV5 zw)vLRhrx#vGWQ)oAdHU zsX|q%=x(j5GQ!`s`mV+iUH7~`s>gaF>P?`WssekBt*a7%vIAj#C7%Q42*LT0nJ2lq4aUzV$j_0R&H=lk>T|JW&=Jz0VrW=0BEjMO; z&}PGEapwOJWgi-OwY&{VGwy`JcTEB_5XoRA#J@4ASRpS2Rb>Uv{*OVFByA7;E}D{! zYWTn4EekB^fuXh!nw0>e4n{yi(zf@G&#W()1A|07*}k2kHH4Q5lnhfu8WDm_IQEV^ zX#vv~^!1AAM62YeS+r3q^!WWHjLKLEOn|`;ED{*`8j@DdYL5yjg8+tS1o1>N3y%!|W6&R-rBxipQY{O**jrNIu6!6*T$P~4={0yupf`)$0 zzqP3>(kBsVz-t{l6{3A&Da4V$x<9Bxq2(4QPU@yE!GY>~@ZD1iN4Fi0RY}`g!PVyC zwDp*zH3*XM6&Rfqts!xFc7&KgYGkgnAHfmGP}8{wolNphM)@>p$NJSgrVKF?kHOXyn7w00qH{xO+ zOdWz@FHS4aS^$%i<1lO5x#m9bH?9e4YLNs08qKRWaszA7R!$9@+W_X|{r&%4LqN)m zvvDH+R;mJ^a4D0tFhZxZdI7cLH?j#jGyvV6Ok>Xh+!yf|1|Z7;QYy}%_1EFjAaJP- zt1*;Xlbit~gpM_cO$yQgrV(idoEz#6nawH@n>yiY20}__Lir<5wG3!B6t%rWP>&1~ zP?CR7qDLv7=qEfjO}@a~C?|^9EpSnC^&45lU5Q`JA{EUTX}<|NM8-u7^&CmX9SaEF zie(U$AY(slOq6m6@|Si_#Wll0Zkmh~s2+^dh=hb?5Vj|3Xn`W>8OC%z8R5qSYHA-@ z_T1dACjAZiJHJ8x_W=@C z`{BI>V$I$FK1D*TD3iPFG1!BPa5$08p)f~~BHWfr5^aD*%4?i%!=xG57>9qoOCaKG zH7Adi#h#<$?{IZu(O#n2T@uhK824V;e-STBmc_}Qb?mqq?ugYs34F3^MB|qVTJo(a z@HQ%z{rHIYx!b?O0HuJGD)9Nk{C~JE)1auXEC7Ru2vgQfRcihuQ}f62PbyVYF*=Dc znPjYJ)tH$?(NPn}aV;@s)aXn`;{phxB8Vc3;sP23H)NBo5k&SKSp}MgMxcRi)~2`j z?mFi@h%o+WUeoW~bMLul`_8xVFP5KkZP++`B8;$O3i25j%VqoRgJonZWzZnQvgzkf z(ogY@?dqVfgKyOHzh{N%gD&&bZH(^ zv#ohAyT6+!uXm9>QU;6|<=gyuo-Q*!@!^Bm$ZJ<(E=5MIU*;Ei=ieaZ`M=)aX(Y31nua5r~lU`pXKAt*1)Bj2Rtg4u- zs~{5}F%}y}tV;)|Ukq!#*B2B`239dv^mTXVKWY&>Q%W5xjjX`rTmdu0HFh25pW_aP zT-G?UdepkgT;EVj|H4GSa=1i_ugdSA;5;;n`&BBo6((N4o$(|2Eb%%k*+Z0?z|D)l z;Q_BEj8`)K)ogp5ar#N$(p?U3@=gi*f3i>}^GyqA=mk(HZUT&jCkSyWh9 zP*T~@+`)LiOoa%TV>URQ9Hk_N0HVvc#a^RIV@~c%D*YRj1NsM($Yn$1IDIy-0m_L{T_OSg?;r>bNkw51F z3Run40z^)5XWZ2|x>jL?{zu37rpGt@RdVsXx~H5?emKTzzoGm{277Rmm+e%~9#j$* zAFvr$lQjD_C!4ZEcjAZH$Ob~pO4?ysdYsaIl%KY?!yu`q-yfrGTG#%?rG`NNKL=g< z>O`0kY_qN*wx0Hy>fzpHoICAnTco9!gO`(&EarK>LLq1EHHcb?cgFh!bpMsZXmm&b2LDE@aPc*&^~LhnZb^k)HTRTS=4|vQ-=_ zvxbbN?Hi2@<24&bQg*9L8a_y(> ze?6R|aoNwAVRvX`f2wbI_10~fe%p%JISUxadJYAw90lLL%T)hR7*x-nJlf4zO~~m| zCF95$VDN}@5xWxeLnE?}1?ELXmm0#ui+!T1NcqVYGIb-g1e7au*B`ty|zf?4$&mJnki zYGX`;!W3id0|#01qBs}mxUaxeZgDoebaao5QA%9uunl?(C4-C;`yf`nU-R4w&VjizQA6# zn<2lj=@tp?nDNWwU>{(5^tG(BSN1i(Y2N~Il+uHgwE`4*h@5<)^;8yN2dbR(P4ypa zk~V~p6V;OdA*%lH1gaxR@k6Sg{s1um)=1fl&He6dTr8kL+z`!#rj%!I$+4q~3tvxy zQZ~>?n5LA|!l)roN*+eqQEBDQL4XF@_g zH^7PAX2UWQENcQmsmUQrdh)@L%j&co0Fo3JHCfi9k^dPmfdNFjBl-fQ@faXEcv5_w z4$`ff2uH4k#y20GuTcRkhy_u=(iu&`a5w^Eo$`R=QD6i@5Y;gD>MVR}a-4dgJGq9- z&>Xp^CMK@U%EiHU78xYnz>^$L$Dw7SIuLw@Lfx~nPw_qSy+tF}ET}|4%&&mH-MAYt z6M7pzT0e$Mcn(UsUo-bV+Et9_3)J4_+{GXGfDn7R4Qk zA;DWq(r(|&>qGCeXUqZBpdh5#V#sN-ms_-Lcq^LF1@o;} zohl)`&~MY5c(I|rQ5Vy&NAOBGha!ErJ-P?IerK4Qr31d;+yxqpGhE=9zLD2Xc1et0 zPeF0GNSAMc5LN?69inuG0|P|!#{hhKBnA{}2XmM%GvQ7~J5r~&&^N%Tm@(N!qzlI+ zqRsM`3b0G8AyR;$%2%X#*Y_I3*_G)gopb#K+a736PD(7_r$i$ou!N+I!$&&8X{*7|J z6fS~S?y4TZ9PnalxrvzXa~<5510n=V+akd_w916Ft4hIbJbA(Oiczf&K`#3!Wf__2 z*>x>1%x~^-vJr9-xS!eztQc?kX5QQ3YA=`)X<)mOYgeUvDJ1GEtxC^hD#ZMJK4AmW z!_to0u=>hrb(Lo{b)2>2DHPQi9#Yy_XM$6LI^Lgy>RQBWb#P)-hjmV1g`cY~8=ejR zCLHHx$}+}0lsIh;fuG-E<(1HCVIPP}3S%4$rZ7=1gjhrw_$#2+Oou3x1eGYuUR5OLJ9YQ*~u+P1XMxuhyp~ zvojuu=vunPUS|7cXFAh%`mrDPL;ryO0sYYFOjldEFL;5q>a1&ZRjh2SyIu&8kP8uk z1;q<05D52>5D3C@Gb%Slt^oqbCCU4qbNYME%VMy*Go4J{yg9e$ch2*i=l6Ts+dA9Y z>znYYt9eviT~pPd2E}jI%I)Rl7NgZo{GNl*IwU-y5Unt0$Zi5dG7|D2q0FgfvWDT!&BX$L+#n3#o1AcC#8%1rPW2k$z@ zrXdfex;$OoT^>)DyQ8tS$<^*`b~b$ExL;M3_l32j!glHG=l{;l$@${^$;?l)jvh+Q zNJ~pj%1F*k{v;_eJv}+;NJ?79p^QVvjvdWCH8&-Gx|Df3`&8DEvnP*d9?3eKmVP3e zpZ?{Ue|~u`r}V_<|2XxZ&%U~JKG$~T%-M^VuU?D&>V}P*KFBXJ*-LKO?N(cHSw&UF z{fdg}T4w_fir=dB?d`4Z4tHC-$J5#4>lyYBJs%yJ3(n3?2bR}X*VOO^9X?STG6GlQ zpoyTOxDpEu#UrRY(W>b9+nv`SZfmbx$PdnlUnm15WhM8@%dHN_od=G`#Tb(UQ7l@;%C0D)mI*8%|xcpEaq1 zR5BYcuRF0JfWCp9Wf5(;i*_k^A0&d1tf`GvrKAdKM-U?B5|S4=mQIjp$hTxpkaP8P zhJ=SSCsYsSYiftZ5VJsKG7S(~M5i&Kx{Xfx4qYV(NJGOXL`b60 z@g700pb*_fcLKdX;_AHDS>NicA6}s`F|_S*=~$8#porO=X2#YfYR;xYsw(|TtOO#U zi~L6722@1?Bt^+$wqPSM$EortrAn1v)?qVo#NmqihV09uCNItXFm&nLK8Zd?(a2*9 ze&m}X|Jd|uNDCxYgO6Qo3d%ul$CMTm`)EC`GGbDT3f2^?gltY2tAE^5WjWu26Lm zQrl=)+>TiZYb8RkBK3$QKH0+g12_dbi7j@lgfU@RmS6)ihxXU8Fx0nF+0yHNPDb?p zZ`r$86rpIhncTVq0+)F!3PFval!F>kz{}|Cv056C*k(OAD!q3oNLV;w8J$r`#JIKM zB0|YSY3!n7K!u=AG;Xq)Zc5zxVF%&SvLq#xQM@lkC0e2vwa>AxYBs~Yw)*KvYgp_Z zBn7P0k1v2f;@HdP?iEJ%psQvE9bF-~r0NCjXfM3%_rVE%x{^=oI1)}Yca^lclYRXJ zYqY|*%9(o-8`#^oI?+8eaW^EmgLc~K?sEC2F(0{-YM52m1{sT6s;~{u;8=go8Xvp8 zPhoWR?igF{nDIN-WL_WW!!3w1H~hy*wd`m=RP;>q1`c4(tA@p%k*0y5^16f7lCN4u zW{HETQffo-8q3BOrLEQWby?i}jE%J_3+1?hub)EEEe!O{QVqmnHlf zdty>SXszDeRAmVVHHzQSF7-Apqo4df5mZna;xc;Mov(4I5d|^eT->o5ycztHhgO3v zwo$nRr^PR7=^32X%dlE_8PVFht_UZ#5k@T1wMPl(3cp?Ik;npnRSuSvs z1*6P>+a#a36aa-qkn~kL5LMQzv0=ud#oR7lFu-RCW&C;-jd-)JWu0AI?f4cjW7sB_ z44(i#WZ{kZ>A=F={HvGaFFy2-JRKRH81fDF40Lz)4h;-;`#ddfZ+m-<%ds95e~2_! zKWwP2b2eAqw%@5LzHPQx?FNJSN^Z{O+>7VVT**F~ee&?Jtn`$W%#2Tx4y7igCnY6k zB&8;&C-c8S=X8|bth#A86&eZ*#(bOMs?qpS zp}}xH&vfT@;mPynynJJxvDj`athDFl6%-W~8S^X5W>cm0N^z;BvfOmD#A3L1z35i4 zX>Ce;uxU5nv>MHJi_Kb@Z!r~@mRRg|TQRo?^FE`^WVJv?7ZnxWFy&vqdilcwll8j6 zaLsDCQB+WDD7axU+pL9Vdqt_`W^E`aey_CLDy^))SMi|QRqyEVw6-)jo7}GMr@o%v zzOmuSXVbySaAYHdf_H5tNZDt%x~^z~C~C8T{CvaLL$uiikJD4k(vOsa}@Baa4E^XVEJW1|EA9*#dr~RL9kL>Xr>eFpT() z%YR%?PbebFmta>_hNgmWqqSl&CnzYyq|n1Jf(7i(c^t`9(ik*fTaWl?6Wf{>_t5T- z5}Y;+o)-5tT4JhyheEwC5uzcw*+h&vuk{UnUpwbRTg^oBb5c3mE(j=}ssX$!&b@VKYB|O8D zVx^qnJQj8Xm`b{mk(eZb#P)1ST%3mmD+Bm*5hG{H0p0ix2yKE+=Av1Amn65YAq|9T zYp22@;f3Q-jmM8tcCfCc(YFA4pa7s{bWj0nashdMB=huqD;L370GKzhS_t*7%4K>Z zAlNDhL&t?8^B1K-1Y;x=32736#3HYfqCPC^1*vuiYEdnTgxqh&7Z+QfD*^9pV5zrJ znZ#LH#Cf5M>>j>QU>qU(g_xZxJ$JphVVc`PXP^$s*ZNTPYhX_(c?ol!<1+l0Tw`2Y z;R3dx#Cd`XfqUTey2YO=keS4^!kG;$2^yB2JUwj z&Z}93s!D4b9iA}M7!Vt=hhEv2GS=HenFg=*%ItQ3iL~i2$6q)nXY~-y)aSx!o3?Sl zfdJv(_a{r7{t`yeI=T$|Q;#|sOvJ73i@{n|CdTTFm|^9j-zY_t zr|jhoBW{m}h0!zH7lpaVxZLV(r!*! zOss}p6Cmr&*-Tk)8i52-I>I{Z){Qmmfo|@8OrCp(8DvVo#mV}zy`Ui|)~vH5J^H72 zoha7egdu3~TnH2H%oKGL$qhacGIeT`5$I&oK~8*OH999B`3yBzfE{{tT6@M>R6fc* z@;>s$9d(>B&(0yIj5kDweS#@ACgkdW7AcbIJU8f?GCk;NZWgBL)xISzRLR9d-^c5! zN~>I9BE46Jsil`Er0PVG1pX1q!W`^4-rYd44>tKDtwh_>c!c~~@oON_Sy-%B(Tu~W%FW75yLmS&FzN8V{YeKClMg0;a^TNNdlL2@ z+I`?);-LcxNgpRA9{C3bt6X%*QI(sv!2=QY`ALewTf*1a(pp~ATwYaJbo?;z2E(2*RTKZUeX`; z?cAHVXXpDL{ON=JM~J$cLn{xU|>3ZC4~NXyBoevp+@_9U~U@Nw>sODc;?>l*Ej9;c&c zcw}sB*5eHrAwOfU5=F$*KPm&zI}J`?gj(1Hss`?fE~+DL6+}J zV9-;DW~e=Y`-!@Qm76=Ta!PVjnJ7C|v50sj^MX2+z`s_h#t*d6P1L(!s1rwxRq@LD zswvdPMTZ(>2`CH)!eAwH>LsvGw|tIUG~)zGTi_pL%87EN&5;=N;)a@AF5m+~qMqm% zw`nPQdsb>BE2>b1dZm}t7A}O2e4w6$bFd89RA^zb#k^}&RBp&1I zI3Ac8><34LHJC|>ewl4bl^{)y0hKAijo_wJ`PP9y)kQTfA`!V&=$_7w`iA!E=WL|B z`dRNH>0!;0oag0$rq-55})FwXL1y_E`|$Vt!A108c7_l3NThO292AtE-LIGEtdfmG|!C6X8vyRufImStg zc)1|f%@pHMn>ay?)nN0>T2NZOX-~$(u!B^xFngaMJ5nW|TP2`Wbns%$1d$N$c?U*p z#%gV5VN*kQSlZY?)6}zKZsf^0!8GF5dGMaVSEcyMfg>%!kZ|s&5vSZ7_;)`;C$Ej5 z8f=j#3oKj}5)Wm(U`(UIVXB@)Z2e2OVTHr#T45CYe1sge6e|{&sn1!cnHt76PBlkTqxv8+4b>Jw8f_Lj z1=WPQUvkC>VIz!%b?6iig(Bg=?A-KpU~X)*f92)WpuKy*(b;V8b@z?Ch6efudYv7e z9j)yhZ7ob+%Oq@P?)J6IKR@GxOj7qUDHHUd!bUy!M=Ox6fIYwo^-TT)`Y{vf=@t4v z20xq1RNN2KNzk*P+_75QP+4AHSv%C#*VfwDa_v%T_T9pY=9<#-M}>L0MP-c@mH8zV z1&<%z$-H%Md)CeLtc;tf-(63=a`}A9nX@3KQ(u1d#jz7d5B-nsY7L6|y5b86h^dpL zO{e{kwx2W8FPU_v-#SyLGo55o#vz~x@(_raXdRPiqNr)WN3>f}cSSrI?yX$gsY_e4b` z#Ds@MMkefy+n244iDQMyFWJW!{p@ngri3efAz`7DIXm>m7&c}Pd%HiJ##qa z6dQ@>8VawRV_KR2&%b>j%`!YJhYi<=@Nq;n0`)fKnP%ZswIii-*hZWrWVy)1J6 zkb3dxi7$?wI(l$lTy*@Q_Wmz8}rFHQU9r7M@T8Q0Ra*Rs}dGDuC}hF^T)2%jt37q+S_~H=xEpXmX;P* znr#lZLKsYT#0#k>NzV?rY=z4q0DfM1!79=CEX;U{EGfuAM({0_zDNouOO0*^G0a=Z z83~o1s_D&<9zuR|KkT9coc1RurLsD&%q^&V?uP*QGAO_zz@!(D9t=CFcgaDps)Moc zq;_?91!gw_`^NE~7nJ&%{sL^O-Eu&wvfMRP&Qb8>MF||ssw5EmNsM5?Ay|v#R~nh~ z-c9l{>5+O!(VMCWEU7ZEWCsx2Dj+1!@WTHh+|E>%!t?^0t3P+G*`V~yz|OLTlTdj6;?I!ilH;`McAWAX%#mR_`s?I=#SeBH#25u^5jX~6K4It0aeRD z)+7P9N}n{)X7PI(U3ZIRHUW2oF&jiM9oNATHcco%O!`MGTc{6gflK#ySb!P^D+2?- z5$jhGll=#WAhe&@+M%Vel{P$Q%+ctg$o%^r{lr#DNPjS(-u3cX%4a$~6bJz|jBj|* z3Ql(UE(i8grF04RPdD2gPwtnw(c!+yjqNR*QHW{SbiwAzBb*)=C8hr<#my z^Mh@0!U0O>#1^NZGPEMto}S)p>@FiHNKtUOLkiB-w%Xid{S-a)+_!F+ynrrK66Big zgC-08z|X2w0c&E+)_=FE=KCHe&;nzDzRhdZ*{ygOOp&7i^fp%eXcmeb3oV#<0F4Zd z=ox96+2k1-U^6vAS@nU`7BwDx6hSLDCRyJ@h;4_bwjGg`xt(P4rIGV8B?F<$n?^87M*By7Cb$cR z0tciQrN*2toc}a@lZ{|b?B@B2MQ}WDw%AL18<^N((v9P+3;mN$ZUX0RrV@SQ;~}I# zqb4uJD*{FaI4^<93Kq;!KT(g}DF8u{;T124km4lK6M*e=N22L`;%^jeTp`SL0|C{ zlK>D!4o}d1w%F)!5CV*JhoEp{&35K+A{GsIGFBpX_FtcZQ{nD9($mj{5fgk7E6GC@ z3n;)r4wecw+Ex2kSGCK0ScITIO8FWyJO*;y+ksy1d_JlO97gnuWggUq5Qg_Oj}QYI zR=27HlEdaLwBopz0eyuO3wmfI)Mdp6F);QB7Vv|B6tvz{Z^t~xd6daHP6Ho5| z$0DaB|D&A`tteA}T!32-;zH$>@}t3g5U(<0mm3Hl7J=yQ6Ou3ma0!5j?{cn0Nh#z( z-FCp;-wEF+>T5}o`C@^{-ibtw`>(7?S-}FSy2y8`BG{rK3brDF7-WLgCXI^x@cr9l z-RWIZ6zj5O(lTo@KN%kz8a6*3>3?MG?d$3885|lm4E78f`ycjq7`nTATRWF9Zm}us zASJ9*nR#aohBt#Z0rnA_z<;K6VRT9?~7wsN%LS zI&G^v&#`eaBdS3PGvTti{R}|f^`}eKy%J0_X z<>l*23k!>HhMnuF!gh$7O?+H!b6SXfolJ9*hDgIdU$peQDB_90b;NcS| z&Ynw4P5bAilgE#Lo|1C<%;_|3wpN>+ou6Cwj6lU`XfxiJdE;0(KuYBix+ZDF8(h)l zUMtGXFG#(ZmU=qv%DHnX7gGFE&hU@kPLA6jcOWV%Vt>qmU4Pp3e)#*lLSrKjB*Yy! z7?l(q79JK67Z;rvADbM1gv}SSO1lDEt6;X=Vs>c zY*F<3jiS85BHhhfWfe7b6*cwu8d`qa+Sc0E@}Rw2ZyX+ZIx=kNGfYiR%~>Ybm+eac z68Qsi-!p$ zL@#=-7p)^Fq(zb>dBvFg1s=>avM+LpMg*Rma?J(Eu_zp90{(SD+rz^G1f>!nD6U$C z4se z2;T8BG=xo^D3RI}pW`mDpa=J#h*9{i2FK93Rh13$e94A%@_XZ{6rqKJl8pty{MTpb z#)=7yj$&+bu7xmnGOMAYH2bniD9Vz{gH7ST_bRKF#}Aqah2-(%m)tYhzI!4_Puexz zogw#&-D}vGInR_r<06DE-z+S>)Ap>~s)*OP3v$5LWEZ@>b5$Yw>BUX_X-x!r%ug)@ zYDbj~;7h|^uJ|v0yXqD{W3By6$jh>|IXBBWMF@0&d-~Sq_6e3NB=H)9oyZgh?m^u{ z|8Uk=WSRw#ffZoL-+-w3KXjK{RFu~h$A_5#G{zNIP5a)izP68jZ&x3hhpv^b_>h&MghT%!X) z(jsba5lLj7_Q)YT_kd|-y-ETlS7zOK3~bWE;pHgO&>AZAQCEh(30~_VAxf8#1`pMW zKk=Aptfpt);e_vXl6O>$3LYB6p@jM9DSS5YQaQEXnCry~aYn+^+{RGOiiUCyZ46x1@AKLs1 z0`b=ykO0l=j_L^EmAlPH^Ky`Ka3{5%8PzQ9`p|$T;0tO3U)GTod?Ookwji=9a0G=&Is4rKtTA>+^?4R42O zgF2$Yh4!q|P=%wADy%-OL47f-+7)%=RJ9ke3c1cqa8?r2Qs}Z4Glt%UCTT%8e?6j2 zZGwN;iG)%15WRK5X(;)br060VZrqAK(GXMoD3ow0p%KDPS{6q#qBS!Ca+FF@>dFSS z|Fs-fkoY6XNH!8jDSo475&W)`UILSX(ZJ%%MPI-WN;_jr3rL@R-u-ekWUPLigB1qb z-X`354LkWH2L$S*;DXyUzB@)D#*WhwIIKs z;L62Qxxc=clYR2wm%BgPz5Ub7t)FLnvUA&~86Rxjym{M}ZJGUQij3kd-eI}Bx9rTw z{PLffd-fmsHtX1lywm3{ojrc(%H{mCXU<&8J9aMjKeLyn2&qsEJT<>bo(zm5{{NG>i+q>uQUwpc2$Br*D zGPmv8x%Cg*cWvGB-d{Imy#L;&58waG$GdlL`XJ-uk1{^m`pIWIGXJq}-&cG0XMT0y zU;Dq_vw!b_tV3Ccj%R&y{LHMMdJ;E(FGaN0aj)i4YkAq7;(DdjLaI4YrxV0_i$y4ckv)?tn;G2383a-RFP`Ec^L9Poh4`m7uo9noa zPs~6=x(<4hd_AGDRG7r#%*82l6f-cPGAK2Qh3$qi>;qW>^dzHM&cuk6U<#Dt`nT9abZRj%i z%T5&m;Ih#sT}>>h@!^G|T9g@DVYv4U!igsDP6UW2@=|-{T!Bo8@)s`@rtjyYCc?Om z6M#yr1jP%2AffQrR0xKUiW35&aMEkiuU?bHB9$8k!l{YtHIaCELNU>=xS@+GLI_s8 z`XfC;ReZN2KJ0Pt>LL~U>S7APnF=vUKWd>Jr>yG2YnXh#r^vgwet4scCyu9#ej`2wE1fwm* zxCBpZOJVXwydy_KJYsHG@J42S^qYp$^`P1}=+s5xfTRPIC^q`2xyh61-1DIH;*M}+_VjMCsg#$NLNSpwXY0;^1(N2#t45wH$r~;KOmznOml5?wbezrag z6`C&%D~!>j_Z#8RZ%!hHxG6!TZRlF$ZvRhgMfvNtE{veiI>%s3IGcn57CzN?)%d9` zjxNvj&~%L^L`-F?9p$0RGT7CibClPHLE{Fe3I=#aq_!s~QkxGCK~M4(PagBN(u zy5}mnVh#(k6t!T8Y(?LixUHO_W>~bvjgH;!$HZcn!Pa{CT0dCGq?$0$A{rg!j35SH z60S(r?7VYO%7|%=w9zOLb2z(<*L_L&B1XKWo@l+~dc^%eGc z;V&@-t~8JF*nGuv#*{EN`AC7%VXJ)Ad9))2tKhAXY& zDLpLwYPZIR`nvm;cxM|i8*8a%?jN`c+M-5Xv8W=5skW*H57LMg)6S}UshCnifsur3 zv^{1UZ{e?8n{op|QHu`nn5OTo2Sk^;FySq<1M@_C5AKl87rc63S3Ff|#{K_}Z9E2j zgz1rFzZT1fSU+Z~)Ok*{e+R>*^BGgJA(*}#V95DY;xi$ZU|vf+Cb{CEJ}s#eR4NHc zAf?i=5mLB!+W`R?%v7Gzj6I`_K(?T&s;ot>U75WA5WwoI-b#rnGU^D#C$U;-*q@KIXNm` zp^Q@`MQ@J(=jWgQ`yZPXTO$=wUn-)NanaGrC`ELvGBz$jp-kAhFMj{Q)FbgqMSOH@ zN@7yN&OJwtWE?q_d9+j#T~gKp-B~BJ04Ya0pR1mgmfkHX%)OWQF!z4Z?fh$>Udqop zckX!F!NXr4*q@TLH$fSzjQT?>J0IXA9czKS0O1^Kym%T;+rD)pvf zwMt!Er*3S2(fFdJy{)xL+tc0KtkIh$I}BzBC`1Z6Ig@63=4NMID-buA#S0J$LEeCn zB&IJ^DC#BLcZJn+~)1+x_Y;0@m z|9w+ucSo1WvNANcVqSH5P*DUG35u87rxXtIml$#=L8_F98Ek+SLxtQ!L{f=bfV~4{ z;zo>Nh5qvc(Xs`RreQ=*94}(2091e}!ep-yY2}$0-3uc!SW;XDpP1iftWaE3SD|j9 z9DL7-_&`}VygvCJZegj?$~Xu6N_75x%%VL=fdo719DLIPpT@Ok44%Qj2>DJ-zxIp; z_~2~d>KR@P-%S3pE7J*oMdlNa1Y4H~Gp77YO64L8(;rM7Q0K72A&r9zk7VbkIpV3w zznaqz7^bENgF$?J9T^?!*7Oa}I-PtD*0qcM-g~K)Bee%W>w#WkfnpGmQr+cM%ek@Ce-?F6KHZ6t98Wd_8A*nJT`3XcH#TTl%Q3JP72cAM9l~@RwsH(*5Woh+ z+bCczW<@;h1oksxH7rGNRFr z_D|Sfj6p7Jq{KL3b4-<~S7*kdrE{FxYQ!zz&7g|QKeTnBy>D6u=0r34dKhxW1L*BNEs=KZth9d1V8Gh`>p4 z=S{ORG~*U*9K+37A7(Znj-PCU20DnuKZ5Df?i%Ry5wF28qqkuhUNcB+Z1P(qx(%ca zehoN7EnrXRM8{jheY+R7v^7g$4NR&a(s>?4Dgej>r;$}jgB2{o;(0CGAo~1XC zABb)!pdeC-nAl^-_{2UIw{d!OYiyX1Kx1P^sTx8EX&h zm8QW8n{W=}OLzn|*S9pc=*MThV34EdEkc8PUbGEjcCGLr>6O}7QJhAxZ@Pk1D( zqzu9f0))Q;pgM;#(Sg07dSEec6V?oDz@cQMx?XDxbW$|NhP20J%8j6&@|Ulj5)h%p ze>b5QI5}2eC0M1G%tT~}0w8$~=KEL(cOW%lyI{kQ!TxoN$t%!UhGeq8b z{@q~3HTyoh>=Br?1jmVvbPq%9#t_I^f}kDFnZNP~WTkS04-xXhtO@axcQ7uJSeT#M zy)0~Q5r$adGsF-$g8Pdp3nKV`AWngPYsldDK7C{k9pdNUd4M=_J?1^d@QX7U-6#(( zOu!EAbJK;B#}56FmU8(+b7!+IWnazCy?s6F^qH*8GZ(Wj+`jUlAn#sr;iD2A@uMdO!;ozC*4`vb z{9_`iE@YiLk&$_F@1E4}_U=tP8oxXB)1AAN${n#^Dr4fdZQuT{$gPUVgs8+VJ0fFu z?cTR{|KYThuQJlpPM-ee>*L=frGA@w@YvDJW7l%W;R<|>>Y|d$(z5*f`T6$?3hoy_ zuBdwUtfH#Arm+eT_l2fOt!{4DbhNc~^yxOe?CT$$HJX=34NG>H6Nn2Kh5%JTHvqhn zuK>ysjA{}gApoc-hCmd7gbWNn6jg>TeH{~;gK$~b+@x&mX7OV}!A(Y{dwcr^^}1f; zv~h8Idd@UEw;Jep1EVHgn>k_c4^W6y>;xOFL*T*gPGp`&)csH-JrTeQUvV*I!X5&X z@%R8(_KC}$Yyk|S~Np4 zAn5kLl$Y6aRM!#4wM!TZmvQi0@{nieIS=_0@{n>WiP%>Wa7a)byDE;WVjGhx+Xa*W z0RjUt!U%)}5-0+MGy;v5VYH)N8VL!F_8E|7Mw*$soO5oz?sM7fR4OSDXztw8r%!jE zuYc{R%P&g%Ur>oh_%wn4FTddG*FPO}uEEgQE1yVT^yfPc_1g|oi5l0KeoXhU`-fi; z4E3<^q2*xq>2eH)x?vJ;AHH01zH^(<^OrNI832Nay!!ZvKUfmN5)W?~bQd~I2g8U> zI^9OVgB+yhVMIWB>=mhCgM(JfQ&tl_BDJ6V?*_)d{rseGTmxVl*8+-xEhvWs_X7Sn zn3W{5kM@h=Ai>oQ3DTcQxMBgRfe=A_a>OlSv~2bG%O>xj>z*Ru=Ej^!W1Eyu@gUhV zW+5mtiCwd}wgm!2Di2cOj9lQ*%%d3ADYR2>&%`oUoUrFCbS8oi;w;{KntGwKW-1vk zlob*kQwqD&(e>t3Z`slw>1?jt;Fr(+W7^8 zh1l-B7{I#$9aKRTAaF%8g*_T??x7LmR@BjB%5x8tvj$h!4xGQ(7>ac^Q#gb%GDX^y zY1Xu^c*aA{0?n`j1x7AN3f}Nb9~|6ev*C*t!DB9*Xc`M$67)(2%~4WuhesyE&gw<# zzAE8gl-I-X#x9nxctghoYC>kteOnO~&+aXfGj>;T{hTC_?|JZ4hHDh)Yk?hkq#Nc7 ze~Nj?C6}@s5xsNc)(V)2`bbT`T{fi#pt6?K0K%R7sk6HGMA(Y;R4zzyMZllXU8)<# zp&rT~`2_(I^-n#ure_>uz+2%V^Kp`is-xeM@j46c#2mn$Oez2#8unTi4@L*hoQXOm zeaPS^%T&x%78d%7{tXjOs+azPQS5#rObn6ujGK7FpF z&yseq9_CW1GiC&ah1NBPl~@8_nZ4yY;(1nZ+q7(>xU7w;-cfG}D>)Lk@m!V%?RagC zB_arC4AC*5zeyA)1!LCL!W>8AzGCVzB|(ga>ZN~9LPBY8xLGfZKtwbJ(lXNruFDBFGWgw>@C*HOBc0fWAz` z5EaO|wv?%!e0uDoynaMEOU2Dm?^87TEZwLnkdAVP4m26mNw(5(tAaWuDoeL`MckO7 zp@Hi*jlq%rH5C<_B5tNHv-u0$tqA5#q26=_8HW&-MK8!7i!O)<(??=(&LW#hVJB9W z4J)<~HEp$4NK>xF7ZxMonZU4efsUdw9u@w4bTkM0J~sG34=i+>DGgHol%^uvFp@^n zjxUFnL-TXXh6pc3!}HuhUnZEx%F1GZb5TYl2wYx34tRb9VWRC?|7g>xs5A3kyZSix7v3XT^XDKjxw{Zh>x zKX$6%v!YK9e)V_Q@ae_wL)hXUnz?n>XZc-TK=dxp`Z1 zw{G9}m%LpYbGK~Uxn=w2-JABjzi;2(k3RU~kp1$k@;9xC{4Th=Zl>r=(b3bVP81wD zQgHatp~HXQoB#8_efZ}+JGbrFwRzL;e!Veo_l6yL8{YfXdmD3eH*eatW$&Kf|7q{O z0|)-NbI<+*J9g&n-o5{WkMr~YdeDPg_pa>pT&XC#cD10e@Z_n}-xQrIEWTNC{pQt@ zveNRZt5>V4s_X808tykXdHvlj%Kt`Z_sGcb%tUZ97M01>u>>ibWO|Dbt}*$ocPAp6 z8yQYXTUpoeFpILpD4|)8<|3*Phw4xd9xoEy^N)`k3_5hIsjbD|;cxanY;ElbjQS>@ zMY2cxN5hlzG{R8I@ndJv$ihF_*cr-ABDuy^TEA>mEpS2evsA0JYgEbvvME%QK!Zm5 zpW0=T`udRT3gh;)ZUSzzmHMHB-mW_WH%1mQgS%w9V%8v*N@qpK)aAmhq_Hza_eg%< zi>FKYZ4eYFSxPmfhKRFhUi>FN@^a@%Fj2Z+k~tFj5v{WDVBCFGQZF<3UEmM^HbfrB zsg-x(^J9Jus3QA-BkUHv3=Ly8w=~~|@F+^_dhp8}r~tizER?>o8eM$l`zx)NE0et0 ze^{M#{g;dv0~GHBEg)V^Q{3ecs#I-inn@q;QHNNhjsxXN<+Vy)`#`{{#8dqlX3URo5ywc(mdG+a!10$Lb4 zWlGns`kr0JXu(80=UN8f;AAvP#PF{Wl>Z3N58q&)bG$kQ+#|7%-GAvut-wCXC-)$P z^~LBMqYeQ;it2^kG~8bw?PXB(=%%1`i!=>AD-rkO%{?|+^=N%=7svjmS^g1iv zTbGPS&bH!~iFSNH;OKaBSMpI+N}5zMZDa27*h+#_VCq3*QVRexis4kzSp~tHn&Nai z0B;$pd=#&t*(4D-H1m1rn0Jw0}nb0 z+Kv8E6T=r}J4StpY0JbX14m()W1vg7rP4Y@txoF8wctAQjueeo%Fom+6Yd&K71h@~ zo(bH|HkJejMMNrSQVKDOpCrLt*DIzSa=IL3NJ zK)edoo;ZHiI~S-^_F7?0-@MxwuL)QfB}kc5Y?>w`R9lM3my#z^Y46o&+-#OiExPwA zA=88<9Fc{*P|zw(g*ZSdG)x*ySFqA)d1x z;$f1!8+=t$fY|FPZ-Y_LV!3HA3Bqk*wM~+&n#hqpS<<~?izsWl9H|t#G+3R%!(jlW z-CW&=F)rb}iRF_$s5~*S@MOFxAoU%+L7b{)c}MHtv{z|tmB$r*4=>;bnl@b&wQAL$ zmHM|oDpjIs6}l24OQ1m0mN;xlNLxr7E3{1{(S7l*bceArG)X&3r@Oo^ES%oP za~;?*kXs&%bINYm9lxT&oo5^Fpw<@H5n$oD%k|r&GO?RsSV7(oqZY~Mg z&b1$^oJ>yllkf0rR+!yk-;hKa1n{z zC^77moC>fU97%wx95|ajWx}6^^NsS=dLt2RTY;PRbDKuE32u> zJye{RSMr|&N9N|`96WmX;E_GMv$L}IsjPXscWmCUC2hxB+f%n^{xdvEyxUo^de!ok zOP8m-wDh;h3zL(7^^-*lf4bnQ1@nLW%>0GFcy`gxl9&Hx*|Oigkn-Z1RV!AezV^mn zQ~&ml70Xwyc=Zpjtoh@gUVZ)b4R3Dvd-|3GeNse=NjPiEl)HPc99ZwyPlO6fk9=^Z zASdrwcFud*?;pxOeE3Iuv)wbCFM4+2Gf(||{*tAO zRxfz^xs>OBxh8q>x^*wDT()BMD{EhVPfBQy>YbbZwQc*}jqCrM_SUvHHf-Ab&en|m zJGW(IWM*WgzMYz}^WS?i_hs$b^X|b9Km6|T6aPJ0P;jc`^!dt)^VL-ql~vW}FI=i_ zu57Nq-tG|F`hgO?{X_SBqk({b62#mkjYa56MJtdC)KY?h5Fi{6=YAV+$Os85 z7&zZXpigO>C|}SJZ~Vm><0Kr%>|nUNHtVHV+aI7(Lg&!rZGQH-#3fwRjf+$rA|gb6 zb)G;GA?=0aHB#;dk|E_Kkr-^yVh$#ypAIq{^@uVu+>?a@(I=H?7^5=EAQJ|d;vR1d ziE=Zam8ywsCUiR)7^0g&V_wNt^q(~oWCoHrp$Q7*aW>qF3*>93uv#r|C8ea8AH#Y? z-(~jYQIQo=#xVxRE+KtDfjx9d9-$s$rk^gNxku44@9kpTON8*FD7u)dF&oCwg8Ei; zy}5`lu)K?wHd|s1BM&kA3Gl%E94Gh`+mpX7Q3ejMHD+?Z;iuSJN6bJJ>RHUZuTL;( zAdRCMc?2B8FrGOUzZG*GzxJT>DN@diM z!1WAjLvUxsgg~@Uf_}|5xQ<4pi3xGClRJ}Vv~MR%C50mn82&6Y+fy#!jHbYbIaVR> z+e>FxELH>j9LMQeCb|A_huRWz(2hffGqV&h=fz{5;#Fz%59x3u<`=zr4t-ps;fBbN zP-ciC#q({9Sw@2n-c)X6WB4%!X;GgKj^;C~eDHVLBiA(0Y0gq|dx)5nGpmY>12>=* zF6-M+0eBDs1XeLb{|Lt9B=SP%UsiXv4g=`8)5-180V1(2f3MWBwM^KDIu6`2RYiSw_{{efD)F9THojnG% zfm9i!dn~A+B~RzBIkr zWICq%z!kjoBfl-A$ITe^T zc!1Vn43SljLuYDkjJ%%WM)7}<_~MxBef|)?$016kK08DnCbzDf9-=9-`xMe3zYzJI z&|fmv>?s_1V8La%Blr?VBQbG81uZDM3hacRMKbL2@tAFJ zewv!YLKPE6fX+yLi%&dG-?Pm+ei^|?7v#I(%_tgK!td4{bKg5laKjG*vd;azMKR zmh=|sx`oF%k=U*Uc%(riZ7N(vpzcO}1wpus$`7%lxrkvcMsQ=d@Zpdx`fvqIS|4eW zA3NR2goV%VF*o9p$vN!Ev7+FwS=-x8XJ*lno) zBc~~1Bs2*;9=qBMF|&}|U?YCUEf!1S*v7{_n(*63G^7m-8Igbp!DY}*)AU)s-3Ge~ z$@DR;xD@jn=|x$R{_r2MR@1(nnAJ|~0%zs|N>G_;=Ppx_#WTm~yd^X`Zs}82#BCGj z64&ZQnjd7w#24*B^?pgs23jE-5MAA)}<6%ZFM4Z9m zac*T+g<3zu8ss}1bHcR$=XWqB-2yhVk-z0G{yuZ z$cHR}Kz0n-Uh?vm`|dqk|8rlK`ydaZQv1z!?maVSX3or>?4f~#mie;I5pjG{F%YDN( z-AMR6+8(VfY91?wHRq1qQe6$57wf(Q62~mL^gCe6rf5vKG3>NuZj?u%#9h41jY;%-Gr{u=*Mw)A2yIuPxI}wXrSRW_B3mPDllfKuDV0QdWEzWJ}r!R@gK{AsIHzkPIaF zeg1mCPuBOVtM%6D=J(b4e5EG}3JME~3JXsZ9nUWCKqb|Xk7}uk9;V+rqg|j! zw`Q5%uwy1YLEC7T(bMQ{bT@_>_Ze>+qm3)*5{&Bkv}ETqpj*TLBI-qbs2^QJLum*N z2KF?v;H)Imm|%=I z#u+KbB>cx1Z4r}XhbtM-6QCp18xgveZUQ_)W9d0sX#B{yoFtia98gL{bPtV246X$4 z07T<*^sa}@D7qK3jHi{fipJ3cG>InA?*JCrSk>Da?79Fm^`Xn?F`7qf=uO&AyXbXV zjJ5p(JxWs$*Wb`v^Z_#B7&v<%@;&IsSo=$1Qy)b8S?C&0cR=sMG=?4o+z;<=r=SsU zv_mvf=?WS|zlJSCF*ciCqPwx?ed!jum3~Dx;5&k@!`NN4mA*1O$iAbn?MB!?0v@M< zX8_otX1M#IT2v1Z*-qoDZuKk#$}1y^;n(;yUEi4fGKFpFj&} z8a#S{*3xFIPCRi~Jpj3Kv6F@U;MHZAbr}5pElr2#(-DzbkeW|((3H^;G7I6)MGo|a z#6bEv{J7cCz8q0r0o_j^-WjwPoU3RxR;ip$U>zfw)&;TaiQPK{o(%`*a#{)x*TLg= zAUPgh-44lW3PQ&$WXu3qbUk1sJiQz1cRx*~=jl^K>M>Aef@coRpr`Sdh+F_XcOVZ2 zVP$Sa^!g)aQ)vnK20Qte1YaY&KC(C4V=aeZ%~Fu1>jCNX20XY4+>Iwi1d1wRQkSM(o(7CQp0-fm>JAb|J z1|mLJA;!&`J2cD_3%X&|&o=&TAQ9S{v93-3t}V{d;k15-b66aqx1{Oxvq=9toN-2- z$)#5|$vGdjh5ANFLM(gJ%Fh4zY=2>SwJ#XL1;jYVwfl-H$CVX_o6i)I#oLw@#%(O?B0&Q)OkP`u;f~^W%=@9Ttb$A3S{c$dO~m^79J{M4?es%u7U>I>}G9 zuc)fl_m)2x3VQs3fIm>L{3^hM?LvV-Fl1W#-a`=;#=ZMB<~^mp#PumfTW$wJRb_?8 zrOteG`m`yNCr+Ly zC%2tAb?S`AAD=z9?~_k0UbgJn=hI$z>Gi*)zy03(TefcBnYDZG{)2h>1%)Li%PT~+ z$6H%hC+ZUdA=3}rrQGEl6Yi2b3eCejId0N&UDJUKyK~OLdWNziFby1Bx`hnMa!`y) z*Bj&ijM%zT&1kKl5{>=Cc#!Og#-$ry7qgEiPb2acVr08#Xds-<5v9sy&Z6(wdlgzM zn=r55C}>Bq*q93mt+0idOi*?fa=oU3F;BITNJhQJsw1-*5*#UwEM_3I6WApza;&j9 z!EMRgFae5yO6*LAEu#`S!)DU^NO1ii;a;07F@lAUmxN0#)2?Hz-fQ{2!RmTlxmT9t zb-h&<7d{+oX>OieO_*7e_5~OzI_KOHf{XqKU=nBL3?L2Z{=%g`4+2Q z{O4s07p^}fmEQI31Z-e?-mq-=MIz*KCU?gNpD?MNsoV(byzADzvNod}TeYWP3ssiN}9)B~Aw=B3tXXL?Eg+T3EqiN8L7=ciL1TC{rZR1=%EXbe<|5vL}v zSw1$SEakFE71pfb?;UvLwk2~@a&7kJp!u()k6Xm{-aH4+@G+zInyaqf@X4lWFNZb_ z-GbbCX!l>!vtPV*=Z=Xu2s?i`&u10iTFUtLvED%7g?C}4bILHG*oOx!gtoz%9jXl% zoGDc$d0Q-s>BIWuIr}fZ=-xF)5ay0-%{+Kze=zuy>dm*5aMj&Aa*1W$m&;{f^j2p5 zsaDCi9%RDQ3v^coLXm&-HX)vS&SKVVoXej1*M-zCq*%C1unqfp=3t>jRfdx9zF@Ph z_b?v3CS-*}ONE&-8VC1B;};3Je;8->H)-})Ye!1n?r%Juv+bk!e>tzxpeVB|I&rHq zGsg1II5ji*mrA87l~l|KDkwN=#DGypX9O1z!Y0FFjpIhtQ5F|O6qQ9mb`=p26cAAm zP^S?=L=*+tWRV6z7MrHO_wHMAUpJbmnt%Dx)%7j!d-vRX-aY5?G%jb+GS6`Y5)(rC zwK$;MkcPO}3~aB2OB&8J#UsHc1GZcXz**IiXEEPi8&*1RfropKM2iW4Q^B)S35A^T z#?=E6!h^3+S{LUdLYBL@FY5_Kn#Be{W)EVD-pi5Il7BYt6pHDJa(yM(wiMb4mozS4 z$62?@e+cd{D0!6;GX9MaOP@*}c>#E~9gxS4ggnx8yeWUqFooj*X^iE0apb`U^)d>FL+}767$vyZnI3Pf zp(Jx%RZcv1fgAm6A3%zJt&a03*P@6ASk2QS^INKG5OON}&ndGA&uq4RjhTd;H5`K6 zVqF09u3ua9?!Y)(vZ5F+NFQ|OFt)20cIhYT_-W@7Fthtv zzHxp#{_kD<^~LVw&*$H zpG&Zw>~?}v2Cg1m@K$|;$uCs|F>G&HZg0&A&UKCerCJdqr*`gk^Jliai3w=%24SmX zl0`DEpG#R%5VqiL>AcnO^L-u<#Su}adz%<1b~-X*y3k`vWBm5A5G2%8ZRras%oM9# zX23J3U-5_zEof$)T>hTZt@(H`sg`#hh*stUO)iYO>$+)2wgIJJqO7?|NCS2+30r?s z@wSx%X0R`@LbF-aPQi@X)NrxtkuOqkaE=a0jWtDjijgz4dX0w6>bXkOmLQ{UI+~r} z1m4pS8<{~<;u%j21WMl~QGL45s+WQbNklVd^at+LK=^}ejNM&HA$&Vf;&6vi5>Dt9 z=>2O6xwxD0u6aWMhDb1^0;68Lk?x{#nMrv~bW7Bu06S)MI;A=r3`9{-eBo0{24Xeh z*9#_NL>$u{q_CnhL$|H&B6|;*r{-XQY%1@vT_mPi>y90pQo zhep@?h}w=0MU2Dvni8O|PI2C6b&s-$LqL+t(GDW1U^s3()6uATU8mZ%7)pA52aP+% zB-~xtx?HoXAR|E~00GBIdpOZ*eVt!J;7|3ZlK*(^&ef2l?vTyTje+#6{i>VgeqYDM zoN~#l@%!O5V^=PN96#gZbi745WFdanx;3LXsE|Qo(5iF9K^BJ)E2@ACJqZ7rk0em`j8{s95LTd!z) zx0lO-u)`rsjj1UC2Y;q0NU1-@GDZs%i@IR&^ts_H=>^I8mBa5IKQW*>7=}hjNA=T| z#^z=it*^(Ts?!f0r1LGP`tpzAWg|{n>NdJ|&2 zJ<_GrtY0uO8hR}+@ZCgZXA3&mq;Kyw(jfyn7xhJ^Bo#MAvnKd&F?q;b)nWzODgH*L z$jJgcVN6b8w@+r9h~@iqoU7dQBhdxb-J=#IYeq6jF^j9Y1V5|ZFpoZ5xiK}cOjdKu z6a3~RK2%|lQ*Z{sM*1sbSAwtC{Nieo7!$Q0u5Y4aP*1B+9-2O^tirdLc=-!kiFZI# zcliHjG;8G~Ohk!n!wet{HGW`@@+Y2xO4u_w=~6Gg(v2a3oZb)-5+1rQ;#}ppdh3py z!LU4_dJ4gW@CG?7RRWT*D>HnA#!*S!h@39S<1qIST^?g2awZ#|*CQouKIy$`>y78f z#C?gESlCbc@>f_#-pvTJaV+LsL%eyf8*sgnN@12?wPRCq%K27Yo_{{>Om%}aS|%{u zH5p;x_=oc&j&s7YFVrtBs4v>&An;-)P4mI~rxv=D^w+q|^<~R%u0;NRnQgZo zjduIvCL|QOBxky*V48ra6;2a49}!|8!sKH_D-VI}<8! zoDvf(X)}k8Bz-GqL)e-Z*lF`s=*_iYR{3hZ8Y``u78)7P?{1T);%~5;_ioJDF>1Z{FxzEsz0R#q zK40e-vnZ94Z`~&1Xa9>ImssL2m4D$bgMs!wy-e>eI32AhsvKb4^zz~Gn67c$biWX7 zGJ}Sg*b2KEqWwp4F0lT)#^j%9Erm?0<;NB+H|E-; z=?;I>L{BdIiQjcwsAEy~tN+V;l}1H*USW2V6PxzrG$%jOAN|pudYWc2pfd~%3I>;w zCK|=4xS^t$Y82O;y4C1WQIMHopA1_pU~-ITq*3bzL{!``)+pK-5HJV`GQbS;ec!wE z-un%TCN-(&wC6C)yvu#>eeZjh=lSH+s_B>6?lE&!bjA=d+pr7XoZowOcx~gzWqo&} zwsE%JP%A~}_~?6Llc`flT!KW+Nx%?;n#csCl7?-81M+twNrNOkDqmr-iYI==0<~)n z0KrL9Dwai+vwuztOI?v;*s|P_GPYR=TSU!~VHTl|h*7c9;@x?mAR37t_r32Mobly) z?|H~K5T_8t9&!y}H&~wlq|+8^G7XRGX%2hKqfT4YJ0?=`#8|;DrvZ_WX{ZMs4HOdc z@#V>CX?BZoj;i(=mTK&!MS^dLx+E?|{zc=?um$Yi+G35o!{>+m4Qc9~*Nt^dyRj$7 zv_fbfhMW=Xf?;f-eMNK?7=S^3-#ZYFexOIFfdjq6x$d2KDVxTbOFI%E+umBw++ho) zEH+Pev1ro`u9)-K`G`b-0i!i_?p9*G9K91jfv8~&qGyich*}5!!zm0Y@BmFfvcCL<@N4H+)Wr9jb*^V+zw+7Y$u^%&?fV zO~&eu_OnAro~Wp(b^%z1XQNkh%IC0Sa_pL1QK{8&=FKJb9W1#okzd&3f? z{M77F)G4tbW6tMR^R%3_39mIV75ciQdkY>wX{7bL;Co*2^R_{u#}MWdN4E&xDaVUq zH}KO|W8r7vF~#<>z15+KoNyhF-vbib*wBLzziO#5PUFf5D@axu76RlM5iO)4Nr&`<<_ z8ZbB%LdZ8bvzJe1TI>FIMkbXUFPSlXhsIK0U*44a`_Tv0ykN)sXSBbErJmb0u|*j- z>N^Sp!8=My@^|enD6(f4=4GVY(>ASJyLsK}CGRawm@_9XE`G@e%NH+Rb&9auG5K4e zO++yzF?1H^Cr$ZG8?``)&rL;~&4>e^gl211p$UQo<~WtOjZBmN_%=cWVE=^mXHhF& zM{gYDP=EdV8Ca0IQBwa;p8y&$fNS3A0R0OvoM3}J(19sB;28w5MfRM~F(UvSti`TAR zsJ(Kj?qBZqZl~Mb)$;AF=K2mWLL(gU8oyZ@``Ixbwu`OIYtcXTPXxICNS0Dsp{eO&d(8^}tHyFL+yPQ*&cStCP8%(D^hD zVS_0Q90;6`DF?Nso$9m@W#rXYdGo=2<=^0h3W~LB_N=cvj~uN3eE;F=)yI$3^wm^+ z*#_{i;*1l@(%n9Ij3Ci{ufFMa(+gcafVweL5lSL{r1pa>#{+?^i6D$wjzyfP3DP0K zpAxi#{v`LNi4af2UhEjO8bIG%06f5!sDS)ny`P{MT*9U2822U{W*JsZ!LN(~Km1bY z2`MN`S$~d+pHt`5jcp2_aSJt}(QqehARG#@gc9DLi>MtcGZz_NMgqWb&brT!$0iR?*bQJEDV)v!Kf+IAHU$_YO z!R%6qIB`UfaC#esT(_*CGag6*%b@hbFb|@v)4XHJe0jgD6uzkOQQ=<^L&WDoTj73` ze0uMryhUm7&kyJw1d6=gA0)7$VO3%XUICD>M)K*yGPP18Iwhn+nC9{$>ljEooAgz4tKKO?l`@qQN0UOIG_g&sL0+1Krx!&Lan-YWc#f47z z>DIGV@D@F^RY}bV!xr)xy$x&iRJA1UK~4o40|j{tF~1<*hliroofNHf8l@(j262oO z_Xkdsa*&tP!U=&~PaUE(KBAYbgcd11V5mRC)S|7}-+*XP5(bc&pqtTe&=0ra*ScgoIufZ5ws+AXe}*MlNa7kA zmT-_~x|i|eN5tfbvB8!$qw z1W-@}!3{-0B%mnBe((3aThBS)y$I^4v6+Ey?z^A$InP=CQbYBe5y$D7ov zU-Zm-55tW&06UEm)<~%0A`1zW+^CCrNVUUJig4NltPA$n8)lY>d716^rITS1)ah0* zwT9#kOAKD(f)z-VDGvj9k!L+5K$Fmi5HCfDXVibyVF2lb-cp>R7g}-Z0X$O;(p*I_ z2mA*TfrX(BKCYaBOt7bsY9xwcrx-=}1no>l4e5fHn-n%yh|5Y+C4vy+8Xj)LkB#_Q zhG93H;l{go=M|i5rOKl~GbJ>V072L&v+fR(P0)=YD}*QEx5N^m2;_l&!d_2_G?F@6 zjwD%04IE4@kOfAnp3LIa-x5!Ku~2O`Cv104U-~gD(X?CQTHG#knK1Z z=%<8ghHWptPcON^2`N0e;V;f83uRYDO)QkUo)V}qCjyNh0bMUcJ;iIBc4E8Bz%59~ zHPwU6BVa5sf=px)pz8n_pcvQ&$T1|WhB1c;+)4@G#qfW-f*wLTq6Ze;scM3f2F0O5 zszfj8zzcei?2A4WR6{wC2Tv~BV-Uklk%@2)o8Zx56pys0MNKa|#NlgIii5*X?5$GAUDoB0~mK`WF$0P7r#Vlq29=DF-mhh=RFGI?0J?n^2d`c7${4 z??!}*Iy~X#ut0Ys-lS+Z0h(18J!HGPF|a+P!v>g0y|8{@>a`oe*!;FbS)sSvpq*-x z4Z47O;+Lcr$J5v~a`Y++(5r(HC`#azCuS-#z-L%NAb%yVNT(SzC!Z5W0@{rDc#NnN z{`6^e@O;!Pq=U;PhdkpG#DhK<^UHVO{MHc?o~#VyAjT`LTq8^f=Ub+ zEJHm=A+#^|5E@h52y>1SbIJ%X0AZg%)JC(>sEzPMDZ_T_9|!ZxsX$V-tAPH2)HC25 z2L^pcduqxFRlJSjU%~#K&LY+RPgi5oIyA=e=0e@&3u^4kjjG@hw!gzvC7{?B>Mner zo?ZT&nKYE90H|5UqZx!^Q3p#9U_$7?K*ak}b-_+H|HvyTZ6Gi88whUXxQ( zu1x1s7`$=^W3LKITT<|Gc!n3n&Y2WxLv-gGtUDlHP7M!if=qKhvjv{)+Mcp*O4v|% zH?CJO5cAiSB_+iz_lquG7UhK(3To=|^K)z!-)E*3N#%rf2#4&Fc||yXezsFa{vO;$DRci3@NY8AJ?+ca$8Uk_vBGYD4zDWVCFC=I%A9S(Es&G z!lF+SVRMb}oFHv)Asolnv@ursM%qr}G&Mk&qTVH#(M`Y_1>@j1U10U*NdOflZ1 zVMTpYkB;Y6`F75m^RB~M><-vkc6D`N%SC7Zu|@q%%-CJD%X+wA#XhVw>UCM}TOyFr zqy%556on}4t=pm|J-9xz2ArZV@cz0grdDwMxaBBEEM|VwXY4_DGZiH2eP%JPoe18G zpp8&8dl@gZW+9s)2LLp2J~tcgDXBtuwn4dK4yDvU*v5(|(+H9d6^TMOSO?a8a3+qss?*7n^f$3iU2j^FE1rdDT!1N)H|^=Gujn z6W653{m-pqUze60&3ptJ_K>aTGny*SWEAbsZQ#oNZpyK5*X`40sv`GhE(_=oUmEkeDuF2rx%B(JmLa#%vt z3Ok>?LsZ63o;%7PNwX|=0vXs?F5u!!$R%OhZabf+sn=E2z{0%TW-0dimkO4-^ALnV zSD9^%i7bbr>(1{-4UH(1>KF1*$YC@# ztGDzI<5*TewivhB)-vFvh+WU-4$`!(eho+iI+^&UlBYwiNPZ`D>B8X!Z}1v(==PbT zFSEmg^Tf^>-z7}9AwAPK4P8V0U7Bu&Ow-WDX(8WGoHO(IKM%=fSA*^`im8k)zdE6rXl%;g#sHSxD*@ONEns{?eEISfV!#pCj#qXR-LD+T3xFz$@P`Uf4Knna=xd z;z?fTs@~hp)vxNjRx;ghntk$^vWj8b>h|4C{q5(x`2Bpbx$h79*iQrmu{dll5lg+> zxOpv@SjLSPVnW|oUT@hY+b-;k^SgGd-;KrryCom7ntkQnw#|QB_>d@lvla5PByhLz zP6gHri1Mb0ju+ntoNnYqkuU6kD&bO;B8uQXf9;GI|SRXY$Vb5LxYZ^ZU0Ajl?FwXU10>tIF@CliX>C{ zmHcr~%gBxmG%7QU3oG$sPUe0}@(b7t&YWnp(@1A?_chB;D*IWuD8jtUDocCfAVs~IZ;jEz4 zVTaAYZdvvfuLEdn0&R1;H|~5e=Z5pm;JrNm99PL706*H{Pr|(fnr5R>IpxtXPs~EA z#Ql~?#PYzoiL~8%gkD~ViEk`praw5g(nvc>WoH<$iuD3o zWxJESS(JtoR~MwZR?!9WWnmK{`Q|t+bmB8yp1t8Pinr&}Nvr%Smj4L3$!O(Qo3;y; zww1&qlaNWCZaK^OyCarbM59sh1c`|X-B+2D>YEPYz-x^Cz8 zeGR~D=g`M{I=}NBfv!$Xp%vfCdx13M%X63{Ll44U<2??q2y4-9!l?5eV2gN_7r)u{ z_TADJvh6f};Z!tiA60bgPWSF04q;NhIDhaJuh>Snc>xu$@2zvoM0=Kl%UL3Q;C`DY zvH)HgjHqa%vQNSY;l~bzRrZ&7lc~$`6y^~*u+n%1C3_OVV0#>6*-m`+>rt&u8Z=$e zcFZ~+qi@#WZ&zS$@~Az~a=A(0GR+Tgz9+91NU7`3I=6#XL}S+^pfz4J*R@II zdX-Qe@E&oF5c!J#*RlvE>Mkdd3WrTVjtZQzDW83WOL6bvH^@1@o8e5gZXtm4dB>8; zco!ZI7o&g_)Vipc_e#e2nQH%9BiGzq?Osw`ghIBH^D+&0(g(H5viKNpG@C&%y67DA>Kgul%4*#KWzBI$7oJSq<4j)FHCCN2?sulb!ym z1}`Z30s0|6zLYPGK9wDJo-|ECoFvW~tIJrDQ)xQ3 zxS_%!(5iFDF0r=QC1>!wN47pb^if?*7et6PpQQ}a3axUtqfc_qINidX9=3sbPyKCt zvvJU$4P84EV!qEsT`Tnfvpz(={6JJ-Kmo=RVVh2eR^|Em6&~^n8M*Ekoe-mH4+y>( zJ**9m4(WfWR6f$~JCdkqHYr1Q-`yXQ%3u~~{jNyG8AE}ee-eZ<)g9k-AQ=ZLHg{gq}j1lg=Nw+qX=3d=j1%E}Dz+fvv5WLVo_)k}3)M?{?wlv7z? zkD+OK98h*3tZ(I$V8%oev@vsu+VN9kcuE`5#{a_lGUaU2*<{nmrHGq#saAJQ9qp+X zdXTpI&O^QFc~RLL#-6N&zV0q88v5Ehbpx-|gV@-q=~s_(dXNN@z`3xl2cCeG5pf=T zgM@_4W^E7h8S!AiP)isY1JcG5cm#%rh=6CaS%e@CdX)*7+B8N;KzRaXLp;P35f=ib zV-!vxSaKskiD3qw`2dL`X`#@d2loaMQkUG=#KW7#j&VANq!Dw;n{}5%L8+kju8A>y5gTaqY0y7ZFU?#-A zH+8W>o(rnV44nNRgD6Q_6@2GS$;NK@pYwqQrl?@3`LpIu08tAgAR%eh3T>?e)y6<#2ekkxB&}iw#_0md_?rrr z;m#>Wdd1%h_(F7KLbs>#Jj}?0hJMq(slF)E=LAxN*J`#aM0>?Th$De@e^7@);~h?% z&`uqK1Jze^>;;9bTMixWl9n}tqs_)i-k2oS36k&?7@ZW&A#r)Og_r?qV6M}j!WPJ2 z{l%I#CV3|!{8#w|ls7Kx4tvHFoLVdc>`m+#ZSRhH2NXwdIlf_}Z2;>Gf&Sv&D;^GK zyBX3$Dq0AS^Wmb+NoGrnI2-9a5qG#|Y7-25aaxYX1ely2gSVz#Z0H4lV`@cxqa*;( zNLHtBgBbKS7G1z=7-UH_kz1f=ErQ#Q~_7)r(1TM8;HHK1ilF@H~&@l(GNkJOGYeaej_6>E1%w&~_ zy*lnZ351l+fbvJ6YU$BTC~A8Lp&seSp(Ou?M2}EB-bZ+BoOq475l$4-8{wej#ztAh zFA~4_l9V)Hq}iwlCu1UpdXA*xjs*mF#WILWkg*RN6Qvx2{H1MEam{d08YdzJssrOR zA|YWKfaOUyv_O%lhA^E&hWSx}8e4`JznX06CVh3fd;f+Qs5p^}QOSzTdfsq3z6E^$ zme%GAq#`9I?IDUYi{pDcx8NxGbphP&v2+Yd^$Wu-O;`_$e84;yCVNFfiZ}E+E}U9eV6t% zZ%;qGh<17gs6ik9T(h=-r|z)r$tKB5QyNsy!k!ftCXyE_M3^w>*;wf7h+nvm=Z@1n) zMDM_CyTG5euV8F)hh14cj>FFp^2*cFxQE@@#S_;%$ZjcpN4n+vyeLPX5gUK+ZdBOS z%aIqu!q+eM3cGdTLTC!wJpl(iSMS)o=a(L^{PrV{pb5gH=1nFPNSm8IF?f`X4TE$?P|1NLPwLtJGsF#jC4+2rE-kyWGSm8Pe4HS{Yc`jo>ZQmie%bAt20aPC#9 zSe6a&r`s4mlFQ;_SjldpRQq`@_<ZO zkG$~8_4uTO#PrNZkBUq61(k*Q`FSOkb&YL|_sJB~^@>y)U)17+=2s^?o}k!y4B7mtzXF1F6;gUMw9O{ z7qU+#r1i6UIrb@+H_i#USf##^!ZS>{apmUA4<|!MKAoV(4t)Ol60!NQw59RIBh32- zPdX+LiHQumIA1@r0+Bgwneg>@e#P?EH%?5CyI+IM=? zoL>}@_t#CMy7e(#$^>Tud6AZGtj%elM<-gPn<#4=T4L7aR1?NEFR8^qtQ0N)6g$|zNT#IjS^*(Gaoc#%T9M%}(7Bn)z zbUD?~C?Y(7k26Qor>-ajfG@C@?PAC;Y^p^qKS*~@zy-?eY9I7+EE zWz7IZ<UPXg!sMT7fDjJW_lH8>9sxMKq>35CrneyX@2-iP)hEFSy5@_j^p2wZ4ZCsov?|% zt2F~I-6)?UTBSfgh2ccuq&+S!mmA^6PSa_b0hTp@pw#4$C0+QS?vgqs2Y@8S1x=Q9 zY2<$fOke=fvk-j&(s(409DGw;P6O#?O@t%YLgSl*!Plq&Hbj9aVCid30dP42W1VuB z<5ge;LJ-w3_R2JTYI2-9V>r2n%g`LTizX(nPRm8Zal_JIIzc2k-i|}dM0FrofI^+q zvX5~c`F>a<*G#BHK+G?IzMZ%eFcU@_KUzNqClrB_&bQ2cTBb`Edr4Geu8JEps8%%T z+1hE~@*?=t_;y1+d^drlT|2E1T_CZU&lSm8!;p50#^;c^!?28#8iQ~mC_&42LPx@1 z9ohj^GjxIptr#yk%iiO_!Gz;AC3kaJ2Kuq+CadrUS#jXSgeJy^re**NuTp5caLk1t z@9G7Q0FQDo*Bu><+}YM3kwx)@VtC-qC8;-)a(XfPtbo~|8szC3hmDyJsW5?70>aLk z+Xa1%c{p)cW^#*m3~xpgI$*watyLwY7shSs5LfoHchtc&>=C>Y?x9F`ZjI=|sNWjm zCTW8oICp`D?$=ykoASupAUh;xuZy5KT%^fAfDl##TP>n=x(yRVi$_0vx+EqPY6o+e zJ|pf{dMi?=n=sVDtyp)WgGdLCNl5t^61dYWtQT`MOF>59Yk~c+%KCD+@(_Ky!Yw!;5sYdhzdV|$=%K}FE2 z7L#-qe&e&?+J|s$9@Fjww*h8!nu!n2f~g(#aE2RX+F(s>b4w>x0e4K0Vvf6oAE%#<9=BKCUpdHjsOoY};kY4i_%c!Ik<|51ku1`j_6 zzIEy8Cr_U;y_`pSdxuOzCNmr`k5?C`);u?KfaB6Nee*2o5F^oh54`Fu`W`BS|EHUa zQh(4b-1Vq_E~N zfd1bILm7@t%x)9>)$}=;a@G@{dO1f52SJxRp7i4zaAj)w05RR+dhnMGG6YN8e8JkZ z%7nG6O2K1XcwS7!s8)yIExRja=^1HRwN1}V@1Ak89^N8wKegnUG2e1cyr<34n)g4( ztF$S~>ovcyy6}mZho;1g_q57~&=0>Yk^_gc1 zC}ECG){?m)zGV)G$sE-=P8B}d+#~!xK0QV4+-6y(oJWb1eF%m>&^q0qTKGX$s%YcT zn4+WHiCm;P_~xiJdWxbXD3LIm62D<#ZFzn@v>``9%uETWq2O{bta+b@StvBWJ~Kbn zH~sqcxc7y3@6ce^z>{uwZ%>!Ay{p~X(2T$O+HW2_sI6(#{Nk5^N?T>6x!7Vfn@oiz zCHY@pxq9LJKhGRHaqLuXcG{sM>6xFV@YG+VWv2Y~&-*@3Pu~BhfngYP)XrXdfedfYv|J#Kf8tFx)Cxx?vbaWsBpzgJU} z|AnQj%6j3<=l{Bxm-ofF6WO2U966Ytm64H}l9igB`bkQ1W@c*2;k1mbgINcU9zAmL z<$n&zv}xeK_Y(M&|Kce(GnZ|NiCKyz=9p|Lx?zKl|#!xr^4zr_Y?f zbmeN?SJ$oF_+deb(N=cTX0upJE2?U$?p0MisB<)Ozxb8b;B>aRI$iBfx4Wy)(>LPt zJ|7#M^UuysFRTRC0-CZxhfmaoiomr*Xdwkrg7vBHWCyb_znx59G2yaSV=Il zGNWv1I(!=+D|~LAdTE6$?HyR2%zimvm&BB_s}i{AAm#rB!04EE0VtEkBn?p|BTN)HeB!14 zggi$bljw9N)V9#6-=eDq0qJP?ga}I%F}zPuC@4h}=uY7654bkp?PzFoG>oj$oLJiS zOBq;_6`+XOycWiS5;bR2VNH{9B~}6v&_!OCxB*p_07+4@*iG0d%!!&jN~uz1lw+`& zMB;E&TPOeWs3}Tw-w$2Jc0i(!Rdw>%gdh1&iEn&*EvzS!ro+cBLV{|L%RZ&&K8 z)ut}lZgGh}k))ZriC;DfB%+CD2tOn%ls~2*8ZuwCZ8w9YWt{XUNbnQ>rA_=5_#P7~ z=|d?@WBD_>prIAshG}a;CO^@ywo+~5ZRG}q$(FW{6P4}tvTN|b$ZHm}6ObS?Sc)1AvNMx^CdRH0wgRYtxw)cb)lA0H^ zqg{xy&x0WN=t@4W=O{SQ+*Q`@O7#p9tg$N38fUIaY+%>G+C;B+;!ap_JMFZ~)zjgb z#(LCB>S5M8Hpp4xa+P&t2FLmVYkK7BehQ~+cgERD=Zw!Dkac}%0Jk8@-N^4JwTdHy zP|-6j8#sWuZcPz8Mw^HH>YGkhN3m)hoh1&YPN^NuYaAP2lD^iQLD}5=gpIeUi6mC(}YsUx0PBEz>wbt&0G}*#IjpBE#N4tf~=%ct#_*Ha< zxQyLS#~U1KL`4obmbO_#H2r^YlQsBa8`aAQTGEnUp22DT4AzttWNTYc6%K4eK`zp@ zM+?`XyfyWWh*xr&*`O4#&QZM}#=b%5;?<5G-XU)%Wq@A$*`n*UCOMvp7IjOK0~HdC z8ntE-)aW0Q6vrd|r^;@M7$JrvWh4O?j4A_ell;b|04Nwi(bwoeG}*7lDU3ynxddJ~ z#AgX*Qm}?*tOxa~lfbpkCx98tLR>QZZtx*fHs+@n7U$+)zk2y%uW$6}=*WcEGu$`S z+tu$K8t(PDTV35wXKjZ)=oi0>v^;p&SXb|8skvplT~m6?WVYB02Giw>d6zDpKYRLe z?vdORhmPiCrlnLq*$<0z@U`l)#vYBpJicL1N)lywxHkOu`nQb;}DK`t# zo?@%fVup?`DJi;cEVy*#(%wR&<(k28)nd3_QdnvzylysGEk!0-rlyK?BU^D;;}?`-Qt06q z$pUugJdtE7X$)Gg+ao>-VO#U!F2;RPg42r0)8d{^OHA`^Q>gbOLJUL?8;LRJ^>@SH zHO{$rbGQU9=kTf+(rjK#!vQoeBq<>tiCW6=WTE8?n1mmYfXar+!PBT&MOeQmC!nUp zshU3HEwnso7c3%pGlmwV!i!@R%PIV?;BaC9O}x8=#S_cZl5R1IB2We1i{UpREn@gH zOcJ~a8e)EeNt(oUCl!cmAH& zKpK$eM=~#-Z`L9>Tlg>CZFVNtnXb_EueWm#C*ec$)F^?#ms z0l)OaGB5AtJm)#jIsfxJ@Hql&2IgHZwY-rd*eV)EoK#Hf7s()!(K0NWA5U+w6R>r-nU8tg_Te6=x+pJC*VED79a}>~wDW7unS_ z@&?)&S_kR1!ziAD?=RoIf$zFA?IWb z@V4mnc&LXuc^O)OpFgQg^Ln!83I_+PKk4v(}n#%vRVl}MFavdQ_{1PF} zZVVt*Jh&OaZ}Y>;x2w7XT)h&`@46q*vj|m{*)%#dDfJi-Z?r|$>?;-T>!VDA*H&dt zN2pY}tm%p8Ztt8G!I}C;aN4$Q9B?>H`1f6JsXJ842wF#%V1MdP7lVoTWy*%1`>A`@z>ubr>vBDI9KViLA} zmlrvjso+ypy==q!9{0?SAy`-D2+qVQt=ceIZ_Z)bdebl@kkS#>S+6D6t%rO0*j@76 zH^d-Q)-_Jnm)eRNR>it?cDT>_=$0GBx;iNZ4W0{8!kyXT&SJI6FCw;1CCG3Wn_1<= z7f#vbz2ld9t^hmqS+w@7ySQSMdsII1W-R77W1j7UZj~%WXWJyxY)r`Yw8kh_`aCyT zrZzp`X>Jy_>6IsoTQ(0>Se{?S*q^~olQ0+ zso14{mzEDJ8ov^$N$6Yn=!fjq&viSIwlxwxp;1X_4AHC0q&4eG zPpr7}sy*-MEl54M+KYWpPqZ6vV8DP2|7X*#;gnT*XFI7BGF4O4796A=Wrc{f zQY_#?a5;5OYJjg(yTi2*_KTcZn%V?6E!-uB!@R+88gH0>-=uqTVsdFYvJzhQFH8^g zc*aJC2S$hbtGeB7-7TH9MOjT9kJ}pSD(hdXF8}sHNm)T|-mPqa%(cAi>zQBO%Fep- zRp#~UY*GD^UpRN>%)dXq^2MpsM^B_5JNm)V57XY;_kP-;{eL`kVDFwoX@5xBy*G8w z-ktBI9@@Jv^*~D6fwT|y|2}osp4|s`?mv)naQ~jv_fu02{{w?n9y;Wx&P~_AeuI5- zoMP~*@He)!R@63ERNXJWar4T(M>$tBbAFtE^>RkWmCrNI|MTq0lOG;Aej@GQ?wu+7 zcE9z`uD5pXIP&YafAxzUKmX0!slVO3eRs;P?eDz%yLa~;K8$ivG6D5yf<#R9hWC>b ze?FIf_HRehjvq@q_Sa({|K;?@XU?2Heg3nHpZ@*i#m}x@ymaaE#V`MR^-|{5tk*I! zGjqywGjp$H-MUwh|L{THy|VJkss~Li7+LtDdR=&X+M6D?w70i(47PW9MncmAb93RK z;LA&N1p2H{=q`OmB!mL}lqWK&VTDuEj6?U*fsl3}HuKUy9Y5*;f639zqQVu zx3hE03$K^nznk}i(#n#u`o^~IK6iKD(D3;9oW~cIkq~2Ri6WBekIn$}PRR+3Pzwp5 zYT%yep*rGDLG*M6GlLSndR?Uno?74n20e{vQttuWPt+xx+}?qcQvP z7u2Z){yLQ&KhQ!GsCU6o7mgaM;+2h6)2WM#PCdvHP{?kC!Aa)yOJJW~^$53U##tq8 zfq#%GH_DYZM`F;A8+vXziw_8i`eI+)prz>TIc1Wp=t33xm42Fg8I3SD*69&OoCOcz z-y!(PH9paELr3)^He69%(;tMqR_UON7?CaG=ZjhYQh&RoqWG^_ixoCX z2NN&2MmU1N5mLXeroYDAJpd(Hcx!Gnhh8I=|)(9RDMpNGvIz72$cFI8Vkl^w5n28DtZ15nQ74}%G z^cew_Lbw=Kj=?f7+}XQ_r zAssv+dvGsK#G(?dosn>Si=60RDw>4@&!1Ybm%g6I>8hF>8mNfq*Ua{Sn$Mf%{=o=B zVN+2$PRAh|S_DCN;#?={ax8nWJvu{t_WR zJrQI_>Es*J38*w3JYP3KB*gpPgb|lqsk?r^si8NjTh=F#p#&EC^YL;v+DitXitFN8ns3eY3j1v@%c%{cby!;*P-#v+QGX)>< z>yT?6BSl@+g-K(T%}?~(7Go-VP!MVj(PTpGit8s1yV8A+D7D5S9AYCw|iunQSk2} zK^zcjHaqyCweKqE7$d{{08K{?4cE zZOyIe-)H?$e5cOvSbM+XPT8%ywas-8s_xZQSC;>Hqu}QD!tDG)O?KAxjI3)Z7n9DN z2gY>r>^EnQB^*6)(l*C`&5~ncckc=diHQgf3Js0f9knNpg?|to6doM3GjeZa)W757 zqhk&qI{59;&l5j8axzt&k&<*KMSc2U;)yd?&L@4BbmdBRT25AW-u&tj+=EeQ=^t)_ zjF3#!R#ukXDlIKYPcJOU%e|GGbM-RM{7cfs!wFv>IeB>ho~ZEX1JQf-1P1Pk+4*r$ zL~K;>M>{_Jcz0mr&cM)r?TQTD8yOZ8doV0MF3vH|-K``gnhmCQi>0%xqvyrIi^0y3 zi7AImob@9A4Us&ugn2>)2NJnL$wooaVZ|42!-e^}APQj>FgCK~%ZUjyHlTYm<@(yY zHPtn`=AT;{^p79wo0^R8=$j1f#l?l?BMz5amMBbik_S>xke)4Y*)kJD0Q|i5npL9l zahUOBQBshDRKmAJ_#!BrC^fPP#4v9KXOxKWR7r1!^bqo!`Cu32;IyxVQVOf{h}?q8 zXFdpkZ-N3W0!(@h=>f2lcxGG@R&@Xtp3trgufXhjVBY}#^MF!s)1QJ()$0x@NtC;a zh&c+LJSc%*>ZOHKf>^#WY*3=jM- z!0l9FDb&ERx%#r@1*fnv=IsMiFb35d)_@Is1opoaECE>uq3D+%b!rxED2B`x5(JD- z35EggtW{6}-+;8t!Bt$M3Q(dE369*3N-0%{3B2=&M4R=tB?VSh;)tIALSWD+CAuu?(zw&;U-hcrOR`6S;T>_rH4RbUk}i;zox}L#x|$ zptgly2J6xbowiGY03lisr1o+d1xM?xjgy^?aKe6a^WZwCpfc1vz?qWr(Ariap&&uQ zZoLqksBUn$`^^MBTzO<)HF*JDCX)a1xCxpp^aCHeTmh_!Qiu6oMb%y763_x`uA$Lm z*EsEX7*rOc0Q5Fm{bU@991AT#S^+e&)S+im{n#4M&;T8)@=w=3nVkArOf^25SzrfD zGX8MgFtI2}o>_@+Vh(kurJ~wM>>`_}*FUTOWg5@9>Ah zk;hH2*^iQ{kuG>Q$TxV3Zw|`~Fd)fRDyi!vW)ta#|a zk(Iiaq@g!P&Wn`X2wi@-2cx9K+~+mHmSHGxL3$Bl&1}K>PsP^Q2w;+PWO8sC9N#!z z=ppU3ly4c<4B)H_{gVu>0p|_FMTWZGE~G$x!ybs2`}K4%Rs@w5z^O|+sKxH&hoDID zil_MIS2cwh8m*yS2m1Y;m7bTCuONuc%cBUOQ21nUt^U?84y4Y5e*V0&s@Nd(*P(tN zw#3LLaN0O9dJ9?SIvc}}hTI7I1Z_wbL)mjo0zecoJVEzaXG8CjBw(alIDs2`=%lVC z#G>wIN{jeb^Yu|U73QvyjAq8InBdb`Nh?IQfdU-lU@3RCT{V4sRXxkP`DXM-E?uCO zULeQqdh~kh%RZUoFk+Z4SwU?GVR%oI2r-~xe!V&%IdsxS%8q*|&{s$?|5mF+mhIRe zI{Kf$0)7yX{1@xBPRw(hN2!?ORPgaZPUDAjEOJWef3&l%IeGN2Q*i74j4QlSd{meZ zd>gg4xPkCt5%4w>7lg@=2>?WV7jq>_3ZWI$?F8KYGxv_7-j*boFBXXCok-M}@7#ir z<#Z!a7TH!s1Y0yjLFWVzgG_+Zq*0L%zJFg@T=Fc)vVGPzWE&qIc{b4B)jiVNV}4?7 zHyPWEon76QPGhIl+-lZa+S=M1nrAR>z9wvcIjC74`(OcvH;Qp=69iT?deQ&kO9hU} zv%^FTjEuZXhsS|MNHCpv*)4Q=NOxExvfDYm4J2!tSy;qf;ouetv%PY*!O8H|>eok8I<%{2(yl^oo z@%)*u&mR9W;j7QTJQf=lf6yc^DV$(CJO60_T0o`0(5E3E{WCZsC?qr_BqAg@JR*2k zVEnGIJ>j8j_q%b?N8(THJ8&R&|Iz&i6B5pxOHNAu&!rQ`kAIbzcn2p65N?7L#RkXmr9hv^eXW0U%#ijs<2$g4~QC)YIQVu@WM%%FFcNZi&b+ zNGsU$7TzDclaTgNx{07PY!cPM*}5}XaQ_+agYQak z44s=-*dWUhY)B)%SD%UzS_mjvUEtJrag40441>`=j7`k75aw2D|1aI;))dv1#c}9v zK%!QxG4latYF=j^=L1a5!_31}Why=-CPs{+X5z$&#)*^C3K|J2;$26)pa?2a?iUe6 zY3_p1$X&2i?sn5n(@o#bIs0eSh+o!PdC`%Bz;8f%^`^_6K*+#>mD#ItXD~(UW8CCP&47E>04uhO6_k6EZ8-DgYyM?`<1x0#qC z6&+!rrgUmh1KA^+F|ZA{>83T(Rj7|EK1glNsdO%AAR8zo$g^nFG{d)@AQQ`6TU3Cu z#cVTr(Sov3ZQ3RdAF#vW^&(nzbCz_Ew?)yAt8T;I4AR`Bp#`Z=Lujm7fCf6o40u=f zL?(>x`!%v%Q z9W-GsUgKm8?I%#8l@Fk5CxLa|*wE%v5QsnTK>{?7E26`Nx8^n;$;m>>!JO23CRMYv z=|cmWfGwyAY*|M9cq1!wbRf@CUKcTMVMU{gaWbDc=zWQ7Q{4`l$Up~Im=8tx9$26aS(3+-8_p$bPKRY*OpL47f#+7)%=B()a4 z3c1>hbJh~3B~q{nW)!^(O)>%9e5FSl+64c!6A7cvgZGwMhoR)>HF+1-5OFK|M1558 zqfo-3ghmJ(X;}=(h}O(F$Wbaqs4E-P{!=+Zkoaebk*p++Qv6oUBKTb=y#yvLMgnth z=DYzzDD8|gEg-$N8P}W9pt1Zo2g(h$wN1Ei8#b~@1_;zi!3DQ!$YX<)mj4b{M;&<4 zANDSIJo7G(+dVlwIrHM>@Z{)l_s~;I>laU-%)NBsYVM`n+$$GOX8-0wR_2KV-|YHw*Vdiso4-o?V*8ez zX`gJ~xN*y-E$RJgij3ec{>rj{JAckes=W5&_rIj7EEJag>gmCKjToIZUq z=jhq&|70KeDf8foqlb@Y9?8f&b0YiXsZ)n?emMGL_W2W8hcYsAva-%yt9`W`KOfl< zbbhEoOFxj>v44NRchByBe7$qWwryXhrEl4>ee)l;?%2HPqrYuP`}m^`pMLz8&v)(G z@JZU|pQU}a`HL^NrT=s9-tYG8OaE^FxBI@|y>HL{jDr~mk7fLD?DUk6dJ;GPAVs9c zURM3MwY20;K}mjP(e2vXrPXy6W%ugtl@yoOR8`g0H$Hw0+-k5lx3(p=cT2~be&@uj zclVzuE6VQz;pf}3*RpbU~BuEQ`3`&Uj5HliAU^c=z zY+fyBt&%qxt4R^7JdTzqli`MnhJwK#8&w2=%SwxMHL)bch8K=%QOD31hPWr;PGl)| zB0yY`huSOW3S@$mzqp|gy`Ptw2;(|-04niiQM@1s5(0ATA&ZCp{+p>M=wi6hs|}fp77*DpJ_Op530O_ z4qe1INZLS&Vx>pTUfP+$-4BW{Tx-DfufrjoJv74V`cOrEltTu_v7u18#0e0Y78!pj zI_Oe{VH6(?sz7y?(@b$*$-31!GgTLY3e6OU6vpV0`wcMYGhf4p*inK=+t9V}z5ZXE z72zw-IzNI!>m0*b!qF%cu<-G|tHv+S;^^{R4^C8TLPS-z+E5<4EWx=NbdK`cFlgN1 zlz~8&L>)4iNO+wB3^%3gZW!uh)O&#U?CEp`SIm)sEJZCCB2&?~CT=TZs2LV%aiL>( z_%N~9W5IkR%37fOc|1z6;25?kXV`bTu8+7$*+bT0Xifl(t?u{Z+wDA zC(k{mO+GY~}t- zi$aY+g4rv?vRze@6nX0W>3xT;G>k?mD4Wn5pA#ty?(4|YsPco77!{=+uc#U`dEs15 zN86a{i*vZN4*Mx%P(QC&+!t!7bS8L41gO;SdYQ<4i7Nf;Cx&yw`Q zb~jUGA@qrAJW!G}o*aLsCd%<8Ig;&P?f(0Q{nD?RF&U<^SkJwm|(8ZqHDo>4i-+j?~@v5EF#4sc#Vff|Er zC2laON(*MLmwXDa_Grd5S$zN->#wwmZn{|5)o#5U>U-KZ&pX?Q*;q>zbKT|2=>#?E ziaF&$RJBz#c#uZ;O&hD~rD94921eqh(e{}2Web06+LY@EiduAl#{|8%9uQqBV8UBy z2j+>69>kEsXFYmfS1eU&#{K_>tvm{S#L**5{aP#>Wc`?}l4kzLc9{i5m0oe29ZgED zOs0}lQuC6kJftem^OSi=9+F8JlhJapSsD>UQAZgZoN-26n7Av7sG|tt0>}t7iXgiP zG%z%qtc^5Fvo%|bZPVTKy?wtW=Y03#n94jrL*MUy-#On|{=Y+z_6uOR?Cw#7Y*0mZ zI2FkGVB|AOmtcEIyG%Ta0QE_$I)SC4NdhXB1S{Rz+SlrH{AWxUWLceO^1p|NSc%K* zS6q`QFcgH0vbR|1kFw?mLh1(GWPtNpI#Vvh4;OOGOna{ka_R%(m9ajs%zi1>QUL%8 zk{b~x_z|i~DK61N9=dykA_58GTW?uFZ zug^8VygWZJ-fteC>1df$u*R{!QURp0Cftx}6nk|bf9pP6>Y)Y*t$=U@Mqv$OPBBk_ z75)eTcxj9jnvFZr>ZT??B?=7`-kgA}S$nXYBUfhYzP5KAC!?P!TGr<^tVb zC2|2ujF3X%%gRWq&7oq4<1kd+nKIQeGd;bs1aVuj%K)JeDNUP4g=w1j>!II)K_{93QVTa$BEn{s7?%A$A1=<@*0UC=LJwT+7 zSf=p^Yt`US9Pt})-{C{qfkvj-x`rjm#`t1GGf|IlBeK0c!ywX*s)z;O+c=`7?GZ#D zlP}nKy#j8b3Ot2Is<0r);^#9m2

      Q|U0KfgkG=Z({;;F$2Q9!`3Q3`($sAv2;L~ zwvH@}_j{$We21r}cLpq}5IN)4Qp+GjN!UQpk6A&|MhhdoFu4Hr44AxCgjVtO%+2Y{tlq&Pp>T<`dK>0htWal_2liM;m%3k0_0=rUk>+lz8|4bJ>nSXAij?!10lg=XA>jbOMr>&D6k#L>t$ zps$4}{5_a1T`PU9J|bHzQ)VZ&;Z=jg#uJ)FLT#XI@N2*sY6p9QM_b-l?z&{y()nBg zYhY4^B%S2}qy&K6e-c@h)H=W-Y#zwN9z+wom>}k=n1hlBk|vJYSu{FOo*D-79>EZF zX_+c`n%T25ER5OVeLQxp>0ae@2UTe%l+LshE-k!<`apEU1PUOfh>0C8Jl+IGymLIq zit+@=00;aRbhv|vWWgU`jTSF=mof=fIE8Z`BJFXNa@SI+_{A%a0z|0r-;SCEP7dcd2zKcO8xfef;sQ7n zf{2m~4k_piq(&e*N}1*hz3|bUR3DlEF#+Si9-<3 z)2!z*eJvvD(eN6%(h4f?a|08|{O3JOqTa|9QFoqwJ6Lh!-j6Ox0<#w2IH5>)FvMOA zfm$U9+M%3jokt)mRRumsq!(6AkVf8txJY3k8nw$TWM&?QSm86o5IBNs&6EWY{NEp^ zK+PJ`|FzE?mO%&jS$OUzj$DUzPci)BOhz}Tg9{U|gZp@RfSMoF4}|v5inwwjuSibk z;>g_G*zk+4w*LOU&gRbc_NG>2Q$ua}qlZNmtu@c8t14S+tI7&X9_Hm28w#6<054TP zz#LyTjDGWR%7QjvP=Z5)k76(L6aI5CZ2VC;OEBQF+c7({XtPaBm`8^u$IWAlR@aha z-e!F{U>+Lma@qKwNI_9y*}caFwIxlJ#!AB@!{gGT^8DPqdk^mA<>cnxx_vt<`^J^; zu3f&7b|LkH^CylT{3a=JfAW`c@zJq6_0dt0F_GKCfuv&-ihSt5hi{~<;kvC`{<`&V zQM$-2oBkfTEn>^2t@_9vF$ud8;&*?Rd>}dH>*Q|^9X)>WKPS$fNxPVSB|Y=zwX{>G z(^5}gNI!q`^1Ym_I}dX63p$C0o)`>EyhE=1jx6x^iDEdPcJg>i>WMwO6TjNCC+SGc zuEY%YP_>%wBg<2G#zi`ubk@1A{!k`g{kNlrR(>Wj~heX%p~ z%ftgmkE9;GnmGbj;H#_2D<~~2%D$VOeK#lP?t_OVWlx@zl$BT1l>y>D`!D6?_T1EU zg>f5SWG+Jn(xgx6L!Z;9^KC+>%bG9gyvFwD;O;@4eQyeyjCv zLqk(rtGA`a+uij>Pj_!{A~ZD@9GP26B|%(Z7y+t6H2_}eBY+&CRkMW11)x$eWK$4W z#K8DSiZUwc1&U)1*R}X`n^Fy*zFa9JwyDH;Akf`E*cAwkhi1peCm&BtCbE|o&}z!3 zJtu6hqCk{v35E&?c&NGy&C`Us>p1BJ1210L+-1TBV=^tDg<(JDd}3QtXN3NaGJ~<1 z_O+6x>%Lbx37IGLNKAD-lXogR#8R9x$Y$DH9T!8<$8>9}Z=Qwrzn~KL@f5=EZ=P}W z%TEXGN*Ee@;feG`KYwdez3n2EsCSI%*OZ4nKm3AVsF#HgB?rAvw{0-g1xdVp_;T6) z+9^U$2j@~T00a?v_45{gFeQR1ZeB9%OthH}f;gKT%0|G09Hio5#6WuN6{%pejZ({9 zRx7Ti<`t~F7@!UR?nd0o+9Ap!kkBKo0Ri-k?tKcaVRp4Rr5Kv1rCT*9;CuIa)FO# z7QwJyp`3bpLrWZS!kRHrnFv0Jvv}=Es)fp&s$slPW<+#ND6CFf*NaoUxui85Xshcp zN!kI+GIX`vk4pU13$4H}dvTtwhMag+iCbk2vvURuvDJ5R1Y<|^p$dusffUIT)@ZV= zms*UQaa*@3Pd!lf8lsaKHpdq=`M@hvM9yb}aS1(ZYRVn|1ycUHwR+)Uk8`>sN6Ebt| ztLnITa(jWCvAW9|XC#4qZ_~Vt)+^B096NGf7tCk=lyQ?wF6G-I{_XXf%U~j^BlQDT z)r5Kgl{KXX5U$+w_UgV9Q8Uq7GbhDm0e>RjQQR;N_0s*3Ul1VCIPY%AxF4YnSQj12 zJWMlDbq$y@dB=o12^+8{(+Yrxg1wf-gVBL+E`vBFeaPiEOBBo$78Gd-NN@LpaGTgircQ^atb37n1r{Y@h{=`f}pEiAA# z?klFAj3kKBP`!A&p+g8$cNzE(lY~~10UzmNxj52f`0K0W$Xr~=VA zyV&QQreHyYs`CzVza0=q%enC&;>y!H00xX#*q{ z%few~sR;W_H`tiMW?`&vC@Qgo>9ga2SQId(wvjZ0RbHgAq1%9! zgW99PUzoCIzZ#-bO1dtU_FGo!E)Kt70{7K<@%W6Y!0mP+#uHO%EKwl)D$X`^h7BBU zjtbnlW7)4MxlBiI1VdAynK-qynT*8UI7^KFEF&Yd1Zs-qnvOv)?*}QNkPK@6K~&Nb zGDvA8XbG3-@fv7qkhD2sq|I&FugY*~2p)Fa@^z0#78j|}K~OvP)%MZM?VU)kELi|X zFvsoz3gM6}hv!Bd7Kw8S+3ehO-z_)TdyR3v8lW#z37iV#TwBUhk3Ty0e$fC#b`g~oe=^$<8G#w~1h!dC6aI3=lN>sis@rt-HS3?8G?Ft4*`k7G_Xo|R*zI5>y z$gLRqO`%?K1R0wUrbz?j8=@QH!Ss~|I7ow4H zD6VkCZ<<5C)_Y!WyUzze^Z44_&CQ(we|wA9-|1`j`vM*9?VTN6e!#Z3&HEFtuhr97 zTYK$dX+`Df3+GNAKYZf+vEt8<6(27?Qk6kp^-DE#{Mf1Dk4ry1`1uzl9~~(^Qc_-e z;=<80pL}uX*oS{Ouy^0?JzKVI*u0@|>(<}yC@k7ixOMx!_lkCHEZnkf=a%i8cW>JB z_P%|4-+%YhL)P=X%HOo74s^ra^;4y1N{^mCb)xvlk>bOL4jumc-UC1X+h6{?XXmyZ zyEbq7-LE$m?cT7XXv15-dTV20;pR=dw(Q;W`#*8;@rf-20CYnhn}?qP4^8@A9{K?zOjfjg0!npTu0F1EbOLS!!YE%JH%Csb%4h z3oAppNhH@;O6!+}s0A))ewJ#bc8x-rKsJkl5@^suzo}fNsjd$>t}t#->LTD2Td7~# zsO`EUaA9N-Gq_6TC}s^}sT@{xbX^YIN@_c^bdBWk9=u(|UxT1P$x^B*HA0+4{o+6Q zm4_=&iiy(slFX6F4{Mc$2alYgl4_a3V}U~e*a&%?q*C6E=Z8EDs3QA;BkUFphK4bl zo0@MUconC4z4&7WRDjw*7AjttjViwU{h8+TnQ30^Kg>=${!7M-2Xx*knn1j|LUEPD zQDtjWlT7*;M-^g$Dh`w@o98N7`G456|2K1Ge9J_k7WQLNahEE`oR+*7TE~`jxjbRm z)-uN?rty~Ua)2H(v__1h=($BfTpO*gLBU0rC!mFqQyJ;lRo}DA7%iBHXB^7_9PEr* zi3ENMLH8fy{^3ikbBOs3 zRE88r!jd=KC{T`NQ}uJn(Yl)ZlPxIZuPC#wY@{hb&~6NjX3%`mZ6~NMF>Ph=WMC@{ za}0DjmQ-4&sMJZFTyu^yuS?N#`RbYaCBj{!wYsj-?G7O~J6IBI1QDrVhOQ8;SbG{rmGakpFM3FV}d-t7t?zw0EzP`3%Wj`jY zp0np$rY^KuL?zIfT{hU{7;;Mi`6772jkD*`;AXW@HR9BjU&aVaXpumUfrE{Or~up+)>SXsYKUTFZWeG#Y=qJp#o>nQVn}N*Ew&P%w5tkRh{pN#LfY5=vbb_S>DL}_)E)`o=D+i=N)6a6`*fmo~LwsYd+D%5_legG9K z@Ar4s&}7x$F8h>QYbANz9`=EQ9PV?@ETosj6+K#QtdrJi*+vnMlf$l~JlI?=_hWc7B zS8dj?6RQH6r^yXkt!UKpH{@H52G;8tvvY{Z20wnkqSvIHa$h0VHW%YvoF7$ItX*BKgrh(!9TrL}+ z6D}eVx$inU|EW4HmON@F zhb$GG92p!N_4x+7yF8wDb@z$;{;|=K5#Ny4)7jbTX}Q%>UsEwAML2<#y|G@&mr9iQ z19gr?sAEyZ0dF~S^;%8im8#o4 z-JiEMR5#VuHPkg;y57`Sajvwm{7P|cNp(fe(Q~=EMgKi~e12~BkrT&`9N)h$D>Lh$ z%3QGTz3p3eq`vpg?v&jb{|b!}?zYyfU$=Vg%GJrQto&Wl(xjwcKfP?}&z3y1Wbsd* zTfFp_&oBFV((2!?TJ`&vl3(7iZq3@1H{SYN%HRLFX7$=NumAD24S)Lc>uG%Kk9xqoY~Jj{W37<_Ejdw{72+ z^7b2>Ny~=h{${AYj0!OZ>pKREKq zCqFoK`hO?#^UoHYzg%8+xvHY9yrSxI<<+XD@}|05cP&C&KUSi*-#6eL^ZSRV0L*RT zSkzsqXa#bCMoPdRL<>jY?C&8)mgJANWrL4O88p3hIsv?Y-MlGV2GVz@v}1JmPoF(; zCNJ;Pq7wC4{H4PD@{-!`H(ai{+1%KCr=_!ZXmHFo?pHxe1Q`v2`x%goVss$CG&l*b z3yqNZVA!Q5w`=Kb=@Z(FU~oy9C{?(I43TgM1LxZ)_$jRu+!jbE%0PQ-Q02?o1s zvtPQk^8zR(bT)nL;IPjpEMcQ=Y^17>fDp~q1p-Bcv=@^1NVyN43@I-O#NdEtb1^B0 z=^`T$jVL37J((yFd{PMpF)G6hG9Z9YJmZZZL2kygQZ+X+0y z@}zG^1c9U38Zmju;8UEf!(spmbxdYH(x(|T5XVssyaJ425YJqve=Ej1!`g+(uaM9a z4hpmwHz)FR=FAgxZXD{3Zsh`$LIxl$<&2{Q1&^`$=NcDxGn-L!89f0|_OqiX$}+(= zYkf=sXo6^)kro3?A(>(h!?T3WXr=*qN@duQfP03t0k|5l6xSbos2yMq*m2Zg zW~Kt>z6j=7-jzy!NQdK5Zxr)vdbml;_2DI<%o16O@NJFSMvE3=Dz~yQ^caEEh|Vvr z<}s@L;(O{N_tevEE>d#42$+;IstT{8Z-6UY(;Z*|2naOT+kY)k`hoAbW%VPK~b;(E5z1N zIPsDvg5o}8>nCx%mS(W<54{IT4PdQV**vfnESg3dZ^WjY$UNLIN?JM7FpIFE;97uj zaa?~?+jLJxZ`N10kdfgG3lk$2!nM=(rRwb_(`olTt^{Jalm;$Fqy`w%$?;q!fYX$11$4q;k=%CqdW<$WKTXYHqlz-aPj{rb#W$Xy=Q(B{M@Dd` z3$QQvFtSD#aooBh3fi5`K7^S`3+@!&XgZ16r_}VW68c{~tKmNCS*x@!eTICk1}bq8 z7?@t`;wA-~IcX%WIZHxH$6kq&L@t!k=Sh0>(yw5appBt56`sS}Kd zNKC0x4mje(V*TXk>#$#jB~5FlPbD)Y2emCANwG-N&AiTu#B$B(M;b8FNrf9Q)ZVJE z!w8$Z@G{Me7i)dH2EXy+^QK(xhAY==CwYv1A5S2r!Be!i==q#>MS6TQK8n)vWviUX~5zhS~ zzja5s1;XW~?w8eJ?s3^)!q=}t40)oh2^%>cxurrp9Ex_7cS0R$pMy~m?%LPa;FPGM z6lldG_JnF!G21S%OVtB`tJk4qA66_@&61VzN!ZOy>9b_z%4I$S{_&a|VmZ;X3kDCW z=1=b0>crHb>C$6{nNr0f^@J-`1)|GmoVqDXRqcm+`=~Tieg8__%Bmx@HF-B0q549B zp!wtSfmEx7GL<1_Q|NIi`=23BuY>U&HLtJZk(+;;QxT1!$@unbX26Pv)T$$QaoV+WdKI!(b!Jh5 z0fM{`;}e3${5XhV#zRc2PDqT7)3k6-W8EYo;(6v|)ag4|`?qH5P9%5>eUG&kGmjC+ zo9pLpf$WBEiFY@EBv=Mta08eyDHdZ+3_ES16SZSdvK_LP6XQ;fP1X;9nNCa#Ivu-; zc}pfVW2SKZ=h77inqb;SwXDnH2AGS{v6w7E8GiW%V0`Swh&?3OlCSQ zzY3Huj^c?6xP^ALn&4VuOTyA9p}}%AcWA1dq<3uf%!-nB$PTbXxZY>g>$^iXSfFiD zw5_TwMOf&A87ma7om_IatCuY%WS4Q`d6b0gwkx4!GM980 zPX?>LX_%&E2GQ;WgkSRoxNaN5s22p;;AWx`)b&7s2Q@vweTiO=x613`Rh=uZxGUxG zdMZ7hqVsuq`FRET`R5DH4kyIUDCcR9NLs?nd*Pwe zj?-@S_Y*XhX3!>N@uEgrBic`EqZ%#Myh+qX{SSp?IqBMHZIm`r8>)@N{}8PKa?)N& zwFk5X$P9HrhVG?@0b^(c{f*{mKhnAqC!Nj#il~78L{A|HJt5lz+31R|2cR>U{)|~h z(K1?2Bk5ThN2BTY0E0}d>Z4)5T4Sb;)P-K4ne-;TN4sb*t)qEZ+rQBBGy!@2EqzE| zpd!vfvJEodhJK8-zY9KfM7Ed0R(~1=X1zm8!Z{wctki0UL~RGTHv=Q^@7IzsHq2O7~&sIvuP3{dX`qvHmpuPvf*_P z)XE*I3OggJE||3+;{6>>M&y%`k!jGHMbj~a)&x3p5YO!jIzXcr{Q_}3qO31MmKVeJ z%gFa;Is(b%v;wPCLg%rLp-O9x+_lB-?SshrLvj%l@zojmlG*Kz$V0O7 zd*9z*bRZKb$JrVO20$>%YD}i`MDc8uD0AbJWo7m ziB-QA|NB4^tW{$zqW>*woulzp-;J;1afn` z`l^Ii_-uc}fY0X-=!U%a&_o4s?;gjzrQ$HIPtF?HrY~@*IR7j^<2rfb_)(T64pRn8 z*AAxf1MSleW*$0}nVFuxfB(LnUu{`EYi7#S=O<5^Fn;X#v3z`ku@fgwdGW=UW^{Vx z)p-jSE`4L=TW_!X`=*aR+n)N(u03g)M~m6fb2(HGG5V9+w~ zxuu_~77W!T^A2Sj+q$MGFF251!Usu9qVVekyY|iSzKj}6apwERXVA^PP z2n4dT;N%6Ru|%K`lkUQK9_oKMgmuhX5ULXPX}FV05R7dUWN|b|#H*>?mQ$N2YUzFyU&67*h^+=HB4fT39WQVs5!nFwS7HF&7G2 zU<+A1QJ86{^~+(w98sU6808v^CYEWTz){kuVhe-JYv$lFl_FM854DE)`B50#Rim)e{<1@&Ba5zj4Lyy z_5Un;%%k&X49zmF_j=D-vuWg9>&PS15sW=#@DY9aJ@0?Jb<#V5t$kBbJHs+R*p$9{ z;GW%MaS%59a;C?)FtEt7ca3oSd~baUFV!hyF=2g~Z6LMbV0Mf8_J29A(x9lWEL?VYjWFZ-GNWRe`?B z#Z+`|sN($8DFWmG>atDfa+6#p__4bjGFn-kEth;WSBipj6e_<4W?XC{nkkZ--L|7} zS9phU(Q3zl>SJlkS!coKWwR^>x3)2!!R10)?QKFJ@nMu-O9aXd8HkI`M|mY&(nzK$ z9tmaxD7jXE3mc*@V7`6aHo5GEUqVmDiWz`&z`IX13OWC^yB8va2cKhWU0Z?(S<%|z z{6`dNmJkGagNP|Mlq0Jp|JdXdj_HbVe<|3$G};Hb8kesUZM)@{f;)^!UT=h~e5!wKygTZ&0p@2UE$T-Yt4~DalxfLNJ z;Ko`4XOmc&p7jX%5jU5{c46gu4^b`iWM}*-{pl0W_&baPWj}IGPCo9=t%3-`BVTeW zMjN({VC5HZ?LzZXb>uR367A`lA%ghFQy!5#^&fO#L-;BsZ=#3)g3>@cdquWG#FDxy@5@wNY6Wl0wlZ2_|a3;PSD<@5Zg3h zL7C_iqOhR$r;|3{0-zUnr~goiY>R>L+k@Fdf58*ufA~qnL&G$j=fu4vjUY(wQ!OkY zZ?0CG@i2cv9g4ccF{n>M9pbMxo3-)XM$)Z!=+`!N(#vO2f-u3PzQN>Y zDuQ?xT3w`X{E2g&BfxE~oRPQ#hdctA9dBm>+I&IS>6m2Ej1MiLEF~BvcwZ*(GW>j> zpNER57<1iD#)-X-Oq#O?%^8f}+7O0>nxn0ME`^0+O&bh&28T8_)A1D@tdGk-ak{4j z4<^-$F9Ff2{h-~IQBU0f?JY21E0`&3Q3}$4)uo{Hr&R3QG-?6+0xPtL#T*dKSU?Rq z_09fB!Lh|UAdR*Z=_w}9(FSJ?nKgKoW~@U-RXSRn;0)fgkPw|k)6O%VycZ~alR}3w zh1RehTuCyTF=HTbr#8YLTx0CsCJK@Jff9#1jFLz~uYmrqRV3#SE~IKW6-HTEe|mU4Pf??~=*jDuAHVq$iSS zP5v&gVDEoh<5K^8?atM(l!35a&y0KNg*BTiYXZJVjE{3IZVdSL6=PQ}gEXD0>*vogMP}GrjL(f6M>_8sCfqFBT3qZs1!4MN9J_Z6ZpC= zDl!uYt14txxXZ-Ukg%j{&u@sR z@balm-+SOPjen?k^GSc8Z&Oz_4GH*Giwq13^51hs3*BEMM&X0=!{b&StmH6qt$i`_#l$ zZbp#kg6it1wUc!qnWR|A)m(y~RVyr`4_9tX4J9HW{GLh^!~aM9fNvWkL{uT{hRf;iisD$vXyuTG%P#szO=P` zr-Q(Y1vJAC@5iljtr}@`UE=m_h_juB}D>epX<=9gTKROFI&Z>r-%1Ex3(>}Ns+j#FZiHEovAk)&_rB8YH)j!Iji zLhon-OP6mLQe)-P_Ekp4zgS$4NH|>gW~}x8@QdmZAqVr%=Z|xGBejO>GP5UGaY}tb zY`>C|az5(U|1VL>qXC}|WGqv8t{#Z;sC%v8}D9TWw3mp7Z`6$_Y* zZ%NdOx)4FZ2Zs6p8Uq3m0Z|rV+3&lro^!v&SK74cOgqD}dmrcCbIv_7dpJ;Y!#Q-m9B48n4VhVXu*~U3Kq)@V zgL#0me#i?17Aj9p?ZQ_Etb`;NK9a|vhY2h|noxkL3vj&(5Pcme>M^}x;<~IRs#Z+f zxOe7N)jnly&e%c}O4%UjYBFwNRr5n?Xj<5m z&uTWzZJ_%nE>_VPBl$wzKJYnv_*P(j+qgAD_ak;Oxc5Tq62O&X)P;=-1xeT#qy&X{Fi6H!k8HYYf3U9K*9tu1v@ z2j}UbwWr6Lxf&LwVy4BnGhZ&-NVK@;W82`2C(~-rGqwSo0*GDGG{D_pJsO(M^dN&F zF!oVL@Ov(G&WeGF;fgED0(v=g$b<}|U1(@%At4?|%~Z>BI`xZGbwIb8&^K0awl(4! zzZU){!W_ZN=)=t=L|TU}4fqSTsrSa{8!2f%kZV}S$;SZ~IlZErRAgNjSp^Cp$RAq= z;OGVSaMkx|>oBHSCr*g=$;PtYc!;+5woqsAav@5LGY4s;p_wVhe0n)F0cgMkqAuPk zyIzLY@sU6zh(WYW1&(Ctz<)S}kOBZoK()Wyz#5WIs3t<%hO&MUjR0nw^z2912bl;&Y=-QD?<~jIn@OjB|2L(Qmg?73#W> z@8--$h7lPy!S}4<JnmuTIXOJrPR@a8*DwiOKvMp43%Bx5= z;LVtdDcTLv5hag11y44ciIL^{klB*qrnJkmEBBHDGB2_wAb)_ zgr<#I+n)E^2`AKif7^!_$rr(Cm-bEXR3?wVD`CJ{Z)s`4zWs&8)|{gJ%nYk(d(!3| zNgG#vusVLxqS)BDRUfTgxpG5|;i83Md)BjPqlLVn*l1f=z;Q zNL5fgr@pxkC3YJn!W(_VxewM)SbrIB#ph^+LmJdu`+f-)gr=0x{>zV#98sWa?r9(G z3pgC7BV15{B|5+jTy~4}6|QkcAUb5o<#G=8_Ix*@^=?aJ(~aBxciOMt9B_))=$@#I znyREYN;U?R^w<(fy58KGmQPvvRychUQ%+6LC4F8vC1M_R75dL8g}Q$vII;BoxdW6g z2+50|7!=)FZ`3VK4&O0EtM!YKJAxK{A8lB(dHtFXmc=K4`Iao0_lwxL`R~tuckZm1 z2;=Xgr!I|+ikT5lsS6%Ik~Nx=_h#(bxW2d*T5=8Qdx7qEo zn1i<<^6w{1XUbJ$^7+*8DTf<2gseY%DrWM5?#z(IwaWfKSZ$k4#1$H=VgaV-&FSeD zQ&hG&W3S1Sy*DQ#HN~=H({6K4>h4r?n#p2GwPc!2ro9>2Y3Z5iJF;`K&3krd9Jl5s zo2}-Q6ia5>&cc+$_2z=yRO@!L$-HZih1-6YUsRA+P?(pMY0I)?<(H*p<>waU=IyqA zQuJwRfz6zkUszON`y|_%XSL;K@l20&zl_wPOmkK`w|He`7Y{+>O3&AqWLiG$<9zT) zdUhcctZK9QGiW?!HEKYiqbjqqiaG`^5n6e!q8ebt9On*Q!+h_m`?9h1WP|c`_?EWX zZkSM8peq$WW8Gct9c{f`4(fD3b(}a-{tZs3 za51@M&A##A^of>ZM^80XpFLAMRBQjL8|b0^q65;>{ULCMAMbzI(*9lht9_4vbz`I= zl|=q1%MW%rE&wv&eu!CyNnExj*bZ^_6E1hiKf&B#!ugA^7b}Kb^^xC<13kc!sDS(k zt)8G5JYrCbG3E|7j55rcoL!#?cKA8h0+P!prNc4Ce<~}drfhr2ygPUkDh+SK0>U5> z3rOL^v52=rW@bFo-H`xsrMv~$$;T-wv^{?Ok8$zo3TuDd&^SR1*3~6VlsCZ%UU0*c z)dplR?D*4T(D3-bXpzprS$CcqLAw4CL&pCnLukY3xBs<#xsXK?oX)V3e0~j5sW&2~ z>DiSp0a8?&s#CgY@Y&@G;UT#baz$+ue|}3nECXpEaQjO#MmM+ zyaFMiZPKRC%G3)Y+bJ#-$!Qv%Ti*s_0DtTMf7lAzw*A|wA3mc}whRC1_^)t$?f2#Y z4t01gY%Zik?Z^Rv;NNSzy~+F zK}biZjsK+Fcba7cC@;`+qrd?-r4F(OF0{Z;myxYfG#H_+D=J19wvf+gZCI-z)Ka1y zdn$M_P?EKf^GoXc@KThzg`$;iqtt}kAda!ceavl21(`i9+z=>?)S;HfPj--$P$HEF z1hsHXE!v9p4H^wf!T=Hz-sbch-Un?2S%nzB(FZ-#t1jchCp=31CYrz7S5Fu-XsaM; zf`Y&*Z+Z~>TBmA4Lt^WLZcm2Zbl%(GY|dbjsJ6W6@DLnWTu=LOy}88Vdhph_Z)!r z>)ovX70lfJok;w|k$5o5M@M`Y!yBO9ew-4r)0B8*3Imz{*b0X0A5zzHA)KfgiX(zV34BUc*TvNTtJOaiNBgjG)0lE%=0g8cb zfE+`@Y8Z2vz)ni|9)|yY3I+>lMh`3oQq=?{4T?jBREfUQ#0z?m?2A4WR6{wChY&7( zF^J)&$V51Y@(2_L{sl?mA1LI{BsxwS1dZAuYyuS7l_O=MUW9_F=Rx8LCr;fVm#0=IVd#QN3>Yj!JxC$6FAo+PQ``u1juLaq2rvL) zpFq?`v(d;!c%qbHyNwTm`RP<3seCG+e<1Y?ILCoOpV6M0@B%eROtpH#6BNO({;xuG8uHLEWD{1_V;Y7EJLeb=yY)) z1ToiHD~6;7tz?I?Fqh7BXjd55B~j)8!5a!2YLw+{27^~_V(dAfw53KJg=cvAj0IET z+=%XclYJM&%ZV|OZIEf+XSTtUJ$)$~poANR58!$&12KPEckyCH$DQ)?mqbn3xzdK_ zl9EDq?SJ#K%cb(dI)pK?=2b_ zQOqNv z>UT%wOVIXc3B-ErY)%ME>avtyW)5rC5im=v`I1t{BH3?cBf7TUx*4dGMI{a zcAWS2AKTRT#GKvbpV$wTu1UvAqn?*FVHX85nvAGQN>PZye!4q;N>k2+Oep;2-*lm^H=dQdp@!masWUR=L-wqo{J8I zXE&59W-6tI!8TUW1Qln|EKMU9x1G7*VwI8q5&TB+Z7Ax^1r>t-YqFa=%da%tT z(HDe!r~7QNrk+=hVP(Zd?NaO=QYBd4#|I${dddQOVq6Ur-9UaPespZLR6mdhqYsgZ zwZ*P#k5rz+P{|^{u_YlpjIrt3-x4ORajzR=Pl%5^DXNox_3K>Go-%RNf`(~Plc%+o zCA`a6>bQ5N*SN<<{4p+O9~`qwmTO-=Hn}x5bnsLtABq(ZUmhRtF0tnDeNo%OahnffW0LLXxq7Lkzddc$D_^mkpJyNIS5!Xe`1Zj$ z`iBEz3*y3NpNZOn78ahBLn|s{2d=NMe+CwAjI(96*#?fkRW&3{eDs!QM|f4^Yqc%? zS5!GiOunBvl%25^Y8&Rew?sfl7upW;F)3QsboA8=`a82&enf$owAI})=(w1%ku4mq zY1_kFkp^@z@iiq+Mqifv=E#*x$CUn%H&{pRoIBwXJ2awLd_3o?xsWh z%eCm48rnEJ`U{G4W_|PbqYBuSp|_dxcZAKCVlbZ=T9+MhuOm9+cHGjs%!reG)-wHs zt!nM~wjAr}14H(=@%F?S>~KT_dvBUnYJHE-iDhWxmWWOKZp1#ZWFDfDbPj)CYmCe; zuzh)Z&HXJN>3qNzo*H__@yc$le$pJemg(U$JyR!E z*S@}^IsIDZFFxWGul|qlDh-M%yTS;PaV*P96{$?}EBWJ~Ge)4Hv4KVfQAWg3bQD~0 zV`)IqpvX4F4Fweh0x04V!BPeggCZ!5hysc@vI)qJ*eJ*%OWO_o-d*0yxlc4&S_xH6 zzrN?4bMO7`Ip==gZ#3ciUbG^DLK4#)%SL)YHbE?p1H^*28>K&ezm1H@&k7UOY2Nc& zy3E=&7Uu=x9D}oE6UmB|s}_5p1be89lW07?!*Q+)^oX5-;h43GQp;^-y*m^c=Uw)q&9SsuetXn9A~VPO zs{byYe}>DIcYz;m^CJ6P1e#*j-yzSYK~9*ZR+0TRkt$U*C;+nAL}*mV*RD1{TWN7C z-`rvS%I}^+-{k)owi3G0p?L`Pd>2Qs)q0XRM>ArX3fVhm5sj(44R)4o+8j{$I>gy` zb{uUr9i->xVd8O^G1DtnO*GVkQpE`dtZJ=*mYZ)UZ|A4rxRrTHw&irLa%s?*NF0yQ zd^w+H)A*LdC|bs!CQZtVSosUoCZm<#Y}hK4nU@iV3xrJYbkj-B%O2qr+p!P8vMUyV zEpljpw*Dl{!|ERs<54^uv*$t#2 zSDDEq8M+(v2Jf_dMc5T>Ck$Kf1h$BmyYL%ruiq+eAX|>(7J0#dEUe(#&8{7O9Kxh@ zL2lnGUbTg8aRDkI>#nl9fOa}V$QdHNYk!?53Lie$A5qb)Ll%z_!jCQU%VlSIy}r}x z80Hb#yKMYCN^l~A&in|*itYI1x5GnbDRAkE<|C%j7&*G(#Xn$fq9tshu6j-)s<%}0 z@v|rR)yFWSz9dUt$4AL|ogx`Qffy4n4}{$TvU)SjXK^rf>(=4)c+%aDV)zceTf8)`CmgShuF3gC*^*;oY}oIkg*XuF`i* z^CO&ZD=P$2Z2POmF2aQLThs~2&4p&!)^*rkBvb>uN1P>uzT*GAG=zz|bMfT9nD2`E;(WEx(4MfUAgK7_rl-x@_>Kfo?iX_)n4g(&=@pr`?lP`(6F}g3mbj% z(3R-uV!k;1SVq(-Qa1^4yf|Z|Ds5qAnf}m%n){Z%Che~+;vN;+WcHnM$k0XyKCFuD zgbXp|(}VqngeIlk!6%s~ud~qLOyUw8LWms=wHI^l&{8qPE1?Qaq8HP+ODpH2>WZ>{NU|AkujiL` z=9jkBm6Yh{|i@F!B z?V8?K>OMT)-ru7h=CmLQCV+Ec&2xAHQbxo%@C_0YDw|zn8 zJVXRMlX($>IJm3yz|^KNLITPYC>!D-r-(QYC>^740>M%k0a^?*@GJ&M6iMsCBU=RM zSa6>vAj;Sva7Sv)Jehi=loJ`7Wl|Nyi7=>$$%uEVN%=@!y_6K@C6GE(wZC2{)Fpq> zX2fW5(*F=;UmAJmUJtDqH^bnkCV?4AA=}K+79^6o|KJU z@IUh-3%GQ^Q2iIp?EvBsjDUos^`9-DS>Lb#T8VhFd7DK;NUw2FGE5PvMMyH?$S2_> z2c|9PdylE4zn!BKqEUOP27m6tsEmQY1Q>k4NnqrwPxAb_Ay-3W>XT_2Mn;s-ggnY?q5!Yjs=Ma5omLLFhqbq`bhvRQkEWHvHD_%3&hST;cxute^Lk#CqzB5f!71rcXAGYtrU^c{XirT9V_Okeq453xy% z30FTrrCDfG6{t1_65FT|NFiw!129e%NZQ{!U>Yu2HP|iwS-`2`p|M>~!Kc6@8!q&# zUUk(4q3%bK8lqOPRUz6f=0hF{?DhwBDAeBM#Id2tO>m(4Di5_#Si14+{hiXZ2C%i6 zINlYL_$omXz5=6@q9GJ6&z2C`OLZ*t>8G#+(pP<^vYAQVu@JB2?mnfpOS^&^nSxV` zC4jx2ZKL`9R&Rph=q|-MxXhU+Lp+TI9G){=y zUpcu5hP^l?vtJLG93O$VrkttihIk`tRduZ-0MKCiBOTYX3~l7PU~(hCoP0k2zsd+m znGrTl#NSI@02D4|k`_kjRMsz`cl=Hea)6YIU(rX`VACLQ zsS)cjlp2z>9v!5PA&5;1(g0o~(i^aD=sRRO>qP9;QR@jHq;wjzKLTA#i>5s9;6h=`$|BdNJ# z0l`_Z3ZfEZ?8C-HsfM6_Y4c=WGaQ1)$3g|F0powTF4Lf@t|S1Xh=^6GnW@V z>#;SoL1)!?b~WZeu_2MOoPS=eRV`OeHK6VfL}ii&#i5ZymC=>w5>4Uf`nh`EsJB8& z=v+S&RM|9b0k;K&2KDmdP@i@X?Ll4{YSM16-L1+E-(yR8>7JzCA3P8Jn63653U-_O zNcq`$b1GEq^Ycfi2+u)Yy8Ze_)0(fmcl!Qx_MnvEwd53~%W6YMN++m6mjzZHs6dxc z?Z?R|I7u=BWi&m*9fUrjby23g_EQ!LIdY2+uPy@2IENPj zCo{Y+3Hc{pY`EnCFZQPV@0n)tNH`G9mjyceICnR0N%LID+g$zCz)yauSyL!dwpw>) zu_Wi@deyb4bGaEy0i+l5%SYAkV;(I&J-L2^=~xhhBMR}E&=$+4>mKE769;UNL79B{ z-PGga`DV4x#VR(mi2q~+wfKdKWH*2vNf5ooa`OOB#MyS9A8%d`FtOF9tQw`^=OBCO zYHrvGiQ7f|x=FS}N}r()`JpJz$xV-my?rY(?9%y&b7A4@7P*JrID0lEnRUrjy>5fn z^!m1BNvBT#eXgsve!KJ6PP9H+y%^Pa2S+S1yjpGfm-Uwt*6E_e#BkdeEz8s|s!G_} z`)t%1ATo%JFYMv&5zv^><#&PgtN41a zT%z%+l|KG1MzVYtuh>J7ac95w`*DCRQXU!Ykbf3M7o%en;^NaXva?IdatkYq3JUT| zE9)AbgXosYm;uww#-OvqoJBB1borsSvqR+(Uc2JT{*C2;|E*VwFKf5m7u@~Ae7pX7a=wd;6XQ)dNUEucBmAk}wO@zS=(L};#I z%GHb4`#+ip8TxFD8(Zo6=ay>U-jmi;v1kZ9u8M>sn&v-Y#p@OsB@Sm{m0O?$=JKaG zNd{h(xk&diA=FTP-K7hAXJ5oMw z7)jYR92O+1*AFFaSLfG#9LHJ0#_~hXSDLrE)SOuuod5TY!-jR2PkkNB_8t%BxqB`L z3owHk!n%`Pf*)*hOLuoGg42U&9JKHESvridT>z?g01m2WybiYkR2xo|DQO2! zB7=vV4%rr)7Z8$p#5X7WLYXl*xMXg46|3-i!X~Z+JfX6-7lh@`b<=o!@{80oV{J}7 zKRnhXowV}jrp4oiy!%g^b^EB0+G*Wnq88K2_fK%54M#D2I{CNr&l%mSKf<+$UZy^d zs8c}ch`eQG^BYiEKhDJDNld8##y@j(r5X{m?mG2KC`@RrJ;apX) z>~QQEGc^NV$=PO~uIfG1Tm<}ucpTpW;TASB#B@2;&^RGHf{(o*(&vsOgn+M6FWU~p zFEG_2u^od5eTnuVreC;}aq9f8hIj3otsUmvgF_=ik-e6c$Ml{GAr_>{F_&cTzItgU z2s!p(3?W2q@f;;}EH0*Bb#K|njEFT-c2aY{`8F?Rb3b9c0Gh5;WPY1vAr*n&jGXxGXAB$@yS(K85r5z<5ik{o_=dYy{W zjk<^+uEoYTi-NCH0WOF{QN+?$n*8x_497aDy(hjO)X6miD-ja&3#4y5VTa5_ z(WXc5$LNG&RMPf_xlhP6>0m33jL1`IfezJ*E;a6%iySMNbbA7yrd zndZPZ=W4`PjyHen869kB!vAOLD`$1V>zAT!!c z#|L{2)YiwihZAO6UrlY}(>AWk*=l}zrmCV{`Lqv^eHhI5MBz)$23pFkWI1O32Q8S! zpyW^%!K=~d-XqaJy@}iNsNKG_!(3ZIcB_g84?aV_b?EG24r<2I6(?NQ3$@yAXZyvO&a|C=>h$A& z=pWEOpdUJ&>1r$Y1uw8xnRTtM7OPw9t``C%QB zBqZJyetO0JJVrE-aPO7p7VR2bI$Ml&ck?Un{CP*=fO7HZCw@;UV1SBukN5E z&?qbS6f55~eaAaK@j9|O8t!1>DcH@#hJyCV?wHHmp}@V^DA-SDqfQ)|$VQaW<#&D_ zagFE9AW!8iCgYLEJa4fEb`Ys&TAursTH(B+kReEIdl(4{W1ILkl_=} zJ%;b6XQpwS+oWa8d7wBkhrsfOq{j`d7W_a~Dlo>uU8Z(t5N-Vk@jg!D=oW^4F>ofDy{h>E+CIT-5`~5?`gU>wfK5wt1 zySLk6Ylpwq=0{CU&5dm&%zqWBv((iYbtb*hU?{JwEdA!{wTl=2b@oK@iPJ>|*+-7$ zohmGja=Z4}N|qqYx$m8MfXfnBXxS zyz@8>fjpS@y1ji~x7+LLdD7MHbl5xWZ690jH#U}jX{xR_Up)K8zb}=Pe0jdO;IqPG zhja3CbF(t@vkJ04&CJNl%gQ{Ootu9+|M2nS$1a_ko8~`RE;wCus_^L9;u8f&3ygzWWI9d?1jr$uO)wd!_4#_l~w93)we7blewz4 zzOnv(eSK4ly^V$WuZhj!=yLVAx*cwJZ@;g9Bp4VSADau$&W09NB5M&MZQ$W!YXe4L zBn>nXs3@i+gN9-<%$=~RB(ZlpZ-%^Wx$@7l@C^T%;;*i)zE@XgvRdyvus+t+KD_(z z?k`%~yKSD~fj+NmU}#_^ z1QQCrkVp41l|RKNQ`4+Qq-LU>bDMwv?=K0iSHY$sVbuUvGhD{vbHioN)-5f3FTZ!2 z{@`uOBms}n!2dkPAa`IRQSJlZajrIpWpP6z8jN6Ope>@dFByszyAD(g$OZ@!c22f{ zFTzShl`+VPaDhD~2?oCH{yxBVB%JvWx$2YBF#oZ5ld2MiV_PDdE_Whp5xgTqY#83c z{X~QcBIq_|zDwC>^C}K+|TaXl3M}ax{{eZ|8AT$huPV~Pp{G(Q( z0>!*cH!)F_ww3QNL10u&y8tK^#zY%JCPPdZIQUNy`V-_i@R&fSc0#g+PWcX912iBN z4V&a~fg*|Za|{KhXe!nO+}+K{yvJ_qvfD;h@fi(n`;`bR$_i)^vn3srMg?j{r{jc( zxMEj=Mu3I9E^q@>MF2!aNj00Wftb^XI7*>XMU<0ZGilhv6|#>0#ZhCF=6)Eui0z<2 zuTj+Iu?b)PwlX*oT8pcRL{#{&ix@`^a#^R1fn7Gm29gFl$OcDA4kED_?I^E*TUyGS5O}cVX9#-us~xgtP37n<0AR7 z{gRa$E6TlfAp-&VFyKm!++I{Q?4E^(E<^{h(p!ipHd{DMP=TB!u;TWRPV zaE+pql;AV^J{E;5YBgh6w?SZnw-OLEbEF)Y5jjK|?)96DZ9r_ZZaAtGPaup~7-AWp zQBcIV)Zs!#@=%_5@fcu2Ad^pGbfyo9J7vU*cvO}|LK%nar39kI_Cf}&QKI^k2F$jQ z+$Hf{!>E82+p9(BA8GV;N8c(%f1s;ohOOQ>grxB$?r0Z8Ip~8R1hFKawlW}`#NJii z?aJ~EA*}Iw-x{N?DcHcS!L`Z0z~tRHXI9*4ugmN7h2VYQN}OTVoEzvYZMoh&G6To@ zA${`L<#`TH*X~Zxm7bZPH6nQ3KL}Nj;BMp(Q>6CT5UA*xjtw|~IS-Nej7r;We2~ED2w0j;I)Jeo800l*Kxzz_-sq(JlH1XK@Ci1Fv5tdWv^Q z%Jq{&d?%k$Ahp)+#)uf09Vhm#3C&LO%hER+ihy5)as;oc`*q63hgJ_2T z=tgVci*7V5L(tNfRCMb0lFOGaoI7)+=vYzlk>iDV+1Um8pJpD;$;`{l z%*xNq$;!)OIq4Y(GCs-3J$NWP`zyLlgvGT*#@bsT!swjcT644UrbS<&E!XPG%-X9u z-NzML?e$Xqo!b?~=MAN0x>8-0#az)~DJ?CptfD9{${mNd+mDV zttx$Fntv3t7;c($28+>bYA7@6t7@u^7K^!x8M$Gf&a5{XK}T0sR@~5+UA}sGf4Sat zU8}uj(%z^nuhN#^FdEFJ3WKG-#(1+O9_GJOI&al9*zVOoXmZ-DJ?^f~Hha6v+4tPn zKQK5kGW8-9o|5E^I1Idz)iAQp2PCSff+%6L3uR^6Zvwd4MYrAEYVUSCJ)Woi{Z5C+ z*ZcH0z8As3%f6>mvnvaccvJ=!7V2dMdK?ZO*t75w8wPyrP{a!KN2EGN(($%fzy?FH z-!buvrQjzhBIHZxu0*7!0_ldflHr{&#}pGn556H;pu01chB6g32EMP_!+sQlZO!w0 zupUehoMw19#P6$ZiIU(pg?e8ggoVUqJ$B4__1^IJtuq$bT&@I{b8t%s(rliGzyWAp zkfexsB;i#GS0;S@zjT*bP?Xsf$6LCE5v;PDOeIyxJk9gGwC{V_uO;;=XaJc2>(z7m>8r5hF=+V1M_`)05m0zacjh;YiG4xR1qa>@M=jD zUYww_oWpkm!Lh+L^}kbuovJ)dX;%{vfqSTXHhC9lVUwd6q+~T1!aE~$nZ$J`3dFS! z;g^8&{Qf=L1-kq|>%#3Kuq;rN)^qG##>o%jqWYl2N{(E>hx zU0c^71JUyGIYaFjuP7;N9YHHQ__VIN%ZKtn2|#9Spn!F4K*x_T&n{zHgvFNNa~Rg5 z=y$o)@7e7CQ&LX1 zn3Vs~wkakyjS*G~Udv#Ni;@CA7shj*i>SJvaZc6%Z!2z>i)yHYm!bqjRYK1IH`-Px z3=YxS7>N0nPWu;AQ<7}4=CXgTn~fn^rXwVYU&5r>O+KWG3om{6Y<+g^US*GutJi}C z-H&~`7ol5aG*67qNZkg+McczK?JE`M>8DJC*Jed-XP`tSm~+!FobE+4j5GC)mjbdB zQJ!rtZycL+xmW}>v(qoEMW)qGPX`a>A+?0Ndot5|LEim;_q@iN%W=0lwL!Xdle_q|g06<~*clh$5v7MD+O zmnuNsOvW5%%(ZL8sgk7VYM)`6jS0Dis-wk9pXV0S(58o7EiJ+_y*{|Yg}!o0(D&*3 z%F@d52$9}P!&K7ClQT@BNCN*TWnmt6oHW@;u@5x|qHRRmO5R6)tpyB_=prmO=x!2L zrZ=h&Vr}wIvVg2~nP0P7OiSXmdYLhJmg;*#XOl%qD)y+y((*w??bkLc68aS;{lI!4 z1*`3)Vr8~_JL{PByDlfvvPPmOG%5*=A$oP0_|m%49V_0vVf8zD3sN_()?(k)9c|1h zjW%Y)?~B5P|Fh|Yv6PU!zl&4~nX0L2I}TE}vO>g4DHcdTa5+^@Du8cMxx=#%)Kf3Cf*Xmq2FLQjkgW2XT~`*J+rzNUJtH$m*<9iU6bQu!xN(el|9b(p4P6KqO9i5 zhW4h~iuyOJ%D#R2q_i+E|85RI=2m`AcIJ({Ia$|lWM*fx74-{#`QrKW|2lj9%QNSW zpGrS*{G;O^r+skX!?Ys@|8V5c{^TQRzfak>KQ(#(o)1!w>_3otC?)Ms+D8X}m%2B3 z-{Cz652YMFn4J1yYRb{Sqp`|Ig`Cj2nJ|1X%04?uF?d6Gn_An-Yg)=H9~a-gbNyjm z?#;~H9~IoZmXUG&i;PSExN!RP$Hz{dN;|x7Ps)LP@4UD7ojtpc{p#Ic{(Se(e*JFh zZ}#unm$G-)d+-1D{R2mj;<_jqkNaqVL=5$|`?FJjx|n|9ugB6(o=7|KmlL1<`P`@H z&!0PY>GLaR|91My=Qpohy?X7+SO2+rHS=cHn;Dszxn+5odAG9eJ}fMF_B8)tX<0?( z)8ukX9hJ@{&KEJnjO2$%)LON4K*w^YW_h<>Zw;$}V~QApiR%6;Dd*o7#K& zojv`dV^dR$E>BQ~1B|^)6p=)KbOxYyN={&eyAThm2JVSox<}k0h@Q@)XHcR~ud6h{ zQwdx~qo)x~>OFw_iMoV?TRU)YN^(n?C_D9K5lLF+1yw46zYe9_50ub&s$DSDjibh@ z7_zx)I#qGer5jlS3fY4&ILMqH1or7ub$CTRPKdMx{z0akxURH05`zJ}(0$7VOdurc zkIlGEOVQ{>Wst1siz@Vx0qT1hwJ;Xe=@v#@01x5oDE#D_pdceIIC%#$qWc-CfyU4# z3=230@z%}^t~F_pKm#+2)N49?ObeGy&cQHIB`K1&x#=J|WrNWu(F*Yo?^h%MASCes zvlDr6VR#4}5iwvUJvKAfk}5%(Yy*{P!HwdjQ~TD1ulk`157DUFDNI*)S3_fGRUI2E zuc{vKLtZO&&_#^M*6{Jftbe8FuBr&WwP>-zM(JSU1lI^h5I9bXd2b5)ew}wb=$!Hd zmpg;uswQv1*Rw7bl$TNo+5^DDNzoSdVj_w_6Ifc?rUmCUz7^_-6Gd*dSd3vnh+vK2 z0bw-sTcOjFOJ=1EBo7H5XSJEQVZKcsgtNkGYn47Dpi%%2W6C~K>W14pMR*1IWVQ@0 zE)A`7=6!B>RB>!~o{b~2h?cx?Xp&h+9#Wm85RK~K3E7KxHW7VdpA%jb*0yz*w=aVD{15v(gZSksP;$Ez69nAKT~#Gt$wY02ReW=&u=w(dWkyJt ziPY3P`-Wyb9E;57JIBkoTIz(%B}z}2Vm9u7;(OJZFKDCDbu&`yq=>hoGZnf4q|Jot z7JGVd1W08oTkY=A4)5l4pbG=*N$X06k+OVpT!?(#AlSuH<+4EKweWrtAIEh4Bu6`G z7jw&E)65ebYBMK@aY*J{HA2ea$$T^&fgPlhowW}NvZHkJP3i?43{Xc<` z1i4N6Rcy85ZBFB*B6WB^fLK zrMuc=qP(*B0F_Z2L*Jzbi@zH{h z>W-qw`zf}p@)pHGEXn|b0|PTK4uT*K0`iz)cnmWzkMFzpetXXSMuBYij~RyVJLlYU z&OPUMen*nr^_JG=2?Cu&pcNGqvk@rq^$&zMLHy=XxHlgq!!tbPoR1-*F7w93wMyns z_}Sv;RPv%grPmaV1^a&y{w7H7w2gkU$4MOeO;`D?oVoOT_RkIkWe#g3NbH>l98r=v zgT>_`bQot5`oKLwUIuH7v;~=y=Fy$T9`mqM#N^jP%AuD6>HH$jxgZ>-jBO#- zJbgJlIPi3!&ulOnI=c;B9is52k{}%WjjZ%PotXic#OWooOkfW@Z8&p(;{@1p>0Jb= zp3MJ%`iU~7M-lw1fRB<_Dm?e#P2js_>4PPW_QC!84>W_lPrEwXJF+h2{!n(OQP-@# zUwx8o#s{_c8tZDRe!O0Cb8Bf{QE72r?zQaPtLf)c&zuFubo}(Ur;a2a-gn%( zAic}d;uCi6hzyU94hxNlh~F8zE0INg6c-v57P>uVcTDU*lak`%4<6Y6-Qh1&zBqI| zLzSJLdMaIYa(~LPQiL7o-yAxAaPO|zsJMM`yLN?y?1FnM!0N|@g)HMy#1P0;^C99 zQ#jsgWId>1-Ez(-5bmj5-VEs>)He&jDJp@}fdXpDtj@=43p$?#AOOAz3a|(;={2M) zL6Z39oC0>W5*v?OmzP&ycKskXg#Y=#sDJ3sfKc6<1f}wJR}j8O!7m?b;96GAfjEF; z1O*O3HJo25c+LA(>GPsT>cLg7%PR0l)`3S30I{_S66YB{_`d|jsmxNSPQu|D$lNXm zKV!l_2PkI@iZ`qQ2lyDszvL_dSqGu$R}gg+FIiCynJW|s96rMt2Dr1@Ks9^=(lWcG zkOV3NB_1L`%57+rQkj^*J0CB!dH-0FVO7De7$yUo1sRcR%eaBS2d6rL{&>dVW(FOU zXI`j(PHq1;pc)>CixY4g_elX`7QbJi>mF&ITHtOlW}~DeL&cE7CW{Ef#L#bDLw!I5 zEzx&D0h;l-D--vdXDkce= zX!jBz1jIPB;z0{I`PhFsAWy`yIh23((BXXksN91NcaN-yYryPd=^~siywIr40t5)r zf+Dq5iKsZ;z3SS#`emR6rUG57&sOZPVKS)5R{@x9wC>3y zG&we!Qt$#A85_|vp=n~3XLtaes143iKbfBSiElLl#q+=pn4tgRnr>=I5Pb83w4T{j zy~gS~J+bj>qW&XtDjF&UWSC1tfbtP6EtF^3wy-t^vB@3`jU!HWgK!WfwPR*@XOZ6W zmE9Z_U9cdDCMu{J1!m>thUAr4<#_O?6ueM0Lc2R4wvFDpHbhqHSr$g#9CDVIKaEwh`X2J1wlche=)j*|%#mb zBdfsqtVB4NE=?&mu45MbzK^; zAMB{{y{vf!L2Pi3BY;BV6U%D*9sk;wu?Y61;hNeq9k<_z_5;{5BkRFw{m}R=WSwiy z7=1M2LD(mFhG5iH4r37jqVVMjrq7x)v`#?)M!HcVaAOZ0)VYjU)Ynew4QZ3%+Bjr| zdFlndfk`GT@LB96FA=R^02euURIoCx+P=G@nrD5|2J}a)a8cs`kmD{bdcEo8Gf~22 zL^oURMQaFQcu&&^F<@bFtvMh$blOTPkNPOkS17UI4wFFKHXIN=gHPZAeh`p?mzvZL ztaIE)Dc|E1@CiUp6NGy#a!TQUtTXe1IR3{Oxbuu0m6q(Aa!<2 zoG=A34uFX7e6K`JuH;4A4#3^tOa4{VKax1}#RlQC6NwrNTySw+iLN8^L$*m)!4VBn z&;<^}pre$BG#U!P_a6#N%RZMV+UBhz*2&Sa=RU&Lw z4ujU%+1b_7K8JBjtHKTzL)*oPk6f_4QH*0VC$N0b^Z5^73UExEA0>QYWaNE1IteU7 zfbGQ3Zehwpxx+IedK|OM_Qko;G3zs<$>)JX9MUfq?`dw|uCA(XZPs-)wly}WS@o~W zf2_S#S@Nj<&dvW++^fyY%P%e~EG#X`P5*6vQGRB|#q-}DKX*PgKzUHHv4@Zsi<;!lTtDsF5!k_3Ez1s4hBZitjq0^Y5Dks zn%_bJ1ck&%*F!@ZbA14naztdTpD33sb=;3OG8X37K6X9?O`Dy4&3wmrf3aVtff0L-TL)z)5Oa}1-`{D@RE9WJ-mnR@==RaU zkHMO44!s6@g3bxbE~70#l57&7>L#IS@nz06_BGrgqIKNR7{O^0Ynd4NeG3KUf{SoK zp&7;lIjLHgUO958or9HtJS&vK-TnhziMKsGL5oQgaxV}%Gq@7AOz^$#E%nUhGxD@; zmwO7HR9RC`{spR`qPt1x0qOV@=^RO)PX9W5VBov*0y`&X2`8tV=7O{m%9f522#PQH z7@m0iNFcvDR{f18Z7OvPxjdODNOD@jeCY3(9LwaF10no|Vu@urCtKS_2}SP8rw(R2HKqQT zVn@)W$gMpARq+CC^lnPkc;G*O3MNCXeTjk=lSA?7oO>YAiau_K-ep=tP-S*>O@QP# zo^HHzzgjO27w2Vx*zPe#c;`%m79E9>lPYXV{|Vd3kpj&RiDVBQpoOq&2?JWVjcJGb zqctP!=5CrR07KPwhxz6(2sL&DJmA(0TmkCD&bxY$Wf|6RId1SME|z-8!W1&1k7@Z= z=tXs7t)TmB9WF+!{O29ccO12Qe6$_eRW3y&>uC?_c@BOvD#74e9TF zoD_vff2kOXbzAcT6Ne@FrUf1g)0=uU_!D=YP`q}ofWBE^A^w7mGLWpmGQT}NjTD2x zxVprxV;btgu$;{B57Jjus%t+QBcltZTrC@E0>ePO#bqoqDF2h!U z-8k%qn@8+bo0?_JN4e3or!7#R0fGa3cUdj5l~df&HVQh35%UtQ>M=w<3Nj{S^Ft)m%gldw_2aGc{*OS? zV}6z;Z^95A2kDI950Ij;Xt8kkb%GLv)9;vALrDs9Sh14j-#;2K?+3p-Xf7lq-Rlg{ z?%O19S4w=*6$zJDalT_@A0>CYJwT~)#CR)IAdhYeKPFHmlpCL>i)6If9$+{|yLX<9 z6NL-M#3j)yGUrT0sVV~>QKlU%rPE#bQ00jwzBWxr$RdwbdDECC^>Row08J9D3r$~U z3xbfdI*(>E6@k=Cny(4(TbdjGt?5w5P-TMKyhED1A1Is+{P5^!5Py@j_4B2Z`$CY| z?QBohmJr|h@AZaeTRzj*TQ`T2?^z$ zn2KjCI9LbFLrio`bUki&Qm&)7gY~TSb-5!&v-d+^i=k^j!;3e&qZERZOhLt0x3xn8 zYa)l$TI1WH$rAzZ$mku$kFj4K4(ll?9|zrYp65Jw8$o2lzZ7#?onDSZ<*-~8a(UfJ zUPsa^KP?D=_x8_gvhY}Qe8G6<7q6v=Bq}6}0H6K#O4ngFB*KxAsR{l}%~zL`H(w{8 zmDd~)20u+)sn6R<&34cCy(ogUW`}oD2EW?}`^=9P^VgD?%TIg1RjA9F&*R{3-(Rjr zFG%x(&)nyG^11#^9Phb?e)snm0w;!-?~gf-9_PP1AA3H)UgHR#9*)bdiSNm)KZqqN zhx9f4x{Dk3C6#524<^qVm*pzXXvZ8DH)vb+byU^WHMhJz1)VB-H-KNG6`a@IRi0eO zDnLl)gp1ue6QMiE^AE^_9Oi%7L21m$d>VjfH_OPQ8eK-km5Y&?uwYb3FH8@D$rhob zAgQ035FcGogwZbXvHf*r_UAS~CCN?oHTiLIVEnfcv&oRD1^Hnn8~u)v(*R5Jw* z$_zrCp_Hr{s#FTrPo|)LWX$*hLA%4DhVfB)ei0-}xh2 zp^s|6Hs&?zY!>M!^;Pr7rci5=!u#R!!uz+Dk^=M;bj(g8D1H+faF_)yV81O6;qm{f3B1jy+LX<`@JD5P_p*o80@`%LGJXNrNBPl8f3AD<(qw_x1 zB*z?G|Anm3ShXy^TMRQO-o2YbLkmNqH9IHP79#7@xJLNU5^zF+@j5q-0dC1VAn`KG zv|2ZwkJJ%~Q~I3NTADweQVCYGqm?MpX6u+LR2pFOW+DS+{J1|K&IL z7vuOgjkHc=4pJ7K%5R}^Fq>xG^YP)i15)pk7yIN-0m>5lE8XcHJ}dJ#gh5_%g}{;M zl@YjEg;Z9+PcLg_2pe64$jqJn_p?pVh#n*mal|vu$O9 zF&y~5e1}n$ydJHv#X(QD!itn1STl5yGs;TNK}U$?P3-)u=lA#8TWbR(K2SGlS+kH~ zNkb@z7=;hrFXMP}1vgRdX+>94o3UQsPAiZ-nD9SvRkwZTnd1~wgiOD{nW{QHC{!IH zVtd>?XT{Hu#T#9~*6nMil4tX~KP=<~r{ad~x>2Vx zHo9Ec$@`quUPQ6AGgPYvY?|X6=seQ$RJAAiTuutSr|*l zCO1{GF8xoLlox?oMR2jad}k6#_x&A6^k?n`D_kUN`z|+M#t#M7Bv}=iNxAZy_;UUu zn%j7O@+4Lb3;I2FX|jS?@j^*CG)qaT?1=$Cu^7_Q!fz9`rQl{*L6AkimmRb-t1^oR zOHLeKbT1NJrylbu)A@zP0v_9s)_qbwF9!sWY;A`60I`uB}Qd zchq#>4LqjJHq`Pi_dGj-yVTdmjP)v-I#U(7Jr7uN;pAOFl+Tk?w3o?|Rsb zd~I%t2-OvW-H1FyQNBaZ{B|{IsSzdEO1Zx((X?nw$n#WaYFVwS{fzmC10+ZCdk?-+ z9?^MyPi~>^Vv>&ll@b|g@rnpdpteOJE)waH2jO-sVM`_VZ&5O_@NQR+S4H@)Ir!4U z>Jzo(0tz4)jY$ZF9zviQJcJG$FCy%}7U=bd_y#}K2f70BBwE}d$<|O@6882Xak(Cq zF0;H4jcZ}dz+B(LJX<5rqSwmG{E!*&lS*V$q?{!u2VtuT|f6rTTDS3RE z(br?=NeK7=_ZB5aCB*kDVC!f2Y3-Z{9nGPwR_`GgaDhiT={l_>23@q}qPLF?&(EuN zj+93(Ez}PynFdNKN*y%%2$`j#eYGeK_xac#+3k<`U+Q#JP?P4G?Bq8Z-nVhg1(ZTuBOt# zOYgmqvlxpb zDT(Nn41818-Zi(l3M;GF(+OgW$5Ot$813x~)FTmkN=kC`;;N0E`{LsL{f1DrwT-nM z;qBC;{A4>;D*6O<7!C}M~!BeWft9GB&O!0BS$YhG}VODOR3`QAP-g>45&c zKe;!jygBZ0be}Sc9E=i3NgA_4sI=`whgS!;MIgnn`BlXI`4A#SS-Xmd>fyEz$p93i z&h~x6vJ;$c@oD4bMADdW(JNJS86bGRJNA0<%mA*rfCifLwtB5#e(&ul^6+y z)$(2Qe3A5y0bPJH5C-r;KOwB<{)A+DezYnHH1wX)UONc@$2o=vyr=ZkOWf@(DzhN< z4cFleeQ)LCSp5~zE5p7+d-(~8CKR&w%Kn4E%B-#3Pgr?fbZU{4xnCSP;k-CTRF=m6lK!ZW?wK{Q+T2p>!1y?(Eca39vLsl!EZhA@CG-u)Yp5 zjnfRzj`nel1*z&PllsC=V{`IhtkcsRP(@i9%WoDo7>U#gNbu7;B#BK3uuBL@a7w^c z#q_4UTJ;z}Ozip==8=YsjiP9kq~_WkTvDta$Pru8+tW(-vHq*?}$46Y&uE zW-j7AYOY}lL&`PjjLnQ_6tX!W#AGq2JbaB3<-2<#Ar#Yg6D$_(lz7o$F&AjDE(&kl zQheMq206eo%31z1;p9d>jS);vKps~W3W^Hf->!cgadybGM5>5WiSvnL8~*W|P+flv zT(BXe+REIgIFzH2N+|jL2(<@MAioQ~cCz|&51Ad|NI!`c^7U9np*J!J9#0BOZSE9ar-^%w1oq z_b(z>sTyPRWiaqzn;41NLj=h2>}pj-V03WLGf`$}Q3lgwoY5M>!A(&iySVL=W+Es@ z$CINj8A`Pkt@}{sMy%+sG3Jz5qDiI5(M=81GBBAm5OO^pkmz_lR6uq@!9%)9^Z15g zRg5rx5o&#@>dgrP#UIb2!0^yC`(DWAUnF3ybRk=f?k0$IA{^58Hd`C)nKY!jRWpb zI>EvCdp|a4p)7L4UNJKt5(ym_xM0{ETm|J2`K6U!Q51L5syYf62bdUrHjW82KFOp7 zZ2|TNQG{yV3BuXCw5y%;k>3qCe;jdAMePMoSgsxHM;J>B^f!WaD)PeUw`~;ShVF%v zvGlg0r*~Je`FS$1?DNUaP62xadj^Jk`KFiE@gle81`q#@}@6DTj^+AOqMcv4`Tv%*%dGfs;ZnQ5u zu8&N#d0*$IP8$mNysWJKj3wNByxtUOfB1ACZ`xm|TG}s)p}`Z91|%xTk1t=nk+g%OkV5Rq5wwr{pMyUMPHTdy^Je*L_74;NhhybkJ@ntFRbj@YxD ze#^Z1C%`v0fBZ{szCoy1=LJ?~p& zAd;Fd3F4ToqDoT)(N`N3ZXHDucC$ z;|QjnUNWQa93L#-o#^Yg%`VDZEn%ZFLSu5=u-|3s^L3>Le>}?>>%EZdRWJ!EZe?a< zJviH(#!ho~=RUm3!(3n2IbRMst~_0wE(U1V+ni@GoHc#$c*yJZy%H5Uybj0yKoZ(& zG`(Er6I!ijV>!>YUh@n{>Ee5R0yGJGs%0^>d4Gr+_!}5}j3zxF$;#FwCnp=U`_DTg zeAm_XX)f3`(66d58T!5Y=Amorb9p?oqUQLy;M;?=3)&B@gs~3rGPeiWhpx&X5eEk( zM;fDG1c|^$6UnGcrVtjk96IUMPp8tTZ_T<=h?=C!!Z$ZGczAF%!y_QcBO(d;vA!%c zTNy)EmH2MDl0M+6eNQAKQGy3SYHhFe%24uzF!b*2iISr9O#j}S_GLbNr_u1%Z&z!s z4Q0vGjSV}~T3^npW$}^rRa8>;OddYQpXAbvZ$QP@+$q!AdHFZI1k`+0*;E(xxvf$J z)DwG1z;xI4>9SC9CIvM6(-_qp*4eFm(pyuyTERM^g+PhV%EK)abl9r)lM&CcpN@P? zes$`=S|}6N1X~k~KmgCT2>`PA{^F?I+izs9FmA6g6ra3Nx0$F;n4fFVUhx}dgsb?{ zarLAam8`~%>*kAdWGb&apM=}jWu4)n)=+@?6%-|Se35kW7OJaZ@fvdHms&$~D41$< z>G%)nJ`4hBgb?grDpfrS$taDuuBxhwrg>HHb-Rg#g(exE7^vO{5rRz8;53d%TV11I z=>rj3Us5VBTS{ekI*dOJZGKicbPCvLyjc<3!Q4?t{;~$8cXi{@ShAi`hsvSA$wrs< z)f{K%j%~}@H}jJkz)}uoLi@bAuW#w;A^ZiR_<3<eFs;NYX)AINLLTqf&BY*a0DH$V7{Ol)e=8vfvA(Y&t6Xxm z+2Q66@Mc_KueJt2NVdI(~tCDG|!@Lq`3V%VX(bOV9^1C6Ftlm2qu;Y=WnK(Nfj9aA<#4#lbJ; z#vu1>Y?3y`#hWyVTxN84zoTv?eehmzF`{p>3lC?k$(>o7jcfV>lkrm^8txwC|y-x+(d zA3Gus%4D)Q*cwM$?{t}*!pMBXhAX#p)MSUv*VTvoASKUFHtQL7pDhe$TtBb$Fd7D5 z!p3byNu#+aqC;}dVF$}{#8!}UiQ2VH>r)#qK7(0eUzRGcb5l^kC3c+P?|YBTPto=l z#uIQEY8GxgBEY1TR8yGp;2tj1Qp%^Dmb_TNOi&()fkM$NqBz1m(IGxG_&S?>5$e5e z;R;i}r793`66Vkhf|?X+%+~iK)3pSx65i;_E0uiWCz+>lu`($;+sf=-f>!U-wXrZg zd~{ir(1;PnNp+>wA~MCsSm|qAo84N8w^i!f>`zx-1TrVAOd__(TbnTnhd+p+`CFepuXpkKEAgh@~nLr3&(NlBde3<5MWIdkAPDgVp^&|9G4yX^15Y!a=j|=GwOJdlQH{5#6l&EIMzUgw95JW`&qBlU{lGK{% zac@uSP4Ev#$H*XcC}ApmhFh=VxyuxN@53~s7d__fB;LZTLPjcy6MhU)U!a8Bm^}rV3KytxUhb-<&e6EQwZMIrsfTc1 zoiY>_Rx)(x-P2S*^^EtkqN(jy3!xvW$!DoXgI?U{@qMx^GI`vs!f!G_ImBc_IAE+KAEOydnS8a z#cu-6<83P~F)+@VoOb%TKQa;%J8XwjU!zlPlPmB*t*fLx545K0vZ4#65X}j><68r^ zy58H9=0C1#vWX}t?AANX`(HRNtL4_)JY08I)dTb!896=rUl^Q6WiCG%c+6iPkkAsF z?6u zf>%_56O)Q1B8$|){D>HuP;x*WH4poBH!i#gibe0AViS>!o6H(yhmAoolNa_u(GH(j z^SDyR>>$+mrH513T7Z4$JcX>5<=1!XKZ!e$+QC}1Sr`QRsR+%9t5eM5WY6z5{Mmz_ zZ6ZO5#R~;$T+W#HQB=>$9DIs_5py4jeF-Cv+O$#dgljdjH>@#R5Qrc~8$arDD?2c9 ziLPyhF@D3~?=&2nTVdC?I$T%b#dWY(6MUuvFnaK)MX%`!cXr`~2+F$garQ?)`j7Ln zyUjYhq+bd0Kn5zJFxv5(Y!Wa|X_5pt$->h}hJ#!fcI#wQ-iWRzJ{j~ta#@v2gYL1- zE>uF#_7ayxZ_^SHQ=#tCQzo3hJM$OU|0zHs$uNzrI5rm-(L1B*hVPe1rOFGvAS1CJ zRu_sG$7V?TPW5L5fL|G{14HBwCvqe-{N5jzMwKcR9^^xQ$kL`@SdN@V^|a3!Qu_-q z#bSgC2q{Ax(2ssSD`;h36=FkR(pVugzG-1Vy5lE7z!=6Yf*mUI$FfhJ#Y`ZydMA&l}nQ&E-*G>==p;2_Nmr*s; zCK%qa*_N z-aN`D$JbHeDNx#sph?JSImbPOPF-plg}q7B9=t1E5@SrHC8(ux%Hepp@F4Ij4$u~G zy**y39N1B$FNM4hb1f;!2TbgUh}VW!a_4m9tz~vdi@xU}m+q8ME}G)YGB}Yl#)m@3 zISYXj#}?W>{=}!gu%4RVbv|*+7T98T&i_q98#MI?#VDz8gaKhcYFmbBDn~vzb5V4$ zR#(#>gM`4^44wy)^1-D*F058bI^F0QLtt=ho$_a+NFB-T;z+5Ji**<`g}%aBo%bpj zKNb8Hv(Bb9qdJnvA1ah)yhmsTi;#iu;Oi+<=0vMD-%ZRMF`eY>(&lgncS6rdrER$w zI8pM@&3O>S_uecB?H?Ca4@ZZ(_?qQ1ldERud&*uIbC2VFzgm~Jt;cy7Ze@ye49ZD| zh+k|(9HX%2W_p{I7A)X!xhA`US?Rr8%A_yy_no?o80ViV!&>)VB#G=sm+qy-{zCa_ zl=f?J&5de);*fsK(;fbvat~&frRKj6pV0Th>GGRK*0FFBr|Oz=aoJi>BFJiHXu}F_`vG54@o*oTNO(!W-moHLMVd3GBzE$Vv z@>K{i2#XjLg|cC2T2bzcI-PoX2bX286H)~Aym_>D8iQu{x*pkAgo>h4zYX&CRo7Kc zD0(_Y08cQm5Fm~mzR$7}=f%J9^s~7#ZN|=Mfgjb`+}12Drex7g&~*LK)K)TZ*&S)U zyIcPx+{ljLQ~kier2s~UdiCCe<>qv# z2KobwTXu4HUf0&rg#pP`7+vYa#+( zhsQ7~G`gULP{ zxH3_8+>JM0%PrLexG&x$+Zq@?u1d)U`TRIvy}2add$eD@Ix6z??C5kJUqWi4B3fxA z{9-d-aI17nh#SO+@w=(AXK_LD2m~$-NB}Yeeh}K0NHqQ+Q7BoDR5I-9 zCT}vJtJ_X1w*+*Q4{eQ^_YKD~E*JPebdqk~CsuZDlDeMK^F~G##`2l%nIlJoC(>OU z;>PV+9$9cSWbZq@v?NPgyrFhh$nsZ>5&zmhbMb32Hyn4;rc%r;MUkq!dSWTkEg?a- z_TXbX*#v zq#+@}X1*Hvq>V%ceI(BLia-uOGlIQMj|(3bVt+FUK2r|K{uZ5{^^A2# zf@_YZ=J_RFEG@ASu@QfK?km6=4FBLwk>eUUs8oHU$!Xx=PwuslK>&Jr+JvtiD>ggw z@GM6MXtXiPG<|b`?GSJ9Q1EC?!i*^+tQ$7h@U`3FM3S2W`e}^A0mu(gNMeS?=t6Rc zxVmTg;3%K;$z$#4900Y?Z)J3I46;8uNUDGgVoByXlRz2_)d>-=lo^~!c4Eb12EIh6 z>A*Swmq`W;_$&IhX65-Awpv&`G8JE0{a4AOCKmO%7L)G5>A70|1JDaAIJ-3aOEnZ`^F!$4{apxI*L z5DY;~ynviGi2PQ_Swb0~8kuFrC2CLQhb{a7MUM{^BRqd<$~huO@Tbfwia10aW%onu zxfegGpPK3m$}L4jO4HQLcm)0ut)-3nj4T?V&LztMxCpfK_=5t?kVLbtdkcp|nnJEA zAJ3zcjBS>zj;Q*KJctCiL_cUHvaZ;UI9(2O#%nyY;+|LGAEO;2Z=^)rp4Hl4zm4d$ z8e-U2BjsBXzP1?uXs{_UMl=>1Z3OHUw0x8{o#aGsX4N>5koDtW4$134FDv{`HEUY^ z@^izp1@-%Z3a%G+f{xJ_Dk<0W_%rs-D{fUnhhZ};%TyxIENETI^O!;-Z1t6S)i9hj zBxc@9;$Jp|UL`xdBd?;gyHs;r)T}hILyR; z)~eU71QlsTGTR!NSO3h(Av(h?#}C(-qHfikIWe0VwpaTUaanL(Kk-dTjaipA_z}d$A;{I zi+OJwO^|n{fV>^S)8EIFhA;5XvS4bvB+Sf>OTF^2oUU`!dbc1j#d};<>{o zvr^rEpum%FU3TUyW4g9LlOn{S zk7j+e#(=pGL?5FH*MsihjzrSqVS?_14&l_Pr5aEo-Qv-sAgqbUWr<{R zaOdXS&XwaH~@9^D!4VEktDB#OwzbD-}QHI%|t4g|B8< z(MvvC)S87&XzY*izl|FO5`k76+h!@(Z=Z`awV}UuVH`=9R;wyJg=NrM4NHjq3H7pH zb5#w__O_U@$MKOAnXNjYDeBQpH6^c)=Rst-p&mOk&?~8!_>w;~T`qbvS;<9DuwU<3 zoM|~1bCJp?$@lFI)#Q8;_K%hR(5SSpoHYUaAoXmFikuHfqnph6Y35n`T% zi0>cosO;22gAvEYo1H|zqJ|&ke?`H8R|cs>P>>h8m$28bq{OW0aeh3-hbPNt-t@H;XrC-`NW=VFa`Wq4(NQ{}Zb+R8()ozqP06?KDASarl~jWK>#0T%{O zq*%Ys_{TQ|v)^HyiA|I)ePF`tlC3?6c2O>docm=AH{GdA^eY2o8jX|Ti9x>zu;H-k zD!*Exn-QduijeYSv5JIAlSKddw%v3T1u*yd24~L--ll`G&qs=`CkGzR7qkvi_DjN( z47VOtS%|ggYjQVJ`BpO#4CY8q;vbw@Rv9i@o2}kcBHAr1I%jmWI#{n-`zWtyqr6-l9hbGz?U0PINz;Xv-n$q zR^`%`WS7C@gTgc0inFJRma}R;E*=gJ0S-0+0UkCMK`u6~S62rYUldX2*j(=4zU9wv z+QZJV+=$UZFPAG6PvLFzmO460SDt{S(;iy_2JZxq}-qH4H>_brSpVq-jNBo%+fdMeX_w+n-ZInTWy8I-Ln+RUAgL29lF8vyv@!!dR`{2LF z!GB){|9va??>piD=kA1m>g9$(0YD0VtCFg#!QMRtJ~_AW3{A2)#5%i1XPU0#@BRO; zNEZ|yARd5$`JaU`T>lDV{*%b!Kf(zPE)FIIVzz$|6S7jis;PQn4hJ}n=ENu0_M0N; z2G&BxbI`*?{UQD?DlG~v2Tfv(1&)HDgpPtzt}&+7Jc}cM;ojB~+sLc+SSE+G&|g}( zH>0D+=V7pof8UUuuFxIuwt2L^)%p1D|G4Qn1s2FCKWkNCj0sTJ2^M5y!PNa>7??l_ zfTs?G76*)AG`1~NhS&wlVKVjFI8$9|AOjR@GBp6z(8VX%kRL*I7`&Yzib=7qfhy`1 zJ*{X*W8T42X1TrTnkvR7*c^3)Lc~)klp53Zk6F|FQkh!X#p=6uy!8s&#q8JCS(?i@ z>fB^B+@6cpYWLiRgTIUCw2FJ5TWOkPDQX}9#hHH~lMCQ2g|bdw{(OO%f&&oGFJ3y0 z^4TeIV1G$XR6E1H$8}E!anEPrH1NJDG>Y6Gk(k&o4{M%db{yutcgNTgL&sZ?K)Wf<&rqTnD|o zYQ-+5#UN~p^2++!_6w$syse_4Faf*+-8@&R(>vK^wCX47I{c(qxvVi7G0nOa3)t+7 zI$sLk73JSzjD=?3^!9dRJ0UwriF(>bz(#}^0YBuxq<1)dp}gmt(PbH>hjYIoJ{}(V zE6hyS_xY6+YZT^0C7D^6!WMQp_)p(ygM#LPQf`CL86jl_@gai-AcOXauz!b=Ax1C@ z_N_&y7RD(B^;SaC5#~Dv6)+N50T1i-V21Pve%~g>h9U|^+n(O$e?rv*YwjUWgGB0u z_kuMLK^Fgpjg0l{8$Pk-2;5EhfD$=6Qn7HllAs!V83}_~h)y1c64C+^f*4=k#tcz@ z;S9_%z8lO7Y{oZ2;Vls+WAKuG{uM-zU_WCPd@!p1-&d$w2+KY4PE;L;gx{og{H~0j zz$QHGnSq6vfP1%-!CL4i{g0>MA$d6){UXgkF z?iA(}!z}M5OOE<14#E;bO>u}e9x*v!u&c2Pvg^D{v8%sJA0hsW^lJjCv^6=;sPHMN zJ;^zlpJdyY3`zm2`4L3302k2Kz)A|wc&JgIk=#V4q{{?DWi50~S!{}!f+BX67i!ZV zraz*7SdY=sX42+KD%F=AEO?wEy9?dJ-*eu>#7MdpgwC;A;jX%@BA+8QOk1lqV7Vb~ zBr)b=&Bffg-yxk0pBT>OGGoJYNwOCP8UyD$_+yb};ydZ(FvM}ol9Wy}xjG>^ftab! z=`&Hpte?&@Q9MC;NPLTYOL~hE)#qX=qvfJOXB*=F!#$W|{P35=A9fFn_SDXBzgWLq zvE3HuT^?Blsw1!|nkjw8KKDb}7T62e3+zXD&kU)37%x@>o|^DSpG|Pbp)6BEs~p=+ zBSDjoh-Y%5o%U<5HGd&J842@{wVKTsdAeuLDE|f1gE($L+1-=uS#KFc@5gK~;<%r~%=aA)KbsE(e zF~uxv)W~guUn)6PJ(fNqkmzHRRia&BC_G>Jsrd5x4*3zjwmo4!Ia~>x0bd6ishM+} z0KS7vCX4F+JvO52_VG^hDelP-!3dljya56q=81ELP6?xh;i^VtJ#QgTU4$z50|Otm z5^0m@jd*~fh?9?v9)TYsJIgZ~FIF5W8Ui}P_*?KZR6N^fmI7+gPH-($#@A+c7T z4s+ACLx^e!zlqd<89Aml{i}moaV}!ny#DH&iANopl1-Uxlg(!F^-u% z-8{9tPeenEv5)zOK20CL+iQOJq%W_py6;R5Tn;xSOV_5e!R3TXVuJMRY`%%8v%z)F zF44aAjqGB2K7yo%Xd7P8GhAppr!Ci~6H1ne40FWd+#+-XhXi!5HK?p*4Ai z@nrMC+|BvHH0>O%VC7RCYt4-?Mr(P?X=zGf)l5!xQ;kDuSJCa9`w69OpAF~Y#BtI+ zpKbmsMWYlv|C{CMx7m%BIc{|3)p3)QbE{AtIUU6&o@VzZc_u}@u8QncgV~Q%#O~OS*h|g*D()rg<<^edi?M-Z zpZ1BiJAE#V(3;gQT>UC-fjUZ~$rO&7_T&x2yQh2jhqsxE<9CxPtMi#vqUGf3%wxEV zwWgdFgZ7V?uu_Efm*4O5@19&G4*dLq2yRHe-DOtut-U?H=b2@hF_~219|*-DIv-!s zTGGkWK|s&ff)qjF#Jtn*g#rSh8!C<{^wAqzbU z4~sO4hKsq2%Sv!dqDtO>I{e%&RVf`P<0>mF$1jho0IhJZIH}aDoT(D8YN=+Z&ac6& ziK+$Ey4Rl88PzTQlKa(H&s|^LK+%xZh}Ia{1k&`i>8jbPdAmisWwuqewXcn@t+Ac4 z{bvVBM`kBRXIvL-S4h`qw|Dn_k5kW|Ud!ISKEuAXey#q60p)?ILAk+^A<3csVUgkP z5rL78QQpzkG48SEanA9k366=zNsh_JDbA^;X|Cy(8J?N8S^n9sIib1UdGYz71(}8M zMTN!LCH1A1WxeI?6|x*lcP4gK zch~kz_s;fR_umde4iOGhj);!Rj#-a8P9#rePIXTY&YaF(|Ad{RoM&B7Uo>0_UrtUc}Hf~$t@cGJu?O*o~;t$<`& zeW!i^FM9rT@@6`i^V7AxLmh=_?|xi2J9@%NPev&`t*$d$)yS$J&zTd_Nfmdq@)Md@1D&(5Exe{L z;|DVKQ6`~ZAl)9Wv$lX9c^H&G{?9zZ^DmExxVVWrdg(GVG86x`0U3>|^ z?941Iod53t>CctV3jpHZ;}BpL2z;~$`CJ2p0AL{hB47#w4-E|sj|d9`1B-})fQX2Q zfb#baxJN|C#Kc5L#Ki{^E;%J7B{|*yBoG*AXjo`i1UNVZRG<(lIxqq9qx?mfxIj4| z;o=bdML5J{Kq96F%Ko+elRkR@D9~Wopk`noqySJ95HJ*w&jFAEpn^~!e-SYAH-STd zfkJ`+prB!3;XnYOpkV)A3oHNwhk*RM5*Yvr0tN;O4hjhc224O*K|sM!zyS~>s4ODN zkZ8uF&Ozv`3HeYMb)sawDziImm?l@`F5j*x#Mo663x1ip_Hl?)B^B0lVyT(A_0R1> zQwGDpV&jDTkdQ2D(3n@J#=Y6Q9az}EGj|V7E^ZuLJh->;2umqx8d^Gh;F8j`^bAk^ z**v^_^vEr(W##oft+Zui<@kw)M@HNFYeafk>*(*3XIfra9UJe+jPkaz)zcRgpglk> zAs~P@fJ1|U*#qrC0R#U_V+duS#*ofI39R{bSLnU7J7l65Dkd)1Y~<`>-!KzZDGE%1 z-?q5UaqNl*W2q$py@QQI$ti(LW#*>NbyHa1PfatwcN_AfsNsKASyJO)O8=KS{~uKT zTm`^`{jDYnKnQT0BXfh5+R>b+y+#p@y1_0(vA9rInaE$6*FDq|-}p*KE+#YAvpR+J zjGjBsr07f$S|1w&Z~s`@ONJrlA2lCvkob2M^$D-`nI+U)q~gi9Ta!|>0;{8{n7Ze_ z+*<{fj?R28ecqY3?YIx?e*Bek4d0rBp;sOK^iM#c*C*gGtMEXGp0G_l^_^_^6TrSx zZKqE234r-(_)*1aco#?XHlOyaI!>ZUKskVG=U;{OHXru8POV^hTnF6-$BrTB%utf$ zB^AOyWcI~Ra_d8a>TNz408nxpA5=2TXAgKbZvF%$09#}~_z0VWdh=TQ1dROn1Y|f_ z*r~(3P|1D*Qs@GJ_T4HN9#^q_XcGh3W!{-J?9^e|JDJ@Y0t2SWKhgsV*)N~X!#^Zy z?s|FZ)VPi(`98FbiEbwYN*rg~0^aJyfUC$azZhk$l;hnw$J>P!y|IKajj`#BuFitOY!w^scGZ~rx@64HZ9{*}4jf#^t?BBT! zkI#jG3IKJreP@=mQ%8E?Qv_O~6|k@K3HY*A*zgH>w)ls-ICW}5$FE5LJRE-sjeDyf z{JVdX=Q?$yQZ1kg{DxO>?`(de!ynoOf49lvyHZYcib-@c`M2hocYfjj)5d6E)xRB^ zzyGgd;S2Nu2RTg7nBDVS|H@)bMwb5F{_ZCr(C{Sll+*BL8tV-dsI4IC4#87!Du6aEadO~?;9c*kl zK}AZ8R^_BEv9FreivI-E;TUQ(eFFTb-k=9vP09_`|9LR}(%AiaBD5_@lZm1F(m`|y z^ivRye+b$8Qn%Ca;h=`MascUjKhs>?Gu8$6pOx}Wn76`<@$D|Ki}A_G#z9|52fA(6 zTayYes++iWu41B_nst`nb?P}k3`e@1CXf5yq8{P>?bH=#0trPqYT{5*j|cx*WLb!H z!?e!&P7U<$|6uPe!{Un4Y~h075`ueh2!%T&Kmx(ts&IFADF`8fV1>H|*TUT)NI|d! zDcpi4xJw9-TbZ8uZgqxCpgY4nsuuUXq#s@w}cI*&#ny+a1AK0k-I=YLNBR`?% zGhLh}`V9H36!Fo=ZYfgqW;Kr%^b$_{m##a)u_R~DVPN0Pb8@Mr2 zLhxU1Si93ixoQFSn^)J=fU8amb-I5Zw9o%;4Cq>><2dpC{o#Lq;(va`JSdrG@2&BV z@pYPt-+)JgQFr`S`~*L_mwUJcb1rU2?&k!ow*K|K{qF%F|JTgVn;JJN(wXbXJavQM z7%6(qd3iZORWluxNJ8ZE$isstZ=a0ay?nV7X4`|X`j)ab*&_2!;ms3fyl)pT)qum% zlboY2#xnIB&*e=cV5E;f`JwKc=AdU8Odfs@FpS!_D~-)5Qs?KWVE}Cv!+`u^5(nSM zGUb}+qxFp?;Mqjj)ajucTT}|s4kVQ3205mUdC}M~rSmvGb#tF8p@T?g^lbM?mXA!q zqW6OIiH|xyi)n>a1INGT;M!#dM3Pa&gSHZaVR1x*?<}w@?6oLleB=4rwXW8!U+=;0 zOJc(}9(D0oA01p&2npoyyvQQPf}Cwo zrm)6=fov@Hh*(K_i}D|HUUDtB8*58KJ>@@cNBK!E34YbYJ9u2d^AMaawyCqL8|ukK&v1h$a`7pAa1YO{L{o5B1FftB2_F;#nshesuaf|W0^6Wg95jFtNNKp zBV{cXILhtnbdX|j=65*rm4v@NkL{BO(=!J$eD)7UGFG^I6#X^ag4?4pj!M3tzqGuu zVltenE-fywuueD=K()Q{U>tKD1ur5DlKGx)`_AW*}pyudi>IK1|P1ODL+Y zpjG73O^Th_g_eE?O?}dGrAL+0Vb!?_Rhsc#^Jb!R543cUUNMqIF$WPn&u1F&U}DJZ zb)+6$a0iJF zI5}@7Fg9I$mvJuO`q{pziOG5;F=Ou<&GnwXa#ET&;`{39O31-n7Ant3`Hr4gDRb+E zR?gRbAF9;EV5wqd+D~Dqlq*8|nPg_~9wuC*d&WcCLkxyX_s_=NAFViK#*}32b#QQD zwGhRO++mq01tqptOvrBMYxVh!R6Tm?C}one_H=3>JgU9?Q3BdK`^^O5aK)a8-L$C% zBlWVcw2faK;f#J85N;wCjU$M^V{7?KI-|ESw&-)S>vIMA)QWnQ%wAooVDG8zQ{hL6;fP#|QJ<;iq)BFb2l%aDy6|ux zk#6AX=(Bh$?Dd@L($*@bBKEJ(_I5<4zC4pn$S%{QuAnSd3mkpJ8TbyaJ(ws2XaI(^ zmOtXs*YnWAk{JB?b&9;FW3urkabA^ZFYW5;8p=UKq}cc6r3w@(D2NZ#+iQ;qva8JqO~=ATYZF#_r1ilHwdP1MI1py#|apV3jfDV=|pB z8#_=r8F-z+Iom^fTYNr*D0^2Xg?}@`;46PUFhNG~^t-{_V7^dO#S+$F{^MMi8sa*O z)5sm>NaA0u-CSW?giEB>VzqHH=PXr+AL}|>qxMC#RN^bWX(pK&**3wOBf`?Y#Rln+ z|GHyii<=4Jb?~u(fQ9QC6EOK@TshO+8wTHKPAZ#7wvDXWs`r9vob+x9d5|~wBsX`NH(^3n3 z@fshzP+>u)DnDc}(Dig^BP32FQZq{J^XJr>!X}g;3iL6Sc=A5q(ET?mh1bSFXNM_Q zDQ?cObugnwJBCYc=Ex&fTLrDyV6|N0J0_yGbK7*?QR2NP3JI(8d*da9;&y=`A{c>& z+!*YW@EyMJ605eIzt8}#qfjydj)JYin4@e$q)md)LZpQvMHIwvRGnIS(KsV!!8mCm zF4CF?6tSuF9$MEi?m3qFbw}@Q2RSV&R&_zz1kIMcxq!b4#{fNtT6W8R8e2xwz1k^f z|@Q!am~?8L7vrVBL%z zl8U~OBRsPk-Q7d_0r1GUb*y(VA1C{+EWIpV#rqr+>+$Z%<;Z}wWVXj1Yk4U|$9 z-xpj42ML(F-Z+l-Tsk$7?kh0SomOj}eNBtI=co#AAAtG(2I$~{1ja)PM>8o%$lOs5 zu7v23CGQWH7dRq=Hfz&qK zi4|QCer8`6?|-nd{tXEC>h84p4JgWryRCqh=+`#>3{a6Mz2&aPyc-{pG@e$wY^QDR zYNvxa{kd|``nX8LD$Zr`{kMDV&7S@%y5ps_UlArjGjBlrFFQ_IEO>ygxLOW(sZe|8wn9Jz1_Qe(|- z^nIDy+grV;SFrAs0xngbegJ-$iSb=b_hn1D00%%AL#wPBkxOO`J2IypA#?OMXQA;a z)fW=i`_V}w{=}bI41Geo&>LN)^(_ccaX7U&UGfq5Er-p(2Gi{zmatIOn(fQ#Ps@P@ zOVNou!^;J9HlphGG|#WIg>Hlpw=2!@&E>Y1z_duPUUZ`Jk0aXjm>7aEy4@>s?20u9 zT_r+&i^lrsC(^xG+y)`}5N79263Zq69{bFgMF*nF_*KSRM{j4&c;&vPZ{x%~ELRTE zplHK=Dz!N09WLcjEk(C0_aWv~a^B^B+KyLPcKvDlCc?F4b6nc0rWKbY`oV#2j)LPmhCH z&mOWQVwye_$SE_{IP$$#BYB4QI&k6fy8yHXE^-`$l zewcI$5Z+Up-~SB|bpX3VV&IKZGH|g+N zsk1Tk$i>Ozc1()N-8S~!Qd@$o7a9d73lS5?x)L(I zpQdWDOkB&ZTw_-~TIr+ioOcZ7r~NdsI;S=MsBT~S2A5PD!urOQ443F*S(xi^3PLt4 z6ychbwcUZVY$?UJE6d1Yy!;DbT;kQ>+hEP9t6vX^)TAos=H?TwleUm0WT3t_5d^aZUW>v+gqgfuuK6N1 zbCfOcA^rUcSN9vDrIYV|17udTa*JJqcGn(;PjyCx$=^nH{03B1eP40@4Y2yzBa5_n zi{}p*a}UFHIzz~xqq^uWS~`)y5fZMcH==aLihNKJO3vVnz1E_XV*`QN~ zWrgj@3{S{u-p9WI{AzKfAq-&I0)J)s!0!3{C_$Ma)NsK6JxggzKeS@!b92njy}VJ1 zv$GchdW4xM0bYfy;OCMRdAn8+GQ^|4qCnbAVFv@7%0<&6!4RO^m-{+dG5 zia6D>8HWQ&!;Q*ZVM3Gr%&OSJV*9E2rN+z(aqHCGU22&aj>~46aP;}ZZp3l0&{sZv zJ5^_VI90%`_j}4&mLkUyd59Gd24g>N&4X(j&65pj1Yc1Yz1_3VR}OJzcnV|wC|1VS z%JgGEsLNqZrWtCVu#>vycgSTHn_Zk~aPmqolop#gCmm*)g&m~6VqnB{oSGtv2(^6iHmW{#@XZ*MgOu$tQRi?6p6G@Y*+)B`H|xr|rvME=zg+?yXUs zj+#@n)OUThfFfgl(+leG<~CG2<&Y=flu0qv5!km(t5ij%FyT}%;o!T54l49V9*Ux{ zgLy)4XZC!dI1qm+30__siWdG|vUlFmBIRQrVpn z)X7W1S+CJRHDrQT!DgzB3j8c!uGX-l`ci)C=+fZcof9Acclz#}0=C21RijIC+#) zBYo3qr@)pl5~qV5Nb%0z2qZKf5j858aX4!?R`*y-j>bcCW7HtFwHbIYFCVZ|)G$*t z*(1NAD(+VGRnQR>Q{a1%5~Au!u6tuA>lT<(Weahnopi0pAWsPMs9>Zz0e%wzymp== zmD?Fu+(1h)hmczPCr8)fA@*hWJVIyc@MOxQAFI5^4_C_VAO(#_R*iRPaF#*53LhEV z1m0YFyX!E7E5%$>R6y$6aHcvg#;{(5n5_9A@zeRt&9Ro|xgE8N+i@%@!hg8i8+;BWaQ)!OR8VyxeU1}5Bk|iX^=IV}*c-zzw zNt{&5FjZG4_bWpUSe}K;BeZWQp+!qKl@m~&U~P`-NhtI6N2HYyiHWhjfq6Vbs8r49 z5~=H7e8nf<=T%K5g|;OsG^%C(IUy(@Ru+Cy){Zw!q;h|gxc?P4{LiyMb36k{Shq#z zY+GNHw?lJ6sEtkBH1{wY5tOPJE-Oc4{KeVXrVYo6cW}y0Q)^jD@DT$Q=EoYFjHXH+Dct2EqG;~S~&M@#ppI8nH<8=d!Y~ zLglN10N--Bi+DzmJLw$zx<1R~UTaVyCUA5_|Ll>pBqAz17_38KI7phVx{$~>G-N3N$;l%2E zPfxc|ao?}b;!xXG*;r+-82cZCpA(@&ATFhVY34ao!zUt$4>ta9p4Kr)+Qz664}CXA z|Nd=C+%2~f>u7}?Eo?%-2rcLgRYddkYo!f;+jKTW=jf&Ahe&hoY#s~!f{Xd2XR_WB zekl@^rPN;p)+{Mi4-#MD3vyhAL-D+s=srDbbwvT#MzQMr2!^KVwsH zHMOCIf?TY|R3mfh{LH6|25=WvpiJek2}tNArW#YT$e01Oqt8_VWoXxUC_;C(zW&@) zi|UTMNedM6#P^d(j$dt*dPjG2@CK-*Idu;kPkt)H!d0PO!r${{lWGgK*}~npwKIvF zUA2U6=ur-OWOPD5<;GdNH-NasbKU~xpAyyv(=#?ya6TNHZCET)WNH^s$w#Z+VP<+) zMZ&&62Y9`0SV3H9G7q=oZfvy*+j%Va?7KZ&SLPi@3*4{_q>c_tUly)|!oCT1Q zL>;K!A~nQHPI0m*vcG^(4oChg+B_sm1@TaIDZp{>Im<_k2gRJpnodJ(6^2r~LQ~*+ zUvjsQW<0fjs!dJ!?YoRwMbwc5g=vbMnJI;a2(vke- zyl9XTHazU&X@0Mlbl|^^66@9T}eA`RrIkV(Y(RduY0I2dVkh|32e7b`Se%z z{G-8(9;SQR%Zj9DE6RI@LvCfAfZN<-QIaj-Ctc8}IJjBy2C+`i!%Nf96K9w(;?{Mak;-0Hh9F!`sUTIZA(hq3Ta3;n9({3l{w zObPVC!*p?Ba+h>$dug|^9T4|Y`xes@3Bl$>$4IfITaAcEzX6>wT{Kt_hyAlX3sTq6wNZ)Zgoc)<;s=4 z%Hw9{sR+Vb?2nv4-+8uZE$?1PrbiNXI+9M$YP(5@pz3XN6FSE~^fDzd6RW==ulT8M z+?jgocUWbcd3!YSlQq@iDWMb7cbC#h2WWo&lI3RI#~rwyj)~4J84`y1SP*Pz_}MkV z>4@b!wFIIMw9Y6~KNyQ{g&qgL3M>&my#=4j!nK2eC#o}c?6OtD6eUiea7Rf~gzMeR zt^LK1>b$T;3a)+6UC~6!@y}_$n)6=Tq~q$GRrkP*mrYj|4AdnC(|j$8i?w%E-8sZ% z6(e+HVm^r&<=VjY1SK_Qegl-VezlJzWnsTkEWp5M(AlPh&?icF#wYZqr6{=4aJ8RJ z|LE51%Gp$JY3a$;jMZDq^fyT|mVZ9vc7emBku2W)B`u2-V%*f6#TxfxNeWNW+*t7v z7u!N76Z;6Xk+BhGM^aNdXqJtAV{f|fC8>CK!rn)7@fEc3rr63ve9L(&K920gw|3-s zn%2@>zElJRpxvOZpyM2^K^DX&yZz1 zEw9BRGLHHtFI(-DE~F@{j+(!;HLY=wU^QRAmaK)Ao5s|6e3mYKt zON+2v^2nv3{2jQ7pLpml#8IVQm6f$ScIS(+0wqx*S6$Hu0il}5>&$;WT z44F#?STgNbqvJ#DFTqZ@O`!5SJ>--VbbW;QsI@id?PPc&K@X;!Dq$y2joFoQ{dTEh}St;P7Nxl zqm55%w%c3WVG6lt4gud^AyMeYeGX^I5snw4-8IOS6vH}OJy=F&t5!Na=-V->9E193 z#fOO;OSNMCwn9P9CMHXd(Qzm;F;+QSt+OsSG=`Tn_0Sp|?I@zv=8$<- zaB6B={{os6W41vJXRWJWQlQOI`@IyEYpPssnQU3suZpxVgkF(HgtR{p z!o#CR;sQE0dX6M$_z$HWdY2!%*klGkoT9t4mg>tnp8IPRdde@PwdT`CeCi(&wpr6{ zN<7-#oTDvjLod*Z{=~q?FH`gehzU2zeV&6ffIj)#FZOX&rMd8$_V?X{ihs1(nd_ip zhEZDT(MP_0`il4D2S*s#M6;o;*JK5j>1;2d+hW z76aQAp(5;Pd;Vr()Rl%b8Y|IKyEm0ro$5}!LMr(|D`sS*<(k7|Le*a4>(Rn?nD3>& z-D!Od*-Lzk{vm>Mi}I(r+pQNIku_c|ke3td4PhhF1m68-P$JL?LC zb6mYS(j_arVXBvrTwUrquQg8@Yj1qxJ2HbrnxF3c_jnrrO`6Al*gZN^U5+g^w3Xe3 z{+%kiy)Li^GW1OXWScnrEto9(3z!m>M60e1m+9d&-s!_enc+*m#XYiSUmrJhpvlP9 zx?e$~Ivux#wXas=#Zqw)nA%(-Cx)vuo%?vAtf5sl#o|%%=zE&47e(yX+1k3(t~}N; zRYl)Op7hVPh1WDS);+pF76?g7GcLl3TFOS^3l+!XL%kIxF!*v8i*g@hO&wHoZg{u8 zbs8+ZZcttt+)>23CehH)m6x9fEu(XR^(SL!t7-O-7~Nk?^X{m!{+x^WP5boemTEdyGs5f`%_q z@5Cu#MHAURrG={|y)}wtxr{3-2DknJ8H|_+KM9F)b{x<(^No%!sddVDd_@ zEBQZS7cKo`;1LOqS=GbQoCUws{lPAf1QG8)=*(UJlct`!uIR?5M8{)@ADhuTfj~|R>!ku**JfbKkJ&d?jBu3^4O)q<6~If&7ku@(|MI;% zVOVFNiQ`a;-*k$-!66dB`dcE?KTlTwYbox3qZjed=AV_~JwB(rhLQ10NG9f>VvtYO z!%!O20q>?TaM0_8xob5wZkl``aD*e^5uObT?+D3=Qd)8y2FXpE_9ySMs9!z2EK5Un z(dHOX@R(xL%e9yQ(x7j=w;{s7`2D`C?<4iM5r+a;nO@kR(gz}JFoYmME9NjU8k-ci zf@6@QmShdYqr&Vo*b+iE`%*K$3Y;B(Je7An{1_R@l9Mfleu*kwvJaNYS&~b{*M%nT zGbb8QG9~zDNMgr4zdT)5-CO=bx0g6%PonFoY+o^sL%~hHS0@9un3w9qxUUv5e2wTEG?Q+@1eS0W=r#jg6>mUsa{b*hrV9_wWO z>;65wKLz*yhoJvw525Lg-RS&x(a*n+hyI5gnRP;vJpRFp#TD9LTEY#094xXBcsslD zWl#>`Mrz^IP%`Cj)1UT>qgUFy?~@Ujb2KU)lVnfZU{GqA4_vK^gY3G^Jq6EI@t%8` z$yCvAjPtT(5T$Jn1ZKL|0FQ$+cUH_rSY`e++OVL?#QFr%C0p^i9TwEFJ#UeLU!jF-)q7-O5m%94L*=H_H32Oy~ z7%#&fA%r-xR6W(|35X0#{?;|Mi|VFM%85m5KeYj;%0t%)WYBw05C z8LrYdS`3V+V#Z_cmNyfJGiIN^|13&}mRutTa*hL0=Eb^B>!#sTb8@*l<9SeNE>Nwn z#b66QE!&3{o+IaWvBCJ|eb?$o>(cZOEz^yz`%H?1f-&0=Ol-#80fH<%Q_W1jBf%f$ z@q;boa$*sH#3;0B_nQ!JyYR`FB$Z5K7h3%tZQ4%$UYe&FWtUKa9?8HUua~wZ&LB4X z#_RXE6i0du=sQn@I!`&;gL|-SN!LiVT4q_&Ommg|`g(t0bJ>vIZw@ST%lf~;(4l+& zE#@iYh%?GaEKy;n^+OwqGL~&3Df6>O1!m}HYo$V=2mDgBhedHLGgC{GM>5b+#yTQY zG0$zp-7B9Zj31GV^Ta?wIpwHwY0-^d>(*2mSWXI<0`?N=s$r%zd;Ip#B~}Xwh`Bng zH|5bodSqhXr}?r)taYP6_d!(KO_kT^Z43cri9`$<7B`wtW0%{4m!nWr+Y>^Bx`3Nt zWj`&iFbZ4fj@>E~8_di*Rj@4a`D116x_(X&>iP29jMy0?PSllcuRNBl#Jsgy(obZI z%eOJjup(+~&iPwnv`ghzr{Q7imiN_$cajLWH-}?KjO=E!rOOCx6{M1@yN=zj+M>fF zF;5?}l>b&78oDfZXAm4-eeZUSyR)@;Sf;mJ=`)AE^=%o&_XF@YdGqth3vjDBw1aVX zM?!1wT&tnhkzG;*|cb^CyLksuKiz#F!3a0K$(#*S1&t$Yr zQN&#wP8w`qUPr6)8u!3^TzmGDO!K5=^Bj**vH!h`==5aCC}S+YqRI9o6Wu}JDfsBp ztFha!*eZ5*YNooT#4N}MSBq;9QJ`SB4VAC5_f);KtJWAF*2sHN@%;SND$SgC%_1$w zJFBT`A!8#I8IJFHJIk)-V*!`OFogcX+i# zNPi}%`eo!m;Q9t6FvZr|TL0Z=l(}4JfOD_&k-vZ1!KC0iB{C}IPUCcMNK=^EvZO$&*I|oCy6O6eMpo1Nbo7Fv)kC; zD%G7YGPD7xB>!oO-5T?*7%ctvj$!Jq!PlNF%N62HGHLH}URsPDvz;-67-njWYdKDj z$M}8(ENlu`+Shk3tOfZd&HBV7C$SY%ddDa*McS17x~rvaF0V0i&^7RU?a-rr+f&Xc z7;W!HFpyXFi{#eLC4bo4Sm<8F3d5Q^;tNSVpmQW-fQ~qF(SEMkpd=r*tWFZYQW?|+ zC4XG-q}MJ`e#>rY(p^U_##3S^3m-lVPHDrmB0;O*N8mJZ{CNhqIQ6^2>oXH6oM2fi z_u;5F3g38NT!@-OD^vB>V~SIP8ISZ1FxZ>}Z2iOxRFVK?moXua`FTW_T*f-0T}th) zZ@p)tJt&@TkVmqjmI!+Tt1+QTM#{?5tAngW^#VQUs4T#UguEE0SMV5gj z?c3>#j~|0}7$%5h+dYRX0Tf?3ex1Qw}+pEZ5P|x-h)rk9llHbI5 zVKja0&7pVb%mQU0e$BZGOWle8oOm0AP3IU&&L2Hf9uqQt*O0 z%4M}R8J3^UhyDhnm)1|Xc=wX1RPZV5B#c=oj1^$bchMc@Myft1jLVq=wKQ~W>|RFI z)3+GvSSzTEL6(J-LGR-m=+K88+PUBefA6M{*Z9pJ1+{OrIG&okV`RQj$ioQ#0oS#= zU0zJtp2;fWZmysXbeYl?#QQp$Y&62ctVW;EJzzNvR^Z_w)@%*NVrq+>oe()%$jFPe zzl5#}_x@_h124Bo+sOg54fg!KPm5C!A{e3NB+y@v268{-ggZ&o8W6Me zwt7LIZTo#=o@nnYV~t1LC&#C-<&}`k|5!}@5a}2AqNK60Ez~^JFgs4LM^B?ip>#8@ z`>b;g3>F>*-Zm#F)Oe04Y!i=uYU)!Y#5}~Xd41C4izJhikrRKpb~hriY0e&?B*_C> z#)8T?e@!WQ_xhO@r9yaifFt$BMA?(^@d>iDcHgK#k8hAR?VqM(|1jqHt6rF84(_`T znf_Wv$|5h-DE!V{RUu6ha?wsmn+X#TCXwHX;r9;H!yR?yU*c=kKxLaFz;(NeFw-v+ zrq=bhB*+phB2pA7Cs8Ju?&m-m^lEV@DdFZEm|S^V^q zKvl)kNMus^FPY-Je&wF8kCbIy3`<5z_HE1n0Oebrw~fs_${#wT(Ee8%$wp6RTna7* zzp<2`n$xJ_x5ynZ8x*44Ss=ZA#lwstHcQa^LTE`wZO+*~NEJ*`h)xgDd;<9J-2FR; z7;|%9o(7)i9~j6IS_!q=!Lt;?f@A0ZQnHg@i|dP$>vXL!9Hq;vZ%}8fyI-fjt$s`V zNu~*jNk>KYZ;W?|2j@JDt2Mt2Ye(9rhJkgB1@09k#@Y1ZgS~`YB36#S6YQ=C2lfKc zL68c}{!6}$iN8GUpi4GVxOesAT~81Q2KT=*uy#mNiX_pflS}BeXsp3{5c##MUWzQA z_hsQOXz^b^{*qA8dGsl6Rb{5&th6r#W89}M87QU3sz~j5qU|Dhq_{*Xvw?cXR zMJ`WBlB%qnbe#I$p2%*Y5Rjwrs!9%S(DcJo9G`h_t4wAY&_fzDTcZLp{mVx<;8N;n z*CiWSBJ?QO9rNv0n+D(*T4D2P7ecKcwIBtRWLZkRc+}HxT1ecCcw46{eAW-pdgv_S z{Xme^5O4w4%&4nkWRSH1eD=#@JES7ZyCumk#|vZQb?4VO*}j7KR7sqIe%8{qB4o$8 zi()nj5fPiu#E95CUd)-f+586(?th%JRQ>sk{4*E^dudj$z53 z)xG`15_gAz3GKV0ig0F*CgWaqeY_o`Hy!&2S#1qHP)iI{>5RyU_ie@Vo9#e&FQMUn zlz-40x{Ed44H2+_X()=PT&`c(PjBFxc92*|Cl)54=KJg1SR=cSHk7GNh&5W&D(+EC z={@kH;F{>n6B|KNcefOCRas>)qZ$*)3@!nP^)M$8Pe9c0D}Ar;d1i=93r3if>C)+^ zYg|uHk2HePWe|A;uDC-Hu@)uR_||;T3B<|29GU7pZNo)HG2tH{3W!(5EI$l6+)C98 z87F){?nq5)A(_m{r!o&)piH1lQHjork9wtd^H^4X)s1fMnBzBqW-0gPh3joiNCQ&C z3vtsEo94y^ymA500Hz9mJzRY9?B7e&Rc?>U<>M)st=QwthJ@eW`+gJIKMqG$5<~W; z-2JwuYnUT$bCSiY0CBThMpfJx$VxEaicSruDKkKZ<7tN9*nxpOge$5+ZKiQFx;GRERu&WpZcuiG^H*GFBUP33jn6B=eZuwa zv9{UE>Wo4S7+dfW9*)>#6o0SYD$f@qXd$;A6wlG9}t2wbsY083s*tkKR{*GrBpRdn{m4?%XxAOz0m} z=#n0+SLbLNnVxF-aN(CthZo0bzA79V<4B#tDfu?*`Ge@4Ecbfi_MuksCaLA?q2`%e zcaRe@|F5vJk+Id`Cq?^UfQmQ}Bc+3UBG=VTTpE5d&6H{s-TQ<8_w)@7+RPi?mAMsjk2 zIU;n<8*qQkrQAy@d@h=;mgL0@9I>fI90@KdXi<)}2fmNe(ul?#zFg9`l0~D_NN!0! zGzfl~Me0u?(C?O0M8sLHCB}q7N=>L4*B67Pa81>;MrIh$G09Rxubar#)XCYaD$Fl~ zINe{v{~MJ@s5T@F4w~Y72@^vnaP%OLKV^KH0@s}LwYSC2n91GH(UC$*_ObH3_6&*R zG~e}2jZv+IxOpW5dL!`ANtzTfo5>V+6c`&{sU#U4)bksBfe{??>YA*Q4wf_&id!OX z$KEE`@(XH(vE~vJRjjtcJRN<}Hz?_uLoF&PmEz?sDp6?N-^AH3eo1oP`zkoa*@B15 zBro9p$cj3D^`o2XO`7a)Kv2saH0{9-uB|fvbmU=LLoPs`yUb1zY(RHq?rzVlP-t%@ zu8Csf3P4wc>sokzrS0Sq41)%j-V(gwY&#cDun$uyny_Y4W`4HvfH70_G+fuHSxdL=E63yJ zEKmydRG@G9BbQS6bOO{pIGw5FHa*==kV|EgGK+^q)*O`g19)Rq16~DWLD26|U%34S zpsPZjkShGdxxaCB^mPuvSvF9pADF?}Zxs|2g_RF{&w1gOsjo^ZtGJ&gK4~~G{iRQI zljh@+8KBScD?h}0f;larop`vFuWVgc`{YQH1rD;9bs5{^b_TDK(}ytkbn5sJ%8gSP zJXTp7-;C<5UQpX6U?!E!s?Xuht3O8rN9jle#mXOfs|w#6;Ks;JPp5!#6xq~dWX4YA zq@Q-i=*1OQ_c5JgK+^;=E^$R1BQ|3ti3$cIviCZge7?_SZImN2%fc?Jwj(06r|~^a zLk*Np@m}D!f4htNTKPjnLpVo>nvZ7801|!r8{j+ELwZy3Ii{<23{pC3{8Gsv=<@|~ zje|O!Ibjy0Fade{3nNK=mz&Hgw5s^{ln&3M+m7g)LaVv0^em$PqSN(o2ffr>{0*4G zKanSAGxc>~_zn2rR56-Sg%IT94DlE{?$yEZ-PlSp4(08Z2$E8CVZG=e+y? z49&kmUayq!o@YBqjv`IJ2^WP^X}KS4X`(Wa)W)2-Q6Al%0o_=|eE;s_YjTUi*n!&o zm-U$NsHOv&NhZm{7ic$Fg7Zyk_s@7?fxe?t{I#>3m_^v3R69V=(kEXaiS|ZPP3k;c zZ7t!tbsJoZXsjE&ke7>=@Qw+cjq)*H;l*SZE^Z2cr$>zebaacf1hJAF<}}A{hDoj1 zQ@J=7HIZvLPM62rug<=5SCwM3Zip6-8G)W?k`VQEsol6cdpbjKmKT-Mo^<&s6JyHd z=NGcmAMt^V{$RNS+{au8n#^r3xXe*Rxo6oE7D->x8`a%C8T(1h8itwBL66F9900s= z+OwS%K>(<##TZ2{0)=}Wtv*;ZH|nkuBo=#w?L0mua+H>0bRdZeiW^-Y$kl0*3zZik zr;!j*SV)YuYjP8f>tPzMw%af5HOtJ&W_Th!gRE=;Vb(=$GU@Ep^AVA9cpbIj=!+j+0qmP?(BeP^V=IH$!bBpzf6Gk%zZB&kHVnp*e3<{gEJ|>g z$-lWHUF+S7+*o!RENz|A-rU=5F*AG!tCF0=Xv{0Q zfjtiq)?j#N-ufaKDdn@)u-+uITh$F!HQ^Q?3g;TUf$iZTC?WEsF38iwyea+_Ip=3D zOy`S6F!9qy+$2w24wxgj*zmNZWceSn@a~?abbfhsh)GWgP)3Z_GO+5nJsqV$$TXGBGh6aW$k; zlmCZ+1$Kblk15WIUdd_VR~)s=8?Xz?21`h}I4GP^3}w!h%Fm*r!OW4*BT%k2SxL-Y z>6xbNUchy)=s&{x|0?hO&vRp}&e=JP>Clw^;;DXjPT@KQMu-y2qqCiuL18yNoL|ur zpVAhMV~a>kBBh3fu-r`W?a12KlOz6G= z$xCJ0BxyIMWXjZc@xJ;3pC6p)mB4LM+?Xcp38UH&ZuYs-Os`4`ZXmZ%w6Sp>6=<`u zc%uma8|7zc)%FTYB&(S3zH;QyUc5zF5&1LLRL{NO0XPxL3G9MYu;OVe)q+JBYdx?bv+{;^InZC2rxja>=C^8KeX5vYNXYoQzcTT8YfP>AR$VSu+ye zT5Wn`seIGT(ZA=kwYEysUpf#N_>c|47AG=>Kvc)JKNdZ1A$rDG`5WN+p3c^D;7zU5 zqLsj|&y^!U_I{p2y|xr0d8&!LgVL#-s!L2)q!#^3GgZ99?Bz)u+>vh?}G2(NQhqfb0nr<|Nj72cHi*S77>#D=zg9` zxZ>3k?rck8jaU2y*L!aw^@4{Y8C>Yu{M6`G8gC;JInFO)>Q2=Qai>bjkWdeZwqk05 zT&J5aLrwMPn%MJS8)ZS2MsheT(^JbRHt#s76Q!sR!6?mThuxfMy5pYAqwHn{W>=k3 zgfM5y>Y*gk(_<(SG&=}iXzd2zpj`f{*%Wp?+0MOdTtm9iz`1)6T&Gd&_^CZZ&gOpP zt~`h803fl4agtqA$vyw7Kc2T-yv33#MgO?W@i%~Oj;Utk&x5dgxw-S}A*niOuNs)S z&Bvgq`T4zucwo!Gq4U%fdW)Q|P8F4|y%A#07YP~maBrZuh35Hq5!BgzEOdWu{1JwWwGv70^)yG zS!{%XrV-LgzYT+xfdDAAkIZ-*e~_)n&YUpyods<&^v+IjHFBVKd?vmswm5Qd>=06f zgFOEfpHcSc^tN%~6p5mviu7DV2XWzp9p5qvhzBOgtR6oz5C-;d^}D~r2z{~(2|%tL z!cRBrt|ObMO2Std3({teFmRp!s7qBFGqgDd;Sg>;D2U`Nu%_#qm4L zWeO#9HOGp?GAAmU*wBN>%86iip!h@6g%h~;n|URnj^Y`HrZxrVs%;segd%?bILf3c zt-4#8!@JA*!_fWj>;q56P8goYbal<<V)QNbN<&$LvmvU<_R=R`16Cx3vJ+U7Wx96=urHe{7Yhe8q`i4f#Q#S))R+ywq7m z!?)0upmSO=w$3PY_03)9oa!i{974euTR9kV`gxgGiZum2YB|+!>r#SZn+aB{x9#Rb zdJ_R}3b4wY{UY}L^6(HzkCycpuYXo>_ezAj)CnXWyMg^1(3Zgb8vuHLua`HF2Yt4w zt}6O24<}~#$lVBu&03I4pOoEZ$;6mOmVn*W%_?(iNOeb8({;S5Qyahun~__#);S;O z!}vLP$k=MkO@0<3xR(L>mI6ST!mC7E6BYIPGdeY3=4@N2Th&gR{^5?TWU^9$m-b9{ zBKRu1qAWEma~nNl%Cy`g?_Ly`Yn z#cX4B761hD7r_WhKxJ)B7(#cc?UyN+E=^|kfy(KmQ7G<)fy|EEg9}1FXK3nd5G@>*qwP_c&@{Q9Xhh-;{RaEJ*2mWL~PK zidw4od5itaU=+|~O#&H5e~N4u461i^gktW8zO-sbI@r-#af8P>)jmh@kk2Q5Py&B* zoIQMKql56(yD;~&8O0e$y#sfTyJ?CbaiVwW1f2++8HVU2qO-@53H!1+ zlG9_!IRU9YCL1E38Izx7U>>I$E&vb*_E4CXnKqlV=hKn>;RGd%IkZ~45F^y9Kl?wb zZ9lA4Uq?L{)I8)ei5=8qHJMjQT|P6<6JRfMKzm+R(v-|~S=A-*#x`d?#w<>)txXC` z%*&37ZDO{gX{BTNSnbtu6yV9x$fD#=hgZ9uERCq9{Ygz+IHV`*$K#&GGuT549gqPj z=WCV=QfoD6j*t6D3z0vV22Znz2sEc2pKqkbU^!A-$)R28!5iNk6{YqC3-d8&%2`#( zpMGSWOFYR}Ytk2FmMvm2$ZH)en_)kCrqd3YGci)5({6P~i*I^9{H?)}56~lo6xa1o zqq1-)snDxHc@ZggFXA-~_P(MJ5vEh1&YHN~_yJiNnrKl5$6gNS`X7HGSn0CkaSs=- zL*!5wE!AU#<@H8yPXUX&H1r%k!h?oUnGZ8eUZ^XtsKtU2QL(+t(b@8tI>Ts7u!rhiiBN$pK3hjsjy0 zAO-Bi8p))Z#c6SbAZ_Ks`H=J4Qxye6z%ZgqR|T<-kMq{u60<5*-{U_jN`4S1cho`z)zxCKsx9k7sfsIGl2vhT1V@Nl^5?bt z&J!5!)4wh+Kn>_2Rdi02b55GVkDdAISR~Q6ACevPEx>t|P*%yEW#&gvlW=VO;`-TQT`h8x;)_u7&W9coEO~qQ$;NVGiLc7`C>(L7T zkZiys19)p|lV#Py6`|+AEqsT%BB6hO^~k_T-xd0k5U#DWxH2UFOtP=<<MTQ2-w?k@y#_4-l=tyLmPKiO#9wscR!Q0J&JRo z^SXK)!Hs%Rgdqv{e5sPioGsd7MzP-LLp`U}YO~?X`kAsO4kX4Gzs_-17uZt6R4s}SV2F<{0O-<@p&9<=kPN; zZpAiu4(XZh9DU>mnQ)osaV{0_Q#>Tu^~XGOB*RIW8;4HZ%fGpDXN2w!b+6|VvSn3ppRrMu?}io>3m_jS;mu zaAuyf-HRjOsDH|Mlu^n0U97@jMISAB2$o_rw*n* z`wU25rgumT#(sQg{D`^KgppOstQV9Evm-jPh=p!idL>{sAZp^vQ8~W+#Nfe`EIA{M zx!hhx9bIT$RX(hf5PbQb4Qkw(?CCH=tQt1wxwf?L3vKDGAU{eG;!&5iR4uIzRD&f$ zpFWsw%TzCpUrN1>q1G&_W<r>lhw~t%#KMj56%__n=drxL zTsW~YY2P+dzC6jch*XFqC{=Uaa#-Kvak$!ms<<)i64$CGK1&;CU%JpzxmrRplJ_EP zQ4o$X1!r`0JM?EUH!O^WgDUs9#AaU94j4Yf^zM9b$UCfj1fhKp6&o8jlDD$*nsz~A zWbQlWEY6|4wjI)ihld$VBb>`^Z!BiASGd&L}5oG(W7vTr7G_9d6* z(dxPjjh?yrTm4jO0_xBe73#!u7Ox8k0>~Isxx6cgF=3_Iu|lrT+uDu-cmg8y z+IT4SZr?4UliEUL5{j%rTyi6+xBQR2ZWDnFX8?#SptxA(T-PSos0}U~z)|0pzfP*? zjK!fi(HgABVq=#2(FnW?n;&}(zYrY@D6p--kMxg~`dkIkAY2%3TNr21<+dSkS@40@ z3x^T@aXXC2NBPxhGex-xOlP;JA;zLkWSZQ`j55YXXqO*eif-4iZ6XP`-9u>aNOBn zeH>41cvgafQF0KD%>JzwOhoosAFcL?r}`Tn$o@25E3>2YLp#g)MBjxIKmdd$JwP|A zAdd2j9v*1vLv+Y+fA>&g)t?v!p#R9}{V5{*_dKJz>n5Lnh}*t2Ss2ama?m1cEjN)O zp1;-dc2wCXe5fzltEh&-wgf%5Fa6KgNIBR@=rU~LOX+IrC~PBwr#y_Re#hX4N9a7j zje{SgTuF>%soqS5as3@>hG?Xcx42Y_PyA(-+SNCFClrFH;6dd^(_Ak4O;y+0z}CVc z=A*G}dNB)S^MNeV#YW{Hs^PIZV=chSbxhDVyp7z_H$#D&p~`qg7HOoF8OnXa>f~u* z_uNZzj2JaTHh*`}8U=wB^QYy!N!^(@&Y?J1S{i?$DCrP2rc8a=SZuf{7hV90;F%>5k?`12IE z`M@t-JAhNcpXR?E#0HyA0s$wj=$1m;ycHv&^f1efc#8BX1Ow;u?}#<^0C~ZFR4&x~ z!w!$dp2%GU=cx=@1~p;eW`|q}>+(x!RZLRSnY@!a8r_A@4l2`gb2oJUDP?%iNXl&V zP_2_vGwZ(`=TY)LW=^}-<%hFV-cPduk^kPugn46)zYtQFGA;$&{$tNzjm4SnAWcGZ ze+16FJ6K6>G~}h^q-hCBzFa!5v;cG1K&`#p$_S!bKY$)7U@bv{3VBPe){SDA{D_Qbp^{ z6~nQQ%oh-0hwD8oIayHk8$d8_ET+_Az|LELJBz#afWtL^SO1Bhv^MpIDniWzmn`Yx z1js*ugv4~W{X)=jpuCZbdvF*)vyR-L&tH{>Frm_=@?q8BxPBD6K~F*JOr6M!yignC0t$_JQC;14&DQ@LqoA{Gs*5 z4()WRZwfvSIn9&qsDYD6v$b-E1P8^~9sU-$(@xHpAV%Ve2t8yIJUYJZyr`AK)P5}a zZV&hTOeCdq}Wwj7#%-_S|@;Brt^ z)QQ6)^8l$FRA1z^<_rJRJ1OkXi~Sp`2#mCyqs+Ca*iz9;&HK3-$_^Po^l}(ATSmZAQh5iYmE>gM!g0RL-n3iZ!gfu z!c<$Q92Fi}Hgnf*D1iP^p&+^wJowiBOOfK^$O`-SjGtlXvgy%4zI zgcc;OQ1c!Cbh}DF5qsPr`X-?-cMUIBd&(MTM7#MF?IU6pyb8RL>vym{NZ)Z5;Qx(! zK2CVKXWu|2N-h3C3^j48^>bfEJ1m0NTuD`vCe=t!OQRl|rT;z`R`y2lW~vbGn8Xp< za9n^ZBaOJ&EXC;_w2(Qp&=Fw)>kl#os-q#{;(WFuG=d*1Jlanb)MibEF^_KE2Qv>J zA*^z&X3=_MSo&5chC&Yr>}3Utn}HGDz{wRC7uyyiU;I$J=hBR2(@<)&6K$$ASZ0Zk zY!I=3gu=6V+C)kjNS?ErdBI6~IlH~yNwT?|GIggb@I^2Gom9vI2Vi6_tnwGLb1uy~ z;X^)QtJfDSJ~UGF@w=T>Sd5rXGg+lR{*tRb>u@%M4Br{e%1W&wklacv{jXOdg45S(9>r9K^Pcu$ZOF_(?OY9esA9YgfMuqoS1D==0)sM>lsp`z@sx>uE2A!*8R%sqC`Mj z-wo$NLf*4#Q>n6=Z!#j-uq*#qC3%_4yRECcS&yu`tYt8nmNJ-;Ip8hN-++OI*WGOz zRMwl{I|sMkC_58WQi`cs(;V-=ej{@sL4uVoT9jHGm0>rM)JjMur=b?MXxAg1YIhvV zd`hkw`Z{S)?y=Twr+HPn&ZWl0+{r`|4So&OL9)*-*kSgQHDy(%@YJA z)S=B#>~x()?%e3`M%R=g><(kgj60^-@(|rOaM>W~Z_Jqq4qePMr9oFPA7_RD_pfr~ z<~FE}_%by9-XEd`_3Rz1$*mcKFd1LdiQyN;B#4)xG8aI!?j!c3gJ}C+gs{364?dZ0 z(0zFEYFchcquOt?GfX&3j%%!FDp{iFl1HGNn{kdfmHvyGWKuH0$ObTzVX(88^Aq{t zajBtJ*q|DV*3@(_Cr0KMClzi~^*SagRT=BQw+eGnCyw#5Aulj+9E2SsO}l)0UK_@GujW^Pw}*wu?eL!WXO~#z_!}^eP|lz6xnW z+12QtmaiF>iquYIQqhr+#15Egu5V>d_+#2!z;hAL|1ry)tdG34($BOfC<><~t0XJI z5!Q>BzA80SeLDFWS1#B9V=jG2jY9;l4V_NYV(JA#2)Qb*H2CYfg#iqR*^9+KIM4%seB2S;Psk-fMqBG@4MKBPt$ft)7J&+us3s8f>RO;WjRwJh2~ zjw9b-MukKBrX9=sw(4g~k?Mm5rh4N2ljP2tosnPdTR=sp#L&M8A){An4$%$Fi#~!_ zv!>|Gm#5 zknP^svSnO>H<+jh-B(?v)1nfB2SF|5x&3nJ2zQL zx-Li$?5apJ(Z1}voC1sxpjUReAO*33If9C6APD4!`T2LaRP1+jvF|7D9|zcEbO5Ns zsiZkt0xu;)j%u8CV(F^8=J0B>uC}D>b?r8L<#|=COvEMCA)R8pkhee~!T6AR-^o#a z$nOv(9W)+E(zCrE{)3EzQw6Y)GizZk}D)RGnTPe!}YMf?0lah@3W1pE$( zwE~?9`nS$R`ZZ|Q_<6r4z4`ZWCs!uJud z>_Bpl-;L9;wOzY5@^3~&jV(HWrxn;XtD9a_^>kqPaoL0LU$4~xnm~2$v)-&B`=6F0 zDvG(|spqP;h0S zHNT?zBJPvt=J>vcPJ)B{k6P~G*S3s70Rt*KU3q;Q>g2y~bIAIw{TUH|;nlsf%XK}L zdHgGUsj@7Z2&@CW1Qh0pS-RWJAAdpPMSgamb8HtbFYP^Z?}Wau$!|iVGHWy5uuXoa zLaCoC`z{<*^ZN!>yo&yXFtT!dPY<9GUaR2OZ|dic9blPrmbIc@zbQ&x9%69>V-qL& zkkXG!yOTEe{Y!-7?^b_*6|ej!S%uLL z>*HLI>uzSc5LWkpFHveo_*86Si;S1XJZe^u>t;w=ZS;vpxF5K@ITMH~4Y1*6Mhu_*`Zv-XOE`mj(a7*z{6Ru6~#k66(T0Su6;!fS@C+4p3 zO6d84%&Rq;zO(wHtReEu@m*qGG-qG1<{3OY=M~ykza-r4al6ZQ0b6T0Nx3J)MUu=! zOW)gCR?w}!o~K`CsIhV>=o52M?RDL)BwYQ|u?jfy(2|e{U6@keixQ=Y>dn`b&q|{s z`^M&T&202u4n6Elw365xuRJGAwe9_*?#VW^DDCrJ4qtudytYyOK@DLU2Xb;F6mwjP zCZDk+zaMdTL7hx4+r`|=XPr~iBdR zf-fl5dGu*8WP_1aQG1k`$2NaFNe!;17=jc2ws<-55#?-^Gw z$Ldn+Oy7xfAv@zK+7OR_Cjenc5M@SEq=(&AhgkU0o$=;P_?W2sL2R=p)b+p(k0UGm z!=Y)C6+t(q4q}WBeEgSBhh8@Im#>-_gNX%vh^lE$?KL@YGysjaL)mqgeD{nK?@LKr zPnf?Y-hjv$I+v`uh+eyntFTW$>ck@dE=w)7bMejgTNaU&=IAa?Zz`>7P2Ig)N3_wJ zg3OzVP9D-%D@!P`i#u?jD#POq6N3V-({~5zMc&BsPk27F@9R5Ph!(aH9_~T1#X|KsZAx(CW{lU4%m8v zDRu0;d@qPlw6UNZSOg`jJihluo~&lC7ZDdo@Rf8Lbo)tHjXz`W*_ioUmUo9FQ z|EisB<+b^g6QsfLWg$lgw;MjgSgSu#HejMe&bO@#GM!D8!4f)+q3Dgr*};Bhq^n0f zYG&igPWqHJ8J&r&_~DYYF~bH+RCfsz)d=pFKPA-4iWm7=IC*>$<7Wbg3q9&Y-Fej< zhOe>)T?51DVzaR{8pG-R`rP~8I#s31(xi5CkW(3?;Tk_Tebp{pQHpdQo?8AZEtP*$ zVfAAH&uGUrcsYvL3ChG3L%P!Gfpt>u@N@mCr-&zsIx^)?=%0KDEEW5mFr59}j zX0YA8CM7>ox&&l3K@mD<=DV@*GKsZJi}l!Yl6QQ0Ax|o7C=M`2Q_m0$5#E;&nEFB} zbSioNki)(oul&;T!>(B6yi|fk8eA!9OWIt<5?kzHrkQUA%P3)_hmcsxzVwX0u|FH5 zlBT~(^~(vQg7so`!5t6eYvK9Xo~aTIV#wk=@wV6ql|yQR?`ZZq1NxoZo0wuRGT2P~ zWj|punq;ZF{xuBycdM;`1uXsVV`2<3Mod%(p?-qKWio0HbB2iFrY+Jw7{jGFk9>v< zAhutP-SerEOU&gM-aRUP+w7S^DEpbtl|&_4I9~pY$vU)DBuG+*5U^Co#6W7N;1o%q zgSbMA@REZx$Xr#Sd{;481Xl^WfG3101v`g=vL0=$z^bYBdC3(n5lHJ;sY*j7FsQDG zVx|y7TYHNxslHq_!&&Cu3}88nPX#AF5b>?+t5(2p8X@Jg@9TZ1dC!MyLB)({OqU-> z433|)mnBTVXr(=&nVeIK_}%DKoR)Rx0#F#iBv47VvDwiuLlTOL-*T1xvuY`jar#Y=v5RDQM0TMaurQCYH!)Y+j zP3C;49A z=JSrrAv_A%8hiW52}n!+T5<8q;R>hDN|@T!u(Ew_hp?M1ee`SSVjinhotZT^p4&xO zi@tisx9Q+d7a!RjwVt0%h=vmtmVF@X>F_scV{(?oGU$!C3GD7lc;`oA!#cvD3nn0!q zX4+-o**Zd#MPvT#+MQNy-MSj)=ZT`QN`%*~=wYj5w)cz#H10Nq4>slp!4PvdZMG7X z%7yPj3dSGCeRliH_4_$KAf00T#82$A<`&;qYTa^|v7ldy8G;QkB`V`}BUCcuIZP^i z1V7RB8mee(>x>`pz*izEVxoysm#F*#71|!a;ybP3q!}VTs0?LJN+yQNu&$av6_9n# z5mg$jY${`E5mYQM5D}F>CGVWl?iB+A<&ypz%Zk?=yhi*gRtig5hhHKzW&7nQl`#Q7 zsj?T>nc{f-H%`q_jU=j%g7*9^9`_YSYjey%_WIv&$>Hj3Y-u`szvSEjN;)y8Eng=| zr*e@CWk5Ydj3%m8!%5TE4t*^+cn=Y4EL)<~T9oZ}8K2UeYLnYDue`3K*eM)RZ`yHT zD-IOO%Oh|s_PzDK)qOIcKUKT3lcxC&$1_N8ejo2q{Y>1cvvBasGYOzp6i61_vOPzX zJP!ThucN5T*%6mH7#nrj<+eoFHXqnQ)?K09lq&Zq(xpaWsFHhV1lwhuC%m$eU<#!>|nOyPKJ5a#Tad8LkF(9tfHo7_}38N z-((p>7al$UuRj^(f=TkopU38C{O^FY8(H|OJW406%6DB*;m)fH0e(9&ZZ32lr%X(Ggq5?FNfkqbI)Qq3{gsO=jP1Ce zG52JYbc?`xwietq8QcQ&cBdHFZI?rO&mCj*uQMn3y|sUa=(M#FS*ZBx%L}mhAEZ9P zQ=XI}mv7h{cavBWt%rUwS{V$R-)F1T)&F#7#ki&yNp*xf-bVT5v?B4Unr$-qT4Wt+ zAkBIWvBQb^6}~eNSnA%eX9|1LQ|~{Q%;P=PvNHWzA@tkKP07m5Tk7^? zq%nLH16K*4k{U^M@=^%zO2a+94-esqT+x!f-P7uHJ!`pbS3SKLr0Ii}ie9^x7%vlO z*?}GQN`9^NYXrorj|A?J%}C2T(sptEdXGBX+*E^ zOZ;tCI@B~sZP_+`c&q`}rfUe1ONn-Cpa5J{L}0ut3aYd8QF}#>79AZ;7jmlowU^l4 z8O~M)rg@AGu@%?vfC5t!{Cx914g|JN=esqBJ76rU^i^&)bLvp?AT^~VTD4aGF)nW1 zReK+2y7v5|Q>zTW*s`A4L0f^QQBjKb6$jHko3V}Lv#8~`yQ`)>T`=p}@>aaTxp5ym zZ1IeND63beE%uL&rI%rAh^zKOQIOir#(2qn?1u}nHde)FE)jYm-Kj>sHXkCi zwQ|wV?>#c-iF8s|XAf5CAW1{Cb{2X;e12$E4JsO|M z(~V$VXm(G8Q*i5g28un})obK1w99e_hrv!t3=yXxL)NhHYERm_$F@OI>*VYwrO?&4 z;bDWCsW0UNsViNj@DyRZ6JM#B@n|*l*&MV*89-9U8GXNP#>Df+RRi0Ghgg4WC;F#{ zw4x-R*p6gWB^>+%mZ`AbaNb$&!FGz`ZDw&VM>Rwj80xIcRLC)+xf3QfJZliNLMK}Uvs)aXP z5J=N&WDoGW5j)A(CfPn4s%h_*HpE1<2wJCE8z&IIaUyj<-ggeO}cHl#`5L^fCsDhpOIJSUZr+AjW<6b+CTA6*Y}k0h20)^+rQ5-?OuSQ zo)gCG5{t}Gjm(TZ@nl9H{)T#Qszz4rv-I0nDQi4Ad?~E8BCXoTERCaQJdApIeA=wq zEue+36AMs$HU{~K8C}Q2P2Z1}o-qVfW|Eq(8w6#*GbDt3jctq(u}m?HWkbZTm7qeu zj|X}7aDmj=sI(GD>D2HMDt{q3A(W3fv=7cpPUD7k20=5dfZH3(t@8#as&dN?@Cc~o zri~Sf1YBcckID=0kxd0Xl}P<2C*}xe6elOfPD%vr-L^+-9hBZV16Bqh9N)R$LmKVo zl90t~T(f8yp(AN1#ykjsT3ZB9igA3K~tpDyMT9W zb<&9-lM5C;5o_cNuO*H>)KKhFAY(y`=i`)dBI8O)CD2r#yv&L~^4N?6unu401gXg5{KQX_5EWvQw8(TX~ zVO8cRh*;yl5b$V$g4l(9Qo13u$G;E=0rfKP_Cxf$2N|F`bYsY*FOA*I6Y_r1k{a`{ zt~U9NEGW*oQq-B)T|(M}!{iOkNEzMf!;Q&xJ@Q8$PS~uMGWbo(qte3`wXK_5u2geen5M@gk^OgZ&(wer$NO+T!6@9B{&CHnSYnC3aKxM*| zj+?M_cfx}47B0nq26`Mr%z||f979&>$0`17a6`LWs+}y_4cnP5xw!U!O=l`7gK)8< zg$-|HKs*}2;UvE?)FFyI`Yn)ipQ2->wVe`F|5Q}MHhMxK_iO?BY=44JdmnQ!%@}>1 zNZ~^B0xdM-k-jEA4wpEyO5{R#uQQBV&f53eO}AC5aB}DnOX(lc=px#7db>eTNH!BF|>V4Bmu=env za|dluZxE(<8Pj?9-+vXDV0YF|oiN7-O8=7F3WKQxv2!9m8`bQx5kD%>9sgQ*^SBgQ5~-n(Je zvl|#i**QDEv@;9PtI!rdd-Z&W?^ywYh(IOnh({#e;xHu6hWZ7V7LO}6yz}+o*#?2j znxhsYTx7+foc6Pii!0<5g5!=1rUI#Dcfpg`Irl0iP|-t%X$_ zO-|VAK)%cW5d9YD^f`^EI+vK|7lOKPQCnNigsT_pw4vLDA5ZLU8%{H0aJ=TV^-9KI zn~(a7aTnJ{VXz*33kI!g5ZlMEg6?(9rK_IPsf<=>@T57NjOnY#u>#vSUEKu~d~VYU zPZ!McE{h>x;z4yoCD$SINOqCj*h~vOQeFha<#n%ubVt^3Hmsk|YB1@78@N1tx6|fr z7gG?GEtAEuSmv=fn&G{+R!L~n~W2N+#t@wlM8I)1yQ9CQ@Jcmkn3nP7WACV@oNc*s zOfsE#;?g|qSmAu9i_OZaMY{QNTA$yOWil-n#1;@Kr}s_m+Iaav^_uH>$Aioc(}%0+ zV(_I(vc)%w>6h|YVvD}br;Y(uUc+g7xC)?j1%lurZrIz#K!g_Nb*7Dqj-kWuAuA8> zR!PC)jO_rIRVvJVaHMr&QQ||^wpyG0ykk3$W)Snt@Wq#W5}MAuKAI`O8JOCrS_xRU{qZDAmysXzJe17f zb;tEk;?zOCV>7%JZtW2F+St9h+}zW$vza!BcCAcu-e^S>3M3O#1K zASu;u>N2o=6km%5sTeNH1R42as@R5V`j;(jHS~zBSH;QjxXaNwTo#$u|6r!P;3I6! zt!=7_QcucxL~yU^NSg5r!8^dJF0Yo_yfa?BV{2qD6o5trtG-xT`a8p)=VB~k@a4+z zg~Q3C^+(r;j7IO=1dfW0v^`vjIk}dkhJta4QEyGQn}Ug975il!!RhkAh$(Htg`%$Z2c-|56pyGquISg$crXs>8sQ6 zVV7scUb6dwIE#H1|2)2L1eK%D!1>aJXzs+V}%1HMo<=h5OXi^EE8#LwwpS5RCE0Op@4 zMmh=>#0Kr?d9jknm41!+tW~{RPn8)p-Z%_R(J zoLU|Z&+Cyib7k7>r#v0fH2oo(;=WGJkNR^M-lcC?%v#jLoj^MX?IT>uZ+A+bq}}KH zVW>byG{ZZ2@lipK?TeXg9Xmw2<6A$Y7Ey+v`!zYb>rGx=UN!H4y)5DE7L38p8I|~6 zk21czI1NeO{XUWQxSK_TW2(K|0B5ZATY+rl{E5;MA%8{qj(pymjhb&v6qc&rU$G#J0hPmFq6wl!JD}=7 zXcp6CJbVH$-HB-EBWmG;79mZ<7yJFMuSreiC=FYto4W!8cm+sdD(138_#T}Sh-jyU z9G7pPQKoMl#6M(J3$?)6IIKFtR^sGr7)o4g;v)rve9S3ye5C|2$OMe9{U6LK8Zg*qC1|SMq$-{Y!{UJcNKPP zi+2cK4Agv^8ZIpM^|c>e=ec)h*p{El&_I_{7+oY*#*&9ZA90PCZANx}nHLk^b8sVn zmfRT3_Ou}*31{`O`fKoVCm-`$(F!YyQhu0N8TNow%8M#>eIMNoa@oqQPeS(sEHn>J zjhPc@HzMRE0F&U!;QO5M`R0e^AsP-s%PoWGs@+zqwwwHStaa=qaGvb|9@peo+(N4{ zMDvN7EXq6x3}T^SBU{xRlgU0IT=#N29Dy7;&ZOZqf>?5>^9VMrg?nr_{syO2x1R5R zYS_2_M7QPOB{>QK8%^3a$Z$jQ*aa3zEJSWtP}tazyj-mGuB_-PsZ!v+I(WT3tuQD0 zzU~m^)fL6mkArO>ljcFj=WlvnStd;oHtk~*_(*Q-7%-7aU05cVvN*Pd==?%pbkB@7 ziFUg-C*9KT?o_U_da*~OeOzIfz&{hVt}nOk2Or>mO&5=cW#3z|h@9WGQM0BBuW9ZA z_x7gEv?+^}ZcL!kfP&v!z&CrlTrQ#y?N@6?XNuE98k@J|HYJo_S;QEBG1$A&Y$d`7 z!W_j?Mq}=`)b}(+qv-=n_ZS6!f2ZPyJ+{U+Na{I^d%+yzd>e48?9Q z^LWBxWsi|S54-X6cHQqj2_$M+q#D+4KR2$CnsRk|Q{j`KJ!9!Id&r0N!=31x@&FGP zJrZ%OaTIA~ApKQHc#TtKZ-lr#=!1b#O`2>ZgYUoxK^{kYbP=KBsB)<% zw5&+)SgVaj3968mk^vvdVUm*b94nDoKh26^`_f1RHaT8`aw3@>GNziZ-4XO5wT22d z$RYw`XCG!tZW_{^@EQYK zAm=bzZl^77)}msZ2GzHALS0IsQ+Y17u8}8DVYClh(9s7ln@YAGQy-Er15;@t=~L!^ z@%`(HY{gBh8YQ*KFgxMthfik<07HwK6G*u@r4&q(Rfntp!|`W=w_y3I396X~O+?i(hH zlwqfm=ZezuVK;|dhp6Qq&OCzx;QH9{2sJoPaA!SjbhT zB98|at2BN4uPn+;|5PDtW?WTTUJ>B5*Z)+4@_Bo9ItekyPgkb>!6riI!6(9z0)Wy^ zUZlgSQcoZ4;)$dhIZ*rKrHZLSluEmkc!I_UQ zYSMzd1}hEyaaL@Bb@0B4BLt{&W%-~vXB7jNwlq56S>jaue7_z3`9;Ccf`iVF;z6C} znZ{~8IZGN57Hz2t)Ba9J^!fG`^T{mWX{c*4sao3?@IYlIV2Rg%R+3xfYWfD2GdH*D z;04i?Ep5s8hA*?r8eGUmZ!3A!dxdzHU9Iv+zoRuGh)rFPK2gS8xkSjY{=K=fxWAb$ z;j-ltP=~_#uFJ5?kE?9W`(sw>>3?@#BE z;t77+C^H0UHpL6A1JLLSr?sON(hWV6goh_i60m15CC1Q}ur0ZzWf`_Cc`Ksco2g|sj z-#4jWxm<#qT$fheZV{t18S`<l zyCW)iP5z>C0?NW^UJ1X8G_b{RDDS3 z2uHcx`J(-gZIHb|QAIEFj6&JC>t$8lN^?V(Zn&Fv zNC8*DqlKOkV7=^LHm|W4D4E%YVD>ogz*O3-TAM_R2}RTGe-J(=B&P+;_+IH-OfRx& zUk=~ubwx7jPqLMM!)5;&IE(wRlfjx!+}pCvGO3~13bW`tpA&GV?qrV$pE0Z_Y`033 z?WH%LAh_do&c(7lD=*#moab+l<2fwzgH&nQc zYTS8Vo4jSXjb!2yYyYAaL7W#A2p)fR(K0^mR%vt}JWYFENAQ7o(U6cUVg2PZ29sdk zOKia8Z&`NN!|P?w;O74HXgy}MKFjVyvrIXCJ)KkM-7AaDD50S4`kFn`k`i#LjEe=X zt7hk7^QRdU;i;Z+#?wupZhN(i)Z6n}myuh>kiA5gDUaia?Rp^F1XxW$i5>nBt4c0A zJ#4$Q{)~F4w7$o5>$}b9{e=+r#^sti63{}|pR-MdY}N;gW{K@ZniT^pTpfestKW^0 z0=BZ%L1;^BfKl`Pa$|<38+CX!O{yfRBpS$h(8{4xX}JEv*EDS}lFx>Jn$%GG9l6=z z>0G=r{2+h~pnUxu@xRzL7<9{~ibn(qsC*cbE8!4*+j$gl@zOQ&v(oI>md1>O&s7%C z)ioYWI;(uL0biL%h8*-ai}NWIPvo1-Yo3X*IN<3S+wD+o>bA*lC(D*O<<-^IS!0ie zjS(KNZ(z$FJRvszuJO^wBgoF>!Yk4@M_|*QXSo!|Pw3QbC|-TEVJ0f=g_o(j8lb68 zojdv_&6nB{>8Dz0r|^P`;VV85{@_s96qgR!&-bJunY@_7qet|8dTQAETo;FXVjG8G z&)cajpfJw?x}Tqq^SaZ4b+;FQS4FnXsrLa|dB8+PG7*F5EcA5Y+$x_a>eT2)AkCkgmWYX+Wp5H&j*V1Pr z2lh5aegTBld;V|O$fUbyo#G({ml_F>%Z+VGLt7tp6p?hAN>Eup4y~?Kf)P*pTYW1Pxh}M>u`TxyMj z_&*K7{8#cI{!fXG|CM%H#TtLhqy+w4B=z5~LiXnlHUAAA!tVy{gWh`c3jHZO{5vJs zzbq;LZxMk1G=1%N%UV@1iUj4X|5=yWbHqZU{7*GZe<#TQCs)rFLCESq=FNqS8*`9pBCDxF zFmmj#^E2s&1sx++5sfR55s%G;`6JOUahw=5Ib?ZFS(FP^I%z8$HHmB0T?Kq=WH7a) z3SPftD<}p>UcwYipeYq1rQ~z`@Fc)BYiIR-v+ii`=;sgDY+;|BiR>31--Ko6y>cfZ z85u3!hl{laZG<4u_V#v%A-mB$uM+HyrKKhEBSZsSX!Fuxq?syEZ!=OyTPKBWvRHDy-L33@Uc$`2KJOO8Cf(48|@D%GB@vYhFYvz!u)(ST$Z703QS zWq9l=uw|>-bCTV8!Xd8ux{W8(kI+%OeQ=;-#rc8vDsziLf~`uipdB+q+NW_MKkbEP zAzvWDNfHMn{=SqU4`(@l?0~v!@`bu&(fw`H=y>g*-kpQ{`;NFqo}CQ*-jC&yY{lK@ z)*6sen>+!=t;ct1%zgN6TidF|5-O`mjbb$Mn)z?vzRk%g{*g?W4vDFanG|n&Y7l+c zr04c+x?lQhK7cwrnE=& zzlORA4=MuH^%l`Rva+<|4@Z~8+2b~I<`wGZA6`zNe8}k*-%wdMnp9L&yt}!GYe|Lt zFT&n3sE)3S8YBdF3l`kn;lW)m1P>P6-66QU1a~KRa19XLT|= z{t;65wwyk_W$m@s=^MkHyrY_=$n%QXzi<3luMwuoGDfBa$u)*(!0+~>6{q{;V9fKX6ag7fm$L*G+e2&1qg~ooJo)+&H3^R$n z6_Jzn^?k_^_-rbM1J@VM|5zLsi+?;OoR#zUVtc5?VVyT&$A)<#leMkjl)0W|OdMC* z9t&k;cfHHMT=a9p{hTONx3kP@cp7WLsmZ9@e+fH#dvRaBBpMIqr_{ybGZZK@G=(mZ z%_irG_^Sre$UhDf6lVuQgM-3D5*5|?R})W$d;7#QDzmyb`@#kI`I+9f%U(`=e(PE9 z9M$F_mQPMYL&L$zDaUm%;#{u4mTdhN3QE?(%gc-K{d?@nl;ti+GF#~5`~I`Ly`3FX zm_RaUD5&@XpQzkqrI8epxYEMHUXH9!R8HSJNL4$${D2~u(H0bd9sH$q5p~+ERlwOnq zoVYTDo|7I53MzVHW5dwX(-VJFmb&Wt!Kb020lb*=6b^h9(0jEvCC4~NRf7Tpt>Y*? z;tsCZ?MzX139+OGU*m(Vth`(fy9#^`WgO60-`2)YNlB^xR-3Lbnx>uyd@7$!R~(f& zV&~=U{hpA}RWHswf-Mn(ABI_n3ciik#UYL<`SAJkU8nC8#ce$-qDfM&aNd-C3uVo} zyGxD~V{};i;knTr7%^h#QMD7pVay4RBRlBNPx)1?XJcpg(@n^yMww!mfchE}3QClr zz;d@(K20&37t=+b00FB`0PJ2Hquh82lAE2KUAAVJ68eCqOGA3Y81I~_X%qMw_pKD8 zQm)|A+S+8KQF5WlBn4_;ZDrhGhR5vxvqKyapYzS(Ps>Zl8yoCB*WMD`B#l8hc`EPd zA}lZ~L0>I*dxGJC0UW!x^Y~XK@2bitYs}_n4=(?a?al{RnMIOf%*xDcYj4;7vo)Us zV_A#=Aw*_Cgn}|mP;RU*DA+vx-QHGhBd^b>O}FI#zZo8om>FGOUY3a?sng(Kx0x=q zrfxmCd$JS5ith$?B5Q$DRasHt^?c9X2nGR#L8qgwuYY>sA$P)@Ioyi%Nh zTQx9$QAV*|Rkd~E`8!u#J zWH-HVjUcIBHk4(LKTr5jP)r|is$BVVrgDW=>dla?iYZ*CA+^e);IJ{|294XhyR*eQ zO24X|TV51!CZ^9|Z(gFi)8F5!s$vZo)i}NuIa+-Ov(Fev)=V~X3mf2RxG=iX;&8Uq zFjSeMa4jH6-86f4H;z1I z!$nCb`|m%D8fTMgOk$~69y~`C*7tF|ux1bAza?6S(5B}EotEtEYra?E$L&{fSe6YM ztu|Li{z;lO*WW~SVEA(i6=3#eHzhPQRKMm|Wy&9HvZj9z#sUTtws;~Oo%HhRN=nEk z97DtJr<-1q_}S)ZC9kJF9UIz;ci_(&kvJdw5)vLL}b(r#dOQ<}{M7RYiHZm9=$YpMjOKfx-H(U$lq*e_ws~rwh*3yBt=UCrCqJPUp+joMjHV z+1RGn*Z)3TSsbp-&R%W}M7!)wzI*qMSja0GdTnj(6`U|JF%d-i8m+n@;SRqSFA!L- zQ?d^Z4;ffkfIU=~l_B^S`9I%Z^oAn8=dtDWeQe}y1U|g7yllx-@x$$CVXjo^xBcB< z?0dN{T|N)uuk$~Dnwgu|I|_Q72MDL6q(p{X?2e_W%Y}k{?UozMfpN67q|u0DgZnH> z4GswG|466U3ym)G*Hvr4wrbzL31b*=A{JCCe%S$taB-MatZ4&SF# zoj*G}=QjbV!Gfil)EZnEq0#0txo4}bNxh1gUs>{meIN5)_|Y%gbhdegb$h81CE3-8 zCW;XzVAC8CTOcafcuW&!Oy#=p+}wDxkCby<@;P!&HH}5%uxU<>14!>ymFaWDak%?N zR~<)Mdphn0&Ng4u1x&2|JNuZu{;)lC_qlW3Wzr@0Dtqt6XT0)iwpjkSF~R$^buV+# zY%L7+y>6k`&7q!5ez8u)?{N*bzqCiQLB+N+d&VnBb*d~7C8hNi2LqhJuA$MD_sLd~ zF+-dkUN?!iAl4Y{S7kFv-5vdM*d0w-eV5Y-k5HY(X`x6*7;v=O$~ljFnKHf#cFXHY zUG+PhF9)mi!d+2e?)GQCT1@5Uf^aM}c3vQ{(rDG-dZ6lg?{#d@Wc}0otfR$zB6Hd+ zOeu%|=K5gH;m1W-sAb+4VgbcWu5zhp+%*zm9}f_^YfX&&{9YI9Oh8OBC=d^2?YxJ+OJn}z4$2d|m1c5b z{xpV<5Gi(#^9@37YuBR%)H4=?&PxB+=Z6vw3?h-o{jVFCIsTcV?DR9Pf8t*V@>fliPH>yLBjWWne2zEGMwYjEe5$R#4L_a=ZL7WWPdk|<2m z_p*AtK6tu2EB#f=3+)DSlREi?s_drzPmeBSJQk|`2bD<;?5V{ILD zxe>Y_)gQm5W+VvNYBgHU6i9?e&~I@8`A^2q!(JZx6Z;q=3_D`aC-7(;F$-_b*4M8z z4SYidba7-0pHi8$#bXJhg)MuTZRs?tSATe3!J!eA`Hv>kGl7w!my1gb>pPl0r?ZGV3foEm?Y#R~R~}Vzo|hcCrKA^o|(Y><}bq zIuSe?@1v>~h25&Ho`rev%5zG0P=z)*?~aaaD>5oOgs%$$5B>9Q;6q!<3+ z#q_D!c4y?<;pmFKigc0`7$W1gk+Di3*=`hdZL|wI>l$VYPCx48}t{^m5#Th5_ zxirtu>raM-4@w&Bw{F{`be)3p zC_FletJ>kuZ+I3s{VfX;=t3bIATyfpr7&v7!1{horslSu#}M@AAW>ufY47MVpey}Z z#*Hwox2n>htFxUfCMDB8n@Nmb*0SCG#5vl)=VD+h{<)@MCIz^ZbJGj1saYMgnGUqY zzUUTkR)Oa1WH^ort}ld(N@SBr!cpIA;53;JPfgtw^Cs&c z*Uiqdf_FxTQpf&_1NyMNbOOhmM%T}EFaAn&2Ic^whd^#ti{!8wBExz)8rZY!p=}O- zI@cx=$#-tT5?fb+2-7Oi1B-vDX)E}8znw($!8jNZREd*Pb-ts&%t?LD#cDQ496^?o z^(GWH>V>gZ5oy6krq)W$%@uY#oHyjMrB{58;?I4f5elzX{^RMiJ?>+f*Xb&s_$=#h zi%J!?of33>wr&dz6>?VH@A28!L^Oev^AKp@age9a__XgQD+)O|IC_f(9mw(mzI%~z za?Y)-G}}F$w5%I9qW_2$9{@kc#u8h`#h_6cF`R0m^!N4UYq#>@@oMW8$mk!xX>cQb z{H9qm83XVbNZDI8Fc!c^3>^L{G}7kzBs!z$$(b;`&S62TJse&ldHdk3L4V?FGwKU7 zErB!{7Q=Y&<$T69HoJIZrb9u{c{$1`2*rg-(*F6(e!eW>b#-+$JDcc7A7z`wA@br# zqvUj(+Yz)K$e+G7`W=$QX}FoXQt}aO#ES3TNrMr{5kBxl*nHq-%M_sW|N^W=K+;`)&%v46oy93?>GtaRPs9P z@6-LK>x1p@Z}dz`xjdLP#f z6*2LNyheS}6pfR|)bs}U$-XTBZ`0H~5{uftx~D}^%}{dUc=Jw+0Cwa=$FToYQ1(X1 z>pC9&C1vqfrS^7Bx^|QGI|OIg(4S2MC9dy5{f_TXt`t3dF6!`15bXPf|z%ut6SN}UX{fJrHR@4eXzi(IAOL5ORI z`aP2MS)5MuraSPhR;A84wWG@ou+v@-$cF+ONM?+G*KFJ$Vh@VSQh7z${RvN2_0b5R@Fyb9D+TX{cns5|?UMTq%+of45mgqii z@;uSMB3QBi@oMjy#5r2&?C%|VUi}G$G}&YPxK}SIcbDgGS^3DI*XH{CE*?OIlsBg2 z{(7I<${p4_IkFi3s~?)+x)b@NyOQPhnL_R|jw&EbN}Is*iDw~QO!@#5S{a4R^tEN( z?>(`)fws0bmUj-nn~x{RyGx0Ko;wLLF@=P(R5<5MQ)5$ukd4o)PBIG74f7ZT;_%#d z%gJw@+(91gEc!hzUHOo1c){K(sXwy#RVMD%9prXkuhf~-d(#CH0rkcMQQt@cQEZQG zYC3q#$MFM&JkAYU32$oOlOE`Poy-$KUobWF@@gZmq>k8mNTOBB#BC5CnJuV}2~mRY zF_V^t>jUgZPZ0pzoF6AV&pPfH5EYv1t^lt7mx-!8EchB`Y~+486IL*c z&!eYP-_psz(aGb`R#zm zy`iuDE#vdNn`S`bvGImpDm7yE6xV75>#n3*HjrEn;zcEwm;yVZg_AsU_4mIU|9RW+ zlBE8Axw5x@-LUg&x(AZ*OKWL=jl0H8Y?eED{npjEKiZHid#R_WtJqnUc}9?PQ&9vJ zhT*VJ*xRvp2XJ?f#H~ib(=^5#N zPp1u2%ic8&3y*$yKjg|y!zL*xDc=@`n11+!F2gD(go1*CLz+2$LZTqqE>o+*Y=xB( z__V=o&E&6?CmhSY7+aEZqZKUYnFHI?)8l=6oZvwMil(tNR`Pt1>3zR29vFj?8Ir;v zwV226#z03$$H|#gg7TD&bZS@wA~h&UZ4-%=(X)pajw7^!Dwpn7TV3|1@+^?Ap_rx& za2@{uoc&eG%0as?HXrU1L9z7eaIHfi=|B5bL)J1*E-sv9ikS^adXO)9=>GmbDB=3< ziO86lPbPB&K$Z!k!^XneXo5o}BqK2-ia;lh7I6}I0+HeUjW{xWxz}cIXhcLrQ4!Uu z_})s@r~m9HRAx9`{)}(x$IN*9^xxlmP!Ko;tusADaMlXY$~+g9md-soad*9+>u<&l2s@9&Qn{w|*^ZEQ>dfoct%L%@%Chu)n#jChNR zfDjPv#I59gb9nP9g$&jkiX2i!$svc`29-ett6W-?ONGp?Fs)iMOnI3p`C0`LYKp#! z7tr8)Cq)9Ux?g6Vj4*j#Nwj-aL-Qy1{LR? z!|PNS9UXm=^5_uWshc&f8=01vlq4i5SOhJ*`#_|!%!4xduo@%H|CqtLm|O~%`w}Q- z=_%W{0H@O;_#=D5@WbCWqkMyMyD9?q>1sdL4ovx%^U%-8KPuNUD6&E&ME0orKEbju zp1X|=(9_e0qY)#aqvI7k@u80iX8YZr8*%;U>Jp&^NT#8~EH&t70lj+?OJu}2;Hp1= z{>*GSl_LO8fB*1c<+Yd@-ps(%n#ituaBvXm(x^ilV>J=XK=)itCbqS`J(kMMxO(?f zp&+A}E{D%$aAbs@j7(IX3pR8e!)w=eip{Y&IvUgnlOP6m{P;n2WEL2K1Pco*A5RI0 z1}As-*V`K%PDXn3DQ7*g0_E=R6lzGasFbV$z4r0OM!sYy;9i1)g!;NuzI^%87>~!Q zUkPA}KRM)eln@p2mJxU%-Qqi@Cx|%~7M72%?+r2aLvA!oJ2%K zJFF)~#&Y0hVMC$c1TP}W;D5ga;EPZtQ(d6^->&DLi_Dt2z!W?#w!r*+c6P4NZLL3K ze24RIL($F1%3|E6kctvbet39z*17UofNEJF3i9uNyG8d#>12)*N#vbZB+E7_^>UZ> zl3!aeDfC46a?EA!1eh;i%>J1dCp9Zt@jj2&^xWLs92{6n%7v1M|NYkjK!X4;@44mP zWDaOrfvK&u0=Pm;E4>N*o1p+%N(5tlyAWx?L)pe!Z!jq-2OW%ywe);@|rV z%C2WK0qCcp)qXTGGqr7qE`!hSjYo9-+j6eSyG|s?Y2aJUpshI{coNme#^z4(|31Jz!?a9a3c4HH@Msc3J{Vl^4_?Hl8o z{n`({wO4U+sbb){F4Os9U6(sZe=*^zxzw%NVF}*wg@uIRFzdL^7Rl}VRN#8PnE(W< zl(e))g*u`EAnGu$K!H`QRc8!%%OVPPPjJaJRs$ZJ1(bo@^mJL3!=(n=v(uFpbfL4O zBl%*6j}V0DmjOBboj6WJwwTw5$=w#WcEP9}eCO;)! zc0NPj1xQH1e)z|)w#}6&I&(!1Ig;?B1}Ek2+;(-%qFH~-SzbK59aL0Qe3-JAI(@xc ze*;zql*F%~0tf!%?d{z#u6ma_{!2+o$pAnW5T6zJX)V#_+ohWFy3lbnaS@QDJUnBOumGU?O1k(FAfDLDI zSpnkb9opIU_V(W1P-k{jsjW(vpRW)e9*Z(527Y;YIf9igRgx|$yTYl<94s=fqxK>; z>pvb>Rk^|ZLsG_*BQh*GE9*bX(-OZxT(`d-l(8J!AZ2_yXKOda76_e}=YbnYfen() z1#r{S(h@jYq!vXUljs`uS~5M3$H8nd;u(k#Dx-!%&?LrY3N`_p0P%Pb3;*u${%-+L za4u(S9n7Da<6*C}aJV2tpt>BUTq73rV0*v$04nggVhY~3(9m?;Wg2uJZ&KW$p*KKH zMNUp`$@Z#Bo?wBAi3y%6bzuaOaj*wynPsvWL5F^x%;qB?AOM4LadXo%90arukKM9* zsUmS5z`fDV5(g?}^fR(GAU*+jVE4Q2ID=6r;*b`r=`zgZ89ItofO;Zb;f_w{pma|$SvzDG+3H==rQOv6; z>-Q{~)gVc_A|}xf8*};2r3x8ANlhck$vBHi0wjFSRE&(#0u&@=y!L0G*sI?OCM&iWR&dyGNF9$P<;9!eD45WhgheyGW&&eUi#_q%a z_~3s###K~N9lgEhY2Z~SR?amn9nI9l`fkEZ#mIC~FkuIDO{BC{V2TNh%of5GphGPi z3nPMT*%;nuLkPz?>}HYP+b!7MZ(Y5vwVyi*-g!0U_P2fhE22C3+v2S0m$vuG&EJ}X zxl$7z@T}pE`yTfhs^F)&bk zv}7+UGevNqRmxSk5Oh1laiOait^oNS5RvEa-@iXPJ5zGk`|kLr{Li01gG3y-ZbJwI z8jJD0osOI0hdegi^1%|f^`U;dGk)WeMJlrg*4tZKgM zpz=7;-!FO3PD5jUf4&JC6ci2_C{;;~$IctwZ=M4wwFZdj(j5ZHHvX|T3(m-|l1OC6 zRBv@)o4W0Yd2G{#zsMpWBU2^uq_8zhJ=S>n;Od|KR-X0y~`}V1p!r850+xKP3OSwdCx)?dm6rKP1X@Ts7MOOe?Hx}+e40*+lqq_ntLg_MpEkfU-*WD6%N zElEGUnMGBRI^f{p)u8TA6NcH?p5^546P|3_h?p2KgUwvVnNqbX;RhUL-vDKPFkg;+Ad~0_0|;TM^qEL? zb#>8lP(SoDdL+3d6h4AhA)r*mtm7$znT&b?8(F?m`@ZBJX2j)@65kULTvUSoHM*_h zHI1etSp3@L+Pr8bDoEH*u`iz2j#8lmWOAUD5b=G)VKGPJ)RujvgngjS zxCsB?6lP1xX&z%PcSG|b^SQMH>lZmc|0C#CIs2Q%YXPVqmhQSg9hh2MRJ60v6Fh!# zb7QwuzYF>*2!y&L3S0^R%G# ze3cw)1q=+GE)bgw)@DKgj?-;(EyuxK)9>^lfEMz(XCuhX%Zr1i%>%(5JV8a3!pRsC zq0Fwx$VkA~*ep~Mghb>PO%w&GaM5w#NU&gr2K8cLVg@EGE@~~yIXIjFfaVxEeQVp# z5P@GP8I&0zC%E*(lhd6|eyO1BwUqFO+0HtyEWBh+h#mRM<)t%RYh=vE`y}pYIE*Kb z4-MyJR-&7BGlc^HJ86lVxx2W0eah!(h(DR`K)J-F^qMpbG?1?CUST!pG>pgeBiPaO z* z`ts?a}ENS#Ky$2kYf;gTulZl0ozBuP;jWbFz z2FBwsp7CGVmy=DJG%>Bkna<@6M({8h?JZMaNk#mMcz*x{1^6$$cK2Ofj6r}H{yYFg z2>{;Trhp8Ia5U;y$zbbR&`$@+uo1>NbRlsp)Vr}5n^uvDnOVqnAHzrnS^KIacW{sw z|AlMf7p=T$<&_#q%-sO57!xlaw`CYvG?&|-0NF2*kTgr>pEm*VBl8xZhA8I@coMGy zbpsw{glC12)GMgVDtF%qX=`Wa++t+S3|r%qZK?8@BnM#@wm2u*t^h8`q?Sn6)z%*2 ziW$Z#k^62+IiZ~2|HcQK1aESnbKGbLkZ!80{nXjXs&MB?2v^~k5!PO0qox&hRzX(7?5`0+`mI z(`TgRyx0f%U2bgIIII2-GKWn_x(@WeYO1KH2r!fvh>eOKQfiUk`1tr3HLF7|Yr~q0 z__n+~-;t1@$sim^yeT5BvH`hBArKuDJU)cEb0L`?Q7ywN!b#`O{4i=%xKCSfT}1z7 z1}cwfHxSG8F&>|%eN_0vd%vp{Ne;({#(`u;J<^9IP34w=Ei5d2J2mi_KFw)q(ukDn zNVMu(IYYk1CrpNq-xJtm^9!J~^AX?2YcZ;?J|5}ZHmT3fUDN0QI7_+J5{bQn!twie zUJm%Rez{C#%jC&q4IIh^!BAQvB0e&IDbdSV=g5#V$;wfw_+8cMoh{A}ED^a6&NhwK zw_FTKkNZMHVQvQHKa=|v5rk-XR!}|JZs`Y|h#z6LYvhgz=2RQ7W=oi@U4EKM<~x|$ zE&Var9?DF%w%cB4e;=$?I>n<`F~LY_ds?QQ6QOaXT&c(59#OK(qoiRSecmpYWYau3 zhX25CLV@8a@lg0*0m|+Ej0CHOadwcdzCKGP#33`?Kvy>g%4Vgx>Nq_$6^^{5q-6Ox z{XQxx3W;C9nvxkkHupO-36L3Ibbo8cwM@PT2IP{NjgSbnVFg8AP7d(}M=@&0$jXlRcxj0;mB7&tvWy_5p+ZhUHLkKlyec}Mm*{w-CefY>MS;)-z7UvXOxpI}{$6-xtO?CC;(o%~T zlU+k)-ST{8Qb)BSW1FrESWH^YO0CVkJsFof7u-gjqEL+w5(}tbSg@|cLOT8PoT zL0nppKfD&xB=ah>!8Ui}H^_RNebd`6a03* zED|KOF~*R<%EVAx){m-O0TbEP99A_5U!>5zh=;$RYKY?hm68a%fAp{>~vyTEoP^T%_S)1O0MMy~wr zwJkclPVEy>-B{|j)3L>!ii3js0*6@`a~Ukk); zMFPGnXbbX>mV$+S`Zt{au~wu}|2OS)Eb;F||2AK`YIWuNm7p#rwpg2=Enh1tAZnTt zVm;ag-&K1yjUboHG+I-bemH0!!AUm8!KpUR<8v=)*C1W=zr_BXh4bIJ`nK~Ni#2=& z4s8_yu|p7>gnQc&&e~xUlHCj=@@FCIyb|`d`P*I9h@um(5>90xGcyLAK z8n0h_BDqy@4_zk3l0C0kMq_j{O5?JYf??#zU_Zw;mQ-uJvDHjPbNo-%PejYQ7(+-* z=22`E4Du2d^F_+_p&H3YXPkHa87z<4f?=)9vH~4aoYBRz_qP0{ z`MLk?wWM);Q-~&oK+aF`Zz$Ur-wBtoTULIr{XsCWCD?Y>g&_}dq^PpBtCat#Nz$m* zI)8vbPAH{AAA%tcBmMvLM@0CpaOqAwVluW-^%z@Hc27C#WhG)r9`LC)>GS$!P#A^U zMJdL4@fr}u(ET7;#+9%R{Z;$V-tQ@Hv8iTvJLm<0T&SvJ0#m$^dlLGS&Jv`|^=u!% z%GEP2F;hl{UQ$y+hdy(FfJzUk-RWD(A3i#|vX>Yv@kY*B$PAsH24g5jZ+@pL0(l5R z44An8uRquiw-jIpbTD~>Bva)2%PSb<{bEs#m!jP!McQdC)K2ZcZ;MaVbQ1k0sGhTX zZf+jp)IMEA>tvYvm+J+au+0Xo+l{tNZ-#2@ZEC(-wOD-+y4|TuQd8QF6hPjaTwSME$|HB zk1aLv+t@yb%QEIT{w4v<|MT;6pn1T<#qE5)9MjZwg7tjLu*fAxp2*-F;=}*^a=YT7 zsps~yOyw(B9H57)GBgZmxtq%|R{zTp+KkercOUvYZx%kq2|v=Qeg{l_ZEY3oc z@Cvx>C`~-NK!w$RvF3gDvK7th?BYV|cW=~r8QJ9{CA#jh9Xma(ycbv~47$VSD7S() z^J?;GEYwr*JO@Ct(FH^+{(oQYvh3Rq?ziJC62TG_AYw}1Ro*O_FDO@^c23`{>3VGg zm#@o+z4t)W2O=IIvxBE^J+2>9CLIk%2hS7SKwMm$$a!&j!uj76O?|nX?eX`O(TA8& zK)gGAO<$UgMMU&G@!vX|IbhK&ay?7_+D4G&(G@yw0J4+!L(nKK9wwE7_Ym>tT4HnQ z>!qObv_;~>?1Th%AWHWA4I9V~sw}{~88X!M8>tw-yxgsaY+04&ENEYmTS%&;0qXcC z`{&cuAyR)IKmfuFHvQ6HSu1&Yi<{{@@E7}xUeds0GZf%Tl>qQhtgK~L5``oq1H*R+ zZ-vTA2)0!*wqUJcPmsXb59~aj>lvB5RTuRCPTP*EDdzzjmY9?CfrTQjfNY4!1%-U# zNuIUi`uS?g0v{FnjNU9ZEYWSGqcqoxLCtQx^W~_fOZc$t>wTK^*O^a!>Oj5354FW;Ar=6CfA-^1q3FN1%NV5IGqmg)qMxXH=MOa`6VdHG%Y zG@6u-U&WwH5vAGzM6~0I@SL5S1JC2JVUmCB=X6E-dM3PWLrwzbho@iTRxrPJnQ5~_ z8ym8DuoI7jA9k>HXZ8 z1`KW8eZ}t8ev{F=R9*BY=Hi#G3#uKB@aJ1r>Ej3tMG?ROQbaw5DBO3yMQ5Y6A&@c3 zeLytPsM3)t%HaEeAI}Nopo8UVrJx%ziGw((xHF|?-?D(?9k5u!n>aP~N{`B-q$m8@J|02oO8`~Y$ z{87-EDdI1@veSGSmb3*?{l>*zu=J&AsFk=h=T_6)>OJ!UN;~(jt}L-5i{7|9ApLn} zZdsk(_al(&Eodv@qQD2Grzxt9-9QmZNf|KtGkwq9l;#6d0j^mHtw%t9@l`Lat16Y! z<-3t20aZP{SY6fPIjdQRSrZBi7<~HVem9_3Qd>%t%k|ib1kA@@;GAi?&Lcp`O7EKI z_jvG*QDfRqQJv#2m@$qb4*Ovb1(@X4dGo>m`4Bef8N|wnB z`cqf{Xk^<|H00fisw(PD&VYw0p}W=g)3#`qu&!hnOBgqf$V|o3`ufE3cq>98B*Zma z&<%Q+F|gJlv7`d+!-tR;+biIUw%4v&30{UHiPV65Em0u^Jg?43o9*yP?4+~SBQVyS9eB7f`4F6q6I|5hE}n(#QRjeA4ef=CWjrra!TXPr+AmD<4?^%U)X zKol&en@p#!4K%u(ODPOTKQ#?@Ti(K*c*D=0sB)40eDv4H4O4$8 z;`8W#%at}dtoBE~)^B2m%MINPQO8OKA7l+8~? zpgj!T+ECfy5WO?}(P6x*HW%XjF`)qTOx4410;l60B-(SA>n<#Q>gCCKn=}N(o?UOytbXY4R3Xp~J0}ujV3(i;ChG zYEym0r2?7!&U@f3F$DOxV>tJ%RVZ%v&xkZiLnXCqqjsI0o$1sSR`$220Cq^%A;#<{ zkGN@=5*{-L{sVzP=y-TpZ6o61hR7F3LVyauRQ5I~e>(2IJ+z|%*DH$RT%nL=0?_M; z8NO|ZYG?%k9=VBcov6;<;o)s-rPAm){ss%aJY_$8FcSdnNWkp=wdh(C`?_4n24!P~ zq$1&Cgg}U?elDes0qsuM7_VhX8MqO@5)y!G%;bv^8+0ELOUFaOV2KeM zDTX7C!(QG&+Ths0=aP7<@2JQ=p1l-zbN}majTx&+Rc}be0JS-X1yfKg{2CGl4 z&czJzyroucuD*&TV)uDVg%#yj^))rYsH{~$ zVBR5G408ZG0qxOpE?|~}k!;@O;Mm*(MWpvuKjO$wHGL1q2xfky(8}8kD&7s+ z;M5V`tfaAH6={H;+XF=KB%o*l(Ilru#k0bLTxpPQ!7!HJFVRazz9{b?DO+@d z=BzfOnIRmTju&dWc{k#Bsqfbp`Qw4B>OP0 z9e)*<6TT=|7~&Yg|B>60`4@xMY7s&2MpR?_{i#!&Q&fSB_-45cpu{qpAT zX+b;w%Sfm!QA|AU;t}d8AT()b=DW4Vb>It2RI8{M0pdxptcW7NpbBy;iM8^@Np6Or znnpVS3mdZjW3L@i%%kM(-&$(0&?Ujg&ktTTN-U5&+>8~X;T?I$_z+ZmdwYvdH84?R zf?N(AbKp1zMI7-3b{4FkK#@NtA|SwYDSS(QUhc5eWRo`7UA*}I?OV?6Vg*4N8JR#w zASZ|?8^E2TX*aG!E^baI*kZy21f6-V{EV%ABzJ#MTY|h}qUERLcXXqj?&8l<4sblu ze~vfBO{4a^X;HWE^zt>z*1WCWebgg*TeQOBjwP(cEEz@+gDC;W7WTwZ%zBd+CT6oK z0Oi4o09xp22nIxSu789bQ=8Kjxxsb&c;t)okH$fwD8FwEfC1Pljj^O5m(bw-FC z;!(`^Pfttk?VU=LpJ2%I2nEf?DA`2C+D65b#T|?B-`-D#E-YyHj`jD4zy(WlYF*KL zjcV|JuVD!ZG9Z!^085(s)OUVLk;z<(sjJ)QWaMUQqzZR2#+fSx?)RfW>nF;J%pgmL z@_*p9?ZfgC6X0FNJuce&;j|4GCdLhcYjx8g@v(oiF<`N#D1$4wpH^wfdLigOJ4*?p z!2PYzCJgN(RQD)Sg7ugfAu5~-BYS1BUrwby8yi2h5|Y7E1u~6_93{Fl!gJaox5*bG zzAZ=B5WOnIE1oa+g*jb3x?M`K;FsZLvtGFSnws%J>r)B8}ODPedPXg(3k*X#ET>p zr)>QrY{U1tO{TYrJo7+5fxP)ng0O<3az{L%f&VjD^bq1NK4{KK77>N0J>RSM!^26V zxSmLA3}UjYMM+gU9||kpVbljlut~}BhVP@&Q@{!6&pirt@P|ZnbwDUblMGZ@yH<^= z>UUWwketHvGTJk{HW3dM*Z+Ppd8Li(W#<$2eF)+$z>E$Ij0k z{r&$IN=4&*?YIxuKjQpttQzd@piXyVYip}s>Vf4=B>`)3p4}Ed67dWL`4vyuxvbu?n=sl6z)rwZc3@SYCHwRj@xHsisRb!FZ8` zsp#kV`ueU?rHzY1o}2!Fo+~I?QF{iQ5pZWiFdGsS!#N|zty&iQ%v|^Awrm!l5E(e% z1{8eJfEet^ivKMaM02_a$+yE5lS$jE8V0WADjHGN5$(~(Upc$Lp zfjN_M05(vdQT&jI_M4_7-fKr81<1hiiFTlmA9x$~<%_m+#-fEXEe9s?JR-W98 zpqW!&nVEU>j5NWKQ7?u4sTMx$>~}jYGLZDhYimeOf8(3~GAonVZ~l^t_GZ$hDjD*C zba$g3qoVy7n9f@p!X`cd`aJ^~-H6C^s&oe>>9w>)bwd7?i*Hv0TBhrjm^ zyMq-{Dn4GLKboF5i?+gY)ZXS@t28wW?wTNU_i zJBxtkK$}%sc;SSKCEQP-rHIQJZ_=Md(YFK^q;Goe-7n40@2Jw72y(y#_;5r`%9yTN z2C^8)O^9A{6~pnG+}~7jLWdcZRAE!O zVDVisS!Nj;bTfzhLD$^29EbrH z^hHOX_%9M%7Xu{xF)hQio9$M3J|v()GGS1$w6OTIq9}wWjh=x(mP9m(l@|kcMf}&= z+Nl71sH}q$5&YbnvviWOve_)m`-TH6HF*71QKEv(^ zTm1F3eN%fs_BqdQFik5Jt=zsyA`6MtF77Dkd2WoCxux`6NN06*UMrp{=4i{iTw`!; zHQLlu9Qp32txoC+=?t<-@5Z`62`yFd+}1hQ9kmc2b5Q`Tz?ButuTkFA4J>-oblZq4 z-$Q>##Wv)#O~!5VwumnSU9B2nGOx2y@y=sRqW1KJtsildeuKChT_q-&OuQGu%Io6c zq4n1g+Bi(3zs@Tc=uTP@k~lvlN#xj-ssTCnV8@oZ`&YFE-aviLDVht*xBKPowocst z7h7)~RrMNmjY>DtE!|zxNH@~mT?$en0@960cOxy*AP7n~NJxpIq?AZ2D8je)dB->I zxc9y1kK>VZ+-L9od!7|@%{kX&V$nDI(-fC{e;sMlHx`GEtsFHR9A0GylQuafJ3dqz zY%yU|kP*TiBTLbP6_L*#5=L=5lFNU3LdjTqKQpIRfl09~oBiFPv&2Tu--GJ2_ha?m z??a?~zCBqK-t}BlA2aURVNPy?#6<<#5#R@_rS9qxmLAmh23#NK@pJ()zy4i39kzd)4^a@UP4y|QCii) zXKY_rRtnbRNu4G+W;l9Oqc!#9}26yC@)54aNa|5ldAaC9TJlHcA9HF zDZ`(ZArX;jEk1KkgTNz$9{f813$0NRYg^Ni#4r+1GCG&f2mKwNPv?(wbme>)c<@hBP%N_EG(?3=o`RTP-yz>&2d=G zBcc7&^9phMXYwvPn*ywRK(WBJf#VM1a($?1fQW&RJ;+k^JqE&*58%2=2QQqSPG!M_ z{L!OF)YN%UQ||5TxO}}q!$t0%sMD|10^YRV3oGxhqybKxj9jhQpDiYDy~dW5Z>YHY`}+aff}*GOI`G+?vK}|R70SRWDokc)Kw1n$4Z_SU zK0@3sY+TVtU#0SGkc_Y|D$2_{Iy>zjxhlOG^BN3}^JopWSXn1e^M@}-U;m@T<2@Tv z*Q)DR{`7c{6-st5L7�j+OpJB92sN=q6oE5B?(6O3hGzc6}u-CUyZse~9S=ZoLIi zqgl0kmVog8e}*f7btF=Y(n|Qcyf$l%O-f8eb53pnu@Ka>G682h@O^>!#nIgz&#m_h zXdxLH8R15OUa%P?o`hK4M8w2tsi|jYXZ$6hu7H${(Ok$Q-#UZ-8yEEg_+a?7QmSlF zduyqw*>dNv!n~zN!W>W>QBav7t%C$e^2yKaygYCcI0Rb(K%n0}J*|j~8;vDo$`x@} zKe`Npa&>B9A=9H8RbD}XO)FoO*lHKyvjUvx=w~3W+np{!xevk;IeynKZyzV9H6lA? zr==+nU;jDT(y)?yeL|vUq^_oBD5z${c@7L}U`T|^6yI6_z0+e5yTY&vNet8iz_f** zklG=W+Kz>rn|B680I|S z4W%Umlyb*dAb`s50Sc;FD3y~NCIvXnn4*8^b*Mjd*P3BQ^cnXW8*k?7V1TBU(fZ%* z^whp3Ku>>bGfdtE!Gt3~T|Qd7&iO*x3<-IR`un+Z~|AMQWe@{#^tt zl6UW<-^mRD(r){cza;x^fLP!!?iY`HLXm)4%PrXr%5gLkHT>dFA3qW^sUh1vS+#@- zJ?a4SN&L1nuybHkdRzzMUWpIBpjf<3D-~M9 zr1C;jRW%#XR$$uo2)N6Ag~3v+LoA%rRBp={B%CmEGh@o&$CBwqhr%#kGVD<@iNynRUfBzn>DFBj_&o~zdEczTQ zEQTE{rqv`|pb!zYAHwaK17SZ<3T^-JT6JNfGSH9oR1^ALUpwJW|)#WYaIdE+NDgx>;tJC>Icu*0UISeTwMPO?Ykb4(x~PpQWH$0 zw>|>to?pkop$v)^JO(iu2o8gReRi0%1O)WIW?(M7ut0{r!NpLWmq*Q;5sAe0@$%0( z7l#09^(^))F_5oA+i1bOv%LlpLnk$uzXo8Kq}bRVVROcdaN5DRG{9M)wZ!&g*$p=1fWwWdS!H8L=AW#@Cyhq zKx`ZC;o{-J^SUT?O%iSDu)ni|X$$f>7%)gd zK7%v@iGw&9MuPW*A%EQKM^f?barN7sMf)B;0)#{0V`lQ0&kB)-$HZVfL-xI;j_VGs zH)Z(QNPc%JE@{-CD^<9XhDQG#)lhLVW;QkqdWeb<=nW_JL5_}&z-L z4%tK~7%7?GLU=%zii&EXT3?0xp|bK2^mn#K;2SaEMqHGd+DASF;*Ofa!onTvoM`?B zb}EX*Yb)t_=itSI#8(IuN*r00M5-;|jc;xWyDtk9UhaNm>ru(}cT{8ylMFTrx;$D# zDSp$^LNfFVdI?km;MnuoDO$M>GJ?5B_%~>Xz?FyaT0Tg#+{N&+?5aB%5^!qm6&}$K zu3H1MhMt~Bpy56W$P;~JRBZqel)Q|K=ilEL&vt&QWeG7c6H`-xm$P@O@>QGk0CMLT z9s5QvM@c(|&vnEFc|}@!WqFxO2ix3i@8#y!mXeA}Ok^Z3rQpE)ydl@O?fB|A{jy-* zqGFE1(6Kng_eaVyIwm;#$i@-GLkcbr9%SvZH>8H`STCuCk=~2%KH)5!58-^oS(w3W z?ZLqZ$10fF)U<;0y0mUuj~vBpYsr9&Paq0Aw<|r}z*OUDn1)eiH8appcWmOv5iUU!Kg~T!j-3?K6r@s6;VdfX)z;-I=8hf7F3>R2_`BtQFw zQwj94T`dQ_9)vgNn-yMG1HV*m|t4=pHOy_)fdhhTw zxO-|p$d9&&O&9%bD!~b#g7NjeQjZ!Q!reC|%SmdO3^I{*%s^=&Q7|Tw$7F~v;lctg z&fs(g{4CaPM;(5qDB#NiKP#nx7m&x)od5t&SXfvw@4r9ic1yf3BR4m9*7f7h?Rq5x z^j1A%WAYFlutoAr*V-4zbEz_BvWlD=(hV-#Nw-!#OR$#~k;P=#%(AI7hz4vA)M{B7 z8K0JywIKLOL)ivWJu@>i2>j^i=wsSZ;TtA;dZ}4ii@=x#UWcWnrNK4O5kOH0#)I}l z&s`Vm?gTWr$jkS^9UM-ic6M-xY~5rd^iVSY^GX4ep)9Pbz)sbjlZ#8Y9CB|7A;<;N zMvFP2LW6|e?=kjS-Jrd=m|jXM2(pxpEwJi9VPFMPzRXOKrze~1>+2v3h64wle^62S z?ag5oKyUyl0*I~3g>UN}0IJ?V31)`1ymT@TYT4ge-0eu`EKrv|=?7ZPTxgvEdOL@t zC57bC9OKgV}@NEUy-!84!nnNw@kDxYtra7Y*R_0Bm-!?*ere zR2?r85)^9QJ>Jg*+D>7i)l2dW0{L9LiHxyZt-z;w>hDi)#;D=3)PSUZa(0$J>R=bj ze#amqJ3AJ=&jx}T1bJKKFF2HV6#TbXGt~b9bSLEeAz$h#QOPXu*qPxlz1|3m1 zs7@h6d9vVkf>C>kYA8>EnffFLxB@Xo~7>qoBj*IyODh3_SAz!ef!WvV@WPpuUdX!dO{wZl`LSE~N z=`N788)(C`lag*ru_O}a=r$Dw+|`p&j;F2Cr-~52ZNS9H*0%v}W?&vB>GvZ$JsnlD zvaHO8-vUzJK77IB-5h*;_0TQAJzKY$xNXdMu%238&LZ{V4yYgd`(mry=Idg3o12W%Lo}9z=?lmblI}<@z$igO{GT75|%RSo#EDKb#pbXGSrJ#?@ zE-JD%Fo@Jgl~&Zi#4K>h&dCAgkVZRE3cs*0i88{|fQXn^kl1}a~ z)UFh}+uKmpi3=m6pfn24u^wQIgCEZ4&!4F^&h{5?OD|2pg6) z9`A0Wv^j~GBGJjvra&w328z(BiHYZliE!B-!H38zu8ky^)hy;BMHyeEAS6UG>H&$uNQqE|=a2*TW5xK}{J5@-SkuXb|5j8O+xR@OTbz623oe_@*U@83U$CaA;F zP*Delhne1#hCRFh5e5`@YeebWdwWzQBy%rSZi~$-Cl-b z8;0~COzr6CSn7fHVpRpIGA|scy(vvrdVAO4nL&#KGM%vM5`zgTx49~1UT%g+VWu7R z!5(!O^+VyRLo^Xii>k0G29205dqaj={{l5|w zxCcQ1W{>{=Ed&mx#^2VtWmsW`Zcd^lnOG-*++Rd3FlZQgrK8K0(s+wQBaLS&v|}!rc(v< za(L#@C&DdQBv3h!**mc|o8jf+f^a!IGeddTEnSl}jV|u?BHR)HK%lJ!Z9n}NGeg6S z{QT#^&d$!n#KgFPV4-DZMzxHXoE~Wud8rM!oeS0@8>u||@ZcF`L^AGJtkLv$< z=c~gYDR}s~jYm*W&)T}XstO@0g+m2qs3-lw*>Ytk@=@&q?CdUJ`vuGcK-`C!Peg|X z2Bbo+zbr2PhWkZO3Sn)*5`>yvpWZ%xAR{BgegcuF;TK3dLCbc*FI4E4p0YnW%PSu>*uwo176QORQC0um&Z z=y5^#3w)_Qeq>OY_ytWnE+TdT{s5*S7r^5LC9aLJ3C=46BO^Of?l30wm-;`jRa(lm z8PR3ap(y=*c1A*-sf_G8h3tBB_YazhYCy}7KgK5TWZA807`jm{P1$swCnVsU6o9_G z6hfN`=!CzltVC5FZS{sicw<~I!TZ>20mhCHw=hd6n9@e)YJ^rm1Ufr9 zOwG-4)ZlWuLpRU=vaXI-%l+ZQ26ZqEL9U33LSv1w?F92EJ-zjo z$_7*k-hd>4WZI?;gi8>%E*xy%vK^MrwO;2Wpe^~0y~m8Q$r%jxvy>sUiII&esBIQlR2BIcT0S4 z9r7hV@aNMHm-$ntUrqz=X*T)p&T^YJ>C87-08rw)iOn#J;=T2x!|%WhP?J}Nuc9yP z?Ch2Sw1=W^fAR`yrAn=W<+qQyf=i?Ze4&fFAhfp|f<{R{UZQIkAz==71r*TUlP(d0 zJM|}l12}guZ=NJF$$0Ax86C9uecj-p3n6{342*m1h+6!AED8Lnyq{+Tjt(S4TP}pB zdV6FbJI~1zb|oSq8SsW84a}liP5aj7C5%Zq4KR0w<^g+xv7hGA6$wa>-@_LO<<^)o zKZlhEFvFl32HF-_9}GwV+6?WvT?Wu9n4Zk`aYb5iM5^8%$@u07h93r2Aiky71r(%w zE?4wX;pJ{KIgP{R$mU1pkIV}u8MJ$XWyBN|s??Y3)xiAA7J$Zoa{fogY+xFCy355en0s?*zwqTpLJXjaT(Jdn5 zwV*gI068t2-sg3TKY)pRh68PsBk|Y`AT+G0f#;MQY&l_i>E*8A37NJ8-LJw5I3DVE z=wYVNCUd#Vl0hM}3xO_+*Af&Q{Alm}!IAo$p415ZJvDXJSYmm-7{8WbWI2Awzl8q5 zB+j-f4fm8dRmoY%X~ITp>I0!}wj99QuGMEh~jG*fI*p_B|aGNwUYu`HINN~Q~#^o zCg2ncuZ)vM1ZR14&KVeoB(3t_3AeX&c8_?7!`3+AD84cUh z(87Y|bfXt?3`D!=F#&MTa(c{)u#yD(hb4S`rJp-_$R8n(z%5yl5)<=>G*dr%jw*`1D0W>uZr>Bmq@#g~`8 zZ2AHn=db4Nu?_WK<;qWa6Ek5A4fOCYvvPiX^gcIr;qAb3_21>bA$4jS*R->PGXcXl1HsZKo-x5*B#U)Lg6Mnri!+hD}1omE5pkl}sY|NI{|j{WnsDi!|wS*k4j5^E6dGe11MZLGo&jO_8| z^OmS7p5OzrQTZW8&V7 zdshFwi}gGTrT^ZoqF%A8;_iiUE@MW+$<^cT{=app-w6S1Q04V@T(;Rz_mn7br2~W^ z)`8Ku0x!<;Qt5LEJZ*;HN1J0UY}HgBui4`2s#x=t2ythIPnVixk&{Vb z{Kx-tz7f85c)4;sWp`E~-mLMn?C0fQo_M^;qs&guaSi%qM}_~nFAe8)3a*e)w%Gj; zJEj|Mz7U@cTE2>5)GI)&nhOTVb8Tv;=0XhtTuldiLMUj`@K8DgyNRsUulf3fvbM*w zl5AOTs{h=x_jtCxJ%+yDwmfipX5brEW$80pz24?XS$qW(wfnzyL;l4SAbl)M-O&~%+%l0Dg0U#6XO}{kQ_5)=djIAZ0!Rr8!Jzu=}5{HeM*#UrlDXA-{ydXo}e0Tk2 z-3VWHNF0Huq9W?kolnh`pJG2JxaQ$N6tON-P3h^8RdJ)mf!=~U0BVlV(9q;$f(H!Y zU;>DcKtsATgMe4h=U@%pI;dT_tlwYFyj0nq%o|<>2oB1I-1G{)7Db?_szf9ob^f#Q zcKMP!cREA{kp|HV(xSB8SYB2TWHJ?k(*oRo09Q`)exJc;PAd4z6Zt>?EL{h(uDWt? zvwx94idIX!`GYpGcQtv+#0{q!Xnr(QRPjmB-q~yYg)rbv0#?e{=H*A+mhiD5=YgfD z7>s#dh+Q{ui-K7afT{ork2;+|wDGKgcL1Zl1Nayxzkkz-dRV|`ymW=Y1HtW%u!|1# z|A5|0y3R6tc&OuR`=kOMY73>uNURuGG1}c(Hb{ZQrXqZnUAY6n2>g%jtrr?S;RRq$ z&{SWbk1yIGeLa|QG&C^ubZ zN~1VfF5W&pb(*~!ba4b?1I7Xv$!O;YmVt*+f(rGx)zl)rS}z0ssVN0#EB#GiGa=U4#nHJV5cP`%+mdrh5SmbtnYk z7S-}8{plhgHmxFqi-6P|zzG6?${`OU`%a^m-q;2B(~_|3^hjwfD7Qy;LgZJYZQH!+ z9-+{-X|x->NHdE7&)5d2^WghAa;R9p9-LCBYY7WkfZ@S3s!A2%034%*dh2iH8syhv z9Q9ns_&4cLI%U626^dUxhh!<#Jc*@XNeLY{4b4Od*_z!Fz;`)rqF-@_xepK$EN9=V zEb{M<7wGqd>kjM8AD!VK1y)CxhMw4re>vBJ58|+9>JiIcVx9$f)MxJ@!^0nje5<@ zJ93{H=7lv3HMECSBT!}TbD!{o{HTRtmJo^=`ELUh4>%0mz2S&B7d<0ewCM1TvXcL! zwH@x!I`!^n+!@Zfsty=-sZLJc0wk4>lM|c64%y2PrdLo!{f%RHp2!XxL0EOm?6PB| z8$Qn9tpPMpSuM}UQef5XD=4*0m|9yIX@HpQ-|=}6S&}P{hJV)8qf|d1Bvvp5l1Y>6;#fD#<=P)f`Pa#JEpZz zV>r%b#-}QG6J3ACqH=U5LGfeZH8pzI@2`O$UyWkXmer*RG15~$07KXWzV{R{gE%m_ z=)) zFH@jhUV*G@w>()JEoUEnMOcmdXNE87QzDataj3z)x7Cpl%ET@np$FAac6D^Z6RbcZ zs!MMKn;F&I`~Q^6*_ArYZ9&xs60d(C(1EhLQmpyAIyFn>=|36U@{o>LZK)j+JZceN zi3G7_sF~56?h^<6`cX}hJz3>fGsL4=bZ+7hMFJcb<0Vo@Jt$Sg z$Pb<}lO_v-;VX9$T30$vPtg*Yt-u$bNPq#Sa_@36&ioB>gfI?fU&k{lbb}5)s>rGt zcNQ`P@7-MaD1sTe-8e#2Ga(O6J|)sXdfP4TRO(%5Ntnr^Ao7vl@%^!sa*H47hrM>! zsM!k&fxa~0ku|A;+DF?j3{EVzb&v8{n6Fve!>5QYk0B@7)6tV|h>x4wz$y5|7c5;l zA5qgklszZ6^6%Y;!ypNmJ5!QWUm(=h^E;OGmECV3aLgD4Z9!YG+f%#IcnC_wvWOak>e3de zW0nM^qk_*Q%}g#1Du1v49@2rZGC8Hss4mhmmiW{%@nMXZm+Z5$A>l`6JXMVZrO+cx z&$S%|L}8O&r%=L6YNvgN+;ZM3*zlgZ%X>>5a?)hC-$CwIN=d(mewU+3UsQN4utYsN z58Cox-Q0wzuzvk8s)~IX7HsAG0yKDOE~3(6F4M)5Kig4gSooH67b(O%Z5|E}yPCfs z@;d6$G@`c(&lmq%A@-CpG&DVdhqQ;Nknoz%yzTiNAwJ2qxC~GgV+azVxE5jrbGy2bei`> zw$lI3K7R5lU+Uq0_#~(-`a}46y1JkW1;Ok=WD-P?m2W~Dkl(W3LCd42K`RqXlW#Yl z%s4j(racrA+=rzC*FZ79Bd%IBxZ&(W!VEGqm>KL3RX2eSXoNK8C;>~b{tAZOv7wAw z!@aEX1tRWdCk{|4Ad9d)JEErYD-k*$fnI0@^P396kabho$^gOFX)-^O67e5ajRqm- z^Tx;@OAw*f1Uk6birAm5X|ZY0u0@M7zk2I;03xoWu^Q!5>|WC*qV$#?gl_rG*8rTY z<7oJVS74fMfyYVG<`fqo^fmae`{F_6JAaeFU3}BlJ96buo5!_-H}83`ja^LmIO6hf zkhY(I#CXF35@k%ARE%y_a=G5kQ5y_(#Tc!yT&Ys$vrL%1OkBrK^DpJw{UdjxlH-~H zC~5fl3TDm5$UbM@Hu7DV+aZ@*rV(-?0>?bP z^#+JpmpCa597ul)zZkdl!+HuEs@+tjhjXm5ey_n`lEG#USLOoNF;wbj?ZjYaGurvt z@M#&VX28~risJ{xt`yY3ggq=y8yBgC3HW)PKynwI}0VB zywGDA;XqFjrFCf5&dtMxwY*Uv5rwEG5q==7zm7;MJM6P6eo|4d@b)F`Og5jos{elbG5)^l!pd zR?+cXotkQ&a9ClE_PLaIJ4SEMad>aqD(uV_QE^i655a)ob^YNF(y6x?|F|x^Cm8^W^Gx^P8Prjf0tpE^C|ni7b2ctsT0T8s2`A%+L?x{Kh#WoH%pRf z@!*7beAP%YRn4`OdFZwHLuQWZ57JihF>8=o@HGz;p=kH7>|e8>K1Fq&71 zMKyf**z#5PgxX?6j(7QajdA@?Qje4+7jXLL>+84kevpv;kdSxEC!F)c`SOGM87y9| zJK3(t3H!}rleP7h62xxzbPs+QSR~g^*z5t`l@oNfqx)K2vO|S|BMC}ma&sw}>pZ5Z z4ACbpF#sX!XQNS)z5~=XTUk?CV{a$&JGLOZ+`60WP4r7#6@rl7eh1SjEM0DKm@-1; zV8Xx}^6Qgxm1kch)^{NnP?amJIxic~eqI$=8v}Xihdj~S57#RcmlU)V^O=k#?xfWI z4hvcSJXDMnDrDoOCrIt0vw=pL@~uPxV~244(#Vr#g5hrjmAZIwPcn|!)<}>uC4ES` z1i?n$MWe~7JrJ^Q<0)+^?WSV9*^ofy6i@)rh7b)0nmmkn;e8^3~Cl0?z7dRK4sDPnO5=S#Z9lf<_hO!>@Ct14Ve;nBvZN zGkxu*H3GtN6n|A))Y%cA=d;$&{pO7^h|hCwRW| zTtg<$@nqS#I3A`mZ*fVPm?@J*;Z9%gP^SxT9Fh6N_d7fH21b+eYVU1R7!C9~wv32; zT-&luzEjD9 z4{z>m=S%zxKHR1&dd7SB`|oK$_t(SU`;as3reirlGKIk?+;Zx+C<{|By_QO?ROejX;hiYz^WVSO zylZH-3R)G=yii-@vhU8M`n`@6krr`^@3IxLQTEpdQl_OP-tAnX^4|7@s$_rc1DK}Z z?Sad?0xFgQAp_Ci@GzT{RK6&;z`>}HVQ!p$Rn8!Iz-Ffd2`d)~MCKDOJgi6Ghp#S8 z5wLWx;yD%>*yn2Q#~snv4v=jf!?{vKkY71v)Cz^1@l&R+LEkw+B~va*TLF^@J^y&& z7htUU_2Gh!@6_lh!zJ{{3ON+d$HPv5j^Lol=x{DhpDNH~X<#t$g^>D(PiE4~#C@O= zh#XAf6EgL;i4DWJUW@B#@x6xaPfjCBEnqiB_EdrWeb6NlTBqYU+1g}eB&vuxcpR~y zVVLRa$_cDJ-ycs3KhUvowO&mXyWba0lh)NGRmRB$KwsdR<||P>znj^knI2SoH+9OL@X`4xgBCFYN~L z!%w(PD6ZYkQ?x7hUg#nApyiV@32{G+y+=Z7Yo^yO*^Oo{NEsh9ejP)+0c-DJlX?pleV_eNoYmE2ee(Ko}Heu_HQhTSZLY3et zJdF3ib!KXo+(VwtUbM>QSK>4YNfFo)*i1tZvDM{CW)E6`#+q;qKfYHYk}D3ce!$N3 zk>-pL1Zb&PKwBbOMTJGCW(<$L{v6S$Nrs7Q=OFlbN}-VrxG;+SsNQ*ILz3)z-t)19jyluPb} zO>2&hgy=~&kWSGi1z&wxH*4< z&Q!uQ&+X0P;*1NGkG#<=wN2@hpA$Flclh++Fq#;OG;2J zAJ+aL9t~}`?8y49CBJijDx0j!a+d4HQB#apM8wE^VQftOLjI?hi3v~pl+Gj1iMGg1 z0z$-U6&NgAybsC|g~2JDwU1j1L`$_T**|G^FJL?hM-^daFC+791w5vI|Ab;f$G3WQ z6QV7jOHK<~6ZW6@)QzKI%!3LbtpP(9csa#7`uk<~!Cc?el=3be_G*eYsN&Y+y(lF8 zYSX42^?OiDm|5ke-)JnQ3O6Ac!+ws>I@-OkgF&Yf#_ZOBD)IyF3;gyIQ$s^Tef^EY zL%wHgI^kHDnDpQsjhG)B*B1g=owL@gb!>iq{ukzJj2mFN($Ue~zMTX}4=#;Z1H|~r zJ^W&&I{5MgyiESGg=MLbzTe z^>p?VX5UM=iZS|cfL6c}0F8J*tA9X%_rYBCNB9=tK>!bmp@1wKXHD(<;AgjxtFv8V zMX-|q#9#g!c)FK*0jZP(T>+SmGgcG_@Unn-g{OjlKdf?c4P5FY2gVx^>Y6;V*0P}ckO!Sn9dvOV>oE1ARK@L z;*YxC1!TVrV)-z%1|G!vUC|B?1$5wQx4{ zGvFgPslBcoJ z0rbnTTCXjKUqjZoNv0F6=h&>?8FoZV7DW&WU%P zsmi^F;hRn^6!Ecwp(#gCyLYp(q9VFa^>sy;XxU>Z%jy-wA1nd=#ne{mvmVA8UC1R$YMNlw+)tSx|5W%Xpp&)F=G4{T%p^+!( zsP5**IVU??JP2zNj<9G)$Hu|~+GT>T#8?m%#Rj&8)Ee-@hy!5^%$8>hUv+i{!ejw_ z*M-&XsbY2K@mTS3gq{o$u8W|}vcne0kjB`N+Z1W(Rvq4G|AcIMZhge#`#7Lof&|48 zOC7iMW^!6zc4OSP=BRs!={5)>0ifq{xIh+$r8x8&kZ*aw;d=yDA3jHsN7mQV z<7c92fx$YQ;UWjUPyP|~m3Z%HCP{cAWX}019^A>q$P)>^@^@Nnn5d|%#6UyS)xAGn ztzh48P$=;@ek&U;J&{Z*C^%R=gOC zWh5CbiUxYRx?G3)alZpANL^iz z(GQcFvtu@@PM0UDgdQ)%^xymYX)1WZEb!naPHi>Ckv>f8^cK$scNF;@3@!BNNO)}NMT}! zHN=5QLd?jh>lqA@l2^ut4%PBb-PsB(oTMGz-BuG)KPZWzRWGP_q%XM_!-`#GPlVAc z@n}%J?AC9fUWVzd?SU_p1;^XeKz_<6#pB5gdMdR~%UXg8m}j2pw!(^4eq}wAPWW!B z_}SQox%fk1@Y3!LhI(r?$blDYG4swH@9gI448DM$8F^t!<%gLkgr&`_DB{lr2EzxW z4UYhOuQhx{=6zQ8YONZ5lnF^)(BtH1YdP*?cGmy~2G3gHksqrl?kVcLFppqP-fVw8 zQA@*MKPy(>j$dBq^Mz#m>MfPqkG>(M2lFfWkMaXEx%gTT3@|%zWFr!Lwi<>}p;dq_ zvATrA*F|p$nFXjyRLGCzCQL%WQBVsQ*)X{C*a7?W+7gdKFz$kCz-X9NpDyYrk_`+! zVC!>Qq53v1TZwdJm=F?+kS@LOD}E4j zSq|2SJ41$kv*Jh1+LYaIQdpSk++}Z-vdVfOr*vW@w^8YPN8DR+2+ouqOe!~1asWD+ z4Xxr46&1A=&A9}(s52Be=`ScHAqn=+m~89c`(9rL^b{jg`ysM{OAv3ShlNU6(z8CL1Ol5rL3*Ltwze4f|RSVVZ*SZ|KFH{lP`6 zKs>T@U_34Fsw2tU*JAL5*+NGap_5E#(7jz4*i)PwHg)cr@P0X={V|N$%o2)cxWXvz zZF2E<0IPVkQeZsGIv8u{F?WMRbK`9SKoe z$Ofm}`q}wBj5d+*+~#s2s6e3Q4q8C zjwexSc(%zf8@A4Bi@$ivQFo@B7SBhk(W#EF#EA_;lk zK;Q7UthbA{x4PM_EOJ=#N-n~jD-=}mNQ_3asQp-UBg???BlrYZHsWh|c7hfZ{ai%SA!Uu%Coi85@uUwr#wg}|& zcD=X4n=oBM6N8e`$%ZQQ8AJn5M}X7-WJcEWT~TeTs$w@>X&1~u$D>p&_YyReSKFkv zWRkV<2QG%L0&c{#Bf`e+sFC9Es&asHr4g_iggvLX6{Lu9+{iar--jpQ0=dww6RHNJ z`zNqRMZ|Ibyew}&(bJ-Zi4V*{inI69=YcRQ4AfbO`1&$%H@_z>3{p+--jHs3ZO394 zJ^c=pb{feCkIM`Swzswhk+%^=9*^P)w$s(#t9oC>1tuKnA;_eS3|Jj7!sgM3*Yz5M zd*Jczd;tbj%bl|(qyt&&=@OJfPfl1()cjfp>wc%1pN@K&*Vceu<8@)Rt`Nd`#q)j> zE}bM8ArA=rT@G6@K$cQW2dZaWI;-GI$ECj`Oi4j-R$Fe( z!CCnM=ddW~WE56*%b(uXLkwJ=5C^`sU>K`=EW9PaP^Rw2Wb;k4bR%_LU|09baaF*o zL*4=_2gwrhCm(T4|2731e$3S9%Sf)Y_Bui1q4gs++{5Vrg1pk__j}s!{z)GH_Diqg zp>49u3AZeHLO551EMR9N4=5+%36Hr04eK6)R=ZC2udg)hCP?e%hs7s6&f`B(H24pZCKDrlYShx9ps;ZVNo1@mN&N z`?o8HPhoCTc)HLdkraek0Qj5#0UxZD)jZirZf%|vdUS@ z%%w|(pv$eN4@tTDZwy8cnnQ&(mQy2}^tY|2B0p+a&fA!TVYL4HcHO)9+M?Z)VFt0P zJ!ZR6L9gmq{PgOKohX|io-*q7@_l7)EtOxW4~Wkng?afhl~WD6U~#|t!phlp-|dGBIA(t!W*s=_+{!e!!I_4tf{q>q6&BWDTFgG&H(MD1u{P@W&O8qn zEiEl**H}>v@A~XO;uuuyb@ZAQS*+;4ws zLTup_suHTrp~&M1r}*O0GLd$B;`onM9%tQpE9qN1DOVVhlIfmHFzt7ye~P-LWPb`x z(2JGu%Fs&6gnuXeQp0v+HYV8N9-NXn?=N8djz+BHvNKPwD(=l?qJ2qBmw2Weuk)1u zeOP7hkH(~1DS^T$zgn=!U~%;g%>D4BS{2~V&hNqeth%h}AL<40Bz|G>9)IeTKtdt? zx%kA8FRE%8_TCQ1xOiVw6R$R-nK9YxdQRzIBZQZ~q*86WdrP2UU6(P#lK9T^Znsk* z8uvJ^+ql*-x4sJFUyaZ62(9u?5`q4(%w@8Dup96o1DEw2||AhKLKxT#hJ~K z=Gd#pFE_+ci3VxB&~T_#gQ1vv_2b!;nG!q%)6O7`x4)qqkeKEO*05D7RjCQLG}+E! zr*iZACRy0!dok6dx8e4Zn>4G3ul*C8ATm=Cj zbmk@z0xzW#?%1V?Wz|+)Ih$v4H5=iN59Da#)ZvZ?nVmO^c3@_-nwR@H)||{{pP^%o zIKOyxZEH9nC}hfM5~8MMmxez%5lxw>$ocZMx>XWd4uM&@M1QSeDFm%QW~7m=K)0`u zyBh*@dzpB~(McjEC1&P~5uzrxK>Ke2L_(AiDnr=#7X&fc$53V_q*h8@6Pr&pZ`7idi!V4;bq~Wc+si&cGtI}H_U4RA1KHc5ythO zk(uaS?z@(+l;FFShdSO*mhPi@UEBP*5~Ojs`6FN{(t9i>P~exRvy z-Iq1I4oUj6D{#Nw>}%_vOfrd_awBz`ZP&AXR*cjJ$@xX<;uG}P6h-n9gENI?Ot zo1zkSvDq&sA#sa7$-wT$2}0`D$01)-Cvi~bj)|kW&h2oryc>#0XR-7 z%E}_HvjcTg&*lGx&8kOz3nv&0sj)pWqGdCWbixiVbzG9daU_Z7`%+3Ec#I4CbavO) zYx#tmdM1nP5Luz>{nrlYen0AvDHRaF7M*=YvE1$>@cU=6$~dIXrR zCxV2)_O4K)-K9k0Z<3s~EVV(Uz&~fzSy|+3&n`~}KYcQtV0ka7Rq$}p@KN2MkA}fT zC#;kL5P}Mq_qUnxBvEOE(VxWgmB^ihXSRIVFA{fPZwj^U;uz;C!-?m?aw~`g^a5I4 zX4YZU0KeU^_;grGqA6?PTo64(T8q&ub0wcj)}_gPiEycHhPmqCXc!27iEEo976WaYDAZmmaExNB7)_o$M(}VPal9u*sF?Qx8PcLHg zC^@;l5CzvcOiic5VILAXc@`21dJAx7?}2$M!10Pd_xAzhapR}gVEPQYh(Ghsn{HJ_ z5kGKmsDw#RQQl9pN2GQJDL$@+IBX7Lf>Ww{jnXP;&8 z4W;J%wOdm(B8r8~5{}v4yb48^TRAFw^X5&NhlK2P_{5spfe!j{Hr@6kIcoldvC+}6 z2}$1_`c&M?0&u0~=b!HFWe^vq^v1!&YzO#`BnF)jEB*)o6CnJK--j9*e{K;>i7Z=> zaxhIE+`I~vykqi5CB?(PtnXK;Q2+@Y2id(e1CtcHY&O5JFXe)bVy-*JPdNi&Htcxyzyws~Wipi;t zlTm$>Uv69`x6Nkj2xn8-UkgWPqJ+4;Y_Ti(I9=Ty(Cux~S73T2pR>!`I(wtf#mqE^ z%mKbrr=TL+LBHAF-Uhpv+b>wKpxqgpn23}*wu1!%E;#U`bP6i+*4-svGW~Z-7!wP9DIc<1PWx_1l`X2%*cz8TE9YlW&+yzr8mbMTTI4tdRWG>61H)X?lx4NN4isa4Zc$iLy1TnJ-Jl|!(nxowq?B~0(t>nKgS3P+ z(vlJ)(xpcM5fKsYV%(qi+%aIg`Mx*idgh$!EQ34g7hp@$sGemeX$JirXTa%jwiL1m z#5k1WjIuOaaY#}u#c@zg_4Q*s(lt*KMj^s#tT;I?&Jt68TE+k3nDM_1M9GWuw7Kxl z#nGLqSHezn@&>^%WAXgidwTj278?tMVp3GIi~V8xdV!Mv_sU2j3gvfR+Squ z+r2HqIEn@LDhx;*n-%M9JrW79k?{e){6bD)(jt6x1zxD}&kOI|MEmL71yTPH+;`%ekyJIytib+(X?Cn-YWj%vj=`vd&dGnD#PH_!xu7DU(U)Ru zwfn@K6vBWMG6$YpIyeS_X%0P^79f5!5uA#ci$ldcRFxHPz?9Z#lGw?y-`Ir0J4%Q) zOL@x8$M^ng&e$u%E{XePOfZ4iE$`gmd!Dp^8{9N;!1k8OeL)ZOAo75biqu88 zVGuqno(r#p3S`W7Xrwc29A~0ni#WH#*3l5mdAScdGZW0vM#sirdryXJ8C_z!&Hzvk z7-?W!vXET%Jb2&PgV697?1s0o5X!|$m0ZK|bzFmRo#qFq_o=Dkj>$L9Kk_S_vi_}p zKg^xY2BxQ`cFA-_wCw#7`7;B%*!LPwa*^9QlXr6P9YB)m^Q^ZAi-W55t~3e6xT zjI2X- zT7E@m=q&8Zyl5T=I!GjS2u@HGQR$nV|rwbp_Q&7aQS4Sh~23WO$N0Jad zC-%(WlH5{(28k9%7P%rWY=HyI_XqtAacc8~$+@wnw!+%rsZjLspGx9Aion5_#;FN6WCxSes#_qdhPV z3c8;VCPxxFhT`%fDT##?l`q2f942~D6tAsUN=xH3)B>Mqc@DB9F1MLdiKJwFjkrrx z9`t>I#of5Or^k&IaUtIpHd*Q^G?n2l}@d;u31~y(+Ru*JT zL#*QYLlJ%_lpMKYd3&(hs#bdlVRq4odxUKttoQtd&ATz3P@KSPn=*6LplLw-C^Ddt zo*nHE^`~RJIT@yFUp=JYbJ!aaL7Ls8!g82#{Gg7Sl@3 z#jjMh#Sem7I*PP|Pu_@CJUKeL5ni9(_VSoXF-XBG2O3!Bjm^yJzSq97MYCf!OLf;M zJSA1**yoQq+d#^6$V-Tp{R)EZ0fWScAgLj*2svTUQ5BfuUo6}o<@kB>JonlUOE$3r z#j7v&j2j07kEjtWkq{E$sg6PT8Hrma0CQs2KqqcaK`?xPnkq*sSQ2*tnr%V0g#K+k zfAsThFQB``+7SI)FR@pX;dD2+eq4qTetjFkjxqI+R~Vy<>H(K0(jSUhOtEy!eF&L4 zn6O*9%Ei6$i30DZ>y# znMxN$o@uMp@k)6PZC1=ZrFz0or~BTO_E~GK-@B67 zD?&0BFPH-~BGj2O(cSnylX0oI?0q&vRt+9tMg-*3&i{Gon>c`&418d5!%r3W-rrYfGz-rgSCDsHoQ zo^EUbqZ>2g4NHa3D*~H<0I={*z@!ki)OC2U22-pAUnH*eeZpdg816Wo9P2w=6_{xl zBg4b}AFj9_#NGJ-d_$1zkG^-pQUrK~H4U~@KT|a@VhsgG+0*##6QVC3L%vNQuY8t- ze9}697@fdRU?{ThPxV)RYEOr~eeyZ**6SoOdJ_%$~eYS%P5p|6KHQMTo zxw$!rxjg&{Wrd|}83=#I-|7K-%})m>3=-L}Yci4UVD?!y)@19FzwYSB)*(hKV_Iwh zjw350LpuJbT0XZ0AJDR+zyZ(Tg>J{)Km=Q29|}MtwUHqzR4fixTNM{ZDd;&Bn5){4 zvV(x+3Hf(-YvfvX1OnxQrl zkieZ}f8T|c=Dm@xjM$rVSkt~CdbC&`hfpl;@tw!T3Q%Z@y!Ui63bA6RVpo})%?%7| zPuPe39@Z(6iy3%sf={*-XvKU_r74oNnnbdcD+J6_Z6gTpIXyrlH7Je7rb#Urw|uXz zT*3LkXFOX8wX6WfX%k~(e{AN)-!uHc6D21lt+VJYpoSN7W?DUm(` zrO%|3nvVasL9b#Xs%}Qa!Y&T6ds-J=w9c`qv<%K8L?}q5r+;-e~_Sx3K<6jpkL)xh5&G zbZB!hUD5>GH>r>uX|zUNEw*QW8TxZK*Z-{R3Sn;ll70GI>i6Mn()Rk5c9650aiK2u z>G#SI8}<1UEBr{V^N_b%F&AZpC$lsuV&OfZBJ*8wd5dwsKi!EgRM;7Cwu>6zP`;Ci z`StrvHO3Ud^?#Zvv&SKhqoN*mb{h9dV#E|Kb~2+C=EE1qF%(k1QN8<2t7*5M*V?4< zpQanVDs$c|boK>NMVu>aeC$LvQuD_7a7bYFc*13U_5XS;HON^5)bm7b``cG!Y!baJv%g%N~ zj61=}3i$+Hb!R^ir5*EUqP%%9cq>LHaD7$jca@38p6{cLbb*>8N{ zu0Dd9TpvM=R^f-ScCv^vTb+3U^>^*y_6CxP<^^2uGYSfxzmiu{QW4Zb&&bNU_L_ym z1pIgTSQj#L!@8CW<_zjRF=v12Y6C#H-N9PJrR;{Kh?sJ#)-4KZnfn_sit@eZhg4z> z?$vvRLBCnWGt+NG)YK-1hT;%Lio6bN=}jFoNdm<$X*iH6D#mzKy-9Au5UABRz9Nh{ z8702R`;yYG7fSC{y{rH(5#SK21sRSF6sM7~YmAe?q_Hr@5?UvWp@a`fc77s$Qi;7_ z*aWw-lamwfnw|_p^|!4KB!~B~?=iE&Esae)Nh!HvgH~p{7*2!Q+ZoaL;&wHeWJuCa z;?AJukF&sP7S=zAsfr_}xH%|++1~SsBlToN$g>T9pM4PeKsXf^PkNLq%0n@sK1JZa zdTUDs{14(s804&6vBUb*7De`4{m#D`B}75&Twt%lG|&r>XVVVU;{D*uTW}YPJUBh7 zRdllHQN}TB{xbAQdjV6>H2u46t;5y2}%DRb` z{&@c)*P)v~kMsQ>JG76CrZCsVZPz7BMuUGycyY+<+W>CfdN@tMRl~6#e4fVbPwF(h z;mUoCQ-ZPybgk@*WVh2BBQCJ66#&93bLLDI3Hlk}l5mA~nXj0FtrbE}F2E27hZWDJvq;Ch8^xg% zg}CbL0TvQH5K8s`kkHd>K4EweXku?Wt*Fb0Yp1uV*H839- z#yy5u873s?mrs}g*l@(6@Xx3t{5mf$!4IGx^iQ3g`J}QJ9%F_6^LrCVWms2>Ybrdh zaKdgNZCA$m;<0A+egxJeVk~x>b9hkiVJ__;?pu&ob0C$^Wo7`B!`q9Z_$kON?Y9ug z^z=3T-(O_bb}Pfs;7#%0c@2w~plc*G-<@0h4gf=UmKjYsmRBg-+s{9;zbj%_wm`-8G>T^a$-5u#%`X~zAAFzn!n0^y8r}>3@{i`D z@rS_cn_uouPW`W?NyA#m4{6@T!ubT-BQZ}oB=Ecot{tZEdTRP$&H#D6eJ^3H#fi9n zr`3BHCSO8==#@ZXRiFPyagumOQy>X*CvtUpiDTlv; z?z@0#=$sH15%GNY<_#gO{{?ucK!p(UIk@eNf%Rm#QCY78-dZzl?Qr6GKRdpXo$Md) zv^-{?n&p`2W@DbmZ^1*zMU*~h+KNum3ht4XHSDmi~ z@*AE&)}sk75B&eHk1XDEl!#g%wx}7mXf!ezkO}^lb@{Iyo_fDE&sYr#-EQc;gvSIe z@?8gapqj-RpV)W!bkCoiOyB!)QIeYvv|HDo-@D@rbVCit#aK)f5?(ved;J)EKEfE`p5vQ1c1p>s6+0wheJ$AuBrT>w*N%DSV#aQ&hfx!EIUJ^<8oy>l*i^={_V)!n)k^5q@W) z0DM94o;z+j)}t1T$;yD`y4~$l#U2{?@5$OtPA=juKY0|5X5O$MyzCfr!O0@w@g?}T zI=HKGZ+W&+)~efDR47_qMe9DS$QAwsJVFrE!_fzy%|f>(i8#1lC$nJy`wp7sco*v0 z*H=C1V#3_W^%KgyELPH3)hyBE)g_S|!&DO}lq@&Mq#V>DFCe>$}1N)YK-x)Savu z@Z5^09HC~i^XJ$hoo4g)A5)e-IBt6{`SLO_=;hd{_}z|iB-8kc-TmsC`mK0W@bM@* zqFaRg+4Xu-X8B*eHc1s;Klxeli-bp)2&(F7F+6~Z&G7ExP=xi1xviE3OM*AsPVmHF zqd*Z&p_({|%L5ljzi022%R=*Hwsi?VNUYBv;EErXrLQ3;Crc_dIoBpLb9n7O97`}Y z8Wo-+a0O8v|G^mnsy`G@()n*7=@60}7>tbpt@GI%IwaSh@x_?~HwFTNJ>1bDXljDD z>l=U-3+@m9erpD{B=CK}vZv`70h7AtAg&m}y|y^4aJrDt%R}}JKK!?t>F9SV(>0|e z7PR&~SiNajc<6+~_JOmZyMH%K<^bo8Y%jPtV%$#%-`*29oqB!R0+%_Q;6>_!&@EE<2W*>V+{IKF~e0cg1gB&s4)YMcI;)c%!OVlIAD`*Km z$St&9;tPN{Oa=OpzXO`zPr&?3kb2jai>z8*+#%01rr%6CBj;O{h_JA@MFB*{T3r9q zxX||7sm6+37EY=xqkN3bmEo&b8McVCziXsvXkpP{nU`;%ZDSHz<)Ljd75skKo>Ve} zw|7**MF|!W7d0YGc4XlVk56vxxb#wamO)?^_uK_OY)nNAt)TnQUT##RJ&a5b&ng4} zNn$#WQig?2XzxRW$ysN=DlPGs;$##+E$<$vO@rNvyo3%`__?inY^QnmaW*kCHdMet z(6aSki7)<sEObIfzF|>#HIOj)5&`AO_Y!9? z-2DF*)((4rkEc2FVR3-tiEUh3<1GNm{wUkysOq(`3^F;lVc*>Y=kM?mCFrLxboSp1 zTSD2#)e_oR!s-r$7EqD`&VCoA=}dhF^gkmtMM8hAu~d|8I*RwS(HrurtbAY8^~_nE z*3vS~*qTp7c{UPV@-Hnmk{tagLKc7IO#tgiITc`-e7{*thcD}K8E}Bo9eHqV^I&O( z{DXGq>wMo=2ZAfts#Ed{96AX&3=i#W;5>ARBr&TD!h3`&kJoN*e}d`Cs;p{<^?SN! zwI;{Vl6%`%9nxCSh%N3o5kIxMYMlLzPYeCa=on}}TCa*9JZ*&gGJ#1Twizq+E@uYA zxM+n>CQ@NV?ctkE%?-?QOi6$2jG`HULCOYtqivT`O|0ve2bz;4@DjcyAnG@8&e&*_ zB`}9%QWZ_%urm#3R+KTAYO{Tr^cpH^a&w=rh`moT%^;7QH4xomcw5|yUVSPTU?t7; z+-pc2WK&tO7*D!~s(e$omCDDav1|m(?>x5^pMtYR;iBbbeNxh{uXUT$WT4PXEMhde zRF$A31B|)EY>p0Cf3S+-%xtDXU`lF$TFyMzGit^5>C~#H=(;0VfUW&67MwzJ^K#4g z7T;Er{e=?ituWLlo(|4Nn|`LPG1M|Q+ zWaZ7b`vtcOFpm&Kx*N7bcQ@Sgdrrp@5C*^`J9XRFJ#zr4atddWjNsj_Vx)0(Kq=8c@Ur}_u&C&(Xpa7dI_+xI1eb+MZ4xYs+Y`T;87&XW4#cTqNN=O8 z>+X4br}@RjKC=HhKXxxp)?vp;3C8RV*}Q##CW5~%j>@0}-&t+%?d5AD7tAuUaL{81?Dgb?Kt-9I+S2={!@cNWg3<{w8zxWQmcym(BYwR6yW-byNg9Ig zxmrf|$W~%5Q86*>aT1gWKcb4^trMzG!*>v`>pqR#>=YP`d%}h~Vv`K>7?tNFFydnI zNfzn3d;p0SLU*N228e@)B*!NuS6{?2v5|F_#m~3}W}D_bi>o7K_$~5O>Vy^dJo=QV zijF};C~MqXgliFp_l4Bce{P~Q9w*#xsaJMs#%7F{#F=%(-xPiOS6Md)~x*dSfLUb=D|J&|R zzC=1Uekmvym&M5qkllm8thwivGLdHJ7c8MMohL6fndB0qFp$gk@lg_R6!0#}9&)Ly zLE}aak~Ud^3{}*9C&sEU*S`WyRaH(vehA_Zs75P?a#3m9a$AWCqa9k278ojP&V__P z;$BNj3&$q$l6?N-97Xz_M+fp~S^P2t@XygYJ6b7zd8 zasd+IoIk0BTfsO87@;(NYxJtxa-}wZ)m65;nwXNBrfp{|{#+|5+f&5kEK?}*(&rHt z-D+{R4o*8N(p%fxDswIR&-EPZXt*a?qy`24FJB9GC z_W@BQcFLge$0u++=Q_|kZQyP>b4^dui8WnxZ0dB*c#?pVnKp-qi=}z)UREt{%O#)1 ze%f!iuJA28DnpJ8;^4@WxAR%$i)WM;vKU*61P`zaRMSSVRj5L%gmY4)e7*~Z@$&On zg?B2DTq3Cu{^ZYtKxD?b0pe#fXk!BWDjE5TlZq#-(Uu{9qN^%#s^1@NVSiqri=QUK z(zccKp|B+3;ie)awEFaSz$>bzsVS{vY;Sxnt6)H1P&hMLIgJ5j*T;(PnY=?pU%KDP zg0&>iP?nZ*DT`B@^%&pfhJlYy%g6Clth!7plyIY8wZ@l}C6c+nYChoodu06`T}cJW zWl=r8VKGYoeb>$If~>t8ZAV3oilw%;Ni$jQy=*sqqo@_~Og#*0#K6nVYHeEs)rSG} zMHRpCq9sPHGX)=)GmXwL5w>#m;hTio?_D=#hgA{&Y!G9WFNtS*xmdqvRf#}%%4uKufreT-$# zV4r;466EJ?11rVw`}(uM_=3&06uY+PAzP<+KI+?bR^j~w^5j2%{tRA+uZ||d*RkKf zKLJySlF8<`8RNrF3R%%g-OKPk%9gPp*2Vf_L2FE&`fRrTF?b{4kpxl!5_!SR#k)Tc z7gdkAi(HpkidBLnqnLb4C(J?yD3+MJ?>F4#Ih>umcNx<$^l^LI!1aJdVK}wY|zuJ zhT$CXf>LONu?-h%EBb9kx|;1rwtLdH%9J(&X}AI8)RX6xPsUe!aX(&O|GPIgQh*nr z;2B=h1TQb7IJ2<lXiP~}#RANKzd ztP{uVV#F4k9T@+>kQVWNy|@VKU=V-c1Vjjc-Of)IWa!4wD)GNfjn(^vZk^HPzDVp zp=0NoT@~htWkRwW`};6~5Fx1E^tW|zXjb*{@qspxGY5@<>+SdWi-I1n^Yjt%k4;Rd z3%1N;WcqL6Gkr-KIf9{(zG+!(c*bfOP^SgD0KEGE{#F>RW@Tpbn6%;8>v}=35JHk0 z(tcskSmF^^Rl)`e@*@?MfXg#ZJ$gF2=_;Tkv|U}fdo}XJ!`(p3+|Nl(mD!DZqQjdn z6-sKS0N$wXaMB#wt}L-BnQJ!i(8S}VL(|TUZ2QeI;_3j?+3@M(sWD$ z3QuzKEuZ9H-MLA!LSkH-b#2o(HJkn*ZHj7CVLNZCmTZ^RAsp?CRBs)g*N~#p-Q5i%@{^Y(x6x^OVkBCy2tc)zjuoyh;@QvFYusfy zV^i}|q1So)FvdL4tb~pi{yPCBsm>tjWr+X01|4tfMF!9^T2r_Z^7@v;TU*xlY;yd% zl5>hHqirQI7P#=&L(ftC27MngECOjqL~567Pl!lWhXL?dAzTyqt^K32H*?|Dm%ooh z^(+-G(91K$6*RXV9$(;~!mG9;)MRIW?;#|6_lLQ?oc9oK(Z9xXM5@I$=ws*SX>S7Z zyrt!~S%gFvbaqo>j^7aRswEFbUn8+#3h0;%#)vJkhZ*%+#U=?SUMvUOj-s~Wzql9R z>&UQJpz?=A??u4=Qc^agnI(GQdc1HC!pFm+-Vj^M7i`o3VIm2@Y9o1OW+uzkX!`5d z4iG^B^1XlTAI<<*b3X#HEE_YQyFagRi~MNl4n2PEsRJkGjPM~4>;)keo^8Neiuc54 zanas4g8Dqrqs(5RI%c1~9TgBK@@C+UNb$F)At6%e#2g{1vfa;q<9#l}?}7~I$K8f+ zy~=Tld%G=rIS8Y<#^M_q+#$|IDPm_xs`asZ0BLZBho?!rt*dM85qF9o*IHQEodRef zSaZa~F`o!%?FIMK)PGqWn&A}tWGtnS3Esfy2FCr{z;dRboT^qm1t%ydDDI!yl8;7aLvXNX&>Z9n zAXFcqlxBXE!jAZvzV;{RG>$AITEC!9PfN&}E93bcZM}-JGU>=G1+gk*fL@c0i+?SD z`S|gCXN=g&zk`sewGKNQ=^sL)R%R$Tr4#mUC`&XM_! z(UwA}47>dWBru-Y zR;ifLjS-=-5YV2s4$Bf9EsF}c?)h@qk2ZF9S^sd!OiWJR_x(oEx(L#@WjA!afDCsC z;Q(v*s;RS&!7@_s@9BZdCXWksNjxK;W6hhIo2}?L9zY8XH#bhe7P-6(2duiq`hN+w z`A}{|i;TZRwOB92o0F8pe7E#!L1%tLvpPinO^MhkRa<;{byf8qZ9-yV)!~fRr&Ye; zMDDv^)8vbp_2Tl{l4long!=?sY9ja~1g zZ1vFqfA>w&LdHN@(O7ZP0!MK~(hPbE!yFCAK}jy}D~5&=jEIAh8pjTvWb_DrDu!1@ zed7aK%*>PWP28m!sx(4em-N%W3x_X%OYQrh-zzBn+9Uq0`FzzS_^XLa&yU~L7;<`( zU`68>)HQh$sI&)c4cl;JSnb^1KYi?{zhMqYLc!tW=_zoUyjChQ6f>$5&adp}CkAYW z%K+o;-xMkRr`8q@)sViKnL4d(PdKqDB)Bi>_mIYN_`}k#6n!0)fS2aX+vUj0?2*cu zy=d@_WEUxScx=FA+s#%dzw5J^(ECz1gE)cKG|#%3(CKCm^>wxmn0)y$4pM$V2~ zp&HMutxf*7@g4dMQmB_cencbe-S&L1RX5*k?-YZ zWyR3_OFdx`LgES6%zi015Y9-EChZv=$;`6z!Z>kt8%A}?4e?ZiYoT7 zloM&j#9x7`1RD-PBw5G?84&S0y1FpU$uBI_q~MNPzTGwdDB&3)KP3q^d|pfFW*4dT zh*!Kzni;!T)>3yFxtbFX=UEgcYpkKhLUUVHsy|%96K(#mY|jd<(vG zkk;hh1z6@1c=~vQhSSIzTxmj}MMa2lB1JR@r;qKeEyF~Qs)tCG4mYht&shx&c?xnW z-@T)o8?lFJE7ej=4Qsf+IXBCn9ZJvrmv8;mqT<9;bzie~G5ka~^FL;^@{nf? zyEDo#U0ilmp$QE-R;An}Nu#K-NHq#6J2_G?PasiS;0YQi(K26E8uutZY#LtBSkoOS z9S7peTtfqIfE}?#n#Iq`s^F!JjV(_()*Ce?Q(aeQmkj1uOY)(ouqVbE=vlKwRmbd7 z>q;nEw#;GHlU}s}g#+|Hw_)R*9w?q6(&>P{2Or`OUe{LvM~kpW+K?TKlVn{`seXjD zYd+#-)QCVC{~X|Xr5Xsdak*67ad!-)ZE0gHEUb;Ys^1|TdE=YqQ+?G#UJ~248QM3d zmfkOm4b?gl{edEtyY-sD2o3h)$aa2;mKd!j&VeHzg67DrxL1F(jTI=YQ?PcB2#0!z znhhJ@y^|`lh1~2)%%^CfD%}4O@byxt$g+l&RTw7OjJ}S)`M;t?@1I5{)nvv2|A22?A{Ef^=XB9Fnds_6lnXRJ^}ZF&IDtH zUh}Pyo@JELN=6wx7*)b8#)d%g1lX6r1{qtpB?y}swNkw8EdsaN)zWeX0T?MNMn)^j4I_xMYX_$| z><@ag1cLYiynV4(r!VgYQDXN0(vpxSVba0H#WiG+GV1iEuwI z;k9 z`}Pj8pk^$D3m$&3DA*z5d554Z{1k;VpIh zc@s(U6ODT6H0T9~{L^TpX)H>b89&5PqTgj+62Yo13LJM{=_K|}bE`$TeR`+fB;`g^3SIFYC5Fn%sll zyay|MtHt^_4D)ZW=nkX<8bkgC3Y5|Hw7;2j_Z!n!^&?jE0g2c)yaRig813Au5kqEkyrks+*}hQZB+@E`ys4Giuot!D z{D9R6k!Nwo>r8}S@q`fd6oQBsY2Jv8=`Mwb{ehx@^j$g%2?>du zyJ>v|X@hX3lKhY@zzj`U?*l~RoMCm9UCbMQp`4)SRGnsz(E2t0F;q=ZM+;r4ZonRK z*4s%w|FQw^MRV_*>94xeCr932$mEh;ovs(=DoxzNzaP5hGBvomKknK+cN8VAc1C|d zm&^EAK%6ILyzU)prrQHA6Fj$bEiu2#ur}_)#fTTSN9n4itJt5)bkYyr&e`lyiYU=? zzdzA$US6wV(VatB1bn*OaD6q2n6rQTSci+LHFu8Vt?Z+6mK0KzUkahBJIzIGZ*e+w!Hrg*7Af{;!V#csxs+x3G*6AD%039WN>iq zLwv88e=`L-da-nS<@EUmL7VOoj!wlnMfaS%`@1<4u86Q|xt(dMOkoONin=qTZG@75 zs|L^H&%mFVGHXM}*{ZaGDc6tczNbEXCwSI3nJ;od&2Q|)FWNswzK)m6`IlK<75S3o zN|qAK)!50BK!Kvp*onKipPtYuc8I<%0}o&|tN78rzKw?$4VkHm-0uj@W~nF)ubs;C zoW0v{aR!oRj}UUP1WS;Zttd$lsg3bMY`W0J5w9$~KduixJw=`H#j}ldwBN-NDd_0T z5y~^;agSL`m?W5K6-cC~UyNnmz}etLQe6{Sj& z94IKg1enH@Z}{KMc|Aj#V2qZ`xw-t6xDWmSXvKs~FyH_b{MT8$RxDTzADV^rXqWer z_v$DHJHM8aG#RMP?ERdA!OFhlkcVBIy#}GH05(W{fSHqq2HnTX8%Y-S{QP_{HPZa; z=;(m-BL7cR|F$UP@7?~%XH_TE@lsfn&}iQ{v0lJt1)BrdHv^wN3%D)mo1T8|K|EwE z^)@9voq6)h($W&RgXZVcb91r7sq5r10OU$bNlD4bSeTvd{{p(@shk?zh&iz&>89u4 zj0)obxDJ(SBR~u>F)@MmtI02b8tBjj-s4e3C=n;=2S(25MR|u%+^GX^F4Uz$$Q5W3 zVDuu&Vi1Dkl!D9Zr%&K<1sxp@9}oHY@8pBcC#RR0lqciKzlo5ZVSOW4&pTi6D=`@; zQgn)0O?Rvbxw(oer4`;-YN<$|9HNhMrTxD@6_$`Ox2=#~33`{+TA+SZF3LJkTiTsPo5iwQXm-jWE zSHW}QQ6B+@0zVjX2bEV{<8i5=7C5L0Kg-MzZXSay#`>Of|Q7ykMht}Px*|EDm+wC-ZIM9jkTYFD@ zx7>C+GRf!1XN{ggN(=uS4(j9=pI(A9sPeEkGj@bXqbZ$F(Bie|=7TQu_v-hTQ2gu9 zP@V_U+0UOpy{AuZig!DjGRfE!JY~85<~kl~rQJMn-Lzi2OsTD6)w@+1b#49I1P`N*6dz(DpZXtQmD@P|8*##n z{WNzmgan+z7b(bBr+W~1=N#TI_K$)l|LNI014`mY*AJ;0;b#-VZt#;JIVsgL&n+K3 z18{iDL>^D9>33=>1RzwVbmuPm74#}3CL|c^v*|D^YaK!K%C(;k%52O()dzQC^1uFIZ4x zqLYNum64;N3L9Al{IG*E|B~{BOv=&v~dVRea961`Mb*)hNxL3=z;QyZ|Xbavr0N3Zsy-@!w6*m zzXYFhy2{At0dz$SW$!`4A^+Ps`0QDxIT_zIB@Vvj)&=e7`zhaZxbp&=!DzIzBaMux zI56f;(c|njaLDSt>R1egXLEmr@z1=CW!PFgjr_``#8@kK#cs!`50CRHG-tqf^{z zT!RZCktXeDwgB6*&?=<#t7A4&Q}+4mwEK{!I}0*w%IG=4q5@$zO}F)RJxo1$yz-^= zGBEbh!xi`oSy>zW2|gjP+Bn#Ps|6ypn&44YWdb9C>4S&RYtjHFU0*0nf&8wACbMmCw8^Wv zh?WR~Z(h&-QEY-y1WP)0%|Mx&R~QUX6AaB9Y<4O)e1|M06i;Xw{}KIwbWsTn_ND2< zthIx4yq#_rUOZ=ih@Ai23S!$_jp<_upQRQKy$#kUDhw6jxLe{~1Ihj1v0X zy&n_WuXT-uqcITr{hLK{9Y~VhgTN!&@V6|D;YRC<&qFl}iO2~xDKiiB2;3%(L7h92 z3Cf)Y1Cp2fSw8*{!{1e$;s^x zLasVS&CL4=Gz8*%$m$+x=1VHzF}}C;s#+o0{Z-fWmuv|D(`VqL5@jVp3n1}QJiO^P(fqF$XrUpfpA>@4qB{`&9k-V^ssboHg7&amyBXZtCI^5J zj7JD?7NUKn10E}s%s>*e&kDLFfxL6D4Qr+=4|@iM73jrU!ze~{0f*tT?mfTsJv~n# z9IX&(B2T>%73UH=k|7NU@Df=%o_HQbbT?0M+WP~GrXF|-G9NKYx!lJb-mF@ zjm`D*7gjo<#kj$5)$wi{e(It9}Du>zi2$l>oS70Fqs1nl|UeFH6WMOVXRl_2Nko!as*; zenyXSh)iUXVP%<_{o_7;&~dn0!o|Y8;=JtjZ5dBNbpE@n`FB89Zt?rR@9#@f-CPkp zsjgUz3=kS+UE)p3+8)p1L3IlVknr(p?jY5}z`YG91Vp;47f2^4mc@7B2f-bXV66|3 z2~dpc+FvcOmn^nkGzrV|;`&OS5q1)m7vsbrYxo&VmHM#oVK7z5Zx!K?N96togS8Wq zB~ivc;2Ic{2R94d#_n>Gp>4Fef(sL3z*ILLEMnv;dO3$YJ3C-h&W;x=XXqaoki{R7 zR-?MJ*ftP(xKx%YOsuLdviS3}-xqipxj)FdR29rwQ6_GYhq>PQu>#bSOZ{6m9L|zi zzHDW6{0=(kii3%B^JpfrKcJv9^jmoKEm}JY7gmych?N=G+uvgM2N&zy7UfumK7n(N z8M3`HXnan01gop64nMUwe3p1`N@9Z1?So5LO8zEQ`b>+_THA3g+F5qFHO7njh`b-ME!72>WrHA3Z8wxHT4HQ+l(f+ z93a-bzezd6W7R7_jehZbmJjl#6K?Ib~8Ldi?=mlnmZx@fjcdPeCN;lvmdNZXMJ+-bo?(^gIQAU zzVN`OEY=>uWe$^?9F?bV?V3V2U@UHTXpv#8(Yg7`nk!PKYi7oCr%kPoiR6y3sQLYw z+_^qg;7Yb!@^}?uKE*xek4T~vg&cgyu5ht?(@i#j4C_m?mPrMvFAg@dB36lpUK40m z!yhIl5F8xGw@ocu>R1U}(kc$bRyymVcw|X6%4}IeR{B8Dc6@d{X-u7Xn?=q zHvHMPhIQ@%ZK`nzF`YIl#pqrmCShoH;tsJ*k=B(u+oKR&bu7jncH^%SY+pq06>c)Q z5sYsyN&8f5-+bNlkJ_*zPGw?RacW72G|XAe1=%!T z&`ic?%Dm@aks%U&Ro~D+FK8QAo_d|ZsmsrHbV8~g!NDl>W31?nf2Hp3(~-PT%10)u zubd@Qc>c8S1~`f~_rjjjtjownD)a(FfW%_2Nh?za#w>fYX@PAI25?4{blUnl7vg#i zn*emu`Dx(hL}VgOdiC<3*WanCXImH3H42(~HP0V#7^|9a$>$My)?+ZKvy>1yF+DMj ze-<0s7i~f$8-d!NOvHrYDWg*k7KF!cPPBnVtM7jN`1y=2pZnRv52bbchn~TFzUSu8 z>WqXS+sisDhg9GCzf-D3|c#YD7(7j2@qkWJSy}$kj z2-W?I)afTUq~O!thi>az$`W>l+h|$xgS5Yo_4M=%4V5Ds;Vc2M$Ytf_oa)L(bUU3n zJ@LP-y;39jesC)LWusd#c!Riz@!ni8rtD>C=biWz2d#qprQ1PU1O<+)YqqENG|?Hg zNLlqt#)SqfRP3784xN?lD&DySRTKPU4b?_zeG~Davr`fSEqu#4;Ccxyz`!YRygPk= zSo);dgM&HHH-s8%s+^;UG(zQlCmLp6eIs}_Jp*|U@HJvB;Kax{1(gOx-oPzQQT=oh z6%rK89G%wIjQlV8Y{VD}>#ZIUVxC=kY`ld&y_3xpfisWhz9is? zdmvTaY^u(YkUN0?rECk9t5ky}m~_MNJ`c#2fU677@2gcFU(B_<+r!iy8vK#{r-)rUdPvHC}iIy*hx`(TD~s+`Thx!D(7*U))Yl*Td0 z)uO z2lLjs4Qp-4TOE8nT5x8+cqC zN^&tAipfy2OUu!y624rJv=gUPQn9#ZE3!i>HYN{F8KKSm$cUovknb$b=J734;E54B zOcrlz8Y_{_pbtpE@gK0hea9$i%=c@_oJ&+Dkg|Sm7#;=rldzqmpE&S^2}0~cN#X7T zQBg9KfPNZ7&ELb)5?UkLkEv9?k+u#i<_r?CDEF|>K9@V@Pm9(u8sIzWl_x=O;(z$C z@S{kSuMrN1VLcA&)5H~hWg}jR@so1A_w-$8oCPQ%*=z>q>SJ6(?0S_^E9oQ3)P=-bR^P2k7qOMvi?&Jo<6(Qy3T-*$;da z@*xrC4UM0#Z(9Z#qwtjVMxU1*!6=&N)oi#6Jc}4#-d?Jv9!=*0{?|Ds|1#UE&sr5hO&CeVu1$&X8!h7$fFSa*~3BErIH_;og`#Ek?ksnv&QPyn=@|N(l7cZ*dnA~Z|^oV(nWa` zVvlo&lpefTtW}>SBioGG9oOoAymIbn)e!JecGKC)bf$pgBIrlU@!{bWozVK;@DHNi zZBc)2?g8A1Ofosl5R*pf{8z%oKB=87wY25rt2XD)zg>I1jgD6MePTg=X+nsdNYF<; z$wtam%#S>K@Om=UNm86+SxF_-!|5vy(Qjiz4sHWu9Mf|&wIZ4C)y|t0Ru)c*NEG0X`w?T=U0lOIgb>cU}dR!X#3{VFOd3a-p&XJ_FJjnUDV6PbeqAyu~0GE{PQNPGckM`Ar04(HjSsQ;ttD}bt8 zyKto&=?3Wr0cq*ngmiZ|NJ}Z*At2o#-Kmr`2na~09sy}ZB~(y^yZGnM+_`7w%sHdZ zcJsx0*Lv0yG#_>S=}rlK~ z`BoIQ$=o4+oztjnw)XE8PGh^+2Q->hVCI>bNdPVY>ukXDpf+7UV%q>%ZgCMvePkw* zJlsRraETMbXCHSP&0iL>UvhDO*Pl<%dDP%Fib*o;L`6rjmlf`D+(4>u|H&>*b-L?Hhu|3~~ZWN@oWvO1lxYY>Qhd zF%9Ig!juc84MbZEBVfK1FEimS0mKZ=$QOBe;<#PudyRnI-@gxWt&`jcn6~IUfdRGo z0uDrQ-eZBSrxNB+rW_?`e)mcWq8B-j&VGOY1n(C>i1`okA&p0>ym5d={qLWjuED{7 zfy{*2c5N`t$lYw_yhW}m$&1J$)_H*yuH$r{-X`$+bEIX%PE%{XO4Ajjowz$Y!(dE& zjBBP6s!#}=7p0l~`^8$3)p$&cD=YG-aNf`&*Yx~Neev{k2dijeW=0qz6wVxI-C-

      bnq8 z`|u2{tk&7#$uejwwc`o(LWul;Y4)m#X6S$4SwRtYbWs9c+X^}bdju-7SO38F0=$7f zqBa;;3+r#=q#p>j9TMeH>5#>DzkK-_#@?jV5zy2kqVJju#9G9#`KnlAJ!mZu17?Gr zUpjUDQMy<=1D-YvabN@TBTNi`ckuZvY)6)T&3r+R)1t1t~ zN2ozG$?!uvq@{Vst&lNuvk4-*JU@-`@F7$lad4t~R3vfv{29HKRLI2uQBp!mN)hbpe*t}IS@T#Si#+p?PuEW@#CQwFbPZV%#rVxf5MS5Nzdevzwk1qjGQW6uUIlz30XOu z?|7c+sTJ|6J7ij$yx8RJeF6u(D$~U_Tz*&%53pS%pE8Mv7+wt@N(Y@|9@z~61j53Z zN=8ln5TY9aW+tX+c9)e6pS3BbjJ7GbuMzW8^wvv8mn6Og2pk3cw&)7WhmjeYcl>(- z&sf#p-a66}@f6?}|A$CbB1I5Svdz<2-m4|vG`mvbUv^|QJ?G~(L=O*8YKy|{mh#h5 z-r>x3#UP)(fnjk+z8mG7tr!sRbljK1FuCMhVJTv-ApScbFS)z+99L`*gT2Ts*-LoiW2u3h$H3(#ncukAJd4LJ&ALp5&E$=cO&*P_(`z<;3#>_agFa z9#f@#d-MnG0br8>gh8xau$XBPlKc#>N-0sCW)AY>g)DH|8{ozj!1y&aGZRAtoK3;I5F_=idG-=oR4rx<)%vn3KB2`+2o+(ZlvD5-n=A0DC9g$eFY+hy$ef_s;+^K8 zB7A3eO=JZUABe<=%GHpedM2Y$yyiOhyV;Bq)hq!BXS3ob8bPHydpbb*cUy1As+t=r zkPOapy#N@iFCrT=Vb8 zmi(3axb~eWg(X;N038i7sw||u&@}yTX|+JYposN#V%|d5xc7VLl%4fFTn;&TniB>y^y?FVpZg`S>HlDugYGoqM&G+cWdZbxV&I46 z!_5243K+0gDVf>_rJ7vf7V=wi7tD`LkD4jlx@Sz2u0TJI54Ln;w}4f6qgEjb0AMVd zA?riHH^&nHaQvcpyNR!jQ0}e>_~VW9f@->3V}kuUE=Gun`!;7lj1_+{@|N*}El_ZF zP7?bR{fWZrk_MHcKnCmEdX9BSMrDf4WQXa_n=tCN+FAcd9|#&ZJ=*EIsA`5JAIhZx zj$^2cMFbTq zge*e^mdaiTpt=OV@;HtNuKnr!Sn_T3E^eq%0RVyk#N=$wOySLp1f;Sv&{|R6;kp$E z3;93!{*tzCDwDx*_#hep(p$mgNHk}jr!G$_ogh_eIO2|_n6?lC_Y)0X`x8{hLO-(E zYrw>Vfxs|JI~;(6d-9Oz^}@8`nFkZYZkRPNquG9vFqVCx8RLGYnh6x_3>4sIKo&s5 zV!GPShQ6V>{VL?ciZ&e##Z=1tgh}-l04~UOxJ^F*b9ISnNl0<{Jyu+Dw@6fWqK1Z( zB$`NA9nFV8p@)Bt#mQ&_=fCVbRGI1)Zg_u3kQhFJe3?6_&Y>(}4pg{?6ZHIyT33tT z4i|pz&=Iwx#d8y|Ocyr$9&V zu=E-w4L(e#@Q$bU7G+Q>cs9}Y@wk(arm_mRIgV{#Q*4(+B|-|-Sk;N`lQ`oCUV(If z=sbYopFsRp(rO?Kd=fEB&UT+WoxKRIDhlFEd3aR)Qaw$Kt-v#4YQmev6i~(c{Z}?< z9Z}3DAbl<_2LA(Zi__n%~fYP(Z|L_YxcjAV=UB0L~w4j>VGD zf$#uwR6-WM`Wbe15NIy}55UMfh#6FP=o$i)sr8rem(x1`bLTD{o9Lx zFP0}>B$`nQNhqVlb)LjoUW#INbu~_@?sHW!;{h0N0R(;d!RP&Me%K2!0KcMbuRc85 zZo|J8$k{ia&Xg;kFTw750{P^`&%gKmZDdUFM(sC37hs~IxQ6>(;5)BkwN}5N@o-wB zR6IFS<|NNJ;0Ts99d6lw%mN=qGjhe7YLy~v*dr3_W*9kBnZ@e9=jWl?!&)2E1X6!6 z*~jp??C>>)U*lU$xY*Qd|QA8AxxjC0-dpBWwiMh(EW;BlbZyh{|)y(26<#)@bu+ zZ1sU|b~6G8_P6UUS<5#A+XsUJNBywFGQU|wvxq7KhPQ{%Gd`xtmjnPI-~>n7G=evP)77ty z$F@plwo{PjaSi|CQwvWioCkp#9{CD5_pduTo zMDt&}^9!Ak=*;RP>{4B=!*zg5VC4{P-p(PL20QD_`TDv#;>(@pzlrRmd_mf^^NQK_ zPbbePlpNN*tLL6x`R^~M?V7D|uu=in)%W=a%+X#oe&_jexPSN=Zy@vxT?+#ip3%-E z)36q++=V(-EbN{~)+T2NXN%;;W+Ygb9PCYhoh*1(YLxu?)hj6Y<;}#gXh`KU6nSy; zNPG0`=ML&5snBH+PK+=pIKtcWIXp^Qiu6dt647k>o2DDTD0LxhavFrw3q+( zQzVx3BUu`L4|5)z44AK8q&Cwks`6zd7;T+FQ-Jgr-aH3R@;Ge8N!q1 z;jQz0OZ((@sRU>21CCm*#^XNcl1%`T_ZYPO!O#NZ?vNwqP)u6w4ov%F&%atL|dq4+hpR4)A6cb zGc1KbP2?ua&gEd!mD(Hx<*@ncPfo-3+2>NWs<>mXf@pOUjMSg-dZ5mVP85`dN`~H5{PC8@~1;P@X_m#Pyx;a97 zhIir5|nu{Af*9D=zBY=!R7 z$d6_K8-p_JqD%mb^IWj9ql5G(Fw^r~*F?#iX*LE+pP?2+zAB@$f-X{<&3DHx35wj) z1T4djzfD3fauWUwR`my$Q6w3!8p~dqXOL-Eqc)6a3Mp0W*aNL${Y1*p%W1a7W`Gg% zWAJXkx06#wEO z;r|8#Ir%)EvU%{lemd#hD3RJw@O-_4$U~K^+BD+s-0ED$*PMX+vDqoTs*EgZA9_CT z(;4^VujeaHP6UYz_vJ5h^vv+Q{=jKElZlbSvSzx9^)d6g6#M-;5uD?i@i*sHW(--u znI=OOf-MRg2C3mJ$ZdH$>6tA(G|SqlZRdH3*&n>?`gY9%H;r^cqRm_EjD9*-M3h|x zSD`67910wdo&zt%cgM5J=cy2n*Hec5$q(LN@ZWU_y#CgKO_D_#$)QI4xbppwM*7l) z<*#=<)nnh2KmYx0sEv7ypD}KbfDag%w?kQs;I7~l#Y<}251rmylg8C`=?-t*KKK(X+AGG}YZ^)b~2MZAq zQG&cng~D&S#}r*khe_Y4#2zs*)wraY$iKI*oY9t(+kPCgs2bl-rX*hNGN<}dtmJ1W zU?@=$sV2_L1i>r1_GSM};tRhXZ31L_t(I!SQ7W3D?^zmShLFujO+Da6G-PPekm$Rj zTo}I5l7r8CUh;UIWeR6JR@Hnv)M=9%J+Ew6d1m0E*=tF7(A>gu>31WpteTS6;8 zZI4An8*`rNfL)VGPYfZ5IRk=&ameXGA`$`%DG;=QmadZU3_L@O(v)8Ev+T`88pUn94;PQo zn~={viFeiS`F&tX3o?nh+Zc%8zwjr$Wv8w9U=oJN6Lsz!=?Lqz_B5TeGhsv~DTG1-6BgYh)!_Cgbi=UdLr4ng`rZRw8yzAWm^Y3~9X%vrEUi z6D#(NAnO_D{LCj{h}D@O2As?#FPeY5AsX~h85zn#_wMi9QLZrwvdv5x9_8U5>acS2 zB4^#|=K8zCi-Hqn2jFN#WaNaVwKYSZ_u+g6a124!k(7|2bC?whZaXls23MonI%=3K6Cy1b1cayPr)DN5ssfm%5a_QAf?QSn@D`zj$<58q&JdHEHTaEVbSOqM5bFW%W4qCcu}iSNhI z;UYy^+Z<dE>F>rSe{k4g1H_ztq#~i>=+*9pN3@j&>yLu z@a7;8an0s{BbE=+Gr!TPHX%|Q0}LF%%b3?hdQ+lN5CDDuikt~X@Tff~^f@h%aea2S(dqS4>1BAV2!xsd@CMfhGDRN4$mF-$8|dTa z<_3CMG6%rvn$JN7Xk%joT6g3w{+lX;Au}0$8FD_cs2ge8k}q&IZ?)x2HS>^8;rGQ# zj^C01|B}I66mtP(wny#X-{i^sZ)jDKEQ`<2#^F81T7CN#BTK1mR`!>+TU08wXfc*3 z)kxf1YmL2uTvc~6{(^^3@WU%thX_8T8Z&5F{EU)7|owt)_!e&$op1 zuVHXujzy$fu#cu2M+A^Q_euT&Ve;I>MpBWmvp<%IC)}9)HFwiKgZmET>ZPhGeVy+@ zup^h&R##_*2!+=wbHqlO3oLPPa4H!x>Z3Egvw!=L84-3YqEK1Ir^vcg5RRi)eTHQS zTvJje8hJNX^$zC+)|CIi-IJy=N5c1?&7MPvG~fmQlu9qmzK~%Fr_Ag1X6*Ip1!2E)&*h# zAub)jynS-&(I}YG=`$epn?^=2olumAfdOen3`{J>#}WSx+(tUnPkggTRvAEg3NIL> zQy@n%Zo0Q);g@5CX>26}l^VN8nKX@S6@4g{lvI!~<{Oa)>+AM^y_Nw++|)fK#bLOF zIebo-l4txR!s7HP5~l}qOj!fpWFm9=;Jt2BHj)@DOHjx!EW~T#HEECQ?<7r+860V* z_knxBrU+_b7RwP4 z9Hm5e=(04gT#ygtA~E9^<9Fy!pxSF|YnRcTKX9hk_Fs>T{%! z_Uo`pX0b>*G)2-*bAsAnj_-k8Qc;3{3?8BGvfNLdCGdw3RD+(UEUP(}76`ey3(Vu$fZksK*Ut=L8t$UFps74eff z+Ney40mIqOEv9~+2FqOKVXsEmT>wkE#KVmVcM5Z64gxhVw2tZN*hN(AnqMRP%b zi2nl?7PJ#azD$o$v}~6Slk>zvDskUx#-Eyqkl)Y+AW&pav%h=eEf9&7C%enm5cUBH z0$#Y!ui)&{@;3-KNO!MHli%JlwqXjWP070R7iHrNi<{ac>2CD?qohk<1hb7*_Dj!AJVQVCFae~Te zqE}0>-_vHWjtv{b$?7Ac)SwR(&D|T_C*H5YjkXcW(jRIx=obTCC>5i z(Q#-O19^Na>Nc+uJuFU+ZoXzqI+1)NAA2HlZ|`34E)Qcw@_lSFY?snxd+e50qLvl{ z1)PVnqhki#B&398(e&(`IjZeHP;f}+l-jjWapH|~G>O}8?wxJg|Cjr5!l4Zwe2IRW z+^%5h8A+e-fis8S*{Dn7O46ttVa>4EWsUih>LWW|0KA97;))gW;WC|-oAz!Y<`H5+ zgCe6d6+H;*QcfC5N-=nNc6ONkmZ3NT=X`{WfL0-QJDSK1QsbQ1tplM}(X@fb#@rU@ z@d`vN(lq4$!GeeVt*CR9hfN2vDBCe~AtbKV`iu+GWhFkYp?M~c_-bKm5aEyYVx;Tz$jt?QJv~WGpfus z$gW69crQ94jmJt%Iomhdrw3A`H|10CjLCkTEv@1_v(o+W4~!(0Z^|+c+_tZBzEwCk z=t-^Nzvw2U@dh^fw^7)zcZ!Y}MWr(r_iJHShL zV+O^uFhHXiL_KYm3G{oiMb(k1)HYHt+U(sNMimlzN(xVGQa{0&$nXhvm!C69RgQrU z)%3m!e;ltnX_so;8^{80^>jexpEBey&rr)(j`8?R^_fnBPTCr#s^K1P-D|#JTwyC} zm2t=ky_gimX5zPnkGfL)a{>l11!97N<%=m~>PyzC)D`7dY9c97b{YP(|C-`$8aL=r%U{L>;F|PX+`6?oW8%kRVVnhajB_6?G(nz0`J=cn~EN4e2OZ zi)1OhRQjbLDO>CX(<9t1E+;dsf*+=TxE4-uc?ug^6fm`{_q5!y%2Z#hruecl%bz57 zZ^C|`Ldm=hnh=8jIud1!M5;9<=wdpK7-HES2Y7CE-KUrzDWY|S14xn`qcI)v#`P_wI6oD zFwfMWUfw3T6kys{=mbH7jGEfoFE#he``PosDi- zooR`o5R@RGPP7N)QCJ*&1xv{BIxIB6^yrailcjoz?3_yP7WIODn>;xd285L!53$=0 z0|o;5@0eaA7$$L35}rgCik7of_%XgOy5+0X^qKioO==RJ`8}463InE1#Kyod))@-`kV(F)c zIIRaz<&>0_J1oiU6r3d(#=2P-cMnGv_p9WO9UU2KtY*CyN0_GomVtmJI$p{)tq&igl*OJG@iTpBaa&!I98y{nIzKv`Y1(7E!Hs zQ~bQl5QzxA6lY(LmUJy=8fw&$&`$Enzxk>nYWX)~?CqQIL=6uQD`;oP8CR#XZ}S8* zNWF9lGFZP&d9gTb16}e?pGbsf14858kkE}lzX0m`U#52PWFih<2JOBIX%R*`>EVNj ztAX!OTnM)bu6Aima)`rcW3|9PKuy@{x%VCYG*w(aC6|iFg9E8J{0tizzRPVsEl%+* zEw>Dh)M^AHp#Ys7+x3X^I?f&kan_4V3*T91JEq>+HpsOdm5~Z><*=woZ?*hn=$KOh z4izLe(HzXnlR?beAvFfVI&BqP^Y6aCVPtXAA$Oz2QkQ~}lf>`*C$efaUka{29BQxax9#mz1{iTYdWY5FXo9g|l6%uzCfoYb z{)b9gKc)sIq*hbC;HuB8bf%iB_*_=9AJAw)(V+g~zW_-h`=*ZhoL=h&!ACC{y<}U| zR?@BYn1*{2$9{Ur*5{1vV7S^3IyEoj6dvYcevfa7Uuh?+mLE$H>JY%?NHTEI{ZOgU z^NRAf%m+iE*ZtMcosx{v>od{hEgy{Rf4yIqQ$Wz#8C0p3-~J;WcfwT6#CT!LdF!2L z6F+M)fyw^fUYucHTcv&pnr!QES8Yv>RKQqHSyab-dzK68U2#JxbNCGOQV7pIhJV@_ zDn+9bT50BtZIk#N4hfdwGow4p1jk73x>h(dG_oi2i^baY#UI!;2=XY9Rx}$>*?Pxy zv~~#Yzb91`l6#-2TG2K}VXOW()d1QgBl0O5j%EWF%RZ7Zif{wSfg?PiAyfZ6qOU`u z$yI8VFEA#U{6%#E^^9;Av%|NkevzBO+>pw48^Hz9w-4Rp4p|fQ3|SREQP|GI4I`${ zh*LA;?J;yUlcTaF8!>TC;vciKZ4iXNv9$%hN)rE?5m$1JLEWx**Mb3s?P((1E*FIg zox^s9v7CYkgPEzR^PfM(nuNK?qS8N|lcvVhek32s$xMPj7v%Y{lUzr~uyCy2E)E?= zLnSWw2K-%-8``a^RJLVKd=DRPz(3CNNfWfosoGF{?fA^owqcG4qv6+HJ}RL zC1&*`n|rE6r)H7H!p8)sjz4hN#QA8Bqe0!(hOS*8zx^K3&Vrk*dL;aO{A2Yr8Qu5& zGvKb*|6MI-6E3jMHE1xg z|KHVfi7@Yk&x1S=^7pJq3}Q{jov z;tqG4r7hFO#Q1wgt?7kf(@9nZMTv^be@!FZ#}2vK4=PjPu4%}ut7;=G|CG+_g$MmH zO`h$St$*-GMB`USdLYjPHkI|@ZXP}|{7iX$te}8)vVV8XUm0z8@3FJJmgAeOEJLpB z(gPoJXLXDggFNIC6M+Ln9cQ1SvwgMu20X_(_yS^JJNE}U&tNVswTPetJQROyEG)DY zB)-bGx0s0+aOljXPRO1kw`3dbw(!3{c>6$s zON6zz?Cmv8ni%{4t{y~NP|(nPZ702b)SvyoCy#$D$8GHGTi8W^bmoGO z%DFoIvU0z@)r|MaIsx1S)+)FjJ@9;w0wEa?UKk0L=N4#H$SpcHH z_CcZnCuzq@yMz&GjL240kS(!?v**m%G~#hrH0ta7lR0C5sTaK9@0pv_FtxsZ|11~d zXYU)Y-iN=^nUfpF5icneITNb2jMK*revz3bOd4>qq}wIBMazxhPNXxi7`N(;DIiAd z;<=3{pMC!>RCxH{)8QY#ecsN`&x)k`&i)m=_bECn*bnJ{|D`w70ps_LoOTq0m{_ zw5-bU%xtrH0UeQ+wh(e>*o&^;+l6k)v266O*%?g!di2OQ33eGtNlDPNi8#&57#m*# zc98_<%i`pu3y3-s8vepG17a7DS3?Vjp7OtZDtk!P4hVos2Gq?2x{z_19E_qFBaBU4k{e0*9p zM+v7l1*3jWAcO`}B`sauzsAmtZKrH)K%o=#_;8`@$grX5DyInGuBnNMxR{u|gF_6k z#g&vInt^%^q1%9RbGD}QVw+J+O-}0A?LuD&#s^jEx!d2qS-kU><9T-R!y39oU?HCW z{tZk5m~Z-$lkuW#7-$G&N5BxS5O_0y!-c;DC!VhOSLmpJe|`b(^El+8VrDWk!r=6A zdOG=-uTWVASKKvx2E@&)LUXH4;5q+wd}1OO9AhH6O;A|uMx|T8jGCJt@(EQEmM!$9 zBqb#oPQg*8Z<1BVz5zxyLhR62%@Ae5X=`n*t%i3K0a@9TA3hYEmDPf*(Y~Cl17QHz zq%=6RYH7_%H+tH?IHt~>QeEq-`Db8%egiM-juChzmh1#)^O_HoWoNGdZ-G$RNu7!5 zC1i*`V9$wQjC>Ba7i_OEP@U!hwWn7aV0nJuqIUpKAGyKh+!S+&?b zSR9=QdU0_o1Ykn&CaGNTrKHPcfv_Au767#ucOJ_o1-QDoO?|7z%FE_}+sPa%`i^V+ zMUIt-<%nF!+phZh+nf|t{fvG{^E}gT*uKc`Z+ZrPk#0}ICX$Bgh2L$R5JH9s&#=K zBxo|Mw;n8kLmM}040Gr!Ej>Nd#r0S2IHpXDj35}qrNLgkGx2i zW4-{yx1={b9O;BI$`wT7ASVIo0k%gdSI$3#WFPw?~neDz@|`dvEQPmuR0`wGgzhkMM5Dzrb8 z9f)#2686FzxxGI8>&1%~6VeYJ_yFgKhEW7#3=~;^Z*Sg^oDxu21i2*au$Y>P+z}d|9NnrFdd;*&KYPkw=H}8k@lM`77fjED8;j(yu-ew;K zz&rnPJTByT*U)^Yy#eD2pbJxl=%3Z<>cf5PHEBQt=OF2&*wo< z5YKMB$Zm+EI{EEF;>kA}A@X=6CR5XmA3r=Jw2ok+(cJ*!L1Y`cE^jw5Z3FoL5a=j` z-6)LH=!6U!rNm=2!G^sHM*+aiU^nUPJZGL}F6b{V#;IgznEeaK=AdqzKxHN_`l9>` z6iK>?myL}n{wR(*-z$<|$b-R)+;e(Z1!F94lj>B%nyZ=Ud=Wu67S8iS`Ss(~W(FoV z*?JZvxthFq83N%#@Q5KyqmB&2Lb7*r!{r9A0QAjNuuN`rYv}F$Fh8G;r-LN=tR-*$%59BE zWgI=NY)47`)o`T@gZ-9EDdaUZRq5xpKTVRDkYHkpBxL3+1?yx{p`-V-m1D;d>R`g~ zp+=XjOz81{A+YZ|P%t|D^5xwnL<8d&!zl?7S$wd(LJomd%6oebA)%jO5()d{*2b&s zoQs;91MX+dw~z9}oLSeak5D8?V53e=ow&D6cnnGAoLWm|iZ}=cUweOl;psCtX3zEG z;#I-dP)lF`=h>P3;cPDKkG~!t%gf0pES)|I;Oiwaao8R`&KR zP|f)?Yuqt4TR%tf~3j z7~C@X#y@_11G(SLVVGChqjIS!X;7C6XlZG~31@L}ak;s;Y_$>APEH`f%}q}ifJDJ| z(pqdGJuR)U8MHKXbaZ-p4h}3Ku)Bs%00DBOgRsh%eha)|tnN2po1jjjlX4g*Wmi+y zOq!c2Vb<2sQE^jOQ^Sz0Wi(5sQ?ePSzAlkYkt4H%%+ZKMPsHkN9hTo~^ZkD=g-J{( z6RCCwR?xS@LG6|tBE$SUd466eVc0z?8oEG&Oem$Fg(KLwAXPR^I4R~4AHKK`nY!b5 zGis=ex8b+oi_Ni#GBn$4#$coe7E9s^C1aQhfA9UZr!v)D89kY=ReOxbQ&uaK0YsE( z+i4yC5t?$sw47}eIrWoi0wUWH5<+?0LkxL!+39xDj4aS)@SE!ws$qq!6Tr$&SJ!%pF^5O!INLmL|zv0@X93JXEr z-o(0=3jS4JULJ+|;yl4ZCe_c{5t3&3uu__1zfuIx1E^n8QUcI&vvbB_W_r4uG8r`~ zsbayMeDDl5t{Jt_rlc8rp?K@(9S}K^N{`Bf#AONfquLQ=%|hlq+Z%C%C_IYyBwzs^ zMf~mCH&nXwU1CAhZ)0Qi5wp;*WTR#&wzSw)hUKfjXlfsM)`?4V$pIrB6lVcyoX|_A zcIMOpT>LwP880jsGwH7}d!E9U1m2X8SS$UPvcjJfjW}v`o_45ay4x5Yb-fSVJzbpk zrT&>IV0lby+#!N*f8|1>@Ots{mx%NhrUysX9s0kflNiqggcp{HaI1~0OOxpoIu9Wi*S5M;LJC%iqoJk)#-PiMU+_nnWakgolFoj0=cn$K z^s%r;pkJ$-&Y~i(2<43iO2CUKA}c$4dpzJIndWoo61PrvQx&?%N|)UBz$KXio*q{QPjZLSMuF5LVUkrY0ROEcNY% zpfFo=YjojKU`*4k{xEWu{ezM8&II($b#*5`dpEUV%}YAPj`HU>QgXRu!8iW?)_c zzPJV*q>O2Z9kU3nJ6zCW!+ZjCQwSc>N8{jTa8^}SJ({mb%+JqnZZ*T=Qe;d!Si%0I z7bOZ%?5#!=IPc)ZuAqR*QRIbMgo~`HfArgw5FHb~sF}HW=qHlUo~TUt{PVhUiYjcS zUu!s+tZZzNRWJjwv9kIfuP-5nVU9B8&VrT=exl9IO)wn)j<)uFtgemY{{6cKlUWJZ zf=@dpPu!V^{%LQIkdc#DRaNQ2a{D$l9hk+m?f1F3J_p`h|APh4-;0Y*BVv`&PWZju zy**^DwzUu#Dq+0Rn~mKYrYcj&_|>@i^@RSi2$BO?mYmoQpd1D6@j z5Tsr38HI-u9C8%Yrd2bAPhEU^z81J(Q9gI zc9GtM)OgN~9tmW6Zsux`GLwGLw}NZ*=6BO+&wW^#!Z76oH|p_!z0TlX z0K{3Z*WkVnggbh$MEeM1EXp+8h(im}JpeBf6BFSu_f&tR&Z_Tol2=qz1jjC9$sYxR zQ7Wt*ka*y5$IIZd#ko!-GN2j_T(C!DEh>=F|Gv3;vr}FW3i>fpuA{YNS*BfB4-t6+ zXaolfuE^zOV6I;B`|`19rlWW_$e_~J(~GJDld9f4{ca|yZ(CcX6563Q1o>2H<7?#- zA`ov2mQPSDQ>Y{LNE6fl0F1(Akd8<%7IvDY7Zf}PHgv$fuG()A*}FSC@PiG%eS3Ry zo%3*TFo?l!xN3$AT5tSH6lCNKH6=ww7!c!v(x*X^UHkC(_qU-??IG2dq9(@1#xOzH zn4;s;7y)tt{Z*>0uLv*;+t#k$IqrNA_zWZ{;NiAg4MxDar}htY)F-+yAtHRS^TqwY z-r6#PZDSb7;9=yrzFO>D1*jvZFn;qfh<-TCx_#rRQc(HbVf?zymcs{lX5`&FwR=QY z@c&kOF~#W8h7~r@Dc(3*zpY0e!Ti zkumrv-L%?iZulMK>-FmuW}B!jDaGqryE=3XD{%+W)+9)&?tZvv>gdU z)Br{)o0CPW-2`~M1uPx1saGL|f4SYwN@T$m}1Pu-ZZs@ zTvz|z%IgB{%bzf9U;X9?A+BifFYW^lE-t3w=tsBmm?uw~#=p7LHfKdE- zbX)JAVf2<{PS`Q}o}Zm9cr<>)BYzlLt_G8@nOT8c&b6v-nSr;Amecn~0X88aS1<{} zAn|TVdz$kn2OArkxVQ;RI&OMyZs7h5?Y#QcZ8foy_?j!q>R&1TG_(GDV-BOsS4TTf47DoS^iGiDFmDuKlb$G zv(@PW^&YITN5Kb0L7|y9)3Eg}SULiZRWA81Hh*g9VpS#rD{!kG8$Cmss>&cyKvn3k zff)nQzu{+rZ}%3jt*_E%Ip?hvu*w#BD-@@5nn+FEh`4@X*HAF97<}cCqv9uOk#kBW zkaM?DOoCp=MXkyp`Pc6W5cuq06}@_Is{eTD@0;rY@0q9He4d|$H2v*vEJLda=^7IU z&%-$<7RSWbuSFc=hPg`WppjF>GjXIfcX;(-EG+RL#LUoWPd5Wnf>@D8 zvDDM0T776E;Qf(NX77iR_3L0R@`vJ(oB{jeA$sI?2-q!;%>opVx`Daogv=!An7OY3 zTv@|$u&@{m89kTHR2**^pr3%G1ux!doK-MrNXqWne`+*;c*t5W=6gUe#rR1!0nUli z=L(8Ze%mAQ$|*Fm{RK|D00G?AJGe)jNK29Vj22G3;&k`!J^$*l-mXG(-!iPA$7!x? zzCulY3l44BNOZzrF{G4x()gcHP*6sB#>r@QbTDUloj9zOD`|1jLR-lCPy6-RuUWMA zbGE9htD(x^pwUb1-@5s6__=B(+~bKPg!9;&p2KYT&gWzwnqqP>f=!dl(_O%to!Xk! zhh92WOgDDjvO)6!Nz&>7tvsAeL7V$1SMdeGd0c3VY<}Y+rK`MVot~e^@U|Jy;)SDQ zV_%k1w85LPun(CBaM}``&psN-$cw^(s;lH~ja@5?$wHBik*1elNDeS-2(Uv`Co!Qt z8oOr5MzD2HVG5db5Miu>A1u@%o&EOws%4M)7yR)7z}_%}TJbJl+|R|%j+x^=JA2&u z5j1U4R9}(NTX6l~S|s5)U@JN34tdOZ>1EC^_R&j9zJa0vMd;-)(1Ac_!4VGe-5K}e z!%iu^kXxU&)f^l+#bgpHL#X6J@+neT*`5Yi^GC{7v{%kIB z7zO6N_&cZAWveS1zixB4m5ynsn>&ut5SrKu?)5aX12;KCSzk` z+dm{FBt(yC@d*^^28$7mi<)d;`zf`XOuZASl?o>o6X|lTexl9TXlW!EjX74f9E4+ z?@0z_bhP07Qrl}VY$~cghM#Jy#OqzyG1RqOS))6(*r6cFUg>%A_$!y@+93#_)g6UL zH=S5|9aOYdr}2f2D%B~;$+JUlys$?fBRf5VL7}w>P?fDhW?2lzg#d7Z0*Gy;T6@?5 zD+W0!2sD0h9gCh~8^s&GMaWZL9YN83^X83pokZq%{F&Qgb(*M-iCu`pqC)Ot&+4+w zKS*dfg7a(eXzeoJEud3Bn6M!W~6i~Yx3{M z9Qt;GeF7C6F2-Mw4^%`%HI8;hQm@y17#+zgNm^$5aN2NVUAwdxJdu}FxfmH4fzKEz zn%)eAV*rZ(mdeL^U%x~}4kFVqjfz1iz#=oeS2IpFnVk9u94;Mp6GRk9nTY79zR;`4SMD1z z2nG?%r+RuMUQ2J^vPnr5DS9UkK+@0RvShW0p8wT*Cic?EcFZ)xzg= z7NdBAs=V;^PR*3PPPs&8g=&xALkAUPN`*8gJ+6k5nF?=$J{SnK6V@8&dpAv5N#$;j zSVlX*V!S1eO5>eH$YurxS8_uKJC|u5+4_r8D6*2Ws`ezMZqQ3Wa0iQb-dgDfv|Ql6 z_Lh#nn*9*|hyN~6#j)}6_lCq5p*A8i1fDK5)NH7C$4d9dZDcJ}x7{quNszaB!IB3?S2#61 zbvXIH!9=dGj!nub^9EKK=^_l32_@Ti!>}yJ5)&xaxGPsE^u90!n*Z0@ZD4C(kzbwv zW7LJV!GAr+y8Fa+I=-y7@?(;f`SbR1-3RrDO*!7cKtZfp3XPDj!m<+NN-yrhFPCbu zlSoGbr_#0@Cz!OKtTq!n8h(pXBKX(T%F6He%Y;j+@C#Zyv;f7IBLF9B1l~P}0cMIM zH{j3*DA^$T75_`i%L@V=3C{cVuO_*fnSKBl0(y|iZQKfp%h7MT zEu*2Dbocbw5@823-2Q#+$dG5&2Y#7Q>AP4RpTczy0ILmTXzsd+%gsuL#*> zWrb`)viHcm?7hj}qR3v!E>dZVPqN`$}yuT6@UM(y1F_&WdLNJoXi^8zvQ;BK)$UaDq7|l z85?I+>LZ7-2C23Q8R1->^c)H@GCk;-LrRjJ220drT|*Pw>Io| z{r_CFC`1#>+=)_|gH4^eQ?)phHq&{Y&`$Tzu6Y`}lw@FhPtlhJnhF5ds5rd&aL_6H zZ|wsxE9BMGa2H}K!qsB>H_}j_knae5-srtZb!=8rN|_)wsOg*TE%{33>>Dl(npZHf z;Nj+WUdU76T)m9VEBG9;lH0f2V8==4Hab*B+$siEt zh>Fpsm`e75G9}M_#E+sX@0B ziqu7hb(mZ?^nh6dn4KvuD*8JFjFQc>TDLAC6{7C2MqBkFYgM^4%H+7j()eWJg>*UZ zMm`3m8%!pt)*K8AO|j&u&Czks6LsDVkMHNa_uaqqUh;v4jLc3>^w!0C?$+}!zdQ23 zzghnNN@lqZftX9!o!}$I<=T{eTThmJVI`XaE7xDHbe#dv2IB-E(-P|B>>!E!Mf1rf)q3PK7BOQpQ$7pU467Z;&juZyjy*XH~X>OF_fwUilBSy@>SzY~_jC?_Vr zSEKtjwyl5x$X4&b`%X%#`zqh20mLn$%a zA%=w8T0f9ZN=XqFMZrq&+RKYyT(ey7)X;2EXF$FVa`?iLsYr_oXdlCiiw^IEY&#d| z_hzP5lD~PN!q3gZ5`GGDDem~yBmHpvU;3>I;H#-Np56EeWfuvWy;5qC^fCzp7qy^Vm>@(@jn+7lk z?pGD|mw5|j3~$|W-+&vx>$}Uj+TzmGlp9n>$0~}cT^XYj6V5Qv2KxBSl=CJNVcbv| zBeOcBPP%_7v7YecGk{q^1keJ*r9wZ(>UaQ>I`b}{;2=o7OJ=81CR4m$Y8PXMK1R16 zlbqBKP`JA)C=vCubk2Q;Fk|pFlwIqvKhh{b<_uC&X=ZPOU_vh^CkL`Syo4a9)`o^k zqbAlz?R^GZTrXi?{uB13sL{mY zs4ZFB0RR9Bp^J?+>W}{tr=&=B{wxlxCRWpR*2=%hYr4XXl*)&z3dhV^SEus!GiYgP z_1waQ@RLX$AzPHq?sfeZT012BhvjNQ+F#rPN7URhm|0kmQ3C3AR#w*LWKXmxfsZCA zRdscI?dK2)AXda?0+=xD02yj`#|u3}4uTj?5s|r1pMC=h1+64q?A-z?wdp z6W~GuEg#q#fVcDu{{hh+T?1%n@x1l_u zBP8sZn9-_`U>$mlW;5yqgeGB4u#(%1dC~=GGTalPAtBowdBl`ZUH<_h4ZtbXfQv%o z9V)U;Fh2Ofq#rI4IsozYYdng|HzxEwKyd1FKtUV~wTj$WHFKg&cR$q8_4a_HFciJQ zhoJWS6TwX=qta`=y|tz60n&Pzib5Gpz0uHphY z{oyyp`$~=CVQrnAompy+5=FB+07Q9H^vpE7NV8Y6bnI>JGltapNR zg}xA8@0e8A)Tm1iR1PE|eOop8VF3Eg^f26M>srJS!qU=Tppzi9dV3$tq9wr^HXOlN zf&YzW$Kp0>&5gynV=P0VwKdZ@*j0`|uUN zP=86sS+p9a1GJ-!-}v8=nZjP_1gWqeRrFHqm{LCx*AvqQnLvk`{;0mb9^hx-mg!sp zc@%C|zmr``?!oz~uU)sqLx*8*SQP40oFx3X^Kwq4#G&AbKF~bgz0>%X3)P*VEnFHc z7pOSejVJISCGuf&5ztXoKLGn#wlTYzMBLdgP*1@65Y@(+cDS=p`~d=@Ll_PbaRnMx zCTc~9AReML*noAl*;3|wW7(3KjSSCvQLUDWCH3t7r8?Pcy=yGHH5EP%E_*l=$+dQN zZte}ALOV#q=s7U1V63HfM+^cixDds%pY1pMta%m5+T)i9Iw#@z(oL~mE>>tWnehKHZfd1(aJL(#MYNnmuNH}yUGMOKP z4#F`^IFBv7_;9UymVewv^P(2$akE1DNp`Zd0|dgE`|nxvtbjgXKdr@1eC0<{{90i zTDpenPB$e$>&vU3L19G}MS;kw)F>Q23zlBYj5XIx%4 ziXil77xBcbE+ffx=zpLPnKIkrOV>hy)W70tgci#13p7KwJ>83a-_ng?eV0_x_fZl= z^^HO$PGbc{cWfCPEG({(_-g2mCXyUZgBukPIHX;yN16*iGM?ZUkFHzI+@%#qEq&`P zz>uLd*1!vSn=6N>L|=x!v%x}Sbv3sD^%zm?rZi(D$xfiw9kt7^sEhz`SIBdc{EE#D zLy(q$#Di`{>M^9!s4Q6|5o#jbdM#Zhfoj+c_%A^2uC%6xXF@poGh=(`Wkht)-BD#` zriYhH)m8S$JgA%t{pYV=;TdZ;KsETy^N&i*jEWO?x&Y9C9wFc>fE4#iK>m3$xv)Tq zzQTUz3%DVM%HiST50GeAT>t9!Eq+8mOH2V1$&Q81JA)%8Q}8R%_@wSg(SLh$y%< zObco(9~1N*n6@&Sf?kLZUjz{rmOv(!zF?f$r|!URkRySO1Dc@Q^xJnVdQcu4SF>|~ zl}9w$TjUF!g02P&C=%yHQ z;Mpw`laMTkdnZ3(liD!{3m-KVl^*S)_Z+s*lcUEbRyje+AnMK3Wio&KYQD7}`Jrh4aVS(q)^d_V$ zPU^O{tjuznU@Udhai-o4PMKL-O`g?jI6pGABF~;~IQJ=#M=hVirV~Ddqa#b1^ioBeS z()(O9Z~yz*rpNlo(cH!5tLl@kD<5~6(~fn?Q;&(~xko=C`MmWQ3k&N(?rJb6&re!Y=N$a*N@1(2IEsrH7RN8KE@@9}seCH=;Tk7<>RSuN*l) zZeD$g0Q6RGU}IY_eH@D1mPw4dfr|?R#q3Youk~}FAUS07!d1GJ#1s@NQn9{a6!XXp zq?tin+;6_xXt%}x{1C7MovlU=F2|{%XzjERuW=7=Z(2a+0f&V>343MbjcD9wfoN2p zTh?r-^l6m!uB&odFV|+5m-Fvk<3`${Mdy%hby*GI9v(o_n;ZjL8vx5k1P1TQ{pR&L zvOn*TO{czc$R{GBUDfpwBdQ5V{!HY#L@exMLd#Xw~~BXA{b0RTX?FJ@h6x2 zDTW#xyAq`Aa>N}n&pZ&}h&@UXa1a^v@JeOZ4tZ_QpJZ@+RFcA-#NqH(Z*}V+D zrzp+YO5UiZ(Nhd2mtLeR=Xt3iaCsYVAaX(bj*yh(oW&gfwxImGJ;bKWWz!<}uLe%{ zU#Lagx^C~deDITlm@ajcAOq407Q7o?|95Fcq+b6I%(esA;rb-w6?yxUpvFd;Z$R6C zUfDgN6}Z2~tsdwzZ9Eo=)h)Cdh=H)Tl5H9ikT&;CEou7{JDt^|Pe_j}+K!l1_$*pz zeY#yd7n3R3^)qPG=3%bm-zCs=w6v7HCtwziv7SCX-M!BGg@X;p zLkAQy%RTlk9gcwhA)8!(csur*LG&8ICW5`(xXn2iG7j2|+_y9m3w-4@4mx+dlT=cf zHp3AhY_O#3z83|&lL`xULk?nKdn7&nN4-#C7UcQI>WEe-LqJLA_;Fxp$i&D9U>)v2 zjeiGj*XckOUu((sk5-~>nTTY(L@RVm-YkYB@T!@iTOLv`#Te3&&!+$0YBRPyMvv*k z&BJ}|2yMkUKQP+0vMNeRnaLOZ_LM!L8ias_g@ne;Q~sR~*U^CbePd&)(xK(|qhPLU zQB_?02pS;qP(55dF8=GS`Ve`-=Zq){pS2-9b86IiDUbh3Cv^fEvU$1!5#|qy8UdFu zwYRST;TqT(K)o80_@n3PXsrJ^AJEDH%AthkcH(pWs^r_Rq$U_CQxFCi4TEIuM|%;SD`I`&0e$AzJk{qf9PTw!G@`&nU$IOR*gNeGafg= z0tP2ohJKaf6GbZ&1)4x3BUBl(6d7umc>DmpR4t)^zn2{lDFA7YsDZTlrD=yCiC)c9 zC_*4hBjq!bgUHFt7uH`?u0$Ql<8g$ z7mOR-ndf9;!F$J-jbk!5tZ6&;V`Ic8NsxZOGgjd$O?Mo+G9z!_7Q!ybssxxh$ha5X z%M|47hxXSbuv>#l4Sivl0>z+GhovvD!*;kz()#lKTJGpETqc0*9*_X!@(~;T0i}(Z zkW0RqA#?ROw;~rXLST-~x=}3_ymyzJA%zwNcP(^!4!(ezK@5cVAab(LP_ytq5RH-PnbkLs%Bb-l4Hr z;mE+q7-EIwavR-Xr3^Uzaf?E)UjdNDR+t`aXc&0q4;u&n1~{U$ zmXu7BNP!-l*6d;4b|E1I7U9A6T%EZ&#$UMf9Cu(CB5l+2a20L>&+qf`S*fq{q@RyA zL3Ie-q%lc~DkwqfVJqVX0`fDsci~M*%30J>D*!1-d!SH;q#n)DE0^D-Z3prx@~mrsA!sfL`h4<|goj zt)W=uooUMo=_MyypfxPG=3uJi>-}n4H@bfh_{R*vByYqS#T?&QI zFzFNyf3wR+tXy|DGBF`>gQb#&TpS);*xb@LEkaVOQj#`mXXBW^K<0aHGTv8JeZ2fe%KrDkYG{5wT^CdO_oWV@O^OL8JG;pA*2goL$Mv(&)QiG{Q8}d@ zToSiM=(Pjkg=$`FP#Une!NISP)M?%4dQ27qE?$U?3^5qS5nX)!>^8&sN#{1Gmva!| zE=0EgrUU~Dw;xYif19oJM?)Pz(HHahdJo!{`jEaQIO!8T&_0BQ9AKD(_`qW)tH6+;(InBr~9rMs;Qg zg#!S%rHvun1g4IT^<}bxJwB=%3W41RhG;3`M3Nl()ADcjc6W1F#Ao7hac~}ge$_&C zkHrVTQ{EIf1Hk?CD|I#_jpEAX0JqQtdcZ;~0@6U|Nt<=Q2CBCculr5p8X;(LtH{iB zOj3cOmqu2sFbz}{xGHW2k5jP?IFRt472}OrXAfZ#Lw>vuuro98PiL>mrBD&@z5x+mf)#As|6;r zoOc<@J0LMo#dQdfu}Ag|L(EC0UV;(|R>zg@;@a~IgBoMx{`*JAFX3CHTz>HsImlhQj-L-}#qU@VPH3JW!aSgN=9o{N6;fOnWpsaP8 zJbGWDosn0;SH)p#W#ul*@E*R^fezt_h%~eiX%OhwJbBIE(4YiY!SJ9*#B5<=?6bU` z)KZ^A&_#81BEK#eL)Jq``58)+?XapuY#Ks7pk0MXiyeRj&qqgSa{-zB>QVQ&e3e5d zdq8%Dg6g~R!bThsM)jt8-}({mLQ1u%Vf)5LVHH7Kq3psidw%MuBKCT-dzBS3SqhSEvxE-&KNpT{qf~ z&{B>Z09cJS9dmD>t&H2n-BNVVK14R&$o+3N)#8C}8VijqhO+ye?nBGni*k)Fcv! zfqx6gu1nd|YN)HDe4KZ~RSMH{b2VfYT&+$fZy^zPd4XVsUl3xFn4>=e*&lqA!M$G6 z8a@CL00udT#)>p94Y8!2_AGNWxKT$=GiCUQb!b5m@mb;u#;g?#NEUaXceJ&&1-LXb zS^F3`Iy!!}dbryich_uP}d*OKzZII+e#fHQjb`Fq(1OO480Y1rL|%!A?p`8 z*QgOq3a~qP^kR_p4wJrYXC|l;c@J!YkW;;$b!sKWgzcnN2l>j@R-~z*Oetd-m7V(Y z3z%|sLa|iBiWr`znz^G6J48HT4%zwUjm*jEX=0LIxj+$YQqsRt*t^g=g`5iCTLn*F zl!XPbc#it+WHm?32Q(rH0Q5G5Y6AHxOUnp3Q{;6Z<$eWv&Rc6cTe&^>K%%XH92iNwrFx8~t2e4}dBRKS&v}jp3yB zcCjBZY8s@ts*IlJU?r zqf=2-t{`{_?rWZKQ$fipp95&CfH!RL7yD@0^ael=Fp;yv2_VI%g!v>LUENva+@)YY zX^nz42WLuh@(HNGKyLJ+uh~!yw+D7HK{7^_o$|*lbqCjAhh9Gem{198fzw!(smg&r zhH5s{u~|N_|2rh}3NIofmHqt0Z-?H95g2^v%D5~19v~pQXB2UuCJvKTtAHI2vzs(F zG|0+Vnuyf&qiA^*#lf@`6BVU;ZBM?dmp}G^W4Jiluoe5M&qbCdHrf<4@?hMkS)6Dr zl7B~HrdBUkGPZB_%c$gJB347xwDOl;F>BHv_3;3>B`UG2+f?Hy_qWIm0-H?E?yEI+ z0GW7pYSG1<#*I=7v>)b1Pw}I$iEW_a2kYx zGJyV=j#5r`f`(a{nI{(p2Er$xl)c-Xs3}K^S?Ja^`tDunqMS5jeu}Ap?7LrKGj7t( z^tQ~->dxD+aVy+Emit6KHE|tCOtST7*4LNeZUMF>%#@r0ebX?SnIYVXb}m!`NaFVR zMG+2s#?9EdAb8ae7oUj9c6+vx#8il41Pvj^m;C2s&m^NAd}|$aP6nsgDU$eYe?L}$ zn&PNQ+)iQOBj;#TJd&@96Qdd;Qe%vT zY8Jbwqb59?ISj~8Gx%A34?yg5Hbn=Zf-6AuU~vps^$P=nEntvDQd-NDM)t+FeJN#C z*akyvRO)PKb1WxA+2MHIN4ax^sVr9V0gSR_1e5p2X8MkCHDbMQ<}WWaeNuW-a%~!? z$=cmdFh_bhuD+!uJnvZH-hk~v3@M@2u6h9BGJ0bgfCF zA$F5`;;V9r+--x3ZTtwpt??F}LloiJQF$cZyuZ*iw6Ng2*!);GOO1={+s!E7%AIlZ zDc)OWhzm_)bl2czRwb2A>9YY}hj_*}S?G@HO}w8=w3lU5!IipuaCNGnWY!IJy!<3;21Hj)jsSM$eASmL&P` z_j0M0U=Z-Fh^B|l=Mj>8FUO{Q5>qv)rbIbh&i^oRWbgx#0NNuw#?Ab?1sSl7ftr<@ ztLvokn}9!RSKWM!GVv=VWWLw%-FaB^P2`GV4wc15DiQkg7_hNk0_hSm3EFsi34{iYo!u6I*vUVDq$cRP(zCt2?SPxZ z{0#;f1hUi94MfTXQ}I&HC5LI0+r7S%cLU^}taRfnfvEo+au?V_mDT0sdVv%UTsI-` zJAFbMQ3rZcvkfqfsd1MJEf=_c%}`jto*Pnv&Di57*EC?4S@z88t3yo&sWyW9TkIm$|nSas=2WexINJ zjA6tM2Fs^RU#Uaz*StlAY6lVnFDnt(WuPqr73aA6=Y1vmC@^#T`Sa(Le)&%*K%mO7 zq3_eiazarC%0PV}mvk1utOjaN>8~KL!pcDc4^~J>nZufRhN{SHF zGmF0vwqEo%;d%_oLu&nwuU{)Kzw(z>AEc^LuGDe)v``4sxj;2~Erjo35hFNby zE-WlE66iSwo1YqJ@RDK#Eap6o@UI{8Kx_W&$7cy=#6f*q+g8kmM2tdm3Ww!c8I)k0 zJUqEzjtqI(h@|J(`1tNrapd?2prYP@(?ij4+@^6`?pC@ORFc9C1qCS7I4$Sk(A~{S z1<%ISrwna=EIN#uFz%MuMB$65IFcM3BXe^t@b&qzzW}dX=eL#-438C}b>U-UC&sY_ z82+AHs-84eDZgV~C=-9EPxb3p!SSrjSm=nHV07V<=uAk+gHw3aGL=%!ZDwJ#9fkmg zuPq7?Vf0&pz$DO`8T$A);P*gab@ld6%XJ(}8X^n_%<$Y%2jgHoe&?wnOyrQ04?3|% zq&UNZ0h8>}1E!L2Dx}*4ur8njIyIpwO7bvGuelRpxA*0EDAjJ^nsOfsa44_SN*ew~ z7mPN2QP}mPAPTm!MzDqZYYY<3ADQP$XM;d;8unc1x}~;I40rgjdZoAkhlekFDl+)* z(N0@D?t}5aQ|`jFsR)FPwY4N5Mj}q9GAG{!6}~^gyLOht7gO^wIzH}UR4xS#WoIW* zgQB)m1HXWFbwdL+UZ=#}0XZka0Rl$cfOZ+%^|6C*h~n+s)ujcxh^tP!{gw~L&-S*A z?w{=P%Kg->)KN@fdZduQ!9|Ro#qogkGK0rN^j2=0DvnYnZg>`SV_oq8);oTp6j*Un z?UE)A!e#Npy-aC-h%xA8j)IkE8fC7VGBk_SrkTM0Eb(TxVSaazdRLraFInsiG0jo`XiY=a5R z*gQYb(r4hWyYx~97D^e{D##E#1MoCo;;D0*ul*N4>Bz4!w_2Eac-0@PI>pppmq(=+ zxmhju1X%I-WLbKWor%Z#7yyi0MAqAo(7$y!CaTMv{55z;E2(^(2Tw z_`JyLS^`#c7~zlQZi1H#SMboFN{e>E-0kke*M2Qeu^vt_a>Q7#dV_wReIk4VE0~VE zSWSY2XI+-!#-1f#{ea_Nhw0-v^1FusjX^b!OIP^$Zdr9Mn9toR?+FIoS(t+=C(ys#C2+nUIB}Rh{U(I z4ZNgW4b@oiH#^dSm~Br6cTPkvbIx=0@)5TpE|dvvQ=B3ou-nmYxtp!OMQiGEcdS(< z=xetvg9UiSTK$er)pcE(oqlfys76MKhArB_j)xsG%@^+#3(o@i)s;^Lh(y4?0Z<*+ z!{=GaNKnz|sgiCHX)@!7G@n~C^^|H8r?4+d5;|>r7u^fDS>^dXN#ou(6U&V^d2?_- z;nG~dmE~;uF>?#kh!x=17;;EpnHuX%0EZjrUIoQN;a8VNq07lG?$mh%mKfijhdGmv z6F>MuBpUq9GYmHg-*9iUh?7%?I}usOo-7JJJ8{}4ZD8c6AD;!-jS%;b4W1cZLrSo? z$$0M}l4o3(s$ZqM17|FNgMJ%u5&Pv=UXGWF@zY{3He_i;aJ`QRy-?Y3Re^iO?p`lO zgObC;H~yL8O#{qr9Omq~VmeRXmIcBihllkxu+#K*CB~Ho8VmOhRCKG&wE568xT~py zikzC+6h9I7`j%0cH)#YgWDC}KOw{{nIYZ09cWhrI0m}rC&nZqU2w#K&q(a|va6d9h z0n9>favYhRmEFAnz|2it|Cea=gY#zE+EKQuUi0LFNZzgZr6{ubGO@rj0@hmFNSee33JNhRLrAM#TRA09VL9Y9<*x^7tba(}+& z6M)WM!}Z#F&(4G~m=ib)wKByWu;+mtQ2)^yDk%ADl@qe27ADni-7^JklBu0t$%H~Y zn+NoSEK*Py=6mm>ZH2Zdq5G^_Ol-jS?j z_`a56A+g*iO7T}w$+%p7eY1P*8Vtv~3n|b3mKrZr*6th74$@K6{65}Exi0_k&Ci2w zw^C6(Y~$3)Hs!CONr{maJhnYa2LSs14Q+P(<_?1^XQVbD4oGVQ;HebEKbbFQSCTsI zf%c!!~>-WaBN;Jux zo3D}50l})o7^i<$pKE(WUDNerVy9)sJh-|%7s^n?SE0iVHp;?qGvqTAA`Y+bsT2)* z(Wg;?o(L33#(4;1fIhFypg5}tLDA4Z0hPZqs1FsX;bmdJO6ImoY+pxlwY3JU*puW7 zIyXA^1M3%fg7OZ*R^G0Y5I8G700e8CK;_ynh$&DQQDO1<1H5O(V#6aWSJzNy{XfMj zLFPpYIGT_#=J)w5`6)z8Y*)ib%=z8)X685Y_!RwU#>6bDcn-)}ue=ThMBS^YkdKx#E)gYYgaxACR$1rO0wI6a?bJ_@Sm$iaOB2u zJ)o`qqJcw*ct)DBNIoIa>t)Y;ak}rqSN0+{mZVH_9qnd}e_$28_6VdPUWH#YSCAq~ zs_F6!UFkMop%+p$pbW?sz$JF+3LMv55>sk*CiJSs$CFvc_};|Ji2A%7N;J8d4js;Y z_mo#U({Srf1+z~LUqZnT6Vuh-d37tabgkr-S2^bp3V(tQu~mQVYd&%7{!%&MpoG63 zLRx$IW747%TQOty1#_(1N)IZ&j7sE26;YXNG!PLh?G(v43RS+p%tHVI_z;!D;ow1y zl|0uNf(vU#_#;Y*cCiwam)OrjlcK_dYLoW6iIvt8>RF~$lv_WM*)o3WYpjSO?)>xl ztsOtiGuhThbo5vNASY!VzREF$LFHA$I<745V+}1Tv$Wec+}+exZZ0uAl$^5QhV2ro zj6_6V5os4)B74jL6&oT4rAFFfA8Ixtx^qmDM80eqltV(k=NHF*aZo-IPzkGGv!lFq zqj(bR)~hi^9OOUvz`;=6|MbU0<{QkpHhdRntv|uWc@KD!Bf=xcWoOYoPu*d+H;mXoeKO|*ECu4QW)%H`%D)UOG#@ebhNaM92D`$5X}pIGge^>RuYP_+J;G~ zPb{cgl^LFJ8viXMC3$7v#28gQ+4zvdcoy%-$~No#AmHcf_-_}d%)zwt{Mhv6XA>TI z9upoDM}GqHJNL`}e9TZGhEe^Ilz~eaxELJPC24bBm}@T+bvxWRM&C-ouE7=g)&Q;5 z>bko9Umwg9;zL)=)77KYnxT=BB9M`)c@Qf#ploRU1MCy+??%T8P^?Lq^r!h!R4Y7+R*1Pj~MU1+A8}LBSTuI))lJ zZzK;j&Gde;q~gx0{_Z6V=IS%ZiPn+2%JOKj%0I55Rlk2L`>q_J6coC+In{cB_>_YE zLYVeGs0X;!RYRfai|C?lxc7HGMmfrTj!18%4iX)H{-iW&;R~Hzb`ld4M9wLkFU$uKhj^9?6u5X2r-^m@K_-@2=2EWXwky_`+o^s6Ki+>H zv5`k3j!B507!J~BzVvwL_-quB&?6^VVnmgG-lDKH=yBB)xcr2>$@y|tbWKJXdvPvR3{lD!CKg51vR+p{5xTNS_tBk9?2Oe95t3 z^4zW?hl`juL6l5wOe5DTtOd{!6Q0?3dblA^H4o3T>9M%{`vp()JQU3b?u5RqeHD}S z%@^~cA>;IZas#vS7BuW25HH4QT+H3iVA$NnKkGi8R^J73_x2o-Q{z3~(#SR-C}{4A z8ubPB6#sD*9}9Dq+P`XZcoF?!l4NtCFXAyNQ&d6SU4`GxL2-_Zw@7+4Z&$f={}J7I zTUdhUdv~mc?fZZSOy!ms{QfeH+3qg&B#7(N*Ex>ZS+R^*((*Z+N1KJcxNr4RyLhY2 zf<3?$QN_UqJjj(5j@i|RYSdmI0+=@6gb?p|3GyQGt9OW7`LkBDseJ2u~* zh&wzJnI(2~Bs6FVUUc~0F=6sxv0JL;zAyW_H=Ckel}vi6Yac5QstwN~=2FK(t7`>Q z^O&Ch1zpGIE}bd-s?S}FXw?x8>NU^rOFF)v!l`+#SRnq}T;cx4%a&XgluNbvhu#YV zea_|m1WFGs9zNS^8Har9s}T%Izp=|-_CJd6=r8G}y~JV5skeBG_6N9vI>yrH8!7!; z;5m-r4OyYPH}KD}==}NLM}(=|;@pJ<`z2bd^AG}Q2AXUG^F{1r>jf^hg0;;+SqD}%aownzE(b$3 zbXt#b0l^UbwUqTwaC?N|kRWG79ic1!cS@O#vb1jw0V%lHc0p+CCua%fm#mwC`Oi;O zMG8|pk0vB+D0#p5Zsj%zEhX-PcP76JIJO45JwOmcAV`YPdpe2Yg)TKdu7Qf-!OXf& zuY?eKLxwlPbn-@^uA6>>aN}n{qG06LEJl3aGsiZsSHBdAC#Bz6)#Ynwn~WLdmi@r% zCp#$%Xb4`+esYxdmz!$+jNs9r^i+k|MvRgEWAelVx14_8JqFP`bqsVIfqz-++1HA(#gTfXDFb_gG+G z4eq}2!QCIs1Emg-+?~j(p45Hfc&&b$+e@z3sQ1lxuy9LSFZB$piVke2G7k^39BU~B ztiptc2Eatup?F54a|I5?9J(O)R3TfiNswY zsu$S&R$K3GFLz0C3;y}hxi9{C_xHD#b-gz)#U7Hov#*qqbXCJB7XR-AXReCs@tTV< zQp*iy1;TF)TJ)#Cz24oBlKI|?P6s&1?R49(G{)c1yQPDI{(>q(HX6AKMl#d*_YVrx zct6hPAN#dx=ahz5OFYEI)@=1MMf>P()lQH3H_N##K;mJtS0cZAM%(b`*ZtAYBPOre zD87gw?o*f(-OZ%j^2n+ zscJbwb}wlEv?sHUc)*2zx?^(A_#riu@6B0J#&ChL6pqel3A()X2&OG%VPZL{yXSC( zsb9gLCD9(lpX|ducs>XG-VjLa@^>+P{?UCEuyFI*`LA9)zU`#KH}@s>n&APxZ*&SS z(i|vk8d?3e2~sCL2(Z2uh(PR!84%%y@OJJB5(c9au{3sqNwD{lo3gLpMv^io^C`pv zq|1En(=Wk3kmI*{k{*JWH|C5}P=IJjAT%DK5T^z%HdvAuR8TKHF3;7G?nwiKYQr0t zOP3L?aaOL|i?pJfN-C|IA9fneVp1o>GpR!9#M3Gy{gMaexXpWZU+Nd>7fNV52$r7=uE3blvct=os0#1MCy)~bErIRtafY3KvCWK33Cp8z z++MFLLNw(`Dutirq-umWgiOAP$(uSU>QnQ&HJ~4L2(HL%^gtks`P#Lo>%E5==C=I& zlqH6d^JK~6{;6|H)$mr{vm0ciq#|XHVtCMA|C%?^Al(4C5pQ%{@!^qcLgo+rv%9%J8hGj~q#t|!-fO!`eRxMg@^ri_ zaaJL)o&2Qhpcii_j?x3nd)xWE=zgTA*@Sin5qGc~Id}aW1k*x7+Kp{WyPU%5uCujR zj{C2+&(;%eTI2L)*MkRe^6jSrAPbwKDLx_xChOmTx@5yEB_DsuS-Gm}4<8p$%;NOR z4KMNywX1NLC{yc1PKqQRY zyqAfT?xK_SB3`9gycW4uJmg+K%(ObgXE8-dl>GS+hrPWKe~~_!HH%Z-^HuV0cfxdj z3%;w(r>;4qSu}9tBIyEr^6-0saEOT-C%o!0u9nY+mn`Ay;)I4hq9Kp5f~ZmY#rBos zqEX+L^3a4#|9<8JycUGTohuI+udO{8s~-1y0tv!jFjueJ^&(QHSdq6S)fR zS7ZSVp^mLYUuGjwURM}~s;cttPGa0Nt=}oj)-lSIMk*xWw1;R4oPglm67VNJd%TyD zaWg0(qE~zyI2r4WUY=%tWz{_)U(HD^_TuU5nI(zj2zv*m!esJqbmT_0rAZW-=d=Pk{&e|yy42MRi67ewO>9i5TAZAx`K!vuBW(GJ+13Kfl5gFN-UyW0 z{DmT>zLhWuMrr$L@l1ah%jxP=i%EfQs-ap44*pzen86^94 zgXbRg3Ho#*Rv5=J3W3k)reNmv^p(MAsT{ny$_J5A)|i@)+}+bEdw-BJBF^swp9)Se zo-5gw{0!ntdzPSnl~%>sq=Uft-E*|LO=TJOJcuVX`4H~S`&q&};02Ap4lSwk z%cJ)T0>}_dH3VR!&uCuHn^9~D%y+4`LQ9zNag1o23=T{RlIyoF;Yg^di~)KC>}LU{ zsA>;k*Q~z-fN&P2A*RVZv?&*2I3hs9LEPhIcbR|N)y4O^a*ga(Xuh%^YQMZv5ze07De!$CznXn;e@X$`P<@ikv=`cN6G40iCD1h}I6X>?iI-9fK(s9}qhvLf z?~O_WBm14bH@|=2TkS8Atc&muH@}(3$?R*z$dhue;SWdJOt;$EqJ&30qB#r4+IG`uuD5JxzUHlh(KvP!4Sb zHa6Tat3x21atgsdWx_PX&`u9h^RwNi_rT-MD1m2R=Ff485yzjgaWy@1YZ8{&uVk;T zX`lW5z5n$4{NAhYwOqWsw8Hk2Ty{#AT<9X6US4a`D@4T600H_d#4NA;U*HPqH19hQ55OhJLe`)fTxCRq&_?j>v- zs_&SGVS>9J5)LYs^aA(!mj($`KJTSY@8yakZiqo&QsB`b;ak8w*JG9gucTUjKwGBE z5AJagVbYe{LG&*e8I9nM%)lRW>2DwoAlYSQ8PN#gL;nf4_fCQ}BVD|zA+6B@XdfY4 zZ(m+#cbUQDKg<#sSp!DWf&S|#7>m{-aVc)gh5lg;@?w>|SLb^@3$$ao$l>pByRxR7 zLx}l4Tj_DIA}e=P*ZminmqDlV-3o-u4`2a%2smIc3^B4c34fEf@7q`Z!qvcpjyvzds{6fBotSstJU{5n2{+Kf`XK{t7aS2tzlyGGxQn_gY zE(4a}iyW5q;l?KYv2gozX4|M%0JRAFnZ@?ktjSwp?rHvBc-LwKbw)R!pzxehYow${ zT&FyQ+{Y~%TF#KtIpOqf-332He5t1tq z$ld{x2sEdOSmMGW$clveO~vlSnLeN`AhR58V4Uj3z7H&WwHD@x;Yx*$LM+?55e4edR!oes|t za|@{+2a}Cw49Uzk98EgOCH5eU0n9DiQfAega{8<(Bf6Yqr*h1yqdH&**M73-xQ9q) zei#KW*AZ?M%)D1Nv(tW)QB@~Rkc&k%M&Hm-MZZj^@_+owR$ncd^j&o-Ge;J@=qD#w znt-Ygh_50)mPcF$KGaIt)cqbaF?^q`^bzZ`?w z8;kv~(|-o%JO$gkQKnkynpqUHs?n&~f1M`i;cjjYye3qQF$XOd!OXa4WTT+_3WtxY zsU{cM2vRl*=4uYX0m+TJ+S)|Q$d$koKz^hD>(hn*tLB^cTKA&_jH17Uvb;fpgM9C~E<$36?+h zStl%8)#1MrMId0{X>s87XE<8V7oBA&R#O~4TX!=FkxuNvz~$lL!S^atEx8sGNWKP7 zbTSahC0B~7syM1{9DCJ=|1QzLGe9EiG@#m@JYv1%n8eIM4RU=kOr^=~anE?*PAE=9 zptHD9o*Kh-SF+s%EIV{=(2^gwcvx*$Z~023(<60uI*P(}<~XvoZ#ct)yqCJ~VTL~u zO8?(hL8YbcS$2o%CkCU-O*yx-jBLAknnWz=a__s8zZG2w(fS8&SXnqNYt!hYCW zg>c-A8cNh-7L@*GViYT5929{X^q>rVw7a|Bou#SpyEl!sjuRbQI$WqLET?cNLg%6q zfpS3hpTq8Pq0)PIFaOTenN~ybsa)pzUD_yP&w^s7=lJ>2sgN;F&(5DlMBAsD?mXlX z6Cl5lbCh6i{-LG27J-uUk$Y9T&eK+^IA`$bu;Y$1i zk)wK*{G07Hx4Ivd6qZ=Dj+%?j)onQEgXI65MA`p)@jiYTeex;IhVnHA$_o`Z*VeYi zdGYs0a2;F~{@)kz?+b?=d-w7~}uATL1II{>L@{xc+myW~p`0y`v;m={;&t zU&r$P@7Ku7UW)wcfy1y)DE`P7Ka-?=jcCz_w@m-oX(}PwD3+2XE0?IWM z)9mtV__#LC)*hbjHkMED;a@IR4)}sX^!)V5e@II5DLr=bv~lNCapcaY2(*R<7*}NbTWB9Yxmyi9FwhGXst-u6Jtzg_@JUw`ChtBn`KFwju=LX5=rP6|DoPa{_*Wh;{Drvd+qC%JCJ1k=lMP=ML%tC%($DL0I zFxfNS2_9Cu!5=JCugv<0x8?-#{B0qn{nvcV@$6B%Jhlzjk{Z-x8RiX)!-torSpFxS znArEW&^zTV$Lml1wY+D{nBbndWm=o_>~Q1-i!F^yJJ z2s?(kB7DM(;aA{U0Wr*F+pc#T1KywLXxgF~osm=^ZeSAjxKswk_WBI3B8Gqv-@6>LfDxlGVD7`&5gOMt!JtvqUorspnMNOp>u_Hn%;auS z+6sS@+XVIR=}IG=cgW&fa#ZL|LhQN3v9w5=B+s`5;x4cyFzz;R{~zi&cUhi*;o?2E z<4gPRh1=0 zm8B9DrsSPIJ5Dk&F|w>A=-9F%`QnA;h0rp3xx!x#u>J4=dGXEn!~h+jdsp1RxL}@y z)ror(+{eVhi37&u*rWhfi4>BFWGd*W4gqebKMENxRex}iBnD6(oF7S>a09#Gofe@) z?bK8{Yk9tw)p0qk#g!F$5>1MWs}Hnq`)7H-)|>4fy@}fwZaskhMvHN{#9ul5Zt%^w z5$iShIepLKudaWi#AAmr>}_F@?r>*%95|WOlal=A%hiwa1rZ-6vB2a-e3G-T`!tap zF_@#Nv-kf9LU{5PrA1gJQA}tVBDct?MMeaH&@3NM$B|bRLr?1E$JQ;q+`$WwZ=RMR z4RH9EO9+FFU+JhWlMpXrKy2RXG8n#0%K%)!!1KulY6GMP@}wYO39(`v@nWd&5iQPA z2>ne>>Fz9+`Ww>m>YaiDJKF@e7c)Opvft`_GdEDEw&L#SXV*tug-MT)2Y?I-z4&wa zZCxtNx9hf9ivPWQ3g7-)BH6CX%v*{vw1x<^Iwg0KB&EYQ~0nM>-OWQboME4 zx7&C|EjqpQIAJ=NJg3QQ?6P&Ug%MMCs?aaIGa{zDRduWfi_{galyrXWgI%~QdLtL3otV~UO=i}z%_AM)JvTiQTNcU!Lt(@&BnRO8PmLY<# z9irgu#%_!rZ)04NJIJ@ut5yN*Cl@?CNT|kdD&m3w3uHG3JXJE`NgU~zJNdG4o$G#m zW!^om!+q|x1~52Q{xq=cP$#qEqpaE4Lj&p#rN1oKRQ~acSy9b!RaRQM-eaV@PjU-o-8*cB9$Hk4mJVD?_y(fqZ;K2r zPjY)SMjf(o)0A_IFRq<6)8mKoJh_c(Z@ZS}uogP6bo74MO1>6*Vk?aiqmdbn(RPYc zS2opTNNxxsTkSMseGWPTdg#4{bm{C}=t(k`Yj#DMRwp^Mv=>=9H*(gEloJ9l<4}|N z+kf?I1;kZf-WMiHbq;P%PFqhc)IC02m+jcgzSXssPKJ2=ns8WSU{H2jV46vg3| zr2Z|-1p$4*^4L8UMn#k0GLQTxGYMybkwJ)GVM%^^D6*PKuprSZX`` zu|hQ)k%bAK)(JSgSpUnIWV*tWvoh7H;AgSe%20|KF@}Y*?Bz_ z9LYjsW?xJ^-@XQ>%<}PVnUQxbPxq#$@3mOg1~&ytQrNqj_AGP}HC{>`+sI*;_egn{$Ctdbb?NF;dRLXtx#tx{AJiFuAZ4xDRy>#92HM)821}+V4N`7kp zTlVE)0@giPt$|9kaoNwSIbjLD)k#FPf3>Wl-A3ni@8b?rf0?H znXFjjL5;_WXksaU)9NVm`O;k-2h8a9`8=i^P;b;U?}J}l^@#(VxhCoh?i>{r_L!ni zS8tIgepa7LGJh5I=>+9;m0UTLN~kIKA*2EdBEqbpB?Su*nFUEHBc#AowZHD6jwPf( zX@nKAT5m9!C@Uxr36)WmP=&BrA%RNl?&2;jXO?7v{+U;TmGDpJ2-e4mbTIt=pjm2kgk9cI-P>Y2xt(t6ml zwi!+Id2AK^11V!!w7PH(bi+o|*&Qgd86+&LlWCfpYlMPb$*nTri0bOU@2i(xO{9wm zX}&v>7AcBG2BALf-%mqaS6edl&>-P&N;6k^-&I0$Reb`n0{?-pbqccse?yIf+Ida* zN#V^0X=2CAxcZ-^!EaWR@ZK?>yqX2Siyae%ooE-wr4s}#QHX<*yK#4Mfx#`J*!!jt zb88agg=@p5;#T|NqcT|?BlhZPV7J^ZE&K`Z65DIl@w|1qP9zqw%*Qe`pwM0_1 z2f~pzbin#^^Fmb$aN0jzu@P!#kp(qy>3qna%p_w`9B^KO z6*BjtgoigKRh4zJuJea&s zaL&F9RvyytXki(|#vpS{g({~eyOa}N!EA+n@b(3+T)~nJH?A!dOSws>0dD3! z$`f~0oM|(=!OVH~rU=rSS}5c5zt&g5HZG|4DjANYG?~fPk|t>sC8tVy=bqMq*h=BH zy1T&f^lPGfdV>( zaw+iYx0k<_56TmjhH#kJHoF#4kS@~j*57o5tfe{`PjcY$WXo)Sm(gu)T_Pd~+x7iw zxqS7-kkw<9DpnnzlZcGb+PT%@dZn&f$9)Zv|Jo7U{CO+swoU$9Yxa3w+~vm-G}`N= zI4Ax@x769QI7@1Y8*x^zVzovp!Jq9f;s@h2BEi%`xP0{$h>qQqK!_^!sb);=OZ$cw zo>Na0_t2zz;el39T&U7Q_fyuybgn1Wswn$D|)vO-F)U>V8JNfv+ch_G=uB4992E$e8nxh|t(+V$IYc$YU*OyA0$YK^#OfC;DJAZ zf8Z876C4fc&@Z2WFy}E*kkMI(0vXSLV+a3u{()E@G~?-sN_B*~JHA6$zpNl)L|_e@ z^xa`>p`3@!;F<7y4XUu>1J~uT0#U-B*Y|)>7eR*L9_WgbFvE`z%S@T=Lrgjw_+pCq ztUGt2t{{m%2Qa*`U^Em4(-TE@V>bYkbTU;(G>L`> zv){pKzB8b7T%6Pi-#pP=h80lh%=s0a39RKrsi^FXDB(P{aB-1zQqec}**hG`Y8BVh zMPcrfo<_bp0D=FZ>F=Peeh(xuOjWKpHi(PW%g-McSEXtE2bLIyz8?knbT6v{hnF$5? zOC+`m3NAs#3i~J|b!vK6g;EJIAp-$YV))df?(2*1+wRY8dvufN)n4xV>-5g|&Qsr6 zj*kU}oS)xi$_9Z3)GuKH z8<@mq5BDoLLTBah1odB}3^H1OwkT_MSwqd2q_Y$%S#w5FupU!ND-$-763ZJ6It}wS zO|+K%>>qPXTQx4Kzk^ar(11D{4KkV>o!)#O7s;fAK07BS{Vmrv&={=5F8>oJ%TL1< z^-|=Srb$xdd^x-6ejl<~DJ#E+L1#S)eiN>Gn=obZGt7G9YwRfTUQ z&^|GJQ)=FBvW#HCGD`fINPHS|e^4{{oXhl;M_X2+AXx_N87z7_^*gRt}y0^O4@{jxvGnq0|YLjVOhMf^X zv)%O_ZLl5KFWd14jcKYV%(b`(bJPv=c;KB|sHFP<_lBjoH*`N#Y3~;Yd z{SxdkS~RTcO&HPA?FL+6f4-0nI-L+0>Nmb6{S4DFwfOI+GOIjG!&YS1{Q#j~3zE=< z_=4XDZmy*fQjNeT5zZL$y5ws3OYuufn!YGP%8ep+^z2WFpY+r@f-5BY**R;fBGRR6 zq%&nUoVmzCb^3);4k>(d(IrlNR7`Q^Gr3)%LIrkizm$fNny{H`W|bx`&J^;#8?QG9 z@_Wo6Du1XnpFGMrSymkE>VQAghR}(s3>hsl*Qk+(;j}7gAIZXd~O~i}I@VcR@Gr2b-P@`(EN#cP@#233Iik(_B7`1TA)HB=F6uyZ9aXWh! zD0Z}d%orY)!dwBx(|mA0aWm`m3705!$Vj?tjyqAiC%RC70aXMuHk;y84K*J!lYgW% zy{I`D=LA_7WVUu!P4u z9xSv7*dj+oP}e;0?>~Jg0mT&rpD*vm%pclHN%e1O?<#QVidF&2F)cFd^% z3y(4)Sxm&*SEZ8{;lMH94!bTIiBBJ6+KkaSB|2_2V;+y5k2xby}2ct*rE z>;Kb2g)vFqV6ml=F}`a$vBl38%K6(NKy|L4B=i(0epCzXLnt6ymA5%z4+ybxlqAFcYOf7M_8zAiqId2)sdWRPpw`AW=q`!BsdKj-?qnqTj< z-|Y+hcI1}AmXIi)}u!J7Q@#LUFZ%p3!!mLj1-XwHAF`l-3Krxsm4iJS&= zg1K3A3e&jpQe3+9vyDfX$EQcnJ~9RYg`AXf+s=0{in)m9LW5jdPT#(JVWUC-`Kj%} zJ51njIDjK?P1t&MLmsFY}&TDBWrHPa1^hs%&s%jg19h*8eji{#k$H}Ow z#s83Jk5Nrci;q#x`eZa_sXfwb05`8-UmX(b+V-nU>}T;CdCBCRh3#$PO-~=m@aE>F z6X&i<6;8A6U2`it_j_`$@XL3+4a`l)ZglmR*4AMA6?HU?U2DsVYKIDt_P(~hy1GUs z)&#su_}Y!dbkWJyjuG7d)~v>E2t%M^I4boH5wy9URojx8M3r9HmFrjdb_~1<#vcs(g!6cnywKEtu1#S41h)1v;J#{x zeloAfH@ENzIfI|E-To9Cw*h5UBp7VW|CUy-mqt}TAUC5EiDEfTq57G ze~9c=e4I*Fw~v&jgGa7|&46g(o7&+kc{AK4xm?dgd3WCt})7M&a z%7feVoIKbRAbo|kKuAT$ySs%>bF$A@bikH38{@Reny(C(AGg%lKVZo^Od!%7*8k$s zwDGh^PxJOGD9r=i6`8_@qpRcDFJI_z*%&-*Feg)g-%eETE!|1@B-C+HDEA14ULL|h zJkKCX`v`yg=WG3C%*LzV&=rZ_>8-F#XSs*05Rgkn=V=_(4I?tw>5G7F{+oVljS%(N zb%=a?@E;(DCpT{CXCYJ8BFD-CnTM#aVwHl4NiA_R0uT|&P*ESC1{8~phCBe428IEI zG?*F{ubc`H6cq&mDvaR;1*NLkZz62y-s?Tv-f|IOU6g+sW4`XSxbyIP%X#|z=5O7I zcL?8?i}M=BSv#NQwtVNoqs2i=xG{wVSN&5F0M3R;34M+Q@`~iNYc=eI&KI_M8;B1A zU>`M!nV3)&3oE{~dSLc#X$RV6avetiBC$U8wUkuB5&30d!8dXL9SCW zoAmOF_feN^{iDRqSIO&Ntz48?mcpA*k++m+uW-)mz@0-LQmq0f3ZMq(TqBK9SzF%< zFL~CDY$-w(S3>!ds-hTldq_=Dx(+}wgFJ_N)<}A!Huf$~#Q!i$BIgRhQG8QED3VSh z@oilYz}DPFpM2sFp--*qvP!*<^rDeZ!tM>08K?7n@n;t>o~skVEd^qz)3F@veiF&b zqNvG4`br9Ch;cWU{q7N^>hbyf2u@kc-vUMuK3p8|HL9j(qyl6*yZOI~h{WreVTBh@ zHINQYqtHE^Hp>%5C(oD{zccU7)F_U4>ua*QHs9MnwDQ#4tlAO%H{qKLg62_0LyZm2 zIU}fZ>lF+~>c6*{(}g?b-hA8^gynn=o#Kth^I_OTNzjG?@qsv@?JHWQc=DvB_%$GFCk4PD94o z>YgX)qu^NP`f2Kn5p{8*?!8STdzIVlcQRs90%6r;&)k3LpGexSd+BtC)AuCwXENTB zO(Tb~%u1l+Q&m8UgFGa%_i`M5RXxXFrLeY!N+zmsUmn%MHsG_Lh>hy?mkA&g4FSby#8gO3(pUbeIu8U&syPl%BfVGxwHr1o(o?_wM`A z^~9S{rk~WzgWG>x?09b-9K!|Lpx#yfy7fmn??c>04`SE$kDgSyoKxZ{V62x;Gpeqr zJ9sAgs?bCtt6SY?S$e>$qys37CZN?#Vo+L5XicJ<7Fn8~YH*GqJ0S>Qp;b7?p!(L@ z1H|PrVgp4Xj&GYw4ReZ+EmsJa)z_74)w%3kSWsI%(*I3ID1v8}pQFfh$IRf5gCi zXWMvpK7P;c*F7r7{TTx-^Tl?`ZYQ~!SoR(PGZ9nY^7F@*g6)${#wW~*q5=6(**Ikm z9Bk~#YG)PtZHi#yhZFUarO7c*R+2c+khPvIuyJIF05JF_+uUQeG{eNM*3P-;-l4$E z^#vZ#^Qfne=ZP^GTd{6OqbH8ekKfEFb{*{8T!nNpfsIA-`j^qoUB>s(i}AC$`3Y01 z&bBtcHAOgVpCWl-i7IpjC}uDJWvj*&@UwlhiI8^eOHYn;(a4i<)EaccZaDGa6JEBb zP+4VMDh>NXcmf6kqn6A_R2$4GYq4 zs&hLRSTQ?X^GD(zGr{W6s+LvD+y#8} z_LhM61ziO|GCBFy?-+EK3QwoPoWb0N_L{(PpH)i8mF6pf3XjyqD zt7Hwcz8soKuId(V8E4CMA$_FXlvLaRPWoZ=!?YN7gO7pJ8f`Y@xV#VGVgr{`#^gGV zag8XX&>L;WSPMlzw%lXLBO*4tWN_(-X(Ikdd7#wWLh)8OKnS*-pDA212&T)C>Ot)o z+&INkYOG4}BxgW{jXOZ5*Zt21GPxu81&9WA`2qrFCypFPeF=WflE!H6v0rXMHbvb+ zUxIGqShPi(5Me@)#@UK9L)`1=X}L5fd1Ii>32TZC-ttOs?RkZ$mc7}j-iSP2sm0SE zS7JL5>}qR@-R#5{WH$g|Lk$~kB{6icG;um3Cx`3kYh3ElWR__*o(mf_p;QYy2AQ=e z0u(4w3(WZE|v?3Qp&gC z5S*=S04G0r0UR|7YftAiF_Nm8)g%(Dm`%wz0QHfBQj3WOGTYSyqK(DSKk0_ClJs_( z3lV|?nS6dMUs7SDeC0*6C@fe(DWl~)B>cY+0a8hV83*LynQ2wGD#gKAQ&o_#SL1{Q z`HZmp0;yLmlMfsDayF+^pe(`&aVV8`%5wrBZfB|(ddY_yZ-nOh$MSE|MT&QC45)a2 zb|&CrntwVL3X&rA{9jl+#Tjq1X_os*yoz2Bl?sXEhb88Y2t@%7KRz2f>GCW`FvG$o zm)8)am-`TbIE6u_osak)9mje`j8(Xrlk{s7WHux%uTOCUthC|&4ujGU-B*~9s%jq} zcpwvQ{l1D-@fbp0qIbYwg*`N^Ia4N%P^6e1#S+O8Hy*}Vxdsdt(r<4gsfu{0jO{f) z2iZYVWNWJ*m}2OiNAYP*+n+noNL}>@Pf-+aWiy*})Sq*(-;`VgR4QHUgUfTDhmx+) zwI_kM;~ZrRGYs8xV66qr!5xmzh#Ejn=#8FbC?A+G&k1>GE0uCu^d`6x0;JbJ%;-3> zsNT9cdy0COX&rHZMa)O8c@M+-$^9RjC{=s=1CDo9Ozt-AR<5)CA2Xaf<#{KQnZouh zw0j4_iYD(mEj**ZUcu}(Pl*&o%US8lYRPfW2WpBoM_8Dz^RNNj5tx9s6m{7_h%X1) z4RjRU&27>zQs>ku$YAvHMs^Fj0q^Q&OaWjd9Ig>GOBEsICooCgCy?} zddr;=;%HYx9o@}tU9?+dyryKp+o5Fyw_0p@>0#gYc$Qbz34udWBw|w=>Qr%y zEkck?C*r85!{s=YOohOl=pAQqiR^mZyTvqos^U2XbM}*yZBgwF4+xPUi#*BU+$qf8 zBs3mzX-2=ROA=Uhf6D}Q%ecf*bxViSMf9H1R*()<40d zojNTGMAd|wwz*;@tf6{*%eL$QZzvm%e6A%~HF=_mnvOLZ^i90p?lmob!D8)CdP2HW z8qqXJLWqb)t>@;}^k;&**UeC>7WdT0CiV?;5Z@N@)(%m-ew z%Ur&52&WP8^8CB>tFmy!ik2L>)c;&JUYq;i)(ya1IRZnZy!>f&S19%0;yApxYCIfY zeP6@;&2r=3u(9X7CNYaUOY{H~!(6I9+)uJ&G2c8<`aA|ct?fxruxZcb$`#&(dyz3< z)R^=vvZG-gzJcCq)fPgegnxGVplXY1|LaDlC!MnaMLR$6CqiCQ6PuOpFt3G;cmMr7 zZ~wg>p~*1W+i=CEc?=AtVf>yDlZJWXTXeHwGoIi#V`~5&(@i=B;P5&{fMl6({VSM1 zpaqUc>VXP!VY_F*QJrL}bOXp|-5?pd6NSuks@+=tD*FSUg!IJ<5#(5y@*;QiV=%n;4yolOla2^QV>2nqdmjcJl_NJMRr`3YtN zfp?y=+O0denl`3q$g8!D$+S7*xc#XWqwc*y&p0n!he$Z{#R6Tnm(@kV z?qIgG`;V{laSw-tL!8_`dLu7CHO(90zp-&y1LCE1c~nX!A&*N_+vC{zr7ZSdYP05` zwz9foYinh1*|oC#(9wEx5Ip-j7XJzU!3`nt0pXp8u()t2IcB9rJEz-C3 z6W%~|P23S5_I3O@(L`Iaor;=t>LesE#7!NMmaDh$5XSPpTsbj9B8LPtxg>XA(d&M9Mx6Sc)o} z^d9&?+we+suu#yPdBkCp;|FnCv3}w3YHg8IUvp2fe1(r-@tOBx&4YujMQBZO53_W! zx0?Y?QZNCHSZh;~l{;1)n*a;Pn~Rfq+xN`RSH$G#CaY_+>Pii5t%^p5Uhh9Z?$q2g zXG&tH0NahB_s365OK_!+ir-GF&)IB9$_>zmHW)luW*o<*m@y++}W{*V1s+O&szgSr;I>tl<@i|+Yt<2c{I z7=`7D7VJDm1D7@$Vhyiw$?QJZLmtt@Hg7~Hp^3B3ECt8!v)mHgcFxU>wzdcH5f(#go) z@8BQ@MeJQ{ED9l?%fIS+as-BsaneFiBCvaS_3)@$7h?|`yL!3@uK>0mN}v8@w*V${ zZ$7a_gZsD!9EkwaSZ}H86a3RB{|z1()VZyM8X%91e8tg04MBijMQ*|3pke@ujq^y$p(f~O&{Qlfh~OpBe4Au_&7OtT?ZlbE%$yzL{l*9{9PT_*&w8>vPveY+RpdK zuFGEU+h2>%xGq~vh&9nX;}UR0`#rE@g9HvWPX{W$ijM%8^Jec3=UrFvV~n2f*HjK_ zD9^{|A0A4~o?^f&#CFN8cA>KN?!V+(0zJx$fSayrBK8vkvlowaXlZDfXrd;W=xFFi z=O>rB)6={uK40$76i#kphBHrdc`m|Vi-(W>zLw|X6q0r(&6MQCZ2UA*jE1g%>*9v; z7AD3r9hOo{!Q}o0l}E`9@o{hl1V~tTNPSGiw5+Dzm;3u{=0MdNVBlbN`e>+{ zza;mK1B7sY5RU_(|JH15m9Y~l!;T2zgeF3d81;+Lp?F7z4eY{T!kwZOh}G2Fh!M|< z@n}N{S!5g~tSl%n&NCet?S+1!2VJcJl7ha`H9om!R)= zSPw{P3^>%4I6mmYb1bj+7VGZq5m&$%|CB$VU)wjPhZY_`1ea zkNL1%R~^sME52a_pYW)9A${#$&Qi|J43<;8n!+8RoLH)|F;)s41iK3oE zP~}1P2U{5X4MGwnTO04Od!`-b4$8G7WW*&8GYTdqe?^PlSSb!bK)P4WqOP4G!1jHY zlU9sgzE{#~(mkME1N{?>#D?PYW&gQL`F>A4kDdt(>wwYdgEffyid%|i{00c1Q54j6 ztpI>)L5F?gD-=m9b_k(CD`?z(QU8rYr^+g?Q0E{NQceLl30Mrxrhm;)VKlIK@h2f< zuOWC0(UnzDK--Y+^A?bopyQY-E3nKcS$Ph9>pgVSdpq%6g05)@gr8~r|D4FWVR(8( zXbbH_qL|8vUL1nvL}WScYr!UKfRw;aCxNt&q^#qV0$WQ7{G}+RqJeur(8j|@%u+b1 zkgJn|74a(cDfOO?wyHCs;Mu9juX^Eqo8Q=cpQ?MFSUQY+Q{||~@l-PLyUR{*Sd^Ww z`*Pz4GCR9LWf-5Ep|L-ba~}UxfX-7&HDuePuI^C#2@rfg`RlAj(U4 z;@z?T%$CC`FpNM*Hg0fVM8ERc`NKgpHm2R(XJSAA+LGe>X{n85SpeQO*N3!=Pt>Ij z$oIH7Pb+(g-gz?MHK^-^<_LLGEW8CXV73~)2-ISCip0TdGIFlyuw|tH5#%UkLvl|B z7BQdhfzcqrA-9-=8441!Dbp5Qq8>+`xquI-T-;gQbQ>kjj^fYFDhq1@JwrkGk6kN& z*Zw}jbPgALhdXXW;D$|+6xwrK{HmwTuon3T)DCO{tK!MR<2?RG%NR{%O;`mddR zNdwQ^(&hu9d)$!{Fq~vt0G47-y4cyxatTr-bzBbgI`an_sz)A@43(enUX^lL@B;^g z(GlE#uv4(HgG)3k0`8TrmJY2^kt>{Ke@2k!T=MwFkT`fD%N5c>g_{U*H|qj^$uZl}S4JxwDzZuX+7kRTI_#vK;k%{Sk}NjyH+CE<+wJElDe3-|Ad-D;tZ;^ z>WhwKy-mCDf^H#fS%voOs&;sXG0>=XI8Y_#zn!B8+L6-vH0hnOnaP>7&J9`VaAWuW zEvq+G+Ktw@k4w;EX^u$hb*xLzj%rnOXXu;ghU#g)G<4_ja;7K>*pUfs;1{?zs>1h+N*(m#v;3t(|%y6c3X_}OnxyR2oAN$YXAx53$~ znq~sbt+Z>e;41z<>@3_6Gu4T4#FUi`m62}` znQbW7Ug{JT z>&i5u--W~Cwn>LU3@`~X%5D7?PvYcr^!AH?OCgN+q#nbE(Uga$#huu+pyplQSOCM#Sl1lDhPi;KMio(S*((ivlrxDJ^tlQbH<`P04Ln(?}+PYE7Nc`oG`>|>* zDSH@PHUr%;XmEex;XQ?M)=&TZN}$;=9L%?Jw(6YWvhF2m&u|6R2vq8L8UmiP{zwYj zYDuK3%!IJB;!Kj^rCD3M@`;CfqTBCRy(q)K2IsH=nXGHzqcNS7oCU&hUGh3>xUujJW zd1cgzFvsf<@zg*E;U(iZGh-BO5F~MR6Le5VK@%)bP(=kLBQSLnWW;r}sAv&z6KBBn z;?Df{ZtvSp&K9-}`9#kMWEYz98JEab?L3A@d zV;BjGvq1e}nhW7m>|m#?bZKD#y~&u-BR*!1{Wf^{X^EyB*l@L{1L$*^ z4ko7Jv^n|ts%K}SkQEX(+j&4(3YA{jko*I`!n@TW1roPex|A`YB9*9r`(8T0pJJZ> zz1hN?!-)T{m~ky5S4JS%k!0aSiHI4Z^!US$@Qw6v%@oujg%%bUWC-?^Q2>m9lC^T3 zs1-R~6bL;u?MA()eL`Fp85;GKBAEPzPz*eMe^0}zPT(m#CPYi0*KvNq;QJ$p-Xy%i z!_qsp7W70)f6X3$c(D&r=v7D}-s^V?FaHop_poEqwMgU8v#~w6HJcj#yyZ_}i1COV z2+=8T>~5W%nQ>gftZ%~^15`hU=n{3e1he~tC~iGd{E+6`JsCR(=(|(K1^%MO{JMrh zl(tnB=9=Uv6TaA(X^EJ=LN^@sa%GjXQZ=;`Y64R%@L4^=)4>)b6TKcH1!2u`J~kRk zl@p{BO_)eMlgH$Kprz4W+DXKNM00r&;{tKAl@`P#`yk?RofFs@l1#&aUf49&lGpeq z_MNY(aGvOgnYO8^;lzqit*)w(KTM&FpBSf)DCHqg=H2(Wl8&^GnC~2HH6}Bl1Z;@E z5>zXX-0iUqN(+-5$Y&xqHED8HLa&uRPd+Pt{L74$f`X3<$A;Q?)}wq|49&y}N)PkI z%=Ga|i|7oTai7`s=y5X&iC1F>&|qKGRRz8Dv-lx?(i)|6;^26LO4N(dL;=;u0RyFr z09s78z*3MUu^|DEfy|9}w4YQ@_2BVho3-A&RV$hyU~!TXn~J3FzN%9M^p-kQ6FVX< zL$h$&JYQp&qR+&8-s+|j_jed-&W*ejj+sD%FY*E;!X53l4K1>-6~&=s43QT zOf5Oq$c2B;RQz8*YqD5n{Iz^r(w!I8tYnk6?WSWY+(F!uIXluqp?PF1&&dUs^V@;3 zmvZKnWvLBXOLsP`z=mA%9_iB{5HtakQu0NEUCRpKa+yu9Ol@g7`aBL}nF`dw45s{LseoinAae-S2-<3X6I1n3;pOpzum4%>hq> zpdaaV>HSz>mQhNwL7GfU!kEP-vwovv^f=xnP~cUe7)C`SG<{67zbLy?f(dTvA6&hi zQ1a2x@v53!TvN2x<*|qF^Fs;1lEa2Cgyq-v?;Hm{*cjNG_sLP8(m-(cxZj_E;LVSu z%gPJXWEc);`~ISpIE zXn`~eRjd1*+kk714qlSlepWIsSmze`fnbZcR3m0|muF>1V~y?i5}?K84B%W0Hwc2h zNsZC4bZ}8|ICz2=oDjSppc4skjU#J@zcg$(zs zGloMc6FPXD<^5*=@JMNRH35UiCYlRSZ`dDuFWxbk?E|sk*dQxOuWBqnZ4f!gfIpwy zL1k9tX5%3DwAhTpk^;OHFm~5ntG4Kp6q@i(bip8ag@N>gzbE(KDHct@{0;(_J2-}L z;_29&Jl#QB=;8RNgkKYWJ;7tBiiynxw1GFwp7I#N834-@_HWgJDxJawu$)!oElQMh zUoMZrV?ql_#UVfQq3p(}Izdl$oQ}A8SPi>|6kR}SqtvGe2@-g70-gFn!X+9UAMkqM z0<3wsF8m-~G;@MjC7gIb+8((;Tm?EonVb5yuZ(5~^(2g(p(I@QdujSy$ZWlhQ{D;k z)|*8G{3h$cQBMXDAW&%43E(%)n(ooYQF%rqt*cjEGEjyXV*NC z2UEY}GslWmaWh!pBH0)HuWDXULRmw{>4k3bQK~g-7G_?*sFTGk9D&2>bVQ2Q#B6$8 zUOZ*A&8c&5uRRDvolIwVnltZFI8zmDjKc|xY+btv?}Ldq#^BD)(p!2s_y^a_xQ!6N ze@~`7hM0bY!T~pwp@Dih`sMI8DL(mpFPH*1CeB7puu6kX1@%{#$#uPm5Gq- zbKUlv&S@j~H!n$iSn;Q1%5sw4txwG$1#m_<973~QFq11?ZF@}RmViIi!sy3mbRCZ4 zccXEhz+U_X7e(te@ekx1YXa(#7Hq|#Qj}8vcO={NTgwYrw(`vn?AQ!}uHxVG!#bwM z_Fmrzk~{?+3?8asCbmtpR<=YHP>z2~kuRxi}c>fErD6|4Au|_4$OrYe{^Z zMvCpzKQwdYLe#%G{%q`Ksw`wqdIThMnyq;61e<0J?%X?)@|`VCPKP9m7YA~bxwx`B z#X=MI>us6TV02>s*6Yj2U6_Q2$z%Vqo{%^JtC2QbIHnp8xGy7bDt^uCPHS3tv;@+Guvl)cH(MbMZ8;lW;z-vn4nx!`QG;zw;ji`LycY)eb;QzzYzbg} zEk6!rY(>Z_Ght_%x>wnz3zk1nlkWwoS-&R{z1X?8{#Il~IIocLz@Oppx&JK~gcjBi z*r?493pPu_z(o!zK|RhO5-*I^>%>DeJIK)taY!Yb$WE%v%1$KCgj7nxB%<5zvkUX} z3tsl=LG(6RtazsSC6C*O^01$My%0gku+}g#9{lmR5;R9s%g+BRXDB$QO%oIZ!}6Hn zEL}DY$(G*SAr?BTT#aQO1)iO_t}X*6^u+*t%2+6A$sV*`6j?prKG_S1@4BjjX^^ zX46}i9AM18^tT8gF-jGitoW)+JgxaIJAM_a+M07gZ{a{DdG6yam_$g#hJNpMgmM-r zk9$Y3%HqLL3RGq>&>8)2<}oS0VP+DD&lKq{PUOn{n~Hc?+u zsz2jUp-m2V7w;9eNE0;SWmBuY#5_I25J2zWlS~(xN=DQ{Lc7ykQ#K;Un$>O?9bd`n z*e~z+mZ4bRpfE1)^^H@7_28j)k(&Sx*O6e5#<_ZL>uw?PzG@K&wU^6bQUqe1I^V*L#x~yxO;#!JE|60PsT+mJJEY^^VoOt5q2)% z9?+&J%s72Nb=RqyWjJc^m*I_$IhYIGJ4xN_Hjt(P`y2+Te(9a_yVc0PcPfNtM1aBf zhsw#cVO?9wUPUkLD7gguIl`|b)cv}%)brF@X#N$``k6qP*s3yR`7%Vj!`ubUNzP^= zBjE<;PaiVFSbfG?Vs3$y9q@D^o{)e-75N~<+i`*`(NrBFmf)*&2)+p^K1-1%WXXiM zX=xAUB!GE;9I9YMXYA{4Z)`Us9igi;IbUCbw@~5iY7%Trso(t2-L23vZA(B2-emBU z;E)Z`VO||*@55rZ`TKQQ(`nMYiuy&ne6=|nBEljFIUes{FhEUSnroc8bGLiEtTUy^ zXWgD!$?D27*p3S>i=+cv9j&&Eq!SSHtLgurw9cr{T^IS#Sc- zj**luD1~n}+{$IME>Mq-T0dHrJjmRz^f`>@Y>=fdQ|ad_#LDit>KtclGH^|m^90UK zW2@Gm0T^AUP3qNrhVGP4CUnj%wmC_f;~@!H&MutIFJU{iK-eOM&aUtH-2bB9%3QMe zHRIcZxHz|t;B~_7qY;ssz$2mMc%5wP8A3g7V<;auk0DBnt0^QJ$nP5#87W=dB1Ekl z5YIbw^A(T=1LKvlC!bKVqLc=tV-_q{V6LwB)&aK*uNiD{PX%!z@Mar=l%cA&x~i_R zvPmZT+DmJ|CvcaXd ze(GiF7l(+kq?dX=syGT6C-SW9IX;g(a`+L{?l}rNF+4lSze7AtSA?@MbzdeCtU2H; z7vyr_kvuj8JHlEf zX_dfxv6UpZTi79TbJ_K_X<(r1p{f%S<7DZmbcmL+>ON{%7azIp3aed6nj z%F+Xhekw++O*?MB{{Ya>O3!1D?>#hN^>!Mns(2}&t^KJv2nvx0IDD((> z4oS=YNp_V#WqF;^K_EaZVVvnW=9m5po#{+w++(R}YHMvx+`?!OlOT)8j;JUYj7tzy zP#_>iL{t<3*;H0V5HuJ>0R;g;K=$Qh`@Zkq``p`eU+L7?Ul`!sp6A^2oadaKF@XLf z?g?R3Gwym*wMEMTSVn&KcwBi@e~UZ5;w&CUYP1@$LuBItd#m5{1NYu>WQB`olahW) z%_X&fZ^|yq%xd6Naj{bS?jub`FQ<0mOOCR;>|RMl3t(0*vTj3m*S)fmlCoPJWxEQ{ zTd!I~Lk$g0jSaX%(W@kq)6K0)DRq9dl?h%LX0ST!M$=B-f2VMAh#8+>>~Jp;C>vrBis1%EVCvg z39%xs1nL9i-^fCTu!%O5D>qe>DCB8@M zcHcyg8FirC0z*N0a{H5$y4!ukJ$Wjt-MRt)j*HMxwaA`Y$G1-Sa6Lk6w zI+wL;1-I}pQorZB6+QiAj8kKoPQCY%uy!yd_Bw#R?ViU53MyYqI?R^bl!rJag$iCv zcP^lNj>v&q1x;XJ7yjib7S>TvkT#kzs^kTfw_!`sd=*>R1ov{SZvdO zHO~OVfu{aSysOx1f#n^1GdOH9bv&B_Amp1!G%sTSqw-OG0$TM-7M2t&*kBq`^XfK% zXfCu1{~y1UvqjrMKSBM<@#a<`tHN@>H&{?tfN$hJ`z{9}5o(`&f<%1pnED_)oV_UH z&7}SSD5UrzOYk$mPEueaug~qte?FC4$dn8=upoC>t(fB)3t4zoK43E0U(hS6$dzxg zXnkWH8JWNYOs;04fK`IxEm1mz`6EEpuIRv%zoT$YL$kwU!aS*m-swuY;GIt_eCF7@ zXdpJt$}HtfV(G~EIhf>zxP;p^xE+U@ap`hK{@oD`%wa!K;sgWL68U3H)F9%4OH&dk z@!XAH?ne_rT9Iw(NIWcuGX+3yFPbgu2Y?XfK0A*XsBN>~x zYhMMnBx+fZ-)`Q$!pa#Sq7b;4oDHlsLyK$cE@Gp9x@P{{_Q^P)8crk1;l<*JV;hg^ zsdV8L**aRJh3lV1SDArORjDgKlZrM(xTm*|zn^~?-n)=WR_*i2!b2n?xVD2_)n5z%Bi##zK~u~Hf;LCbzQIjYp@;}#ZrO+y9vVZtE# zfJ$6&A5Q;JpM~cO)|sfohD-G&ZP2zgr)bUuNi<+9wv{7yILjbFzBejj-9_9Hq_MIr zuQgJb&{)Z$bW-hZ!NIOGkU@LYO))*dYW9<9mTG+j4RNAi+&sDDZpye+3n-}&bM+bH z?nV4^rjntg>6E#dvw?rTG)AikW?9ksgL)g56>$Ts=HmUL?FM9nOyhFGc4&AQjVu%= zvw3W<)r`sZg3ycnwI zg1M3v1Hg%XaNF_KI(N4(F$Q+B)b$j1LK%bWu)23+dR^+$v|~N(dq*$N0E1EkpN$%n z3RJ4I0-?jpLKNB$LRNjwu}+<-qC|+a5ia(YYO0`xxG@u2bEy7KDl>}$LN+o`3*>?5 zGw6JQ{2JBBRYW_g>C$B-_h>fl$E;hnRvQ2n7i)f;+o#!db8gXg0M!dHT!K z#;z`uJ70M8PzU9|Qgl5R>sua*gxdI=06;Q8%5R>Ev{+sl4CGR86E*K#yiZJ@cn_d& z<6%~Q&O_JQm^+b~!&F17ts0=`uFsh!Qcg7S#|dN*DN`d1a#e5+{q_)1}iD$*jtEX%&-ZhWk+_Rw)8>_h7I{^h>BM})(}mG zVKl@t!QBce{kl@#T9d?@N+`=3ZfH{39Zlr4D2-80)f`4kCMg7i;KWZJIeh$RROB%< zF~4^u{Md9ff{%|$d$BF~L>;S2F>%2pecEJlq^Q}0GB#TTPh>OOX(IkTh_Xg7A;}Fw z4Bh18%66)hX@TS+Mcf+NCX~bdJPir2A(&=A0i~6^GIUVdJD=NeOZB)dsLLOs-*sjA*;|=kW(qw_LDcPbq32*w_j!+Q(Q*J_d{NpH%lo3=1Hy`_ z;0-~;Pl84SfFO%dj*1s9KAap^4+tC{6dQRD)!0gJlH(c)gg+tQB7xuWJYbf-Ktd-$ zt__c~D5!$wLU*ltA?pb`Fb*Vy4v1!E0gg6&hXkkDYpopI*MiqD^Ne|5Ojrgi+*gh% zr>VZq-mXCmg<)QE-j43!4Zu}X|;bZTKbMob&kbo2>bjksB%tKrGz zx|-()3w1S89PqK=B6mA2bv2c>LOb-H&3g?WpW{}fi=lI?9|6F2W&8MouElQh^JuI7 z1XbKXF}746_;b^Hfv&>{Fhhp3P9%X>ldlg!(s5z3r`e#?d`!*;CEko_$7zpr@Rv>xD_lJ7l81*%oCNv#iBtuZcRX)GkF9uC-@I&ixjcjD0g)M8krx; z3{Hlk#wI-=Sf%O8j__B9W?}HZD9AZUn2eJ6&VGWkH#a6N?d@G1-B#w1 zXgEni-2M>hdyL>%3u?JzIZn4_gg%c->6WG9mKuN=a7WakP+W3HT9K24XOn~!yVZp-tl@+Xj4q@adur!kiPFoLz>i?6E!mkm)x@x zf)PK_9dGnfe>-B&=Ij}vxPy2KQ)a(^VngRE;s`~sxvaIJzI5Q>%V--gg^+cc1$~f5 zBz7+G^OSI)GPDIYIhWOag3 z8A?B%z{7PIUCp~hWOMOjU<8&xc^;>1z!%}c=eG`d&>&8xZ(sQP5+&Wm7kr#FUpl+2 zliurJEHeoOl?rn1HLK|4oSqe&5HHLVRESEfJXG0QEXg$F21S0-6_FSr0NK{2^Oc!z`mNKdX11|FHd*|Ra!*qT{olHnLIW)au zma5p_F|&RR9(Z=*XETgqKX38f{(A&0>; zkg!j|6TH8l~E83C|Rn)pzZB zazxGGnVlE{*c_c}tr6g1u^NLA0k`1hv4`X}JT!IQLr8vw;J@)*su1MN)Rl)i`>jpl znE@VM$26kB`Q5P3>zj8S(6nrzusFJQ^&kltG6cc4CPE4Y+lY--^bSxYA;njl+7-RY zYH$fDt6E?g9a^1cQSdPLt~;_c)xWuCxLiZA*_Y*iUup)&Rp)HOqSU@Nfy*o7;5 zi>eP`F0CsfX;McPU&Ve(Z`{&*d{3?k?H9DRNQ6E}8UM}58L8i#l5OeR5Z4ggny#z( z1IEro?segqEXkYbL%AXoIf~>(AJ>cvd%VitbiCJ{`^RA7lM zM4380>`Ajs;EN`W(vJ9C)3SW~TWomHa6sE5YKmU;IeH^)aT|4;8 z?$!Gw_Q|%f7|gpQ-lxuLLse~UO-)@>eZ8^qQEOXA`(smU^T5c!(4b{x*y5P5jEqc7 z*c^_j0P-t-%!1bG`N@e%_pHmawBU4kT<+=lz^dOH+Syt1tSm44^46k((9WiJ$?H=U zkw+C>Pw8=%l5F&@CWT}Qy(b45{>UGE$RQfls3MLN^^t{AEv<8Unox}qRn9j(oYqpB zZ%-w$D6SXRa}=J2iimh0_beAglfyj7j8q$Zg*~qcNU(Hmx6C3}3fdN5`zAmQl-?b;52Rx7%&wR-4`FoSJb?+igyV zeQL(#bj`Y^Cg&*R-H+T($CT6AWvs1h8#HzI51U(Co7?I-yE-eI8Y}NVY^={~t8J`& zP-`fwsNGb=PYz1&+`L+N>)N+Bif)zPExdE<=ItBT^9u_uUHR%-LH_NpE`Ii({4Yu_ zpZn%Z!&M*FFI>nk`25qNOC|Xi&t9&&R9H}OPgM zIHV<{Gij%jG)bkV)%3kpHBze?wGXY-$5v`psoPsrW!h?_Zc_8ms&o`FQ5q6FAxuJ? z-~jD}nA ziotNR`!Fysr}SCfR*4F(k7rG+YbZ)lt#RP+ zVvb>M(X<{U6i1wRb#-(bOC{6b)N~hPI*{e!U=_Oc^CcPnZ9B4TM$tHXxW-?tJ%ybi zSl9Grl|pUQJ{W^Z zNQ9!tU>B9v!S->g2+OZ z$IzPNS6c0u2g$zSzli+XP6tX{(;+fS|xR(RgZHFJ8MYV!WNKw`<;XExy zgFBQi>@i*eQUc21QI>(7LWjlB$U$A;H3A?DGEdkxNHMS3m8M&+jDU|rHmnCjNI>Aa3R3+;w%~8a}U=9O! z!?1^=x9#XHpzcqienX3jw?m_Q0@`5RD?_@c;cjfYZ~BEZa#(fM@KPDl(Jt4hmM73fIem{Z`2n!~=9t$2Hy`cJk1A8Pxcl?u8M0qF?u6yff-uje?=2jFywVfl8; z2w@@)&L`}G+r25aI-9!UT-&wIW+A>*RZ7LqwJEJa9Sp2E%^vZJC8FLikUsvEy{mzse>lU*-pG?W7-mr1OfSK>o`JV%druO2BEDd9Gt#-5mpaN& z)_h^si9;SXLzKQjNv5kUNI+5|Lgrlv zkhD$Bl8CnTF;JptIBMj?LypEK>f)rKzS*egxhU7fUQ~$JVV(=!Yx$dtX8!n(5B)^0 znW@@jq_Xd3fa*B?u#+5IKi^1*I-F7Gdc6@}qr&vOBmw@{AjA&$-drByG&(ZGGq*Y| zv-c~aQ0by|6ADo9cXSIz%}aSkyS#{iy$#i^8Cfj5$2=$q@h%6J1LxMc_ zUmtn;3!>JT3zT*~Vvb7k_#<`s?{OQ)FF4P`>h+)-%t?}8ryp&y+WtbR*=KAS1H_VTvgPEnY=o;zp@$O)OHVNPt?t| z3;7nH1@|g1Lg`Cxe{p=Q$gMJ)T%f+D61XATnAry4&W5_Pb`aJ5iF6V%(VhZpTu0Rn zbp1KD^H=Mc^9O3y8Iu{kWEGM3=%qG|{*Xx8vOZ%^L;W%uwd2q7{H$&02>}8*!|8U1 zoAXd3+g#=vUtdw5f%7>orf#3e!v71CC@QgU*ae!Ouw+ScAWJ^#C!$aVqA8GeW+G29Gsy45>9or7pCZ@Q--h{u^_=mh8oF&yBp5G7fbsEYjC*WSpw5jJwCk{0ZpBPwL+pT^%9PNJU)Z;Cn9`7z(SH?Cy9iK`FW=rm9^U-{&N3sr3p@Yh+i4H2p#`ijl!$G$5 z85q?;ffA@v>2c-5FlXalw)hkJdr&R!%fIc{=(~9Y^>t2Lpw&4KT8bdB zL1c68>q4`I#dqzwq)R%gQ#8{jB_vgcVw>gj5y{_vkMT<2Wv2p4Ts%wg} z{(KuK^$i~~F?2eb9i$)_)?8VJzVfbfVi{PXqJ)Tx;E3RTCbheBm5O<&cda;K%LRL7 zZZ_GEAUc=49h2)w1=h`)t@a4N?=~r{T!MOlqvG|N_5ApIBZ~y_v$#dY*F8D_XUkPe*7CuKoWhi6Y5w~lEijXya zq^HhZ{@!=q{R1#x$IoYJ@Yn8(i!Aa>*I#CIWZ($DOWH17zVg?9R#jJ3U$4GqsH(bg zz2! zu($4X8mNG>pOjTr=sKo-5j~>6%;A164RVAn&LUh8{ts0tyFF|$- z1OF$xN@JtCuCP}cAOtEUp{-geO8T?y&o-{ARy38GKo&^DBH}fq4Tuu@qpiB73J^%$ z+CW$wpezZ5#dycYcpKxL@r*t8*myi1#w*^&9*<}9%zO9Vb8pXiV}ofVKkI4UUC#EM z^L@b>J^HpHnINazm=M7Z>{vXu7@w9$u~{kR86f=ZH32DCO_(N-z4&WKI8ufH(hAIq zPyJAaheuq41FoTAb7zOua_?SSOM}I1v0ZFwskl>7URYI9T3KCOT3S+3S~4amJ_Q%@ zE}Xk?^i)pH$)iV)oji8(#EI+^pXKD{96WgBz{ekdmb)tZqeK7t$H7B~KmBA(qxe{} z5C8S>-~M?d`%ioK@BeV`?)`iB?)hC-M#k=}^mpG)&)D_HT^a9XW~FDOX8tzI8&Ti8 z^nQBQz7I08($ltW*}gR`D|1I`YTDK}(>A}eBO@(SrmfD{zIFR=-roMkTbuXbpfh-Q zSpA4~y!QU9uWWz)jkn+2wrA&tP1`o$%f?N=+PHDcw%1S^Curu|Y)NN_I z&Mv2V1`86&G3f;|fyga#oMmxJlt$@4#}_pk!i6B9LktJ7N<7k4$op5)PnbFa3lMOU z3<%Mg0C*H9#OMSN>=c~HMxp@Dq)0-7k6#gpxL>U0Bqrz{<3$=siwBO32N97-vV$(d z-9%M!Bw{B;%Y~sKfhay6g<~?wsEx2%2RhY>V7QIpi6|23esU`q>St-El754HCQ`skXamUQ8<6uG zH`S^>`cy{m2cD3rE_`YgoidGYrL;iFLywlwBHVa}ZXk9}Ulca51ICt9v9GjK;8RUh z7d^(G9{tq#094oZBdY9AUTTXwqq5L{ zljz)v#ZrpW85Ug6eLkimz}4MYaPEC=3+c+csAc$Qaakwhl;|crXSCN<$G^5bL>wLU zS!~l&5WVIev}1>tsu^YNcvC|?QqjkoIt^if!qd1txDZd`f=2*oGfIWph;~d)B2X`3hK&Q);%GgeXQH7X=SMIVb|ZV({vdHSzqmAB7;+$@5~d3c zc^HAHq-2_`SRyM~VXGL#j>v#f%^~Q-Wt{6vqB<4vKV zB4dtl%VTp;_*r`D(jg^4dP9LSq3(zJl25(&xO%bl+}T{WXqbUQ>}eG0 zX2xBpOKJ2f6}y>SY8sKAn;NL+B@E|J`&;MALp?J9UKkmN2a{HJbh%5v3U_yx4VUFkz`+2QTZy z9AEr=K=6UndE-Ewxzd5U0T)o=e-{RAh}gpBvid;JmuG6Gxn6MTSeW}S{^#H3C=G=; z#Ik}HD?FH5Gls&)^EFtv=qY?n<|y~jQ*kR9nuu5x&K-~#e>YL25_ zH0Tsh(k9pwp032~k8$D5wFRU|H04fV>=Ob7^Kqb)r>H1jfMzeB8Mr+>H`-Y`(?46P zwU^G+S5Nikm}sueXc>qK5#=KC;MOomauE#jWvkT0 zSW#6CCU(|oc94Rd3ZUqrsYw-jbDTL&a;Y`;HnPz5p6ME|r^U~0J<+b?6U=ZhLDD>q z7Z}(za>(yx15@CscGgVdxR_Mm#J&rT8KrO{U^!EN1@+9>Bp(~(4}#zx=$!)OREsWs z2SO=#S>2C=JKJU79=4-HR%VLSYSp=0V%gGAmSmY6!7gm@G2@S(HN*wMZ@O{02HP@W z$6#ng@03hJ*jM69izu$DKhq)>?znkR zNr_8ij>d{0gV6%>mm@T)Aa*_dkI*D0u)yM#QavrP+e&AU>+Nk*s5x)}S001hfn4)H zw#)n}%KMJvAfnc>c1&A4nWmlT@l$L2ThG6sGnr|W7(}ZkqN1QlCyolnXr@JI6E#sQ z5djCRihxv5?jx`VH!R1>u?y@j%fcQU&$8_GJkR%d`uThpF`0G-nf1%_eD`yI-Y=I= zz)$P~c0nn+M_=zi&)CGs#IVI;_qaV?kJmZw@Ol@eCHKNYz`Nj){7ce`0%XFdO4Qnq#(=n3 zbB9V~9d0qmqXL=&nSme(5b+rh59$P?xnOrjx?Ahq5aWm}COfBF7@dEysKSv#6JVl4 z95!>I^>J~=!BE_Rmk2%X98=+=5S|)MR5{`vVj;*YT(le#EAtIvkZNoPK8E^VBt#_T zRWvyB=42FvD9yW40@i!-D`d)rcL2hpLXO}OW{V@B(Gw+{HKY8NR znbT<*=_k@t(@q>t+n0Xi-S-Y2IGj8g)qdjN_vhq;Ntt{0CcX9M(UbcR??1A4&!M-H z_PqV}?&ReCDJjSHZ~e=GcMhZ+-TQ9R9wn;%O3gcxyf@{YgS(Rt?Mpe7dNkvBYU+Dw zsYlb&j=y&*?d0(fj-ALjm7a0(^x3qGOgWdodb-hU^!tr-c}fsm&Nb6jRU#^v8@$ zMJbj5avP?Jp(Y@RT!>Fwp_MW9ltrQWHTDa@DrqS~{j#)TpSJs*^B(7%W5F@+7;?HL zDL6afwmKGE(+idmAlc{HPpB34TcVbp{u#2rLnfYuCA%U@=8bd zi>{CGIMGLOg5yLRavo1K!Z!fIPykH`04P%sX*?!+Xb@zoiX|yXSAZR3-xZ~aZezg$ zSgOz*sPn1#0&ECTx_E;q%s4Ktr=o^6E=DbU-pphATXG%+aIGF#La8) zzi%8;toyGY|4l4n`oBl0=Ks&(XJ5Y&VKH_*2KVYv{K0t~FM0U@PVc<+M`D*6U~PmH z{CgZ-d(f|;`qy~r`ZrGrI}^DGT9>w&dW|N(fY+! zgf#*GfT>`NDN}~)c_m&p1)EM0`;B3A5aG;5t#xD9q$9%Zv6xX5xErzXm^ZdFzRhiJ zcr+YtE`DMN2v|k$Hi34tN}LDby&-K=w6tgRaTwy!1k?!&3VyA^FEC~hObk7^@x(8z zQCe<(TI*D28HMoh9nP}yUWk^r$0%Xk>xv(5dNDog^{5a5#^R8Mz#27XO@LtiK8LKT zwYr|wNUw!KM{Og|TW686+%u4~HFH>i$cA-u01qixGK_+dH#M(1+bMqA@YU|H6%dWI zt34kV+#97z&KLI{tC||Pa_!N^Hq0bY49H|`-W^bFV&AZpDBy=pAA)NWSg;JP`VOa| z$}sGjetp|=pl%fw=@vmTocL5wa?&_>5D{A!#~!Q!Fv_i=1l=H6fe+S7OBhIJx~a1d zmJIP!^%0H+hA(>@w@OD1G;rPEDqGZ)$2Xg&HwK_OpuljXYCK-Sbw9iv%F-7kq_&^2 zf$H8BFPLa)g`97vLoKpr{68}RW20dS7Mhl5@VLahM-3& zWZdEJURUGfX-=m~r<*L5AsT7=N54wtrfbG1yfFyxCP=iw&3QtoZt}$h*lxSOLh76A zIvMLGww^F|-XBB^^gv@c%JXhNs<(0a+Vi$qB0o0CzJ_s`jn$h}3IvnD2CV{AUhgnI zHG6a*Nz0oNI3TQ=Rx6RJDH;;PjcJL9jphkV1+*b?g>7ZkUTl8wZVOjyAUEAiC@I3% zJ=vLk*Z!yHwEoTAU#he|Cy+8lt1?3$jD*0EZ7^e%2as*rAt@9c8E#PJazphZqfuYm zJd}4!d;4e{^?+WPA91?pn_CI%*7+NWM>pyk9MOl>!SO1Ifg?Ya9{`AHQBHcFEHm2+ zFl(Tka%GWOZ5q)NTTKN;3QVM5Ez@=zIx$sIQj|YZJ}MbOQYuhOTbOHrv5C8@LX>r_ zC*wvHN&TGltU`);l9dYt+>k@Uq*d!2_@3Uqd zwbwj_#-URG3~r8)E-wOtL;G__n5$&HXo+MJV&JlV?Wd5 z+`@UtID(#9b7+nkvvbRc?~fr~ab*7Yi&{@=%p3Mp2i{m6BvPq{R9QB=W}uzaev0ng zpQOfTorFxar%+ z$=u)?H+|Egoyzd_bT6G8jvOnS|D9iZa&Y0dORV#FNHfD1##gJ1ZKK52M*L7{1Cuy_ z6U3s14w1Ash(48DJ;)tPpt)6R7At@)f!O-xcvMw94NO{9_t7!Y-NKTHJFAU+Vapn~!g zmZvNT%ko-S*@ayec9>mwo*2|Gs+8T_Kr1J^=c^_uPBVx##@O?^j+}b$cWbXsUbk zECi|dgf!Gf93uQVcMis*w6E!^i@L{Gd*?^ui!QpfLZ-Z2sC0$pcEK9#5FHIqu zQSlc2BWE+Ele~R4}$B)y8bZas=xT#VdUHB3z8hp8@bISxK0fgA zNBj5vZQq9PglH&5R(&D_FbH!(KN^(=aPR}SleXcY+>kiT6Zz-uic`7|UGyO!` zv7`UUJaO!JTH1+Ej-EJn@>Iqbg@)r_CGR}I})3Zw`=_N6tJfSO+5|RW( zEX?^tiErXuJ@yNzSCk3=5%MIYs{+5pVNt5WftO8E#1mgjaP@0j0t)C036+P;QmTjA z@m!Rk<^#dELkYpe4Zu}k+@lntED8P!Ey1d=3~|d#Tx08Eh)1xZl9VNIcBurEL;w%T zH=)Mk@wE^MhSoxUpMNDB^#}aR-mu%ZU~@T_7F|xe-8O5rO-x!QV?Bw)WXde4`>mK5 zC_OxBGqyq!)?-kqSrw`d|Fo+XhudIdvNAxXrqZzrRm~ElmW$@Z$u$y9GGz>RAUA)` z`vJ6t#uI`D!Q3I0Oi)cm*-Pq))Zr>`Xt4@@p_sdrIQSa!csv;e36*}J)-buH&UY%V zmoNoCeM%-WQTaoEvf-RfXo;LlV1zcXiOLj(O^G`}hlq;x^khrSwj9SH2)hTMl`-zj z#Cog5PhX=5Qd?r6INH`1qiPX^sm zIL5b#L>jwLM1?H&b!mq-TZAs|q5)jo3nn;=<+=$9(_~A3tF~c~$j~q%6b>Qv+{ro_ zD_amlDwjegOHQIpI3<>PBHKcpC%6rAh?N4Ph~lV7jvKoH$_6C#ggd+%=fIVO>A!9w zakyzaSVm1{XEH2&NN(ke!%QU0u<^d{|J}rTMjSm|_21q0f?`OfvEk=8wSRNtMuYgl zP0!OgEPt$*8}8Jv3huK!I9uF&w<2!eUxt1pR~8kxn+!R#tuxu z#-~gb6cqQklggK^hEvs+2?sF_pcPau0jS>*9a)6=CRRr@0Ye#@h7hJ;AN*_f36Gg| z{f9@XPJ=t%F~j-5O{0UvZ#AMgN;P`9-rUk;o*@vbZchf(($`%j0%?0X2)=$h;o1y3_0+!#xdPcY<6b8} zHIR&#X<}kwTOt2O%vl3Rckz2epjlpd7k+4p3~{($IAM zDCcoC<#o9ey|vq7GzO?ffhxU7bso9iI>R8CBpNUAQu(U)f$I3BT3r&2^*##UTh=Vt zVNe@ZFL=KUU^7=erE@Hk_TfgKqC|+Yn*hpzNz7>pb|Y)#9!8<8X@6}9HVri(pETVJ zsu+Z(Uw3hYSD=4Qm%>)LTg2}Iw1g?~PPjSOCn6C1wwP_CHTZoDARg#^Rc~9o0iBq!58c|9XQi?HXSC-;fNGZI{ z)&~)jr`TdiA~we{ieT(HM*|Tg#U8^!DGjy$ckKH4TKiu;EUPYh&=Zjs)tflRcJjr6 z4ua^&R|-uWqG8iU4u6c*XJadbSz;W1?k!2P{%u?9)8mDA-kPftSHgLVp=Ba-6 zG@^G+Y4Mv}EX!Z8{zgp-YtbF|N*7}AY&}#NX=>M(8l8G)%dKY-h~#y1l_{c#+iaf; ziKZA^;QExtZO;VgzzD*>MDfGy@9&q|UXA1x2KNSNL5=TsadxpXL8ZC99bN}!q;Bg~ znB8$VD&_zdxZKVAJ8%^7l^}6>sncXNYb=?0%m6$guz3S#2n)ByulRf|AP5`6vE~k| z7O(~s?;qe&T%Dr|SAQ7ufQ%L)oKHShrha8T8 z^RZ4khog+PxdTwJBVK6pU-CQ1yv<(bX^!BT^+YmZZs?#!6LXI0rath5BD4fyF@+iU}@Kh*H2TfhIuM0~oJkkJs^xcY8M5v)HqE z?wz^!zH85UuMtGDXRhwN%UPat&hv0VFNe_#Zly;&5fbVf9JRze5}4u8eL1+q`HPI6 z3zHuWGTiSsje0ksR(lv~jCN}15Uooo2Eb=$u)n6TD2yx7I};5fWMGioAA91^vx27G zH_dNPU5qnN7Lz2V>QkJ1K?vqr{u_Vn(J~f3Z``P~+J8?)?SZR*65{Zln}4M8^by7E z3G{&i@irdrNt6)y;bO=%_<&`H-2!Kuxi%mk#NW{}EhNCr|?2cTuKWUXg{(8eATHAQGFL6DEajL4fF zCdkMfki9$w)|YUY!&L5w`|eo2m@7T@o!LN0*JRdbOgBTn6zJF-xnmBP8YrJ|KqKH% zLqt$tx6qpICn)|zR2;If{3VvXeQO+AA#WWr6s-nsm}J&uWR%++{Bh0wikn~WHt71U zT+sku)0KH`n3mnsOZ;l=!ijQDb28~<(7t}1c6D}*`G=$N*mNQ_o=#@d6?5Dh5{n-q1kbDeM?d;k^#@he2P(HzRBR|O-&nq(;_Y=6CF@Gp zmzA$7E-hKLwzQ;Z?b~k_y|$mtg$X+K*MBK0Ed2B8H`c5wdiAZfMQ;?AyuPwe8aZm2dsEc=a=7t5>cmetk{Ro2LPU%UNb)S=r{|(zPHkOAnQ;+g4n@wc+dcXw`FS6Q{8e8ZM)n>WJ@gE;+`f3to2`_LW@NGljFXw{+^yzZ(mn; zTkCLtS4UfWyW8VxX=v|sceJ;+wRO508(Uj4tl19GS=0(ZT@=iino)MIK`Ak&I*U}# z3-KBMq$O~Rl5tK1vLP{&ixp#6G8N;H#}$=VQFPiZ1X(@j$oL!(SjU_alsq4Ui~o4} zBEk6FO0fo9r$7|gcP9D@B)IGuezjYS0=YBTj92+)-O_TRH*F{ z;E+lywjtAp4JH6J0dh>^KH zt@e(2B4Uj_ZPzH6(g`-@A=;%KTKFB_0NKVCejcTwsbx))mKg1R_OsparM824Pj7c3 z)Bu{S4w~ldrOvp4>eHDBJhj;iR}Vvk@k=4aC6j?bnt8FW_KUR4#D;R#W@cQ+L&0(lT>8ebe5s$?L5J{ z0?;tvSS)}n zaP1qn02S9^>FlK(hbVe(cnnTF0c1cL(R-;#dc{m#E49tYVd#KRvB~>WIk=tpT|c!< z2_2Ga5W(XK@z{`FfJ?US@bQznnyu0Q93L8xFECF#$@vq>88DxuW572_$2bL$gyGDb zTlc}2_b$YFIk)QW`|7#SdoUpGm>0;*K$v^$&lp^nabPhE)}$AifR5? zU~SBrO;BP|ttSCx2zJK4z4HUb#*1YDS%}G(>BR|E)7n)n?Xrx>5H=c5GeD8I=U8|8 zn}k4{m$8Qt12d!DO>$4K5axJXR{(*-3c{KcaTi?Tw2Y=XlYcpOOUf%v53WlQIri^3 zC*dy+#h5Nr0I)Pxk0}d4Y_N$(;O%_(nP}ER^SR!ZU^F$86q2OlG#1M-f49cN@S{byr8#^(iXXNY!oyVnf>J}IiT+Wjh)7OLAh$oI}sc#hAnC<21E^<1p{K%ia zqNYb^(4vpxlDHal*q6@<_SFTw5hQI#kat|aB1VR#% zkb4LTxkB>h^1jb)&-26!4m0lzdEWOt=Q-y*=X^gNzo-hElV{OKgTCa2Sy4&9bbH+r z&wmM7Fq7Nc@D0&s6zVDoE-UvitQM*1%X#jkLtD>-#RGG9v$nDe2>vrEwCE*mSJ*`c5 zU7%$gcG+UaSv2D2^$%pz>FWwp`Y^#V4`xT*UFXfCsz>EC`dd!H9<%|8rC8wTLuL;py2pe5<@{OBpI2X;2nzGkJ?G- zC%MUrw1#w>rRA1c?`VvXUNs?B-lb(OmOL?*Fixft;4!0b1P5bO@6@+6G*8MwLOfpK zaiqT&?ndwlVNtclh30$wHg34{^y9PXgj>n}`Qh=;5&G+$lZOf2(+thY0wxzobwGuS z(n%zB&2oK#8m72<0H(rpDM_V3u_n1LU|fn3=xtv1D=Ih5B6D}=4H-WU%1y?`K%gi7 zSf09Xr7&ta3#y1Ls%ef#I^`UmBT{cV9Yp?M+D5P;%Ket~v8WxBX+PY9WSr3Xe!oRq zPuHz2>bzcn@gIA?-cQK8Ls$0_^1+D2-6ksnokCW+la`jJLTI^vg#Wo92r@*LfO-VH z<&spiAl|YC@Oju<&Q^%;{mT(behzt>oo$NAE#EVC^x{X{SGOImLI#SAVb?TncR95( z7X)DwB2ml|0RYr%xmqA=uu^pejh#_?OA~>$Dcwfdy*A-{UzV7Sy&WGlIRe2zLQ2Jb zm#z&V&X3e$5=xfSAEr47;R+-Jt}W#p0GNR|b1)bmTo;npD2GFMZ=opX3`lw`Mgf;H zRBM({LK}pGYDSx#PYvmN8LYkAH!Gw#*B@BSW=a-`y|^Oes(2Z<#YYIuF)CMjiV&k5 z8Mr>Df_o?qx)bqXU04K>4?*s5hIe7n>$rv7@M~ai;`Zt)HNLUuUrtKymseX+_I~Ao zF$`5^W54e>cz8$U?wvbJOF!Cv;81xJb?9Xx*e)UG2n$Bz7S_osia+57pSeJA%FsMu9`sIq$Z!OE%~d-hgV z)f~0vf`d=~ja{R@)Y14L~%Y66)R*uqDyjoNjZQDIt7lv`5Y{v zKG0GQnIa4D%;SkAc`1=--hn_=ufQ45Kmm*r7(a{!Xy%=1zZ4Gp6A^!h)-^Nb^LxBL zv)%2oI-D+r118Pd9rj6!#cwg$?UqT4*A=u_Mn@+`#)ggN@renuD;PG8I($}N$fQpT z!2C50dmJv4d2C##9oG#G>ok46PewY;c37C{U zY~9QE4+@F`Rv}`GX$~V)C7|IHTNp71^qxHE|0)?tpc|6_9AQY<^QQj7h{`9U=QaWy z`}m-vsvrd;2|$-ro){uYkzkcS-80XGjt|Cf;{*+cm6Xe1L=hoX7mJpNhaiKm;cEuU z5~`DqCnBO2PHWJ(;JQd`DM1tF5R|)rA`dxo$;%26B7>F>;+I?fC{%O4U_ zGmQ$CuOu=j>N~o}DP)MG*$Pp96qyYahw2Bx1@Gly%6e3dq3N83=Ue2HRF>Mf;>wH; zYYmejSqw|4PnQwe>w-j=IVk9Mu?(Fc+S?sLY?%V%AU#KObiwWP%$t*Ipi&8lLO@eQ z_>-3yQ4sfb6*079WN%WeKfn-gqH0@KTuRl90*jFzOEwRp0coI$+sSEe88xdh zeXI@WIDx#b_yIpWvA8};X!|R3UjFZpW`Gj+e{Mkrofld#MH65Ck9Wrr5uBCyff;8S zG&pJ^DBZ_n4oA$gH|^b&*~hex9%p8+o1iFZ?B+;Bn!KPIAu~|n?(b$mjC3o6t%mn! z`(b0^gCMi?w69a9A#tZ+7BebY$e11D0dFqZi$j!{IdH+jpxM$0`yG{x25(FtN2uKn zKV|(>yk@ZU_tSDaSyi}<^@OHw^Z;zi; ze8G0@_)rt8k?cs7DkZJde-f)vn@W|cs_LJu?8FDy#^5-`axBw0ExvGkK!{trK5D=z zsxOFx3%-jvjDZFNyO;&cF2`~$%dxQR#j>#1cf6xBZ+Bt0b|Y8t!S~IZdGF1j&Nf4|CobQ0{rF9$X$GO*w{Ax4W=9(4>UQuFsHa1JcGa6|i-E zi!D$BhuEw|5Vb;WhVD2pPPC4CNjT%ux}nUzVY}^wbE30W127m*r4`O>*iD@ytqabq zVS&`VY%@7_m9h6a_m(mCQ&ZYaMt{?V&a7^z1*k-ZL*(Br*n(Zu3OH z6^BvQW)w&uJcn69KVdOZWgHb`0sIVXeLo;KJJeipKIrg)74j$V1zx zApo=?!1|}#q{negYYkPODAn&PN3Rk3ZtISljQzxrTuRBWThXTk#0o0`*xj_iTcFA* z!*`H}k=!fPs(ol?w7v)LokveXg+oNS4=PYu#;%NOz_quST-3{G`4q8KPwIlb`Oj{Q z%N_bVqeQLhQ}iA}`o5lnOj%mniA@1hei7Z-#US0#AjDZxWfR z9YMt8J^j+-PC_hJ$VX*t*6bjDhpG;?nQ6R_Ynj(cX4dtdC?fRd+7E9r`Q3pn_bB^W zA9VFL(Vf3bQ*yjOxiRmv=Myi$ggGv#?4 z;N#S3$s_0a{G}dKr~2S>Q@x^=)mHjd`$La9IHd$0-&4@XyCx`)O_MO=ve_q4oSCs+ z0w3wj@UWM5%fzIPIKf9JB&*Y)28TGew%64LeLWLUD|v8I@|c;|N{DYlu32!9;vpVB zPMmM|=jRi7-PEBg)cUrPRZOM#BtIX3{=_J(Bl7C|?!T%ERfhCkqt@eJ2tljYH$5<5((z_6>y=VMC$Vz(d%W8GEbs8^B(r{(p9m!7giI zOGUq8xzb%Pc?}&3vFpv++HveIpso?^=zEvPpf&y7gE6oo3nPXKY!@r-e#f-mLTOK@ z9*8N_S?E0Mha_Nh(Xlqhq;3NoQV81wopuv>G^j|3a|!OVem*1#gq1-|imK%6X-ap7 zRKJVd-6!A9R3GgPHDnQl&#zApSSH+#$tmabjNj**4ah{519MDSqy|(3%>b0C_#sfr z0bs5YxEa3)8JULHS7G6qx~eA%07is;&~3?58bN;{{$mFGOL;IQtF*18m6GYo#|={5 z$Xt`o*KBU>@Jk_SxUoPtn3R-~vNh#{(&WQ_OoXS3TD!(wl@KSzW!PyHJFI~BE>HMV&gXaR<0gL{=m14bgXM-OfC+#lD1a~r0fT~YB@@Mt;g1MDSxi+KAw9r( z#Py58UdDhVn4M{Uf#*gEN!M1-8SDZ71aWYp5pYcUU*hphHtbN_&; z_gT;2u+8Qew+@c=_4k>&jK=OEAdbKk-eHQZrK@A0`&mnevDIkmXxHhD&HDDI#^$FD z4UM{1V`EE`u1%}cH9yg64QhmnX;_JXcX$&cBx4SO68;RMO+Ua>j)_Slih{W@QHW5> zFEnv%ITjr*N)bb-u^JGc7{baFPC>{r4U$^6l85oEP=~Yu0?Q%bVnr6FXjDwBiGXLq zUBCo+cq>bIWXV<0^}@djl(R&5i#nGBgox3IbJWBg98tK6xP&2dA_G2l@rfVsrY09#Q-Nk)a+kqMw~eh!W=VpvXuI!H|OEb(QAYj}|ML`BN; zqNo<79Z``gM30foz`P4$jT$|Lws~um)kQSprS(FyRmkQuSjg#f(h_(Zf%CxdG%f5* zg>6KI7}qngTh3|Eg@0b%_-PAm=>En>ylaUOm9SHgdr z!u6%O(S6Bc5N|XV9thU?_z?*hB?K`l)hIba$m!X*Ib$Ue%k211E0QXBN}^&3#Lv)Q zyl-llm@veQi0;Dh!p8j^Q%=Kz1i4f=Y!xpv1B=e!TsN=DYM;5s%R10vwpcbbD z>9C*`-3Buw+Ju%FfEJ@+!|>F`D!@E_pcUYHa4S5b31G5v*22B;w_sit4r0Xe|NMxx z|DW&vm^FN{GvP<2@MB3BC9Ak^46C@Dl&zp_p^bb8HAuMCQBj2%o5L0;k`OzQPn33! zxY-6mKRnS5REe^)6zV-d4L|{qo{9{pb}^Np%0nXq?7`IkP+g``Q5{(vH-ZR)V?NB{ znR6zyeVm9$({wkB;*yz(NW>kNQHcgLBqJWom~qsJmO zOACr11ldHxBG5E+_p5boy+(8n%{%YCs(SUmRk!Z_T_=$Y1s@PPN8|A(0#dkjzgM1dPqsvf^>fwLIp~{AAak>46og{#@I>wD z?yhOHa;Kp!>sv9^tI{cfEix*TiP*bYu#Ul-K+bHu7M8QgzZT?dh)D=00A6|zXh96IpyoE%DGA0Q7y9`IsB>Be zVO#af8F7@Xu>E-03@pSk=JNnDhX5mqR}zwhr(tT(>DMjPp305@N&d{V{@*h^N=UBH z15EpUPK5gES&d@jN%b*2s!1YxpKn&3#E9EfEL<@OftHrLI;!;|%2JOw%AHADC%(Ua zkTkFE0bW?n(DIK(prAblX;V;`=0_qeh$VM7@AUT{SF6hkz1;}?Gzh&|9{pJWzCG6cXtkXo~3n)*Q8j{(Y*8`_7A}=UTr|wvrvG?V+T$zq442Jz$xfI~Rw9 zpO{2sUne0>9qa0G{25#j4*MW7RJLqI5qF1Jljq$`S-PUzqWqTVJSD92ySolD^^C1 zZH^_c-BKr1kx(6}%RH)ZlqSqFIG6DVq9}X9aAN zof^V^Se%Ph$-)Pm^#LXkE6qEtl+HD&5Z+xw4rKPS!5V9fjCXKWUJueYX8o4+g$4Nr zADYNiqe_gEzKvPzI!v8 zVm!B}qfkE`VJnsa(A;$&fvs7FQeD5wt2}TN$1AnP?i;J(-1hf}tI``cb>C4YR4#R| zZwm0Q{&Iuim@4#nq+9JasZeoH`fTmPG|!@!VXBfFiof?VaI!nfc>VUR7M)K-7aTn2 zuE2@0<9d{M10Lqq9ijbhSXxjSUGY)%)fkSsBOBHgR}DZ2$dTXt)ld*CndG_s0+zS%P;TF&}P)LS31Z_ z{4+lq zFPv;4Iq?Y;Upf@kO8d`7mnTP`YZF_;TB45Un#qmCgm(F{Z2z~t9Bns)ch7BZAYGRc z`7U;1e@F^okx0I#^1SA8#Mj=35FC*F*vIT(D08%q`+^y8p(-PBr!4rdO{MlwcA5` z%OMJU03UG_SsF)PepF$TpVMk4G(%3YSyLscfG=hvG#fpLI>E+v<5ShETwy^N;PM@k z8Dy%)l{wh<%&8pjY>*+8P4l50uc{UufQD_Kvood@&={C*78@?aaDJ!I=QN*bFhjdl z)K$P9LbUx@$1}NyN%S}+Bh4gSqq)EVYwj}uep{RPYtftY9)w{3K1dpq=du zxCrBnC2*aHAEo4tW)tudIB_@l*9>+WK2-*gCG`T_%w-c7`t&`NKQ&5suRW&x=cK$) zl&^9T_Pi8qGHBB#r@oX49KeYkxH{?QfEY-W3Gy+sr`f4rlnlZ=q6c+g?cW|R5YFgK z#;IIPh^t;+WYAhGnYjx%oe5?(6g60Ktd#$f4(IDBv*?5kcRJu`r4J6|37(yr+ldYy z3d_B2&5AU^>}=>@Ks5jY!ch_7+UOV6A%lFLwcz{IK}^arivDwZbjh%ozbIv(AiI%s zsk#j7+atYm3nK6 zSc5b@C*uU=f68sjqTr_Yx#D^IOj=Zk>7^~%_)?}J#N?+f#C7&)2E`lj_D45C`28~* ztbHT>6n{n9F$mn{ToX-ApFmk98oq1Nk)8MfH;fi>=r4nxK)u@ccC|3AN-cE3<3nj( zy#7>ORw*)PXG-Q2r2&i|InX46N|tZwAU=}8-$Y4uC#p6N<)!4OukiDap!r}Aa`VfF z_DflMPl9jfcs@h#{g?~TxCkUq#l#atm|V^vuXbzP)Cis%CfvOqj0y*Y~RBeaw8Sk6z?FC92nHeXydG-0a z+8Z|;8XIlh)5UDw@F58}#?j^X%N>N47BGe$?;EBO_oqB*=|rmg zpcCG7?Af8z)kR`ylZ3Flu?O5vH^z{s?*f^#F;EAIq2qj z?dwlH#7a7wcr>*QJ(J!+(fwz|S6s2UYR;2@;Ced-A9fCo+0ALVyvi<#vuGBT`8|~2 zmim6g>-*jZZe(#hQ{Ie6kyZT!s?*~p4vMa&HvXEkWR(!<$$V7-x6OBd8)vdSM9c0j zGug(HImT!87;rq8vIm(AGh?BxGWYT(v;OO;lWwNw*%uUI3W&N?Vf*`p;E^W9HDg+Qi}|`&Jhk-ni|lG$09aKJmz5 zW6t&PXk=z7zKja10k4{UZ1XXrb7NYf=YEWxsTbHX51ElsEg+(q7i1xkSd#Ow`gRoI zDGxaqAwUogq9DkMI`y6$f6&?6)i=~@9qI3UI5adk*xxrWFo=IcLk|b7kH<#sQ)6RJ z!{_yQrurt`!tnVxH+&{DIb&YD343!8*~X`h`K4hRt=?%z7(M~U-&!~tjV|GS(}CoP zpBtqNQCbY*W)uC1T}jOnF+MT%mtMAMkg8#rqMlO7cuAcW32OTAbQoY!L0a;@tTy2|K2Y%Pu8B$2in(oW79us1*<-O3gTcBj?cfD2oAlcl zZIqDMlZ76V=!=9vPJu^S7c;?R+6fo|5}T+(ae+TCsgLXJTJECv_!IBZ(><+CLO;#2 zH>PFOa@Af%Pou>g@7GV)A^-UMfJf`k04)pT^!F#a)Jrl`>sLxtf3EG(HVK4HPG?Y| z70}oICBIG_RRN;-*&i%jQ1bLIlPc6}qU*hvC#5WVb|u7Bi7Vo&i&0Axy^G=wl|QdtLAgAv^>zTNXwr}d+Rv1w-v!b_ zIcf1sJiDLSaEArsA^gr#SSf*2sR|8|f#@d}HED3#o;r68{p_4DCEcy`5TvFD0cqe_ z3kDK-i80PimuJNE;NmPyVZw6#wpTh8?x-X&>%XoFr72u!s2dVm>$X%nX}`PYMs>Z5 zm>>KT0Og5Ykwz;+-2;zLHFWgY#PI(cn9?8XOs*YWM;iC zmwBFJtyf8=G}NDWJ}AU0M3N4WZWZWjr=AG`gj$phV`r=>V-LzN_+JXv84X-Ng}8Wt z-$R%*HcS-I&xerUH4^5MbmbP?&;vcT^70v-w;5!A^E{9{dKChYIwr)V5Zl zlIUpB?}BHn3v=4>eH)t9)2+QpVe?`WzgsPMYlD8DXL|su?r_P9yieZeWea^Ee#k_j z%%dJ4&Pj~I%`V-H%x_b*;l3rU7?tOw@6WgXCD4V~{BndJ!c6bUd>6H>x$;3}8-tG9 zm@?4Wj1Vk(;sp)DTV+(1S*aZ7$nJ9B?2?z%lV=*m^Ro8$T#U2h#2G+DO`$;^3DGQq zBO0X}kepKD*UY3eVWbMuJCI#8o1EH3QzQVND?pPB3v0n8Vw)MX2aikCNFxhyfYj4y zDE$+0z5eJx03Sw!uA;;(srBBWb5hL}Y+_P0O_8vx8j`w+5Dqd4#I4IsrcTJ&MFSGL z>hOrWL`+-sD%@MlI#0;)!mz`(H5&#a<1_XagSdF?$agF;Ic3X@$co{F$p5~amynga zYD!dOU)ahrqtnxmuygP1zXm6d|Cq&8_5pnI#h#6k{YTf{*j~DO6xctSJJ*$rM1RHI zdr$0kkbL3=Dck$l-udxp;;*3S=t=xP90O33+PM3uE#p5{niMb9tn7<7 z#FahZT3o{yxE{UXX#3;nB^iEBoPXc@8~%qnv7&%4y377u>v^qlsx>A}lUD4iSWKfyT1nMZK?0hf z2Cb+d7^22k5fuU&P(+Z2FoL|_$Xj4|BQFQ!H9Up^hI!B2d(J+$``nQl|MW-KnjbS~ z&fWKXXYc*(@3SjY2iA{OM-jHQ9nL4Pd_NNXHMyS1Aw3SH<9{;^{*jOE)sPh{L}TgP zN9T9;YPkKv_Th{wbUJRd?%@6dK7I#$%WQHf{uHy`VJ2;3R3;Q-H|?9$KQHdGSdrDu zxVDVcHr66}NvkAMtHPXX^Li^%w4mVa%v09xMM*XEQSkpr04R?F5`IdxHSF8>#s*HI zk?}5t%tNr2tk=MvwAnXLpA2X-ZY0{@FtSAnq9!hMvsOwuhw*gW?FRV)@`*~fee zClDIBt(8Dkq9~p^-tBEe`fdxsHub9_$%pA$`o=u*&Nr{u5YaxjLD0TK!9!VL@{AXJ zrtIH+i>3c_79aW@G;OJG4iiLoB}AsMBwzMkre4Eq(e;BeN%DKBc1K`qx;>lBgi!lc zOow$V6*eu1`=3&Ijw85*me!`WwpOLyCKspcOig~FmKltU6Y^-`Q?3{AGlg8N<>o@R zcM@wi$i0i73nDu6 zQ*0-SNmjS&ee3jFcG%HywRgj?{!eK&u@{iQex`nV0-^$FNmwM^q-0l8SoCLNXgnnq zIOwiilY}i(>i0PZta-MRkeU&A(nut!C6HA7gARKoiA~3kO>ktbanX_2uf#@lIgq)C zRy*O62e7|n`7?(6**uOZ=190Q;k7q#a^wa+Qy%!H;1I<1WnQRa7 zPbGEUK2QAj=dFzix}JT>f7t%-vzg+hFH*zyN6@mj%ro%glBzMD09_}aNvZa&mL7Xt3k3vY$vk2T_#w<8i5J&lYl-AWQ;Zqfmt z%Z7I%jv2rq@8t=?CD&4>W*sY@c0TRzdp_FR+uuLL2Bl}~RQEhv}K==>>Q1WF_89PQ0IZJ1Hr(ATM5_c$ATI zH!7t(Ez>#nO6-l!7f=`I9myHAdv>ViCFIhiBD3Tygxt7j)5_W?_XoR}9gi&UiZYt{ z2*$I%vg@Tr{Qnj}_fnL}3-o_4I7x!3z!7J0u>wn@6)OZ#I}Ud({z)8v*2+rUi4l2A zPnQ!L9=!L%XPtVVp@8E3?941?#wKx_uEvQDPrkaXu?n|wfyXVAEvFddopjKN=%!xX z*{@_=1Fy6Xv}KNQuh5V?gfN#o#I9V%ONO27)O_#dF)O5{UEOx+$6{JmT3K_28mGaK z0_y{jSehKxVTsYnATfN#NYc50=ABDq*j#vGWonUUE%+5{t5NQC^c>ZrHfhzA4sAxc z9%E)tGWj+nhjtJpm)RVQHS@s2-O61@Yy^2(DWA9xBIR90Om&G1aJV`I{CTA9gRpsR?h*z0Fn ztQbt>?(AF(@cUx?)X1{n!XMslq0}lZjmvIus9!@4Kgsewlf-O_IRRhM*+HN8Q$cdm zluA->Gtm55ws;kpyN#?@uOiwnB=yzrcM{eUCM!4E; zWu)x22!TqjZ{MhLw+i=6A2-!{0=@Lumgz4j0-(^#T6lwBY0nv(bx-@;hAzUTR{8Gf z%G&@vVIo{S{o!D~XKTl9Gz*fOF*M|CNciP5cj3PvYEf;l+Gzx_3iM5g(e$vmr@WIF z*)m3(icMgbR%#zoR-~HpAEkRlwftZWJ zM#9@&+!3wt9hFF2JrUc23LztmHhY0Qf^j;Js#F8LZQc4sATTn_o8bNome~r{I*tKo zm5THfP=p~CRdc)JMp6XUH!75tTI6cdBMJ##5AEqtyltQ{*$BR78|JiQUClt3rOus6 zCA;BJl4@p4zN<*Yui_+jvV}^&VzJ@Z!M-zVbdwDtl+r_gNb)Cs!KxuGf}qiPz-}HV z8*Qi`LH%w~yMSINfDgwlvv5&C;%|sZZM<*XM9u8fvij)4Zok=sDPSfc$V=_tGFl}tc8ja4Vq%lUD1}{-T zF(?Eu~05 z)%n*c9FU7nrDYArhP$H4Ce1$U?9O^5nlZZWD!IRHuF@@cHnD}4c%d9WRJ~o2?ugf@ zIgTAiui(E3KS)Q{I`ESY(x?Vh`~Hcfb~!N3K8Zvr}(WRVTo5_3PpPsbqB5r~$w{~;st4EzA;PxvV-7>jpx zKL2viyX!Y(%4s1nRkYFTNCD~#KB|)1S4M^AAZ+wLEjcn>W0Op{IpXYDe;d3Qp;=ap z;)3Ht0_(l}Of$jJ-tML3$7A6}Aul8*cwd~X`N|925rml&(O2y_bP$UEJ{uc%Q@ked ze(rjo9(XYqs29p~hSm+g@)Qp$YVPVAnzZ`z`odbBrncpd!O)sj96g zuc*=KTJDtAceFofZtH7o)#?q64bAm6+EzndU32rjdo2swAL$3D;SDWv2J{s@TrWdk z4Zx!SwPiP;@g_s#oX(7sh(gK8y5~2imDyS9bD65l%nPX(&ZTFlva-_8Wva8Y&S$GL zGA^cMq-U!#(o|_#si{c`aWTLiZoVn&cKax!QQ7{S+DGSt^MGQTAYeTHoy4Wvua@|^hYI<7@Y+P`=8%ldzt_9 ziz3XgzedB?pDsL_7jX{Kzkm%Xx=s|`28Y3f%+A3_5{tk-uztlEiA6SXX^tntxC+|} z`EACj8($H#8pFE*Jd+-bFp}ry0FEiZ6oSHYm?PnT;T|x!LLdPiA)kbTnFb*qP=vy1 z<^@Ql41U}hNRDvKoIscrn_}nA(_{174o4UF0b%ng=Nft5(!}r{U~b~~6i2#k3iR0! zNtg))A7`||e`p#Iy9vPCQX zO4>sUz}_gH7TO8jgj-!;+7VMSj`%RL3`3-$a8;~y1Q9U|u!?R3C0tBiy7hqIJ$)OA zvq8*W!u$zR#r$?4(l>=-$?O8*WJQF)%nSq}D`>>S zHMY?&>@dN&`}2_#lSID@+rPez*AGi;MqAwm(@>%c7kxZF{cacfq{p$VYwRQYrInV9 z6SQ%&M8|&DQyIm%dpqWfZl1=^FW`47JjlKR_Hrkg+t7dy>rjvi`Al*0-F+d&q%8p8 zcyP_Q{3T%>{&Gmnz}i{WcI&45g&uQBE1&7sn2hUwoFoA^(YmfYKYP{h1so`08z!l& z;Byppo=(3<&B2+DlL@#uoE$15)Ter^PTx*yLjjhs+{zVc82jGA9sMcZ+r*ms%yT{{;h|S_h$hXVqDSLUeAXwHbe%Xkxv+pNT=#E^xNZik46%5y+)ynH|S%% zwSN%k#f3^2jUvpFCbNS(8=vtvIPKOoO7sVDIs_P=wLZOgbZ;3j>M}-3VjuH~aY{zx z!o!XQJOB^{Ho=%-yiEsxk{vjAM=~KzfrKP@+cqHCA?t&{$)%*D^WH@MBf)>K@Bfp8 zWLe{nHU7l#wOnglTQGFMM83Eu&JRw^I78@`CXdlb6*liC5s$Z?8ycA=>_622j)<6yzJ(Pk74AhbOhw1DBudJgJH=5d zES*%4d!n8YS<4An5afwH?1S5#`^UE@oir`wTzHe8uRuRoHLyN z6Tay})Eh?9lkJ7_LrG{u9rPT&y1buJhYQKV@wAkuZiMWu#D|o4^9`Y`O(gre!N(HZ zybtKNu#M31uXR{{5es>F-y`8#4`B7!l6jC!{6~%KbnWl;U#^RFiQt{2Qgz1+gUpoIO9&r!g|9ezozqYN^+m-U7LFb#sM$q6q#nK9JIFirGnlc6 z9(Y2Lg;3iueB?erPpyHb<|Ft(ph_TVL>gg`JjfhO3Z7B3xRn&C$#l5<{ON$C{C58b z6A@k|s$KrFM#6?eLhl>Bk6k1NSNHxOT?!MO?x#C@p}v6V`z9CHJC2TJ=%mj;?*TX8 zopI5Q{){`9k>e2i`?&!2i)^c%vEA7(R3JtN%4HXubfz?O)j2FAuU}jI z-YHDhfJ1|2kI?mlp;ysW+p}&tgkIWr6Ibtz^n26h9CP%aNf3JxGp~C|(8V1QCstqc z_*zcuouk)%Q~UNrO0X7VKY{Z#1N|j}%7ptYAh{tc;IPNbEq=w=QH?yS27O3#xiMW$ zngL9t&_MkX0Q{B)2yEWts3sl&z-cQtGOjPgPDp?_{no@CiV65{*6Sb1Ep)y@z~W!= zm^^!H9?C4RTwZn|e%o=a<$6e#`GNoZERT*suZRSk=$#avi)m|+JQoc_1($uq`_HsH zjEh7`Dj;5R3~Rg@nh9DIgQ8^QFI-AP(h!#$Tq!{Q;Ki^t;VNbp6Nn&S9uKr1G~(x& zuf)*mpg`b?sKAg7DNKR_nn%x%QzYHc!f!q{@g%}D2;fy2Lf&n8gH;@!k5T7jY3D1R7g+lCE+@)qewlxNe7u!Le? zbIEf!+!t)r{zc2uDt7Y>ZCFy?zdz%*TyMd>?8VZ>VaXlaO0kowaf#CMudX4x;m#%F zGKJXzxQEeSem>&vaoEFWl))^66NMQ#TYV0-i8+V}d)w)VWNFwu!Zj6d2(I$^5B5RU z{gFv4q<)chfoOp0g|>ovp)>d=`HV>o^PuxxkTDaaa^f{HWO2W2(n7b;vKZ$?J`Cu z))S)MG`N*j1S3UshGQkJq-L+y@BxZ|8$kBYVU0!uE6>a*mPU!k7 zx6JK^axGA9OSUH#^rn?XmHTTs^vGfvGa28RsAx;krL4?7H}B;YGjP``UbsLtI<*ImujU(58u_=I;~!(F~C&=KMh(P{MM-I^jei# zt@uH$)oGM!rBbI*tCebvPNCJS)v_FwQlr#rVBfJqjY_A{>2(Gz1W;+UIzv;PuHK+G zR3#?n8|oVx^!j>3eWT7$*Jx;JXl!n3YiDhX+B=@Mb+k7&wzWNN?dpBj)z#eC($rMf z*wNKl?A!hVM1&2#>K|#9f`H7&mNWWh3#Q7I-S(6g?x8)=+O*Ve-wX`NoKtqt<?J;vUwBZ;P`~Oz-4+iqoOsX-E_$hqdA>8Kt%p z#4C^ODC4NwFK!T@{TowEJHMlJUGtR_z#!Yd zX$2#e4U}khHteLN*a@1Y)f2g+>Izu+iNs}$SRwWdcD=-`=XZ?jex}rp2&tS@s+|bl zrxXW+F-;SmcD6HcyHe;Ws-Q3mQgkX-V(9= zp95^jjldDc{zTr#UyPo@(>dwAoTSIo@;No*Phl?xIK|<7)GPKk}9(kfwnBDd!#I&am^eD=Ng>&w0 zwBNOJyTids#QNZbaPW_qa;l!%4~Ag>v(grz3rkRx|C%jByEoL{UF}x4!$CFnQ^2WL zIqT;;c9OxfF&D>U4yRw)a|o3j4M@X!SHCzjEfMFC_j@f|Q@RF&(E|O$UJYRZF0a>s zk(kSbisiY`G+|L714U~TdlEGHPgyj&%8JH&i~)S{^V-IBW7H||&7 zt1i7;TTyBfq&h_uD{ofbG}VZrNi36jg&+#ns4mVoH#pBPrsJ@2eqju9Z-b4+D4FW8 z2Wwk8HeiKYN!T}=%O-5)T+quvR3$4x%Luk%xGtxx!+B6H@)%sLyUw#t;H2109{eLb zN3v%99r~9TwGFA6lHv=`dE^$&b1t0&CNmXip6^?=W>ukd?W;NKI4|^@m&kekL;!9| z4Y|WL&!ayN2?{g>`%j7bE-4(e=?nWlK7T^*lWe=(0)yt*o*zjAToa!SU z*)CqnM*ru|ln3K? zl)ri2b6fRL`)gr;`r-7LLswiQ&r8Vx6+@2~e3-qXA5L$t%QeF`$}tz@usQkfmhvPI zIj-xyg9A+Wykhd*uu!;&8lK9v< z)gHiF^cbUq+(Wx}Mcu3_9d%5O^+Kb@O+dS5zEfOQ>`=FJs-h%~mByU9Z0xtC=xnWf zge(ucfHqM(7WF-ps;Zma4!m=mCweQUPBoIJF|vPdPA+P~MQDWbp`h}+k%A&`jN)hB zD;M&v_AC*O9vDy}UUkS%^Ag3NrE>qg@M=S}SeCXpK&l&9pk3QK@|kWhdcbyZKziQ# z&$!s-f!N!4zGsziN8~lGk|hccJgS(+4KGtlM)qIKH%?i$fya)G2(C#SA0F&bnbmhu z(9Cl2>%bu4{J2>EvsF_7g$_gcxnGwceI`03AO z3zXj}8OyP%iQ2M;lWL2~a-7ksuA;9hZ^;hoj+xhSvXP~ta#g*bkFA1VlL{*(oI9N> zN&zAsyK=u!I96oj;{L1ol@dR*51qAar_=~UG+ffwXl++jze)l5Myo=%;Ed`lWEy0s}XT>QJ=iD{|qH+gv%RGDGQJ z4A_NpSS2dnxLDnQ8sthj1l9ml`3V&}n%S897_&&H2CYwLYAqPkbIqwSHpN&dctK_x z9Fl~~=AuM|OBd9cgS-q=Yr)ht^`*}Ab8}9q#M7QsQr85q`YXIQ?WS7W#QO`Qk@D?R zx%%QVm!zsp;m;+K8;jH@RFP7lN#uu;dn(C08c7&ec3OxwHs(yk%{YN13r=pD!`Ujd zY4)L>Vr;AOrbZ%F+4MB9Uz}@(gNGSs6r23^(s-f;o*+qP`H?H0CNYWT5?*0pSA#^b zkZ5@pn?`-Y2Jv}0QM8DT=^3109ytrnQm6hcT)UAeO0C6o2;~YXN+{AZjiX(?IE?*Nz=KSlIbTZq&svQbdvI+tz+M_coqfu1lT$hR?VPU zw1B<@&C{RxkiSK}b)9WM_GTJ2YDN8MAPuL{&^(zYfjnp;jfY(hut1AlCs=B3U3=(z z52GegAR?eq5Z-*qTmP3awvgNF2-?^-lt?>}i7IBxY*{Zr+R?>1BfgEUaJ5YCI_Feij&7~09i5W-fAf2I;h|?+BOS_pP>wsL1qmJ;z3ALid z*BKG%MegKDk+hyJA@kSiGG?8jb5uYVnG@^IT%ffNa@QI5bVC*PN2Gew0Q!W+z=AO7 zKSSl9LMo;+%nmj>fy>it$_~GF$b5HI=RzQbYbJm0Pg>Co971SNM=z|{VLxYf$X~@A6ShgB< zc@#+bn2}1^v>CQJGh1?_kwEE+7-;pZMY=OEhai%Euq+RroT3w$Q%u+4j}wrb=?XmW zhJN}By|34holfoaN^;O2M_pUHM^$2rth8^)b}L9fKm_b8s1?W-W8Mb+0lHoA-iBIG z%LZ!EKrNBCQ2Hl4%0tw&C=}8K#32W9c>}rB&>i$%c7~R2h~Yr=z(=V6uMvYt%0hQ$ z>lJYV^S`30sFr%`92Qbn$cSueD~YWcwblFKO~hm% za^!)ISxifz`><}^PjmywU+A{gd!qUIH}v67%4WYInYCdp*#~S8`-0723)nn1jg2Rn zMD))bWN(H})A807YgNl8$qrhdCbw-AzlTw@lxSU3pNIOsvum^-v@%NRUtN32>Mz9Jm|5%L zJt@*IHQhQbJv}2sOs9;RbV^fpQEGX*nqifhm6>5oS2NWN%2G0w49b+Vc(%0X)ttRK zIk~xc`}6YD1Fsy+&E1!q%lAn+e6O;{YIpYT-O3*IzjRk=a8$<;-b0I)#kMNt3dxUD zDyeevE0rHqnZgE=Dw{)vO$7%NDi(y;#MmHgj0@s}!v;){91a=7Ld0#5BU1+Bk}(*N zgd|Q$2n&Q(7rO7&-q(9?rf2faTL~S3A5VJQ-#0zoJw4t1E{Q_RC00m9DaDtIi;Ae& zR#aRhN@QtDVR2E(HF4c}rQ~v1d1XaqrMUUC>y_mdmE~2psw%6hs%!7n)ZDIatZS^T z71fW|R#)A^H77V$Eek0xlhfq z#oF2~I_+KE-Mzez^*aW-fl>HI(xdi`}#z$#S6NR`E3KCknr2O0|5%lh%FY4=?SS> zbwg*I`$?wQGa|$V**W7vkS-Wu!eGL9lIgmp#pAJ9G#n0wLcw4l;AaC9eO~XtfX^2Q z1j8`0uc5iy>kG!?LYt7#6B;IPoioE=%n*_!9wDs6(>M{wF6O`FGmdKvOuSmKuM{b2 zds5?#Pb6jP5rbL?nEDMJ_|y~9W*dlM)(EY*h1(^Kq<-&K2DgMLYA~oP(s+rG|8@f(WH)jB2XL=DN0Te{3ghyQje9U zW?_{uLz*U8WDLQ8cX($O_@azehH+_#AU@^n&J1okufg~>3UUi6L!G|5=DuJgrgI$; zNL67}UizdL6JIn+2Qc34!t$uBQt>u}(;)4?j1DRDn`RSi>XA<7^+pmpPN2@53v(pS zCn~RFl|*)0mm3DwbV)1tD!|ks$BA$vqCpw7w>%gpt;YwMDvl)Dr9%t(4K8X287FWm zTw2SRViiJ(7Kk9ZhT!Ao`B-kM_+G-O8i@0nQINHQX~2qrg)~t!yzh0Ml-pRG?hcEu z4br8!^Z(pY!U9vcV}t-pNhH8JI4JxE?{Szx(wb*P2@nlIry(AMj_|k{Un#7HcnI!h zNnGXEL*QM8f(>G8?6O_!}ARa%S($SRnaHpaK0tJ-C$^2vyVIl^5xZPcm*9!*Tp3K3Mq7 zL-9!m;TwsI3!_=TiVd+;`2kCn1RBG#PXvp&4|@8{JNLtA_;J62l|B9VZVQA>+yIt6 z%t`H48wIEr8=W&@$v+*2$G0b8l{`8`BcKUQ!_bILU3axX@psaO5>q`Ablyl9j|P8G zV2FkuF~Xi z8s<30?@1WyM3O8IglF;S!vyDcD0x5_ac0gfF{{2S)u9b030SR)C22z(j z0&p!(0y^z^P(2*Z`417M&Pi^{X!i)=?4(dt<&olNl47Eq5n3k=3D2Xnqt}sc+8|Yz zGi$EJ>>n1h-&s|smAG%J`NUAt)qODgo@uw)6;(|TPOLOZW}lEKdMPHTo9fJxY`(`$ z)T)x-VwNXm=kJtBxY97mK`8YMDy=Qh=Y(?H5T>-cQ1BIpGp0-am9pcmTrb!e`(Fw%s+oAW8>OI-xyM`|CX!x-B`0`*E!?J*6f>fWw)Ds zp8J{mtAvoH``qpv_gT7ntU?`DZ_(vgVbRsn3uQ)YafuLGO-)y%qU?4>MO}p94z!*; z?ecNSTH3lATDz1-{M+hW`LDs_NcygxuLo1}sc1qurpBRjC@XCKd8pCro^DsC;9iE2 z>dmt_MQ7XeyGCsZT%17jPB48(8>YHxEit*6pL`L)<)5r3Y0M}kUY~>Z9iDd*7r$e1 zkY9P7g6Rc}$5wV37pAw}-t+f_485}cR&C`{3ND`ypV-QmO0@k`FJ1h8VW4I8vvY&~>a%GlEUqf{smzpyfH_#|3 zA8!335?5}ia{IkZq25W|_+i(-TzCoRCD!HQdS#Yj6yn=6>q}GuO%T_fyLGr3DOWLz z#i4Q0e?F>{RIw8#_@@mp4?BbW$z8h+yY1V{nDzndo!pGL9pY5{BC>OeNAh`>(NElD zY?|Q{bn$On4gU2qZfJ*tJZs~dI?r$7pX)qxFK49)J3p zGIj3W>TBw*S_V(hAiG#+HcS{?;k4p zKF-=Wn|qEZ04LiPVF+d}{=ARve2AM80&TrUeqo(j~rwFUK?0HKsIumvLl;8l|V@oyvb>Cp>qs=;F1? z&&LG&aQb;%HQ~1TQQWQI)L@#je!Ipt+SQN@p( z-dV71&AS663a74KxCY^9KDBE%I~GXyaK7YE880;HM)&}2|CH}Xg`vQ+4MN2?`!M$6 zzc!xhpcQYQ$>Qd?)U@mi_bH5h3mBb#f9a;J8S9U}Yg5|F-Nmmp83vj0G8Pqms{Luf%uGXNajw}o!gJ3YVwOiRL ztK9vuRh#%Dr4e~Eyu>wXVxmYAQB;(TZ$Txf0i&xCWknri5CjzvL_m4@L}UR8f}ny7 zATSZ+AtERs@|Zif`*iQ=3mQ#+!F1nyZlBZVdz>c@je-j%vy`^I-Uvz9bPbX2!}O&O zdMm@^>HOhLXe^+NKpVlU1z8r;W?YGXRLww~NOo}v((n|wNQu5UI_DV>g{ zQfT?~1!KA(G-XXLk^ljvaXs=6!2$_W5-UlIXFlT0trir!FpWZX>#)t_Pw+lTWzY&B_h5F;kKg-Ma92}WQLNm0Kq(r zWhhCHilk%e87n)-POArWm}oP%{=l+Z8c$sDb<>&LrzRhlTm)*@`TdbaN2nc z=P6{Cdx=2XmJ+@zj#6C~K$QnTrJdX&`==wcFZ9VLsnIE&UfRxi;am!IBT@ZR*?!qTEcWQ<5vyn~q7rn9za&9TU1CmzK43T+$};VxvALzEYnMot&O>y8Mwgi9l(@ ze;aF0rlmyI0)O`7IqgN6K8jjbEA3r*80dC zOb9MjgiDC8AUDcP*h>s69u>}sszjqxDv7a!qAigbIHNugp>alhK}L6DRLm=?2O;=V zCI)oB2CA4RV#IyMiC~YO?!IA)NitHCr6U#u2AUst2;rD24;54)C|8eSSNFHV=mX$Y z>GH{tQiGDE>hXThJ+~>fN?(nqO-s5GHo&rk!Q+-H%SK5AXOO4(NB)jSl(;2RW*uQR zdU1=0EtE4;K4uh^I#}>AHzr6N|4hIbR556nx#A*`RF%<`BWVh0r0Dom$~!o+VpkA0 z@!`)XXTT;aahRO5@A6d;2R9KRu*Oz$hj_KD3L!dn@JT9*21!&1#P~CS7Bat*Ab*-u z=~jh|FDp|OWGW9^d}vWG#x5G6JZs7Zhs5+IPMo3GL-CNx5+lk+IQ-V#E2}C?og`6A z;plto6D=oI85Jfl`Q47$lo`*lHzpvR6k`#q-`||wB`Y?q=#N|N!YNY|hXY2W(!#&;>h+$2Wu=EX#cR$TfS+t>oN zn4#%6ib!Jmn1IcF`}e_AOeP!bZI3gmlD?_Mjz#f*JCG=_I*3QKpxK@-t`UKc`}q`h zZLMhG>p=@W{BC9^Ht;I`!PBJN#M5UoZnT3k(U`!)@$ZPP_!HX_^@Ss93T$XqL<+Gf zT9ylJgTMn)9x+AGvBTn9zu4%>Xp(Ki0RNEDRe6j*UpGIwm(^`ohcxhe+!|h9__t?B z(y5b6x0XJtqWToltZEZbYw+gczpk0QfTH70{r~e zwMnXefab_XY{4e}S9Zh&8(a>l6Lk{3$`yveh##?LF9X14$18Y$1cJ7StHYT`7%DTS z3`pi;MUc=$rhpUySjnx)arXlJJ>ut8kFt-rgGXzWnNK{7b!qwS$aKd&NVJ*L18X|S zh|Sj{`LnOmmTk6+wMDK0n{HmTiv<=oU*En^A1IX3Tu*(vyFG_DWTtAmjpJgZ1r6%1& zTlu^OuLRF*MgzU_8K1_oJhsa)e81!|URKYB0E3u025KA8Fe1=ee>=Dwh_2zltd)an zUV$uU7xhaKw2lef+)WS2>B! z;Xu~9<&B>`*y9G{f1}l&?uI9e*TsIdU+P`p>ggNFAZ_l!jsD&2j_+Oe(ltyn^#*L@3U9aikx>tkx42XKf>LUH-W4C=m{G1JbewRPq^ zO5$zhoi4>REnpBe>f#1$=c?HO*dY?0|DQ&=)FGJcjJ@ws2%xd=WE%G(=ywVv5T~vJ z2zBj{ce~Z%>8lWNWY4_YjQ^dr&T$*5bdM(a9@o%!_+tqwJP*R4%MnO$OQo#so#JnP zghi@#aM~#%9w{Wo z<1Vzh?*kg+QpX_E{R$F~35;KYR~hhW)t>4hxv{S%#^oF^*Y$+ZeV!?=dzSbUC?NFB z9c1!P82q30Di5miy5el2=-B3;Hkq;0&h(G8o$0iV2`HPaDg-kw6p?@mxPU5Wb)KpYgR$Z>Fx^k`l>W#WPjm-~KP4!K!?T=cXK5l!`-rn8Q-PSwss;9H7myW9Y zse%Z`4a`Zx6O0(b*3aM{lnH_}j1Z_BjKGrtUt(HF&q(hPMjy?&rgOLIqKf-Sg4Gd1 zwp>+l3`qvJ5O}=gT%1i61`&lGk9|nCy43(>>-BektOVJ#kQ+|@fB-85vb33KbQ-Oq9vJBx>>cRuxcl(7saRn?IrM~iZ@4`t`1r>13PWTdC1Wu+cW{@dRDd-m*3j^CY-l)Q7-&e(_@ z(UD>6!`FQg8XOo9uq4pO*JovbpYN*GzWxEe0jvF2`g!>W_$^-@^vewaJ^@SqymXNMK0bB9^Q*Qy*~2{^z&Q0stg=7i*1W^4h*tCOq8}Dw*>D3Wgv3)j-W&$bgn8Y z{zRHX{>mO(@fXt^*TM4TFMM=66_Q_P0*7_2ylu>zAJew7FJV?z9|MWt2K<67$?4xDM~iY zxT)bG3{(aNay_oXuQ6^d3;|?}n=mNZ<}yH$6dTE9rVK(8d5VclAlzO9 zKf6DS3&`Uxxbpc=sUrTs25(*IkR;&Yqq{GmV6dUeTf?|X=e3La>iS-mYW?6s)evkq z+6uWTej!@_{#`}Y#p+7P?CQ!(73a&!%g&UQoh>_ky66-?YJR@>#Npz4u>5cM^F!Gg znW<@ow=h}sCDAcWRjC!U^FVwLFsCzd@l}lXXQ)AwStLDS_gC?;G23F}Bez9G$3{i& zi25>O>$Xkd;bGH*Hf;cBvN0V;fiWevy%L~vtFv>BMGP#kg` zUQn(U=m_k+fYBhX04<_pT`LlC#s|?$XmpAghpdjghl!4WhkY0FTS%^-;7fY!x0vkb z7@I~VMo|N~0>cALO}?TrqxHg!wKxp%e}J2y1G(lo*L#4f1rk+^8zb1wOm;TVk-%5* z0Vy#8=P{(T^1n{9Y>o6ZuF}EpsR<`tfw;Mn#(0aEqI=Q#k}&mniy#-o{ZHdv*xh0; z3q!$@C&|8se>x<|Ffzr!e^-pR$9q%ks>Ba2ko)t=@_kZ%34U*n&vTrY2}Rx!#fc;& z3`AhoKol^R^6zAZBpMeTK!JLa;s@Y&@=V-+F+!6G3G9iJXBplZ!Zc~Zbb>I&1Vv8r zFA~|)pny#f?3clmFcuFKzT>B)NM~u^)dj01zJfgfpD2-;pdIt^k5l%CM|>RpQ$HDe7&p2EuMoM_6o_y^UUy~_~l`rutn;V}Z+pFdYoUUt56fb|Na?)NGl6G^c8 zZq})8)<038R!!mh?@yMg;dG{JYk+ddNq3`WP*?ypL}Cd1uwJ|tQ-Lb!6+%f9Mu~z| zl46}`hvEhqHm(p$DQ?NMOX`T(4h4e`JH=t`B>mP6qhM}DIq|-=+e^CV5Lio}X&*~e zAv&TX+4eo~wmH{qSbuKe(5SHJTIE^(q$Sw$D%=pxLxo0tmr*gDk=)O05)SNeD1u32 zUSqO24~%X>+M?{7LbiG=x&v2Jw!0Rs2*rX$+7^5aO)FRCTb>>QGc|gCV(sSPWTP6> zsdqsHO>sHdgark4>P}pjK%qA@yPaE1-|F;hp321y$6`jpwYMwVfh0TswX0d-Y{=m* zq0cYgRD+cOOw3DdKHXSA(br_JU34TAeA9zA&;p9-O0>)9$XCN?O+|bVWZwryQ9`aO z3Q-7rwD8musDb3CI$+=w{z7npVhM{CF^zAx?|xw!ERV7<^85E%eqb=f;$vJkK;7F2jJ6PZ#|nL4(JQmZ^g%;Z?Ig$#dYpk0tQ z$N}JGm^6n8g=TY9Dfsh}Kv0lB7iQ|M-fV)c2f3(s$zY_@XK}9M4Ta9O3i4Xo$pq6^{9^z3Kir$m=b*n^)x8i+Z-ES`ok3&Rq$<5v1;6 z(p>NPVLh$>e(t;e$#aH$OA$dZicwG)7KTF+5fqFUj2DOCfnX31#v>|%aw^ww3^Lu{(Veenll_0DXZrcQ z@AE#-!cbP6XXwH!f38hB7 zd|vYptFQ`QY$Vx@;GlgB|F&x|lPleyudTt{;Lk_umT;zs)F-{JL0ZL)9WQKP;B%TL z1y_*Iz1~f7r=j}%Jb3wF`j3tAPD4s8`I&zw zlV$x1Z%Jg$fcb!l+~}b1|3~`*_x)qnM)KjLqv&utizFJfDBpu8|K9h3s$oE28^07> zzfx`)>aQ`(Rm7P2JfV~G6Jrf!;vs`#1m7GYOn&=Ws^;_XS~6mxzSYW)k;!mLR@)Z! zc`|O!#>i}@)xJwc;YgibHxuQ|OP#K8koI7j4A`n3+u>T_Gh@6>aj*0w$aQadXysBy z9{Lp)xWz_`-Ny;vH7t`UN-5tgVn&>^`}_)EiXFxYepi#kSK*Hjx)i2Blth zAq0BdMA21(`>58jHY;^LMyBvio^eV!C={2gZGBA_+{+Vf zm;fJyR(1wO>>5C9Bk?n2fzsu4mWcea*xw-;vi8}KiEzi$qP}+FrZB%q3zP+)RwsGC z1#S*c7&J<+@vBRqAXNa5YOP@u2PHCSN}+`)H28(BaMynr7kSXr zFQUNWV$qGQ?g$<9WVqk$wVNn>gj#qe^n>mS(M3>X1Ayr8l6?t-tkjj5pHE5D(A0C+ zSip}zi{|Zmaqb4tEY-g~;|}%-@EegH_EAkxc3j^I7BmI|1v`h|3LJz3FoT){E@dXE z1~7JW&+QNO+_)>81VSxf!UEtWJ%hMEu!SxDaQ|R!X@3Fa%OCeGysf%w)}E|Y8L(0O z8ihx*Kv++(;ChD+5Z(eKx8hgSX)qu-o0knv3T}nnIpAoT-EZxRcg-P*eOu?mSQtCQ&-mxENZ8n>t{PFBc=QgG+{8ucE+-eqg zsV+l!M|N!KWFlfEc@PBpqAA-aUCP^#cXG_<4X{?z4!fzX^TbZaJ*F6qYLMJXt&G9u zrXdg!h^M73#Bqr?vAdP;$?-(_?_iJ`BcoJ{(Dv}@t|QK#^s@tgvIX0On=KvlULh=3 z;KMIW+Q#vb&u9zcv(~CUw;lV$%}DEykuY~&P>Qfs>?z_-R!ES^;uV?l2L$5kNr8bY zu!mKmw1ZiBAaw(}D0s*j?3&rWz26-*! z-a9nE64bFAVOzT#~FLY}Y zV(@!uBODg>5<@DNE_1B6aGRPsig!!c$Fdq+kV2vqz_mX^8)?lbl7680P0WLjKKz3udv zML7l{;d=I?XV7a7KS%;Fa3|TMpbWIAI(bS5dsL=qn*PB=h81-Uq&opF$HQV}LI%Uf z+sHeAgTa<`x<_^c>ox-{JWM-fBV@JnG=Dc(Y9G1jang6h*jIlN^l&9Y)Fv56Xc+F5 z;clvvdm_@COO~1iJxc|{gp4Yi{P@sLuzwTAiYs%%e27e--~JNj=-~92OJwP3r%)Xr zK?@~zFK3P4n>mt=u!T&yO9yGT`EpWs6?!Hv4Y&TB!=QxAlt@rPAOtiMNAnx^*&ikf1{l(@{)IN!^;Y8&pjBd;j0XL9<(Osb4(+Xf^($0F! zP2~nhoS`pkqSRdze!el6S>tin&`M;=at-uy$RXUV*%=>a8y8oB_!u!Oa!PCE@d@s> zRn*3V>h;PicV#=GR!CI0$-n(Qdg3n-{1hm3zsV2x8g|)7;(1PKlR3M?tvu`STSr;8 zImx%!mGXNl)D^idbZtDxAK~7kjy_pA8IA?_y{WP)D)z%As;DVyB-K&#n4_icfstnj zj(W)_hWjIod30*Lu5jr<_iH7oSb+PB$=~bQ#ncbVj5pd%bhBs3$4=_N0>IqgUaEGF z>8|0lpN6v?l1DDtpZx--4vFp}bE~2WoUQ&8?l@R4IWdS%{KfG(r-wR=kTA%m0(F6 z2V$QStB2Z_I8{+lE>vi!sNNQwVT zdzD5-b!1@>0|AqhghjHn(1*X^iL0pBdosma6*ht-80q`Yv|h zMFZiImJgfB#Vu@kUK3Dkg}7i~bQT`#<$4o-4Iq$b=-ULF(E&kIdV24cHL444=!Bl^ z)WNabi+N93`KB}H!aZ6BjqUpdk$pgMS8^SiOggI~6L%qDASzTSI#+JOqv;W;{kSMO zv8^CJt`FAeZxnZ)I#h^BpX@+Ja7<%(?70ro6cZ23i`2p2XN#p_M+yRt9_xH|U~ebP z@I#b!^msWg-?KfmQ#j!7UjqB-_q5I1E5z4Z8My1a8{R&?I?YkvJw6-bux-^Q|G-Kz z6%`pf4R=_4K5bqAK`5Z~tmBU+NMkPV;7Sicg30HWW7)wcc$g*g!jzY{R0j{IZ6!htRQHZoo77q5P0qlz;MwI z9cKWIU6Ei@pmc)a;FkdmSkWq`hxQ`4>_lExz~774^=>Yp!O>*|&Cc%t%l)u{1cXNZ zG7jCekdc}xB)~3&elx&@f!8Q`%#LE+wS&hm3K9~ZC@(G_rQL#*gEd2R66P~L@GtMP_OV zk%xpUhSS{+ml{!T%#kcT!wqSxZw5nqDzX*(mH zVN@Cz@j$%jaYcpkz>i6d1gllUw+&q#ZGx$%o6_If)##ia;E%ze@yH&^2t1*eqRE=9hcKtb1+)b{lW`E9E8ez4lB!!&M*%9aK7-^P(A z8KQFGON>tWVw|vWNac1nvkK*`)M_IUebcVmrIDu09g?{O{g`>RX-OR9536vg9`5va z&Ad=l`fy$*W5Ge(?jnl4wxav^ifapF4W36-OT8f2?$M8&Qmd3@L(5WlbnEAjb?SHQ zU@XH!p>lc-pN8EN!`gA>G_!x9O1EZ|`srx?{0o9mVsiH~i48*a!iviDT*q!CW)3d| zow4&U=s&Pau-_`QPt0=ar|kSZacG^th|sbKv?c`$CGCd}AfdWfKDT{;Z}c{d;};Fo zIcb16Xt28CJ5iA@526- zwkhR=4S=*YO;~;gdQRy0R%#xB|Kks#u+XWRpjT^Ct3XDdz1)TGGrpN3UmHFnv9FPh zvUd_(F1gi`K@N@&?3Af6sd!swB6ZefMan7p1uC<98*&Ig^!Oo3n0pF^gwK&sTP}z2E65Chdyk~)k~d>T9Y3ofS#21XWW)g$0t-S|J}Jp} zK-fE1xr&g~NI?B#+v3=I;dVAEId15WyA)qh9A8*gL=9=m^vUU-+TnCE{&`ah;!Zl; z*|p2x_h4{<3XCw@zRa(Bz$*u$+NhPUA}le4L!+%7BGzv}+P~^?+-bF3aI6@fV=Df^ zm^1hW^k4xc;ZX??q2KWdO8O9_A>+@r-+}gXc(Lg@%3DKO;z^E7y<0&qZXsljNHXtI zisnpeolu)=P=)vga*>8H)rxFLkJ%JAT)v!<{qHOJj{zFRRARwNkGt$ojT@D!#gs*- z5kU58Xr|PYFh@j^6p#^f(1eFL(w)BKu_ba2wAdvIpvJ%DV6!Rft1K?7sj7W21ThiU zt8x80vCqd|UYt;)Ti=eo+X;Ig@4TPE*f&W1i2oA5qlTk-*cjLF7RZjGZ~>zwYeAE!$eej5XI1 zR>xlSi4N9I$DP3mP7*p;5^oNa3lWh@JA}f9fNM&aNCHXXpjk}fAue$+WZG32+3^}P z*(~EYjmV%0UVd$pB;E+TN=j5db?Rqux&V3|{cS_4)W8UuV$fH6-G&pi)X4iI4r`d+ zD47zcc+AM^;i*h&zrg4Gsu_W&GKPpL#-@^!s?WBF0>qM*B^937IIEA zC7SIei)8d>DdH#5NBF0t8@vd+9`+QYu0+TxO>J zO=CFcAV_Whd|Yr$itI;Ok?3YT)(2Iom!bCE{kc(smd!+BIi?dpzg$q8v5Teov{)ej z=|8+zc~F(t6<6T}uq8}79VeX({ilC-rqhXuF_Bugq>0)gN?f9Onp8zlwg-xV3Wy>K z$||5N0a+9UAqXn)zzqdgWR)F3WPP&p-uv!7_uiiSX)Bo2nNB-JxD!%bOHn3Vlm$^U-5)rmf%#|(zJifa zxM%NR66}Mjy&FRJcSF~wx&xJnjm3^jEc)4uVdi(0iCBnNeaM+TMFTQWT90Xldsoh5J zJ5mz(>8b|At9gD4Y{>@K^Z3j6*r7C_{ePhJ>nhmeR$t846w+1wwR`EE%-7s$a-0~y z;wD>PmeQ|Oij~uGdoE|r`FQ4`{U@B8K78n!1u(xZIb$N|<|#rGz@wGtUg^j)$aS zJHOA_hDzp_41{e~=-S5q&jT-y&v2J1e#iK}gIwgg5QGyNVxwb%f}=w3BAm=8i_ldK zc$J;@9}uO>!4z^5$nTps8!7#!ONiR#KpY=aPd!M7!Kuofp^qu~u8JPW!7BJhfpw!3 z^~aVM{={L|7ug^Zf@_{4NliVht$tY7`e0DjOR)#(*u**l28q4vc@lF3TDEtlctb?| z_*E~Y?_!6}?iKmwZO4h6S4rV@rBm-uG_EM6dsC1xv=h|v*}YiEPbiz=&t@zpD)JfB z2E@Xsur4|n*e`~26k%`7K2ksg>o{!HHjB_CHrR8$rIJtDZ}#0Mk6Dr(1*ta z__z6a7t$P`@FeF0?ZFx0hSyTEVUm`C5Gq|z#)#B4*j0psmEe>pQdWSiY-_A*oQ8xl zbu_AjlTdubawph2@~-hipzIAC_H$3S)ltzg!&a%*Q2T$vk?jBfl&%sNr{$-@5IEQ|4dcVE8y-&x+AQ68S3_#as0Tlusn9Qdzg6aJF&XZ?&7Z~Z4$ zu6|xWABtAF$j#yhr&*5*Ik|&oSmYit(!w25bvP zrR*JiagGZs6zEb4%h|@{9b2$IgSrXKCP1Vgs(A)d#o$+x{EX_rG0RB@tPAJpY>+W? zoDOVKG)n_c81yXFvr%dcq0Y_vSN)0G7nQ9C6ysEk*qfHz+|~&g=L5&M-j<#z?B0Q? zFdd)7~U z^xx>1WWs2hlgas|>l*-mSXKbO6rPK>IAmY%Gw66%xM|JWpBKn$wWoHpPe`5{WKRVvW^}k0ZH`6 zt83E}&;l5Q2B>o$!FSGP-{Ia?=}5*tO(%#J8SinJ)K07RPj%m!e*sL2I3D%^hNR)*xx*7IZacO| z7I}haqMRu1oc9T~lp~J`O|H*kOAXaQ*1*1#xXW0y&qfU?fWs9s&fLEPvL;ou|YAX>MJZXJGKk$BN-Rg zOF6h3Sf8-|aTD+xd-4vbRZw*iedN_`yMQF&qe%#75ZyB@-pcVMO?ukE#BUJ_4qs*i zjYaG@^Q@uw^PUzwp2#aCg6mW)m=>j0*b#{ZFFea{6Q1A>tdo`J@fTP$_bLX%D0aa3 zG6EOLRV?wwK)Hmu;{sK=s2zX#OXf@2pmAszOyjcYZO)Vd?RaFSQ=!w*z_rQ9vxO~# zg@%zN6v@@cW3Jr7<9Mm*8CmHC*9;PvgS(-`1_e}Oz|pY40bCF4>f^B_9&e;seVBxo zWMm5#5{;6>mU$rEo;H~s`w=1RlewI@#c|P8QPCr5fmNhn1Lc^@0tgwsrn!OD5+`Ya z|81SyB83u!hyXJ@r0Me%KS;Cx`lzn ziWj9Z(Y8^iTQY?-sKK~d*i*#HIDe8PDtD1XY?uxYkAHOS)Cd>vu=qmktL21hi)dD+ z;66;2Q|3BK`v2OhwpI~}Wx-PR%W0@DqAFMom;9h57ioiyjqp*6!J#2cWFAE1&|^J{ z2|L>vi5?18j*+g<3qbsadH`{`L=rrS-W|j4j-+(cu}7VR%&4q%@r#u~Wt6q(sNm)O zh!Z=s@!JinwHw!98(8wvC6Uwy!x&hNquUL;*RCpAD%PlfuwCs>QC??Q0tPSRbUNuw z%uJ^LLVr!0)JZaSGEOp`CT%B^e8|x|ihE`v5H61{&8(-900NL$aAD8!YH5D%Oo7h%Ocidb}gB@M1 zU7ao$!d)&mxXDRH!^z$Gkq7jygGsnL9=kX(l zPauiqW2>OYW|Lriwgy;>tt}#QzF&!s+f8a~ze+zW8@@&upBqx7nR8#!^ORR0y5&WO zq(7E&s!;fKY^c&?f)t4*BD$wv>i7o*42ftUh~{k)Oshm?(t&KNx%SEQ#M@eD?ASe~ zwomHUX>QM#+p37`rt4|(vW9p%r%Lou*6GlB}iz(<({0A%HFVmg}=_D7z@)~_n@h{{$YgVJhx{y@H%YvVlf8*TMOeohyIDHZ?cykeKK{1X zqokd93MWVvz;63Z8O6HL76}X~rvGC1OCIV9K*uPtqG8u!vW=LvqH%g8M_%&tF%at=pp`ij`QNQHv|fxN z7vqBF7uIfUgsfB0Z?RBiSdMR^xcx=+>J~4X*5`PW`h#Br)_OXR$3DxKY{w4c&`Szh9bW0UE?Jh>=e*(Kvd3ITcNz0Tz?*>cJ-_uOD$6%?|Y< z#WavB?v2mYmS<#ZsnwA6i=p6R(Vz;bX{dAJBXDzC{Yd7qh@C{a8-38oYF=h2QR}~X z%N)^Ul^W->3?b=|40jHA)qf9Ngu(xPL3T4?k`%!yUr5o?@wSG7f|5deBeiliO3Xss z{uI}D8^KW?YPoPAC?`2WXRjgUL__)+V+3a4iPxxg2bnt}VV)!^R)k#el}8txMjHD} z{0qD|xl8{<$*R*Au4O$i{I}9<4c(q;n?ov>WqMiREcb_elTRmbpXo3Qp9~&I*8`0{=*VyOY z%()52D&#d=ZhO3v_s`WkFU^NrHzOQP*`Ux{0kiaR$M2wJPR zOTxLezFb8!2~~Z z5=uW9!jEGxx=}~J;O0_`!3Y#Wc`lJu<@Bo21=JxAa`c;#Zx1B&OJPqr;8Y^_P~w0o z%98gD5T}Al1v!^h8|dV?(m|Xuf}S$6GJ~hMT$VvQXU-yuXzA$d6#cFuC*>X&ueg}w zG`qT>P=-ieY?6-b>BgvRZYiJBRLP07X7nPF<N#?VH)rvSt!i{V4Q!AdpBRom$nh@) zg>?t6RVzzs%Fa7O016jCp61AWF4TM9@E0*~vBExVDtfJ@0WG&UFzwHpwkkM?+7Uon*)OjMDzDNVue<5fqP9 z++Fmvk7;AJw5ioSh3m2|3;Ti#unCIk2?%eVFp$!n<08DOB`Za%U%SqHOZ1D*l)b{- z(xNz}m2$j!6sfDHcZR~KaWq%>-Y|H}x}L_T_w#2srKPaANVBm{P`u>fZHrHW`i_2&q_lmN{l3ou;nPc;8t2q!Lfdy5TiFvS-j}3voJe zGBQ}rs@PRnJ0V%66yO3En-|a&lRRoEtX}GsmFSN0kHde<)atW_#57Hx*bXFcmMc=dQL0lAe^dP#^*qDdq58Xm5{RPOfrReD3RIbFA?d7nMpv&q*dCPNk^TB^u3z5s%jNgs#NuL)J2-dzKmL_sygko z)6BF(GMPXF1e_4EKm&xu*enT4AP^Hsj13qsV6d@?ZEP@(!(xLCUhi4^|JMW(39jIt zbME>7@87-;I{BXVURbBlK6@(!|JH_HiPvp`PsP;Kh44TC&TzvVBoMU`NoMq%=iP~{ zCB+_tP+gO6RXJb=<0#(LCs6Pi%>Yz(Sjrc-*4g-hLmzOl@q1hDi+U+P9{cM}$$s|m zFBOda!60CiEr7E1_Xicg-q5P+A9yrAsgJPnNg`f=Ls}0QAvg#ph{H*~wt_s++|kmr zavWrYdz69#D)>W?KPp+?o(Z-j8)>d&2GwEgX^g8qBRL%-c_JMi^xkZPp6HHd&AE%;`yrF4Q0*C3~fKjT=PtX zH^MvJE`aP5%Qu3!oL-jcp}gt&q3u5)x(zZCyk8}iU$eFv8Tmy<{|`>jA%AmXw`He+ zTm#`&2+6|(I<{)L&jr^U!M+J~h&xovAxU0YE>wb+bZkMT6GfoqhAx=N<7P<3Bk+5g z#$i%s!hXJ#;Q2YDH^)`OpARXF4eTv;1@P;qxbbOolJ&=VV1cfU9vXh8=iDd1{1x5) zZT#j{CHbdV`^uT9T+95W90g3Ie)a=N@O_napjTJ=S?w*21ZKp=QxB@vEn zt^54GU_L8Puq+`Nvd1&njowv|NM@k+aFD?Rf8dX|slpVNl_fOaImMWgBZ7TEnZjuv z=NpOUl#CMG&ePolzzgsk1x>?bTz&*Nvv#)XzvAChR?bzlOE;18yqyUU~VVyQlPMfF9Ql>*53DYXn52(-rL*L*FN}Yu%S!WaJNaP zJ<->uYiMk1zFpt8o|QjN-m2A9R$Qz4Z*|SJJ2xw8uW7DVUoERBzi{Q7s`9ey-;{pw zb=g;S-=4pGvAHq``m!9$xPgx?XqJp1JAiSwpO%aLRjAfiOF8(r^R;CIl1BT%8b4g?fSn;& zm+CUob^+Q1x#XKWF3GZeL*9HFgvmPq=Z+EAi`SM5atmqb0E|@HWwx;W#RGg012Y67 zuVS!`OlyDpmemvDuYYR>Iyu55xmiN6viu0!mTZ4F3w5R5*lmT~MJVpzF%KjQSsq8Z z$BPT)8BrsTo>IINdoM&7pxpv}ds5_l;TTVPyxwfo24N79`tQ1gMzHV2#r?Yf`|+AsWX0uUDzoAPV7v zuwuyYv7v%?Lm42*a%;owrm$$7SMnvAmsAL*O94B25Ay^wNl=CO6}m^!CkAsEdN&Mv zxH@7&Z2@^-g8U67Dq4p^_c)Y+-<5-KPlIi2dT@Hl5z?zcWz=W^R<-vxZBk}o7Xms7G>84fI33{G*_yKI}8Ey7Z0#(W^-A~%m0Irx10^2w<@;vt92@|zby^qvrh;b)!Q&2R( zUSGOICdTk}3EWNgmb?szffUCfS%^6f4XO{kNbMIEs!dgM%46yofdr8vtq1pF7>O)W zM73ZbeEd5*<$<8@agvjr(e^qRW{})WO~G|F0;g&Bz!ucR`dpKZk^A0Mrl$yL&0BU0 z4tdxNDE*L<?Hf8tX~`FvE0HOM&O-oCK73!3u2dv$%6*@{sj-| z_?Rd)hBT%3@3F~J(sogC|E=KQJf<%DZjKVaE5BjN=9RsN9(3&})Km;70%Ukr8>fLy zAu~O>UL~PlroP7FkdSPrD|6_bLiIq0>BD@wy2YDUnv*HTkyu;}b2?FvvnOif^23x4 z+Jeo?vyl23n=d;)mgUAAGtW^^Yr(mZi7~?jIQL$tch>}@dT2Agg+9@NG;8rA>xOpy z%C|G+cbMfT%C6;Qj?qtzBK%YOX{V$=CmHEhXYBVNe;JLM@Yg+SpBQN;&_KS=X{5)- zd8mc0y7~XfuGXL^&nqm5HezRVOtkHc=}g&ov~>{OD({uj*%o|)Dd&OW06g*uw@JXACE+MGYVyZleQo-ple(X2h<%OSw2}>$ zXxyug*QusEDy-m>T!)M})_>$~To>#&i>Y5vZ7-1Ut6)HO%gx+PSOnc&i(Foxnf5Nu zU4Z!odaB^cN{2D*!v9pk@klT*L(?W~vVEpI^fptRuaXIgMTX(P1( zX7G(QYE`G8M*phFxn6`QQd%t}qr`Mhqh_=rueuiP;#s3co{Yw!x$uZGTmRg}$%?7` zyRD!r!wVM1wEoXjm;C-W=9eG&d$CCe?7M(`&fIV5<_G0B|;TTatQ$^`@z@ z24DjYtzT8`1ryj(BYUY6BhpFiPz%Cg4eC?GRkt1V`Z606A&)>fssxl|Y5945Omtwq z%V1rD&rz&EWme+~kG8n4IF(fWOmnd0h<3UJ%8%-2Zt7i8O9rj;p#CI$3m%SILa;4kLU)M#IZxG@I{C!&|r)JVgWdWU;{k> zQ=FY_q|!T6+J}9YZS)m89uIQvbhS0ilfUo`FVInOf)6#?)`2P=dK^+&#N!yU47Fxr z%xbA(V%X$bfvGL0fBEw_Kg70|EpplH?-VTe+Zna*o&v-UCGiD!lI~*g< zfpXi-nA77P8FeqrJDsjcr^^-aEC%Ej@GLT}YC6|cMbWk35|)nIR2OT*w|z72S51WVC6G6TL4cK5qYk12OyFjoJO){@9o}5wkuvdSCRP_C~++ z$KA(q&>1{@N&Z5A{Py8LY>(dc&fa&Uj=#TcXVf-)*s=5XJ9g}edVBkxZ98}E-WhlF z{R8hEh>AIszLM%0EQqfONiPuLL~fDetccTUVU+%6wye<*E(8G$LO6g({z6wF?_Wo+ zFm(hLAmBt85TY{y@F+%z(Fh>eDHxHB)f|{EcmxuB{E9%t{d@x>F+ukj55hoN7%*f! zh=|oBJLn?ZO;i;}B6d==oEsVvh~nc>I3^>E+E|hsL8Ch1I&RbPL==@g639#l-NV)c z*~~*1zLbVW7)Yds5#3&eie+9J%$Z{Jy-=?MB27?*yb>2BetRnz>gV}RDZB>xTulKh zpba2aZa~g&+*B=l=~EFspZ%6hwd1c^(kavUR7eY?NO-Y?7U9MlbOW(-`XaG`oi(;x z4Sl7Z9DkKWbW>^!`GfK6=2ALD!GPABV^9=6LG=SWm_af7)Vy|TnknKNiK{m z$Xa~SvSQCFk&4c(T`nbs&amQoHb1Xx2yj^+3Qp^Hwveu@M=is~@{2ljMu~33bH<+9 zYuI;|`-!8YJ_~Jn1(bV34jXoOA)8RvPBxnAkcz(C)L{q%6rRTIzCaj>3pznXKYWrd zb4oCnKZ9B1-~bEWpgE`s!-_S61v-K&-0UDVOXX#v5ZmsSV48xGK%k<-Y*DI)c2ucI z!{__3TdzkDASRTqeuWCP0qt-)5vX5bhK&O^;AqWEtEHhJ7Dh1@HY0o3{$TZNc79

      JE9Ic)eJIgoV+fDu)}O~xMC9R5u`^6pS`we zq#wFq7;g#<6`9_*WPWK53cvPlr?mu!K74UEr(wZ{F3dJ$U(eE^Ip35SHUu*=tkC9{ z9`qXRfbu!?Ydv%(`r#(`H`&MW^ss5v1#5-cUeiCR2?!tW3UI@czA?_QDyrHX?K*F+ zQP2>MTxh5dZ3&F>WkZOtXcPhR0%KwH6|7!NbigQt5xG&og5drVoU@)s%v;wBLvl0n ze?k2M7n{=Z(~22;R@9Ud_6$?|nqUtWaPE4BG-Czc#|R_XcGxPeqAytX-iKWNOtcqk zePz7M9LyFW#dwcOmufpCD(}Om}L!RRgS=VVLRG?bQ`?ch$ zRS1FS4$UY3>#85v{iJjil-r-)#>4V1-B6buBKm0b-RWyjQ0p*VU(BCj;6M^xJ&wjI zcih11+S{`INF0Z&3&NIA@4N<6w=m=0dj)e+x_V~OSlEQd9d#*Bn&#+hm@5r zZOKelPhMlSXY>nqS^jzc_foz5Z{o)7C5eFsH)8Y$Oe=1t5RTf*ebmBrYfZNugXF=k zLxTxR1v_|A2j=+8>;GrFT7#lG&oC;Yan#iIN7_!OlQ#X;+Wu@~r_)aRr=51DMq}_& zHC`eLYNl~iG)6P2ml-dNN{S+AFeU;9jW<9*L0AxX7g%5sc9+X8%VlpY%P#EYobTHA z{T5N%&g||S4&Qmtdw-tC!Kfqe!U#vsT-gJ<0S;i}|A-G*U}A4J-mQyRzs#@kQN66_ zY?Ow-IDN{PKu}15S(f~#<$frw5mFJNH#AzVCGNBFY7*xIPOjarY0(IwQR$IC6GQDW zVeim|VjPiX|1HqwU?QSErnPjU)RBa(2mWkGl z&qJkrq2mhhbzF|_b_6;}Q?*g@N~Etr^@k|4=U5_w&8f}tLhffr$|h2{j*)_*e3Lf@ zX~0q88h5wd3E0N&Xr?=Xx@vFNnOeuuAg<|TtZ#8z4_(48AejnQh>#&#JHYk2+E#7} zaaULTUQnk~7%H<_=+r|O;}LuZGY9JQZkLF+8r?D0H%{88cx~v_P+{`A{%Yrca7gQN z^7{^HUPk`dC_CSVMn!C~!K%Cknrp6rtsd=x_JgS=9n=Zt7w3Ape#_wPheF@-8nBRq zMp(53oF?*3aWhz4eAFNHYgbK_>s7weG1_Z@5lv{hPk^{z{#765brA5BupPhQ-Zg=Ef>rMjk~u4|j|PjlDLQ#L>G!%5722lHhe?{H3r; zpajPRz>kC-Les$Mv{^WMF$uD8_xT2)@h=TEE*}W zpmYiXOtlX}@t*a;m?e5N0l2`W*4oL!Jv`h=h-sXw7+Guch|SLV5Xjak(*z5f2LP5x zPq!^fyJNadqmN_%6(j$Cn6R6FPP}cGoqr*}vC8^CQ7B|&8H0nUn{c!k@072zVY4H_ zSc0;6-#r%>7$R5X%TlSap<7ioP}niMu?H2bHv*yuQ4>4#n-S9UITcz%R|A|d#UQbZgfko@4lnmt+iN@k7aq9;_Ac)UNC}7l?Tq`C%f&+; zIy6B0CV9W3%gcdNO^5VDKDF#IdGzbabtciBN!GNA%1vy2wQSoVpluP91$rh1VGAoh zrat&xgj|q^YfG=yz*@%HQ49^~ofN4s_T^zAzC-H14r!z3u1_MHyj7nN%ACZ3O_NEr zN`UVpi}<#xF29Mz9`sY|?c2Q?>1imRB-~wQ{BjVXiYH%>zi~uj92P$PN+A~t*tWtx zNp(}R7c>VPpwh3%9T$s+{Yv~K4Zu_14TL}}u^~VQ-xyEceeygdKVW>7eQN)H_H_7<8Dw~yrzjztsYSf>Zk*!K+Ql=2vBtm5)b+Wvl(!@<4+$|cp%4d zO>K6;=5sdMHAdi;&gQ^Ihdj&^it8hArod8Mf<_b{cXt!GRK!!VxkRAcLs0l(D>HSHb%WM{W|9xN!pL3T9&|yK^P~c)^Ji zM^7C&xc8%@AMM$_D|5&8oqKj=WMyv8+>)_lrbd*6X0hYlS0^zg|~4`gNS&fb4;&%VR|+OvPpu@k2YIp*Y7%y#zl znbVgp6%-T}6%}5}&o3y*&CScdSWuXM@!yv}&%1b~=yKtgm#^LU>S{r8=kwfLNvZ)D z$QGsbWR&BYnuiHQG6i$Me#~iKf?*4wZo@Kh~~JMN4@S5SHLyuYIl1=p{XI8$KeVL_Xq4zkaSCfeeU+rQLA;hx6RzzW*v64 zSvzcw-tM-69=qS=8gz~fxd#SZwsv!KzY29OA8$9cm>`6vx1KZ@o;-n1V|{&9L;Zuw z#|;KUlflqj^YCF+d1XaK^#l709^Im*J}y$!9Hl57r^Zl-SyWOn8zc+^p$Q29W(p)t zBuNjO0-8#&C6&@u!jALrsn*1>v0*`25*QBT`Aoe42ST+jT2PIdB9wWidRPjzYTR?W&kx}C&YL-sG-?3Yi0b(N6gGWuLL&Q@qIl-beag?dLM5$P&SSpDwh1L( zXRJH1BE{40yHMvK;v}D;Iy}Qm!`2{|FC2b?MlowBh)mOkbYedoRNb9>j+)_mzS>Qg0H>l~l1j0FtAt>^Kx51iQ6fUP z#9USbaLamFPeF6rxG>5)Fj$f2nhARXzM!dKjp==coV=?(-UmphD}3Xa9h7j^M)@eU zxz`mJ&ScIQ65Ld5JnlL;5fWkwo@)517o%UDE1OW>=nv1IEO(P3&LBNviM#ZM39{ugHij_o6-6a!UHwBo zFM$kjo`Px!ydg<%A{6`g9#oZ-*Bd9}COe0TT1f9b8bXcb8HAcmyTcSZK$CHJmq52E zyy4*l$d7@BD43nYr%J)p>w-mZ#sF(t8tTR)6_Ws@^OcGb)K7rPg?b=@xI$fAdjJFA zlt&^3ogH$3KA3JTA$8;XZo`l3L1VjboZd5Shor?%Txhx7S%hhGM>@Ihf1$JRwmc8G;?>o1??^&Vg zwEe+lzH{Dl&ilN#=W&M#d0=F0xN#`(6rMQ!2x7jIj&>-n$$N`ILtD=}3^b8yazj+H z$AHR&W{Y`2A+vD&C*DZODu5oR5OKSIV3UoLhMYc)&bLq3M`*15j8UUXd%htK79(Jr z;-jsroTo${&RVA6?Y8OwY0*9GV{Cxf2BUnbdIV*l3kt(tQ(ktf#m4DN-*he$<&H^l zw@xZ-qQ#_9P%tTMWJU^=AM_d;%&u;rq%}Ge9002j4}9eQ9F554#zZR0M)MSg0?Lp$ zqPDw@PqFyHyBE0D46zwtl1UN1>B*k#OAEjMhPM3SPZb(%$qD{tj^6()^67X49N7Uq zR=okyroBFuq9bFino`r#=wUSO?p%TN?&#{WCQ%pgm6h?O)fL?%!UnqiZN$}Wb&QPb zquR*ieIElyUQ=#>5EF4uhU&b`W`So7*HEr{*o;jOJ+U>{QdEJd^s$$A+0co(+G~|x zjn`Ox2B4HGNV+3^g*0Hj6&{l zEf(quySd8*-gLS#BxWb|wHk~}k9`aKA>%0YwB~o5%#fXXm$-iu;kEl$e(e#12NK?} zhHmg?#!h1OT0~P6vttp;Ni$M(r+Sten)(QtT`(*`4~;7xWw1GU3Gz(vy@Ffyl<6I8 zdLYuT_&P__(6TZTQF|QFF}&~^gB8*&(hDH&;VbZMG+q;<&bDzV_z8DpjNP6_hqey2 z4tJWF?8dJ?0W~&R+Xh&Mdo{069xA-YF=_fwhxVvr1%G`?XUAe6++F#VU(~(5_QpEv zI~WmWxG=dr#P2Am=XHB^XC>?QiNE{M0U&>6mUdAQ+L(~N$3+B|Ak z7V3MalNCAtlXwIrNu3`kv&T~DeLAQv^qbVMO`Qp=6AO^RNzjP}-`b8dg+vK}1vR8M zn>dZ#oQJkyj5wEAt%@H0Z20kfdz^8fo`J?SL8^Jx@i^qjNXr;^4l&wcYVswd5aW{R zQljM?p)rlz%r?JC#qGBjf4Ro`_d~?Y;$_al8nO({Q5IC}M0M52DCROs6Dd#q;zyk6 zv#sFdLP6M7QB+kw>hrbKwb_CIy*sF&He%r6UgmfbkCOhD8&0xn_4h4}##fxgwXROB zF)rZ>iEW%V*}+GK{o!ROvgtwaZt00(mT^mbb!BXpp^rb+D7gpf^Pv;A+_z(s@J?XH zceh7W(;Q=V-74$ebdfCm*}|{A~f7mi+ zSE({Lw;YpH09^wTIL$(0H-!`EuxI=U<-L1t1!K3VOAo6ZKJ@!~V)S>>fjuq5LK$-lQyCbR+QWY2voM}CE z10ld_pyZMX`8K`vSFz35MrdV*sWwa^@EephP6ARjP?97EAo6JnVOSIXOmy1=! zkx_a+f>^w+9zFc=kxveNbm*fG5AJ(s-}?vlz5m|+1OGVj-pBji{ovEjkEET*{^G+E znTJ0~KbZ#_^ff-8lV4O)P@G>_T2@$ep}6EqWyQtPl8W-Ol7ifGC1-O>^R|DPky(;` zt}N&DJyj9EAZp{uQyCdq8ENUqkNrI>?f8lG^t8VnOFMq@ROV+z`6o{2W~G0gk#X{L z<`-F+wL}r$qog7~_iRy4K|xVTNpV^J`SW>s?A)tYD{{|WC@#EERF+?qos*Z7n_pB| z*oqK=Qe)POC8gz8u3Rj?TzTVqdDZo*(&CCUxnE!Zy82et?HkuFUCqBxR(7YpvhG@w z&Pw|>;Mv8c^b!atOX!M}gd{-`3v)h^;z^9jU_Xy~MVhc3$diz+a{LyDMIjRhBAX(K zCq|1i`D<&U6_Do>Di4{Zkb!#fnJ7Wc2ZHZKDFhQY09S!=k5Y)x6!^=P1gpX{#4S6S zLN~+^i(p2jNK4@CLJBB>4Lm4bha8W`!$CC=3iP0{T2iUQV&l`#!^VZd<;l6D_zy#U%M=ExD7U@N&{qS5)MCP zHBFFO#@iDo-xO$)C1SV(x%o5R4^5jZEFoyHnJ)?{6J(JQx>JTo9xic13qQOI#oX1z z!MBjdn)wy@$5gx!Ns%IJ4iV!cD)r!P?i$t^KZ9FH~@qjC{{vNjg^=HjLob3y~! zs{0?`egFPCg{2YPs&0agWO9A(e(1dMtVQ9+A+L)xLub6n#MXaE=YfeFrHv0;M3 zG}SWDp==r?5Hewh!XYHXovNwk@?}0OvE(9EFf~fKLtv^W(B|?y&gKC_%oG?!1V=?` zyvG2oY*0W=tcLt?23(07|LZ0-4mWKB%c!yZOs0hmi!E%$M0u(R^)!3_-%Yf4bg@_8 zSY5vciXoN6OwVq5{MDU1P5fIoJ%iIEzN=N_-)r=9=CM3DThiW86`KYub}?=>PpxSf zc(t>ikS*HKW8K24h_Pg>!0lN0gvx}1$q8I+=DfZDJydKqM$eOu-ZD5tB-j8nw|(Nb1Kv`X!0(3E($5 z)2&M&WmphEo`G6{?Hlqv5kHrp7(ZYs#=^Bi{f(FtgFv4XHDtU>7c7paV&!%R{8@Sl zMzAqVlR=Oi)b0cnTR8b}@J5dinqqlsWMQM@UWuq2q)scn0^t?pU){N=!+1ez*8y6hj0F3ALeTy=B)>2@ z(%l$&ngf^z=04ljq*a5pjMuah7MSo0X1_RH8^$c8|0;->W#lHo)oL(Kf?X|ig9iLtEO|>Eh58r?(BX!MmverZI zHGDT3hfIEKKWmLE;WljcqR^DRVM0*QTk(i1QZ;*Mc4!h15@PHkFXBO`H z333RJHfmpoLJeRDtE0*K7Kc9Vi1d3nZ4EQOv6SAiGeb0va@y;_##jcVTtaR;$zauN zqB&wU#SIECix^ox$JqULlytY8L(|ZaEN<1D37&jRBr`Ym{VyAKq_#xZUlHPbdFLO5 z{Pc+FSKPRG6ta0_{7|yGuOKu!D_G}aT)@O>3x{+vVaedXrY^-UnT&=4d>|O@OY-?5 z=%N6LIAyv*+7+~``W|~YHa6|KOUb>i1ZPdYX&BhG-3;5hCZ)u_*!QD_=HAn#3Jlcew7j1YZb1e4|q!6z9l=bmr1+EUW_ zJ0?#buKuHx$M)5|!i;mrm9nRR0}Hh)-a9o>0MP}q?R$8;%UHxZPK*nYtW9vSBz(VT zIKk;-Fe_}HHm)hNg5)5U>kaLCBO^WC0oK;vN`+?k&oGuWamZ#K=}3x%@jR}Bw<#X7 zwU3gK-q6it+#t~17~oHW#P0WK+-)`!8B|FKH?ir72gp|Ouy~rp#gf7`zdt?rD&;4? zu)Zqz(Ta{=6QiO6lR)*VB#2vSG{w@~c!o__928kwq;nl64LyUQl7?oWWKDxdx)4gO^3ekAm>do@;IOJ)y<4YufOLoB~Bp6gPy3r{rWJSR8OIl$M?B9<=OsB6d{ z41~fn&d78kp45|6Pv}}w({=EmlrTah{W;eOLnUjd4+rthfW8>;kH)Eo0!tuafmehL z;OUfSCgY6ha0OgS#bQKn@OY}+%UFwEU1PmV`@U_|Szkj#AE8|>=8)hEnBr>5^^~au zWeEC<0ZC^FeA}~t zn+prK6mBkhds9*Fro4ju!gV=$x$8FO>hIQF% z-rAV`#@gK1SFc@{o13#fFMI9kxBil|J~My)>J2%sZ^(Z091P)0Jh~-6e_Kx8MlhIp zALnl>$;sPP@Xprl1>18AWbt!_Ti@AQvSatIZQG0gT3mVyAY&CD-oJb2-^xn&Z{6{J z$?+!^d*|N0JNJE5zQ5?b{L*)KZ`oA3b93S5;*xFKfWx3pzYynl>^M|bR(|k< z0|(0ge)#x54jntV=Yu03e)7-bAAS7Eu@mJ-D?UH{S;d!MoT)f-+Wp{3#ZpR2E@CKm z7(*MC&S0i8(8s81p+cRHE>5T>Ksy+UTXZT+WGQDR(d9wMgpT5ybJacgYO%m8VMJic z(F)?&z!q?WF2u>=FosanmteZ42vaPGqd>qe5;7f+MPuQZj6NHQhP;z*e>gN5o=)I9 zRtXZG^!WmwaktYo=Jt49Q{z*!vF=9$j^W`E_l$R9BIFJ`#^b*6K<^Au^;sojlYZBP zv)}f(r>DK|k*&LRk67fUYY-XtV?K@`CXI+Ryg2!N2X2nOnQ2Hp=JlEzcfz^Ui?oVimD zHgyQ=0hzTawE0qjY6N0P=i=Wu9#WZJR0&-Cm+C72it@a|AjYjGwn<}S?N9#PzahW0 zr##;U&NC;6VML?8I&;bU4Vc3RQzG0h<*}qx7 z@7;RuJLX7^=L|S}@Ap3U-sj%?JQLt9=f8HmX|U7Nc)K)Bf`0=q3gaopufeZ66DeuR zQtgHrk^6%{e)yborQ&ib-jvb>8lkVjCqm-Qa}Z1FK_~$R4PQV~Gvt)y-4b%Q#0s~~ zd493{My5Ko0@8%^ie0Gm;Q*Z&VRH_Yr&dV>&*32Ca=51p3D|&Vdca|f7&~D_{Nxl( zQn??Yu*i|uXI`dG%;zr6HW!x_p!5Q!dB}E=N-g{yz5%g~Bm4nc#bh*=)I$QZJxqUc z8h*&*0B`Q`bfg+kla|BK3|IDg6X-tE{mPufX1IDpV6`zV^Puxd3O2*WCMj;viAWl+ z2I5mLEvepYCehjlLlhS@#pHNEu`uEQN!0-jPd$cVMIkT5Es+LyR6tec5e*<^pkt)q zFXROlr$@EAH8eS-O_4W5o~r<35r_z4GrIADbmm2`uuys-hn1yn2-gjpJ6Zxi-q43p z%Y+H)hR<}uQUeQ_`7Y5z)BVG?Xd>jWt8la16i8$L#W4E@!FF(_KJ+rCjHWp8GZr8` z)}_)2!D#1m`bvR;0k6ddh(Wz&k46E7)x}ukO`LsL*+DNhH@rOAqqyPrq*U(jGjEJ( zLxVNbaqv^RCjh)2vTMMKT6i>E8E241Q=KWnbd!P#D5|Riga^!gw)`bY!H8q(Kv2=? zXESlQU3VCszL?=E6gQ!B=JoR*feZj$V&!KqUQ^|6b^q()*ob(an!5G4!ylLh_wKA^uV?ug7W)L$Ylg!+DH^Efl1r?Jpwi-ZA zQ!t-8NR@@YimE0@5R{FOg<>*w^Vo#mDIwjJ+g7SHj_sO3;Ufk(m$CAWr1m(Doz?T8 z*Fi_ca!&eZXw(q~)kd|jpXf;v?e{|)0#48E#%h9t7ux`;;1R3HcT=*bqczcxK})#C zaL|}Kfr_jUjl3v#Q$w^#P}*_qU9208~J$zvi5ltgzUz zij&+u8NC>iOnO(DP*kkJq>1?36Fg{2KsnwSA7MzC0ab`D<701&j3kYhi{-R64}y6F z3Y5RdC*=2z=3R_t52~pt2nLHSwO#uDPJsE!>zfVVGCL%3q26go5VI8&$TD?0$*9{r z1|`r3dI<)?EHkvxMD2I{)w?#m9MlL?j-E`ji$?EpUxtEEVwT z<ZMt7VLxS=4Ofm+R#2zPjlfc#fxWHI`eKke-Qy0sT6DWu#I(+Dt?_7g zkh7ojI1E-!)C7LorkKFeD3*?Mv$P@LtYWrW>s_C_?P`$JJWV(nd}1kc1XJDu|LKTw z$m=82q;i|mU|^DE@9FlKsfQUyEnZvgV~Y6B7VeCTfH7tWzlrDp^!D;n zZ@~>AzVx+bCcZdC+19Gk5+Odjt%_l>l)Sn@fTJMs=+q!%8KlQR>|zNJ?uAZ+{ZR^p zn9mX#M(`U>lqXHh`$(%8BL-8vVYKS|VWX`)z}g!b8^bBBp;&STM8rHEivVK5f8l-^ z;6}T#>VD<8=4Q+}Ara4Zv_o&WUoqit>~xU1h*!}24@W*d7mp}<@(=YV4ioaHho_G) zzNZp~(H>jMjKOT15G%P>5hBB_ z&382V%&k?J%U!Ov;4^KiZj8gKMK74nG|8qgW;$l?2{W}l9(R*zcih6L$&a{IW592v zY-SqzAR1(RF76L_?U|FSvzl*bQu<;0mHmwUuKVU*#@6+!2%Ej_YL>E6iH=r{NTH?N zga4x-a0|i~fqDdci;`51ARO7!@Hxc?_FBkq-St_{{^xa8+8gvCMXNDCZKqEVt73&# zNC3$Mbcuxm|5?2~H{x0y>)NO(t0R*iYpSq_ z6~VqCo6GHrsIlPWwOic;{UaY8l1dicALS_%f(j%7&=#W)0GmP3a|l=;s0-O!9L*s- zH($~@0g|4|Re(~48-`U9F}NYn&b~_fh$&u^poZ$_At}XCe^9xbIa?s_LPdzGcnQ7> zR|rpeR8)Gp6r*SvP@i+@dpLC~kzh}kPbLwUAOcR{6qd6N-;i2<_r#6;l)Y1_B2r0n>?6KB5IeYEuW(SHMFs8Jl>(Ndr&F*DJ1psg2;(525V$xem_^z_kaH-9 zE-Fu~wE2|pZ}TM=04nJeIRd%_SmODh2LxowD&S{_C@kw}%0i0?gr@osw9o_Pfz|*f z)jV%~V=LDvm2$OmZrYtLZf0{EnQSDno{l9`X(9lV>xpC{9*yRrD~Uuj9?hf+(Wu`a zS_=5Wk>yY*k}j0O{$w_mRaO=?37FsFrHy2IB@$TnxR*T(K9AEeci->#x?H|R-@MoD z6}|w0Os6vZ&9-$@e1_}B*?UnDRL456J~};6asO*EZnFmn>fFVM(s6H zyAax9mbQg2NI}6YVa}eQqLaiC#f%Hal9aT8yEM^^;%exy*z}&YBu6zR-x>_vzUW4f zt%kWbB*S^-J3e}7*c95*)n3~o@eqq?A#4Y4d32LR4Qc|DC~8Wk-Ft^Hj!br+NQAoQ zN(HZ2A6~^BDtj*4@Ip~M!ZsiKRSrP>c=#*Qrm%DWF;5A5kB5bO%>C$BN}E|{ojZ0P zY~S)e%2O@wPAr&TYFOjZVwBA7UeAdA3zDLcRhZmjOTY-XNND)Le4-r5FK%?;{I?ji zfxfYhz)`}2Js9c_7qMgw`e2Q`z&;^#+*07UNDa}Y*&#)wE(>hQX|sEl@Caf2Y@5-A z5^1J`VOo|}b)OuG;Kd3)373N0tXck%ye~5v6|{zf3)`h(9$+*SQSi9uLLD^OE}kw; zh=E?d0FSo%Lb~QI$%gWV8t(lxZ}k%}KCiXjKRZ3M%&|gDGY`q*$7v+UK{>mCuaG(C zUHzbS{bQq zWaw;9j*gGy@P%(#5z9WaSdAiPOV40=D2Rz;f<*`x7qI6s;z)3erEQsf#k!`;rnD3Z zUM$Z>^$yGimVuM?l%Tn%c*F|a?#_Dzfpn7`;>U)%y;xz~_L$Bam%UCGXY1#$V+B(^ z!@z0i<3TYUmt=CDhKUHY`kYW%VN`R7oMVW(`SrvMHxmK(l)Y8$UBN@i)oV-TM!d(e z#EN*r*Dn^)jLZ;bei`qt&f~@`i%B-Mt?XTcE3&6ii%s5$vOogBm1!4ypTb#002c;^ z!kqBiYA6jDW+8_ryPj5!un*W{VKMDTKmT)#ZvQ$pdI~mwrF?LS zR!*q>XA!Ra=0RTH!fHX^ro-`(ii4lQqN?DCkW(OY7k7S^*#fXKSqDL&L-!&{>orRj zistidBy6^9qeVL{4lM#NEV`yC%UEyk0E9m-g@+8}EWL$*!5N9oj$Ist>S!w{d}24M z0v^TrdgIO=%wO5;g4H$b#OL%88y+A?xdIv|^J_V*en}zPva5-uYMY%-PCn=42)p_( zQvb2hbDEZZN>81Gou80~dEe|FIH5AL`C+fJHY_Y8WT!#FTnN+AX~w6S`7F#7VcHs8 z!SOeIWk8J1?PLQ;FzW3r)+||OO4{=%n4`S; z`_u0v;BOZ>f5rdmAm`tYoapE57eNuskr^9WB}lg5?t+lu(wK&$3N5msV{A(^7>r>f z(ARsz>Y&8gUxCIYABu!xzQDZWoV%S>I#IZhi4Cj0|5fMK-2W@-Lp60AU3KJ=fqG^M zPU_f5Q5U|Na#fP9?pm&@G1yvz1rWhJnY?B5uA*Hy79F1(n2}vT-5PfuSAe#+4P$#`2Jw%(=9cGxx7%j3w{zI?#z# z;#C1wzo=oS?6diWD2SHd&&R6RsmU??eu%TUYlp9HL#Www%Mf1xgV7~Tc=B*mpYj8w zve=JgV<%CBMv>ArUxGaz<1t=UVEd(&x32*Eq4N(z+;}4}QvQt#Ec+sP zvzO_w=nXT5`otOTBm3%`<$qGbNZcD-&xYn*x@29mZAGNj5z2hjgt-cunE8^39dr(J z@ytL*j7r45c&keY3KIg}62i>+anC*UUIUG5ORyHqo?94?lGKHeU9Sd~2o$^tr!6DY z1#j<=a`ct+8z@bmsv-wjL17RW7jkj1&?r_KDaOKnFM=t~SyUeWZD=l+*oKdDJruwq zwS-KtN*RoGjp)MXf_P8+!<1Nn4`NQPOc<9>kkCop{zn-3lX3kudgs;F%$p$W^H(de z)MmMu%PW=bM!mk%G=Lh-8Yf+}Nrh=fqs-(V;3!9fc}V(Z@gG3Cf?uD(jkl*KW(gWb zVf#>RVISLde=YMn9Qljf%o~*X`aBFOx2I2%HEs?R4pOAWoHC;k42fsZn&t)0@a zAMC9%@LAJKQ-92#85{jk>{Fr=P{0R>fFg*ZBaXy^6+~mOJVLRIIv|M}B}-$h zSYo6KiV7-VK}8f15R~%Dsk8Ta?@`7~mb3Kfz5DEa?%w;H^PTTozIaJ=d{ksq^xUwy zk#j@+bh_Z6;D|*rVY<+e$hqNjBEsf}FQ~+QLqT|j1ce0q=|cPiX3o$B&++r~4Gh+W zhR>T7I6FY63kwSgo8_Pj@DK72oE;tBjjDm2jGnV}b+j%lJYsf4Z0zD?OJkz{k+33u z@jqiXE}g#wlvGUo>e!{rmVcI*u&N#-_`g>ru3A~TVa@u?FV-ZkT(>SUAz?#ON^)`9r`b`4jjnZ zm8IXi`}54yo%_?$cV+C{otcrFEkJ4XBF7Q=OOOK`ISs-MBftqjB@kek4}pV%akx-m zC-9GIKC|Q0jFcYeJo0)wh&Ll50udr8(j1sj%!?qkq#9V~VQQ&i`!NUHVgw~096I?& z+z{__TDn?ZH+FS2y?AVDYku|SPRYHlrq;K{_Kx;vZEY``o;8YAyM~voCe@+l##c>E z^-rHYskr~-@uSC&8k*`J*FLDef9u}Ey2i%W&l?`r*VNWjS5;QteFVZ0l)@N68cVAx z9^AcET2Wb6SzU3nq`b1I{O0w_qU%5YSWr?{Sx{P7a-+DUr0804@f~WFVj6K+(L3CU zR*}&GO|iUM*k%{dQ;7$YTOE~h6AFmXt4n#}m;-{2R8S<4YWxBipBh4BvK&D;Wf~N< zVz{*MS>+DL1_Z2xhN~|Mi$vpUVvUtNGuZ-4P+C$MEUlmX$o4(UUjlG85T0zsC4(Rm z+*%y3maiqUaEiP{pp-dn6;9|`2xA7N&@jVl*#OT*{!@O?B!il85blI(`3gK+VeD)l zuU8T~rzD>S#fO?$DxC}L1zs)5PMxDzJ^%a9a_eT>8xbsZa&U=#Xcf z0C00N6h25GoG5p&RQIUF4;jvv27b?GBJZ1QUYu9hOjMaJqL_hsd(9eZTZJ1v(P+DD z_3UrGqCCr#t>*+QJAco57@nTOdSH7Bdo!buhRuk5P3@a}#<`CiQ=9Kv4z1!#1-C%(t*!+;7w(OayX9WOo*N(I~ql9yyILFw|0( zww?Kq8H8P%1+XR{5gG zic_^)MlK^A;3zc*!eKL8(XLw>5#cO7djh}9{i7~P#GDrBvsn(sRtY5S(x|Xda)?kU zP|_2nF(%7wH45$)9@y)S%lh2bOE-Av*91REH36qD}?v5_xkY7`xzSOW>S>ouPpDKsA5` z!0{wzV6}GK1Sk&|8E_9l?eQ{1e!#c`-VFf%z&@BzkPNvPG1`tB= z^b8=hQQA>LsK9;1i(hJ3KIC(=CkZL+bHe>~^MZ8?zX9GesO=LiC=WZ4;00nrju5#M zr_DT6HPdfe@z((%fe8*YX69dS6#PACRus4m;k)vFDEgtnD2H_)TM^>F=lltVX{?y@ zEypwtE!v>2D+$Ft3@vYzgC8xNmc%(?5eaSAh@Mb;O9d#FL+*LFIXP*|P13$4G_Z#9GWR2# z!4kc5-N$h4216g`=^&kNeRg~=#AGm@%WSSd5ak>PxC5a^tmW?0s;DS{0%n_&5As{y!> zq*RUolGy?@l6meSX549%+eyCqKDXm)BfurUy(j29a(K1y&2fds{HDKFH8|+$|ndE zy#BUX7aXU3%*>o5?C|9=+}F@3pM^ zzK_?2zXU&F($TD+w9w}y33K*b2dm{MOc^WUYq@;qC#3z=r~|7OeWPELOL|NAgFxnW zb#j%Eh6QykZaaCg^BZ>7`BBxR{d9T^z3*8I40|x~b-BwF`=q|ZTyqrwI%VPl3?sos zjJIWV!sr;zCdMJ3=ad-6?>9|PO=XKS*b2JxGv-vI8r{~8VXPmYy=LY%~;_WB~XGeSczJ*o~5r=bM;=|qNwwU&~*sdL;jMBAVBW}kFQ%{H=+YtQ#K_pVCd(vO31> z9|e@qjP3MPJgfuWP5@7e}0*8C`d&&?y*LZ3xPEA?*S zN65m7g-lGH41}iCsSTE9GRYqOAF8W8D5~>{s~~E`woV^^bUJNjI-UN}Y3rC6og_1+ zt(j??F*=EgnJ?h9ku;^@K51$WlTns<`rjh{Uzey{4;mc`ogceYwM1X3-x?U+PhnIPGzh$-sME-L_ZvDr)3qJ@VW^;RUb>k>dK$&WnM*Nm_cHDo^!W$cRV+*53h!IA4tFIrR9Z(2h`Wv?Ku{qgnJ>n=RItrrgI8C zcF4Uw>NLnAEWWO~YY&~AUsg>jQ%j{#dpL?wq!wWaC4y3ftKXo)s%dFQZyf3oRBgIt^w*5%rG;!+3Wp z1APFS%*HBBGS79?`{9@MdMUf8me|XImK4Po_bW8NdcZ!xukDw#z%y5%9FVT|gW&g%;g5jI%52?W3aoJYzkZKel!hoo_6-_& z@f+V~aH%rniqtzp+y}7(#n>o%}HX2ZqC9O&xxwV_k#@TGzVI)%LnO28?= zZ~^1W46|>+f!>~;Q3)`T&~}@u{PZ^`iI%z114ziA)nS<<03BA`uXhQ_>=pCmX0>n{ zja2FP!kMA)M#*XTNI~h*m&;rMxm@jEZXIXb=7Z(;bOxvjE+Zpd#TbG?{u~HJnTeh$xwYgG6ThH!8f;(HCT#E~ z*kmj!_5^nN5p;l{K@jTHCO~2+*e0lH7R;`kjn$69IXHub@PVB4N({!i)XCIl0-t)- z$$<5a>=mI9bS^mASk>k$lbHAwvsdUD_cfypO^+e9O2ueMk52EgrgS_PAd@Z>=!i36t<3^y+|$8w){*4RJs95V#xT1jk0`rV% zIWdRv$P-M|@7t@xs?08xd_W>=hEj$O0`9ku#Zh|+;3|v$JO;9qY@bxPWr;(%qNnIl zl!tS;t^BH{=0;V`*npakv$?Mq0^eB-?L!cA)q&%ulk*Ayr?vH+s-iRla6xbO63v7k zxC{MFl!?~;Dl}#N+6uVo1HG&p@c`~gjiP|Z2W{BmzKWBMKA^hgeQcp4eU}go z%jk-B&cYtXWw@u@aEIj3UdE4aodp4Z0Kqi$Y z=Vf()XAbq^?S6KvfCwd_iI5bAaJ{`|OP_gcLJq(sx(SY)g}o@h{saSjdYcLG`Y!sI z8(19H)EQwZu&SRx)$nM6M$xrmocv`E+;-Y|%B_g`6CYMV2+-CnI{wKEN;b-PuQ98vlo#!WGY#PN zIkbCE%I?(I#N>X2+=gkW$^>Ninanth@x$h$(19%UzzR?+oEhwl&xU-q>L~)})7=va zpN0huoz98^b~JBH$`3!|JNc&+DLpYOZk&Gn>AvtP$(!&^7B)zfUQW(ED1|mhL<2K( zx+f~^HuH+Ph1&|HzRlUmp6-|lMf^-z=|MB{n<$Gk63tN{lIf}CkbS$VVU-6R3=mi_ zG@^{66|LeUZhzeOw105;sr8wu&oVr0Hk$^AhRpCgJZv#rpO1}BILF4OB%jygaSl$p zspRt!BKc%RCW_*PouD=cqirN$%+DoR>huO2A^9ki{@p>qXmAPfo6b<4__>ku*+LbA zFj)qFLRAuP(HI|f{`094YsPG_;jO1tDMZ_*e*ruorrK$-h-~i40dtXe7PKa%J8>LxCl!-V<#aYa{GduGN;qB_#aN8gup(azc zNy2|Pn?dm6f!66vCM&8F;091^f(nI!|8ZWeK~*1D9Bwc|lbCj4(mA`XRBg z$uu$5b|TiK)!2u&)mqR9CK$)~ia~9S_#}u5iVC8Lf+#3a-cNbUL*57%E(juUg$vxv zegFUe-Lu=Xdtrnx{m_{^T<-4K-SgXX_IG}Vyvjr!m*!IL;_Z>?+Y?9kwl-3Ew01Ex zGNy{~&N6W{A||-MJh}$?$5RKKQh$0$S-__LpVp-=Av2|Z6^ZJ}wZjqLTZ;S`^To%Wdq7yHbBM_#;d$Nln4c4(4>q_ySt!9;py}4|H_*5gn6kO|# zfka-?G(uFn)2KRe@;jKq!k5Yh7qfD-C=p`Tvt1cVQ%J9?8KhF{wv7lHC?A(}8a)`~M*Qn78j%-7HkoiK?g72>7|whKG__Vf zm+v`aTki{*QdgU1?a9Vhh$QXB99-w_6g3mPgx9oS7%O8%f!0%$?m20$%xEC;DD;bX zd2R?3$AmnB8z3%m99A>-P|Vn>@n*lvEagfQ?qxP*w=n2H|F$Y>LY~JYmm1o!sfyv-d0XYYn?owTyz4IH4&!exTeo11xwvPZ=FY> zOhS6lPYXujLANYM>eUDd+`Xz5qw*qi|Nh|`idTrmFOGU#nBz*ww2P88kM)#1(m>yU zDFa>2=z_QGctJYhDpN`dhQxDxnHh?JXc;b{o}5!&yvnM6N$9v1FE|4PQH#(ZkN8R! z!4^%V8wfeY>Fb&*(nJ%g;EW#GMY742uSFLLK;}`9B%^I;!70HuF9;i4&QK#6-^T`0 zcB6jci|%^ti4J&?VFYv^C2n4ot4XY5d>+-z7TRbN!mezP$s!{B5RiaAyxXYCgnTLI z34`t$T;j;1Q;2>B?EzZXB{rVDA!;n}(}CdKF-LNN-i|$WUE90w&==Lg#lw4o&-vfk zb0OuQHd=f!eW!MQ%b7E$w43i9D}{vkdlxi*@i-p2pf@zQKRT#7EI)h{v_Cd?ZOSul zIZGTzE`?7D`9!h~h4pDi7Vk!g--n#&1pFTU44@*SK0JCX<{K+BN??94tdMqvDjh?F z`}LDHyhEk2iXeS}4td#$O{VL1u6P&oID3|elz9-tL5&0(GI{(D0tqd%@# z-?v+#g@?f&P(j|eKU+BY=00XA!cdHI$S=CxzgTRe+*sAP4svmLE9s-ayx0 zY-9opAZ;u7lZ7L&?#9?J_I(-JX!{j0y}`(`deBDV_W#zzlf!ZU1(d9;Kj%=N#DyFJ z7SK#1Qu((*>R)zT+`AJY`EE<$uql6V2}bHQ_lm?TQ7VH^tejT`b&>74^lF`e2gK&K zkB=B^st4W=KpU!u$qw1Ms*XA{jOTQ=j*w^gb52jbYJ5rrGAM8exo2$dR4GlLPR7F3 zq6%LoH0r|!0;P$Xws%)spd0DCF$|yS=2CL)bLvljK0yMr91BN?ri{O(n%`^4J9}d1f1ks^1|3DO7QqLliS^3{Sm+{7adnw-aIxTk`Q3jdq`V&<)DX@eZYRZmqkU_VwAx)eh6J*PxR|KZ5wVf2 z9%OShmqLW(0eoLl{tO_0);+}#3nW6Bh}`Si_NVaBZ7WhTKQ8ZFyH=mI;aErp(2PA% z*Oai}6jB)&^dNX+rvJI!r!$TR_bJ~TO4E*insQ)cBrV*RNl%1*d3as*zXF>mpRc7d z*0B2c7ax9|5b$?*W#Fkl{QA!D=cmFOMDsBibTl-99$j=0f6UiDyA*ku(S69+{6dm; z?mX=ZI$?b$a)%W>@?KUDA-TNSAZvc9y`^2>`S?jkhhE>ydU*Gn27OyV7336_+)ck(l5r#bc4}H`YW9_cJBe4XC0sA>iIC5!Hu7mriVP}rHO;Q`(n__PaZvf2CMVTC+|9e2kReQE)pXtG3OpON25J2tN*E&5(Jd+htiR&1V zCXZTmtgq+l%(c3XZWK`BJ^L`HgRx;WGneaV-|%d+no=|q0#CF|?z?#)EoqOAn2ob7 z_4Q0>;Fp!I#MVK#o#I8(ZuRfhZ9sgy#T7#mz&ai+HFlIVwr){QxGwrnX zN5T+Xw_^LVKbU2|J>Pln@AEu2{_AG7aOv%Hh#!&c{OpIi>KBLxqj}gL z7>TvjDIHcVyDkZi?<~_hl0eJJrE1uccw%S1#64@pf3de()LBQ(p`Eacx26|RW>lH* z&VnhfWiAk4>`_n_)pQql9&- zHfr#$2PU&vqc1~0o)#$B&y!Mt4j75>SnNS=-(2$qFUov%H5fPQn3@9@naEX`sWo8l zQ^`C?B?T0nCB)U7-ep)A_s%EyYE!2SiQX{+ z8GOtTv}TZQFH|iIk0aO4ltn@p*zF@HaX?kph13jvQWYB)YgkRLRDm7@pW>`XwA=79 zBGp+`JIH)-={0UyaF;J{vodBAF6jkLPWHQ0C_Py-XcpX_XHd{YPd6KT!W7{-TPehV z4p_-NUrEKg5T*MwQe9RZ9^OcYLXYIrsqoMW^7Wy};C%M*qpg`>JmL|(dzvPFampJB z^KXG23+S%gmzNyo*G}Plv%xok9lp$H*_lwYRAo?bG^CpT@L|L(#`aS-l8|V^y|vQ_ zLm6{9Y5H55A&OgG3SBoWJ<~gB7@sYZLZnTy<2Qje;s4WlbM1P}xjPuD##$8Qu43KH zec;;X03EVcDp&J$LbabMwY=(~ex_>uZ?9cn^D8&i8w* z%8@q7Z-4#B%ck5gZ*Q&N0xY)Ho_j#a3xv|0w$db-(*6j$ZBLiscfC|ntty|Hnri_4 zrwPQI+WNF)OGmd4iUr}h93FNqEHW-43tk6Nk8Fe2&tMR5fvFW^G~X-luj-La_6BFI zgRTRXZiT$ZSX>P+Iso^-Bq4_i&iZ06L3TO?O^mXU%5f)u zP0sV55H!7!lFpD)$T`h)J3)nDMCXZ-k)eUkKGRAdF#b#q!R;9*$Vndesf)0xONM;~;xZB~Vl3`SbQhUgC zx>52$nEKdGN4r>K3TAa^2XTDzoNnvSH78^>$S~$EXI@IxBxdBO#b^-{=7Fyj&}Nb( zz#>H$t__YX0C^LxbB7|eA@?v1b2>hanvS8ggyF}WDU0|6sz1r6mXTQevi{&vJJfi8 zrcn})M^{3l-?4jSC^+Pbqw|AvCo>5h*&pGsYdmA(jkGoL{Q0je7#M@pWlCa$0fb*p7QFNriPZfrc!NwZGCaAuBy4Yp-x+HKfk=PvY@!Kw!E~wy1rgl zRif?c>}l;7YHX`(YHn<3)mGQFH9vaP+S=Z(Tiw~;^lSkmTvC#;uH><|f^}`iJ&LJb z+Kbs($H}aK#aR}a?-=0&PUBFKmYQ-|b48;`zm$GCDfvojYSLv*N?PjGw3OuJjD+N* zv@6MpR}xb%U5fuUHaaRXE-E_q;>Fk~OJJ-=3^^ZCttV@dGs8 zfa|^ZmTDPWPpiQtM!PKJgiohJFo=hTAG!1`1y&vc%k&L4qrFe8Nh&u=SS=KuVn0`tn( zDE#{RLBA8k1w#KSKB3||Q*j#^2A42v!#{^Sg!F+AtIS9qvdBj^aRJ*^(pJ=Oi!KB7 zy6n|xF@VW4HX#uvip_@UFkntmD7?TvlKdCnL4qp*64N8$lL3-x1mZCjC|nk25Gobq z8DjdRvEex*Jij&eri$UDnEO4Bj-LN(2;AdwUHzMHE z;)YEf;TdL+3XWSvKkR$F`#t{uoTRcePTj=Nz$pvJ}B&D6xLyIkB4fsvCAY;i|@wf1JHdQPKcDl_%}rFxd=v3N|AWy0iHWg9v!z?+`f~%;YD@ zpInMUeQWw3sD*w;gDJKoJ-g|eBz{CLO({KbzT{Ouktda#TKNFE7NA^OzX0OrtoVZ^ zU^4|cia55D>%r+Lo_a$rv;bxo#p1_~)|~H(>htu1S7qPIsc0Im9H-a>%XqX@`@nz( z*K+76>&n*wZJScFASY)~Y~d&HTJD!Sb&<2)L;l8nzQZBAA`f2$rrUQc$>tNZe^0}n z8~WXcgTKj)4NW9;BIwIXi|>)}fTyPIAMTl_3E{iOgxJ(5)n4FL&W_V}mg9nB9bni6 z|KYhzfTFsxFf2HlF&S%O)hvmXic?dj)QXOpik9OgA2hMC41a{uX=Ot8o``3{U@BPoagU=ibc|)&!<*sGJ z!ACME$?!;+Z3g9U*2Om&#G8lXf+I(jp80a~>4K-HvwsrDrJ0vnvk zOh@9a{^2wu5IoWW67{Ma@AKCs5*rmHim z^BG&IYx?~0!_9T+t~A+^=^Yp&83iX@6lIM;3>;>=q3}U6ZB&!CGm4p{A|I3`ASrKQG^MT&Xm!gOCwQXI`MN0Qli_4X1-2y7RmHSno~B@v z_Fs(*W{sdMU|d*N^+@TsSQ6w;x)yQeSPV-DW!rrVy@CMl6sUGFkv-FyTUyax#xv=n zQ4F(SFj*B_W4kg@VNZ)oC3am@hY({|k#iI6cFaacox*fXW)4TJ8JfdN0e*P@6* zngkAnK1z78KYvf`_$7Xfw1ha?_KgH zZ3~DJ6-UmVq8nn{x(0#Y(4aVC#N_NRRJBq;FDfvl`<{~+2O;&AG-;x4Sx`}q%mrBd)XwtJ%4+2| zbl>!zi(Myceu^RAJjR-%m*&6ZY<+mF>>hvisT08F0{T-4{q~yN(4fH97Mx>&)^0`n z&1wKPIIE0CBv3gmZ3B^iHKJD8QsNF6`lpVpD2p&HG?Lc3?=;Xg$4rz@bHBI>v*J01~qI3OndiGS))sK@=% zAN+l*fp;GZPB9-kkN_2XoL}yA%!=NUa&ET=X$?4;GUB-Bwu3`HIq22?Y`c@s+Q^d* z{#;Bhz3#a8hKD*#C0!u({nU$6}3^-N$FAKlGZ;)0*49J_33?(min z-zpj$=$lEd?g+j_F3s_Fx&rLN*6Xxr^9jG6hTW(3&xpajr*W%Y7m$SSLp>M%>M|>W zRqj4%w@BOPc{b2Msh=$Tnj?QHNSXLOQz7}-7kF5AjpUb09dyLCu)_;#HRf|Vs6{bJ zu^#gmQ1BaiG_c9pVKrg{6sJLB=7KMjCJcZw);A(1lo9m5_g?RW8zks~OqIXVfrupg zG?I8%`ek1DnbqzF>FTk|)>QwGFS|5$c!WmL=tD8blPRk|8j(!e!vgc)>HR0x5+Wc` zMFk>Kj#K?1P9`FYQY1K_db;1Sw$r@Q+hl5ESzsmqC`P*bmtc3vmh+Pf{#( zBoKThOy*=fWW`_tO=dxZjL70sii_}Eh?|Q13B^Pq^!#2bQPfD_22r<^Ws9iBX`BrR z#*xS903}QUuv)A#{^TKv5X(W)8z(R+aSSombVYE>NBwiLk$frBJSS-xWmf~tu1r(& z@&`t1l;6?%7ka^_ofldVUjA@3V@%jXZD&q;H|F+u-ihR`uy-m?V&_Ama(%4#U*O?B z;{EH|>gE>m>ql7CY|YDU=iekBlAZJ0=6)6u+qgQ9ZYiyvT_Szn+_|E=Y4)IRv2{Iq z4`(;s_By-la`Ect*vs%lAr-={reJPTAtIrNR+ND{((uV3m`W6cpnP$|-(uY#x%z}! zFX}3U2FzY8E6f)*PF&$bt`^kW)zsoRh)=!Gpe~Gxfk{#SCyFL3+>(8Oo16Ck`1~!V zFdKBDOsu$M7^fyq)}uCMRo`XD7X#aI&LEK8?y``>%_-}l}<_grN`ex5QXCwpa1o+?+7 zqfn@_b8-|pxvK2E{G1%uc%>p&k(UeeWXZWoRjw*uRhS10DD(1Eg{1|mqQd;b+xzz? z6c!a1=jRs{7L}+93rY%0i%ZH%D=JyVqsVv5(RWFg76eu>JTfAB%$O20x=X1};3^6F|v^Jl^U`>4!bU z{t{bqUEI}W(~5chY)mn&{*uzammS>!EYdSe5L*qnwpZg~j>N~s#&$q2G1%GpsJgPM zx}mWlCrhEqP$;v~vobPR7FU>Nr(e%hWGK_G-nf19dTL_YspMNHj$geJpO|{)a^ms0 zL)(rXIS_R$DlGg^WO#U3#Qw0*sL05e1L0x(d*{&L(6I1`kf6|z5Wi60kdVNz;E=$e z(D3kme*WH`K6~9%Pau!*Qq0E>}-aFF(IPaY0x~ex8W?h5A=4khbUu zpU4JgF{1mNlH8@mODRcN3&~P$i?*Wln=o*Up34}KB32Kx9$;4c;~p2-QEEnn10t!U zuO)b$f;W3(JfoX#y~6xM`M|&Mr_-uAU6@Vpr(~N`@{f|bg*`aA&8r5Llw(eXdkW=^ zn<=-m`Up3oVp4N5mg)NhsJ{Ac;Wu1QDS9?w?^BWIfx@wv(fVJxQDSaiNMm~Oq#s6^ z1pf5I@`MA7$tllH#(qco!lDC*uqHmHP9*8>g9#!v<2PY0T(ZCnj74e^n^EXg$*;w( zQeRCZh_XpkoC35j7XHUyq<6=_CUS(acKg2zrS^h;M?a(t&D4=3TQnE5vyOxetZo23 ziv9@$$6YXAwqohxuPtsN)&LPg;7|8dr0Svd&=9PzPrCzjq4NrGpSP%G)#q8~KiO2U z-{A-&Bjl>&FxcTu(NSb{CAOpD(3UvTYKDerfD1q6C?KQ@w3U|sUVRiPr%zm`? zCX!vli?fBTxdMthP0%;O-2~dn%}Hn5!?u=&do|6CwRQJvYs;G(np-MM%bVL9JIfl{ zdmgoGTATa3`+7Sb4XHbH0@g5ux?8$ibb|=#P$wm70SRN^b`f&&N${lhDu|7$z437N zZ$V+vVx0zRuvpTe05f8Yp>B?&Iw<8t&|d?@u>eXywZE|-o(Pm-2%TO&40@0@TFmd& zhfY$9K`9#1`GpWU9G0y+tRJ8i3z8ALYy**#=u=|k1m6XpQeC+id3wabh-%#AvEwiy z)pjoD2q{_%4v!}}w-GV&xSh_9a+#C;mL2x?j&^cqx80809UML7R-3js+HJAfYGu9M zW}}t0%vQe1T4ufWJDG*Gvz@KnN-o=BXK!O?Wn*nEcNinHwB4-INA3%!Z$!5gL$;Aa zEvA`JLAzoCRJb+LKSiew4=S91E}V{!?4Tu!BccCDjVi#xqv*4y<FHP=IZ*a;)~3HD5fCMA19(5(R&*do_K?#9-p?{QOc6$SStM}sC|Y1NHilIE ztxL#kn9(k%vgfv=29u&>D})?_=$y>RURfOKO!jranm?C|ZQHwKn;Crc+)HTg)yyN` z5j1rG&D2)S=n>iw88pR)UWi=9bSuB;WbKRR_>$NSA;-vx6;V!u=T=2JnRKVl@^ReO zg}mgBLe_LV&w{5Q|C&`{CKcyML^(HiUMU$x4L?ai4IcIu( z4*SI^NGCYY$88pUi(o;os)6)7AXEb%&{_2QLu&qtR_C@7R>GySj$1I`3h1zIxba$F zehls)VO?Mt0}eSU=1|dwjp>ImKKkd$s?P^Q20-^xa|X4e0fPlz5uAsBuuwnTbPl#l zZ_o^P@;YG10BA;gqtX4hIb~czlAm2fGm2yW3;Z5EOg=Qq?^pIFVSdj=k1yA7OA?nd z@=_)`(!`%xO2X8lg+8_PaS2TrVUZG+XkdyRiF6V&3<(l!favH5w3Ywp@aZ}apsdp4 zBTSqff1b0S9T|b}7>2ZH)OWA#4;lCqFdlY3RQ)`Q4h^>uwZV5iu?Pkh@to1K7i+a_?raQN$^aO zOoj2{jH&-2yjp;xs?P9#vbzu>A%;K*5Tq%kh1Q}_DR$c0soFY4DKMZ2u}-TLt6;UG z7MxmY$Dt!C@<>1g4CN7^P(>wyMDhX@5JE~wLS8&1ggi)gH;;YYz4x5c@0{HvyOFf> z&)vQE|Nry<-}ztXUcG7*_~W3NMw7rv!(9)J)TC@?&;hEYYHFq?&~-AXiv-=EeEL33 zq-1y=qkWFT{b*bx=>Z`71HC|ppi@XC^f{emJJ??KD(#}@;N|u(r2<15u%=*jDy}3N zPQx@M!`c{FOQjL|e^@UiW6gNYOX<~CbUSuFkJ71}D%mpj0^7*mW1HC)md!SSzW`W& z2~jLiO+enPL%pXnf0oTd|0L1l>3c`BfMHkyq^uIAAl z*hwmCMa6dOV;wSlUskt$dcFs9-$vi^;StDvN9%|?F4Y|M+B0hC;^lRogad} z2is}5A3;MYK1@Ty6py^EqIa;P5=2c!p_*zCheE{Vo5-c|o}zns9IQ-23}>JRW}^Q8 ziWqF9Bk0aNT@mN7{x9@9R7(im=y31djTp|RhY;zd^g3d9fhv)iI#k3d@*|sSk|ajZ zNZk+LK}=>KM^B(*-k>*O`wNY(mKxysC58|F&w~yK6HtGcz`<%UJ*Jdi-zTnMs@9dw=uR53;hhXYJg*d(WP|`}ghJ zE3@tU_8<80p!gV{Js+E&$Q=8joSfX;U=HPaa_Erwgg$M{k-4_RM-J!ubL3%}OGm_E zkxPg95i8F;I;60mu&}teR)IKb%g@Wt7e{4*D5L_jkQdpD zONxt%cyUZoagjJCkJ}52i;kTXr(!=pR&wG@>Dkg!@#UyfrDx8To+&$5R$5k8ezB^u z@;~MEHT4%Sit_l2MEsK5l&!HXHyW|3xv_EN^~SpL+UqSXP0cM$;5IilH#N1kiWX{vy3=&Uw0Cw2S4@-J z&AViGjMw8e{4&6dpkZ2;i%YvLy_;Kt+bq)(f*Zo*c*8J7Fv&EGK)~nodOclT9i5#W z9d5VFY)^K!wY9f9oo;tW7eKbwU1@4_cKCcEaGT%o2k-`NSY|M2nn5AC#3cmdR)WR3 z1uyz9bPcisCNyzN@GFH~x##Nj#wkKPb&0SQ4w-s}4Sebe8KXtu2q{f{8E|D+B3vXb z{FAV7Z&N(QmLdk0Ea3<-OfXnr&^}eghe((eH)pB=X~tr?5(*I@zRw0Z8+}$Xy9`P=nANo?ow*arIZl6^dC1PjI z0Axjwbp}LbpWjnfh#zD6cts!kWLRB_3t!ibVjj}WH4zLf<-!lGZDHm?-1`87OO_q< zaEN%1=p(ShqV1MX$5#p#6t|FXGDC7zU$+pi4JvUE%QuIGJ41pu&5!^&h?dw^8kXhf zq3Z3x<-&D5T4gzU%EO_+JCp&J`st_gyrEQ}fs|j7HdP$QqBWiggfx%{epT89+O)q) zI{dWrudp25P#i6L)KIc(YN6R*$YvTGlcxa-O^X*s%N`h5=9nJ9=Z)2d$lTO@Yhrvy zD#T3j2Zfqx*i{?K8J}bp_0w@o^o0kXPKr}HIKGiA@maLiH@rPsYWzS;jRf9L%a#l+ zZaHD6Rrg$ev^d_S#0t+%e7Cu~v^)se>OP&pEy|Ibx4_X6Etb|>ec~YvA+ahR1FQ(q zZI}8)5l-VO0%3NJjKPR0j}*q9_6G+R<||<*?`wh{j30&spCM+~!G2qBHW;Ch?GFa6 zZlz!;g&NfmT;#z=w>v^F_Jfe#7OjJ_E7dv{@6&M%$@B+RMnYQEVCLd7`V?Z{fstN? zh@8c~;Wd=N+plLFLskqRh+F0hD1o1EiWUrBGJqiNHz9$+Gkd3pBX-^`n1g4AoSJ+? z1oNQ~Q%&Va_K!kr&eug)oz}z5!)V7@#|@1^s#8wST+-(U>GO`MlUAbN)ZydBNLT%! z&pnM>pNeWGh*+%DO8T6T7Nz7FI+!?x9|OidTR571Kj(4_q)%# zJkRrfu{`4Np;MFz4J+BYGL79|zNfoq&SvkBS2TQOv@L7FmvvI%U5wjK;=TUTA9NBD z*99F7+gMBlr&k(f{2qpep1)19&O|q`x&$3fOpDhQ*tn=o(do3ho9upelT6l&%Ic}R zmG^7!+#~%}HJsbq+f5Tq_gb5pIwvUhK!4#ijTr=eW;Av8nb z2!_JXFt~8~025?cErTvC%J=KFh1mFm!DCSOH5>CQr7*R}MDF++Ta&if#Q27Y<|mJ~ zv9VqLh>7l5S7T50t|-41XnA&Ep@EG?>~1*`uG<)pdio+qp=ZjuQym?euNs&+Y(Y%w z8Q(#fsJ$djM9K0cQh7AeXHp<26ikn>el=m0uq55y5;NJ0_lNKw7bQQi0`tYg)3Cil z?x7Wen2@d-SwORR{gUR)J}kMW71W9+ZoF`;Q?RBuyuzr@E80Ozuzu3Q!trY<$&}g; z(-&TS7`F^yRi9yXF6a=jwi@+B$H<9gX3oktogr{_I}m&37(^Z2serx*5)}wZ23m`u zhv))Kl%^*Hpfre4NH(dp$uzPWdXE58eUKB&L6~lR7mvRdqEZtYosfRdnp~DKMiHjl zFUD;Sn3C6AplLP1?A5nM>X>j}o!nM`FcKvUKV@1Ghvy+k*tcj53zzHnA;@<*WTX^= zl71;ki1OwARizk0`m|afh+)fHb#nlN*}Q@aFKaGiY5Rawt|wx|w^vDHudoFERs|E$ zUtR|i83j*khY343^2bMz0@Mg}^=-y12-3I_O)%BKQZtSFJKUpB&0PG9y?)q&cc3R9 z^2s)3yv=TJx2hf$#LOHPPvV>VYgPqKDP zEA5k4q~8&T$X)4VaG1pT4yQ+a%dpkBP7BCAbCvw;V^rUJCXcgtKke3jM*VI=qZh?W zjs5)nqrmb)@Svv0!1f263qAOX@w?s!0z)wzeMRRJXtu?#17P!?gFfw1$m?_#^Btrj z!!XOjZZ6{+or&Lq-;gDPZ1>)hC{XQE&-Tl@BD8%0lwJFF+lezl5tr7hC^_@TTn-BG zC~t)QLu|?qOV-nUuGxW-mx^Dq$m3||8yPL#_4Q^y>F_^AFvgFO+dQlp&lYq@E||r0 z`j7czOR|ug*y#bhyS6!CJe}-n;4CDTw$k2i82>zCvsWjQA5khlHjAjUcuY1HXYd_( z5RCknxzj#*9*m^8OTYI;zWw*e!iy_dxZT29>cq&Zm$BFyF4e10W3c6pWJ%rd81}Wn z(wMRfNS;4e*5`~zmkVBsMO~T@3e8I`l^8|P(6UK&1<$syD%6kkOzX3w5AJPlC_ z&JSWfa_)v}4D5Qa<^t>e?Fi?F{bn{T0(zV+)jrx=Uis+de0_{Qh|$cb$}?@!dm#l$7B^wcsT5>k>3 z#YtLid`i94Y8XsPxx;Bza?Im+-JE>R2eWf7{5w81l?>lP(826#QkJMvx|7oyy3-T0 z^*I;opCnzPtTy_)jy7F>PD~pULq{$r{gc3x_#O3R$X}aXy*a7)%F#`e+Rt0yl&yMe z@Wak8mc?qde|?;VS5YD_&AE?wg1z#ZO zZWPtLqIyt@{}O6L_iF>yJW&PrxuB9gUOqQZ0)phUwa7r-DYJC-3`pUaM<(txVpDFh zVpWg!F>5muje4RxRBKaFy7in~5?KSF(Qm=q=3gp}u<#;j@PwzEXNO%L&e?U;|IscZ#N_y6 zK?_;dK#@OP!CwA=;LGY%#R}Dj-RHWu%drch)n}dg_=KF^#(_ps)LWq59eWs^JqoOi_)Bo+b%=z65tc@8+Csi24mbW+mU?QqbtNiJfQ95OC zV$p9cV|ZW&hT-j1XGcMun_e8l({896PUy4G{$$m)vcAg%ZytA?;fiI4T~VS&S*A@U zmYJp}EXO1;{N^v&{y&Na$52uA-)m4df$J4wHnat-2|TDUmLC|rA+EB=2mQznr>OY3A@|KEW`mQ^fn@dKKt zw6%*@J%7PJVmEw62^Xkc9KCMlX`6X1|9xM^Rc-pI?80u4Cz=`X=*@dXRs4wsA6spO zJp}?g=vbV1SJmRD=j%12@r~e*3y?J|Fzb?<_T|AR=MmjxZ)hv=Bx+UZIzGtBcR?R zQin5-0IHcx9+2J_-v|?$#blA90PpeHwhzc?UAY0gobVC^$Q zi;j~5l~>FZV?FWS>O3NbkSGn6CKlTufh@Qj%6YD){c2hdkn0B`e>TvjTNk_a1!s$B ze_mQ+X2yNQ%E5=265R7ls&X!3{9~5uxL1Oyy4%k&Swn$-dNFg1H?$xyqR=|tZCp|z zHN=>0edY5KjG;dnr1ffGx6QwlBsYsTI%?%do2=7`lw@jG3)NxMv0lfXnlD^vrYxoq zZ_Ml;Sm7Q`+B7+OdVt08Du<9+pu+Cpc z{V}J~GE3ElF-rAUBfYEw7%#L;0Oq-#!mvXyXqI|L{ClH`aTne`>rx*NQVUNlQ#B#1(;)fMt!2QoNN|j4PNqBOdV=2H<%U*WW;TF8G zRuMR+U%mCq<4okUP9F1U1T7cx9UaY4(|v zb^R*%yPsf?8myNtrqK4~vMVoF1TkK2t3g6sMc}d3PI^*tX0W%CC3$a zfMq+LBT0_GK$k-_&?MVN2A3T2(RgOSnK0=i7#NF7Bd`_I$BIXyhDaz+#!JS3`Y%+jqXNxWEDUgmn8z|P1Bo=(atHP zna@IN14LmR9;c6+1lKX{BAG{DGIwiz{HTrEoAq#XJRgZF1q_WZ4r0(QyISfiiArXNJzmM>{1bxzBUYzi`qC|kQ&(GaoJX4{n8=N20J zz|}Wyqv>&gOph`UR=X!|XQ1y^zg=oo;BHljI%ID`RP^@=Noi>*_;c!%HvME~y7pqh zm9v+#3d#%1ic3n1ODd}BD(}|ZZ)k3+Z>(!eY)+xiQB!Zty~H$VvX4Ip?0pNyNCr{5#;4Ru}Oc_4a3t5O3ST4l2u~a)p{eid_Z5qEi=9t*FM6 z&PEQAUycYSAcOsui`UD{#oz-z{U?eu9?T>AR+J;Mjci}pD*0Qtk-LssAeLT|J7la* zC9n0l&=uDy(j+%W;iQz!5`KYpExdK6U?`ADCihMI#t(uFjXFKvekx7jfsOSwdPD!H zuCHsz*xOj&2HoR>laxx2AH6h106{85SlUB$2Ay7-8lN0}IWj)h`|wF^eM7^8>YBTi zRh6X`cgnAnl$<-4c_A(JbZXiOO;Sp7@`fyO+18$JT8g+r2%!w{7?G+_>G_bJI5ePXfK&ynUGE znu8Xu-}6tu{579AQQ0&V9Pd@3sgYy4EeE{fTbxo{)&KwA58%hy*?iT@K`-mB=9A>c{N!vSm<@T&OUgjl4ns>oPYHv$@~rh<}JxZLY@ z)F%HMZ@+!3u%xK07?oXCe6#R+{*C;r`T5uK^YSiSW|^kfv$D@-)nVl4v+mQW$tN{Q zXYL8H7<2YVHI`@!Y2VS9VI-%k-^P>x8%v(TlguS2Vh?>26CD*69TOfFu|GN@JTl_z z(0yScYPIS^|B&55!9gLrgM<3t20jJ}(trU%52zOxRm!+LfN*9ag!Vh3RBR4u_C1tM zaghiydm+&XUqLLQZ>ClO;=o>tEQz2~;cm%_`Mlo-JJkJ6A zhRPmAr{M|%k2dwcTQmV$$7lVA^(qaDD!ampio(Q7Oj70iN=;d&DnBL@f$pZ8MK*y( zQDA^U0WFkOiHZWFA|kEgGO{bkD7Y{JE@KQJDy~rxj3Nq-Gb(}+5m_6MhVFOQoclBa zlhjnUs(#&l@44^Zd(L;3@6e}CgX}fH1RcmNe|1nlF>path2Kno-6qSO4Rj>%aMmwN zCIEO;P+IxFNoLu@GSXs|3BJD_bJ7j)n;UtQJ>^qOZS8L`HH@|h@&eueG~OY)ThYtH zkkj;WvMl+oT$lZ4~{SS)TY?oC8j#eZ^vygwT+-z&?j;rs6BJQMSBK;a*WbbOB> z448|k0WY95^Iyr{1<|M|TL=u}6wik5@iV&rU?fb&<;1>w{45oB1~=U^W;%^e5&+oQ~?i#dI?QoUx@M)`1i6C15z_=)Leelr;6!*D1)fDj^6G+=A+qGyZAD6a z7o`kp$*B2Ga|?1cK5F%v4bcfzn18fIn?pn>hx#|l$2{}W&Yb6ZyTd~jSpLXOGQIyzGpw{^c(`hPSae|kwQ35Jo}a2T!0FV~dLPOm!<~)81Ka|rp&*9959_&}PX($Z zAx!Wi;U!2^Nh0dR3n*?7VWSGs%(ABi4trj0*#rfHy>-!v+KKx#_ea3o2%Vg%(Y_(O z4uiF%0>@O`5NpCFe9*BQ-Zp2$E2Anr2S>O?$1?w_XHR34H{phGo=|8cy9YA~3oIZr$kM5*xq3`yN~kZJJlQc(o{4xYff3npTF~m46xpGd21v zG};9&b`9@!>hVY*nQo^ZiGm_@>f9ZfMxZyGe7CTSe9&nY+s}Bda~Z{P#=DnZ07-V; z+VL1MI_UHOlb09o7{E%9Ow7;N&Hv+3BCy6^IV5d>f2MH4y*Y1Pq+OUvMr^EX@b;X>5~YpT4hQJ5F0R2jyuX)W`%p1{?XuUI~Pv z^a?DR0Kt=i`x7`;PbOxpxr3g2Aeypu!I|lS67MHKdjjqAEgsIuj+E z%kEF#(JlxZ!2#f9m^6n8L=G~cQcUpa6`&w{$tN4)gXkDr4=`Tuc7WpcB|e4DwTM`& zq67WfS--L#?eok}-e7`4Gl7`Xd{q#VZB31fosYowlQL`tueV^@zzq=>B^rJe@lTEF zrGO2`b>Ht%2f459ZV3zZ+A-K26gGbqNeN!Ik`Bf%^e#bCX{c|IpKNQ}=XtkDIVd<| zI3+6bg7j+Z&a#+1Jsl~H+hG>+wJsMZ#s|DWKbhvZ?eRr$vVi)PYeC%rcMuo9|#c0!+YbHt?s~Zp*YH26f7L5Hn*8Z@EvXR$}_nH_Pf|eCR zaaaQTx3`N-15GR(^Vf9{tkdWhE13~VFDRIsr278DwafT#?s=Sq#cOwyv@aR4jU#XE z*VC@w*T1kkDxtv3A}Dy{TzlE6r&FwR3^xisall@9j3w5nTALi(==oN_WOAoEO7P*? z;9|kPhv)t+Y#laeiZ3tk?27E4qnCV4QN9MfqV2eKt+d=tnEFdcCv_b)frHJcvwB&q zc%YA-lXF*{g>>5L+h*?hu<0~v;~B9+rF{+f&SFxMGQPk^DYdz!)cd95cxy^y{LZdb zoyGHR)i@3{Y7PiXyUt5o*h)~Hr*g$1o13KAr8qfZAY9|Pa9yu!e5yiK5M|{%RHiM! z+_E__0L{IlkNzee1Azzo{c_`?B5gw7@+F7ER-h6^B*m(ugn!CLlKc;-Z)B(fq*bb1 z?4jKS`!1JW^{ zc_KOn9f>%Owl2*{j7XQTeqVHWz#>A-uLmt%-Avd?$Y(?brN;Fb82P&#f2VbrIiz4| zsh0LA>#r!hLj1yHPzD!Wa}?iCr4SeOiM`W0*O!EXx))m zOK32z2|%H4p%(&Ma5LUu*N@!uhtzRMvhIKAu)VJ8FN!Xt$VE~}0RFa8BK&78quL*D zZYj=dOvj@6_vyh>5H?W21Rr}3&dL}gg8v^W}-*!9x0p3+Ubgu-|-2S?oa#7-7ZV{p&wv5$v@5EHXJ2 zd;`snyMk-&mJL8UeLcThigRv(I+?4HsIj~iEe)hS>T1Zikek?=xzC|^l3mYmP!uJ4 zbuJ;RLVIdl7@r+EY(l7@P%WWD(+mdlV%>Wfj6Ai;A)ef}nz7iR`kdxFQh{5hQG~FJcs_ z2nd4;0a#Drnado%Oy_kH*NzUB7=Y_kLyr@5)*pxCM0IYeFqgVU6) zP&G#-dPdF9;q772o33DBKv65Wp!?XIG(dvcfnfY;&yP4_P z2!tB%VStM`TC6J7qSLBojf;~8OZR9Vnx&yGX_?MGSc6l#5vPN5eWyP0(x539WnjzG zdjB{B&QrK_YTJD!KTO}2r;rRqU+vl{9C;s(a4{WT=g`Z@oqZzO<^z@F5R5gJ-{hpD z7E7&*!SF9FBr9(0KWHto$hF2+CJ_kg*bRIBBN4YBG_=UeN%}^SNMa4v5g0G~UdfTcM{N-HP9?}Tp42E>N97@y1a2qS7fLHy>N~5QJRA*gk@=fCJ3B2Y3meL! z61!4vpt6zEah(|Dre}!LnFmkyW58wbV*V#(!+5Hy;rp7=s>({tdW<wCBsNls?7P zVI zZkzqeNWgs|o!nrv)Yi^)#R+IuFiOvw@AX{0EL*YUh{s}8ah=@T*+go23!+_wySAE| zZrLVTeUm5mKj_>B>AG{Or6E(^pJ#-{_F2gz^!qj?+bK5pNz#+-UNtT`$A@rxyw!%V z$Y864hV_cHY=zrUks_(Yd1Swpe+M(jR&U#r2XGWh#{~8}4i80z4Qj8c|hbD`4FZA1v<)A4X`_GWOxi}bAgcqni%;XG^@XW zHsWj!zZN`PO~3-q`w;Y3!dC)sq}&*%lmsv2qJeNq%a{F%lUpcxt_difhd5zibP=9W zbG`|$IUvXjW_tybsZqg*iimVrJ2uHJ8mEos;o!`m21vs|)qtSwYW^<~yBlWeTJhbo zn_7zcMS*?#{8n}CwW^!d!|L0Won6J>>4f2PSz|L73$8w9RXa~5#i;I&>HGWzk$p(< zV0tssrhU^!UfqU-0aU0^np9=LQ#r9&PjPAb>E7a$~{vPFpM^@n~Z|AT9A;8zS9O~&K+Uw>T z;_22Jw0HM+ZtkAC$#73^_Z`Xjy}F&gLAB%!DpBktT;cHfwz&WTC_s8P^IHR?F{gL% z&Iv(+!TrXv%HT(Mf~9j|%H{1msMB9_;trA(9xQxg@(!%%fO`Y`|9TV7%$woH0F8ke zN&BJ~fm>Z1z}fi~%)3pRCyjy6qfKx%2Fu8)cZ`iWd_5dy zHVLQ2GaQb3eqA>OJ20BT?4Z-vaL1zz;!zrdq0sVM6^9Ws;={Gh{2MmwCr>HH0*V#57IhSRAgm<0V zZQ|zKV1KV*7=A+OFMZD*vk1#~_)Pce3#X0{H!)S(7PIuRpVT)?_ryB3$v%jjUsctx z*0@m%)a1Cjd3ZWR;l9b?o+PthlE_Gdd9ZlYNu9D$pJ&$-A$hjnJnpP8u;F@zT^90? z?T{VHuu(o4Rr=w&cm2|KSrf`zqRCWT8@;vsh4ct{kb-JgRv;9+{L$0o<&%mym{PC( zQsn6XE$Eu%oskitsJCsS7o7H*=t+yyt@l^7f0axgoe^8*(-wQIpY+}*6Oe~c59ST4~y}EIEpT9bO7se^(qs@{@XdLu_(umuZ)@Yh03bV(o3ns?m(hKgv8&KaPUXgWtI z{VN)L3;_zgGf*AlO=D1l=2OFWW5i zX7izlA}Q|SWR~ZXDyZpEla!Sjd6f*uZ%lUkov|^Bb~REM95e0)J3|tWdHdt+mUQpY!S*0Zqx$ZDz2L!O%s^VV~&d8 z;+g6B!Z<`%X0%Qu91Vc8Ux@Ji9>Dw)`+j4E4OzH%jEJk!jS>F{ic!dsM2Fz1N)xL4 zp@=uf{sk^ypKV+#MulF4olKXrU`K{0=53E;r*Ru#<$7*Y>2ge z&yl?aS$qGHb6Q&COA`7WJ#~Ww(fg;$I8IJ_Wc&H8^bcMWP>M#>$hO3f@1R#6qI7m& z(KMlA){$yHzlnjxhxh%`0(*9p7a4CBbd4Lx+HOnj7^b@8q!gRKiN*~5gaXw35UHV} z--W)&{X9D7+~vn-NEH)Kn&pyOGVAI-Rqs(IuEFveS;*?n8Dt)%pQskX)o)V%m=m6WrDdXtO&m+?l7<4-2C zhb;*oT({SpiYsn02D0&ar0jL6+Ad_}T>7rC_yOjGeN+x*UaW1Ydr?;OCG$s(u%uC_ z(XcGvq|~Rp{MT04eMxfn@sGPEu&j#^bKX(6JDC1jg!wy%@e|#mE6mj>$p0c_Q8gsa z@|e9Uu!q$Igq{RC4N(-dMX6m;E4_AC%w15!Of!x}Pv4oebnBWvN4>8Rz-gibn!I^P zA|g!c3Xxb4_zV#fO^`GO{Xl6PB8mfe)6((Fre`{12WcF^NEj~R%kwo&@gCxwtciVfkIO_kxV9KC*+Vt%^J(bF(H zaoG3tc5RRx%R&cfxsJlnfNj5$jDDE$5Y38+5CKC2K7-B|;vAu5Eo>#_oJvRFOvrI8MVgRB7oytU z9?VRFf$fQ?La<(|xx1sOV*u$0_d6}+iefy4tDX~WN=zsTp0jmh8?=5HxTzRVa?9i` z5v$^MEbT;lZ(N=-XM1nfG@dg1YQy{uL8k0gdw1+*EcS5d#UX0)%v{sd^&4j#raCi< z0+uiG4f;B;fKGVjNeK%xQSmj;DWLd!#lB1VHE+&BKlG}{^J;wSCM-;c702<*H^i1C z;GN?*pIZW7t*XlrpPb=doi)L{Gpd14YAZ6mz|KpKNI&OgpPJA#y@qNcK< zwyC^}?n};>tYw~P3F%^8-22|ueUNz|-@%^yljuEB_n;p@Qc0PQM855bEURV+rQ<b81WjcDki~ANzM$S6)>908t*lBL&k+}jk<9%j<0y#8I}&^8XpGvufVXE zyZ0? zBU+{KT%3vIb}JV|Zb@AaTj+oqL%5CtEDOPj_I3^KlgbSVI#FTjZGv*_EIPXNBrt*j zBRkyn9uSMcB?3RIZa4$f=|Hq%9~}YYv&8No%&L(D*kRBzv1coB45j;K-Shgy>5Eh8 z0Y^U#E7qoq9JqBG(9d%3{r7L)wP5u=uPe-#y#j6M?cs@^H=+Fo?*toq+h}6PC(W)0I5hb*e9fUpjg*kG z$ZrQ8{g3!E1V&}?rA~D-Ty`R5ma2{o2~nvs{9UdctlkqgATBkFW4QGRG?lx)qrm|M_*$E?Q45}%Aa7xQv+ z^UgKreV&D}-BmvoU6qw})s?tIiQBP4n(G^@>f3bpauHqu94O*5^+apy15)iGhI2uf zA9K8+^Yd9D<)<;npnFuF04zQTQ+F$mfiFO}as}>xilNRCVlmEbXC~ee$O8g9Fy*7z z%tKaYL?6J_(eh#vQRc8kpb%JHAAf0O5p5Lix9?<@l%_AjaKYc!yvXMs<7GZgIL{a} zC50<^u%vMBhfGh)T>ek8tF)=AD~kq!AlfvQsxHfX$zSNIu1b}2+qCJl-Im=ZF&awa zkOUP(X5xT~!8imJ1w|UgA9$Go3_ zt3tuzNSDH0)&-9o{w>|{kX>ks3qAN6Q=j5eMhAF^pbRNJ3`{eWyKhCRQctHm5i$+q zVS_|So=U%*)r#WwrD!hll&~W_Q9_h@p}jh$b&^q(=z@1qRhJNwJ#5-j0Au%ztd(@2 z3z@5%^Q16DH0eKxb((5E?icj1gkA41hcR~0C7x_RN3$1u!z7i?BQ~=|Icl4r!%8y@2JwQb~ho*hzn_!NA&y5~PJrwCd4N(!;YWkkR<{Ab~NDh_30{gi?^>ME~Bp z*PLeo;zdJ$BhgyuG9Y>-)h(XZc6UvEAx z5syfJ1SpjJ?1B^rft{kThoU;GJ-1;fE8o;A!oq@$O4sgsdWu94%60eVC6BYskb#rDjcK(jm3+fr^?UzmmH@)|{QYl&<7~<8g zH_?D?8c`Rt56NkL14ki}@9#^xQibKX)KjO=p31$}$G~h4mPOtWQ1x4XijTFy9{AQB zMoBdIi?c6~L^w0DJMBn>oMI-HNb z`ot8=3dGqnT163;)0suW?EcpitF;OsmNgyQ!qc#%Kv-ZsD%>QSGC&(-A5eqtJ-xk1 zWRgrs7kfKgPIUHa5WUQuXE)pakt_9wB2=1zg=R{aSrUS6mzK{g?;^Yq~=xmozhM-76`ei zFeb>&aR-t406##$zX$4TM5AUCt*oTeXSMpCt7#K@-B?m-0aRGX^>K6~S5wYdzlq>d zN^j?CditQ|Zq38iR)jlIu4t!b%6+EkQWnOy+O`#J6SxNesZgc9sgY@WMR^2}J935S z(W)sM9Ep2LWEIjGMyP0k!Pgf} zAPWzXxl%AhW~>rBN8lO%@_Y=UglGv~_mNj~$vlXWl)7saA{F0jN70%)Rw1^N`DhF` z3So!}XWe6n9MNbEIb90>d^&ka>ov?ta&9@8Wv;L|spKjba#}27lvy!`(NqUTq7l4B z!jA2`cgAkrg(N0+%z_>pj)UtK~G9 z_zpxD`p_XM_oeK~5d+$NsMutJ6p;nO71boQ*Y#|ML{t$(bFc){Dp4G_>9o~c8)Qo4 zMXggqBRW)wO}|gCqLv1i5Z6s{)?o0$CSeB5O~SOm-aU3ZCgr->a{>Yu_`#gInX5=o z9-hHtMrPlJI7#~Bsl1tA*ZzBPiwL29J^p&+^iA>cU({IxGV?N#?Z?Ic-1AIQ-W3{! zWXXy6a&qX&;?57Vva^q@xFV@F1f<`3ZpNX@XFfk8xtYSL&HqIEmhiS?E81lJW`OZo zar<7;8TSqlE_8*sAKv>QyiWoMGNc}_MgElSDf_Acf!B>f%kLo?ceRGp03!kOC)Fqt zc*cIftb%|9J3+yM$4BN>fOEmSE*{9-L7NAFgk*#0G!5YBCRQrcwE3KwLj)N(#&o`N zcK1u8+YmvjUwaRAwsf@G&=i(TYefy^^Z1Y7C2kicZB?nC%tUZ{DuF7*Fj2yZktRVKo6D=A?Z?SqBO9?euW-bvL7wE;GQh$)K;or`tdA7R$vWPMVChU3 z^IQ=6_`9$YCEbjtkszt;IBlaTUD!9YMgl`}Yx+;!8y+eRpktI+(XeYV*+vXo(KL5T zjz;E`aWo>Ol%r|blF!j7xjE3lOW}V&aWv&OB`fsyMH?&~pXpz~!O+n;cL3m1?SAhB z$Kv7mG|t7Jpt1}E<4)CK$LroPbj_B5>9LfhAU+Jk$vTXU(XjPipoBb>)5YM81+C1N z&i_A3L+iOIYGqu|{K7hojga*f^qV_W8Mb4M3%CCsy?ex)rgac+lHU5oZtbT-cx18 z$ZAw(C{aFe?thRd#kk zPT>u@%h@O~3~~DruJ0m(qYTt?&J%~UafHqFhLqh^DG5d!%s_3QQQq!g?r@IqBvJ1F zWxLv9+B)wzNl2X~>O<5@Nu)k>?^EA5MU^I1dug?4-K0KD+q9=?7j06PHp$YYO$y}} zOt?cX=4u>=luIzzVjwoY12#4oY_RbK12HzXv3=}wzT5tvO$m`E;iJR(zH`3+_4oh% zP&xp*^4^isXyG~&eyQV=o$OtTr{%4kUHW`N-J&t9MD{fvOalec%NfpvMEc;>`X0rL zmH?44DtT3ni*%pcvt_{;#a0Ok=nnL`r%RM%DyAl3e6$+n5ze3x#|#i*sr!Dn;y~Oa zg(@V#eEoWV8oE-7yJNJ3`gjVWU~ehOZrP1UMNSQ-D+H{u# z%ta5a2*HRqj~(`Ta9{{*KSRk&gdqlpS(q{hQ|29sZn9GtjFpiAWpDHJlVfX@FohuN zxCHpYdBlCE+<%&7HmD47O_CBLArAMYfteVFu4m+(#fG-}L(UWcwx_KGhjKonj37m1 zZ@dqTX7s&Lp?~(EpOQG3)7_r#FvJ>H#WC;pY>p`xIQ?p{0Lom+*<4{w5@~#d&q_w4 zCXrVsAS!{zv4&ed ziu&(d+mO&i&CLzMU4cpkaGucSp_5C;H{p~Z^i;k}aahaClxK&7xasA~$oV)ZBkhtKcQHO{O^Wm)# zVKBZ2v1J25wms?@eAE(wp6Hd!&>fQ>3pW&uermYZ!pJ9@ zTQx+wHU$Y2cZ6Lafl1Ez!aWmN&haT35Fvj%W7(8f zww7hW_hAZj7;pwC>Mju`|^RFoXFhex*uq!8fOeKnY`vZ8z^??Xg2w2;KX=HTOjuW51dH zR};fOfAP;sjQ>1IVU#U{vh@!6M2P)lSKrX^sCHfz#@cy_Zi7R;t6&5rAeK9E>=8|$nPxN9|!m&NidCYXmvm0^Y~VsNu1*i6k(^gs*)LSgPXv}o;fUFKpVE> zhu#4%GC;-s>LEc=8x<~uog=$k-$iN@z`UzLgPxLh2)me>!^9n&&C>M%OZf%;Cg!$Z zz)lCI!M)(YGbe=XZJd7$;?lUuGMc<@{k83vrM^9B-1oeiiNC_#wJiK$R`nl(u5$in z=V*&B0=WjlElN@zE`Znt%RNpwri9}r^da9-upElyN6Tq}pd}Zg(CLy$x#g2;n8{i_ zlwt||E}|Gr%52a}))FMYH0REdg5m2L5#!;*74-)H`rBk~Mv=rrF|x6YLQ}5|ztn&A zvtNFM;-AKvYQ*GU_p2VE)Mu|$4S>8}_5rqcDmuEmySjSRy}hcwrvrn-L(en={nNVX z*%^aw&R{bebUL%yVzVsG z=Jpp~mECN-cm3P16;(dizjmvv{L9a4?=+U(zILzUPGxy{#oe!ORDFB>^M7BL-z{(X zsS4z)VHrMD*@i;y_ z26{+Dz7T^rXIe+wqn1@aIr%L!AUO{cBYFnO5=aS-Gkmlg`_<_;c3WWgDK75d;sBDx zSsvkXkI0Jc87^d=dy4p>9DDyqb(ICRb)M1Mt(Vwt)7Z7$PMuEs-n5gMWRhtg+D=~D z$>zGXaT;SFu@gI<#O+M{&`!x>N?Zt#7#iCUWP^=?u|!yJ5R$->KoUax zz4za4zyIRe?t>V(T;2Ph?>pc5&Vdd?X@ih&_cFom4bkYr0-VbT|JOf!@ECV1dU<;ym$SPPdo7xh_E0!pOheJ1X z51wAAoQ7AyyA`YmclcaTA-nMyz|c~4`8Ac7RZdId?h-#{jMOH;9UbI6;Y?y!LJkSX zF~>w;4}*5YvWHi%8hEw<-tXrAjYm{|Iv#X)!WcMg0<_x%XCtOg(>=5IA?pg^OWU{{ zZScFju+Vw^6k;-r8Be6}nthOpYTWa+D}jbEw(qV5J(M@WD(8)Z?5ptEbo_k>j>h z2~1QW>ozda{0El@2AfM6EIvXqufumIR8?ILuC64J5)||dUQO9kWX=s0k$MB6x^bk} zAUv|I2addBW*7>nWLrdK>2Ro~L=$TBnK9DboW}^Jl$aa(ZzrL+Y}y5G<8bd{=zc$8 zS4Ud9m2R-XDeg@n(SUpP+gK_@_~qU3ZWO<_K)@KtY$uQf4TnLXS^-7k!C>*Usbo%h zhw>f94I<{Y9^i#|C(_&^Dgy)Uqu-0^ka;o&GkOCJW3kLeExc+u6906$&yMK=%Uais!nlJ zwMy8+J%T2e)f-Tt)GAh|n6JK*fD`3`qgYtKNqMmGStzQ!UQ;eAz1ShMh>x-Vhk0oE zM(srlj=uA^_v}b09?kO*l-pV4#0pM3+=(6>KT(B{)EAY;J8a(hDv>CC2?G2dK#7gk z$an(k)UWBK(Jz~{V->r6z;ssU0Rl4mQze37^-O}`W?Qn<)6k#n8Me8#NE(|WsKx^7 zydBj;jgMf7XTb3#PVk<-q;1M$Sa({8cz0T5CJMf4m43Jb4E1i(RuiTnVP=wdVBZE| zn@PSGSd1{^LxDW>(LB2QI+BXjNsOCr5o0d8{joIr*DZk4oVw&m0V9V^Tr;FaDc&*9 zp>2nm3h|8q3{TgDv2&ftsYani+N@i`_R3w$OeT?UQjgF{xDM$AsIHq{_ivH^}w>upQ37PR!3sF|%JF_>7KuU%+STW&A6Yl4q42yC3*Vu+P9h zvlC?Ig55Fn zaTj9AJTOhpusH_K$x_ajwABf)dgf)>KboF|mXlORiuT4?P{(LZlDRq*PX6RpweHI) zu70{DTn%cf#?DTOM8%aMQCB0<$NVHgv?3cXp1qqrO-~w`?*-pWtulQsoswg{8hmim@+ZK_V5K^#l+#z*2ZxXosaV)7}FaS59=h>1utP+80UKz^K}_1*xxY z^4ccMzgUH$b(E<+3>lZ4jbPe{@djp(L!$O$UWx*w`yBbrsOYIfxcy zEY}1JN^%dTu;Mp%h?*(Jh5i6*xZVy^B$zEcMzOU9gQUn%RNM*YA}Wv4Cq+1<06e05 zW^tqNexI-9u9+fXdDDWiwD`FgkoVnQ0qL=Az;OjWruzdU>x}4wYx0CI5o%BAx-nBg zC8YI6%mxM{P3b-tS!;u!n!Mf-nwoG^ZN760)E4!q_@0}RK^vL=Eq()B%ZoxrmyDlH za8N&_xE4m8QkOOj1{+K^rSr`^Y;p2kX-z4X4l5E(luZduRUl186-byK5z?!a`VBTq z!CYFa^Lh0Y+g;M4C^}kKK~ne3b0vmJ=V6CS5G-pd&ca;T929B0XE57BM43y&Xs1eQ zX z0$>TzC;2ZF3;rqWR!7&n7C?9L_v0O|aVH`Ez^FdL@zQ(n0tAVZ#v!8}v1<^WbIC#s z9*4nYhy$x$t3`v^vM%u0OdY!P%b!2{7ARliD`VJo+?qX2yhknXk1EI@5k7?e}1?3^A}3(3Ob%3`@E_4wv1r>>iyMAG4axCZoGf(_6<9KFH_Q_MHGLOHOdGyaGvof<;=H9G~;~9TC zmhtNAN6*8eQ+#+*{skKU!45874{m!8mL&>sy`6) zU-{jVs%k}Bscop#A|YC#l%^mhgeFx%RYY4A35BGBl9mDqNm#;`fD^~DW5*=6$8o%6 zyp26}JRUpaHMVEE9z)H5%Z;5OAr8 z1G+_hsjI;IZ{}A>9fO4!I29H`d?pc&l8hLa0fJ5;nQW9Rl0vHr5PW}INpk%&$T%azrT#1tP#VN6!o+Q^za$>lmx0^0;mgs4=v z5SvNGd*rReHml-=*QKEi1B=vBrrRY@EJ0FAvvdAp z(7;}{Tiz~y<(&$@3ruz4FG+>1Rgr~iIC0EMgf=_VZ z$BN<077bbEFDVWVPPClLcjjGft*F#8H;`ZF<^Zc%F0VEYvHy5I(v&w00tXJuv~jF< zbht>%k^ywM>;49=Hjk^}RzL9twJS2C4Ad?4kWpdAzEo zwp3X;kT+$KYAX-(RM4DEPajI;W>MXxCeaZE39cD1YfRp7fw3d~OIR@vdo=4&#^$)dgpyXT{Ug*m4+y4N^AWY zlYrN-gBq9M*R3?TFGKIDOvl6=PA`o>7i`c@UrTV_)l@b&lvCD{z^sy}iYD)5pHN*b z1sI~hg+c+?lABShhA?4qIRfkjVqyCVsuzjQ*+Q5$cWPSJDpQX+oA^SeT1P2l?g9VT z+%K@W?NH63vr>-Lb^N<@45__a%g>iFcM~DkuE2egF@m-uOOyj&Q1+?Q$~>t1&bonf zYN#_`rHhL31edVXT=vQc@8F7NXDTCuuIP0MRWn7=VKLEsehKGpq=hRwT6?a5k|+TL z)*MQ{{`a>tBtLugh(m=>Uik!vRUbI)tUAQ>(e~ZQK_9e^6e3*{l{5(w-8=_l3!lbF zwf1?dG9Zpq&1Xup&^ve2!iUIs>cp8PW5QSBFm~k{a$b=cy5_F=G;&#*2WpQVIS^89 zF{(yS<4|`9IRRbDqt}??&FoV9jE(1_j((@1T&*QRYzk0DjH15%dKgk*dnqt7{ebPPK#UY%TXk6hIE_z#rClI6rx(*K} zlnOd{-2ig@!8_whjvqWUPt2Jc1JDgvz=i)Un)Cs&)g5)M>EVwKH$|j->ezp>GWEf~ zUh@`sD3k!ph8}2$BDG$GA}OmJ+29oF)zSr#r^zXD>YMr;A!ODpns4j5!JG~bx!N+0 zba(X1Y^Fi>dDGDz3Pou;nrW)t9e7|=#r>-uE!3=qlH@XVsjcf_hkH*dLufz|BOz&p# zNQd!1j6&tvGKN-p8k(z8qpN2FC_kWD49O`Rf5)3)a!*~ab6MLiCsPkcuB=>ye^SGR72Sf|bn_ZxWKb#8rz8oW>X4(#fo z?~fbbX7SLd>D;U~51IH6D2L#KAL$@mb71s_oTsO|FNNk%2{q@Rr+MJPGEusAq@c2O z$vU*WShr(642}~6oyP)vR3A6aq+dmoOMfs#I$AYVpI81K+2V7=Q6EdE1jf|h43c-{ zDqvO!I2v<-jMMK|sQ{(?Li8+=^-=YA&yNL(<{(=$Je*@1>>^q6 z4W(+0*%9;BsnLFkd<=mvax)}q7 z`ywQV&zzZXMBq}xilEt3-j8N@R8jGI{-5Vb%wVC_E48^zquc7>igbIr!_XX9AWhVg zJJPpbi(2thJOI1C7E3}bsX0uCNSumqyVgST4MmR!Gkf-^PY=ld9&?ZF7cZU>C-;bV z-c>m>VZNh$-QLdLo__D>n15_27@P_(h9lv~Y+yPPi6;|_u~<413n!No$&?FaLP|){ z@V8MYE^6u&(rM!ykYcp3A5 zn-H6n>(S5@+4tPhtWpPG`4HA0dZ}8dLe+lI6^_P3s`mZE`;PA4zxTD5{`!~a_dfr^ z?p-^d-SNj4c5Q!d=Z>9EZ{P9M_TTLM!|%6kee!>7S8GsI=NX2e#yB<|+r&<%ww*Tp z)k*uWY15hh>`Z4e(7kzT%2q zyNh3Z;o#A|ukJmtd)NLKi+8>B($12Sy``mx_HOyZD=)uNdT{q^#k-`O@-w;WK*{dX zm-p=~*}tcBf7!wE!)0Z!A1OO{MSXt~fnZGln7)>D>);aAvC!Bz>& zS(*@q74Muk;SWXpLEn-u&m1!F10aG=ho>I-lnROsRfDliMUdOTGztZmr%|BpNs$c>WOF;^OvXL zTrG+}xL&~PAKifLUA2Bo{!l%vjkJXSFQ98TCKOcv3U63{vs;aGBUg(ytUOK^4VHvz zUe{0eVn-U*!uO%i!HtuDhDh)XYh1A{Gv&*GhwxCW8X6+gS|h!PXA0eULS;(@E9-&M z32?w-b~-Gg+eEAR5D6B-Tsx`&R?h~>f9V1lh3}hHZo&e1Rr#e5g>PYML9k!oF^YIv z<^qzK&!z`$sRepk9<{`|QMnI;m3-ux5EJkVo(gD8a_i4m)h{wPY&uEZZw#x07S3i+ z`Zf%^d|B?z*NmdT-GIPji}{`L4eklUt(lDGdb2*MnpMnh6KFT5zyIZpR$-BDR$UAyQ5lq+FasH6)vb%P z2WtR=3M(i<9}}G557wZi21w^esDBie42iUk5{?08-jDb$HQ4nud0roAj49Hci<-F& zNk9hx3@KINg%YlN>yrS>Xo`?_Gh<`-O)HBKqN5Lb{v@5~6(cjB&nFGt`ej&X%0^2R zx{4eFE)&QWaX|rDxc>7oQWA!u=O}dCml#=B(73sGo(~!tk z;8^J;*IedL=aJ4~H~;gpFtu-6W#52gWCL z8F_rBRbY_FkHwo{#FQK-rsg>FOhH&Yw34ztZ6gzr zmEqBpcZt}ua}Q+IE_k~T+k*t`0-IR@KQMDEO^5ruGmOS&xyf^5Nlhoyo}(QZz#f;g zs{^Shk60j^{wTJ@7NkO#!OV2XTgZouqtTPw_6M2a^hb>(`s*~mdm!|ym|`r;XT$Dk zAseTUWLxC4EQ+?kJdBfUrkKtR7d1Q>BE;o2_<=)nVoWr)75V{Z3g4k{yN)tlfH_9e z!=lhXF0C$z<7r7B0LF+zGzL4sEIkNC+|EOAZ6eo{rNQn=82IUE+R7Rnn9wFu*I2)e zscih6QE+23ce|mMsX;leh#ex=2WBi^PiVVjJ^#icby>5A8biNKD9!tpo?B)^htrA; zURZcvW^5}Zo_>-5ppChZfQ!^c4HF_LJBY4w0QxO_5=`B$9=mt@fm65Ouub?xZ_A*g zP*nGS0Z*ePX-gc<&1?2Eac9OHtHfycD~)Z)@)4lpv_Y2`r^qrH{~Lf#57t}0zhogc86;tQV#q&{3k6AJS(;s9TrJnC z@&u<3e2^nUes~Io%wdG={G$dJ<5RhC$m(L4<1;cPpM(4C2*NF`J|v0wG$LNxla?%Q z#(bJE)2^pT{ClQ&&2PzXjB@RX)#u`@?k}0=rW^&!1H^eL-v%|l<>uB<+Et>(E;O-xcvmL@T)YLrS8 zFd*u1zi1S1s0e~CKtZ_*!<~`Ka32^LV7Sc;1H&-$|Nr^Vt$Uvl&FbX=(Epr$&ffd% z{q67jIbZy6g&z2Z9}a{*DrZL<$-#Q^uQHxq9s*_ZuJDA25hMnT2fA98 z+f=)G)W|^hh7h}gz1q5C$u?|6v@8(Em$_iij-Jb0=c9@7CDfcabtRh^?u6WnA0OtEC;q-R?)a`Q5>GP85878YE}%_+#w%SlhYkaIpYH!b%2gv6Y)7xGe)9}q+S zmXeB7XA%;U5>Cb+JNnP0lgEz7$DjQ2=*eTJ&Lp15vK&uNO^W|6A>mYV;_0Ns`_zzo z7%i}*p3h22PtVH9$oNXJ-dXG zUJ?_^Bf26gB1urh!kmwk_!iF9W50%aMVauQAWuTND)5^Qi&7O1ylj*rp7>gVt6$qA zP(WXcs61qrQa#kp7or3;9|*pkN(e@70ImY#9;FavQSet75mtp|h+E#^2HO-vJcJb$ zr7VH7OC_Kr0{FUo4{BW3H`YmDePiA4^REQM{#F07H@N7VbI!Y$7Utb9mvhqL92p%N z)!HJ7Ns`G>_tBUbC_OxBE4D%u)?+}aSrw`Y|8%JqhudIdj50u`rqZznRm~!#mW$fR z$#*20BuNc-AUA)(`vJ6t!6SkO!F)z4nV_1CvNzNdsl!#?&|(ezLNRwea`0W`@pv){ z5-R;btzmLYlgBBp7cm7teM%-WQTStjQsA5|Xo;LlV1!Pv3Cmc8O_4i6hls12=}D28 zZ8?lX5O#M#D`VVAk@b3spT0*Cq_$|FI2tw=!)g(Kk~SB`%f**bOiB}IYu*3&zWVCx z7=9g45ww7Jt*|Pw;uzm1B57ZV@Vf(L}hz>Ws4whkC{<*{<{#-`$gp1P&P*B{%ZYtk$Sk4p;jm!{h7g|B(5`g-h;r<1fZ(^=Oh+oq6J?BF5L_ z@16war(rKbLGvAKc93rRR58v#kq$rHU{tW!1{Z!e=lP%;oYH*+vP=4qu7gwI%DWTj zRG)thas{$)VsVrF+<|1gMI#dn+Y0$NV$KFQx{Ftlxl)7E5H4+;wL9R??mJL|^?pxgY&{26f%gp`tn zlwu6V%_SWRDV8@lJ0N1xhbZ(9yYX({#p&1GIJb^X=DlFPz} zJRv!xdK1T39AD^aB8ZNBCCkPk8a8f4P7rQunVm71XL?})I1by^zsv%NSqj_saY`n8 zXjda=UBzWiPtjCg$ZQ!i^b#(XGi@xxr79FWHQ21(BfyuV5_@A!VFvnz!W zD$QMu@H#LfO=r8p?52ldF%7W5e+A^B55YYM?NbDh(kQEb5QbFa$;NW>~L z6w>Z9dn=pi^O>1d_cN0;_l6m5SX_mI?e{{P|B63A=56;fPi+X#tRRvJdu0=~+L(L5 zv~_?d6rm*mi?PHg_Aiz6RFQ!ohd!LIg07ielrq%O)*T562&0e{wxTat>mQi7n$Y|q z6Pe#u{*lWYCqgPFP5~Chguxw;G^hj7k>z24+IvNKILrktccUAe1SSWU%(An{6f~J#OeR+Pi@P(c(450QmX};_DhVh5lfYNc^|HY*K9X2$UgLZigrL?@uXFf&I%tk5WZ zPFG?DhXdbh)O8y5lnnHHX!}Tu$#whk8l{?*K{QdMTjOE*Cbq+TL&(?HIYpdB5Daz2#}IM$Ypa+Hk*60*Ccz(ZZ><) z?w<2q`@Y`^L!3!=&z$`(@8x;l_j!7aR0~ckJ;on7adAi4^M5!u`W#^=PIo=W*@x8~ zzc*!dH9CRpRZ$S1;%I70Gnq?g9AgBhHn%eakcOH;DyJbCNLg)wmX(sVU-Us6Ya(ij z&~S_(AB7o_6&)wY$ZU|kECtqQaG1kX?v4!IHiyEF#MF02Ga#}>&Q zv%%Cr`Gf-+0XIKJ1Rd%VTFc!S#h-|ZLkgBZ!&0~E-Ovho`&dTNYT$-(X3hjBxy8XB z*4(eTaeiNhmiDIeNBE}RvuE4@JV!*t|Ot zPw8nRO^lS0NoNcLG$=8tX$taNW|$P2tW^ID$Tx-YMPdGA7zq%V5;(9xD?$Y@J7JHf zbxI9b0ZR#Af!!N4o(lIG+Gt$+v8#!=E;ks|b?1)DBt4C7QO+KtYE}zoSfUb`A@DB> zLpqD&ZL6Stpe z#hXiC-@3hYdr_&VSY5XD^{qR0?b*F;d&OH7JO2wUV;!5=zo+uARXg`@-SzH{$~QmQ zUA}8i<-UEDZy!Cfzx*#HJKx;%#^#-sTgtXn?AW#qW*Efjcl@heyWXj)I&$#60|$=0 zf9T`Cy>tBF-uFH@{L$Y(K6>n<=wlhtQVe_8$IIbX}eh*?ZZET>3!C`B1% zr+}#})G;br$WWJ|isLE?kPeFE7L^L+Pbg(3P~}0!xPj!GF_k@dwSwbHfC!)*r69rv zs(?w7gUDh4LkQ|xK-Zi})f7Z1m>?HTGp=h%EvAX&szfq69rT4_(O@i|!aLS+GZvhk z4F~)_x5w)XOnc`1a|>GE;KspL6Iw9jnQ;&G4)^!B zy9RsvI@-sFd%HV2JG-2Yw&u>BuI|pxj*cG3g9q(xN!Drw=n`rLpe_n#OwA~(*PxV` zQk_Mr=jHf}f6^4VMaeij0y!fwk}DNsS27jjki`|1S5dTEEd*IT=g9bM5Lnxy5|lg} zgNy%o`3k}K;!Rwj7DN)PT8GjqInWR+i6D`;Q_y~Rh>cm+z)wGCi{efxSnCnW13YV0 z-R6vHstK^c&iGk`hftyySpwsJP?yUV6|W6ux=l1I(ImxbIA{TPad8$N36~Z%v7Z)+kBhK5T?SHFvvI20L(17buL8?p7EPKiS0$rsg9g z7BRB8r`_7IOa#rTrFKn%DLr6Q7NT8Rp@rY!4UlbY;g?Y=8d}OA35n4jW93meRzw23+ZJ`+lk zl13NRu3sKvIG`B@Ck%{*Qx8z87ASZYb_{#Hv`t=+Hn^h}vXVtjFew`qBLjV*E*STP z^~sQlB8T4hsvD9IbTDH%kO(@}9l{IjJc3#wS7{;7B)4u@xH0T%X^KC*p%1-Q0h25Q zpLWWvhK0y{l9I$s|L~NSNqF2k+#GVoZTv@cvu_Y&hv52uBAk0iEljNBaVkte-Rp_#~pR_8IE~;s(Sen3c&1UeC0y|gpnij*nna0ZMy4>SoqjHU) z{j*H-EC6d`=0c1TgKGUTC_}I_{O{X!6dNy=0c0U8pQYbUtD4rXX$gm!365c-akc^! zd1spSCBBLYwE1b)6wF{|v^#O`91y~AM|1@cI4mciNfB|tC3Z8@vS{)zr|PBrp{4P< z6u}dpM>q+5dMwOzIS&9!VD%U>2gC-Oz7O6$)^#zIGSPglcf=T-pNk7g5)m2>rYT%{uJM<^=m{?m$q=P{UP4Z!AA90rm>2rF^UKz^LSTI$`cEI!f;Z20Iv_uw)JT8Rh~T~%g^F=EW-%Z_0qtZ$A?Zo4 z->YK|0!|uh&WL$u2GX%=VuT}L26QPqx^G6BlqWV(BiFEdrQpm}V4$L{oYFsf8n4c&$iL9h`@g~(NcOpHUwCugPK>#a*^;KeU| z*K6xMz-6W;&Cy|I&>k=1ACygFpeZUueNtv_Ci=WhvQFX{Ltkp)=r!7BM^8z4{LB|~ z^z(g;zj&+qFyj?BbTtvUr5X4WWGXsi^a zvi#|sAdIKRV;eXV#T~KnR^q(vxEcxe*2U4S&aAs5!j=$sJkJ*VPv%~l!V!cGDeCle zXo#q?S7le)FhX<|TiAK~jx7R2IW0~^hP$UTWJaA~F};fG zRrcgTOg6VxS26bKl@v3xCFo%Tf*J*hhbP7eDMTY0|YbXZz%n03yk80k|IV&z?0;$mq$#u7$*IsqOtx-2*pqdJ$awXwx6 z1qm7V3Xh`$eQ-B|4+)!6s@-U|$FJkYw#Ofx$s{~-?$39ReU8vy+fE!Jbax9hCkvRI zld1(OoR>+W)ct9$FHqwIR}a8cm@XvgG$__2*9DAAF#^5K%YH+p=4oW^>Hbl|T|ueY z*c1r##=E46b}NNZ%UMuCBvDN>Jkn{`$P7vKWimnJ4`yrx8>YD5DP3&JfytyF?m;q6 z=xo1N(A%eKR~C0)S%vXCeP8V(l&Q`c?Lwwuoqm=v-9&d4V$R>|;%h=h6?{Qx}4!8_0NM52G4&lAIqMWlJ z>9H6ET*^?5IfW9MARJUZ+Twa_$lS_e&CmVQLW*vJl&hvJ|o5g*Y;L=gE9RC@<1OooK6roS zs&z%BtBY6Nf-3tRKD~D1>NW5EW&OsYEo=X_Y2$mV)~sK%ZvB?k>(*}Cuy+0C;!Q=1 ziZ^X2Dc-PQbJ?K8>Bw5L?ZeWtjV0SkwpQ=iv3+}a`N!oSRqihLb>CaPWzL96WaXNNr8cQDDpyHK&fBIeomQ=Iq6D7tYjudG3o-=P#VQ zaOvxYy88O>F2(WF;LPDHLtYW|A#>rtp%7DE069R$zb6nyR3HQAAc_l-s8}KM5nYhy zOUeOM&?#^PF63Yd^???0$P`(CX8}(vDM*V%^9}@}dMVC=1`1%5!1!(~K(lX7`csjJ zKN0nJYTTg-pMTuzGdnzPtJCF{IbhP9!|AYFEPjj0;jq{(UU$%9866#apdT@sAB~Nf z-NA@))akSO!X{lt0OoILWZdaCne~sfnn&895v{tv@8Rg^@ZjKxZe(CsqozZPH3I|M zLAAPXXb2Pa6ZK|cDS=lo&#(ZQe3=3#0Wd*iWPw7MuSdBWW#SSCo}f|QhU*E0W{Dy% z;e%qJK$IY6a}mEuyhI`5oUsHYjl(W!5TjrX6c*{6WlL~WTJWtzK<)F}h{aWd*h_-p zhJ}yMKWb%swiM=VD+C@wG8HnJfmfctBv1n}OazKD!L+mA;KGrJ+s6YDo3%0pE6Qi9 zu*1}>MHMWB_$OrIgpc`2pc60*pBPu9JB|Dd2KU=<>^nB*`*6#^Pgvbj-nKsR0h{a+!W6zIkz07nE8 z_Oz)#GotWG=&6kW$38yjs3J(gNCMC$T_A=?QY2X6&-BhRq2+_|n>ay35jpKP7*SM6 z)%l_&;$g_(OZc*ZvV`J<^Pz~Sh0_`|F1Ri!wveDPa~R6qKURR8`Q+t<2$4X`2l4Z* zeiEv=P_UtRApv{8OtVcgmKqY-<8_@qk0@k_WY|(seiWGv6o>1Ezy)vp2xYyBrtoCm z!qY7ZNjgVuTybSbM>Ga|SQ5h$>eFq6_BtnV-y9TlJ70oMFxA%+MQo7_;~+Cb^K`-O z^v;@-%b`*Uh(bV9MEH}J7?Bb8_7!4KVdQ9*tyf`)cktrktv<(=+M+;ZH(Tm1`q3{p z{owFzC1BY%3Z)c+Xyv?+9)x+vVOYTj7Ui&~mFz%pgt%4Sz?9OK6PHpEl3_90YsnQr zG$0LB_P99BEuv;6rd^tVmJ`Tg*$?=cONp)q|9HzP$k%bX{!46pfv~ z&b#9S5uBIt9W%~0s_~SGpiDoHIUF&^UUT$N=Fn^Ib!Dfon4lQ2wjP%Hay$bJ755UI62SH|;Nnf`_!{ScEEM_!iA$kYKgWi0y=Z7gVbKru5L9?Y% z_IsK#8oV)q9AT9Me#-eLc+Fxzi0q_0CK*RCdEr}<^@OHz_%ZN&kO?Q)+6KKnQvr~CZ;lm;J z7P)C;Syfx83x!&Am73xGk1Z0-Hu_t)`sTh_pJ;$oNz zP>KV|R7VHIFUkt>V;kJWH*z;sP(auViwi(jC~pHOW*o_R-3v4?DN^VS$)=~Gw2wpK17v9A+{Ar@S8%whIU!j|El5bjhO zOwj&Xzq}KZ@AN3*(7)cA{whYptyZ~h`p(ba+HwCeeRDKge>dGPXRrSd$9MG{8?PhK z)?GuB=|)K6fSQY_#b^Mgqt%Pmp{|@bOhg@pHv7ipjWFbi%=q*`FtK(Y;?LkpqS9}o^MV(}vW+wj8zmj&Q|0GT_QPa+JI-O3Zwe9$JK@ofuW2iJ* z@rCgLp|;wn6)>^&1saG%qp2cR0fWFUu!yjL%WFYkVSxpf*FL`QyRV*ecNcc6&DcTk z`_4V*e&?Kf&pE$eMyiz_y2$yGy2O0W-?PN$arTP_3}!)T5kMu{;iV5NaRd+D_CTuw zh^#6QTWu)>qZVm2H|N&IZsPOI)J|s7X*$j8AoRu`;y>ptV_gp*GZh;DPmhKBZItcAeu4X^w>~=rx zyw_*+Jk5M^wMVTr-RPpEuvs%XDQ*5@0xBi4s1An$mi%mfdkiYI<2F3c=d9g0&YMSR zquX62Lwtj(jMRD%lQ*>}59%oGv_U;;-Q(6l>KY`Zt;WhiV_e9`9CUQi(<9lGEj4WZ zimUIouDi+j;%1oYHF7$?Le=yUh|QFhn^SPl*gWZxVg{5Dr+)YO91mxO(DCMYfU4wo zvYxvtl$<5QIS4WKA6J}e#-!_-(^5yiIbU9)k^G{&E;4Y(N!t1~_k)`n#`v`b+GBYi z>^OV;5j1CRE>R#xHrmlK#u`;>AQoX;{Lp@4LWkZ)qtxOj)A1L@UfE&fq(;uD(C~H=;4E-PF)! zYpgITlIsc|6p>H|C-duqmW=?2sTji8slsVld(X8VY?VO!+P&d8P#6wyFAiqT->m)? zu-7%$m$kI5!FH~)phfGv&{(33)z@ltz+^QP_26^?b)6hX-#gz8qv>-e=D>z5jMf+6 zxR^KK8XR$TGS*aQ0%8h%7A6n>0d<>)Sa%KQN@G17k{8DW8yTi*mq$|&=Th{uWGW?L zl;=ZEvJ2JA@mgb&QnH19y+gg8O#YqdElr^apI;kk?d%;M?CW=ojJhT#$K5I=s(XTK z;lxc4Gy_m(@`pkz2Y@+W;%0oK^w|hJz6u{6EiQbd0boSf2h)~DGC%tBiXU;{U)neQ zDq%Ib)r^kZeNd_tKbt5wPF7f}Yh8+0>8Pu-s9?(EY@Hzi`@EbnMr-cNPhlA?DEk(V zg}SL{Xlz(x9-D{wV4YLU<#clRaW7%@b_ATSN~VYWv$GEj`oU{HL!PNF2u$I1S;&=B zds3a0FG0PFI+f#>g?%r zpZz84#L4r2&p4HN^0TbWE0;Mijp@#jCtd?Oz!1}5yP+Cj0$>RmAj~$vpdg&bWwYb> zBa=@f7*P?@1Dr=(9|86%c0>R|8j`dq$|dsB5Lyx)obzmX)NuW16kah6DIXM__#s}1 z@$4bj(4gHlG0N0 z?XtMPqVfogX|?F$7Fd_*|JO{GXg3_@3{d2JLJHJOzSF146`^KR9L)g91@FL0rO- z%G~i2C)6y5HIHOy=%Gc};MvPwqz6gz$PL5sCRjv2Xb!{L-5{-gftiz(Plx0~ZY(6v z1@r>1K4%C#;RQsjT@Yd(AxQt44&VxrEg2QA`!|5T`3VFb&as_Hb&y!5 zSmMhp-xnU%6cB08ivn7V)doaFiXI@DfqkdNIubaAnkj3P75gSjyRR z(p-3Y2Iqn4DWCR?fExiJ=JiCd%LW-RE zxA0OLGet&Ydq z~Zhmr~UjcJvalkvHXPmhsVs6l#^} z`2>zYS%f%=CS_|Eh@0&obir@HfkN4KBB9>{)BqF!<*BKFY9p8eT^3(<2_=AJ{`Re{yd&? zLhw1+aVzwjqxBzL1Kbnt{Pp|5JR*4VPk>B_SNN5mEnAt>uyXk_!xyV#)+9%fZ7Y9S zQ}(O1tG0sLEOzSp!-|JCubA!5-yO5!^LsZby0Lr14Tf&ye0W%nD*?f^tvA`l%=QnK zr80)SNLxRu<5Rv&qAzn9{X;$}`e~I~cpQD9#-$oYYFqkGFSsI~ACS3c@d;?fVph}A#qYfHzDW^thSslXCaii%9;0wX8#BZfLAzqbm%`+mw8lG#~sJ5Ai@D^{^;WAX_GFef2AVwc0jgGgX|CqqOmxzy5`#xR95hT!*9aWEqE_Srcm1c2zOXs z5lIblO9$?hgyUoz_{UbPbJ|C7TQ%N{T1rOTelo5{7UG2PWeAyLh>_GSL6$_M5isZQ zbt{;I5(t>&!(Q9}J4U7`z2(tFV94WCfTxC4tG1nX2_{pn2~^|ppADyp%+1PIuAfJt zg)%!!7mZL^aEu0SO*^{DgDs=9<)eP&1#c#Me<*|k`nA%>eu1vfsI(%A)^FeA<1_2x zQkw5>PvKKPdC=S6>&SGii-Yq?`Iu`a(Qex0erUec)BU>-{CX(2mLk^%c;?7ERcNypoOZZEo(0k zAAi#7)`5h*MD}%jOcnYhzLx3~MF1UQ#Rgc)ezg=P<8;`%66l&h!Sg_5{pw3bpD56; zh?f3*z?kejoavnCJIUz+G(?9$%9 zGC?dn99YYF)#?=Dh|6T%z1lzM)Vxd&byI5fbaNev2_tzyxDO&jWh!12a0k?y9QPJr zX{tVhI-J%xNuIl7ERLVBv1iL{jB5~z6|4B`?D8hZLnu@Rbv$F;cQ8bc zt3@ssr-lC#;#QU8jg($fs1BLl9z`eYljod6usU)nb*vzvc9iVh2UpjZlsTo*qwmY- ziNWr+MwKd4*A3*ds`N!*%saUis*RF?D|Jsdv3_sh57ls~kVWi@%Ks}$OfgFEipdg0O@tT5#q%F1!4wPxgH;GL{u7}T zj4r~Sm_$wO=GfkP9FPz2BbFjdlaQ;A%1!2Hwd*OQD=9W(p(GXX#Y}`| zq6bkYnAmQ1p?Xy+ER+GR+{p@qEY!FP2b-QbD0*jt3}M-8J~ZPMm7)XEu<3JVGpTtH ziPJ4%y$#MOSddtm*A3!J^bcCX%5?%TnKZznB^GEHaB4hox41>Ko(|4I`-*2H}#{`2P(+ zx-7&(jJ3Y?rEGMBwpTW@r)YpVo4GH))mVbYB6QqulnccM;cDRcA+-J{Gc@IOFDx(F zA}}BhJZU#Hh()E(Z^YcAGom&T2snc_ToZBCkG=2Wg!;C&5hL12Y?_7?^3#+|ks_EA zDFPM%a9+d02v0u+^r5Yu1YPD4E)Z?5s_(Vw(zNAQc^wluk0xlPth7XPb z8#3VVA1fO%E9kU9o}`KpG&7w68{ync5nktFrhvY(S%@O-Y?!_|i?}08Y&?)aejM#E?aqpd2%E z$V~pcXcXrWJ-~u>g`dn5!DvlqK`AE0Rii92+FC2=xeW%L4rkUDG#Ijsz<&Ybxf)=G z8sS6LQ#@K}qa!(jXBXzSg3;rFw{93SLUcGg8$0G(iGU!J&?7-95rdWfqkNe$?@ID0 zp{3~s|1F;K8W-~yB#q={HgYaimJ*G!iWt{jlZf9|gI%a(luqA9XMfHH()6TkOq`dj zS*(n%%j8Dio5^jAdxzMi9dz7lUa3^jYs4fF2LLYS#?_%Ec=}x`QBUF$#Mv;Q*7o~_ zqjVI0(>pld{2{ss5Y#sP)y8L>8$Zb=rqx(F*9D54NFo70npEnp<_f{5KvKG@dW92G zBEBBW1=4o+jY+oJ1Dwm>bM81RR6{U55zbK&|G^JL6fJG?CY)rSmP8{*n|>X10cVOg zQaTm*NNC+efDCsI;Ma%ifST6F8U}k_^osrGf*s9au8b%`Q{6)mtElE$ld`juH?hM= zA%Wf!cx}`ldt9ohG|0J^4qk?bb&`fF^$EqOoE^dOvmy*&JmPEL=bqnr|4zGwiACYED!D$L%(sd}Tw<&OPdH1Rbo`MQwv_^GeEf}dCjjIXtI|fZKPI}59mR35dOx<(sXQ-f>&E}KWDT!4E?={sGBF^ zcjX`ZxrlmhJi+;U0@TAgE`d+|cFeoJg1>3^^fW!#IkROb9 ze+g>bZ}#?TIaAK$6zp|N`KE@(hb=mtdB9i9YNH35fOQsJ-cw~2xF?$cH)(58YoEFR z_q-M%@c4*PthoQnlMX$!x{Z4JrZr${a82_l;PqVdP$zV8kf~}1QRu4P1}f9zAuNiHO=i5(R=%B( zQ)zg+7Ms^NFD0s|7|^1w%_@p5U#fiC3;_qh^bF`^kQwioYYK1gR-4b;3!I2Ax2!FN z6d+BR#Qc{zf+JNC*O(6{3H$Z{=+uGNgGkT8)B|a|lT!Kxjbb$o06-ITllm$XPPqq*NoN1gE#QelS6Hce!`s{cRnVhrZf+zo%sY*stW}KO9 zc>m~*QpKIPFHZG#tL1;8|W=0N11=mwIUvfJBw4#sAN^$kXSP*|1ZFUJW za_R_;Xvf;K&`30C#ZZ0w?|_s`I2a(%09ZsR5mq$ub!>J}KioeuF+4dnsvn=2Fc?Nh z#>NcrH!(48n4C7vSnMW~P4T#0F8j#5lPDe!#)?NpDn`f+FTrdM5Vm2TF+WmNrPJ+m zgyJDo`Ev&bqroNEYdRJ5#M>Jg3*?dv!etfw2~&wLCNUmje{UG=Hi&94im0cTB3#}i zNdor?`@%riYqQdhrllWBPf1NkO-xQrOGr*i-oG~`C3SCdV&bRA6F!TJiHVMg2#bo? z85$lP5xISPXmE6JX!y>M9ou#UZ-bAx-Jt=&yQ0FcN)yh30`2NUbMw3ta$AijB=Zci z#6c-8qLX{GP84C*Ds@A&fkMJeCUQv&*?Ae+EK;Q+tH#2lB` zCEW$@;b-0xs)ssTiByepW3zG^Fz>Aus=;Cm?@QH9(0{yhz$N*opQHuM_x%|!bqks) z`Kw4&Z?0uXn+U)bPDiv_GNAL`BQH;!;eMp-#UC{NwEX#B=6R4?1=qW8&ofr};z^*R z22RL52d?0nIr5x{tq$<3%@_-j`R7goyYJ62W`TBE@#0&H9+Y85E&U?ywC4Y3cY!V& zCExY~7A-iW0`?=W8Ff&m5jm-G&AoUZnc;>8;z7L5;!r96qEa~+!u-Kc4l$&u&HS9) zeeknwPG#b4E|(zgTLhQ_vKj~^^d*EaRvoS>)dh!(A%z8&2any%#^FYdAhX`*YJr;4 zqL!u!BDroyjZNHl4mH*_J4ENF-VH$HiG>S}Rtda^PG4@RGQp-Oi%WtA1QUD;J~d(y zSs=2>1fuW;9g=D|3oszHS(eLk*XhoCf~K@I->?mqLKQ-j_G3=&@97mYlllqNq|ykJ zvAz-wRuy?QEs_~cu~Y@Pu%FjMkT@pjBk%y&CDg$*V~@m%y%9Y7GMlec+Tg7@Q)vgI zJ!52=2YRj!Q1O~DiWZtFcbqj+Ttad_VgkAa*7lCCs07TnNK2 zk9Z+0bQhF3#K>C425Y(z?RyLx%T38_EHX0=Uk;Gwdbf_OTf}n^N93ldTFo}{!w_8=2kW222G1}h*BF=K+v*>5^$p)m)XS1cjC(S!|86uN%j+9Yy z^YmBWp_H`r&l)4EjmeSUyjGliws5oawS zv&}jGw6Q5^SP(TT_=!T4o=MDuMsXMTP-$(z&_1X?^ko+;neLlqqAr$k_OwLh?C~(9 zP`yhOpbczV$a>%YJUEMypVV&~Nm9t&4C>fWkJmb$uCjLjX66n5^Q zi`RFdzcsj4>ZabHXyapw5Wh5Yk1W(-Fnshi?qG5t@gLDX(hw!brenK z?O$i&R}RDbD+u1G`^Kq`=14QZ-&wCdy zoKzVNw{hMOqQ~)NShbVi!bzCKY*%4gmx9pQz+N8#+IL3?l&N1GPCH6A zl2`TEr`Yz|JVuVC&7$rtLcNqVR_{d7SL?X>FG&60vBc1uv~^okTbPJEl{6-ur5FmZ=C^V7a8o21LT$RLa+UfUr57;og3*&}y`lJO*Qu_&9 z^CcPEor+omPt9;;s@peWVz0zU_c)cgA-e-}ewz_? zFq%}ID$OK{^tt-?ck*VBUcIE^=40A7Jm4+~ zf8zrD*nqyf6P?7!Iq2BZtyC13K!$vy%x^`XGE*ns%Qpx|uGMUsb*=5|?o$swofsHU zt4G<0G`vZp9vjhU)B~gQlhac(8tvSoe$ixHnm3sBHjCM~Y%~cryG^gR2m-=(hr?CG zA_l-(#S9=DXG_1w93X%IG2E>L+lx{}%r9Qv+9?%ah(ikoV4@ZR@MATv4p*=8KbP#5@@Y;7HXdE7$4x!Te1tT>qW5=+u z(PwCUMkh=4!s^z>x|-U`lH#(8($b1Yh2`aiC6x^o#pRWyRka0*2etW`irlQ6tgMpc zyLl=1(o*iH+(}K%C@D%*C>~}PBwtUj&dhO*zY>3~`g1*vP$~KkG6u3;@OJ*_AEZ7@LJ@h6WchHv8hV zmO7Zm0gqcIp`e_~Gs%bxHfUd*sa7)1!0Q}C9XXTSD>N65g3L8e*p<_G)tHNe*zP@F zW{tGEr`I9<3T5VHR<+ek!)-9CfcyX@%dJl9u*%|MmKZ!^!C4%jdF5hRHV040Oda&u zW%vrY)gsqAc#irBL0YdhfX%2jLCpMFChvyiWCtX5HQ&fpuv2TO&@00{wR!MJs(;nC&}E(vGpDH`k}aB0l}ZX2o%!{fl(N&Jvt3FQ8XvrwQibpe{e znqESk$z#4!k_Or+DPCkNTk#6L)bb6x<1+Ust7%;zo#XJEq}JmJY;_qt^*8`##vp zT^Y?k8B~Ka{(62MwEdcBVq#6uw|494P~t-Nt*NxQAq-uf8{J>P(UU1BhOzlFZbX!v zj@MG$4Bxeih4v}fb2qwF{j@~{c9qu6J*2FDl2R2vs}%``4B}Nt>C>-l|K4r;*pTmu zKhH6~ZGEz3+_Wo4Jaz~6Fxp+Xm7TtSSv;ZSeEVvhr(L{f-P!uso07;!LXN+v2%x3A z?WNcFmiC_)?E5;GHuqqTTGe~!YVT0mABJeexlc!my;WU%!7NA~me7!kAs3>~C)59m zcnq|`9?yY@_0-e~8m+nI{ngz($zEclwcJV_(mGu(VGYv^*LONam=T8&7I!9L*FOnP zxkZ=89(hq=WaiKJvpt(SU#Cp5hn&2N@cRMo(TA`4#W5PxMkOysJR93o)SMQyiIAvT zR_IS3eusj-$^YR1}pP4oyh-b`wS&L8UZ1jI`~h@)ZoX^Mpn- zG|s*1uM@y8$8C!=LV**nA!u#9ZamQZ z;+%1DMr*-N6)vo44(iI9O}Gj=Bk+E++)|*J1{Jhh{d5Wr!-GDYp!)g;O*ZPR34RuM zI1^E{_ZC*25=hy?$2MFl>?}sjOFeHd;iJhYEH+^(;(HIIYbiQpvF@u!{4i!eOeI}k z+ACg9w*J^g3w=>i0IJ&Ka8z>{HNjX2O2Jz=57OBW1U%YFn&M$shjt;yhm-iT{v2ye zawC_qa6Rd2LR@TOwtN^Z62Imt`=vycCJq5MZo;5#FrWb7CTQmlk$XetZW?BITnnC# zfVHHBy3Tk2jnPSGYCDr= zGM%K;X~#ImR@%`?txGgjF&dXT;tnE;vWO#yC?v>YWZySeOwi&AVUe~(2#7TF#O zh=A<-I`QGn*-*3r)J7>LgQeME%^@zWczWp$|BMdX= zeSgwZ_YN%jRy@@mVsx$ZvxE(H&G^U6uwE?F6pya^t*5BV&VQmQEicw&6(tvxq!&~^ z)@nZWbkBy4D8X6T59~~7Q9Ud1J798mB=Nlg2>*pU5;_n+1a49N0 zA|k-o`+L98IT!o_-E)4~TnSp2iJO-qy{9LtJ7eofde>TeJbSyd2~dKS31Y&foB*;Q z+F(9Up0d<+#y_MSPf?nCY5zDgkz+cK1Cd5fL9Ia}_-;#1T3dT&x8&}x=rl?LG^kpB zV|E3d{gDyQrclEE=eKuW=KuVn3iG?KzWDW*3(sdoT%h#7$GcQr2UWMxVQ?w4Gx##f zMQ9&*o9c|@qG@?)Mg(EIO52M0ZOo*J-ju!SCz=qv5e*t)qRh-79K(ny28GwyN7Db| zJ!o*HKq5R+K7pZ`Mj?Kw3Wdqo8~8qZ z2W5B;G@l{3(R@CAVnizYLE4WcaB9ROh;`7*C{*rsz5vsvN1^n3Ea3;NXwI}1%C!-F zrfThw;QC^5xAh~-YrmJ9V)@s>jwpiBi(SuTfbHTa2* zm4xkQMhzC_vR-n-k_)0cZ9nF3rzLlT>`bny_b^(t2d&%y@r- z^`;RvQ2rj1?vBX1KcV;Q@Ywg|ux9oU?TzYb@i_4`@m4eJcEZ(+BVQaAQj9bVugaAM z7m&?>tJo$~!g(-c-i(6R`7x2R0po|I`IDq5)Vuorjald;>PoRCsrQ;|()bZcnlgIg ze91@sR<2ZjDv}q_YcY&VOGcUa9i*?EVDKgdM-j)iX9=4v6j#lagmx4RB3=B(SaI)q zTFHZM!5=3j-pkRn<#tkRf=OJORg^i58!q6i`cZ9iC8JfnDhhIPnuP^Fi;v}p@Armq zs6T#W#M-LujO7KV%M2>5Pe;t`bGF@Iy8p-Sy-uz!H~i0q6WZl$pF3@J%JXRZ_>NWk zhiIs$;qfC6EID{UM z4lLf?y%TEPJnBie+ld#wKA{(U`{~V9PQ`4($2FCb)RVDaOoI4>VPz77n8}G~pO9%W zV6LZV_s>o8(e}^fGfJusTkHcEXz3u_ zn4y0wv+qeKD5 z>@-tIYB35l?2PG(UrJZ2rk_DAf?$d*eQQ>s=Tm**0IH|qHH@nO5fzmfNv7LMNh*8M zOK)#O`YE#)BKU-UO=X2+Lxl_SV^}QDv?k1)v5lIRB~^uc>Qn4#q7BnpGDcGK{f`T= zwOj^{$+csFqvW&cyyQb+Y}^)@WhuW@*8h2IzH^>nc6oh;ni?o@M_4=)a#n;>YX6wl zwuRclb8XgF1zEqJNVE~KH-TD|(8gtX`MZn%+00<^6v6_!74E(ZD;^!j^wo^`525G6LQlvBE=1m8joG+|!|K)EwOpzZWVq8Jp7 z3p%;b2y)pLl)nJ|rl{?&MxrR`jx^m7w7Zl7-MWWe$46kxQ#n60DC#1x9p#q2-qCdY z5Wx2P5Lo)h`2Bt~G3}r#E|3j?vpTp!s?*E^@n)XB9!duELq4*UURP+YuP4 zIK@OY*#hjzr>O(=Da3QNX@7%&|c0_96XdGy)r4TtS0ksgj($lPEvx5UWh%^@A|> z4-NTOMbP*P9qFk5CJ%a+P7?9yqrY7Rx+}(b-J!YDoQaS~IOhi*ae`wcjCl$YzE7CG zB?RFc35mSNM30+0>Yv4A_yIq!Eu(da(^UK`94Iq*a@T-DHkI5CAjK}DPomc{gAGuf z^{Ck>(USxjD!+v1!E%L1pJB~0Bpg%=$G5ZMVV~=6iMy`X^@K6N=1) zB23$&R7L1{a&+Z~c>j_1#B-7;Q3b?Hj$yrmp^t!zVqlbv{E1U(NE+gFgEIxlAAA^g zB%H;}VFD2Z%7)1jA7sDp-3+SdOEW%JI z2QJzcl;xo!ZZRJnFxlh^1wr7u)*Rab+Xw%ZFfxUUJixh%K<+J5W;ty-0ecwz$@id#=K;^)5eBmiJc>7SwE6^U6Z0S3Nc|%10@4803vC7ULTB+`@_QyV)cf6d+HDM0&7r)ktt(pJ!?;3#1Z{4k)_RKnN!MA}R7@d_#0Ow5TQ z$RRVIchF~VzhrcL9U;1nW1BE7+fLTBgYU+BRXO(9A^C*dk}Ra^6}*Bs^`EiGlDVRSub`cVYXzLcomb) zs+zzYwDI!>q5F%XO7}~eH2}Gf3cRsknp}DR!QOfvdSthcPFg1>skn@y)A{FjUA}R< zr1;jIyVX_I74?-BIzzoltv2e_I#W}V(PV0EF*TVC2ECCQKG$jVCb-ub8Vn|*-V9eg zJemzgc-CthOa`q^r~a?bVAN}L8jVq{(`j^iquOB7>6C?9jb3BW!#1Yy@CF`W2&Ze!x_-vS%BmrMqZvis58V zPiP*7WX`K}b=$vZuS}*TYybl6)O~jlpvHlY^Kdh+qh=-S$LdARDs^q;LrtBw_Fh#@b!B-;#ih~* z7cboVxv-@C%AJx61$mxl&*WsE%TCY8%gV?|&peTymYtQAo0E|)9uG-7mX@B8sY*># zsS?u?RH~HpW2%(Yw2X}S#H8rRxY#gdM5r<{Dl8%-CNWYOdn7D0@o;cx!fx;6gs|YC z=(MDyu#ouR)FUBL@sV*yl~FNqDS?qm(edG)3C9w`V?rYohrNy{BO{{{6H~ZBuoQHi z@OUBXj*Si$I}!iFCRZ?G|Be#<)~2nLl(|5&w0R>BR9g)TXG>Vdhy!9zVAl)GdVh^^ zgD<7)iIBrVrPhVuJsNQ^8snv7)Z=HClqOF8gx4(T66yD9`n*iNfs%hU_kBN(ONXMm zQF9v>snDa*R#lhP)W0L5Bjrskk~vJ$2{3&nwJ=wdAVoq0_E*Yr9v~d^j+XB9*}S)J zR4|D=Ny{jk1z!nRe!&1Iaw&3{u|JS^>8Dbr@l0WE9|!5Nlf@jG@yD9v05Kv0>Yet(&*IK0vG=JOsx-#FRtz^j;7Id!JN10=Te8C5Ny6!Lswa z`s?4gH*DFi9X%8g^r~>(Lgy|rcr^9YSn7e?v%B`Aa<7P!*dz}-ZlmSmJo0Y0opVZg zGzcx=KkStS3vd})4MJi*6RN)|f~JX21{x?jqO?HZsK_HN?M$n@wNyMSjHLSvROi+u_qI~t~BR6xRPs4hZ^esP}k-UG7H z8CwXs|1As_8@A8D4CW&p1~4N|80O|YYKKuy1gQ*=h@AwU5g5bZI=yom_#ho{{dPif zos>5LQ*@-?n!$5OmUlSVPqy)aAZCGI)FkKs%QdmHz>HuGd=7k(BIaGH=V z-_UD>G`hfn7w(1(5$<`x;SfcTPq6=?0DpglZ%|0sQH5WiA~Hzken{ba$jd_}_w#a- z$$h+o+~q!Umwi62@(^F|AX$)4fUm!ougps>4+@;^v)}umQSv+ivhPR_H9@zLJj<$w zFhSquCL8gqtfc=FU;QyrmT~;Oto29D|75qdELW|~Io%M}X{)t%pd?g)TXPa%x>46k zsayZmWXL8o%436N4iUqNFhRKl)=E*4gifbO;8Hm%NRIP<0C)Gk&+oqPf$=^EN5Hi1 z{&_#2=Xt-M=Y8Mj`+Yv&R?YX-{$CPsLtTx-!>*<~p#NyA=ppD{<#9_dG-0GYB}9Ye zBv|Vh!K`H`?mCHYwNe^B_Kh2pE4%1fF)BS-SzSy68BAA*mRJ!5k>zSQ*ES3GFaknqEr+0IE(|T}k&$7^_YF2ZTm457c z*+Uz0SltWb7n8N|{2G@P3dJg{>j|pck*Hb-O{+mtuV{bsgY0!<^i&$;-kI%`4xP6g zsM?ay=-kQ0!F;l%ld;$KmTxPy?Gr5JS7-vNwxcp3hWn1a+Q}Moh5DRI-v~I@wzj25 zgjfw)MKc;tvDJFtRrP1UlhMs;^C3~|-hp&&-8eipY>qVV;JhJ=WL~?iuK&*67v5IE z*ruD1CSs*Kv9m>pqt*)>duaW8Tze)&a@ESDb3dJfJ+TVKsBA`p-m65MRaem)uXs_% z;F?i%`9kt29yGh0`4|`OXGtB7pzSaoa~AI=k(YY)wrwRXu)?B~PvYe7I}W}}@$-{- zo!Y-9fbL=%vJhE??zzmh?6fgHnx0fltMkeZ(b}vEd#HY^!*2GsB^DJHc=6|Z3Q>P{ z?MHoqypmmsIT5C-oH_u>o%#M}*3{!U)<4vg!}hgb(=TnO3kkjc36oTw;AhIAs$spX zfm40b?*)$*7=*m?k1(@nD)=3o4I^%^5ECvqD(Day@DuQzPy0L|g1hfb44`heO7ZzY zm!HrZXCbr7nn{cZw%yWew0^2`_Ba&FsCm8fl%S}qhNAC*N0l_7vj~A&55Qqmyu}^CQcVbu~0#+EVTJ!US_VGGP=1zS zDnUrXc_4I>i-DL)5Xq1jq25kPqw_&n6`g^KVtG9+BR%8O4;4jOt|$VS=r3`vGBx)0 z4!d0^{uW>W-AfF#4GLv$WOH+qP}nw(aiSnm%*R%$*Hkv9 z37_E~L@lhHO&sY&tqq(_{#hTLxQT_CxidZ+ z2P2)diLIHlIX)x(PdQlw8xuNpIwcoFXAgT5Itd#CGZQ-He?-;g3@uHJoaxjojDIr! zw86{!ucw0)55JrjfcQlZ-P`-dwp9im>{x;yI~lla4Q8J`QtABjII()Cl0OpAh&_C0191zJH9)Hqy#5JjGxeT@c+LgEkNjB z!hR^I{|?5m{uhk-H^}0D!3h>N7CKpcrvDQrWF~tkE4iVL_}PtR|4FJHFoMzYuLb?X zLJbjli615?E(k6KPGEorjDRAKjDS$CItEtW9 zs=JH*)R>hf+vE4KeX_aJ_44Wavh6kv{1sIydfSjr z#ytb4jdS|a)D#U2(OK$n`S7QcNmXYWUNUF6#WK`2id6QkIU8g(ikR;#GSyZvRM?3q z*xi;al%Lr3hSrMa)r?px(iE*Vlcnm%WVRqDlSP;J3faD=Y8j%8+xE(FS~TAKC}|F*eT974a#Yb{HU|)_;d}U{6 z8v1>Ti&P7;BNL2GjUWrUZGC4RH2?u~0ZDfOsPy47e{;bD`oRPC3owU)N#Mg62YS~c zlk;Pg0(#2BY4UTO0`lndtOAGhxzdBW27d11ql4iEBJIxXa=#*K1GV%Lr-H)uLAyih z3cw2opu?lp2Vmo?jY8dr4$2cF!xizT$@3~hml4ny2WjS_$ipqd!3c5XZq4H570g1M zVmm|pg-j2?<=+vYGXO3g;9iAw4fHW!zy=~4Si413hgs>Bu_x<<#SIYK^SL#61@^}6 z29@iF+tUEXXAX*GClnNp692q;4Z#(W zk7&DeIw=p?!YHh~MJE__eWPpnT6(V|ZI!SjsfnCp(~@KRB3278l>yx6Buo*h6UXz9N zI%y1(MU$k*_z&<8gbxUj{fW->ZRzWU_E`cl)$MqtY%&sUMDP5sHF+Mp$`>hW9 z9FnqRCqUB_(>k>MF2|Cskk^pc=r7Q2>0*Zv?u@z|HK8wF+rW0inMSzg*;d>7yoO)l zZ^U?e9d{-llD>G~_}`r0MZsAjQNiPe(L=tG6R0!PHq-?)D#=^PVAM4l-HrW~`&E>c ztm@HPTXmvUJXK7U7ga49Id#6q0}T)@Kbu`_U^li|Ky7%go368N`09K0xh_v{)6U77 zwG3S+ZV`EP`!xErefocvJi}qP!p6a3h604nV1LD=88N7num)ufn_}DG6vc>+;KU%s z)MNt7a>(Myf@NN_D`gE$7fl0AlVzD{V{0qwXlg&VZ#oyXM(9jvvvp*<_#BhkPdI5E zv0l6C=~MiHNC)-;Y1zWKR=8%lF1S|X3Bxsvg^aDj)${Dn7RWZqCdx+Z(y!5{i(XN! zk=h2nk+-XQDSd$<&_O4vM7l5;LMlp;NoP7;HXu#(}XAQq0z!^~qba-|72Yq2IE$2U@+ zIWzKbP zqrgWwM7^X=)xqv@U)VqE&+V`7zmNi!!c5N8vg~SfJR=jCB=nfeGZb{tz02OmJG8i0 zc(V?#JnV|c2o|o>xRb}I!j|Wi7b*R#@*+tj`7U)+L9~dq1UH^P4myErL7Z+d)p9g{ ze|0oNIZw%3`C7+VbI*^`R^EDEnp{vdn_b;pV_Vu?_%QEsMrze>$+|Ron()MBmA6jP zBnHj>VRjxcx79k&u7ak)rufpy+wvt3)FH58pEuXwAal@F98|o+QZN;9oIn#pb48;x zVVHbn9;_*)Dc8)=;?gWbC#T(Ak+rTn_mu+M6Y~{wqjp%uzHG75*7m8 z!=@Tsv)+xVQ>DREN2))S%u>^lw59j>`UL&_F3U$5FoZYJ1 z@%1;P6sF_v+NaE?8(Xn0H@82GGn{u%nfXFnUvJ-4Mp;I523hDAOc8+Qmvm}t8gbg6 zw2yT2^rZ~JjG9dB%<#;YEaR;CZ2s)(9GslUoWHpixvP0%dCmEx`N;*K1+E3hg{p-k zMeIdo#hAsB#h)d%CA+1HrGsT`Wo6~q<*^lj6)qKLmD-iFRl-%R)il+4HK;X_wZCdz zYR~KR>z3=K>iZkm8>$;g8Z(=anj)G3nmw9tTg+Q_TQyqe+9cch+qv4CI%qpeIte;6 zx=^}eyCJ)Sy1#ood!BmjdoTOU`VRW_`ZosD2Nnkv2B(LlhDL`)hX+OkMtVkhMmxti z$J)l($6F>?Cz>Z&CYz>MrkbW%r<-TkW?E-CX4~hu=epi z4xJ7^j)IP1j+0ODPRdRhPdm><&t}iH&W|qaFWxUht`M#=ugR|)Z}@K}Z`E&)?i}yF z@1q_t9!egWAN!x=pSGWEp5I?0UNK%v-`L+q{;K^wd3XB&`$+wy_-y}@`r7=q`TqVv zmO!ZwAO8+nvi)C?rKp9YlQaGgOZ6{^$-u_(gD@HY$xr>zQ%cS@|AjWqw~b@_Ap7az zh5byv@ogxd33=2}fCbDiB)BW5%73#$tW}-vXldE$njKHkzab)yI?YNzRwPmS;Bjl^ z`NX;bR*AJJZhT3ao@CLBV~gA9^@&jw9NlIoQRpJP6EqLzHiTDv>`EiqqzbX{mW7|P z>l3eh&1%kKM46VauEnsDgL^Wte58Rnx_S7^HV|u-BPj{dalp=Nuw8H08c{|xtfw4d zra_K{ims$OH7GeJ{iwHP63);DB(bLl7|Kt3j;C`+@1RgED&JXuz>-@ta zI^i>N{1i~66LPe(|8Fx(8#p=3*cn@xT9_D<3v)8k({ucAe~b*wEbL4iH1sTF^z>vD zbTU5-qQQS##}6U-57v@_iTQuFCvRb5WFlc}YWKrY3jC0rCi3QX&UQ}bcJ@CB|L@w9 zceHT*;V1Fg8U9ft?@yppG;y+XaWpb z7m)uUD|vbUH{1FTOZL=#w&-^C`HE9 zu0d$*N*W7Va?b9Da=iK!Ywn-90HMk)S$nBK`yg7IXo0XvpmjY$DnR=%Y9pTjw(}e5 zot4WEGQ>cXbD8t%Npp{)l571@;mf~S=g4Siplw%OCY_G(-9b=FYUUL4UNCeE8p)9h zSeKF!f$e&U7cxRos$FHJl(S!$H2X8LUTx_j%ku%K9CeW7fiAS&qfrG*Nju5s!u`9M z+go*o<;{yjlh6$D8PX@^v305-X&48*_KqB=no5I+*Qjb5MYg+$RH_eTVKM+q10qu+ zq*u{*ADc@K^Gj9fGtO8hI|Se7+4m=z;cu`bC5c_|ku!@^>2GivJizW%HbeezIt|lL z2l;<~^NegPtPKAeN*I266B`5b|LF;rDQ?avE~q0nlUX-(iQwqv=>45wNCZK;gVx}A z)c66pi8?9CzaWSUA;c39@x@t$%k%lk0SOgV{t%Lb&&Lsph!cS4h3ak-+1+Fu9@hS7 zuYA>=Tyk`n?PR`vU4Ks5T~EG$T-zPPS_msg#D`Pl+oagi$Q|jh6Z5czMbum`7TE?e z3R&)uQZmT>ZGVZ3m2OAG#Ukv+u0h|hTa|y%y=}V_p1v05^(sgJ9lX(15FrG8Ln`|V zv@a@ZCvz)7RK5~N-s`8YZ2Wy`xL|Ub!GKsZ#(#F(arGkqF|@CShtB6b7?O+v8`hIi z>KNTR=o{DQRK7XWd$A8TA{Ha=DL~bbY;GumVMi)FET(V}&AZTgL=VsTKNDO$1EifseuB(PI)hhaU zwKdfN)v$BKjgjX=%tJAj(&*+0soaX0e8Y}QCzi7nla)pNn$XD;PoHp=%JTk(t~eDH z6Uq@Mu@yx%S9_W2379urxszCTUcd234~&{ana;G9JK622_g8$pBP8#1zXR#%Jt}XV zX0Ot4d}n?$=b@ZAB!tu0-(fI=c&}vJGof#2yhCPhfMyRj-YVBmu$K7fS9he_qHZ4`U2|x2VIqK_ zM(CmhI1_b{R<*jSPte1nfmjeRWLv-xF7hYk~M*C2-M{G6+h+20QD!r8@p7JRx zD9clVY=}_uJ~dke@%RqvV)r8O zQe4%rheB%)nrIKuYz_%=i*(N?DUv8t5NQ9-8rK^tQ&VAD5_?ht`r?AHl9e<`u(GFL z*#q4SBD06|>s4~cEOEq~+4Jc1N4rzh?W^#BsX2P;jO#h7`r!E<^?Lh-w|DSCm2&{y zJ(}{CZr#Ejdvh=3J1Mtj^Ic5nG5&V;1?(Xf)G9SjS=>+ z5h1AoW3eG8@1V4I&{}Hb+beL6Apxop1n&siD&o12?mF^4O$zRf)W3CT>ygMY< zHE%(L5c@`9t44tizjzR%xF`tmKCsjPi`3uBg$Ag{`nbHqfZib@->TV(wBw1C!QPqW z?U2epOY@L1X9~adNimc+r-@}2iX2O&B^u+J7j!vA zPfiiH@<-;iegl&K2`B?#Ns=sJX)2lKj#1D4y8@}Hl7#n%w(UinIXEXw)*!{a98-WZ zy+R?MX3>03)iT1Ise`hV*r7rReyM;Ic^vKvJoXA)?h4$Nt6!X}|J^l+!8NGN6}XIT zQT+yd15?eI1Wn^0vJygMd61B*Xf$2fJn4@l0o2T4bio)G*!?m^wInz}4xk{iVT+{Y zgrng2BclP|{1exv>LYCnQrAdL_ZE3?p~JkzAL4QcwpCn*##vN(u^N@qltEmPR<|lfMW)KweM`AkpDGd6VnjoH6|z+X%RssfP2I9O zR#nxqt5vMaET?5w6D?Q>Xb4y{bQJg{8afU;Ia*tiqtN|h=U>__llJshK^=o?)avDG zm})B8*p8cqB|N_tkchBI@I z5Gf}W2avXO$Siv`DmAPXh?I@3ca79piRbydL-ByAr^E%gQ?AzPlTKPay0;>d22+cH zCV_SR7Vq>!uO46W9#vm?->DBw!GSnHdhUcZGlXM(eI$y!cJGUB7tBPCw|Lc;tA`e7^Z6 zT#%^AxYn`Ou{JL^FE=jNsy2CQ@l;MPD=z1&Hg2|T)@?QxYF2lDCX@8lZy=h*m8iq2 z6VhDJMAN`fKhe;lnnflI_3>`=F7OVq%5JMrWYA~GXAH4MS_{^zT5U4&BDMcMe}Co? z@)~uOH&iw0;1x>q)0IjYbuIPu!+1dswmDJyMQx!RRx2#UxQO+|sV637GhH5w!}(!z zMsial$jAF&xAV9_^v#9)9Lv;Us+ShSN{Ug@Afr$VO*(-51Tq|-iZ411x%0iSAg&_G|(PBW&nX5 zas(fyJAjy-pi&b|52_+y4>~hoA-_$_9;|qPAN^P0u9m`{TP<)%uYBGHJvuB=uUsPs zq;0>s!WlX`)PZo#hCYR~|J^N;bkK%9nxO+PEx%xJ6sB%Jm3A0GD>&MKm3tuQx;`yE z1M&bpHc_D+_0VQ2*n=VO2TDqxl6%Mm1EQKfa`m7}E9QzmbM=tRydLYWXjGp}|8fJm z|L<0emR;4&kPQYt)L!+?-yn0SPzDCAfE4P$k^6S7NRb8(nZG;eVcm?lulu^pLrL^` ztb60lW8dxhlH+ytKyhw=k@iB3236R@;M7rb<}u+83b~^r-GSpKeYs*!F?aMq_99Xh2^9wm$MCVnMcOFfR0}&3WABv!D8-wV!yuIqC?k?e(NRXmPi0({ z10>^llJe)3L$F8V#^<3O3C$k+D3xI=;-T6UJsgSL?(yaB3H{QmZCnV_B^t=XOqJ-T z^4geVee>QNX>)^-1tZNFf)&w&m4JC(zq{~wK6*d99(*6ea2JpyOQ1a^XHMI`gjW`G z=Ap(5QywF97qA$Eu}Z~P`<&H&RyEcwd*!G<+{h|$n7%}eU+rw=-~VOnDW&|HVW7Z%|N3obUFe7r9Zf2#RFF2eX>Ra}NfWIqYE=+Dw`^|K$i|6|Glb>L+K#Rh zZ7b^5ws0`hrQo5gn?z@2SN~CR7tP?G;zV4tORhUs;m%UCXRb@7tTTh5_K?UsG4{@Zw~ve?T<*?-cfjlo zI|oft?{H_WU$uL1%sZ{d9#Zef$~#Nx4YcG=rhBO64R+_q%R2|}R>*fS_6?%M2~>CB z;v+HV&dIkg?E{fj5E?|EWff4%0I#^8bQSvD0P*s-MR}8D!Fok=dDeL$X9aC}#d$8L zAZW1ycPyG44&Y1ShDbklC6s_Vo|s{6tut**z|||!_P{%LV(6VPZgqRvb$O`#o>TTD zkvp>7UL1GQ$Sw2p$r*O`2kz{#26l05iCZqY`c$Ezmf%P)tx*E*7$SEFI+T+7 z$y+8-^n$@P;suj-K?>)j>Nyw5BCJHx^GYJi%UrH=+4$6PO0pyB^vjC(v#u!zvpnZ zg?s0@2j)4a+*7ZB!g|R3bNw;XA4qjX15p)GUS1w9x!@AwOBvBsadY;bucW15xz{p- zoW+R_BvKI=)fYc(E4789vy5iKid>{ONAb73bVZ2yk`(iKUWWMXHLO@iWClfKs3~e) z6h|U}Wf3Wf_Jb9Ff_>sgms0-|;PkNA&}Q{;Jd4b(`vU}W9hFkM(7bNnl|*tqg;Hm@ zudXt|i34rr-u4$TZ> zsax9hz(#pnI$`~1QV6dIfPb>k+)o6mXGz6XIwEE@M= zU=?p9I_Gv_P=Ze`o6#lx`_aD_gUJkJ3O1X`ZJX`^jT%~`k)4^E+i+}NFNG#n8==W@ z>70eq^Q!#`i*?v~z0>5P`Kpe~ccYEU*6ky^>-`x|oZbD@em|~YBqoO)LZU=Ahr{do zBRH~0t1=~??u0lvv+z#>vSYlUtm3EyB!>h68O7nh66?u8c%(*`5V4CSD?H>Od!^&r zXEY5LW0!>h&;!N% z^RSr%l6E6v;`!43v+Rk5IW6V#?vwjrdCoq{3*vKgq;Bcnc(q}Lc1(F)Fx zD=g922W-QSF0uDw12+k`n9Zq)R_RA||M7~XXGBkiP}rZEFvT2XfV3hD%l#gEEh3=xArV2|ZSn}{WGDbMd~zc7+9f9D zn>cuD2H{rFFNj%0=a2{?tKzV+&Ri8x1v6~Xb9(tyiyhHitX#yj`DB5J(a_-XSp=%0 zA;riToOqwlE;K}m?^9>FyfsTY_I7X{uE?PITB?VmtF`~)>jPMCt%%2zBk(Y zmDnMTBjV22<|drxsUpYIZukN;qbt}=MKTip6#H@L!;LcSeyG+EwSxTB@Jin_IwB;` zAy5aU^!vsS`Lw+9WIU?qVuw|=k`aH6WdN_n1=mbBysSc{(U&&uFeIJ+kD5Vi1prT_ zOcXq#&`;$vg&ZkesV^Fj6-N0jmEIe|+GAh!J-l8B%=%YM-*~>?$8-^aj;W8iA!)QH zn@?kS#4{Qy%MG<42~eIg`GAzgKkD!*x5Z7fHA8)J z8NXwp_1jW%FR+|{o$$g+yTRr%k7}h$~HlogcJT`$( zSkRLrko_3lA%us(mllHLZ^gnyN~xr!an!>`r%^+$hUk!`|N+M$0B zd|Xg=k}>rRgjgqd#Jr26_BHR+vMW0Wdk`;7 zcRLv+*YdZ26r=#&hGJW_GJ*fD8-AvLoYQufUn8D~D^-UhIHT0G%X9`v_`y%* z2NFuwd8VWryyR5K^=&%|bDfMqjnn>BKHt~t&E-O1nZ9*P3^!~`9Rh=Q@bbXkGTim@ zO#|egz;g&leHrWeC>0;ENi!s$5gu|7^?VDEE-0-cI*Cx|6yHRZI%HV!a^z&nAAEmg zhW|!>mHnm*KQ}ES^Jn)#s8ysF^pdNWwyRIU(|eG=67M9u$J7VanTJ8bvD@0v;4pZYYJBm%jln zi{LB4s}D(8l1V_(s+WNvU>t(?qr7LuOeWy>y27TNJ9R_BUYl33wXbP-T5FQNkVudYXu{_8ioBt?zm53*{qv~ ze_cJiZs;=mQn|IvsH`1X(ekRg z%M_Ja<`mvGY8Fg}ht8-kO|;4C`L`&l2=2}UM2 z{v@+V=H7I7(9Ob1<|VCqd>TiDJ9-O^$I9#@u4x&uQADXoj}r7~FU{m+R2*NSri!}m z(}f%L_Z^)<35bf@J*sRd(_no!4j@YVN$*Fdl?VukXssYg(Zb+2>O9MXbZ|9EYc*%U z^8<>fGLs$0)tl_QNC^+JO${1Sqr9q8u&JXoRN7v&j3~M4@1uR8`2bIQ6HNnvp@ooK z4qzH4CA)B^V{BJULZ-u5C`k;+qDkv6LgSb@Dr*?&GpHrD^vH6eya?J*_cSivz)nO~3n0nrc!=QOx5-}=0oz#GeA zpCa_#D^_}TVubuKr>Rv-aoydbFdSLP)-ufF z(qlNUSl1Xlgo}r49*^JfHJ1r$G|Ls`7lfLlVOtG0Dp$F>Ii1G*t~EnGfasgb-nEO| zIMr%OXmuE`NLhvH@wuQ&C-ldfcmw{)fM+OWUvq+6AC zdtpPHYR|$|o_z`|bZ@>nC=9lm%{ach(_C+)i~0QQ{ho8b@So;kAcB*$6;!m$&@BRu z4S=Zzz%Mjc!!Vv8Dw+gVxZCG~>sbsNgA6}ca%y9o4^#JS6tMHdKkaPc_ z^|aB>?%^%2n&M>p2+^rxhsgv{&*sAbVbxZ(Gc4SgI|465)aED@Gw(Qb0PK-?zs>h|uf@o^~vTM@my`#;p?2NSzf^N*`1i39S^#6s~> zZi8OBL>^=nQbOE43rJYlb~uDtNJmKVz_#I!!6{PK933Sl-Mp1IwmAPjkv;p^R-_c# zSO}b1q}YbG3xUJKt&oo;?eGGm+yYrW8~(UhcKM=-7^YLl!!e}_rof@tnKuw_v-G7N)Dsa28$vgTfGRRyK8jdYT# zis7sc<%K3BkXpvLIfYa63vI2;`p>R8FV}9}3uivvH!r?59m?L}oY6fk0y}Q&6LY#9 z4KOcK%_;fZ(Dgzhu~Xg%B5WCK>0dEl-U*oIu(=amAoK?NfsB0-Cj3PUMTTqVP#{3q zGSn5t;=tBYvGr09Zvw}4o4fk3Y_&<(wBbM%YBdq5-_+30f9z-QtM|#FS6l%7Jfb9f zM=Sn7S8f3yGA14mygU3 zusy(bQf&dXL#=+aQ`L{;Oc$sM;?zF?7{rvc6AUdgL~TNKwaEJfWOo97{E*jiAc?|` z)XDb+{yo=Vg^YJByLQ%mi9qn<;ja!6n&_>d?pwAear|IH1lev6b)c{Fu28QS?we-s zShe<+;-HQ|x-C8u8*G>F8L`h@iQbPE`AeG0)=TLK2rLRPk%bYra2r@nl$I)H-W&@o z!PC==-fdwV2kD$vqU4Lfr&Hf8Oy=j-NfrAEVU?!aJiW#?Jo4ZP#?^=y5b8J?1AredRnt4Ma`C|hUsylP#Ze)}HOO|0~7oP;ulbC+BQ7T!`f z+&w?Mx>R4+ZdS7lI$I|K1*>O{<2Mryzc_tn% zFMqY91R{sF62uJOv|Gb*-K-~NOr?isbNf1XuxAWvd;x_g<6_e;NsUN4hYQA}{vjeg z41*|guFB%B;1G}@7PvCMo5xOdKsA~yTqguwvRzJRv&3t%O>fdfng~8U=A3q1o#Hx! zodBy@RA+NvYm?3MOWlnjqwH6=>aEewj->8MpVl{w;PY27^d%Oh>;0m;l4XhhE(*|? z?P5|gcG)_)cs(Ee@Gz$C?ljUe7|Xqj-dKSIVZuOdY62l8Hx5wEsT%^(Qd``d_Aufu z#(W6GV%#(K9b5dU#1(yJ=ebL?K7Hu%b7m)p&xa&U?-lmqf2k1d1~B%D`?6n~YULrj ze|$K`c(8dO{LJ=9YCCV6+I()ksOIcIW6E}wX#is|%6@3=ASh{UVdGzazDGop6E`3k zGAt#YKZ;k+Nsv1XN>o*5vT}cQ9R^{ru1iXg{ zb{M@rXpB;$jZ_s&FDQMpuBb|<{u@I!wO8(sK^RAA`4>O>jOqmB z*Nk@81l$f7oi8ur;gZWAjqXdQ8nQH+$L49|gF_7PQ~f)fg{hi_sN-5DU;%??UiTKwC{#S(HOq@qQh=oa6A0GbFDM%od}VTuaHNy@x~ zP&pI@BCr*BvUR`cW4FBFVllE0+#VV_!`b3&Z@n#^pREoVx`Vzg*e|QP91dfo9H94a z!~5d+kWNNF-PH`P`rdS5pxp*CO%xkd8m(HwfwBm6_OCZV27V1YXJv&WK{$T7*nu*$kN(Kn|@Fgp%vTbRb!hHDWRX9CiK&Ip(#&NAG` zLo68^a=G`{LU9KfLPfxlxAdO?*d|-`p7-w}eqWTtrhY-%++e+%ynVeM7ksZaJhsV} zJt$m4`|@Zv9WDR9Ki!z2({lS7)zZV+Xq>%3QGW<=+!?d8?z(%3-JzDl2_KpLa>0@0 z&W`2L(B0bhzCp{8$^N_a_vm+_+=Rdh%k3Cle<7`CffMbU;vBw+kzvuA9NnLo!TX{$ zFHpG{kBCoh8-;BsICNddwMgZ4uB7Qm&GgUNT%dw^uqAmiuxn1}3RqRp?+1bgp{-~Wx?AY<=oSF ze#TE=zm?hC+)@XrY#-=JfG``6v#36%75YvjVO*W@gTo+v=r@o-{R2Zo_1<=z>Az8( zG3|hG#Z4MssS-PXgP+&0y{py74h6oz&1*fq?4*`}w+5mKAr$@c1-rt^Bm(7IX?xy| z1Ec<}OI`Ex?}+tlzfllVeD7V#FAm0s2m=3DVMZb%A)T0>V6i)aH;=a{Z;fhUO9&iB z$Lgl&oxx88>jYp`g$gwAY}O@Oh|K)4_(@|7pvrqaVYpBcmZe zCE_=V?vL^*(~{Tvg$h?l$#(~nr(Phz?2M}pxA0U%I9IRSGK=ct0ePoGGrW5K?pN=% zGF#U47)qk=FDF}#NixKS2HOM2v+0`@K~`kD#qut!g09YL?;aEHCMM zl`|~@H$>7cSZU2M@W~3%PX^z9$6?&~SV(+^U;zdgr)zWlAQ{c#0}b{BQA|6LM1E&MOLW~R~ZpO+?Q_-&+i>E9CXyaZl5o7F~_e@)4dM7s%zb(?m;>z zaLphnMBr2^MMh(OLr%}h_^9UWEtoT3;-Xq3gd7nT0INVwxO9~-p7{cW9A153(G?_0 zhGGbBZvMK7@9e}6IooU-kG=0SMj#tMkg1c)VeqT4G(2a3l368+^wSVOIgIS{N4SsB znx$_YI|8D2`(euKuSIc%-Q+G|IiUp&DGOl>KNJb50*axca6szR06srZkOTO5k2Ene z&@6av*y#M6G(QI!{Q zYEbYzct>1ja`w*Md}D=q%eV1NgppL&tVcd$;OrZ4!pJH+9?T!dA@jLml|eqFo@yPr z2A#Q_A_xBai;Mh9m^H&Y^*D{+ta~zZS>|Nhgf?+4WgA9dbFCi*j~dRbt`xo`JXlXE zqwlj$b3QC|!g2*luSKU5XBB5|4R|GH3$oc|q6CvdfVa${@Oop0E?EiW%H8M!`AWI$@w)$ttMNwMT^@TIhS3 zsdRZaSl1!K?9_%W6Ci1m<5a}W)#QKBj2z^CE9k1)$2uzZje}GpVC<$8W33H$CJ~NH zUg#Hv)t4{vMv&umofd@MrkbRJJm+W#u~y(bOH zT*iXFZ#t~wiQg325%O9LpPK+Qz?6h}GTBkRWCjFmclI}obZB0aH1wRP_RLZzW-ec& zjUW{LmIc{y*D?e^sTTEVAaumkE~~~`P`_hZjfF(Ap@mkJ#eh~kCP#ZWy*{%eJS~ti z!4n%lRS{V@@A*5|TwrO*caa`Wv^U?Q*1J)AbZi=&Y`8}?H@EOH>g)MB`sVYI8nTkJ z^-MQIt+C7Fb8!2Z#T`tvwDW3W_L9B9MU6st`|UD9@-^AX;yhz@_HC;#gO1Z&e zkYOL&!Nv(rB&0BJQvTWhNn@ndX|rjDCp(>9=8%0m&FMHR*q$~M4vmpKaDkMAP-@JW zb0ucoA(R4ZQnX%C)ncLrC7C^C@tGr;BgJVVenQazLPC910wk}FZWiqlif4N^=VIms z?Jri2`mP~POyLRvF-z#?X8a`Ucj$F_tj&4*{tGW(kJ(5JpCQr)gYTC&US0GjKEy6H zaZMn9hVh@oun_Q2SK~&_ReXr`AaoKfDGR7A(G?eX6)S%i!(Lzv0~j3^!Hz1y{PT7S z!!0}_B?`c@sAkEED)PJOwip10sri|cO*g)6pOdfY5u8%=TkaHga@MCZ&+kqkB#)KF+fHXNC3Dv|L?eTvjoo7yzKK~qp z7TZnp-)3TrnkWrrj_en~)hKsk*K!{HQhguG!pyetI6nu=5}6-@(0MeEps}eUSdxV< z#(hO{F;AwcU4hTw$x_sT*UXAJFVqIuTZ%{d^DtzX{fXj4Qj6D`qql9M&bG#y!gsx% zxc_kRfNaQhMs|uAvUTis?7o#&F&Fnvk;~JuJd}GKDk!_JUa7(`3~9KjL*yWmULh&? z`yS8o+wjbelR)iI&enZ@P5B^t=fbP$fFg zK|Y^sf98Zmc#IQL2$-$I;4McwWoE557l(*DPRSRix8$Y7Jv%JUuU` zJ!qWvyr_lnei0jcv@$9$t2H_ZmBvR!(9(>sXI`h1Pn@L83B#@gyuOV~Yp{CWGZA~ovHqRX5Mf|cE9$R#T%!$~*$Af+Y4^&T7-N(R}7`^j5w zJt>!yfL=-|ce_G`4FXC^o6U38wD4#A#zIHGghq8V^sQ^C*#zi%m}(PB@nnJi612}b z_8b(FS^SzN&a)?Jy#D-YWu{&Q#FJn~?ZDWCgN6>WULos9#?p#%o#s@Tc1QPC^8!a@ zw%T_UI1H?~f;KZMEEv$7IwN-BCFMcvFpw|bA%*Pnc-7eXU4My@Ig5OCbY4|j0BR-f z2`wgV#ggHw6DrWSRHW@5^+B-3z}1uCwSk9t@7U{O3pIgCT~@Vuxzm|*25)}Oa*4Ap zoY<;?=syob6qF7g=Za8I_3L}~+8H8)9I`)Iyo!?AZ{B5$dN4)u=TMKuA6t$%pXo)_ z`%k4!MkA+)P_5O7OXHh$=G@~DvKmQ9F{6O{j#SU*Ad9M~E@Mz(rU`ZFMUx5!j)*?U z-f@ow6Z36ah{&&i6I_so=^ZI#?vo#Ov_NUwB}yz;Wga+ebe{+5xE3LQdy1Nw5Wt&0 zPs4fq-Y|`^8z?6x20oemdLCy62Kdy!In?T`ny6PuKutwgv@y-se4p(yq1}LX0f^Ba zYS7_GM<#<*=_7Hi%9$Q<{p50WP8Pbex^c!~U2<+XRKQb#0L30X_PJ^DTP{o+G~hvO za7V=UOq1YQSn|d&bo3-(x&mFpw-i&BtKlF6_j6fOH;dus2=*-QENsX*3VYJIC1V|l z{^AKH*>!FG(vO1~i`b8jv7DBherci>M`kSB zGWYCHSmxW#39H;?4A4r7vs33?yi<-q>BSI`@TZwJ3Juva&O~FNw)W(13^c5yo#aH7 zng{==_=S~MgsfNFDupiMRpfI{<8UWjd2Q!F@^8wi0FYspe>hE=lQSC89-cUcb$K&f z20k)@lw*nmR2Cb2znm8UwsbaFRqB?ham4GzBH-`r!~$f%&LUSBO$Jj8C}?a8H$iG4 z_3?eX?{Oxw8vg9&S`)jj!CgXKd_utpZaDNQ!lL4DEaGc0SkkC2pYbKlS6Y7V(`xX% z>3y{KI0-D8xb~?x)$ER98=R=q5Cv+XA!L4M=#-JE@v=HOc{!%&o(E?y<%KphVa$;w z`#9M=PsEewVG}t&Tm{BKVFS z2w&7JV~mK_(d)f(pR(F%M$TP#bndOxfdrdOO@?X|Hya+KR)k#^7um5e={W)R^a9v; z_YL5Sf^gu~PRNU96i7QJb=L!G7l|LU78M@A8)p{89LO7P7Qjdj$T!R?QQz~oHN4lT z(Xm_DL}$$4FPhwuH#muSJYt1eyg}B^nqg!@iCLprHJT9pORnJ9TD;+*)m9gJyFbtZ zengEn{*ZSdh`?vS?z(mgytsg$tfNV_D=7FIyKk7YDFEXJ zvOpZ%z4E5^)ZOhkM)6~USt?{weuE4g)}Aq9 z9C3xC{l$U4-FlrWvg`jm$o_&;-T%54aqxp~RlC04{sP3;ej)V*_f zCEv3*8ceK-ZQJHdY}k6c61(*x0J-<5hw@c8=(Kt;WX!k#aRtLa8+6e- zh|f5U0`j)-XL0~%dqJ!=G`>p^V@oC(*^mjkH{()zN%h0s5dYS9uz?EG8?UfFKao-) z&aYih)^2BC8UyM85G{CT?~HKNYd_hONDVTb{Nb23p)M!$5U$paTbEIp?jdh|Fqxq7 zU_iX5I%6EL4z|4AC&3@1ceuY|?h=8tKxwG-tUVJ#@f7;v2AU zk>i1%s`a?T+yluRAzQ*;h3uH#!LzZfkvVo61UJ2-BjOwc=j@fkgnUipC^of9Sd z`}j_HUtxSGJ0`9Qb2l0v^t|%`da+KHuVT@L;^_<*Iy6VQKSuOWcGVi=HAV1^E;&zSpe5kad>Dz$%_#}DDy-Q%c0ePUA9x(0EbpCUtT#rOOprFLa+n1F zkYO}|pJDC(<|wE(>=EaM=u_3a`^LuX$C;(_C-Y&CKtOc< zcP26=KjYdzAw11m0%^(_JjZDIum^O`H0_2840A1SnGSv(?K0=k8Nc*$?8IOGkgDIN zeb6)845?CtRQTHJ|55^L>^iD-vrn)omG41lVuyPT>s*MY)M%@eOAycKq?V`m>#Ym_ zXc;auow9D?iZ5)rWDNUKC&EM-oAee%w(sF)UptYFT1m|KyXpkQZ`xYR#yg5cjYKvS z@2tKzvAvR-q2$D&82>x<9Jm^6W!vHT@0n$Bmy6N@@<`~j>IGR_9ZXTsF@+?-KA6uP za=YcpImIvzE(oszgR#$BlL`Hs!QQQv^38Hg`)zGe9)M{s0b`rMJ={if+?{jysJ)Do zT5zwF0rM%Q>djtff-$kxFK-=ClUB=2qEU(m*(FlX7*kLO%ubyiW0qSyQ=Z8f+PvGH zZ)_u_V($V0YZ}pb0;pbh+MaVf2=8)3P2lGxZ(7t=;=c!YVjK#OtOweZr)t38A}N^< z@s0#qH+dxQ798fF4qL=>6kTzTcDvZptX_ZOjFruO%?i!XxoD$$#;%x9hv5CiIeFTG zV^kK=VWStaQinM9o<@kPeZpJ2BZLy*Uo{u8YLS zz@gLSL&q$VDi-2|SU++kv|-n)3!B4_c#h{Ls4MvGJ!8n{UATNJ_T+Vx@uBI>S9XB| zX~u|gjZ31h7b9(~ny|~gYcsk{G#+~!^@w-+kL?E+OsQhNjdA+dK#2C$ZElq=Ch^_{ zzN|o2D6$oE`zkO#wF7e^eK1E?(3`K0%)gGZ{dozm&Q3)()UDG`+}?Jd`!5NXIQs<< zRPwXw`hiVMNN&k)sehaU zuzzYm82QhY?5iMW`LEQ4U+J{JA8EG6Pm5Us35)B&rZHLtuq>|An5d#lJja; zhL)Cp*UUD;{ma_CQeSvik+sZCFZYmNWBUN%a@|TN?_3BTtJD&FK&M~(kj+sU&F#dr z96%}Th26QHvq;b0U0}x)wND z`=$b)0KVJ>YEXD;?d!F(N|-K4y5m-pM4c&A7SL`XK0Uyz^1kBLL-n-T z(NKfVmrDa4|*7&upaO4+0AI1^O$I z(EnKg=^}y^6vjLjuqsAlp%&{`5k=#{9w&yg&BIn>_od(IWOy>&$U&Yl+9;4=&GU%R zibNb=&0;1VVRvFDEaDxP8ZVyW4P!>eG1i;*rr}TJ`F>-WTRNASMkqv|y2zF-=Q1re zZvGP~b#uy_fWrWHIfnVOEzdc(3) z42V!so|=vq&&&k~E_$c6n18kO1xZBM$bWLi5qt!sO;(rIC0Po@hdV;`qVyi<%1>5& z73d=v)}`{+*lXyCD0WnbBSiKMy!yQ&9pXs39#5xa^BqbJ!2kZR572HSnH8|H%m--N%3|V4z6M&gIom$k19- z5Fw3m!o+qKGb#V81@=eB)dTcL*wyaOkA$bt!S~QZ?PCIuR&#pA=|+&$qD>(udAE7jh`ATDz&EmaCwl`Zs~TExPtn9M=k8k*c+BsOsP` zaw=gl^L4xCV`d;=aTs>_dzLy}g>~OOx|X&gV>$)7=I@o%{iR*8&&c7mj&f_+o_pYw z){hUab%gUf4RJWng(1EA8I2g|iNt^O=jvR%CTjI@^L=7ZukRDMtK?h( zrr9s^1&jT>YNyk+YNuzXUhF&v+Cs@A9%^cg^I4jO><|07V4A9vnL8G=C!{p*ynK&n!zBo^t?TBbacxU^-N8?ZcP?$hkUGFhpg?wM|XkV zUE(D$?75T)Q(kXJ?GK24AZ-t3ZkKY7qYt9b^()s0<6fN)UZx9|XPc-CwrxuEvCY;Q z`L>$ryyqL}6N3r+^wuYp5kWDt1{|n7zUrf%VBXs1NE74-B!@;L=w$uH8yzaK-^ErA zi}$q5pRLv{sBNF!Pv4x(MQILfqDP=T)ZR{pxN9 zSLY|~O0oMOV>%~G)h1$o6k2mTQ^a__rWkK7ibsE?cpC(^8?6U%f_@-zl^&;IrLem{ zu*LhO(ORY~K68vbg=^0RIEDGTMzb^1jh$`C1SPfjF$6PYVT zI(l~z=9MLNQ{HeeZAX>Y5K0c>R(yq83z2>`3RMgpn70Z0T*I*oUg=$Yit5}HQ&*>a z-Q#vZRn=%R%kpx3D#j_k$s{jHYkH)ZW+}JXWo~Yv`D0 zSgXZ2F}qc*Ol5;T?{{LJyp@N|g1WH*q?n72=oE!h+)VJS4CW)Q;xO@&Zglpdt5xeK zu@1P=j(Dc+>SRR;c>R|8I_k|)WXf3TfML;SV_QY#eo}_ApSdrU=k!Iwx@$<`uF}aa z95fhbpqNwNa}`#^IqO(a)3P^UNqa+kKQ(#pW@qb*y%~ee1oDZ?RvzTjhPzqTBesLj z>of8_R$)t_<S z`&F9zW*w)q#ia)@ZRAEa@^0)5mS?%lb>nw6RKCZ%aa>P0?$rgn5?fR6LV7voM?yWx zHusfpil@C&+-teROLSC}JFAvJfV(4`QGEc)I$@^s5XXVvoYA3}Rimcb0!HsTv zSF0s8GiT%)#;R&(-hrIxPbuHHes`qW5(zXN|J1}Xf@KH^77AU<= zyPi}!DimhjFQps?k!clD)u(5xwIYFetWv*|Lvk-kIZ2{IZfc}Ch}~Xe#L(}8Iy<{- z?7pmq%<4dgC>~W*w^Lm^Qm@*KLOv2MI*%OULNaUJ7ap4{RiKI9>N_z0Q!#3Y$5e$X zPlXGOzm_hk05v%@5yGKFuL?Rf_hq`BQ^>J`)g;_Fv^w;b$8pYG_$_We8oYgb)q~MWif?M92 z0+DboSe5XdTEhe>l@ppBN1cTPTXN^|VXFQ_yDqHjQqm|Cn(wA!KVuaGBL3vrInUHd z@9MSYY7_*#E6-m}nQ3Dc+7$lG(}{dgsyEFT)`~RKF4Orq3FnF% z7}0XgY8T4BX5x*Kwv~oZK%QoEKzzVye+piF z%lw^knQ8ne1So}!EPA*-;jwG{XM7DdGezTBTE+@Z5ru11lzemyV99=ur~@xMB_*Tp zbnc#-xxs1hHu_i=H+`bPRlO`zt~d@Y0LghK8&&FzwN_ZefF)nC#By13PYiRMGj{&C zgbN1(kv}Dwf((SBs0m5#nQdVf9$0m{SuAB)J1!YcIv<%IaP#tU} zqd289p0gDDhN}Dtpn#rRs|Y?@O466n%VgwUm!^s}kWgDvG=-{a0$~`g5-v=O5(T+L z2mNc~jt+xBAwR_!qal{~NQ;zYCV0b(mS@P9Orzu)tQrzRhBLdXk7#UwJ;gwj?(GIL zUzD0g_ITo`d|Ctr)}_aADVF=FAdhABz)G};M8p=qi5lf@?9tJ`<=fC*;VU&s@alOi zM$JM2VNGPHd?OQHEL@m`;ef~pU4@QPQK1e+3mQXz#$^5%zU~Z#MhhA6(^jmN9BPEv zuMI6!)nKzxyQIR)Bdjgod`nOR!i^od28t9TcA#nPbL!M|_9TU^ZO|Uz=IZqtY!pavugTO@PBjhD8p&wrR#@5Qz8&b28DeXX8)?96)!feO25XG!igc*S z#ebPElHRe}QA#bbGODsiIr zUiq2d8-MjQ$>)x?84;*(gv8vdj-W62I=r2Jbs4;k8?rfDEPaio#P^Zr^7#Nh=g+ag z={P;qH`E;qPMW;qf>TJ2=*I^3yj{%gygoJG+eNwsKY}Yz5F5?CP}e8Uj$?alNsx`W zwWN)AgfW$++O`^ka@&99?t{HCSz7`1q)^>ANalz2=gS8oD}jj{#02>J(`J7O5KRzM z2ZqUcV~PpB7y5HGvMb1*b_oP`d%+%e=}S}4YWMjzqP=)C>KgV1m|M`F?)7Z~d--O} zHQWnu%x)it&WLSadp~y&zOQbZ@Y)8ne9#1uyLVU@`aupU{X1Qnt zz7W7B_w;UUUqSboBAtm6ni~o}yJM5wNZi^GwCneQFQM?k@@owUuORa!5d@0&?q6ZK z)A1n^Ajx;t+=dd5#>*{i(u`-;t- zhYvgpX7Y!5uhUk`6`#968;BmXdQZew{}qZmbsM}MVwJyoPubS|6^{G)6m%P+9+Emj zCKAA(vnM^6!Jo5t{tCmLwhdte@zUR|huxmO4Q>PBGU%cEWt*p&KmdgBCsKFFHtCh( zBi0%SXV2g^sxW3x@fO7+n>VBYTz24OFXmRn75O8JH$(@leqdEE=T`a^{o`kH(hj)I zz{_5wt&l6yN9NZrzOaIU*}aTg$yc-{$AGQRdC*7xSI~E8zwZ|x5bv;lft|gATiI8P zkDRYi?=OCcr{7i)g#+@AmYbt&R~ygS8bA5?fa}b_U*YM(ov>yhB_Jk1K43C{F`y~{ z5O5hl7?2&HAFvr92u(!xo%j>$jIM{6kA#SXgqS6dh$fGi$B2l+h?rxCh+&6V0ELJc zg_t>xh&qm#TZxEViI{zch<=8cpM{8&g_yOLh_;rP*O7?Qk(l$Ei1C_O5H^PhHkT

      ;|~z*qQwCip?< z$Udsb0j$V=uE@bJGJRw+186e+Y%+uJV|{`tLCYzDEh!;S8va2VKl?R)6lw(TYXl@} z1kGy%HfUh#y!dIvAS{K-E=AHWh1)Jg<1dBjE=BP#MffbmfOCZkb48MJg&T84qjH5Q zb49UoML2QAz%_?TH%HPohg&yC<2HwBH%IX{M|d^IK)HvCyGK&Ghnu@cW4ec_yGL=l zN4UAiAU%f4KSnY>h65g>2_M7sAEN}}zmkcvhWaso5oSRXW`*x%!RuuOBV|D$WrfXW z(J~;&XN5Fo!7ye;++`uyWd%iLK}KbTiH9s=#g1o%P-a0_W<{7~!JlOXXJtWUWreF_ z!L4J3a$>=BVnw=PA-t&rfvf!rR|g$YixpA#MYsF`H!p=KbeW@M^nsH$e{ zvS1*)U}U>ssJme7!(kxIVPwoo)fs2k8FhJ0{&4tw{g9N?fwjq=w#k9l&7RWD zf%Czh@xeh5>52#m$P{x$6$9jwzaoPkqCmF~px%#GiG@oRZ9(vCN#-%$)Vm zof6fZG1Z+`)tz-&pORglv0b0mU7z*gpAzPuG3K9E=AU(HpOS8$v2LH%ZlCq?nG*Mz zG548P_nCEjo05N<0lYbMeWJ~Mdmkmno5{snF~nQg#@j%~n~ud>R>Yg1##?8`o2|iH zb--H${^*bIg2@~T%j}cP92?H;q0SunojG8cIdPoXjUA|(u&kLeznrnooiW>zvFee* zxg`0d+XbOJ6r|fHsyo&nc&9Q`sKcY7V5+mQud{)!Go7fjtg16Vud~jsGuxoE>Y}rF zr?ZK$HWjtDB)c{@zP3icHdC>-V!O6*zP5qCHl4Y)th+Y9zP8T4Hru|o>a(`^wzdh* zHxa%ePE^s6) za7HR{Vk~fhDsZeUaLy`l>LhRp*Ks7>aYoy5V%>3p+i|Sjan9Ru>eX=x<$EOVdq(Md zV(xo^>3gj1d(P>5>gIci^nN7&e#ZEI0(ie5d_UHIKNtKKK=g(A$WKSj)Bsl;r@ii0 zKr;!?LfPzKE>2Cw6{X*GXUWoLQ8K)2y~cHSzOvSUmzwpVlHcrKG_Y|tF`>c#k@8@6 zpZ?GRFk{<=uLXhTh9`+3MpNixS}>qrFyu$<&Rz2FwdacNisgb8-^Id<*tO@A>k8w7 zq1;8w2%oj*ndnO8f-~R6%ZRwCMm{wDLY|-)5KLoLk{>|9&=vHVNo5yBCw!DC{O=HL zVMsf`6b)n3>ndXeRm2pP*^KvxDNu848+Oc?^WK2*-_ogUY3V@W+hQ?wSNkK>PO6SX$Lsp06N76{YS%N~4AHd1u@=p1PkGU^-VF7yBd`_&bwxzb zgL);x7b$*4#)mE6tqf%2!=LP81=8{1PIfy1`S=JKyWoH%ZCH%m(m<9rys9o*AWa)i zRkt;er;Py6g$tx;!v=I~13B98FS~ew3~jiV-CjU}HbTNKC?K&n7GbwIkl7nAyNeP? z?TwS&Z4Tu2CeZJ~1d@AW>vyXI*}d^MyEuXL-ng6HZa{u-LcuO1An7ZXV7EMw^%bwP zixEisiqqK*0P?;P_;nEiDPOVuy7hsdY2H4%1c8jNxF6kqKq~%d0(tO+T)KczM>Yu$ zoIEge%anyFEiLiWq`bG}lMc{0na8s}=bH>0_$OYg&4TT|a_*Oj-J z?kZdRFR@htZKDFpU$}QXS)&+EtwJkCN8T8zV2xj*2{c;NaQbF)k{(CC$ef6wu{eH_ z3I9eJa7N}f##3{i@OTEBf}&^#_GDQ{Z+6H(Y>^Bicpm1i-xY}kkAjuKo?^)xEr3<@ z(@az&1?0fHLnd^GL$El5WWQd$tNTl>*KQ=zHKeg;QW!R$;G+T*;vZ zV>Nyy{!(UT7R(*hY~9)R5c_QZ!H!3x5tk>YncdgB6o8k&okrLGb?c?qD55sB6HJ7s zFwC>-AZ)+*thOtJwO4MUe6LJXi3YEMa2BB!FzZNe+Ew^sJaX!O4Q!QgS-Q1XC$RfE z&mZAt+_f#*_9*%^NZ7%Ca51yG*n$@?V_6F)?88V&YB-bxU2-JOB94vBQc5YlfI*U- zJZ+A8^jOtWF>wU_w{jAxDYkMFk7{ZuMIbFpR4vI&JKfE1DiT4MfnM?2v9Ca1)%m+gK(&O8a7e8%B zz}lYMD7*lB72}d?g~|d>9D5qugj<_lE>J1I6s9Bzr9>sTjlfCty+zTXW#2gs0yVmO82*8Gi#ldib;`KCZ`o z6R!*~;jaBqhXJr4smG6x%@ndD8Sj^KO8wfhv?G=!!KkfmV5pt_+@UJatb0(C61PL* z2cL3!RB4GD7=K+yI-EdeC&fbF6mMup$(c#9R|q2;@w4p;! zwlH&=KZ1_;zM-yZ?|bkI)Falpq#Y&`PugmBwYlRaiO#iIvSvfL{?bp1ybtXHhk?J0 zX_nJL?+hPrt4aqV{iqAm^HNH!T^3Je0E3r7Glw!Rs5>&3NU*^{gL zGV#3=90zx=+3Q}<+#(R&>M&v@X_B{py3#FWQA55_R=~Oh+i&69BdzJsYCXtH%H!nI zEj+8cfc)*$mf#%=iVSgC_EoYsX-`+i=ko_79{*xu3}>_G#h>|+J!PBz+!bwMK!dYn zd#E%Skm+icyl+V1A!U9?mHceZq3vpBZh%So?7dh-XzC}SPak)OIcyT!NarYgyYze5 zpb?*PGc5c0tefk&8Fv8S%aIk@Pv#*lX-U3{-c$IGn{DAH+A6g!p!=Hi>m0ESkO$1 zE7Mo5QIk?=346A>WmPSUbaSU($m2oAM@J-ISTL4PN==UHaLExoguc2eW@8U1&8&NzCpWeQ|@G6%M55f-GmRm=KSy`2NsY2FGR zJDPbV{NfY-1fJG-@k#jY4th2TNcbI_FBw1hJQ+eeCgA!ycfKCUv98%EL1gTGK*{?U zrIq+$aTRUKFj6+XT^tZo-#VteE9r5e@U#(*>|K+kI*WEz5(rlQ$(9^1z93FqyR$rr zN%cjm)I62HW~XucTtIy4K;xouPgp|8m<$$zc1?2#?le=s2peEbq~w)@RJ{3~iD)5{ zni&&8SXLZQ_OSFu7lD{jNC*Vh;&w}>A*J0Ib^S?X~rBd)AlVXIXtbcwtaWl)47^ za6WE2J#qb`^KklcSLX8Yn#$l^+_7r=!N=!8fH}D-XkLE~^>CFrnREl0IN%X6%TFYa z29cXb`7_-~C@s|3!3l8)xj`iIjI1gwZRo2eiTE6fM;=O$3@(c;nz`gebG&x`N{{FO z4=sGgHeXlaJZJ?tO-HQ0H9H#4uf0%}-YpI+t%gW)+Qn*pTAfHhC>N4^1z*E8-f4td zMinEgIA6u@cHwb5m!ANkDQ@CP-{=g|SV|gTAExLb8u`p(HDO%?3+ZA~O-d}s5N}SB zv2+_t4{}ZRu124Ayijn-V_r^DMeI#fZBnlNKm_HJeKI+rI{VH%OTAQE4qRMY_msM; zGL=`L7k$D)EiC;Y23m~kX`D#LQ-DGgN|4qej<^Y>u^~KF^#9FU%w)&Ww|NK$!P39q*Z5?=C#hHD^$Y;)M!r* zrQZ^LQoPIiMrJU>_>ch*ra(!drNm8%H8iUcxsY%_<6aFk$cd(ZOWU-}n zWi0o7loFTTWG%<0H$P2?|}E1|ctAa+(Q}GFp1U z9_*%ckkl%3Mxh<2b&y8!(zw0D2JZ~!;aV+(ii+A!xEjmh7x@xY=}!%ZCV$lt)AqIn zFVi^{%(wcvztzYHGR!Xz5w*9!Pnq`&sA;_AF0Udt%v`9>bE+(1;+?wJd}3U*?n&06 z^+lSEr2tGKM*z*RP3RoxuILM6DSAGt_l-S8Op-6(epMx~Bq|jtjYt5*gEA}sb)X`Z zDn+eKZAw#^Lb(q6Bc*2kADjPF%M>R3{%dQp^E;I@QK?aBL`}*eNZADwjplO&BB3Io z_Fu|nDe40lo#C!XVil=RS)1CF_P-m%N|tW@Ao*p5Ln2xb1|LiAC_*1g2`e&|n{-ZEM9RF-8HYbY%16jqwqNSpYfuFKL=X+Mmf>o40?|zvdm!E6# zK@Gw+u2i!-L39hf1DhRpF`Q+0Rz96)FP9PN?}fPOD&W=z=yU|@BR>06=O^2Z+TJe< z6-{x|O60f$pwF+5jryAawTIJP-*wyMvcuK*^GSg~ghvI%K~1iZMrpEzY77h~rIh&Z z0_cXovTxh!foZ)YSpy>M6eTXHOK&$j5U8{h{Y~o_aw4sdiBU~&_eEYuek2%uvs-!H zqJa?ucx(qH%$QLv7So8G_H518_MBT;b|b${1T>*}G96{*F@Ne8ZK_Rfy2gCQV{UrT z=wrM@mx`<9T*Tt*ml43fx&Wi=q7$1W@o9N|t307^HZec$Gi3o;e+=1Cdh0}k#QhE+ z{06ec1yjBC+TI45$3S;k-r1hX&x`xhC*!%1eTr}LoWlILCbtm>OY{$3NZekcpE^#~ zJ5FvMR4zA^eLAWY-eFZb6J$3GA{7U&guCMrg{E&-+l5o)Ek=cuUb+F@| zr-foAcG3l=nf9txVHMq7SK|V9^t6f24WOxqne?aU`Waz#9XH7jxjk-QpM1-j8{aRg zc$YmrH@q-?AIufei+d#kQmxxc1KipW-v;i~5ZvZxX3vDdq{HG-$=|Mov%6Yii14?h zxSDmzY01IYH5{lMnLS}R__U%4US=@u7yMoaf@>HH2!8s>9PMh6o&TYuM;%;+)~g=A zP1}E!X!Iz>>|Kbp{yCNl_2C6`!#iOeFpYITgfr)NRIq;b1K-WAXwJJaYH!xkeu>E= zwSm_Bvl@cUjG(A1dyYt4isis6AYyg{0Y}%!BejNZ&t{iYJ@yJhc@TPVEu5@01-*-D z5**OIRO{f<^t}hPMQhJ0mexNVRqn7F)582rh#Y*8S_180pAi;yh|Avr1PW=L&-rEs z(N6DqxXEODVz&xnR3EM}p!HkcW|W#4Rsp`|aA_aPqza$Zz}QhhB`A+#0Gzk<3*P3E z>9!JyMPH;zB{PK)CzQn`j>+Jn!8Mj=S0ei`PT1*DY%@K-0WLrPmO2_cN-B+psEC+j z2T5Yhn02cBga%)6hzH&wV=0~AXPPQpTefNzniZ$o<|ycoN{k?$^`=9=PC1|Mdl(xGui9#z74dUW*`ql6PWGG z9!4_R9a9gXemlnIPipg^$VA^TF&_T)`S1RSpHx}D_hNP1gLmkhML1^Jdj2 z%lu*4=YH~!tmpaZUGtq~d6nD1dB&mV=y8*#wX@o-WqFf|+K!d^;9P2CS&0MtY;&vE zj%U^cc4*mpqVvhgSczK}y1I4gMu3`5g)K?t$;oJzGYQvW;YQ2iE)6P7Vrp|%zSHdB zUG#!}lBdt&;-#Zl5o_*7wA%M^p5w7^QT)H3WslI^Tz5uJF+G%wB}+2P^dgcx5ws^X zrMdWjFH>gts<_V4E;-i5DjZV8s+8}L&0Fzk%9Xk})F!Do#9O_^(R8q)-oZA+(fBI$ z%a=Y%qBkuMcN9)07jDKS-LzZV&7_^T)(a=kVWsVA&E`n+x=2P9EQghMY)oY0D!-5w z4d%)x6?VEVAgMvRRntLtp&zMmjrq%oI@S^9{0W!sqo@;TPNb=tBI=H z+=kVhcCa4_?Eslr`k%rMlX~i8^ls-x6sldyN*FBKO+lCaYBhiM82!61YP|{^3ssA* zr>~U8e*UPfLKQ6h8Siip6$c5AV%j;XVuKj7Zq^z6rhdkMU2b!qWm^f8->YAn{R^yT z*~L{>v(of>;iu%;7hZ9y)DRsIi~#a3(dXruVJ0T9F%X8GkUb%UDPlI8I9a0%REx`y za?s}h!p4Np*!?HH9jt6%Jw%wjBzbp??#8KM4NSLcH_Cates816&?}+-8N&{`Lq@ zLfdfmWhb-i2l9}24w}Kx3(TJG(d@6At{-!LsE%k@nC$oHdo{56JfqP|iFoN}_GapA zYwq#T_4PXE2Uq(s>@I*B>T@~W zh#piJMkndVE5@S^Tn`Rz>kK)1u*})ZV_mAzMu!~_=xHk!6Z zCI1|*!(E6z#PJr->7GWn@~*dEfId(^lz6RW@}3afVYPRFZc-DDJ|sR{`6%iaGlqB_ zxu3!FhFYQwc^iOWeXip;z&;nGc?}NIbz5;04v~(-{ z#HR{b)dWvsFjij-CQpWf(68gPf#-ZQj=^S4k%M)FZ-!#(A-47x%OSMKX8pC666}hz zVmSj^;Ez|Ig0Tokrp}Q|7|)@I;<_t%29KIu>jtCLqsh&=zV-JeyNz|6)O-r(+dlU=^fc6{KR-XJm~@ zPR*uAJ?GdyOB2gY5FkDlrPeN7!@G01!Cd3(8i%wSkns#6;jxUX6&WERJ`PcTgAp8V zmlPy}xfMB=K%c}BLD6j_WuEFh8zPtzJRd@z5YGTr zO-M(0NwS25m`^|AddPhnJ`db;7CsLwPEDYZzxdgZ8iBSjQar5iBLT@b;m87A(N{cA z0oaYY87|8Zk+PrAzX~0A6`)o~#5^J(C5qt(&;2t@m|=z(IAZDB=^PYMfgz2^!GIg5{UaT&o?->Pm>rwj$~e=UT8lxv*S3~~5!Pxb1<<=NfL=4u;Z z?O~a<5guGj?Y8l=45tTb!aA}2Fql^LcH0{D#+>7=t0!k2KBcKOqG~uYzUJ8s4^0Pm zq{;>~8_uC3`7q;Lw{3ABEnj-f+@zTQF;6d^Q$AbXqrSy(ziIc_nBP#AT{`GZdfwN?>Ygy7SxB=VNE8U_sC#wG3T8dMp$&`Oo zzR*prsjxj$|0u2S_Ro4rVHCiedU-JjfkwqVds z#7}HZ2RCic$&DFC*KzE@sCN^i39PSk>+ItCEYXzND4x$sdD?$s9gRWk$VeobO(k0F zN%z@E*H;R08!bIpn6>pfc5WGLk>!>IE~SclX?;|QzC53xec{aisWQ|-6N$1N{8l}a z`Z1eXK{3b3ds9VGTPNFN$$|A#nud&vtQ>EkqJwz$ywZfZJG zGaPnsqFem}-;#S3@L+@RDr_WmzZ6#RN)Rj1hD);)+PAXPIG-fs3UJ4fINQ|qxf zpT^~C4=+?mhuCF43k+j{30(NdKeW&C=l+SWbZ=U;l6_#5v_M~Y+t%|G%7_e?Hs8a1 ziQY`3IELjW=XQ9dmJU>(W^)mL*W959h<^my#CdI_S0PC=GU_vH$OU@rvBRhj5f7tY z!w%Da&dBgmxA!Fb5D3H+EouthyV7ROb1c*l29LY0buPNUG_T>U+P*Y%>l;7X+72~0 zZ{J3wgGgrT6^o;|Qc5=c+R%}>2fF^@KFr2c0zY1r%a$~Q3VE-!s$l)WjKa+7nmSr- zxf)pQ{%k}^qmuih2mhJ5_?RhTN7QatN4I1pc4R&br%YLulS1ryqNVw3!{Uy_-i}CQ z|L7IaPqZCk_)0J8S-LCM=7b+ITTfMfqy9V%_L?kC1f;JOel^ z5SM!dAk-DyBV2jSLnvW@d{-ok+Th8T`&{|xnu3^UTNiUA0#`yG2uc7A!I=skUzx^T zE63y6@Pa1*6$&tM5V{$V-38bpRA_2dYrk&YfTw=hAgA8YP|C|=C8q{a@w z;4%ZzCGTv#z+MdARyFu8bfjX&zHSzpyx$1|4x&>n#rD60|N09c_x}j|#=_10U*W!V zrlsuynZ819p*|w&6-9)qODMq*7plZ++~&>@_%8{clwyr?!P#wgvyS8?X?Wuxz4ObZ z-M2JQ4DGGUmj)6+88?J@w0b~XgQ**fCP~|>7?3Z`&^!6pH1v{{N|6z2qy*~k9TXJ9 z@rCY0VbxO0DiVkp9q29ZA|SxC2c>!2N_lViW>4pR;I?z zjOvyq&K7?i{?C5)vGj2Pg7^&sl*@31Agn`Av{+S>uR#2}tt4f7)y?fI)w|8sm5|mij&_BO_XXYB5RMa@IaB$Bl zu5RuYl3d(0xOn)$C81&A9-30pJhXK5NX;#&Y3UJ``nzR#`S^*3M@q}eGd!)db!6q_ z8Ts>iKD~s1_`HTM(BR;-@T2D(czYo1X~<_5a;vF}446 z`v21B{~MP-RzTpv|8Wx;L=faePvhDyU_Ximfum=J_&5h;VyJ?wNA?>-?dL91-`8|mN&2-|jt zjVk2_2$YBVdj*F6ZOmt_XnkrAU0HR>TEbhv-;*rYsL(8}Vq>Nz-OS#Ag?al z5dX9t)o}*}VN_OU?9hwuYO`FUZZ;ruO=g-WuX>-SLT}|QC-^V*c>4cHL8WRGaN^-5 z6JN#4>-w^z9IPR|SA55po7;I~xnO=7z;ucZVC1k-U9L0h*G>PQE@&L?-#A?h{O~*1 zwGuc=@Pm(qk9^lA&=Z|{`2flNF0fxDiI06OPA#lFkp6bpuZ}9S$ycbXBjmA>b?h|DN8E``O_o@8&4W5FG=u}8Sog( z_4@ylyY~O4Un!MkioGwYH`K=xS$i$xQ1!5;`fIER(<1V@|EL#a?zCa=8Ml} zP9`Ymg9;7Rj?8*|@x2aUe`9RRb7-e-*GuWFe z5N~I_YJ>0QN9QSgqNW&@A$&TB+XNy`pxuDmNLp%v(OMp?X_|)N9#y{)2ytgeXa^y1}j#Y3)_dSL1n<%uj;&7)IM7Qzyn$QI>-z+g{iQr ze)z+lKPc_^K6bevhUI%Ma^dc1=(75j3NDfj@_!lkNT2Q6eVlx3Ps;^W=Jbx~lh_T( z{8SxthW5jom`)|1qC&^d@fmVLC5%JA#f^71*{H&mo@zxk z>@U@Sjj(0GGH*f2XC0w1FC7>;!3-DI`ZZ6H(4X}Iq8O;xG`klEllupyGapZmJeX^t zjCA;f<(F2(y||9|hE7f9t_N90LO2!0+wlj8gai`Ro1>c%3`NHwzID#3mKCa%!nni9 znuKX8j#NGhS7~DLvi>rDjmqSI4AUT|>UB#RZ1=e`<77;tCtxaU*9EX+ph`k4YKh%T zLFXAbL3JxSKa4#Ie$_+pD3T=SBuTW%8ANPy&d}r_AV_XNNg}p_0uluzXURF|&>}ghWE2D>2gxAN(9K=w zj5BlZo*nLQpXWK}IsT))SXH&EYSowC@2y%5s^dH?y^GnA(Zknt%tO9x3|jIA(3R<7 zyeV08)e~lac^r=@$dSr_D9ysb)g3rE-!5f#joY03k;r=VE$rL57EXD_c0&lH=?sq? zh;+`NXQcAH1VHGCQMj!(nCRKRl zfH@j9c!$#Cq;xAqPgeRdc?NrDs;GeW*w_6Y3hG!xlg{Cax6ga!s4*5EKERB7--h+x zlTJ9zB#dEExsX}1>0_Ht1aWOR_~~w4*aNRvu_)JGXZm<%U3Dz0PbMk#d|gcjc!Yk{;X8-O{eHEaqS3ALxpU%rm?M64Xi2eOmcnl{ZDd2`dCEj z80JEDGcDfQwpW91EQim@nUN|uPF=IDs}%041Zg-z*^~rB#C^5B1b1Asm4wPFtM?70 z4;j)Z?}WaBVqH<|%9GfYT8w9@8RROSiyJd&yJBHTM$+G*W$sdF#_^RuWBl2Ux>b1t za-dSa!jPEg6^`yrAzyR#XYe?`ssVX=y$_~uO8lccd#=*O%zK25>~Q9U=DH|$XnFsa z{G-o*^?HBm&fk9&KYm1*gJI9W6n4=^FXpYd3V{t?<7Z`2r`g0g(GSMR_pEM;MJmce zR3AzPBrkmV<_L}G19l7>)Q)Uy*?_q}Z7zvPkSceuT3Eqk5*Ue;1st=6eRriIdmfFF z9tTV+*Thaqb2E%BCq?LXGes6^e=F{pVlpN39 z>hc(_j_Rc8#+&z-T7!#xKf#g3B916VP&*uxhGHj5|e7}$v$^ar9LgAytc--JB)!1g^ZSx8G2mQf0bSm9=2h{w*4GWxs%=Q|nra@| ziOaLOd-wI}?Ju5?dlo?sMmgC8i`!L6YdfpLN{_6r7jcUv*gq>{1u^BeHLJ7U8aiaK zt{Kj74;~*){ABP^BcC-ge;LBM8yS=dC>Vi9Ll#nBBE0}Db8OG}N-h4C1I7s!Uh<5b2F9TY|>?XK#t=bTA0o0)3& zQ^;|tj*7i?w;FvO#QeXaoml&CMr?hZ?)nCwV=`pco9o>z#pHcOA`(+tNVWW;KK1r2 zH-Y5Vo(qWc%~7z;HS*1+6XIH2Yj*O0ZDy<3aYt>b`iNe*e&^akSBUPQ%pPq@3q#$8 z-Y4X`LWG8HvP5#M&64b8)$ZpEI)t~S>JEhH8|U)hCD-8DA~LBNJ|-&Yy+FxvZVoUJ z=%FfH)G2JSwS+a0vfb@!S8KgTwe|cEjr>IxlCX52tpKl|_&~w4+A+;31v{a3ttmCs z2=`ja8E7p-2qKS}*d;a077eZ6-%w4CSxVH7^yirb)7NoGh+Mtkl4~%$wb+aZruBTe zMq;;d@y+~Op_)h|^}8?i!|(`cHvHYMHN>L3G*y%mX>pdrbum=Ryn6mthA4_9tPt}GnmXaTASGDKS^to%u&3CgSoBGmQ6@)NhIJriJMyYnbSNk4b32br%)TKt_zrqiD2>)l}tKdM>k$J=1TIcLr=O+WUa5wyq|? zxKK>3LC`@=#p^Tm$fc_c>dotNlQoRCIQa^>J0pG6SW!r`d>x+5fo4YCuI;@q%ERQU z_x}PR{hYf0_KzwxjN4Q?i=Vx#Pqe%u-$dTzz#w>&GE!EGqbr|$nc>LsOE6Jx2$7_{ zUSMau)};_%vN(}|gNqw)k|*+kAK|9D7#P7*_6GVIS5?t8TRYOP`F z8)qSQ31S0AvB%%iIbF10z=m1GumS!b8z)8JS|56zl33tq5+60!^) zr7!CVil!E3v}CwAUu|&EOT1KB_nKqxc?3^j+(!!?8H8Cv$phiKT4cc#SujPdkKpxe zOX2-==jUz2%^H2=dV|#hg@!2GPL`}Fxot=x?L$Y+CT&-BWxMk9)+21ip>gHfsH^Bq zHIDa8xWqEeU}8#Z(}p`=|3E9QA@(ponhuam;&2tyeCA%}-?=No)#0VkTJM_2wS!Nd zzb0VV=ip$6J7qF0&T7XRz=|7m*W;efnG&VHthRsDFv9#1lm{llsQr!)izulMzkgi+ z8k;`hDpgD@wG4yll}U?N4KWKez>66h4B}p}&4{t#VsE2WHqF?7g14=+aY#jD&fPfC zm95~zY=D%j!$>c#?+$PqsbeGj)FbxvLX`cTKm<{lhxU0 zzeC65XAp-|FoO;)_bF#AI?W6gJ$7AW9pdE6w->@@Cl_q>qSY#o(5`Y&qR(9DUT4;c zYErN0Y{atH zuI7Q!3?=VdA&zUwriMgJcV@%hQGc`}F>F-jUhvLMTBmf@<69@DdZC@HK@OG6rT_NE zs#jQzcG5(Rb8I?vZ0tiS$BKfBj8ey|3mR`lqld|j?=QV5dj8gIQUSkaSc2B2i+mVG!H!I_^2YYG|5qN7PM6sgGae+&O$m;H5YCh=@qxf zMK$jviboX3NbSgm;qv4Zkd;!?!bnXRv+Z843L~J;6ONTw-)%^$^mZ!T(gi=&Te$=d z{jXW+m?U!8-|K}cMNPvn&{T9;_xm_!>#|s5E*lRKqDh5YwLBj8p2mEPi|Ztkx4)^w z+J51(g{H^VFX}Puv0HOd^x(^?q!_FjTqx0n8B6=%;udh+)EY9xJGPUAy{3{<+X#6( zH2EH?y?Cvv$tz|dGYC7K(>Lqrio<7-^+7}B?n8U;_GIr0lA@*pj4#jyu$>9@pTME> z4%6+Cz5DdEHfqgS^mSS48bz=S<&DT!x-S*DFQnm2J~G-}`?e+XJRQEDZEOeo@_bB8 z8bTRE6swN^w#k#B>k2m)7x&wcJga1;1wUQ=xkn0DZC%Cd_V@j~VcNuadB`?p$`J5Z z3F%29i5=bA-Z-7l2JeQbjmYX_#r5heSOeH{2AC@YGIz-r9$HMZ++(X6dpTg;wKgPQ ziX$a={cT~pQ#Ei>%}*S^T+L(G%U!%ygkO#;ul%NOh4NrgOHsCUk>pc$p2|AG4ORN$ z&vLH!Eo`_$Jt|Ck2-aKqf&vxIWS?h;#k`Eo$d+o2YX}Itc*<)=h8%BOEe}QHu8CkR zUezXzb_C10ehO`Xz9MT0!}sLZ86rwhtSLIXMUD=*A?6OXVg|O0 zREIVf?(SuqmMY^ky+Q7w>5j!$y@rXG7rmkksS{SF8WUk(BF{iWH=pUfcfaS(*%12e zW@v3$0*$%60llnaS(L0b9yy2rwQKI}p1n#ec`fwny?GcuQB|nf^N3tB@Ib{#6t=1s zw_rz=uaN-BWDjF0TkjLht912zxfa3Yf%mk0FQwe7y=h%FR-vNunm%S8W^}#eZp;lt zPCKPpZr7DZxe^1Np%qiqxCyxw8v+lbsIW?y7TJvBT9t*=o-lhVAhWC zA(liILJC250{q}&y*#k!)+E8pLgotJC=9bnAb;}v?EJ6&Q8kLING>?xwE&Z^85Jyt zjB+|NR|HTEO={HFg)8s}-0F9G81+oDYN7^>$x5kD{K;6wlgn3>IQyad+>>&YfnmA> z|61OFi?)~{OA6OB?arO9tDlN_&2@4=XRsR`)Rj>0k|Lv1Ggj=_QyYs{dxuF5ZptjnX>)HuFZqpm#m%tonZHKa`j(Wf zVact`0_D;aOr1pUMjXe#==7k$?=-5)>FK5 zVhyL3#8SB#7beLP&0i?5(PsXMs(`X@(A0P(Rxj>l73riD83_lOeU)vVp{nECfFz4> z$`$?bo8if|`cmGMk=lx_y0JnY28(i*?bw=^XYl#-ZGOWl^~4M9jFJz>?VL!OXd*_A z)lD!7N3#|Vq`{-+mFh<=nG}T*9mS^}8A%!qaiMtNG26Q@UXxsyf*MesuvfcEC>SGZ zn(A$_%yoyS$HbpKuwqR!w8qK|#PGsqtZ)F_Zil|^63!w{8qu64Z;aTx{NOA_)0T@~ zYf9-S1_dgvuk9f^wFbo|_8fQxW~~oC6cKU;XqN={4UoOGlP|sz((!st4>?uKha>vl zgS(}Qn@XPP`U_S=xrFpg-@GnwhIuGg zFXVAd8c;D~-d1dEh%8ehA9QmX5+>=u&A43&py9(K7>~P8%q9w){*(*D7%RP3HvGxw zPL53!70Us}bsBH&i#DKqCe@g1d2mMIq*+oUy?if|+n5d13oodTv!^Qx_$uw4+rhJZ zS@sH&PS}1t;`+A{JkLzT?Q$gfg8tWYq!`(d-^XUJ1_U7*pOgyr^gz;Rto=Oe-{9MUI5omrvOb z;&~N^7EFPH+6HF69@u~IXq)8GHIio6P?mhcPeSv|Y1HFwAD1%nq;EZ6Ly&^>QrvjV z%N`O=?OQfa8a&jqP*fsv4Gqo1R~wq8=yvltGn6lg5fzcY;OMcneQ23C_0xU%pZyqj z{OAp&Q2!PchembK?cCze^IFgj&&|NUE>AvrY(MsiUAC_N-raDrq0E(qZ`8CQf zrA8yE%h+oKZm}W+Hex26>J|*#WZS21e2Y%fc&v5aiDGw%Ci`4{==eEPn?k!S(xUtO zXCrk!HHJcOg-H1ksGI7ECq)>2iOH5;(|k^*``Mx0OCNuio-UdvF;yiX*a1=UP;*j= zG(mf$^M)Y6w;>}KAT5>>>IwgA_ArlLLn%;q-`CDMNODe>nAbc^4H~A4N}cHYd}SI< z8_%8ySO3~+t;LkS|Aq{@f~hk{Hq!#yGpX5bN#Lw#;5TbOg~s0q%PRC(YPam13iJ&w!*Dcatl>; z5t6~QL7~^goXN@45;)cs9dr;6VS8;;fB4+ojUS45crGqX9g~tO(bN-n-*I-OCe3se z4=qf&GW3NoUvQ@`VUxr?#=mpu3OZg#tI}h?jDL82A4p1T& zg0Z{SV8bN@)_2p4J_@A7b+jmThA_e5x40^i;a8ISHGqO2Uq0}O=5AsPwS6Q{P zR2*07N(wn8qgMwIo#3w07dstHA2zOz+#Sh`wGjNuAbX&3X-+hc<218uH4?|NDb!eE zD0bhG#g~6<>2nE%l6SYNIpsujL{9a(Mr0eUg)3tsTdGT`*Wu$tIktMvn#XBvtoqnr z^S0CvusAjs7C&>s>+P?o?o%A96s+KX_$W*0sD&YZQUY78GSQGLB+%OH z!^2QtteE|nHVR^AWglV1?)ruzxUyt;^?*&QMCJP{up=Q4KV zP86;2=vda=$^b`i7_}W4&$ScBY&FRaox#Ook$taW8MOmfo)YYW(dBN0(HTf=QG<@R zs>WCm3y(GGiPEw_0^P{ChkbIWogLhDG2T(I{aPGp*MrJivAdUz3{9{iW0In8n1>V- zhSMC&aa-+fywcZ1nGW5&yrzU_S_m~_bcBlj*Iep(e){&)8K|c(8LByL0`J2=18r-drv1 z)MudC^fOSw1cxyAIdZY+rP_ zSn(9RkLMFy<`NO>GG`#D ziyn|%K4>gGwv1b~MXcoj?Vf@9=w`OH;G?QQvogN+OG$=(<{lyF0&8FUb+p0a8OT2* z_mly5AUHz~n6&b4$VY%OB(#JaeK%SehsNbOF1={ep@}eR1m;cbc3cG7L9C_Hb9w-n z!uc~$V%hgc79x(V;76ioprs;2v8g_4J{o-ma$JhF1k^Na+^{_ZshqcJgBz8H;G z=7trS>!22p5>Ryf_hvc{Pb=U(P;^2|x$mcOv~ubGZ^h3*i!b5bg8+SM>0k@7_=@pW zCfe@%y;3;P%S^O<#Br`jDg4ujFMq^w)+{g@T%XB4ue)_oBQ7s!k?e*GGmBA^FQPZhpxVL4WtI>+`p5wp`H|)NmYU}*KxTZjcydbc znV|HPWJyaJskU6%JVGZpR|J`o8Xq+7_@=kRN-@(rCFo)V)ttVSB-o>U+;}L}Sd?Uu z##GK%Mb;=b@I z^~s0)4yb^I^GgO(aIfLr$ORv-go#EHgV#|?CAj-%pkDZqFuJaQMHqWOa1U}y3pbgL zM+3s@4_gm@Envy;`$f_)V?VG!olvgOM-zcr5P)MhJBeKSy%N;?j|SfI!tK7_oy!ZI zU>qi2`(Dp2ROUDhO@Jr?zZiHLDxLPD$l^m4Wr`nN;1IsJAE*wfhD$T!B3Ugwz>hP~ zIJun7o0gZ5svm8%gR%90>)ZW1RwToPXQ0;FgMMan%AbEVS9)ZA{ul$v@Mjb!rXM4$ z=3I5v{~@UX%I-bpHLqCT-WnRUi}{pnPIUOOc>u?s&BL?NGthjD&l!k!_YBlddvR9H z+!wruwg41HkTBjKnfQN26)O7JXwzZ*Hx}$7<*A1=WQk@5t!{E>>LTO!D+hspU(;g2akfS3VHR6Xgr`X+)K98lM+*kSXu}MkN8AJ*#wAd-srDiT-cLAm`LwO?3`FEe`3J!A6KVOIAEuSoOMf??6PIqH z6Vuw(%HTac+a4GZXz}}JpngusuA3v2K5|3Ge8i~)X8oKA85`&7#1NNt95cr%`+0NWs3@) zjmzDlJo_<-T@(0_;2G#ZgZ4F`E*aX;7JzpU?cndK%f8BCj|z!E%BP|8mr(3Zr*ZUl z=siFRb+^qNp*Tq83Eb^8bR=Md3%n6ZlkW2n6wB{-@sRQ}$LwdIEN{eGDr`s(a5R3u zdu|Sq%D~-8wCQhkjn6==XQ2Hs2ukPNez32K!xsQABnwak=e0e$zH#4zPk+C{>jeyE zR&j&N`IEQKK)3b?)F;Mgf0o7_Fgb62I_3*tFcpUZZ{gNV*2cOzDS$eCALd1UVeqq? zDRnc?TaS&uclT25l8-5)dg5tT?htuq`_4$TB;_daNR(ZmA?|5AyKa)gZZiA)$mX-? zov9+;&CWCpCUgln)edbxR62IOt*kMYyk58V6u!{es+n-Tc=x? z!Kkrrls)BuOa4nz*wkDYow>D^ocgH;`(}EN9{3rG9d;VW__9Q0G_|Ncjwn#r(o6J&Rb=Txf94C}j|0{n*G^wb}mg8!d( z_4|V_yg~`_Z5-J=7fdOD!jAXj+PPRs*8{>T?wH9 zjJzOZ=VEI-p(5FkW1x|-G~~-A{6C3z%eg|fwq67hy@~ZeWZl=>VXAr_`gEIxQI8>b z-JPr>LS^6KR|ym@#vjug0I6d<4kuWCL>U=*}pRge~s{^?N99V z1JR~GbUoD%&9(?xOf^69zti+bg!(_AAU}yli|fFDXfoO-nSko-Uq+kW0c10JE^jKx zzL;l~V^`H*i!xS588b$$o&sG9YIIp#dzjMXa~C0W3EWj3QfORQh@BF@>ZcOF86T*7 zkZHyjcp|PVB(C>r<4G}FU072&*XdB!BAp3q1#dwW$>sj;0d=_`a^~tD_e=JcMQ%5o zxNm*9UGR2hZGd@7fKR_6CN?!OLp;m9SOZ=e80RWBC zMV35yltF=3c2|B1e}B<7#(`J90bN=dWNya~C82{h;yME@0M7X6qh@}8wJOXiVtD%{ zoDR*@)ci9L7X_dQ!U26`&NDoE1HBKZhVDQ>!yEy==(GI;Wq9+?0wTEuz+#d^pjZ$n z{Z<8VCb`VRhqXTJZXcmF`+82I8cD9iJE z>yDE^ETaJhT=)<;QUQ)EjkOvTHvyU&5me&M~) zw0EpZk{b7vRL<&Jr16Xro}gP~xm;GH=F<K>w5PF3FTd6-5F_af7M@Cms#%WuOc_US0O3+6KT1N=y$%?3 zBq0zBZEK3j&gE$_6aten-HaHVLHF|QupOnc+#0;;_F4Oyj1l7}e#BZUt+oDPA3nINYZK0680z}4MA%FfQZi9s6*SEt9G!L+5Hr3w)2D zA1ew0ze>+>l&Y{|w^ELl&rUbmUxCl6YC0YX}6NP3+8cUyTZ5hm)Mx?UxlCLuG zBU%~fT)rgeQdoj6WTk$*um|luPU>$^h-G4(q`qD6b!9XdoXB`@P9B_kOsH^EB-V-P z6{Fdg$JMT8O-mSgzHdMHQeRz7;vsk7$nRq%sKkdhSi>7x&OpXTbPb`Uhj#(B*O^N$ zyY#on)cXnt!3Xv+U{(Gj+4ehp~ZcP;EI9TU(Ea45v>jtjX z@=7^Bx3;>9Y*cLxriyvYV}4wd`-rs2$mp}(UP!!E(la-H95Nw7(z=B!1aCgQ$Vqzu zpG$zuv6HK82%6GwSXfy(Duv-(Bg?-fe+IfohQfXgA8i?bjHrtMVqoF4Elvr9N7@c? z@LV3_2P3u{$lGJ74A0aY(F*-^$D@C8}mf?$S+ToUa+_z)dY4G1MM5aNr42fk)# z@GY6yIWKSp@OI2I1kFDAmYxOyE%(w;1aYX{{QWt=o+QE*E|OO$Mu(Q=L*m0TkX6z? zL&zEMnP~uM>%0u04axLLkD!=HLb+As?Q!_gYX}gM168VlDrX>OU^yhZcpQhh0_{i; z!G~JL(Xt9aK)?9dZxFIJ^G6Z;WGHvt5U@2c%Hkf3@}kWF39CFAy$t9^a<1Iqqqb#2 zffSqmBqzFF8Phs>LOM1(qOfEAIO1}$p7%@F5J+*Ey2|RK66aO>S6_z!@4s5qbFo-> zM)AYf{dF5d?P=a(=EMLurO1{zc5*#nE&-MMdsmiF7r#&KkB-f5?1oPiVDB>kC!j9_ z@Ktxv`50Y3>}w%bPRx&qft_0Z*a70-XBGa(09?225}k_MwI_|F@Sg?|(kT`*%W4z7~}U2CY`3JO;^+1Sh|UpUPSmc)+(<8FyYl=2$4+cnByRh~HnSM-6#uEHW<6 zp^MVC;!cLq4js_@mS$DIUGxeleZnCeO4~C77bcM$WEV@|+}P7NE)^+eKbccQeJ@`5 zNAZ4}m+%Hwh%$V@3)q_=JHT$sdOQkQYMQP>Y`wUB1gwlEsJ<|(O&r>A;bb0I>buR} z3a36jhg|@;Hdjz@kXFimTKVI0mdnbJ=5~T>z6Ok)il_`LXJb(Ri_MxXpC0j2v+&8g zREH$h!5kHv4;$^Njo~T>xk8$@1j5-@_A`3!MK=`^zS@tx6D`p{#Fw~s&xR=*R;8uH zq;Q-Ze#~Jsyq{$4YonQ18((7dMfWBC^EE96W)SU$&WUc%_!t}Da(F-f(OF}@8Ap}z z-@99oAnknIZ7@Sp?AfGAYvC@W!~U_PNobEKa=b zIa@I&tvOy(>;QK1A|eXDtJ+J&dmWm!$mZtMwEMn9BG<-*Uv*G?opPZ^Bow2IoMA>Y z{)%O-2h;=0d0(@GwJgK@LDk|9+8p9dY> zw&nwt7#NkzfU4ro^;srj;!c}l&4X`bP@m&UCB8=E#@@m9YgQ`*tFOx}B@8LpalT#7 zm~Ji~Ixdw7Fnk?l!>E6NiO6P>9we$@<~0(yU?;UT>$<*pB1Jx;ts)qJygr*Uk#5Pn zD1CuBk3FGeq&==rc&EB+bTcJ`KU{9 z>azDo`dez9ai^yla7?`6a|Hgp4COV^58;c`=blghe=V=xq*KKsVPxHsc!Nrn z9Il}TP;MeyBkSt%ai*Z6r_-{R6!Lv}%q4ytd#>;40J{bM*|gb+MdrEB*{L$3mF{o^~v-24d5gKa-j` z96#mflaV>nM5Y=rYEt|Nj zvHK0D`i2mp$PCX`wV0|$M?-OwLJ;PX93ir+ljOOS9afd?#u2U_ z-x-K_yGI_%zoQpnWIcSHU_B1-RPBNObe@6EohAcdK*l^AsE>@uE;RGR5BRI%MLH|) z2R;A%zJcI!|D_EBQVlM9!AohIz!LaU$tYrfqSN;<0=6)@({tMq8q&8^4Ba1)U##*e z7FH1#E3u4S;gC1u+b$*t+`pAaZG~9_b^x&-LhZ~H`^Bv56%nUd2492nRI^fEDFWB-Q!m} z)6=p8_gIIxDseAqb6GS5Unn3jQrD0%d!4eqw7I$6lWWYzmEHK*lb&@pGB=;qUJZjS zuR2#bS=*Q7tp&~Hb|w0^X8iIX{U}~?FB%z`slL=XX%3FnnfQ{sLVxuZKb|guGr1-6 z>)@~f-4C0XG{K9HpA1RhIJJ~W+<0TCAN@$V8XU7|#u9n-(6aDabA!L;Ff?9}=7|>r z@9q9V(kYIBb!FK%5wX;>Y(vFSOVhKI*~w1yO{}9tHT@^2a&@QTsqrG@e<%qApd>C~ zj&UHbeM@;<`k#3b#WujA`y0Hpj0}j68qVV**ij1LMgTdpF8ia_{ z)7&!{d6`}g(%q+Bva{4T_&6dy?iYn2xGoi0Y(3vxS3bfcc#@QKG2k0zweSYZi}=oR z0qKITn4He!`L#TcuA|8FyPRvrYbplvdz`Y_QhGawE~ifU3*FPyyG@`c#1dyeSF|@4 zIJz%ZTBvT8q5$?9E)m{BEheG)5Nl!-gL9)?)!z;*>==9+Ynq}|v@@>W8mR2>k|fk5 z_R{^}rNf#Stokh~=}|uAU>_ ziajkno98r`aZk@Y14wmo0XmmC@N_)*_5C~MGMZZt5W5^`Sl>R+DtbQ~K2LZ$bAAV= zpqYCz6mtd&h3q|ssQ?$ljHfRk2Rh`ki=>iD6ZixxYmB?U{SCt&2-IrJy`7yk+Z*dH zTTM>wIYPs|H+P*Z9n8V2MZQkbnk5QSG&H?SDNjy0qE$E)Ik}iBYRrfxUw6I_HiY6*Mr^5??_LGGZ4)SY{47jG z8*oN~G)}i+$l|blcQCw}SRc(Rg3{~IN+`P;qH}&1z90i+iKk<8fpG&^N5DCHQotjO zwOp!C41ecJ9I25{8EIn1!5Yxdnai8z%j6Uhc3o<3Q|9|#XUi8<#E^-{2G z{zvA!LUW({OOfTeKTah0=Rv77Fgt%3TEFdUrDq_z!d{^1TZkP@zn!0v>;L2jMj%>T zAHIhN1VQZFE*^im{Bt+iJkh&Au9s@^fKH#JA$K&pRGk1B4t_R#11UU|B5@fphlzE^ zR{$+m^W+TF!VDNceA3`Xq5Ht$1m7vtCFgjj{yAzoQQz(5 zSa`daPTZhLyvdY|9gJePZSu5nwzD zu`16!=|+q}b|^ZusQ--}f;feMcKIXk^(GN<>Q)N*0r&iukWe5Y5&n7RH@ZR*{S%AQ z)kXwi0TBN6^c6wrp9^>gi1H+kZe;JX)CKo!fm7pCt>wc+cb7G$^NMdK3%^xKO&Y%J=9)?Ey$CvSuZ2$kpZO!*Z%Q*7~Y zk;G2syO(gT1iHKpbZr3*SDj!FZx|M5u(naNc4m#Fe`{sTe6V$F9f+1I1rFEhOP?xZ zR5usep<>*3P62|AG9citMkgTT?GU?tgr_0qtH4*TZr#@+Lig7ODO6bfL7p-mSf-VMUiI%vdYT1djpaK4!)M+R`?VyX9wTy zf&q#&8fl@Quqmj)ZM$cG-_W=*w-xJg)Z<;fQmhjQyapU~yr&fhZSn7^;fCJDyPw}1 z_~02$5nOov&}*Sqq1JC$wYIhf!!le5ikXgCI~YlL{n%_na579LW>4I%Nw z0laT63orq0XCPTS)2|z-Gth&yVRAYDqzmX50I0DTK65^}J``onl~{lnk%f*g;1I?_ zk)Ds09&sA1u^NZu08B-!C}cq!t_mejx7c~mU%@^ zaBs@*z9!?oUR*7bj`jg+2(DUJfB{4Y3mdISOi}dj4eI%JCLcDEw_Gad7otphe}i zB@S_K?t6F2WwSp=NMh?Ge|z^0BJLeduc7T;JNPwgziJ}enb~{dYg-IhW1DQc&Z=~c z(#&zxxaSiGzmc@mSn10TV9Xuk478OpV`H}4CWQ0rW_6=V{-$A-&*iR+?5A=hSH8|} z66%<~4+jqrOJ9f5>EeRKt(R7W2ZF2kJ{o!zR)qNgNogbMO834Fqdve~Ib1&j`TTfe zU+vJ}cn$!2SFS7n57`BOHA~;ES#J~Lj_kSd+GZ#}H)g<_Vn3Cg{SU&%8DafL6NP`X zsr$+Afuj)+$ec%x=f=(aH{<52>#V?iAR*6DUqa%>9HLV_JT@Hc%GY0Z-)+i!uV^u_ zL-|Sq%bVit)%V^9-)cjrf{FPwjnZ8S_HstoRiT&#pFgLl535(#Az!P(+}-vHGHE8` zp*n|8pF@0gY8_bv`xC22{q6mvaB6CYtsU-!ywz*O9ok)>MoN&rpgmehRHIai{mjK$ z^*sGWLS|_CTy_snyUw?Inxpxwp{kEI;d3gsi3ZX^6X{3NG`X;kkb7-4;HTkhJEyG& z#tw1ywPB{Ekx_hfSWhg%=!uOJiWNCMX6!@h3wn19)V0|Y%SD-RgCDWqABYCiGpg3q ziMSXm(DiSy+zck!GIQD!5=AKvt2f*xQUV-A(E{9eo3lo5Z)b~TDS~O}S28;-g1^($ zoFP9Lam|R6_ms#GWVtF7=b-WF8HhoI@lVV-+K8ibt{Wae7rR~W3MkFL+@=1>tGn?X z+NX{3!3PLweZl%`0)UYKq#s&AxlDL-ro-idDOr$ng2vc2w=83}+hX)175Si}jl(-B zo&)*~1H<0;dk~05_OOAuGmz&6{SXrL%yJ7(#O}DX@5L&IHr9&%IftYXX91(F$jee94cy$x& zcz6=r?>O)-$Kv_8V3?J@=iEQQi#+H4-AP=W`zw{Ow8R8Zn*?2_ zWQ+&K7Xg-Bnn@j?I)9s8SP4J}{QutcNB05`4G*3(bY|ACi6!nn)u!q`;i_$ANhS@2 zOt+x{_#sFbU>W_H$McW*WO-`lXfaQBAZ+M4UllwU0JPKBaQGr{n)g3|dbj?fxc-_A zev$#WH5~w!Gf8;l6H5C8nDg-FF91H`6nHAQeDovl@dJ{^DWn0?&2Ir9>1l^mb7ib& zb+Fg87oz#OsY))gmq4DSDAA6x3vHV7eRwUv#&QPS%|rK94AMZP`iBCI^h0x$0Ux$)55sY`Lbsxi;LpC~dUH(2O9O8gXm*Xfv z!uVJT5G~eh&XZf-y8VRVj?kupbDB~7u#_NVJ?+T<+|gY5&CwM5Hylmub4QbZ)+>XG z_raToh|~M`04B=ga{oWJdHhwa{yTxhA7wCVf$6VaKDDexxy^pX1RN21hv732xpBm? zILh^psKhc+KFymR^-SAXi7xR`?U3nb-q*_9^!<;_za8%qZm1o$q0ELHKHr|3#xWC# zx66m}U-Zo)yTp0ffe5iLBeF133(n@Vat^a8??Ne;5SubN$0|IiW z_RzJJ$brUbV19Mmgk`F$ThOvu^T{m3vwR5oP0s=M!qpmmzE7qmtU4-Peta`?w{+7$ z#ug?})zvuj16M#Gp8(TVKpl|qfbjG|3E>GI9GMX;S7cXdmU2^UWGY-{cuF^S5)>(| z-~x!v6BI2VQ2KZgN0%XM;rc6+#fYh}&Y1<{EdbJXX}d79=0RiPz;@b)+vuu15@l=f z0XO9d>s+2nn20tpCM<7CFnN9=yIFJ(1KD;8B-iCX!$&*k(H97jnSOVhs)9evDDiWZ zY3TMFxO`FGT^xGV{(7`(_3Hv6{0l+Vt!6`|bah5pimjZ)4pboLa~jfMitrl+Fm(zd zE0d+jy7y-w3~ZEEYorR@4(lMV*MjCsTZT6Ha@SlQM$TtKpg7|>0mAVkHL%H zdYK+&dubsV$D(kxA>*apA>R~Le!skfk;Tm63FTx06>j7{rH*MY@db^(dqJ zoE&bdvDMFmGfGLdFPAF&iFD{frzXa{IRjY$qiDmQC@@FzZvpEA z6ZMSoK!Ju6mfleP(zNeBRphfC=C>djx>qniK?p3I$Gy-lR-ntl+ntP5O+#IbjzdU; zxO_*P@R9cJw_%MZQ`5a=vX?JTebD`i-9J}wT!!DU8HS}fAoLZ7ym!w}hIz+*a!#*U z^i<{%{og@SzdMcvgnBa?ui$_vlTZmQ#AEMA@bux0#eZ>D8Frmj|k!|lWu2)`N%`&vql5+2W zC?uk&DnL+^@G9JA#|_hUhDU3-+Bl)q%ZNlM#KG1`E()@*A2PE1K2p0^LfP-h)+Fn3 zx$cWgh3=&v*Ru^oHTA%l1XIHl#$nQL~7K@W&Ys$y%tMPV-i%d)pZq7K^y6a?yW z+U8o06EZcM(M(Ru<678o6FiQ&c7SW#f%P~)-0bRZXidL@^uxP=#_${DDskKo5jU>L z@wyW(CK`T~T=Ryy#&E6)EnqVrl$>X=cv4k#UE$TV)_7unExi@KVih_%q&beXvSgyylM8Kn& z>Z?cVpjSsTkR?2*{`|t5odl@^v4)qKBlx2JGpmgGA;$~VO~ztWc5wsjufwRl=Y)4# z*W~f?KIRrv`EQ?=tqX%&*+00u-reyv`$DsZ*KSap%1rjzL`Af=fqP_@LK2*E8_bX( z`s8LCO)r@!^a@Fn6y{^0jflU+Tz@WbQeE=0_$yUp$0K)|a0=i}{1FT+TX%TP{yX_$ zv*%w$;z-|=E5^|gc7A=X%tPZC;eX#U&+K8^$r9l)-FI!4U!ZTxwF<=Jk5TXi`SXnn zzG^zC9qiKxKs_gojGTdH0Oalv(A-q#4F3Zm^$&pK$pY92n*$-pVLRil1VFqD_)$^i zw~Co@?*Vl1(Rsl%blz<8L;-DTHe&P6H`E@Wg6O6Wc+M+|0Tsh>fG2vdna=v76(A_B zzU6#Rzu&rczTIK!fbp>Zx005~INPfL?h2@0T^DtL7`kQ;-wJ{(07>>y{OO!r^bybo z0;TzVS3!OOyyd(wU@de79wz3V%n=?loLj#0?H4UM0J6yW4M1wY_Z_AKfR*1ndu~9_ z_fd?D0#;JNf9CMF>cF|Of2y9Nrcw3VoQOS3OnH3$D&q~n1ouDvzQ^T9V_PTZQzmBi z{Yl%uO&||2f&BKq=|B28u(k%@eg9*k&uePv=mJiw*Utg{rH|(!g0Gr3V(S(e01E#; zDu>@opKo#jMtNG<`s3YLBNNkpUi=sm@Fo{ie;b8Jem=Z~378%Li_|^e=0dP$57`3X z+WUaXn$F2YY%&3_3iwS5WPXuxs4pQaF^IKT3n2gOWeHR(2C9|GJ3-go@9R3@Go?i>;*FyT2tgl~-J!^bBoBKYfzI={ZC^S{{_bvFNI{T@doK-f%{=gT_`*ch0{#&O1=uyfU=#CFN3SR?t0vyr@ z49%t<@uvpfi6k-ZbA4po4Fe9d=7)FiL_{OL5&{PZ{i)|7f2rNMXN7*=$b!~FtlDTC zW$)~IqMrWqVZ%Sv-i7yypg4h{lC|7cKLh2k{>j|IdTq`G2J& z;Pi5ee`?m^_9(?~u>=1#m;@I;Hun!Nj896L)JKmu6Im9G_hWt>4EvA7UPN14ei8e1 z@sRAEt#x~lFwxKUP7?Y`+y}1KX)ZOg1BlG0aK6s&HQE3ECfk=;y>qGHV0;n6R3uSR@Q&q~=RI(qM&?2U zj=4_w96lZVC4w%3{tAD>G%D`}sU@*R0A=_sH2q+H*#V=(!2{E#TFbu(ChvWc%L61HxxDwZyf9UYt;pISb3qvU6M z>}c=k;!4SN^@+Q~Q&&n}4o)@|7fTCUb2mp9N={KxHfdXXH%k{bX?s&Q%YXkoHd#ws zYa2I8J^@ZP1K9CZkGBS57{aI<3GdyKU}Y9>iUF|i|=2rO5NSe z?YWaBo1BBGwI!Rz)u%ejW_Fh5Zfx4N7Vy*HMTm;Jy17`II$+ zH8ZRCgtbvsqc~Cu$E#LzU7P^Tx&49-Bl4d3_{(`!;paQKCt56baoKJ% zNg!n>(wHq(|I{#1Y40-ig{UyCVtP-#?%4%ths8=-KbPEVNAj-?BIL^KM04+-Z3kVy zwKA0PMEBK~)qSs4Iy$LU8Wb7F>bMzZGEI-)GiU_7iOimj(t{~E8#tmPkpgqRiL*`Y**mLB#woK z(%RZ;XlO_UFNrhV(R=PVI6bHB?Rb`w=|xHJMe`29?0KM>1oK$RH?6|Qq8Yk%Rw7;p zvgG)&g;OzG<-Y{mdPsUdFZWc`d z2i?z|KNourdB;(Qg3P+ipR;c2p3hLi-#xGR@xlL7u9_Yr-{tny4FmzPt%^aw*`Ggj zq@7x}QIo0tdIC?ERs%!Se$SqVA`k)8FIjq>^Kk_=1#Al*$Ul)rAbNt9Mx*9W-r*qv zIwY8{A!HTx*7r}tL?q#J9A97G(E*E1CR!2*SBxqa#R?)O(q6XnWfaExbG+Tj+-M83>a3-{ugJOMn;)l z?Zq*LL^Ss_VnbYV<0)i+I`I=>t$0x*;w-J0-#0fiF)^vV8|A8RR`5t7T$Z%D6u9U)uezf`i(bCjBjNL>c5Rp+c18l}^8rs_WuaeIQ zCXfQE4iAi+rZ3h9Y3uN>A&Atin8kcf*v)&Q4)hsYj2!1iY`B?XBmRt~^;h3RLr}gO z)Pi5qR#<4&rR6neP-;nOi;5r+sY`bJ-jc@W_`P^f25yVg7yIS?)i3v0_44tll)s(?F6%<5I^vuA^du&hV z8dXIU;ZFfST-RQ>JYY+>)VR9(#opMkFmysUc$9%N1Ms>WXKK4w_n%)1xau0K-t2Xr zot?G%l4+=~Uv@v^Fa?32jGq};Sy?fB@3HK_Yr{9|4vb_v#8`Q|uax}g&qN5^I!Uwe~b!ryi ztsEmZk;-1zEu=6J3`i?x5)zWHv$LEwmJ!T#+7!DB2*lE>nSryjGkBR+!vj&;NgVfX zsUaSTa_Q@8YagGVy3SOyFn`v%T#V%GPQHfd!?$8y{gU-}Z&`kZrXoszla5&rU0&kt ztMQZqcxuAd4Yh@Zg{`gM7Au)QW88jSH^^DUoVHa9zlWqQd8|lzdu^@SfTn>nn6MyR zIG<%>bBSINn8%<}T`bzhOsFl*m2 zm_L2`BqS(k;hxrRzmNY|TF;HDy;U1HS^YwRX{oE5mey@iri4J;%$ON4 zVfS1gEzm5}lDnDswzjCKsIE?(7bP$tYWw%^S29^&v{hB9yj|Sz;rHe=Y8f>;nSM^^ zVbq)X@k5NAo!xen*8SBYe}hBWV-_YTzkYiI1_Hrnzvr6WH`VGn??(^#)nXu0`3JS& zBU8ZD>euYs?^I`TvvKWSB#3}FM1P6WD&BD0Ce*uJoE^fCaW819hv7g`tmW0ikphot zU?BbVYZwPx`==Vrhg7aa2!sGZge0xpE6e5l#dxKgH4GmAHtJ@nKB%o;u^>sBh-B0(H3k&II3X>5Co95)H zDr4hTFLzozO!Q#8I|#%MQAH9`?-iZ0t_BLiWVFKP{KT0Ohk=>7tg`YU8{0dF*AsLI z1RnCah9cIB&RQyO(%yKRjSB=q!NQ99#*G`TMr^)lh^W3nnUOr`1T2MVEx{O?iowGu z1fowUL4E=`p@=}>ywE~H#0728K=V=(Lqk8Zt9Mb5GK8i-)@_{#m3k`f(6_WKJ@{Tl z+5Dk0)m(OFX)|Nh6v;E8jhdpO2RIl2Qc#ylu*gYC;brWpq6fFPG%LE(#LF(hP@9;T zAS5Kr%=v30wE_=$cxFadPfyT&L&IHWVRNcV%>UA$(J9Az%{NZI-`z(v%PYN12xSka zf>izD;zBu7`1D{sagkp>g@)`}isJtFiHqqhDY79A@)ZS!&{hymsc>XX>nBC&Dgp z+nEsrbrD!6I!S-Itg!!QP<*Lsv$UzE-MGBBVp7&iaRCSqT64FT%&`&jdZc zv~aY3c;V{**K_6h?;nP)zT2CZhFP0>HMvR|g2%tVk#Jcl^v00A96SH~nonF@TxD-C zjf+Mm#?8&m!nrdHJ1s4(5t?M@_;?k6@%i)T*REZwtgO6!`*uRInp!uVu5RhT&`{xq z$J+4E)BROjTU)qi6-KSiv*O8*%<_?Pa)HT@U);9Di+K6+Wq3F{FRvD_O4(F}{xcZk zuCDvGV}%^a#U%S;F9Td%T%@CjaPjce>Z}xvjg2WNDD?I9C!gQiK{<97bYAF!`x_P( z#_RZfuDg2~Mn^Te4Y{yqTqYGeyUH^?6qHQi=Pt0}er;_fBql!lHQUX@Y~0pTxE786 z((MVC^$@KLJhz*7?i9%p@z`nT=;(ZFcDF@e^M8|(Ve5YK_#xAa#igZuq0a$HNe^Xf zYc=Rr2x3x#q-%1^-c?tt2o>XnpPbUVz=I|i@!Ih{J6Ini`zWQXtZe`B+w!NB#l^)O z+VXL-a3AgbU`7^RUXT6+Iv?w1i~PNv9URlTjvYc`;wHZfFRW2o3rkCm63jZ3Fi~!=Wmotq({AR+vo3PD-^wnFHD$t8X2d+ zs^VgXVFADM6E?k?z`u{0LoFE@8L9dQ)ROtt3X`>~j8ucPDh+Jy>`FaU=;BQ14qXS5 z7-4?-WN}&FM%Dh{chQwGLhw0r@U;mYCFP@MlzWD_zo1qfzcovtemo8j4}Z4({c|eE zU8`pKsH&qQ%VlC^#p`uo^Q}fs!^p@87B4RcNB`%~p<4%B zuU@_CVyUE%qk8uA>C-5k+}Z0lQHme_~roDGaY^XIy?e`@oaI_wbKdS)P&5; zA<4Wyu9gxK9TE5s?mjf=Q(lod;q=(j8KyJ}0jPcP=a{R|bYr3WrF|GrIhRj&S6B7I z>Z&$W*Eey@jMVq<{{SjDJUmR}xN(P^6zcASpKm*o`^jWEw8r7qjJiU$sHo^*a({n+ zE`<)fSz7RoJHV96M#zWq z_q}`feg@404(zpm>+qF#7?pe7Rdx>U@3e7^nH2dhqerR3vaZSBjDY|FLy>wL$klXPfQEDK(9oNu2BB*9O^Uasswn17{=$ziFf3F_6&Ftwt=yJ-+Ma|7kO{&ql z1}&a76%`Ism4+n~pHkSYtzjNMefk?XE90kT;RKxX#0SbST3}GUdGjWn&vA(P5!cSn z&&P8$KLMw3aB#HThF4WvSJ(OJ6|4Suq-(_;1F&0Hw1u6BZ{>|-5Tzem9zU8Y?%I$~NO5qk5S`K^PT z+v%Kc`1g9RO^`B3llO>gESTEI`RCEbqP8cUY*c2@CM&Rg#Qzlmj`Zc*M%f7O? z!>#wktU+xsavOz@spoI9WK0*?*ch@rd|pbLTdGO@`>|MkN9`U(*9xbU+DLp-Ql;G0 z=-Y^u);H(z7yD%_yI|(yuAJ0-_G`>|Byac`{5@qq6u~Dd&;9@Q?sP4)Jl)V=R8v!v zxY`F-AAec;ktP03ZDhS}9xmq`zKqbRnT4r}D@f7q+}hlzwC<^b{CryGg3INF*?R;8 zL_|ac{}Y2P!B9GT zCQsDj`^Q5^XBswoxZTEh$>ikZ09_X)re3|x2>iS1#rgU9wY5G61qFqumoL4Kf0NA| z?C+NuG`S#=0~-@%n-gWnP-CzVfwDAQ@O}$Q8dpZv?mcjazS!B>fmvnP>{jA;ah9ZY zH#zfsBu@r@m4}B%p#^9;(G+6j2Br76W3QAKz@X%!J}0o~W66XX>}P73G)u!}2sZAq z8QFhpCLFe~upkxl6Xxfio}SiuR+un2s4xxSrG9J6zM9|v(x>_UZg@Vf$7{4kM`DT72B%4uEZ7r*my2|M2Yk;U&!ogBHBOS)cZ_r@tf>71f~D<1nn#likJX8uM$B6%`fIo6RQ;9UT%%h!`DRUBeJC8<*bvFlRTN&AX*zdA|ect zz>?-Rf}bx_Qyv=X6)9z$pZnC}6BFyc_i#`gSvIIP38WPL@jx-1+kTpzUL^p7&w1d% z>iptj-Z`IOA zoUC}=)b!lIfYd#Tt+Yqq%rrVa1j&qp%E-_Hb^kCgd79=nm57K4Jv}`&wS=+pU*@P% z2Exahlqtulh>yp0KwL|t9G>6UK)&mw3FyejWFR9Y1vJ8C-h*`n zFSR;5o05_e5xa4wCKP1$sBiRcxn(L~7IOp6;6=Oy~EGjxO)~u_PZipL(&InUa8m zcmGpd0SnblMuku!dFjd8qydJ_X=!TiJ|z#`4xO+qtGL1~q@F@UUjjp6v0OrerN}t`e9!&8*z?KK%oK&gu1&h6TW`@~>Fn?QW&)&CSd( zQhlrTu$SiUf~`)a*VQV?xn&R7(pZ@vws z^L%P=HyzFvH^XGc#KasK8*_d3?8WWprPt3N!i}7 zoNRx(D}MWfQLC3zeoc-Jv=DBADdBcqP0c!Nzioo2M_V&rGDY5d?o#`r{Mdr7fGJe} z$mdObe2x7KCv4F>ckZMy(9v>JweD$CDwP)(+x(tu0yy4@pIqOaI3ePFlq~?VRJ$Tn zeC%DtG)}3n?=NjxjN3@x6SJEjR)W4QQs%REq=d7w`vN;rQNei?Nv~b1A-8%=Qh+{x zomL#+^%-$FX%U%%=PxAPI3$zdsH ziC%0>FdvS`m+|NcH_k(Z=YzBqMb?=riytVvD9>b{;c?wjv3rTIrwnp@Y+T9q#W#rCV?d2??1J15;Q;>*(w}rSWO-{d3fx_`qCY z*6PSuC3|>y7*NL%+!$WoyZZSQo(F3qF!FXjPgdxI*y<15>gecbcXt;MLQ&Ni<1hcH z=;#uHXFQaY*`Oms$rP<}aB-DsRoth58CWD9jJ{El7ZT!e_2dH-=%AB%Kz+MjK>2k3 zbqJfJ`|d(FsEgun4i65T20?-23MP2sJtc;XHvoDCpp$+^PZ9c#(B0$XcMT05&dxv4 zIyyRF>LX;@wnp-9ByRN6bX9H^%=-?eazvBxt%S;IzW4YAg4_Njh)sj~qRWM*bQ z=iuij`q0?u^+Wmc5x-qx*SZ=W2*1Ip!8&% zk`pmv%zpmm!~4=EG#(C?eG#9ul5E2ByFrDsOmtK^ezH|86d@}%dg!^4tdYcF=^J{^ z1tnNy{G8)a+L08Dt19BVH0G@4@cy>v`$TfG=h$&ZjIb-HsCEq*S_=-45ftKc*vq9p zd{O5NF}C-N+k8gmMxSw2%@=GLQ+-n3Urb2Avn*yxHFE0a9M)l{l$N8Zhet*>d;Gfp9{MB;_M;k#Db9|d+ZxVm5Ss1_x-qy>Q&TT2 zE^={lG8Dsf1<~pRQ_BVRWl|CW5R1clw4`~EmO&nr1pM($msrpy;8LVY<~l-(La2up^!6{rmUYjqjPLcBjPU zZVHYve+nHO93*7cas!d!+xuq#&J62qpdzCOFl@E7CSgI3jgES3e~)IceNwiJ`i@#e z#CNvdHvGZ%&!0apFE3&7;+A2!tE!FwJkfjiH2T{c0oR_Pp({Q!B>w)Z)}uhcGU#{6 z?QLutJ$}tzv5lv5IxON3`1qcU0@r(>%*(@L2va66kH+ujOF(7%Iy$s;bcP@$0u5}$ zqUi1E0h3JqiI|w!p(owvkKbFpclpDGeNN(pqy;3K2|j-W)Mbm_m!-%cAp<-ud(zD*6G?TNZIvLBTVagN;;wdZ};Sx&?!52=DO#a^Lm*WVid} zy~pQp8A(;JF!^t{s`onI-668XKz&b7MM(;d3DB4Z!EAA>-w`bteh@ zO|Zdy5|6Avim5XG&_n8ubT|gRo7!Yl0ET~AhoLrR#0QK~W`A6X7&9|76(Tn)Si+#Z zN5+{^grozU1l?n}$6RoOBVG)1DTN>Q2`4BGVV*M5(&z@^dg*+t<0a~E5Q(%Z`Kk9R zexLbIzkPB~8LBXRJ_7h5k&s8Zj@j1-%9#pEN|}IpA2ZC~_q@4$g{@8Tf84>s%J(TL zDe0;K!D@ABX$Sv}_Uoie44wJy>35-_*RA+~p2Ply5$KF*+6t~h7&b`^sXzi%W}l}0 zWI6E^-eyrye0)3rexqhL#xjt~#L>~wL8c+)wi*6_%(3*s!`lehk)flp@fISyLwesO zDJe!CNi4ztBY zF?e`-FYs6kv|rtkeHht=&zv9l%-x+Z@y!D~;I)d)7GZRf-mn8_zi)rJb{A#<2(!@c zk^+wF&&$RB&+ zPEJmsy3U*fjoBd(kA~&_?VB$k1!!`M!MQnu6~=;1RcN<(QwJM#Khpi$#PvTF)@mMI^QcvE49BGh@XT~yulvEI+h`j&atB&|JzQq zPGllp;Ew3%^ws(Qy@cg&YHC`{9DNP>XK(paq2k}qeoegxCr8e2@@cUhX1fw@-l3L| zx-am6Yc*<^;RPvmlvX6^-JV4st)$08@o7n&Z+fcD3ObRIODZl5>s|X^Z7HkYp9u(` zIh=lP*gWiQ{nPe)^YZt8o9NUr{LibFZ_o^UV}*+9vD#+-MAygzac(o!%Y)`{0w9>0 zm5Ad@Du?+(SH#`BcP*?z3j&Rj0(tHihWmwJ>^)2M=Ck&=2v_cEGcQG2xj7vmW@iogGszIv_z{wY5^~q#%d_6#+_d zn_M{jS8ZULD+n9Fbd;VkjWEO)-&{}Tk#JK3sj@)96sM8O-3mZ)BNeulkr8==M1N^s z&1+Bq0s;_LfHV9k?nguI+A$W20fmZWrz3EOd0K?>!T)b&v!04d05^#0FaXTW%@4ZI<0%IixWrA2<$#^&a? zva<5G-Nn6u`q9}_G8BhyDO~2)=|+4BS?U_LRDEg&wfLXXi=4gUCDl{hLr+VxXhSAk zE&bS$56E=t9(SeAFaTk#?!NtVT^Th*xJWoZ*A{@W+UH2?7x_@uVsG&iRb9Ug_@ z3w85pB27(AG-F*|UFG0u_KA7c#g>bG+)0djCpz4@xO=|77j|;E_>u!%%+3|X#l^h2 zco@m4m~!W#s`(eM#5u(KZ}UZk*Y6R=&Sp_2iXX13QlECpR+T#x%L5_+u;K8vp+c*7 zJa(E8?kzY=j^o9uph3b&^IuB_&^I$PbH&6LIVQ12cR_vyz^Gh1Jhs$yj12SN-dxWqb|&zFICdu&aM#{h*ZBaiJ~(55fn!Zw+*n&CMq^HVpK2^q?h@ahOSh-R?#uMXky<%KYTcNRG-tgX0e+ z_gU!wz`(%D;8NnP$f&3&xCT}8l43wfS0K8kW+e0RgP;%Lvm}Is1!XG!i30-zfcjx* zn}>qtcM=57hE0`Z86ht2E_66-Uw{QUfbFLXPJ*HIs&A*ttEj|zwcs%W$yxwk4!9g>of`5Wy^_gMo3uB>@BFHZYg zGh7P!&}`1m&U51v*_$8zv92u!!$AM>_DM=a1m-n!IyW`9m=0#3Ow}F0-Cw7tuPiT{ zK7`lX^K2+n#2XL^z=0yjFQB8B%22Mv$b8gwk8M>pd-zXICiv!8YX??f0K4GqxrTida)Z;g&WL}~Mm zfiB6mIsKII^J_~u&d(;gK41m1>Vv30cYpVE2_R*l{GT_yaqTb$K<7PL^ zXW6 aUwfo&%RYL&gXKYNT=|QURF7krx$(MephDedRGsskMpU1Z*EV^Vac4rc6S2 zJJx#w%pe$-u6nQ8O;L^&Xp%vL^t{Sgr1``81Q`o#HM2$-Q=FWfAeGYwgSqAGC`R$hI2YHD?Z!Fq>{nj4w+XUe_saEzd$b2S0m-pH3P;Ri8CC1Ap;_deOl z2@Jfpxc%dUH5v&gFYhEgqXJMc0Fnc00)Tdi0>K%u9$iH_V%_{YKX1~jSDdS$N*&~YVzU0d^*vBKNpUYr2gvv6tS7(4o`~`a{RBF7FRa6wvQ?RT)?Nk5549CnBI>x+VpW6y`c837HUq05qvc_d5DJ zXhT82;J3HJ^l(}H`7=l}=V z{@-*B527T3rkQg4@f_bSQ>rYJ6+A+#3Rk1W5o>?xtZ|D zOeM`g@nvdu29KzQpCt8F%_hmx;zcY?{kKo};-Qq`OZ`>xMyIi-r8$*hS*_PaL|Q47 zR0OVgz2CV}VJhX3GW0-~+Ic^Qe_*&`mw~2cK?VvP+w$@(5M@_yeEI^R)4<-rhwoa&mHT=8-!c_-sZko@WQP z+(3!1Y-;H44t!w9pkEa!q?tW=!Yul;2+(^7#p%gO@q<{&*T7DS=UV(O1ZipWp?_u> z8CY5A7=eAP_JH0An|Ue82eypq6;J|EY?@)8hMJm)n~Uqul>ao_em3a`-k8;bEb5te zxhyk0mQlkP69?0b{k*a>md3eKNxVsPGsN+6y-^}oskUhx#F!iw#@0v=J=y22S=$>!i zTJ5zDjWfVfKz*`i&{vIkN1nE^q4_0r)zTkuo zG=OUkzEFTviwc&fr)M<*3@aGjKbhMK#0dG2e-abaGH99oA1`To^(-w}0D=YLsirlf zif0dWx4#sIfdWmeX5&(@_>~Si1xsyTHi(ChkAl}ebaE9p zz-=7`Y-F3k{~giM-5uJ4#KIMh?;HksQN5Fvo_-R?z7g7;)@ z1%eGo`dx8ecH}mFC8)=+RcZW`mA`!a_z~(Q9Eq;_9d=U`xk$Piba`ao@yXi-;JSJ@1k zlhVaS1n#PhmucTwa^BwDluyK9>B9L9MUQ1M6}rtYLsA3%+uWQ@Z=-RY z6}Hs_g;dH~hLV%{_TWbS7Eg|2X07sK-MSSJTE-L2a}Yu(lt_8`^@qT6O0419DLWv~ zZ9*4&kPJO9JSq@0zOb+WVIBlhTU&dU0~vas$8Kq5Mb!Ifu(LA{RPxB#Go~7GTwL68 z;aHG)uJ4jcU5;bzqPs0zWtC3I#Qa)fW52)kiX|7xB{jPt1HNC0`UBB} zy}jJrdG<1Eih_KC6pQ8Uh-KD6BCA2L*u=NsU*<&kIlP!7gAecH{!wAYNCvPWUDxFqp*-e|Elr z5?0O-Og;(3z;y`?8)vtt=4C{E6je~L43HJfrWu1-Ir>;)E_wlhCcBB!t#!aXjBzlN zCI1%G*L_*2e(vpUK0Gw^8xlL}g$grGuGZi+@;kz!|GS#y4|-H1XW+u;u`ztfw&(lw zf`aKJYhQ33MsmB0Rr7LlbJwK34>!790>@#S3knI<75%G$UqS;bTjpz6w%Eu5`#u3f%Fv!D!>BrB@}(oz2O`)7`_vf;2cjRZZmFu40a zf`pSV!Op|;t=94u^Dr0)htseadO&hqM_bPXmEqb85IG#@rJS60;9gJ(sjzc!KoE#O zp!)6GZXS{W!s;L*FNIx-z#WqA1TH{fHST=cvirjVL|pu@|k zsC@mdAz<+(9sxpDKeIu0G4k>Cy++6GyEA{ygTE3O8)6*%ZnbMgZg~i85uVtjq=kg? zbJrTT>}tRz^;Aohpre2(@T@P6iZb}^vLawRkb>7$#!=&qlgLvZU6~r7g8<`g0Y%ga zQdpoY2egAghlmG`2pLusm4e5Y(r9;RMn^~c&Xtsu>R&AVg$Rc0+lGc7S%_hPxfl+Z zJqLYwEKo1}<_(om^9}#V9#%fSd$FZK7!Lv7r9jqV62=n_$@M`{Jz=9_VPg|7?*i$9 z6$`_~;)5qDb_uBtzDemSY%xDrW>*2XLZ)CfHM=;AJst zK}ItBrcj<%wh<>xbzzrIlCady*8}j?Z9Zyt+?>FNdd?FR?iUviG6tT;eRrJ6;yl^& zS4~!Q{>Zd$kUG$@&8Zyl@)dnUdjX%Tt%Zb{LWGvxa*hUC3X;+rJ zQGUpWTb7$kt*$;s5wlRx*w_eVk8bI7`qyGfCRGan%?FCAB#rJwxW3}-Y!l!<6k>iB z*i96`he41zTwjBpf=AKfeOw7xE;?EfSaPXGNv{3JWx}FdU@zcQ5)%_olX6->P?>|9 zn;?(E9cY4ryu3HW(!eYL`3E+|L~trNO`gJ&&5CMk56jLi3NLz6eW z8bU}lg%fr#MD(tRnfnI211uqs4M3y^9eq&-LN%h+L!^gWG$Pv&4_Vb$a`hE@2y2LOeSpSZNN1c^iU&B^HKhU)56 zKF7=x+=2@^xe}>_WdB^Kw=csb5IZE;xQZvSOj)PGhK&#E6N8%pOVb#3G_0E>?8cT3 z0#XI&Q<%H`_)aIMr||EUJg*EvZ@5|jZp+w@)@R=`Uk~=uky{aSnt!CCG7KOY>=~0t zSn@r%_c4?|b9H?g8*9B-&3K7hO{j$;v*L5I(>^to;v15WY-XZqpoEm_ z_wQ}6HUrowDNO(*XJ=JkXTF+t5OwR}h@64Ql!UT@{nrNUGcIGFmlwbsApQ?gF1QaeK1~*j>2MrnPiU<2;I^@EdeDLT*8rfMw`;|a61t8=M#K?I`1v@&yAT! zwk3>ISF@i<4w1Ki$q<_Q^y#IDqJjd!GBzJ59XYSUU%q_rzInG2;>d5o3M9h@eFf0iP3Auaf_;;pvb}Rd1*{`fMR2D8b{G3AlP{K%m!GRFP0Y`m zfRFj$!2^^@ySGhEO*<$t?0RZy9my@}$;nb>p<{i0eOH})VhwTCS!kkf-!i;Yrz;JG zj^wdSu^&M{JRL~-TVuQ;F5=-py8YaSs$Y%zQ%JtJ<;y;H3s!~u1i2DM@^;devGHLy zh>;ebI62H&B5YVJF}tIDU)Iu}+m|rpdA4MolKr0QY6;GKzWudj^-r(Js_5$Z@20j@ z!4I3>zJH}Afk}ZL;^X6!kdUAf4KD=t9f(}cUE#RYMb#iq-#Jh2pCqM|m{gRv2*Wo2#c%6a|zbx(!1!m;(R+hmaq z36dqrcz8GSwY1R3b79G9muX>p*P8drghzwFYT$2hy)O(AmV*YJ; zd5dvWk11cW?7b0w&M6tkeI3^s2=q!9kS4W3kdIkW= zuladOGjtUv7Z)PDdf$#A<|+K&8l@mkF@`3cf=Qzm4$fxeq|;DG%!N_5{p{DT-d@@F+m*1GvwwMJDJ*X$eHIr>6%*a)#@A zayxLD;D+9Z^h;SslBob-=SVGy2V7kEIiMld*VW0YG-Vy&`Jnm2;wIs-Bhb8i~84gzNnfN znzk#5>LH*!FahA7KGrR+frcoSd-Mn)1Pn-_Z2s4;3No>Tl$3W6Wd}Zy!+6rQv*QGw ziN>7@NiCJgfDmjRBO``u5xyv_iT zG4OBYYaOqT^+G`8SF!)?;hg)h%+4V9Wzz~v3f$@@_VHD~QpXz;FP*_Uh9JkxAairD z@mLJS&*}IRz`!|M5F9Qtry?7MScWU4;2)cs{)AEMnQ$MB17RA6FTg?pS#an=C?xpS z-tK%m>QJC?E~UlH?5rL`blj3va|65PK8#koONkiNlcD=A=!5Frhk&Su0(ZBN<3YFh(>;M+tF z4duVl-dJA`F}S3xD-Z&hIf$T2BDsrKv(e{XP>@nlU41=>;-zsYT5>Al;@41lahgna z;hfpRf*J5SjK~m)Bf#%)X67dYcPe=1gj8>96SDolNCd}adSD=OU<`N>gom{m^2cj{ z?Pl;ho53~&l4KWp_5{b>6V!OHL~y_i1cf?PO;(C*sIQM7rT~<9^RsPHw>1?i!Huwr zfF1r*KsY#cpwhg1_iUn6vpXR!>fqoYBm@lw5X*B<&qnZCt*lng4maWGAZ0jEHS}wo z!>b&0bfFqozp(c?t~G#9Nl7&GVo0jN`9%q>i0blkmVcvjDJdxsWRKt{9s&ynGW!`~ ziXE`}L46g5oc87U=^A~y5M)`wcE9g4rY$Rb{zJmfav2u~Cm?8gW=7RXMPa1bzx5}G z0{$0=_q0OOSxSF9qSezw=t@w~3mOQb)CM(X-CzT*-RNQp6@2i(8fqET`mOwpqs^%= zot=+IXeQ!czkYAh9t8Y!0Uvtu>P(W==ky4=Gg5nkv+yIR_S}f*`#chx;4!I25A*cOTejo^$nI~)KZ=FJ>(*rlFcN?t zuAnJ^_bL+y6ipXKIX=3&5NlvaNOPQ?uAGw%kbxvd*zC>${u`z{ z-L4~pU(&dWVEiP(pCNYu%2=}E>uofteIEg{z?e~Hs zvMJ@R9>$GJVpy1O&J*b5G46D459gppN9&k{T?LevP}5d@g7^-=RhlK^}n!Ah3!fSkbg;XdHk&P-<}G2Z4A%A)v0y5U8AkFncwBSHa`a@x456 z0^oR-3cCOzb=O<+%BNE+sA~5 zuT7NQtK~e$Vh()g+<8}Y_$#u6YXX+uepiu#mFnL{0)&^CLnfVUs4LUk8 zv8-B!7eDH(l}APwn?S8liH2ZL4U$!Y8Isi#F~_TvTSPr*c2TR`PC26;N1eeJrg5RV5?SpxsLyCc*%!n;~#5q+>Cynl9FSGddgm>T5J@C2szAIRTmaM;!LVFIOFq$LtxC3eP|GMq*_N~ghI7bu~e3~=(StSqp0w2z}~M8M=TBOxU%_ox<&2BUmsX=(6{K%z5%Kv>;mv zMO9Ufa3lt}3MB5HUx6C%$zbGtD^jLddzrBjR3>!}A>O&l+FDLX1iOvR&NkQACuwqV z)pd1sfx-cyUoBft{+n7*kyniB)~%QRb^if^|JuGrhL^~NsYQ$QOy|j}GV~`9Tl|=+ zk;Dt@ZwsT^)G$xl3YKh$Bg!WZCW;!LmLp&-T|FJ#7XHomY122W!cSta@y92c=?i?+UhhV01RwJ-H z@I1XeJ%?p$fAsgSgKg3nH9$m6ynax6aI$MINejVWq1%weT9kKltAF>7j}BWJ28$Ux zQ!L7;6lC^%U`)Vs?(wWA-)?-j)%&a--s-^*DmW%4hJo?;2xKdmK!8l1jO2#SX3Ejd z!Z1I@VI`c2XaHj~x_+#|L0^xF9^$piYUyzLlujg{p3}q0iM{{y-54@Mlmw9Y1ssJ4 zHwRq>ScFO>JV!8kv5D9bH^BQ@8-n?>06KQ#PNYXZ+OO;=IPSxuYV)H_#Fq{os1~8G z3~>#<`=iH@08>?HmKq@0$O7pFpA)3$BaJE}!^X~gU|d0|f2OkO6)#^Hfbr-=$cQ>D znHhrhv(p%0krE;{oYL0};_sfEoiFFq8b+cQ_@>lOo8;B2l zAFN7gi@8_H_+n?XJW19MAKDG=b~ILA)bsoI@B3vWCWj1eRPpUu)3gA-2jDxYmrmH= zdw!xCAwPoyd93iAn)a@)5bW}Wa3wa5$jNZ+RBM)_#S*69=UGV`P$nF3CYpfz&}xB+*CC^zL@SihTKOy=It9TIrHM@s@! zY++*qt~*d^r8Jv5JaHHOLw; z%*~r(WAEInDnC*sns--Fz#4+Xnb)d9g&KL`-4K9R&wTwVUy&r+_Q=k%3Af(^cqTCZ zV%lCCc;MF7MN7m9c+dH%sM_I2_tPt;pU3M(1Oqku3=Mb@d0R>d-l`#)`2{wKm8Iod zi+(_lIN;*dNN%aT08#_2lcNd723#l{5P&_ZVFi!{ElKN^gXM#5Y6eiFX$#R*>(r<( zho&h&R{}GYAA-imU+Zo2lAOT5N#`&}Pq%S!_{?;#5wv^ow9|y1JrrFiNlZ*^Hj<^i zFM0L4^#m;X;$W}y!TTSa_hXf4$|2qKX;;B(<$F4pD#y#9_&E#BOR}(_D*yUex)xwT zNG?EUa^Ajm%N5S19UKtIqiq7CtbbFCIwJlXH$EUB06GWA5+y0OC9n>AFtUGwm>Zu7 zN|X9dweBb9E|U;E8sN5r$({BaXz4OiKLl`Et}=k{_yh%;U6u#9GX;Hj1OD8)_s|~F zD=shS@FL(YOMwQ?vWi&eY5CXNjC`UW1+%G{F!Bgww_!)M?}>gBJSWzVVx%O&Wx0yo zS43Q)yEvCf;-0P`_QT)b^jS=KkzPMLLV+&j(Li@A%FDyaT`UO*1GK{_sTRmV#eti* zlPGtTnx4LwPxIJU!+q0xN5-hh#S*FuPQ(Sj1;4=?{6H9DgcTO_5Iz8OC3umx^9GL4 ze1S#Z5HYIs#5qY;<3*IJT?k&T`Fcmj`KfS>F$ch4hky z)>Y^z0G1=Hi^w(=kz4}dkr>D;)FQVdR`7&Ya8dfxcJUVB6 ziAXp?%s!mgp!#WWZi^?g*PTE-ouE3!zut8 zZsYzef()$t?dHxfxL!yxHNAg7Rib`l*>ZkmrH~*kT|x&=c64h(%`CtmgHv-?!p9U? zMD!0KkeaP@B^xCss>2?ILuO(8vokZ!lpwlZ#f*S4f&2h4x~PE}FCvUmn+Oz~n(+bu zTM?7rWXbgqe|3}(e z235I!al>>;gR~NY#70UGP`cT4hajEOB_Pt>wJ8DVk_HtN>FyFFR8j#^Nd*La7w7-X zyx*QLk8@@?Gsgq$`@UkWUoG_s8+ah_XLHlW+PVZjXYgntwO1zGQpbmfkC$8crInFL z7Aer9+vAoJuMKt-KwSwi^C+n6BZvV0;K1wF0)N({!d)PN*wdg6fi_N1SlD2x=^uLE zLoiwW8CzIrg(Wzu*$r^+m70b>arg84zkmqGLCpELa0;YEFwx@^*q`4zwZHA0X6~ zmGLzIG0gj{$bUM|4#gsoq?S+Ej`_X*4Um0VgVL53!AzP#Q49zg`8yyE>tn-4_w=Ft z^6|Ns*2d-or7OHY5W+`0SG_%EZ1MdV_6nM4xa!EiqQrw%t$@ zKL`BA>67Nu{5~H(?Z3EKAN>VthCt6}b>Bgmdlm`OQKn2N`hXcTAeL@U-2+O>*23aS zh6*SYFd4F?Lba6Fuir6h#5x1#rklIBw><6Y&Fk0uNGkJ?H7F>0mDSbDqQTxlBku17 z5SjN7QbxuP+G2-E3t;1=!o0P^>cFo0;b##naM*OeppXSQtr{mQYwz$dG78-QBU$DF z74M_m7cY|5fq|@i?JSKDP0q?1%taf3P9KO@Lt|sE0o0Ybp*>(>eqI<5bm&#px&mVE z@Q882)!q+VVii%T4lNf*6rr<#B`~NP?B*63dVpeuG8>FSIzOTL#eYzSRe*v$2d&X^ zClo_BMcmBcxSK3g=+*);?H3?Fp*n{98sY{F-}?)_PPw~03TX6|EWT77`?v;_gAwau z4^8F?E_G$rr~v~V4)H3agcG$LB;8O0t3{#+=$L!c`}^kF{H}oPdGKwTVw*TfQ8a)G zQ0gp229;q))~-FH3mtozdfu=TnvJPKbp&kpg2#A_6QKKS;S!X0!oQ3C3N%kl(LjNP zkA?7C^#iYj`8>u4Zqr6KFGbw|&;Z)o06+^5{TlRU;k|^DKnVlQ?dtjq_)pTC{1kUy zWFcKX)m!wO5b*ZnMA8Pr{uoK_snA@FfaVTXvZ~^_{?om*+>3E}1y=0i?;H?a}!2uPoh zMTib{&b@#7#784nB!uL8yLK?9h$c6L?vxi77w-g_65_|0;V#x_J8pi#Hg2__DuQ)B zt-gJ?*^-(%6Tn#AtbPE7uYfHjR||_mFy+0p?}%ZXLb`L`zki>XmxPLry7K)~ptL|e zBNydVU&J68iYte3*Tah80b?>Dt$>^peoX+FIojjvptF@nkAa}DV}Rp<7*Q}Xq749k z;_-(n`DdJKa2)WL6N<@*qtGx84-RA)X|>>_yEs1wP+#skniZizGt?!6Z0rN^v^{tF z473Zbaza>HtBqeF53Ati6t<3Dhl)ghoR5jQ5DTywK_%+3sLz)6_DW5b5&Fx}oCyoR zfphl$oge9#Ac9;1${yPI&uLQ@S9>aRH zn36|Xjg>m(06Eg$-)#@PpiA5;E80==p1gv=uXHK4wgU9#g!m*za3j74Ip+S|Ss-@v zwCtc7k4G2L90oj*2C66X0&N4@Jg_9uLN)TMFtjZrQ^|~zxez^wq7sEd+b+5Q4cpp- z^NWjpCSVWp9fbts^2*Lb*xT2~&kAyww=FGR-{*+tpb}lt1C*1~ zAZ$M=G`3XM~Zqv+_XY>F(pBfB@eI2s#tuVT50FBH_#7;#`+oqY)NWK zw(;3)5kGuu`MdtOH~JVsf|6Z>K2F38xknlv_Uv}l@j-gm%RG(1&9Z5SmWcz{E~J2 zKV-xo=2r*og?Yj$%0KSt_kIIK3sm67tDPMfp-eA&|D7J%Np$$3bvD4={_odG`?Zww zg9DH5T5uNbbUg0mi3fGmmo`5gKuEY8>&ID0pgV<&Y11I*pAtwd+uH-7O!b!k_Bc8g zQm*!)c?2En?SFJs7#%NDKu+Qb9z)$7!ukU(BJi~k@LH1%|LczfV`7qwuWy<8T1Qvc3%o2qCPHV1g@Xe-ZR_3&a;1q51Rmi318>9R%*;zS zv>3T~sIeh01WK&hG^T$9fEg@-vH|u5Na9362m#PaVOABdOe=Kua3CLoE>Z0iQdgkt zfgWL1rNPO`sbKUc{B+>)MrEP8hO@0*J+u}r0wm#ef#$E_mZpSt|*v1OW=$y^SeF|hzIbBd4LasHtho$Gd_LAApwTR`6@lI#}|UV6OM)0MpnsaAhE&MkekZ@Dn^jSS{H>vg^^8V zX=TMsLq%2As)a-ggQ}$)#NYh-vzGAu;eNA>JAi7#5Bk$+&Q}k?+X*iWu)C|kr*>6P zQ`b-uUwhDM*%u4TA1LtXwZ?9_l82AzIxPV}fnE*RS$jy!fTIu2lJN9vinKRw@!jH&K@mns!`BJ1VDqD_tm)Wr)`d+*Lv8l$>sRnA zWidcv+lN!7oh+9vAx|2T#Ea3d2bF{Sz`T^G(b&> z2nm~Czb=ykM=ewsSDF-6=s2JX2f1rhlp=ISAbKU%z50xl1eK_uYb9|h`J(5NyP41I zGxQh-%Kyxs)>7zjahh4QTN>JP;uwV=DONbCI@}+WEOWpVw%af}B|o&eVCJA1bBrao zRJ~KETO=S`k)mZUs)o&fC$IF7?ajB-`nvpYJD)F>N$7tsFa7v)IMCNR?mgZb*zra5 z+aK|7U@--!G4rMeGU&&vd5);3Y{KcT?WZ`;HdxIJ4BkKx2|SJRxn2E&h^{d(P`w6( zL6+i#r{;XS{DsfY<)J&fpdHL58hkSwg;&DxvsDRmF{-OK=t@=6afH9F<@5DgNT;p3 z&@52=br-9ZO&e_Uu6-`jE0--jY*$=o)3C^){jTt(zlf5`~KY;lKk*ZiOYY|_g z>sk(Hbu^gId=*vV839)@bH~aA<45vT2?~TtYt3Ovu5J7M>6|(oI$wOgPG!9gd(|kv z^=POtuUY^?F;K(d935#SrQmut;0P$(gQe(6AUc`LJ|aW?0ZBZSnPExC5wdDJGN zer3Q`z5sU`hju-Jb0b?8c z4>)aIY6Qzf=Y})7O&g1fFiatXg=ODEAZWK?;F0etHn|ozRdJ-}UuYZ#-w0kFjPQ2+ zyZj3mWa;7#RoE@DC%Yf_*OMeY?sW<=u;QmFoq7R!1bgfj+j4jN#qT9R7nl|B)T(OQ zG0B4<*8tjiumKx9@{4%*0cz_k5$IVa}PrxizAqSEqFSA~<84o$FZ3CbKT(3HVeJ7#EtI_fC*ZOob43BN%P7Ek2df?ru zm94qFf~y}02=SAZFca05e7DHDni{sQ@#n(7;P?Dm)t&use}GZr)#{zEVDe&}){rF-Sw5)Z&# z4;5vyygFWz*a6d(Etu5j4+)gzT&`sg4hV7-FS3*JZ}a;e%?S;!lqt9m_n-_ z6%Rh>AV4mmc`rMdHw&^Ml}q!JbH|gf5`Txu!>0%>flUH)I*9nXjn##eR_{)T_4uzN zJp2I8g^Nmjzn3CFo®?xyzkOTYnvft^&-0sR5tO)(K;tN0kp8YgV5gxN)AjLMjt zWEF=3q+I1x6)U6Ulj4Y zx#6by`PGb&t?Gkr%O4?re zZbFiBOSR^nwV^!P^V9H)D(gf%PO?t(_u664*@Og(sWl{~44xu=4j$hj-=U3VzfGpRXvJ4&Y|h1@X+bfBX4KbF(fa^9g#8vr zu;YR+^`+A2eqPLXH);iaG+MQ3uurxJ68MX=s( zl9nkx8T1&+l_~M!TF|E76z3{^a-_GYOIi}o{A~t@v&&{k_zrC>ZONk^qzGSD(2#C= zv!xq3`Mae&wxRHwSb5F0S^NV{c)cMBpxf;zMkDlBi z%saEcHKupuwOCkip>1mV9!#S*;?(Rx5>3cT)c75`9hTD z74yir*kHWnx$RLlS?hb81ed_OdgRxhycf~%#))n!IrYb5Keb;^=6e2s{)Y51GR9v| z`cuz!p+$ofgWtq2iiGFvM_Pg+U{V1u&!s!ceVv0IG4H^UFc(k}ZjnSUxs&O5Bs5;R z6&SyiUuf065Pzv689Oe6=W95vbxX+nkjFy4uO>~TyhyfB&0nF&l(g*jN6t{9vGQ9y zi|*@DS>blkVG<6^+gs#05!=yCVymy6+n*Foskab=ATS>cv4JV~SmPBIt!h;9o;pI$ zZeLn!+D|j1Jvj_l($PBuV}y>g3Oz;*gj-1=e)X_f#J948xcLr9LY~@G5w#8&{`VI` z?IA=l6NUN|rP58~sZmi?l_UPt=j;>Wmqs-T-@(Z#UBB#0_9V^Wzrw~w4+>3t7;$bfW47iRaGVG`88QK z-Ae6U|J8qQ0N4vqoyVp8W!`Onf4<{=f0X)4K)hc6c1c46Sq(P=amXUv-;5!^Wo!iD zT5)~a&T*}{h6svKeSKYBN@{92&B_+3tW@7w1Gf*NE(zCi+_~X!LCEXK%mnw+EFAO> z*w(WEL{d^w86##e<=~LDF+}_${xb|cDk>wxKabwZ7@hX`;?EaejuYX(dQ{rSZz6(( zh3rP6y9vT#Z&r7*5crc$SGZt`r^|^lj3J**GBn{A;&(HQtft%E!lydcY?sH9mJ69u zVV0L6BU+)fPW}#8` ziqK7sw6%+PTO%X;>oD-Kj(q^VP*Aukg4=#1_KTp|A-xJ(wK4v*K@VF|q2yV5^%p~1 z$lp%eHeHOMyFM-1FP}7Vz+VFeEe7P`xc)6FELKmen;Czs->r4 z<{<8b*z4-)ZGQa<^9Y{WlYqoBIvF6>UOOOX$UIqq0Dga47$$c=V0EhsBPHf{|R*^Vx zPD6hJX=MOCfdkGEK6Sqw7OIOH@@Gd!XX|{)rFQ7XP~_2&4}sl6e)LDj%553?Qq6^* z9~+9Bnhv1~ef8=Upo|-pAV<5(Z~_+(jElJ8V-6Ltui{oxe0+6X9fZ_`(^gRAK{p3x z!7eFo=hNYO27{{Ef~NJ?)mEqum$OY)7j9FvlW)m)|9M@%R}hI{N2y&z9uDh9UfWzN z?8%V!k(~1g%ddO6dR@~oqE=N|dCEi-Ke+m_$RnN(OCk)ps}u-jalDB)rrXmX8>=`KOv0w#2b9iv5$nili?O6X++7-z#FbUj7I#Zx%h zGEQ7|gyecdxzkcNS)Q@!+dMtwHA54P*|4I=~x+8O(WEk<<72`_Vy zJ#i;Vm{;t#hQ@sP-Kh|R{#ISjQVh*UHekckN{RX-27#VXg^wo(baYj|*qneyPQ6^4%XUW%}%lE?X#aDKS69KrAeNVq2G2{#1p;EZf)hFDT;pge44`; z!#SX+v{if;tu8|SAh}49z7XfHMq#qETs~EV5q$5yCfl~q;kKwNJ6@-k-O67UsJwSmZ#kB^u4*B9bRgOV0#(s+%VIUw#d=&_??0e=^2 zFyY6K|2jfvXSP}~;KKnj(yx1zKxu4f2#{6(Re*hM^v0DH1)?Z(`iRq*-s{`4DW7ro z8rJYVs3%%zI@b;7TFBCSK5JQheDYE^AXY%niz)$iw<&vi;+wql8ujPK^om|&uMXiF zQ!P(R>`DvS(`hl2kUe7oT#P*##7VBnw9j>XKD#=9FvN2NvJg1j-&b_m+3O<32!fTQjGWqFW=Vw>aF}{ z`fVG-D@eIXBp~XZ3Aj)92~sN+b3&<)t@ZyU3}@If9Una*u*xtdj6jSv^RSiY zM&S&vevD4{5Tq(mXl7f#t^9=)70irPw|Z_}BCauRi=|x9T;a#89e2WI_gW0&Y-wqU zo{Vf&S-yN1EkIY*ftK1^;$R6j zD=5uCE*zn{G&6GuI=sm(Q1a|w=ZAbOz;SPJT#w-asWTJfkDUlEI-RKp)l-CNKmT6SITEXnw$QiSpfs?nOb^1DK0?gC^0*`T2rWfV&P8@+4q2My;N7~5o<`_y@uo;l# z$}dZ%qell1GII8Qd>HZl`s$FAij@P`K}NLpjwXxZ&jB;9X)`*PIn>6@XPfE<+6Iv- zXUY`FR~1gNe?lXo-G;=A3@RUitQ_qAS|$mKyF&d$#s=yFu<^0wiXpn+1mADX*-W?d z&FZSf)-WKo5o(0)iM9>5oH?F){(L2Pk9}`H;&hFSH~Fb%knNkXM9yuL6lImWRhnA{_38LME4m zijSeuuZc9>(>2k%*S(e=IYZuDRAO)+xhZEpH#37-H2ZdXUMlLt^mHTakug*nnn23I z^ACIsDXm`H1h5{6S3 zFT&I*Oj;k$^IZMpg9cCWU(V$L7}5Puw1CJhrs&gBdqpQd5edoCkKf=27{U-pq3h^I z3A&jie!kHC*{Z$DJE#9M?~RH4s*telsAVkMGt^lkJ8O;OHoeByXA2vd-yye~SzVMT zQ}en|paFs(>aZf{3i<1)sh06N%vG!MO10s-voqj6Vg)0;4rC_ zXTzMbcX9%C^ECp3gV(%VZjRs#g*zN%56ILfm}~>XO&OM&$eWdBBJZ0_gmRnS7dfKX zSP>Vqb~IqbH&DW=J6oSO12JwtY*PhJ4 ze~CK5Js2Tf81nM-@^Wr&?(TCF(3Ihsg5_*5*HYv=Sp@A^GE!$)Rz*eDgrtnT$7m~i zv(SiEnO+!?BmSg=bH|`!nBvFn2bH)P)8dQV^dqnN6=q@yb?&W%D0UsIWnmTT;IB9O?~=AWQzaxsMm14F65__mDPGXSSD?m z^?Xbjg4*k}?r0P{V5;frPP%>2GjL4NU$o9f+Ulm;WL%ezkh?c2ce7-6bXGNtrzkWP z?@`rryux=J0^vCJbHkBV$L(KUK&!Gm;g;{;=efJ|FRsV)chjH6$0QSHHLv`=@dERW zJGjP>4=jY;CV=UJ3MTYNTtw$E#Cq3jI%+hpm-s<=RtlYU*QQiNlHVKeME$u_HN0vbZGyy$UDdF=bP=y*AB8-o-ZiBBaxFykam5e@H@@6LC~f7dO5da zrcwB&gs`x%qMY2;TY=f|v~G7u*8_fSn%U9Y!9jl!|DBeJN&H&@tYXrJ>F>v&!`j0~ z>T^ZVT$f&6>qH77-*UQ+F}Y13?+$lkEBq+_U)8(^@eri zzZ`>ovyNn9T75+vFbWg`V+>J+@eNhU8h zwXM3u^L-+G-W=i-YME|6$+`DPIr<^po0rzt4gAvXB&@utti(4E6cbza6E)7`etQUH z1n6bFWJ7PG53*0Gyg|Ei z{i8C02~V8nh=%M>_9x#t^yz-Y=|`oN_J93qYoawaOiG#f3vl*mW2|qNS+lW~0&>*#TmE{0tf&r@wLrRdTnJQGNsfdZER2x`9;@V@Ib*lQ5=)?kg6%q8 zGsBh5Z7hNK+J-`mWRy!A)`_g*I=AQTu#Vh{JvpE9u(yp#X6WqGJJzd5UBjSsHMEs8 zHdPNu%t2{?OaP`7a!8T}D4fi6yWW7A#sB@I`c%xua~c$jI-Gafgb} zD`zRYjfd})N+-u$zLb#dzP^EV{eb+Jwe#aX) zzKkFQCCIVsrlZ>oeGjI6$L9Eh&hHQ5z=X7Z4)GzfS$Um6ycEO~k#Tm-cBMxH0aRf2 zBP1b7ijJ=Tf?2bIhYQtsUVeV9(W#wM)3kQWH`p{S-|*zRe)q{pyr^q#_5#i~@{69z zj+SBBP9%M06M4f};qyjI;$JsLhRqtw+-iyql^+zd;uD~DbH7Qr_&U10Q8iF9X&CMe z{%#cGF$Z#N7+z`rdHSE-)b{+`9OykLIW_A)P3@pL=o=Hfa|ewx$e19T0(*&CZ;#0P zDq{;emXNJjWN$V#H}Q&K_;=0Hq}8NRWZv;hk6`S&?)O4Nyebk!DUDBx+QOFP5I{;#$q&pJTX}pqZ$J7|j{w2ji*djn}@SU!%>W5cNG) zaT0j?y%SlwylyS^+4*41K8WS#g_c+f6~k8%qiH=d zd+8}Rg;s3>**Ud{e}q?`ysHL6()jtO*brBu2V-MMyZJ2-(S?CZ-4rSM^dr_T=`;Rx%dB_>|;*-0+lu3GZ2Z_c&lvUTTcbRW@oGk zuLonyj6SubKWB-4dif}OA*9i&bm}!$)japhdz?lsLv>QO`8-_j6xx2A)Tsh^2dWx? zWm@P#B>c?>$&T@poz2`QTTe%aVh7nSY0S)$OU;96sRZZRq$F((af)qesoRIHb`U5K zGKlb*+c}wn)sw~Z(WB4s)b`?B!KiJCNU3zJ5*B+Xk}f z57_mG0L%c?hn@-eQkLoI@JYO;0ce&66e=bwaU$(M(hO6tnEB3j!J zq%O{JvA=f?3Y3ZbRYQow0;5rXJngL~_^I+yUK+1qE-O|mdu{B%`cyTc(9|lJ>wEx_ za1mgsnaqUGT2Bw4AP3r2uvb}-vGL-S9$n)_VhF^ofCL7xh*AS7Le)ZXc6MB{U%-9? zig=X(gd7A91IRtDB9j0J**d-W`-G2r6-1=vP*s>U+oy2L4pK&_ky7nJUbVQqZQ`k_ zU~GkNSx>2*7?Xe%)%k(@-TOn07Tr`fgHAd!QDOJ`0{rDKt_OQmu&=w}Tp>bJrht zsOO6C+YD2hltaFBJe^SN{eOzlGuP>qCN}V?;@G^k(dZEQ}?s&BI{fRRG3FyhSTX=nYu_qs9XF-yS?O1?W z1(#mb7f_}a&?{Id0rd=hb4#kst2wft`FQO{O z%j|szXZv)#E(bc+R%iGc7TR~2Yc)62yJ>04{Xmltzm50EknA_Xg$34#oJMt=F^7fJ z1f&p*hAKC3$xq~Ym$ZM3P$AM@eOtx3`1fkOT5KZ(cE5MhARhYEkah! z3zLijG*zWWr%}pH+5`qSL{|X;B{ThW^a7%@3EsoEy;TkH{WWP17_vButed~q8=Q~l z0!+2^tu^}g0*I$8rn@pN6n(jhX+AiBl=0wXLjwb0>p@aODQ`}9W#4YzUBJY9@bc)4 zNkvAEI+Eiqk$YXs@VZ(L0)vrSXZi5O zJ$ItM@usCl$xH`9q<)zg@^|J$v#aimv{*5>m;=GR!B1Pfcfx&wZ`%88$e{fMyNT2x z=m5dP!_w1bLjz$$fd09&+2j3an#%AE&iY6pf$=ChbtbiEP+0S2=)8+drG9w~&-H^J z&~|OUb@cXj&_`Mb!(3UAcE#QAQwy4n2hBz<7?bi1P9Sz-r0X}Z?s(5Zb1EBv;NZxD za11W}Hb*C?(XlaXgcg!%%M=LC>QAknxYdv$lLh)gTx%b~4h~`PE+i6AzF@`mDW%7K z=&0puA>k5Hm`ZJ(D-qOaudZhMCd9c ziFi0nTu_VUnPNt3T*&&C3t;%cWTKZ3%RhLR8gWKQVd;nJ!-jui_pg3kDlnSxHL!c&J0XH z%(T=#yp5=TO)pQ=msl9v2J%fnDB*Mk@;4@jtQRuf$A^aYeZ?}Y#`e6k$g0C{j9pdh zr4ee~+?4MP~ zs7%rMXOYVT6_YX#T5qT41$fg1?|ur9H;(zlvdm03DA(f_{l5gH_A*{T!{^DO4iG*0b=jXewXFXG=FMjpyjr&a;Y# z3)cAdXS{TX<`$8-beiu?Reg~c%{{mGK+HlVn$OyR!EnxvVFt7P`q?)MEa0>L{Qix> z2-_Wvp2!n~#WSF2LHY}C~X&dxsoe-*zuVfHH3Gp7;b z-%BsUvtL)79)N#byu9;K%$biT`zc<1{=R>kI4QwYX>QNxAIjd#vecvN2M!C}G|wK> z@poPd9omP`mjYRQ@i9QH%?=>w z)d!iFrDf4RYF%v*xrc(ZRh;w`<{o6Jxe-`dApt85e(j%za$V{nbx`H3K{abl<%YJM z!1_zGqRcv~k&#Gy(u7mz`7_0yqGDfleV))IA@Ds8}CvQd!Z6g zL+#~w+PmF1;$*h2T0`^sT~%C-5q}FccHIj^M03JHm**fdq+|Fiu~AG`8uc)IG-YOS zu<(Gv_!#b9;LSi>L{5dRe?Pl=MfTL^@5Lp+y*H$?mFbaT_g^nP}##9}ql6ryW)R8-O18Co+a0+fCIc^0+5XX$j?oO+CmbeIDCTLO#*wx84YF+x~A~2=Vc)9G(VWjWAzshz`x$fssb;>k1AIl|oq_ zsBxv4W$l!~!ty4=>9V_++{vqt=b2MB&8*pK(ZZ#*Ql3Ds8v3b(+(|{OG_a+wr_XB; z`T6>#%n)exAUG3e0{j`E1rMRIeludkS%)^q`V_H}@95*@1vNXpexmSdAT+|XX0(0+ z)s$FIx?v28`xe5Y93up+zOlMmwT#t9cTux3WNzh#)cC)1BN3cX+>JooKzt&2^#Y0X z;t_ty%ngVadM>Pf$pOzexW;ch7P<6|${EC#9e&;;%SQu|BD+w6LBR1!|E5PP+FAfD zC*NBSCL%xA0HQ*=^N9C7>LQh01{eqnys<^Pg!gX0l2PaNwDQ4(h*onUurlgb8?NsA z!ph)Ks)Fz$_JI>32@)2N7bAh!b9+9?#Pu%%rtFhWawzWqdr$#G zh>25G) zqYSNb0v?A9ekPj#!q$EyX_6b9OM~2MeAZjLI4o4Rx+TD#0>>LA5QGaY?!|}RD|zdf zrf9oANkXKUU@#C5&-f~-g4L~M-v74g|Npb!KNSW$E%cqMiSm@Yl=TO|J%UMSPnd?V zh!MZI;i8C1mUG*srY^ zbUe$oxs{yu6?r#~$j`G-ZlNhJq45^6VxeZXDo@7VD&KR98yB+`?H)Oe16Oe_peP5K zq#NYx)6FvT482G-DD|+u|Dm@YW?q3uCwN5tzA)Y0)!!fH=70fy_*-$_o@KZ`_1b|p zT&jQph~3m^u_D8M05d%{4^N>G#w8{;Bt1~k4OOkRGLZfkTa+4=X5_%%JoM>61VyOV zUtqyDP@5;}-6)cgfx;4)1VU=%qiVibE2M)%bEFw6Olz}87kTiZDXXqTh8xCrtHV^p zgoF>cu7dsDhiKKy@1MTeN2M^^Z%~EOrV&H{2vnXz>R>aK$0SR+iO^|hn_0-@ifYw?|eSpKHdknC`;gONM)$xS; zB=?pZ;%_k{u128c$aJc!3tN?B6IEmFRxnT?gi4>L@8?c;9aWnr zL!t|1!2Q4uNlwn8O^@wzTfu&T>Uc3)eJ<>mT4rWIIT-`21iu41!{4(r9&poXX`#Ph zJ||K}=V_n!7@wbIe81`SQH&K)vnoio)l*)qn7_>KC;VAX*=^jv>I$C*SxToT1Ybd0 zT2n|LZKL7Xj*Zs^wr?$FiGq}H4?k@^hhzefq)*M_GO_Hnv`c}k=A%|OwNdyL0!(;*1I`V%HYa5uz*&59;%a!$@?K?!$p>O^XBBO_Y z{eeIMa4|0RIZ#q{-R!zbfARza$G>6IS&m(SYFz?-%<)s$C6M9&-|a07;Y@y@_kgRe zq(o?W#asa;FVZ=>8!&K;!WT~8nIh7PWx^S<9jgth;>=uHP-Xv}HczHnYx<0t)#Onw zQyZJFwDOZDe_)?kD8lr2XirwI-w8cO?Q_mFwGmI=c~$DX`I^!&8=U+U6vZ!Erf9Au zxp;cs4Jh&XQash0YEi14T)dJC1w9?lkN*y;SvYk-2H))YP5p!r7Y9cK#U07Dpll>d zKX&+IYn{xW!q9=}Tk&~DPdDBDG^Sj-vKtH-j0FtJy<|N@HkG55HWNCu1P)-^H`iV&m$Gm1z0x#phF&q@<#=$+hW(D z;EMd7W?^GJSg*}#m;mqwkTifaM;+hED2)h@Z^sOr!qG;S3sD<}9YX}~Za)YDpTe{v zXgn|?I?+2mUbnGIpKeJoAJ}fj8M)BDI}ODjOl@TPpcV*H$x8$4Z8i zrjQ|%(ub7Mp8IVwG^Bryj#^A=VGV)FeEgZ;C;O&!D=qA|c>C97EtbZ|)!!`Lpr$U* zjnirg$Hnx39NLgv()im&ga}mVhrQDPh~juI^f)8!tjoN}y*avO!oZGyPzv!8e0>j4J0t;7HkyH;>VF~{l(6;|>5do#EP-cE ztYKt39c<9UG7pL?nLf&n^f$V{J{bPkismmpyzclUa+9G?i!J?H?Hutyu8VGY@p{m1 z=0hdDPgDc*qBgdWK$cS`FK0+1v49%fVV;R^Mi^yO#+Wh^4s&xU$;h6E4ho2tmEki_ zT|{D2eJVjLe9&Zhmu+mEQTZ+4TT+-f&Dg8oE;IYhYID9HN5$u}tP(}%P1c3~dBYTr zz2CoY!pwLik|5bJi~Li%J^ez6E0V#4B?|{>#AUUH=Lg8*g9l3=`DX$xhfu7# zyYEB(&OYUrDWLHSNv8@7+#pHTUip8X%Olu<#ySkGCw*KD_l_FwJ7q zBv#Ps8M|I8_kmbS_1<(ysuoqzMkj_&$0J8HDf@L}nF5Pb&O+JBVL~Bk=eKVLkGY~Z z?pXGfZ`5tcE$#r$V{K=*UQ?Ktn=9rp%?jVG%SK(+R_3kt%qIq4me!Ze*4Rh(!BggJ zjQ3{VM)M=U(I`~>;JHIkZg#bx;I0A;n*-OaR`jlWVr=XpgcgE|XJ-kH1JG9WC*By* zAYl-h1Yii<5*9BZriV$YK>VSxG5CN;>OmNm%+c9*3cfNheGiR}HkTnF$?j^jB&ait zI@u%yo&HUi&A|=j#}OA;z0RZGbVH@M$t^bwhbdgze;k zsA%Df%)JR>SxGU!1nugfcOfjy3kfWT0#o`&x1_V9R8F)7(l=l$!sGyeze2vNfxgQ{ z4n_)q?!G{znMzqIRyq67G&E+kF6$sARp)DPd3rxIb+|An#r|H+cbXd{%Wu^5edzBR zIoN+pXlrW&4i*M7J(t)_L-Ux8Q%2OAqS5^D~yj=U6oeMMeh zT=iEweE7FcfS;KG<2f_4^l2{>3t)htnE;C`K|Ww7`Bgk#32|}PR<5m~A)pge+%M5i zqMeemgQ*6AoQ#$fizlUlCrlWD%4{LK(PiGct_0IB4S0QvR(Ez{&s6w7GnD7mCfo*v%b zYIcOI{sH#s#=Y#nTJhHyvY4|NttQ1-Ulj@*ddr}LpH)g(4BuY(ir`rNK9Q9VNY47 zJ4A$uA9oUmqfuxi$8gQ?B$?aBZ_p)29(eMQ{O;_cp=}Oa-!-ydG$|@SMS0c!YSHc4 z7KJ=P*9?sZ^t3w;XAx}-Tyu~xvOebT=eN&aApT9wN)OR@`x6@n?$M-pls5-|`cKT} zr4|VyS^+GYi)~J!A5Z9R7&8Qe<2b8e_oi**^rVu3f}ETb_Q!R?-!`_kiF85)LHpj^ zMvd0srq?~%6NDjTJ60gBw68O172xN02XLz*_A1d3R2ODJ7kz?V0}(rKKs7e{a@P4? z3t+zHyP$r;3z(hwSj2_YEEpspJzYl;Qz8TBOWPWlu~H=5d$O*(#j%*8AwEvdH{upIL67jz-pe{4m82-?@*Kc{-vF)}lv?kn(3fIH@(!kiah*xW`C z5xq-+*;RCO1m+9t=K$4%ZR3iporaLfAxM)j-vm?({6y&P=r6$SYYyS`&M>62fZZRa zRK;n1JU=`0ms*&Z0IKl_I5)_NPR;-s8x0toG%vg=iriqV3SoGaEobY!M=vO)7bp1a z?xfEOEhe?3TuN@{q+(JB$xjb!%_i$S9Ler0E5mH?7(e!O7Z~buFz{G-X zW=IW|B7hL`sQR{o)DEeq^V{q61Q_J<4h`Fil ztU3IvC0kDqJP(jO^306`j8Bxf+~F21Y1D9BW2E}45tVW`U~g$|u0J*8=9JsmLE)6n zg^4djeLsZ<07b^X{3nY04Y?h66fU$U7Ae9ldY7$__~-}~hsynZX}>bP8K;ZhS=v8JQcbh3`i*1_J(J;@hOPmS zIl+%1u4KQPQa8&R{~={vLA-5V3Ldda zrI!~^74sX|gmC=I{>DI$%(Bv;x0#Ei?bgLV9_bP-NN5&91W(TV&h)G=Q{C*|Pygiq zdsjKgCK(uHxL2=anGlt7_Aa(fi{ohHwMXWP{DP-*Ftj5?u%>3=Aw;7<91fWUd`71a zegsvk{Fb|C#F_A)xCcVHi#_@4;Q)YQ9Lf+yUWJc@-lciJ|JkyYIy<){U@pWkhUTOE z6+DUMd}w&sbFIN}3=OUb*beT&tW}$8B7LOuOMHi+p^p>8kUjYKV{*OxC-trd~N*mn+LP6>q87A5S|l8v$Su^x^Q-k~&6_%J)kx5>TmC zjWvXsI*2YJ^g@^xdS)-ce}+(&c5Bdgw(gGCeH?GAu6%OvOo}nPgz>=)B|~dvB_|IL zaS%)*ffy$RKPF_r8elvkBX+$Zr7&eKMtLr>gqNs32tj8*n zcrgi2;T*^)ka?{5f^Hv7_=sQ8I+pree|ZzcAuqte3Z+SKRvASH(yq^+KbO_+Ix2hv z9TOy?==qi>st+`e3&P{8r-#)8Y3e&OY>zyan)j$g@O}8(CdfWB>kIS3KwE zdwL(FsDpE~K%IalI+nrH@oaZAyICrKE~C29$IH)D8C58YV)8DV<4x#fvCCE8WJq$j{>?UX;(+X_Cav zmaX+e^fZ-#*!wH`6?JucK)eE|%uD!Jp@=S9?WV4n9Q7LXAT3!Pz8R!Y)KSBcp zQq>PNNm^I=TTZvkJF`rg^CbOL)UkfZuQfL-S0dC0x3}D>wgJ})@Q|f zf@uu!Pkg1cb|mTSA6@)?5EvL36!ez~edP7W_HO#>V;0Ua5kg&d<1JQe8Q&^O-|BB! zkAw4DlYe=jY%B%fv>M^Wni<+7aOdBwtwFYtk)>rq6!;T+K*!3~5Zy!E&=dorH~QB$ zxZ(HNv@XP=dCB~$=+<_VHkx4&ptjx%hBues!x&g}CMWw3(aG9FZ=eY_oWShFGdrT< zp~!p=9JU;}L?$N||9w*Z)DN#~3x}AUV_SUHioc3ZSl5<#4|)A&K=%K=W1+Fq{0B5g z*AXTzE<1on0Fy(JEU3&Raso4a_Vv#(-LAL}HbS(Vhq1_3Wpi4y?y`AVAjnaJ%sLLey1m*t$Xm~TYu7$)N2uoxvysir#@?}J z)dF#Qo>}&dJ2V9*FDC-FA{5yYhMwvQY*lg(I5^wbFp+P=#tdM@>ufNP0NiHXc_`O` z(=4Xdf|cl-OGTum=i%`clE4XgSEqMhgUjp48)J16UJyP6E%n&y1rh`S#wgk50>zlKH5gHuGj8b;skqFa*u+p5avwR~YD|Mt}VL z_q}a8S0hGZn@Q|1l&qK0J_Akk4~YxPkD=R!(Sch~@Z{t~kehoR=QWYijf$H5Bq9Fs z+Dauov%yySw0mxD5e*>3X;13Poc9&v=Z8e6Cw5hFd3IG|j+aIlDKttRlX}&1Bvhzym=;Drnk)vj8ZHtEIPC9 zf_de*hNS=hHnZjx6@4%6Ce;TKn z1Q3gbRBJ`LK3qOSZnM3bWpC=*3&=;`@Ll z?rE{{%a22yVWERfA^ewgABqk?5pE{doTF}9oTCK4P5AL7vBpF3+OZFY3LqAd@Cw_o zJV9VkT~!@5Xiz7rd@@XwO`4FN;^>NANkTbrL`+V0eUHR8sy5t`GafW&R8gSK91Eaw zDSB`Feh3F}m7o33uL)~#2#q@Btp~}=CXnP{>dOXM3^jFaXCy1=WCyV*AO$h_$Z;PG zXh1RK1$HoB_fHNtlrI2fwIckYCHG;1Yg|j->X&FE#isiYeC3Orov-H;IHafox0st* zi8T8BG!3%Hf~1_qP^4V2auz8j*x8a|A3l5tO%8msPoF)ToR~Pg!%PXjJG-IfoLWA2 zM6w(ztalH}w&oTr>hzoF1Bu+}toMr5eyG8T^zmsSK{7hWLi;uWzDMBgATDBNe+mZ* zCfWB8M<#e3OAF?O;T*w3uIA=o=NAVqTxkLQKVhTR?*v^c(B@#B05=1u&I+YRU9iUn zzr$(bN5y;?X%bOa*i!GXW=R`JO?fB6sr>~;!BSLtu@uUm`_dW{%LW}3h%o{LdrI7n zcImM|hFA6tKY1%BStpyb$+4k#+rU)>Uhf5T0zk1V$j^74Eq?rEibjij!>IU0UtftG zXAGz8XhqF;>|a;ZLX(Q7D;^0wCWpbNRP`90$qjyz6)&*G9f1lH``-_FSPU{?P-F!T z|2Vy-AZ>gC(~${V$VY?e3DOWSBcfPL-U12C#LNsJP})ndOqGDr0zVxl%MFK(d9te?jzCgAmvoTw~n7Hcz02f(M2LFh1dr zs>p(gDGNGs$nxZGa2XqYF%HvtZ`%$kvk(`iV*<_2V*2cE}!~6EJsuiCZ>{NR65xJ zzU5q<+x?vM_8b#}!{qNnuPzyUg)n}i&063Q9j5kqYrk~hxExFX6aPw-P+_b-?E7#? z06d`HXA)|IF1eXUNQk)N@WZ=zs>Q<5rWPrE@x+r4+SX8&gKnb7;_PA!&P5prM^n$0 z%A!-U3U!tb*;8HEa|Cd9*wczc8PXHzHKplcRj}E90swczb?d?g{RStnW??+sVtSB4 z=9w&^CY*V|<9EA1CChz+2**@RC^}{-zcwyZM&xpkPB@31XPk_kNw2A5F?>Lpqcj31 zh=7<>P5n`$q+@Nv^GVyk_tw) zbhdJc9R&|h8HU%wWw$DlCOvW`zloC~;ylBmV4z1*7I)T_tY&S^aDb!o3M{Y<%83~d{h&K4 zElC}Z5T5DGJRr&n;b3zX`5^tMjaz*X*IYs>!a_SPvH_ovP@*1=Pn@ZVNi?2lU&)Bv z(0@KN=)(X4r=j6B90dUajC&vy`dJ0Lrr79c@Qp6!VdQ{#X9+PedKo|Ld!AwrBlu&Q zZCkPyrl@&k7`On zmx0+(91svNkqBl*QhK_NkNk!@$F@8QTXaWW{B+B3dw3@nd8;?hfICD9I45W?@cc0CN)L)gxfYANm(? zY!ou-NgWcH#kv>X8q(Yt>;a?vJ6NROm^%8kBplHzqZsL18nRldos55z`w=wlo=tv% zTc-?rPS7f$eY{WPi|ptaxLqo)!qm!E;QTg!7R6q^Du|Yy_p!BTEiVHEN3%m8a?z0d42*YrJ39WrI|coC*g@A0U?d!Rg|$gfgnefRgvb3g(4rD* zv+RTk#huq^Z=0J_StQVzhsX_hwT=h3x3%>g4&wQ|ABauHG;6`(HLtfwpOW1Gk}``P zkg|Wj4PkMZ^1gRVBCkuhI8X5=FPkdUGrfa^K*n*c;;|@#_qvDavi4eoaLvG7cLHWz zP%uI2UJGn0)!IBKQjcY=d&I`*lqy;ZlSXUg9{P8myudMoDO6&2qLO9?dnYBw1&q8d z2{@M+?nNLygJ!`e&cN6>^Xn~Ed`^F`;|Go-Shl?*k?m|a!$=6+m0Nx~q*0ciOnCDp zTMpd?fyz6slS5K`DP>2hDuL|`W}Z~xQQHhlnDsw_oB<52l07uRQvAUKVHyAOXs>A*w}WFPwz}=F&^s) zn((SOdye}P9UT%)K7fzczWB>trB$&{Yj$=tEm;C36y-L z^Nxi$EaN(pIi#j&m)Az3DX8KX%WQ}G;iXASKKT@OwVh+5$IPp0oK`b`;a(58oBl<=^`ua_gt#FWO6J;5Weq z4UIRVOmZ#A0hlolgX1;py2XqBz6w6B_EM)by`SVcV>)$DMH!P9R_JtoPG|&;4`7E3 z4I`R|MpK^yJS{Gj+Z~>oe7w+c$ifN)2)U)n`Wc#bYG*BzOb*1(JOLr>=_Vq-KgBD$ zwSN0d@u7>2@>v)MCR+i;ol3uL*LV1=Rb<>Tg`RG1((vEIFLm>5myMWg{}yw@2j@ub zA*xs&xdE+TDDFH$j~Qfaznq#ew}$@vZT>MovOy<*+@lF*S&+Cmp36n8mR&z6^Tz-) z?D@$=)T?-c9b_kX&0J%)C1tyfW8tbYT}dA^(|P{oQmM7qxr~&s=?o9MX+@XSoGl84 zFu2o;NQ#FtR3SMal#%HSAY<}k?jr7{l^%hG^ge->gg6u z-y%8gTxk`O_LRtrg?m~vM1fMAF=#!alsD5^szTxFf^3n$M?tFPP8`{{k~Sz-Um_d+`X+6cq(J2@;#ZLT@-%>QPT#6Z$7=%_v&oe@ymO*P1q5_-__u z(?J|lC^kMw<0{|mneZScvNjE;_MR&X@aKmxjaKtVO-o2SqzK@rpU_wY21;547kpZ< zMb9sM3+$+CBZB|EY;U#K*Vj+^Gn3p%zm7i#6LFnFDMMb-C-tbQMtjw`@l4W2cFs*~ z2TgKQX3zYSBC0PEnb;)Q+~{bYvPJ%tJF2SPOYbR5soR0$Rwx@tSOn-Fz~3m7kcc4- zUmdKmz@})u(e4FF2Z#CK`@S<>TH0cAeamI~#FxJ@HrqLu;rBtCK!=CvlW@<=E4Bf@ zM)W_Oz>m{MKVCta*i($&9jQ9F=wV``5p|Y&da9glD|~YIMtOxu1E#_X9~n_awj%RA ze+q7tV3`9PTeFVuwQ?pUy$f$qThj2A(Vr5}z;a@BW##-7y#G#C11;KM8w7UaV}B}A zZ=QWAxDOjx9-qaVGwbvZ$_Yxod}i5o1TA;V_M5nyFTpE1q5*#b;l{B8dsY(|5cFJf zEo~8WEr#aiIeIl@V_GI-U~NdsWD6WyHXRkh6vKcSwt74JN;4-#TCz&RTb?6yCj~V< zPNre$8Sk-$`)pQZ7Hh4zUBfPZjuI(cTxU|l#!&v^a0pI53S#6An8||QPsjCUPtL#v0no35)4dK*O(%=-+TXpg$`oi8EaC=$pE{4#)r088k=A@FxC&6JKm`DE@(&nDJ@M7Rr$X1Aj+~zgmzwYG}h$49w;R z^aLT3Rmj&VjnyxZm^M`W!|RPt|M)O3^z!TEg6F2wYtN`;nimaBUk}WNxz3VjFmY9N zG!2hpC}cMd9p!e0y~AL&8QEGAcG(3%R^SDLG`~w?u+Qg9m++yqzA7ZC%bF|xpPnyn zKCe_Cgv0S5C!ROFr6pCs|G}^K{nI}V`JZ->$$-v=^)bI*Ab92;V-iax)H~?uI~6~1 zMy--u7rblR0Wat{aYDvPU=X_veH2(qRob4tU{I#~Vy;v3vOSkBfhR0Do6`IHFVzN{ zi|LP^&(8IN1YCxGQ)wQf@e;pt6ht$7JaKbA81T}?yN|xFJ^EqY<~lEb^6~iWYh&N9 z1#RdJCA;j$MhdW(g829DXUR-S~)gi9X$SlF$Mw%NogiNG!HK?Xrq7H>M1NS zIKss;2D^6$7--RKd_tl?7+$*r6SaXJjalOBT585kSbgqGB&*B1V}*X{r$8HFxGd||EmObit{xF1Rt45#nl zcYd06Sq%FiI6L>W1A%hCGn=d9nFXmhB_A~&4=o;#CLfnslbv$YFsZH%AJ=8m6KjWW z2%bcH^Q1%uhaU(^d*%9OD$n`RM?W6X(7#_fFU+j?c{g=UR6zn9z~0yAnSLpN{3$Lj zF1RN@wefx8kyz9TypA#393i-?1xcQzw@_>Fd~AatU1b>#17Km6Mi#+|4zwQru~Bt$|3{TY8SdnA~|;k93Y)@7gZq&xr6~9TNKp0Y1Z(dl~6`G zvmpuHT9c>9QhrJOb2D5#|0UTVgoM)6=6j%oKz5W#y#+8$o`9MFGzT>ZIOIWZTb#6y zvf(li!X1MPBM^EI*!;f&l_Cfouag-;TsJp22iDfY{z^({?y~;-TWq!&ukJS6$Gk-< ztkCyeX#8wlARknMZ~&k~6BYXgxC5(r_*!0N@#*e8x0qeK(&Psmclg+P$apN7=mdN9 zr`%OPC*9lDtu8Pv3-)@~sKeRvSR^{^Nv#1Y z0;syxa@U&9-^@uB8jyXQl$gk4QacCe)!r@tF1QFmM?WwDS6aBn(L12n&vAl!HSHJt zd!3)K(|2Eh1hHD49gJ8?ek*dbv#}Ut{e57A13l@8B;*|NwH$Tdh3>QRpu2%NA+6XL z)~s~kA#g^h)r`K=1kXfRu?918ZRll&k=ZSjzsn4Dp64dBBaIVvs#5x7Ht^x8s<94z zLGtG#aMA_eJ(DUeB)qp;FGUaCw_RzSBWDY(L;n$*xgRlGEMDJi5Vu4s^v{1VY0lsi zKbuGSL`B;cgC~;PIJV{>tNU0zc1~aimkNcIJ~|u}22A4aCbwe4_2Q=*LEo~#k3cv< zE(#=Dhev_sHN=UMr()ugYd|hCSjGE0fn7Ur-N>dP^0BZCZmF9-cH7kbTKif|!h0p$ z9c>CU_2O1 z`&u~m(ORpDWHIF|Z;JdGIm?h->0C9{`^3p>Ga_@_rzXn}EsXMVXmnXShZCI)G^f40 z*U4{Zl&U&`c;h;xj+}b|z~T6K>}-=CF>yw(_XtbA#S8Reo&WCdG#20-kbb#`Rv1Z= z|L)>nMsacI`Ja2m@N_0KIaA}Nbs><(3bH9U-ZKLJvSz3dsWfI$p+=B64KlazK5znC z(7S?K%mjwVFd9L5fY1wDIPR7f-RX>3&^!4ll|#Rq1bGbNcUl}_QjP&!adPC}@H>O_ zp)O#u54>Q?>C60U>4q!p4%rnSjRlELfjrf@2rt(5d-Ga@fg6Nd0H=cR5xP`D9GvvN zj}KXIoOHv1blhws#=TC9nrpCVW__0|YgV2dq_hL2%C2he4_4QuLUV)~YoBxsurhM% zP>Z?UjGsu)uMwQ@{=k($vv`RUz+B2~dE*hFHs;sG*CG=*l4;;~r7{ zi(cMM@tw!8eVH#;4f}TRNU+7P#W=${sA&s`7qDPQi-%~mDfrcZs0GW-WT4QlU-(9W zZyuZi9D#Aey;-Dmz&8s=$1RX`taBH^Gm&+jWB%I-CS*M~rYj}EAnBvAyODq%%$*>% zO+|#Q;C7N}I%k7qBqr40()qJX75AO1zkmM%JM{jH^hqS|l=bEDtOD4JzXLu7+-4p= zPo9Fwo7YlPgu4?k0D%{E|4lW4NpfQ1Q}aefL3mp1cZlV&N#Jy_DsZ|=-diS@7hp?m z%2P(c3Hr-z>2ysn96 z4j_-K>|HB_JilMC@iEFJ#sJP+GrSw{!QBfh556u`;nCNdK6?+VDM)vC0dEB`Y@h%` zlxPGYP;Bssi0;E*0xCr=cgXl@b(*BSgdpG7PWTwTAaKypvXxA*eOA`C`$peimrnPe z^Gm1j@j8{y;aL(^>q{1H#tjVQ6%$%jt)~gDEi6*m_HQQ8cvqVfWUj-403$)5wQg?l zz|7ZHmk}&3KbD2mJ1JttwRZR34}38XbsP^L|5uFG1l@xdQfqv5d5;rFZJg5z0eH!Q z#NV@)qR>;q>yH{F21IF;ooQ*#yHGxSfeNM)4i{^hrWbgoGBe-03_U%ng6sgtT!dCu z(7!W(7=i&EX$D^7=M^C4nKKn^55~|1geLzVtUcgr|H~}(xuvu5X zjO>6!#yJ)UqbXekBo(lJLut}aAV#(bDAkc%gLRB?ySwQb zVYURE#DqD;Zo8+kt~g`PtDMcNI_vGj6@9}lYdG^q0?A6k5%o8Md7~1P5MMn|U3s+; zl@-ahUjM>yN>_)Kl8>Dc9z2Fx?wX%lY_s~Pr;_YBQP9Lbx9IW6&vRU`o-Bcc5MKCQ zO&_B=Bg9!DY&&5;0DvFtQRGaNQg^eO+px!?TbG8O=tb1|Nifu)OQV0UWJ0r)cet7$ z9@m+|S2ro6pWY&J#FRUImLiHlMV$dUQ&Q5;sUy7{Et3EyvC;kw+>s=MKFm%W)YD{i zbYFE{lqgM-Q&V^T0f2X%_m}tjIeeDo{o*kmLBRPMybo?QlYL6Jekyqg5dG2S-xJ{#`tVfFCPR4B_dZ#8iU-mN&)PtM&{NU%-$Ndcu zSl-j*Q9i8Fwb$bN_-*lh(pA2HZNYYAKmWm^36cYj7m@Jk9y`7U2Fr_&-%4#l4gar@ zK-acL?;`{5kNGm>Yk)PU3SGP6!y8fpqFpJS$HJi(f1zn3q874+2?p*h(Ds)KML(ZQ zTapFSeehZ#?uR3P?eDB)MDDFzpPpM1 zMl~&bRP4LBaeY|;U27`J=VDnZ^b3QQ6R-AirQ^McO4avCuER;cu$+qKtGQGi?vcOo z;I?vo^9#=~+S546P>n=0FWSy=LPaZG9P#F2?L@X{Z|Z@d{_OEF>+#J+rrD1t!EpKb zH~7x{?&=*=8q2h;$|z!?0J0=FZ!pl)m#P84m0M5%d2zrTiSsZrH^;J0XuDAdPEueg zJ;JiQ{skTqEdKz9E^|$@K0Z1ECJID^5fOqa8L&gOgG2ynAXrDIBmk_QvIEe1dHA0;bS;k| zN(Uwje?LF!-{k74S6px$!HQ6+tc9XV8(`+S{Xb@*X~q%Z+@aDuW&$=4M?} zx=^|*R9K9Ambgg)jfBiou*r@uD_C0=7IeQT2q$v&bOHs zJVfo)-nDQYQdpH`=R7rKHm@4>D){FrLEkOrFlMbk75git*tl9}0~6a2TgAzO`$Jw_ z`W=^M6n5)`A|(|*jLSSx6|E1=v-8D0y=?UKmhnq{kYNt`3~1fdEWyt3;Nl|W0-Cew znHfT&>x9wZf|H1u*_UOvemA*vO+>_7jE@P>G>?p^LAIzuBvR@MR?8MK0Nnt20JfGJ z67pAKd;lYGQGspf-bPIY#yps+XhD83Ha4|{C-r_bBnXlxLp}h2@WWh+E}^94N>MVp z4M|(GI{yCc&CSAIyoAbTX73@ogPwumI@;>Oe$Nv|z&8BLvVQn-a`TZHH#`yS?9tKD z7hdY@__xi#$ZTqJYfGg&z~EzY^SOF}nb9aoogceoA!daZr^7?Tno)f#y`@<1<@7K>5aVP7|D5C zW|0iGPWodbA%^T+ZM&y+&z>EhoPbvjNwO~xP(V8tn;0ODm(->ysL+lbXb+aW3`dV5_$v`}bUs;6syIlhVe`w;#-GM^~Vj^a$Vjy=w zJ|!_Nt(F5JR_Xbiw5%+h08GyWX%o}aU_XmqR{3x+H$GKcEI=atf9)DVxEwGP zEUl~-wp+jUt1I83JG^*pXxHpiF&s{*UsbwgQ12Lw&I?rk&;W@W5Bk#qG=wIVkY36F zXguB#+9<4-?-mzFZEEG`urF9*<9Qx_E(7_ht2$dPsvodY;Rg8vU3WN1Efp~_5IkM% z>`<-1HD~bk>+MFp6&Oijq*bJmgM`D*moMKK2SN-*IR5u|Iu$N4j*%2PNiT3#Ubh13 zi-pA!q>4ko3tel}B;Je3$w>eJQ77O}Ai)wuruUYbP*rYh|NI>mNUOyGq(GhB_4V+) z=CVVw5=LQr4C_m{(Ka~68jnaScF2^4C=9EJO>d`)i}NA~P7pji?f}rpAEr3~wP(U$ zYZk6S?@9+*E{(T*qHmHpM0j)%)*tS4OLP3 zs1Z#1Ayb->S<`~p0>Mnf`_qbxm-}w8FqZ}Gm4B#2^M&Js%$G>=7QaseT2PNlp7WN` zT+iO*Xu@I-Lpl%rn@EL+MP*9qEKav4sfg(t*SQ@x;pPR|C+NJP1`zszIF3r?Nop#V zGD$zQw8})~L{F*0@o6csS6&7R1_6sk8e5;X3P3!N4h@fwC)_}ly75}*-rc*!adD%i zicu(9DCxMMB$T{Ga~sebwH|vVfFq@R0aFC9rj&^CI@}y?bMRJr4Mb{S-Y+lbH(XOL zT@Wa*{Pq?g)}$_rKxh_d;m~ORYzFW{a;YwLoZNb$tmh!&62yr#&uV*BS2w=2^mozG0d*R|Kt@H~PbQSO1CWjK z1S-=K!!Uu84>WP%6;R{h%>(0m!*kRkFc+g{1d3Q$8EUtp>H@<6emJcOPgA^ktqF17 zh_tZqPoOJxUdJp#y=o)*H}C-fYB;JJ*THbLPx=plm;z(H(LasTlxG-*3HH}PMz+Gs zpuJDVg=B|9fv50SXZA}X_cb9(mR5!L{kcLy-*RZ7KM95UK{zmDn$>!lPHnF}9 z2ql}kY9%2E54f{wnIHJqRS|4xMVXff?A1?2YMZm@Pi*4vIR2gcnNA+9DwMk32=`vo zQI3%hTuyQ3KqcxQ(X)#=I;2H{AYFDNU3KEjCXU{ww9DL!)fzUm|*dS$z79VRK zLRN!eg)RnK?=mNEFJH#Q0i5K0B@%rGROvCgN|UB_{=v0VoYXleC-yhaHMrO6KLJb^(D z)^}NTPrF4#MajBbT;8v^8^61LvF^~keF11dU$uRXsB{`KC#Qn%+S6NiG34o%WR`xb zPQ=lOHp^Pj^NDq?VuR)#PiBt|OEoFAF@9q&w@U3fVXZ_e)tr83=aSf|i1;Pof`p@@ zgIC&@{r!m?40!oQ(~kFca<%_bCD*r>dKxU4JQWU#qWddj;bw1t^hm!h;}3jxm^@^p zrG@VURSqzXJGXB?L3DO@-uiT{XqHk=gVJj-1)?LGp95~{F0MK%I3i?kMa9HaTx#dR zgmW0RDau)e$wV=nTdW$Q#x>$T%%R~rWI%tEN-aDHfu~TN;BC5h|Nf{ts@dT$P_(7h z0{sP?0wHMAmTT1vN*WmZEH;*I0rUht-SdTq!sGK5>Jaf8pQx^MPyWq+P9f&IZ}8bd zU$8C27J|Dt-A9|7C87bu>8xz!o>Q^dwVVn33$JPKhNbJ}l5#WR&=bd#F!rkOBxAF) zIOQ$9xbmZs8QT-w;$^hkH3m=1q9TITGT_G=;*2ZzHsbzGL~AsmB+;ArIhftcYW)Nc zT`}$SFJ9!Vw_ulg;&V8gV`ICiwg~ZYUB}xx1kBKK5aHlNcvcon%D|R{ObXE=hds1{Cw~Jxa8#{dp0Jn zWgnQBzx$O_ij;&e&VGA9eaT)5HV`5Gsifn@6A_TG5BxA*ew|*9z z6k~YzSZ*>N`vdGJfN2Xr`_M5=W%Ba!rzU(7#h0I}41X)S5a-Zu^?l26(=fHB8YSu> ztjfz)BFrP7jZ!yL)facqKAt`E{t#Hwesb64`{VcbuevVANTwwJ`aBPK zVJJ!;l?RYRZPM-DfAa2GMl4rj(oV4gLRW1x$!gtRc3n8u8oS=kE-rAG{yp&$>2?z? zg6{$yu2mf{Pr_^=b;9T-jkE_uM`xJ}SM&AyxTS&S#a84^(&aYduAe+c{Dx?EV>Bv% zVx{H|dSKWwe!sU-<$46PsI`}YjkUF7uU{j$x!nK;NfbVQqQ!HTGAoCEpt4;i$Df#k zN=5>vJV8N07EHXlAAe4*p@fy?5m!264FW3-gqi$JvAcgnN8C$8@iNp}q3I!E0Cva@ zee<>5DiE(RFf=wz6V^F)m=k##7i(vZxAO&6zSX%^=HI9itM)}u#A6rf>`Z*%Sws%X zaXjS>1qT*Td_%Vt*$2vAkY@hPn?{(mq^fq>9u{BlBrc+7BQ};Rs#I=QHMF5sypj#O z>}lYAKI><8bi+EYxHv_2ql8dppvf2>baHYsFdtPSmz+o|B`fT#VlWyQNvsmfuszYX*Pz%m@Q&Y zi_FXUceT~+`Jl*Jc_(8-baDC@gqoUX+!I{IQqDw`#64E*!&*YyP(nMeex01m0`-ZF z4c*IUn7F>G*=khwP`fnw#9nlcYv3v;*V2B!zD=iMmR(Yks{U=@=!A|7;=a^AR}I`- zVKT&+LweV74#+UL0vDFd$2%P&0}t5|sxd`%LameIHHZPkdQ{lNjpd~!1LcEpZG{1> z2N?mzve~rbdXK(orqV+eI#F${GPU zsTlIV(d!+#(y=(2GNg}>_2ZF=A03Z~``~H869DA#)(#*}bL;5qmTrHJZuw-KicVbN z^HQWgpD*QwGrNadS+GrAgu6R2Hl~4B&jR23Ui}t9%%rUl1RGm^k%lHL(jc-yCCJ%> z@7b15Hwo7V;~ToIWLgfLu776 z$`{vmsj8xRoC};NNDV@YF;T2uQdGBQNEZ4wi9kNDK32KyQXTX$Ks8%mw+)Hv?-sMN zs``mp(yY_lDi>Ax)78Ove(J3m{fu92VG;-H4nw@xk*SWsZ9N@#WA+Q;{cm8%39Rj} zU!f-!p-q+rjJe%|DmBQ?=MV0nwy4oD5?L%ZP$Z6dlYRD{Qa-v^Kd%13aST)&0s?d^RCZ2%0B(3<;udzZ4nIe|=pG$l|_fHFAI zhKB1_J>VI)3ibrs%lVs<(x2RPVHN+xeHgjZ8RFxX^gFv>>wWn0Uv_xzhe zz=5`g#@sFw6H}`DH&9Ff3}0JY3!P$F?E)K=S_p~;tQ4rKR8&-rkTwr3HjFnwjn~fR zi%^DHPfacM)vL$A!-S7@{q#t#EgHo%B5-4i2GgK#g}0gK$HiJ+cy(ntS%OvwC-0G` zUh?QrTY>%0oKL)4@>XBUBA|%EBwot?AOMyIF!uXBcmV5;dw{zRN2m!?WRSkx)^t`o z!3Zuy)8YK}pjkGF((L-S3l849E^7gt@Q;Xy(I*C8QMhsy8>_0TmCW5A0Qdx;!3i{k zKMm!m+q1IB)tItA0A2!rC~&)@9z1+xWzRtbdk7ls@r|8(4{5t*vjsAA~?fwK25@i15H19GY^q<)a*A zyLi17odI?-O1&F`Y6DC~No-pV&?{9jhT*URRFR9D*-tREk-#Wrz=^-7#CaFv?GRUe zB(s||Mz|gZzRRBjI4K$=XWT-aMRLKU%4xIEgl`I72-ExiIXQWAo8O*9FPA~8+z zALbI0e*gKSS8|iVcMvsiK(;*jtsQd+Ahg7c_Wj1)ZB0EaI6(|k{ReUy479t759ig= zEYJi~X#PGSc<|?kVMU!QmK$4>%te*(x6fWeu+@^d6IZ=W9k2sCFIcgjRa@j;-()-V zP604mS`}VfNP=i7-oT^-sE9CX02o4yW-ts9=A|<8%9sJ*jSZ3^m>E=AVwO~v32va{ z+8P+lLE{W@O+UVTfxiXE7`-jTS`sDn970p_+@+>+}50~(sE7{DPFWHxA!aE zxUKrhhZ5|m<0XueCG%zcd3-c7$cp=ag{cwTw1`=YKM>85EazM+YT$y`NDdz9gXiT# z)vXIYNq$anGsB7R<^FGN;+F~dMm-!)xdUz_U`Qra@gCe`!4oDTHd^|#Drls`5{U{p($~ut(tLD(+Kga z&M3n4+~m|<@B!AXTwQ9V5wWb0&be8-V?(;ZNb_HIsJyg{s4t-t2*=AsV}xRY7U0T^ z13fd0)87utsJ~w=3Ff5nyc9^ee^-?rg9Wiwl_F7RSejX?s8X?OpO~M!n8h{4b(pmr zQ!b>fJCsyfK*{Mbx8CYXt#-mppdjx~6OAtDlxb{|_4_CPox<1dKmK__XqSG?KPLL( z){@7T=STIQEipZSA|U%dD8Y!9y#54ij-6irMJL_Uw6 zl>?jH77@>An{p=v74#JTaLDnRk6;5fTPTfg`3&q)wLl67Jv;EA2RxM+p8=a(PY--# zSKyLD^@ZvSSYhlZXkjqXP{BZ(0$>Z+c_1@0TY(96rBm15PVp*%eTjRQ2LBsKlCLBY zBs$MKk;7WbQ&twWL99MBD$mCjy_ei_Cj0qRVx>*=eD}$42ql_cyr2@`_kI&zfTKh< zvB3dOu_FZ#7v&HeD@OT#xB!Pg2?vZnrzj~1FQREWjM4@i0%?pn?M8_EOf4V^T|C zYy_@QkUz1!AH_(Sbqp4&dNXJgThnL46gE!})Dwk3e zxBn#`^19x;$1fmIt>3?|pObat`S4rA`<|X)cG$`guSR?uQkyI$!Q$pu>&JMU>>b1p zHbc#GoM#q==|L#uxo>O8KD-OB6B?esE~0=R035Uis6PzOK+B1>*+7xC^9$ZGo%VW5 zTp*_FZyGk}U@v#U;qbUhHfFI0T2-hw@PODRwM=bk(vSjjJBKuIEuQ_mOs136swbCe ztaPd}Fp~ekRQJ(#duqXFV0`u{Z4BLrJ$5MJv3(}AzOYII+!hL`0yw_Ht!iuCjvhnZ zkxQ8K<@G?v+l|IBrzP}XI6Gvc?e%^&ht%gGy$}lYKR>jI7HSXNz3_w6I3tjNodXBa zJ&2SBr-+A3H4SeJZPyGVLDSmMiK2A5At+%v!ML!eY@>16Ob8vj4(I(A98m8k@yW@c z@J>if{QUf{_fl(w-@?as|4Vr{LH>*9*lJS3!s%&g>x0Jbm`o;sDnrcXYEe_VQx%U! z4~$o^t}FU}ODyvKoI(}Y1;!ii9w|sNA3i&1#2^$VyC_SA>XKw}N>k) zF9Z`=xBELDHT*Ec@fhyN+p9jGaztKEgSjN zRvh3BZ(S zMM`0l>+Fd!po>)vl|CPTo@|^(-=gQwPOlN0rT)bFL5laC!MEU13GwV0_kj)%z2poG zyxdmbn9kX|-D+Z~BT4FdZJ9H@2$xqdzsIzZ)4%Mw-OW!;soun2?KL_w0)8&mL0VTn z8{ELbd+OvQHQr+M4qzV;>1^xS;K**DoP!1eMl>!WU+=Wz^0SXm3>B7jcj6R}EZxOZ zh|0s=Z@eRs{uWe1I(KTZ?BBn!z5&{O?`DvRN02Uc0&wf?QuD{{?%jI*-i*k_8$;Tq zELb$JnIrVSGQ}L5Mo?*GqM1Rp{NVXbVq<4+dAS=nM#stX`$QS=LRch&76}BMokDm6 zE=wybc;LpJfG~2dCVi)$ZZgaI%3nm+ofDgn=K)%#qg#ZRyUFn5I)f*i-E`sbKKR1| z4j{0~ni`lN^kj8wTr@*g4_R1Qm4qZY-;IVNo;}%^|2H5+{7IZKAl_yhx*sqHy(bY+ z;Oz@`Xhs$mu7RAMj+S+}EgxaV0NW?Al?Yc1S=ePs0_!C^nm^4EZrOAhcyn^H3V!tUfDNyv>eAwc+uQE|MmAw05k1?9x4|+4iJZ9 zIv@hGyd0_kR7*!%pe3P%Jp{S2?PD(PD!4w^?*H zjVt*(8BOJWo1_RfqRoq=ZEa9gFcZfoB!Kr0_Jvk+UAp&=*s!wOw5oJb?EJWxn?LSf zWEGCECa0uWnROdqg`BmFvq^S z{^FI$oVS%hM_!T!e;!8K$!{hfq-qZzI{mmZCbCClFRn+@pJ>O6#~+l5bv+eFIiL4A=KL%B9OfW7##B80JsW|Z*#DN=|9QbRQUNSR zvDq8+C6pDHl3IH6CNn*qrCJGj)H-KLS7Xl3&fufip6oa*g*k>=SGqB4Va!FD^ypn) zLqBl*;B91C24{=w6>=zi7pEB0#$OCKJ_dKaz4MX-vPRAKf9ULZ%nc8#C@Dq$=jSgu zb&hrbg&-?yZm$KG2%fUyLudh|z1PF>T8Y1r=S~241cqqX`c737r3Mymu6p&+&BS%X zwBOG(lrsf4f49%@swl?6=>n5=85vq1LogD6zQXkW*k;b<=kf=~W1I7&)83?o*kh9$ zG#M@`D#Jhi&4CpV6~EQipz&D_9wD`-Sj)oyv{VaL(A_lo{O1h=0+u-tMj(|1fzL7+ z#Gn%1{ru^D5q$R0XzX8_Y_u{Pw^V-F?lZ4HWhVS7=n9lAAj<;XA@&FwHbKi4b^zZc zB(h~{y6C=Oon&N*PMz84+u3dFuZFP zKuQNoe%OI>bynI|4N!1bkeDU?G!Ze{pvmW0OAJrr7N1cWpJpVugq{h;?zZOU0cVij zGcN<19-2=lB~!|5&Z-wC6YT$lxr-9YzIl4`hQ3eYHgGEbO#JitR9{`4rc)Irtscxr zc=g~qW2j$Kk~g6>Z;%P*AMH@cM1Mn;-~#-rs~(cS?tJGeNpR>23rBr4*z=I;4@7k`4uw4(SjBMOqL^X}Aw- z?S1$D-E+>p_m6Y$`eUu7#GLc{-tT>%XN>WTf$@GH&=T<+jjFyhJJGLDc$-6mR+$pC z=vDj@?IqmKopO5{8=2G0{lrecU1Se+P0fgh@EA_B=`mG^yz4y#12#5kY4g`J0N5)i zC?F+XGrTS?Uu!KVP-gVJDXaMKWxMGKNDe$SJ!RVIhHkw9&@Z{N3MQL~x(}_`n7>It>#jV&RL^eI(Yv(*pYPBLveAIns~8e)$Cr zE-RL*F5zQBYDcK12NxD-+;^il#h&T1HB5vMeD;v1{;V3tpm`8kDNDt!EzSI*DJSPP zo~%7gp0o5W%uY{V>zp9^s)x6QUdkgXFNJ$03R5NakflDC#kP(lge};lo%rQelwpeW zrk2ffR+gj#1u`N{Q4)792KkKvKXIazBo9jq9)T5h%-;8gf=<(H`i8)nDf0ZV*qj5W}HffJvqs_bAzb#))xIk=|Wd54Ap05Jrgy#cqNf=P(u zL8$~!UzsZaBD8ly6sLo4UIEDEpx*L4JRCfvJz&(3UmtTiEiLV55uL<$aDD~LJX9tH z*sdJ~DJ`^rktsNY(D}vChoa*ZCSB6LyYak7N+OER?^zZd+74>hqH3kAv@eqDXAIGX z=4R6kJWD>_pNz~6s%I8A?*B@vd1QTNVdz?ub@+_q zYXt}>33+Bp?A2L}{#yg7Tl?{TgICX)}1X^xrD9Db3Q&Il*wb%;$ zQa+vxcs4^RB5f4)GwN}?_IN7ON|DWG6gApHqo> zbZ1{l#R$c#${X24T_98yd-HhKQr6%HVTJ=g9#Eu*(C1yP;~A9$H1P4`b1FA>(0RNS zM75;A)O6YpCoDIve1l9nHxQ-$S;6$d-9I$1Ra9%pdQ+27`u4cI(-T}-xFhPUqK4|y zXV_@**k^$$ac(qeya^{p`E98HQ5F^@-zELu?jotFg$3Bx2>wc@?(-kG#i3rmfBk|{ zc5Rhm5D9^E36dymw=}|J(^-7h*OtBxk*`?5SD-?J9G$j*OI7;EAdCC>LS9 zc_cuIsp$u$v9OSktS>mzqDi*+XkEen4gp1U5^rq4>2-^vT#k=2BI&@z>OqVMMv#}A zl>x&UZnc~*X+hAC`ROilH`~q9WIUVWy}{`EAF5rwx$EBI*QexS(M}ckDTzZHB$@N? zU3WZnZ_eBZULP-jc{L|NN@zg{$tre0jSdY=e;%4`RY{2*s22SWLCyuqL^6c!aX&(= zA3m&aZhiz~c?(Gr8|&*kM@RiK33ER>ajkFsgeBdg`q+n2p2=D1P1{g>hFWvd3x4&C z{ULHfb=zWx zPk8G?pwG%YN$lxPyGD07T!_S*oY^V(rIJ8B6&}!-9D&plbuoe z9*v`UKoHws2j5|*jUh`dlLIfJnp(&y#Uz^h<2r9J$nDnG*E>cP8^622iKA^I6)7|-V79-o5V=ifGC6*;v#4wV z;MRuNvONWnH@Z5tMik1Z&M$_w>%wp8n3=r=!YfWm05WC3^-Eq%Bje6{&<;M_Twh0G zxPc&1>mwt2ZcA(Q!b~8e$}3KqG`gsGI#6uU6ys>%=YX%NBQ(;$Y1AhK$2qxp*Im!Y zMMi2pu+=|%UFB{ZHGehd$`%@!flkE_*#HnWv9+myOa2$Tuns6U7)D)ATS)f zR55kFdy>|b3iv&DAI3f- z{Jb%E6_b({*VRc=m@nxw$}fT!w|TSM{hHT=n>pXzM9aYw0+J|!9(@_f9JNJ#wVX-0 zTwY|K`Du(Y`Y^=?6T5|=sJOVXxfufu4W1rXa3U^ZqX@7Jwks0F-rUA-+^t0d83z3 zTcJvou`gb@dv&^w%&7-G?i;A3g5f!nj(`()f-_SiV=XPDYrmW{ujvpTR&$fQP zGQWG$g1Tr<_BO6ADXD)Fe%Fqvwl*J#bO#0oVEk7xlfUSzF+2Svs=;2Pf`Az8T-F5a z9UayOYQwupsR8r^+J>*NIiZBPMML9ev=M3m%{43;(8p#>?NSL;PJ@jvcwG|w4HGRt zKR+)lEQD=b?fJ|)n<*QiH>Q2szH>g^11IVnEB>3s_NF|a;xe-Zx28Jlx!eei9ugX_x7ErJ+IS zZTt{gmL2~+!?M_|OaqW^kVahmPIUF(eN99I5;Jf?0^E<2Bb*v`G!!3({2+7oX&$%j z*R_iExMd!AbAX!oU0q7bL@7fH2*a!EUoC*71vXIvA*T?YI>@QHf$ynnN&9d%kh=+I z(IM&EJ%OCJZS%w=cV{7aLpLsP9NId7uI{>i793tg5&Y{eSlmDFq!o_ndq)>B{yer={YC6{0j%4Hry~-75=Rh(YL7XvxS6lmx$*Be;z<83@k92 z5diT(P66EmIx1?uHB6b`1IthluOFfw2>sGD-kz_UlnlCTpgO;u4h)yG)d$7GRGNM;RNNn_q#@0VEKpTT`WDV2`uI2HFR3rJ}Qg z3D~2pc@lE+fg6iTvKbrv@*DZfBhG8R!iaz`f%(U$Zv_*l=8FD=7h@^)eqZVCk*S?r z+Rf0}at_yp{KRXi5tN4`8^_6z?-l+HAUj>asvojiSr7b%H9l@`v2ui-Oz2H1cWa9= zrYS6j8lo#U?GIE|+uFs%v@QWIg?YW2swzAztSCrM!Nx{r`}3_G<7N|Z34DA+F{#`) zWEF^_l0wof2=DF})!lbYNo^|8RoAfpLT`kRvDkz7qU`lRA`nRQ|6JXSZ`*<|4(DLN zIhAbsQ|DYt&8LhRt><($ptqg<8uf|X3*~wO1Bepk57FcW!}JixxF+&QOXwW*MXR*>$7Ch znJ>7uJYO!}Y<(tgm6^;szSvm|1?2nQjFAA~AfRSrWwnQLza;sejSKHO)b1#nlrvyQ zQu+DF@bDP`JTMF5>BN+BT;7wQHj^si>OVA*k~FGN;#EbkhS=`FrbL67sSzmDuU*Fh zGb2udDi3}QJZaEWxLx3~cqI&e>U*RrgPdqt!BsJ_?CbBSy zkgkGSN9h&C*&5!rEr=$yvbK(^KDgdZ@$?;_9)f9Er)>q7SkY&^MAY>6Syn7x%^1}z zgwdE9m`K-0T~5X>46v0d=OeWdoh$M|FI!eqb3N$~>l3tJMG_ZH4ij?K139UWBl6d} zQ<&lg^(JM@n{OZCc0tN*xWc+b(WLxkKN?Fe90W{cu~ZeBi|-QYzy`ci24Kld#; z*!r$bd9GJ|50tM%;FWt*Jz@A%+vFQ(y-fnnL}i}wpsoiYZ*MyD1CHCw$60xKoghkx z><8GZ6hzw?7WFDOrC#^`;PLu}J4_2m>90<6Cr%E}CdItzW_YJvme5L;` z8eeO;`Kqd_A9Et(=$k>DRiJ?n88pH7^>T~fykLr&LE`OT><10%W#^+%3wlPvfTsiC z2_k#H3Fh|U(?I)qjQpZV4MSvm2eU}YIH^wX1 zp+7`V52I4T>Q?l;l`o4fj{7SDZKFXPy?D*hcw@M*fGQJo6kmCEtAcBfSx0~v3kzfm9^ATK z6YYsFUtSZCe=ed#&4^R^w~Hv5RtNArO&T2NB@bJx%{%e)K&&6^e&@c@U`Sey#+#rN zZ%O^5RB?7j)@1MM@^abF$4{Wrg7_N{1j5AU$6U#*+up>U;anV~jlH8fNPG9b*oB}V zGE2I&-Qq&BH3_Y`jfA4(jDB(MUbwAfa9qT>aG)SpgjcZAqgN{OfJAW zXICc7q}`WW@CWP?a5Q5Um6VoV6Y(G|gz4HYkw%A!LJ*xOD=CqYlKM-~;Hs*rInURv z!0?n$!h70Ia3{gR$L}K)rITXUB{NS;5UadrWcohyb(^025ZV=jo%I#FT&zIK&CB-p z;{^GdewXKBG!SMk1TyPeFe3MHU?6|QkxR3JtLJpr%SvZ~FcWD-ep4rmRaYHbU2NhA zz1wX+cJ_tuv+y63YWXQH z@i_#78MYrh&Wk==P9J$vyL#nM2ckKcylo*<8l1`&aSf1_ zMuhg5P_<-?7h6Yl*;grA-PGc>*g709kT58j4L73*;FzIF|@Ezl+C6s3`7i)JG*C5WOrzb)d$NC zWH#^0+E(}a7% z2?`SqD_ZQSnRrEq5`XgAq49X~eewx<>lFR z@G-GlBvH!RF4hzw3lWV`BE3oS7h8Dhp7-?-s%Ut_-RIF^ zIJgxKw&EZtQ1w*)`{xlSMBY|VO9iwPt8y!L*0P)q+eT~E1xHp-tV)Ml%h6vywgG=mBV4}xaXvUa5yzJ1H#>xJ_1eiSHGE1rH8|03 zkJ*pqq748apV&|53sZ56*xzxyf5LQH^@DfV{LhMDOGmbZDa#wz5TPazKx%68!~gp4 zO1gZyGo0#v7@ZQoaelH-=Wb=iz-n|#BUWxwi29Sc)=S&Z9t)HIkZnw$mr1f1Lls-? z&PzA!2cL5z3vQ(-UwhK-*|&O-o4V4x(w1X%~T6lbd2bb0YGBZ)Jr8dcvYLn)X# zP5h%2v4t3P9Qu$tGq|zL*@}%VU#@uKZ9_p9u~{4$tJR7NhlMcb#S{pmADtdJP7kKF zkT*4=)c=zXM4g+Qy!4S-c?|^M&)c^^?Ft4Omo2Ost#01<2wXzH`ZYnvUedOx(nv?nohoUA@oLJsHUYzUxApz&*8osx#3D1(=O^^QlhxG@?O8|&QUDipc5NWsfmGdgpG~DqylFPD z7hHJPKDD7h%QO-ljZK)mGxx??*-4}i{aD;giF=*5zIgg>8dclIS5FMeS*>#e@wxuV z1n9^Z;(&W9XlWsLmW=>~(UuONtG2ex5-{}gd%hlH)0Tl;7n>C6V1&W&&(b~d!dgcj zgLGUWHQkc8YzDsA72Yp7sTBEi`Cg$;ITct%O(klx2S%p)3jY=9E)W4g7U;dt4UT^| z8mOkE{l6rEH zZJIOMbXC9T-8BTa!`8;;Se)!jQ06>fAx2n4%bPMI27r>S@edd6z2yr}ndHGL+|k3< zewg(a^0Hg|>BAsbJXv4_b>o2oGdrWVEyrykDajo~%5UG3V;2vI@l8@SwvCa#ZEYKOd z8n>K?A18UZQELr%1C+c{Fi!|77qFH9F~6Ie8)QRG5DYU1VkuCZaOIC;}tRWubmjE!jZ; zTjx(sEh6=O{t95w0Qv^`sa<(=CqhYZ9Tp(W`6X_?QjpTu8v1UKuKsg-euKjU=*c#} zcS@IP@xMAf)=%b;i+z4g&eOu?LwpKtDR7}OOW^RaI+pi`UV7ay-sIAgqM2OvUNT4B z-0jcDRf%VB+4iEOl%|_zV$XP&dc0wXL3h0Jg-&f5s=P)QqI7Dby6DYE!|+!MhmkKB zxVb+{<@nkOL+*+Y&_K38tp^zqGRTvWkzJepEqbV6pWA%w)=_g@rsk0p5fTFBCfuJJ z@xX9FNz(zgddp0gFpLlgv7VU3V-H3@aFh22N8#i0D@Jg5OdFRskQ=M^6$}{{Y0a!n zE~TTydBGD^uen`?p`(`aF!k9Q;Ok6GOvj7d7u^7v5nP+efoVw}!TYA~b1nvmeR~6j zCIA#csNd2ex>WAjme#YFJ6%oq{kFq3nNW}i z@qO-ThAW)y;2RGK9Eox26iQ5u535%L)Rfr2@s~?r8Km7gID<<0+5xPg;fFh1M@UZA zxseNogpAXOG|5e{pw(OBZ;uXA93gB%kbcbA=_#xmfqbM#aW9 zeD?B45~Vp^zui&{sYalEfKSB1#T5WHe_-|Ay$EA;?S8vf1_oq^^-i;rNS5BzNfnR8 z69uBsSS)6_G39QZ(fuuK-zr)$x0KA&2OAvvqwCdv2@4X`(RD^*>|4;HX_QV8xNp$9 ziBg6TmkNL?0QRa8SZ|>Qp8*Ac?j`Vc9IIr=wcC}DIl%Dsf&Ei7irNG-&Z&v5$%!(DYcJ}5LDk%g0bF12hNDh^C#5xLluG#mx$j(%($QTYt?R4#?FG7WXAQ~7Nh+}y*0_jJ#0 z9d*ALtA7Eeuz!9x&2?MmNd`Lq2^?+ytF!4JT;yarR5nq4Surdi+nCLB+EV5@q0p|- zp>y|^IZAxrq6g5l*NBr=wGm~oP=f)YOAmGZyFZq#DW4%wg2wC}`$`3!xfD3_iTH15OmFEv{gqj-cnILL;9ax+v>s*Z5 zfMn7NHh%6TZ;&*8!RZA&0}&C?HbDXH-!+ZQ9Lje|W())_pBn)GGz>iZD;aR?0kKkC zB*=zCdYb+;_q3E&`z{9g-Yg7`Z*wU)#TCo>2%Gu%r&Vo#$KYa3{JLzS_gSg`+pFBV z)$86Fh+I*Re2v}?^w}YBSqfNQD0#Jex1do6*_R#k_CT6QWjyzQ%sOK@$ahkg!@tt1 zARj!mzsJEMQdCjl1jr$P@NkL*+Y8iN+TgozIAXR+Gzz58>$JLmR96pLC;Xx~C(lFfgZ0S$9O@xndtn;F^NVfje1+o*Pre?b_O|HxhX3v{hkh=SoQ{wEZS#rle@Xc zS`m0ut6An7ow$?NASX2UzovGtKX@6qNem7egTj;`Xl)D!^;+0pT>fNLjLf}Uoc`=CGErI% zvu3hp!$GW9CQG1w)pBG{9G)FSp$9-6S@iE!P=|4rmO%&ejo@(;cFX23K$8Ig_{)`n ztVBzkM3mk+ldsgzomBCSLO-<>XZ5W%i}Rp7K%uOQ3ReVd*DV1 zhNgkZ|6T&&|~Bw~Kb>0j{;Z+vvxwK-TQ znS8gb{90@#Gq-Es{Tvxf5Z3xEzp=XP;`Q{q&d%_=x z?(@zzh)*@`mwPe?*urkupkr@Ms{qd$3@3x_vea$q&{+hQ*<3*?7}_2gDQpF6Yfpfb z2q2A4I8?_n1z73my7qYG$3QG2-+#SiBAzCE zW80^SCZ>pvE|(fbqrDY&PwrJk=QP6q!r}u@*rZ?@ho^YUPFajsLF!v=b));Dnuowt zLZ=GI?}p2kGo3kBRcw6xZ0V9c+?`!u@j$aQc8nP6g3*0I5+2ms;obBAJ2O}}P=MAo zq^T4DlDLx!NU}(nMJv9gw;l#!u7X}D6G1XP%^i{D)v?8nRi@)W%#z&9AJ%MpVzI~d z-i&3n!H28gOjtacC`)L=bay!?y|B;8IZ0aoaM@DzsjzE26W82j)$L!D#*rJO>EczX zQkc{qVR*D472L3w8K-s#VExv9`3=J>&uR|T$($S=TcHF6chl?0p3s5OQ66^o`6kz_ z74vZXYaY4D#TfhnhpII43Bge8a)&~mXdyBRsM-$yQPj(c~yxs3is0^;|D5!VhT}1 zqMN`<09XAd-~r`=3@nPkz;}OBFEOf8i9rA}GB$RUVZfjYaPtA&CNR8|?a9ujW;+D- z;hu>wP`Cfm`GO zK5%@WeKN`79Vaj(_yjn#mGCyus#h{NBqXS71W`C-%i*wsQsx7NC5fE8{DdA%me-g| z>oM>|-LymD!>xJ!y1V!%+`Uf}J&Md#&!)*VE7P0sB`2Z{3FU7jTVSFW3YdVg-}4hb z6o>rqS+wx=P@ks)_e~svRVa)P35nh~nCz4q+`(|gRiHSF%ABALn@DCs6_JP{|II3% z&#L*{EwTl$6{ne<+dm?&dy0oIqN67}Cdcv{bqee1_JDo`dDhmcD}6;}AYUUelNLFLW`{1SYH!PdTk&}vIFw8p9)F!XDDWzu} zP7N4e99Sd7am?@VL4Cq=Q-wiW=8_e`a;B;?jGq`;Ai%L(M1fnXPPYx%vmNBg3l%tS z7$D^jdJOSpDbL#K$yKz>cq}lhNbcI)9b`$o&txJSf=wQbBG*ZkoCpivQ2SmpI6vnw~bD2m0Wlmbe?c7<-QnI0SQdIZ`CbL*>2)viTqSQ@XI%G{-=Ua05TgQ zE}t|@hP6 z%shUMa+|^h(B(}D+MK7uq&+6~*5)WuFJO-=$Zwpyg1h$G8>4upR2g4_Y`Lm^xy-dqwS6e3KGw z%F34WsDM9F`Q+A7gxL7VITIbKNckBZ`vn6=P(?e3shEMY^Xrdx$wHJg=o&>}XHinZ z0-7b-r~g)zb-41U~RzAhiI}1a1l# z7u-S*^b*i?)G$!t(n?8y2~{d!6ClQJ`tloQw*g}SVMwP6(&jrrGG%4ogU22uM$%AI zbKTYA)Tn?34hoG>J&**C%Y1zZig>^@p03q+I6%@%b#;gTKFccVQ=r`zo(i)9$5Va3 zJscU+dvg|#TI&*0C4z#aa$)2B@i(S4bbLi479zR8aj59hA~Ji+LsTiAI%@W6o_9Y# z`?E;A^nBeM`8Hw=3|K5U0X3L^0`-AHb7Lb~B>+7kb0%-O z1-94Lj?PaWvit=268!qSeSHnm1;M*cP%woW(D^ot_sHS`A`gH3{P_WS6&;e7TQO>vc+!Y>G`1B8#u*gmqc>LVqY)SXeYV&8XnA0jlEn_%U>@25KUs zhPe2Y7E>VT>G}vSCW{nj@|6Dpfz6-!`iODBz(Rk3NsL7Cuq%$yF!bc^pBq$T$`@@H z_2BF*Kq-3`Mb{3Sh=NTOaw1?}q3EOX5uhppJcgDvrWje@toIA}lBh57Jev!?I29UU zW}68K0kDKLeP9ue3uvi;#$D=#2^3@Pit>H8Cu{Ri5$L{yr*mC!tBk@4OhN%7L`sx(I3pi{ z3D@1a>8Aqc%&2Z6Fdd_EEoOD%dhnK9IWs#OSMX`Ol3K4F(&gXHxfj-V4uFo8sWbz) zmU~GvTQt$S&{~ZCX8WyeUc+i?gJ#%|mK}Gtv~CztlaO@(hy^!roJbfW>lB1M@xV3;DHAs!TVFKC2T@5 z@$o?i>qHoItH35*&&0rRauP~MQWY}kswkWYpwk;0(=;o*gm{)aA|kYa1oXd^YG7b4 zgd_X58%!Iv!$im@@ohdX@oo^BQ{L3^zl0hz$?49mLgeW+XaKfSGT28UX&`|WYyajE z$pOrh0gBX z!vWIF!t%TTRuSjKN`Y>iocuZ$LY%uJ=^npuniJ-nswX~;M2p==%26b=tr0+Oo>LXS z8+$4A8uai6V{H8=Q=^n?JH-0K6T#y(r05|^Nwse332kY#P3 zo*lG*B_+PwUn#7Mi}8;UzhcdoX2@X`uYoj%o=U|-`XTcj9B}l$70hzmuS zK(q~;biHvkZX{1OV?80T?d3YfaPE!+<5LHCC@{FPGT~_bBZ+Zwc-Lc!Ft~$rD+wt+ zsdC^t^Bx?l{&{xTq+*g^qO^W{t||rl6>RuL{*wuy1LM&kQ{ch` zL(giEse}9l7o;kmF>S(TBeu*y(VFgzAWwt_6ff zvG!r1a4IY>XYg6W91?_K-udAAwPhFB&1{=787pr^Y~)eM)!2s(9V%Hq*{>zG&obPa zZh#%W-{CJ(#jZPhw>Bxs$olmC?zMm(bjhmZUX~IijQQCp27cn!iiYAp@$ElrgyTiI z&Fk)fOz~UnuT-^k>U6l9wi_;hI?WVM3_z7#e}|li)@FN=%V{Fn*`pJL7BY>aM2JXt z-c0F??4*=*2gsRc&N_|DIB9}hw}^><@hzq@0zvnyyM`@M$sigV>9#MjpDHt3rUw@T z7}t5B(?lg(y+&%KYmq7H6JuaFO9p=_5H*6GeT)FAtq220ckUvzUcf*u)A6HDF=@db z04Gp6C*xsWl+e!cuC;*%?C0t^F)0&F#+inGnJ}LPspfJkoHNAx`uQ8|YH|wN3>E3o za;`U&C(;gSrgOs|Qy-eY|Cnc6E!no`^vm2+mBQ>kS+Uk*jL%bA&nh-6hyT>is5OrB z{3zspKLpj6ILzt)b4BX-Yv3XuL8k=vg$b+A~IEIFX*YNuq12gksM3gU>m!TNV zSLk!X-`J|F8vNRTflAO5=ZO0xRi-2*o!+0&pp^>9fN5i6;~pmC@>1B!KzavQ_JcYd z1mf2t#k=<)%3x%~+r#6I506e?icN7Y@G3)T+?!ilT*mD1I_-ryKySlP)B>2eO}9c* z39DUESvj54aCBlq``_Pl2-_>*l!g_03W3g9fo*0FFZVUaXgbZdK zv1CV#+voEG{-M!{ijRNpz76HfTt4%)QeR;|^!M>T#Pm2d+mwpALE<~18LJc zC+IrTuXDLr^4sg^x#?kbROp*LNZ4x@TFt{c*#MT z54(aH6!gEk`O=}(GN`i|1fn$7UPA+a?POT_6e=s7Vnn%dU-SOqreW^SL}F&d&hVS# z{OLgcKey6TQ*GVcM(blMyEG``I(l%wCg{kx>VRZNqx=ZjB05Iz-qdK*`w z$9!ggjj`)se#QERh6mf2pYGk@iZ{1;q!`lk*>qb=248pyrBD^9H)%hgn9J_N3~}M? zUKEIE_P)Vp7^9*V>`y*>uA(Tcdp;ziZu}}GAtXB@*(i|PjfqJ@!Gg~~S~f5akC0+` zep@%O^Y5?Zxi_~BiY<{Ye!nT^wB0oekNHTJyODbIkfwUwdeHTf!z<~bMQ;JV^`@SX z!P_EE_s>YI%%0Z`~-h(O}+cAiTCb7M}X>G?f|)fnRHsv7q8;(nZB~%;=a!3hAIYH$clnu zD{uQuklw$40R`SLO`OsYAkZ2(!Nj<3%;VsL@?Id1y!!WxrmbBlqJ-prPQgYmRESCm zwP{#z&SNv8K7b1d@bPQ=2cZZek0)>8*dZ0LD|HzkFyuO+7c$)Kp$cTi3;w+*68OgE z*>R7NE+ets`>(1vdF03hW@?x^nUA@z&At z7y*t!VBJr1Tt&Ku5tMQFer$CT@w$dv(q{T~0HqY^FbS_c`@+2oYmSoSyf$zfCiDEu+v0m{ z%pov%FJ3@N`|nSml8#9PmVrN&(oWSA^zb*IS9E_TNgES~R@YSr=kT%akRfDg6;2iZ+ zU|3mgC}XAMwn1BAxFrdPR*7!*a*Qm^Ycuq{)O;o<@-7{zeUE5Yb~XR_32pvc8z0ql zZJKHMsGYu6=K9lJM8564|2j{*H8k@IX%=A}%V(DwU@X)}Zms^Jagy9RHq*LF5dLHU zFAiUPSeXic7@>A9=IbLD=r?hUy|K&@lQ4)`~&FcSo7dS?oaeRFlV*kEh#()14 z|Igbsmg8{z=M9I4DVY58UG)Ex@A{7qwfdjGXXvPlHhAkY@L*z_RwC$Y^#jS@8BMZf zofl1KyMwH()b+%B?n{!&#c?1U#heHu}4B-WEz6f9p`(0k{GhwJLWGmtzCljbMt~}+Iv~QokZAk ziP_#%x{O^s-rubGuBY~yB3--VDrhe9y{2>{ZO|vY{(K_R`wU1XHlcyX@AumOeD?4s z!1t|=L|tpW6?8MUjRYkDuS+`M>~{;B;z&R*I_vAy#riSdv|@v$FhBB`zvQOC!(IdCB1JdME;ELhO_k#SzUwGFCA?hc>xS+Hx?JAM{d@K zyPeI@hm@_6@0V}!*ecn5HW3|Z)xSKc@X`C#;4@#%Z_u?bDW;GWedSsByEMv~-TEf3 zcL!7X&@Tus@zU_>YWYcGy@*KudF0XVMCLcV+2S3mxW^=OvB=|@ zmShf^1~zk!fSj7%p%vpDDko+PJS|E32=QFC>c50zUh&k?J7iM*tGlA?mN7wpm_TkGy6E(b_h4$qba4~!tv z3%-&#u)gzeJ}{Xl^L^>-sM?YHl)k@i&=CKqU-+B+3x_%XS^ET?BaC{+~+>og7^Ri92u;+B6MF=Ty$TgAlm z%>JiwN+`)RV#UKD>Se76A=<}c!??j`#9}zNbW0eoyb{y*FI&`NjqvY3jju}G$FR^| zmdlO|nsq(pvDVq5{f0gC?bRcFhOdRG`}?oy>F&-?T8%Qy4yl{(diR~Z)N(<*=f!`z zea_jq{mEqTUMjJ&XN-uoyFe5NIhoS^&IsFk{Nj~ruJr~#X~z^sxgMWMF-f-6t^Bfi zQIVSDe(t<|5uKfHz<(Ycf za!XHyqWF2r>g&;f#l2`+dCv5|%fBi&B58?kM071CP%LJykXJJ%&%D=L_!+Og%KS9m znu=3RMZuIQgJ{^+(JSb%vGH-4q3J&lB!v@mX-1lt?@vL`LLUv*_4&d&8Qv7Rp(jjL zJ>g|~GiP(M=0D4rl8UhYm~%$uwZ1Od7}QeYH5nw<>QM3G$#|VCnPl*jdP!wtC($d~ zgd%O(spI2kY0c6g(uG8W(WB)w<0FEF7Wz9x26?t03-j#5o)R;#UTiI6Q;{_^cE0*Z z?>aHm6cCivxF`R?By)q4rj#qXG*|i^9_!-`@tnm<&!3`?JX9eG1)Vuk zQ$vP8|JC1Y-67lP-jw3-6zcRTWqiR?wA5+#FM%a{5Pv4(Pp?TusbOj z)EV*6+YpTT|NDk(PCOvHvaykW%1|O&j5S_Y_0{NcEr*U*IeOsJLSB77Lso43g`Y_H z`l>>%g`pRLPmGwba=Q@sM!8ZAKECYxI@+__7g?-?7PxEaRMG94$H3tfoHPD}HLRQf zi?zWbl=l9pA#1xNRqTSHyQEItvl^b$MBnG<0&YRh32d&gd)RB-!8Xwe8o%VS?c~WI2*-0+HFax(fv)hD1 zOHlL$wTK2oKa&P?Tngr2u@$tet9o;cHdh91B*l9ihgZR(yHfs51HZzZA3Y-d`ioj$ zI~s%hjz{;`#}7q5erOH-i}4LNE9;=tewe>`uu^EV8gI1rjOzE^E0*-(@4O1mFZRzm zcITHQp4;^b#htX$cyB%x&dSLg5w`Eb&C;Bs`ucf~D_cM4@rzHlUHzrY=6kt}smy93 zHYLudM*N$aaJ{`#mP>&C-T`{h%IoI+z!<%W`XqbKK&gxe$P z2z;fhGy5)?^13shAK6)iG*S=Qy2}SB+ z%Idz#Lod5jpTgDjv-#@Ro>DKxDlG{PZ?%nR*neuXn-$AM`MUNtt2^_>Z2Ol}?Ag@W zyKS8;((iuFw&u+IX_mm5qmGY%9PF55x$l0V&4;pG`pzIbPawI`ExYT&>l;SR;MVu0 zmsecDepjQzTP?vK1MILmb2dND*B>WWQT_IM@-|kJ);yiInC2lX&AY}NtGrJWBPYBi z$ouYJJL7_$o@mUa&SO2e^}E~h>ci)~m6e*;5l4ScPq+Wf+o$c^okSpEE^yw+cVtEq ztU?VbNk#IoA#QceGC=MkfU(TpI`0s<^@P9skJGk)q|L@+>rBw|+DiZvIdSdE+M^+V8!VtOZAv4ljRC1&r z93|v<*tTvq552u?EnV^8|J<#d@C1bD?!csw6P|fWd||y#fq`Yqi#pTDsfyY+5kxo~I%PEJkzCjxrr3@XLa+uZrfn8RnDWac z*DiKP+aIoG{kaS}T4?ROn<-}8nzjYXq{+yI9fhg{O3iLMkr-KQlCq&|sHe#>2S-a9FAn6aE@)m*g{G;TA& zIIP6e(!8~+-CdaZYJGu(D=IRC0{<;>gE1x3Rev_S4Mm$<=$vW~&3)JJ^bQ~A)}?MB zttW?XDz0BiMmWtnO=;Y`E5wR-_B_1T!N_!)F`wjp0jBDi_jtKwj!>!a+(D>G-vEAp z_GCPzn{YM>zPmRPjvoqvpYThHK$kz3D(Fck{|95|5F`o|T+y*@&mY^iJ@d!5ZQHhO z+qP}nwmp-dWRpcImEEiNwy)~;t?oWI6;RRS4lWkmfxS$r&0nsDo;T|j84LL(<`ov1 zI@@Y3HcO_z#FVQVyDQ%)x_8r(FRN8Ch{H;w=Xx(ITv=SP%pU5HWZBG_n^Vw;oas zUJW|d`NXlE`z>s0jfC1IgUBCitD_Mj)ds)JJtCC5^;`JAslf0LL`g^!sC~fS5UYXs z_DiArXPr&_iJ{`AZ~?Au1RWxH`6u5+d5-N>xbt{#Q-Q5@SvyJ?e2^x8E-nG)3vBCg^lO(}$&ZJLZmEx}Hc?3yOzq@762nd%EXmdyUkp zKTCbvHg8KosZ3aGZw%m-uc~bkUEn)4P0_txFXKa2PKkn(eYxLW&G>~6dJ08SZMd&6 z9q-nV(wlzO?3bro&<~ybh6lC}=5xY8a6OxX-=$3V_ThRMOwXvLCK-h}%O0(T0M;=__6+ItpD!7u-SX4v~8ZC0=cXzLHlm|KX;<#!SVO!zZL1#T)->a!QlI36DUX%VkAA!qNM=1d^1s3%mnoKn& z7*DCAhN2;+#&+WaMG<-x`zE25`h*Jhc5Tl2Tr`bD&&0)--PwO-0VzUQbFkSbnHOO7 z0oAV)Yv>_ZSJHQ}YxaBykJk{fp1euh)L}qmssEmg&JOYQcu?4H?S=(HkCc?^QFZ}g zMPe!d3s7bYqqO&xNJZbJeo=ZcM6diL){qHiUOWC8YnHyRG=kvvPIF{?H#Ug7<6l-0 zi^HLw%`z-wl$5yOsXgf}r%uS?#!pvhHfEOo5#Gu|O64H53F3FWGI>#@Q|dLM;Cg{^ zcVU@O5?)q@KmkdTPK9DIU#k8X4SE%5k^bv-J>--@q_~=+!T>G#XvBrX7>fjpmrYrf zy7|5F+k9oiQMjB02FL|**QFKXx@E8GbaGv}Y3!wxeu;Lb;BK_}Ws2O{w$;?SuyFzG z{lV_s^x^I@s}G^1GmwT#P4_@Q?aMVs)Kki+SZ|1iHp^($+FUJeLJ|c&vo=qbv6-Hr z2xl6dNuiD{5?OGYB>7zKHhlO46DX{uJMl9F$akL>fAppOcPO<|%5~iZJU$~4Q+ZIG zGPM+VkoOQxqzV)n)43r>tN1h(=5R#$d@5LHU(p~_zW(v;(zi`#B_pYwR;9n%!yrMC zRsPmKzjs37W+=O`wyCzd{iEGXVxfHxXx$?-qW<^E7yW?4zB}@IO z;%r8lu#;h6>u+%ON1dgpXxo6&Na4YWiVDlFLzDIZH9`q2X+#+mL{&?Z0u83Y1PxgL z*g6p4@hZckk`K^7-^7rJ^%0Ux&A+oU^>BWEb_z5p?p=)>SCn zAwpST-$dlaA(H&fSiFdQ>y7f7wQJ+%uCp%XwcE6;`9|V0IN)p~ovsVN-rN=D;&*_O z7BnFK@;_{G(ygwhtt5O=hUX67F~gazN4LfYE(qboM9isGtD%jN4Gwu+))`Tcxx#z* zy2?Vrd*LHdFVof0L3Z&k5;#v9gbxaWQexIof|_nOW2#gOL#~IlCJWzHYK!B@_o4LT zhyum9z{LG~wPCOE#*Vo9yRZ{IT4RZiUT&dMx63)XW;W{aQr?j7E`cZaZn}fX=`#3e zl8R>Ly?sT?a)W%z^t}J+U&%%?k^vF6&Q8?eP@L$SH94Y@ayb73!g7VLGTr7j`@1t6 z|1pY4wj_tiQsys7ud4g&mutF}ttA?Y?h?x6;A7?w$;Qnk(bmsw>$vZ(kgbC`Pjc-z?J&>HO5RV_-AzoO$~2M#&??wz>c}e~ zH*)DSK+Y^W+6iFgExyn1(+1IBqEVRcD=voJVb>!cPa>Lc*Pnr2&8!&6O4>9!VlCy5 zTj%XS3FMpXobOYs4T1gU%Lmru-*3y4qizuNdUA zeFpKsjlk z-oqcbn8)6P83!=AUjO?*nbICw|iu0Njf(CMA2r0Tp}@;He^F9)E9gPxIw zSGu#Goxl0t1jFvx)pXTpM|VmpXm?bej*l-trtI{OwZE~|(4-WZ95x)jm6564#G>0B zZl6YAC)!Z3r9If|EVHmIu%IUAiIKEAwA5XWJXb#T9wp1d!Ei6P&9B;p-07uM|By(w z+AAP1<%Jo2c@Mw7xHw7~a|tA7NX+4R5MQQ#DghwL+aRs`DE-z+l5$+2OM3Boc1Gg* zW2WK;;>L1%5PD+(4N`t>7*mu05$%je0LKpg?C|8k7ye^$Rbqf^u#1ND0BkXRHF7{~ zNmE|lm`(h!c3>`|1bT%~#IQ~%g(!8uVCIIT43dNE>QPv7EPWv)g#>Mv#ZW^cQKEXR zWzC%3Jjh!*pyj&2Lu?prKLDEP7eMq_TMtSQV`FsVbTa@hQd*7*j*5?x5vbD7Fen2| zj|vZyk(g01Fx1sBFx62}C@?Zr(lk|3H2l#$pivNPw0Z&SgGmj3m?I&tgzFgT`4;PO z--Bf#ckqRH4Zdj@`X=-l4E@s~!0_bw(t(0;zJO|9Vm1akC8lwj2yx$F#5ZZDKoJE@ zFl(HZe>O32wgcojb!|j)+|@c$=(VHdl=paznwFEO^nC0fU*IUD(c2DBRiYLiK{m9L zA`M*YH4&#!j26AK9^6}zG32N^75C~ zJ5n*P?@G^QCX31O#ARmc-9&PdZNekAzvrE=pImsi#}J?pcJ0<3;B*He%hv~7^vGA~ z%d{@nxKSH^Bgm*GgZ3(A zw5I8ak&YH}Q}s*bO#stTy`%14*cl}+g5M39X*#}-?AbIZ6}AIaOHbo^@ZCG}n&lJQ z)i^I?N%~ka`CwSJR3%u-H##AC$q8}vd%6iI>OEg%sd<$^kuP+8*p#|g%=97GxJ90x zu_)2OI*la<*H8C?`3h@!d6l%`K-L7bVjo+`8H2<0P-GTU{FIiAHA z)B`qN+h&-^nRBgE*cxE7owv8n+nCb_|Gu)v`z*abrTTW61SFO1U2~<`zYCrgA;7Xk+6Dt_c!y8IN4Y)hAnawnz zE7~?&&>37C(&V269Wkul6glBIpr>Iq!KTa{M6=cO96Y#qI<&eaIHmY(Q1Fbr(pF7o z2XgkAf_i|#M%eWijLX5;g?f}Lbn4AIsUxKgMbNF5<}%w(1=AGm(ymV_Gf~XG!*w{F zhbn49R*p{6ujH5Ef!WQjoh^X{!lkvl6|F*xw2GC(oBsZmi>hBO@5ZMc)@mOy63v1~ z7Ylj0bJK>0va%c}p*$h%k3`+K>P>}A>u9oVXe&jK=(Msr={X%<3`l1;I^(R^=Y}X- z#xf^t&DG9YlcN5F~e6H#JgSt`Ci|!K2>)LEk16`8CtLIBSj;EI9MY(V_ z{q|O1UEQWdZ-WWD6H`q+_?&YPkrq({fe1;XDZ|x6NIY7uc0cv7+~TcUhfFR1oNYgn zn{X7w%gmCjC(4DZ0~XE`!M%qkYr%_+6oTL z2aJ6gqm;XAcLv1STIac)6r04IGUohnsf6>#dT2AeH3+#K@}_9#*)ZJhrZuhKUb~*} z9Xu=78rvjrU#e@_)es7Hd{t(M-1&k%oSv92g%zP529ttC#cVZS{qWJ&6=tK>qT1SV z(|mJV030hVH;M}8w+74Yz@a}GNyR`UJ>zKGf&&BXS~8n>KYeo$3pGFdY@v zpeqKT*}nhQc#>SfiI~V}iR%oP@b^LIHO8~F8}Y&RI_xFGWnnU&Xa~N_I)P}Hm@Xl8 zZ1RZjNa}&%orQxx!YE}bQKUio;;8h<^yu`6;2rio$V-x!C^vC8kuQO6EO%UYe0QAh zpKR9d@d(4a()O`>LD&uwd*SbJG~PVXF=|Kz>28 z-q>fp2w!@okU&CD?AG04QQg$coBo-E5X01AidDNMY4bnU)_R7jaYdh`l(UjQ+ik4P zv%KKA$nc5j=tbmBomCC4H(jpFUN`yp(kg=Hi$5X@UEoR4NF;Is)-a z#2++FeimJc^*<@&qKuF@$gMa44Cx3Zv&uyz@b(E!j8b_EcyOPzs4)P*OW>?Od^WAy_FgqnPqCA++&DxN5kpoyu3OUAEIZXtz?zd;ALk+Jl3%Q9|)1tkT0!(E@ z*cjFJR_>2=iGC*+f-fCpKNf91mDiz8@0(q2TR`UE$3|2n>m}=GDp?wsQrfUc`w*TQ z{oQm@ifvkr@gH~CM+)+OZk-I}HU3D1|B}f=2`CB7bHX1H_5Q>qz5mw9@=1rZHB8a! zkgC_HkTSy^vI}R&QIzL+J*z>B8&C)JTQyuRb+&99Cgs{p!Cy6ppJ^U{4SQ@uLABjh3ZU-mE5qS>s zpfl)&@re^`tN&ghT{~7UlHn&Lu#gX@M2f317Xp?7J?4wt1O2*>SF^|K#PCW_*JqqW z-N(tkCwY!%GGBsg)(M)q)*GDx^VPaPI>rHVn1(f`uUD7@&gh&^+dP@46>e7br2>6j*rOcg^1deQPKM&fE8e{D$Dk>2Cy1z4XFs z64FIGV+=?u{2BN6x47FPu%N5vZrfNOJjjgGdJ%(b5r5k0qmhs6TH1tjF^UzrFpXIv za6Vko&`_{xVowz&0AHSei97;)hEI!q5=@#`xqf~qt=;99BCAE zQM^-v$5clDhENZIsyNksyvsu5l=H$(m>~D|SRTZDZR5dK)Kv>%ME9L1gfD#j`5zA0 zO|79s0akuXe|hSE9!Ev4#?-yG{-n~$Q2`K31H0#l20J2_&}bG zSU1XeOYHW)KC$;y4-L*KK2g27gbgTeJ3ukaUnTlgM3FRKpq5`l3qz1DUjy}h^$A=3 z9iwW8>Aw~rl(N%5jmlGPGiy^e*vJKl7LRF%p>W3d7oX!^hGu)N4a>egbdmU2!@rvc zzK8egdu~9q+O19El%I!9=S(JDtd1^Qo~oghmlu|F+BWU( zrIn?=W<#ZzA?6oT{lj5h6qrO^(oo~WkYDEt5TwO+lLit)*6#9x)vBBzt9Q7V?~^Kl zOhW9%d8Cnhf_5{+$tSTei*qc!C$IlfxW$LTF=t&>OT7eKVP}H)K?whJ38^( zKf%4Mj&yFrVj27UhqMJb=7YfV<>W)Cn1b4X6-Sq76Os2vmFy_M-Qf=fC(NE1F7Otl zeVE)#&{w;1F^u7ocb;)ORkUry>>- zWtb(ZFN~LA!0cSW)sDZXb%^YxfJp5>xkaz!T?z(G6$zPA{@4_IDsqZBzhJmJAOl8Q zir+gUY?Qu@#?u_ehTlSj*{q>5lZ(gy1OJpMC&KY9=O^2sfBcE!KO5sTAsCg&ad+5?7uRmO)4zdo!iXszSPO3+QM%tGP zzQ?!_JS)An8*fug6lE4=_Ke6ZhneE=d8{ylf9FE>Qy6X;L^?g$Tz&JFt& z`GaCtf(9~QTm%99t0!`P*m-rZt6>0}%!1-j6R>9+u$M=fMSr#00XJ0#6HML`NOzf0 z&L4|P3K?2zZYH(@`JA_iQx{0*2D}%?xhdju)xHnFS_QOWI!X!)QYWtjq@jy}wOA+z zHX$GGf&T8|cJR%x2JQHx-6gb7s28K~H327Uh9B6i@;M0`s5zo1(^1Evw1zDz>~xqG z00#;N?>Wf56h(otPz(giCyhLNAt(3wcX?ums=N(FR!uB2 z>#MoKKz|z*Q=km)F$Uo43Xo5lEe2T73mbqG_03+jz&FPAo%5X89KnSrv9_EmC~Vr{ z3NDSFV%Fe57ewT}3?^J~f~hLGC9;qdeUIL*ew@@b0z4!J@Cm(nVblA891gzO+x;khMj81EhtxOwOa5g(nVEnMpZH`b#>8gXM=hnlt1 zSB8QqdS3!rFfW^Gs#nH&ow_i{-OYVNxq|ipqA@>AI|X?yz10+rX}E9w{jIH8=xeR3 z?X9s1bguYqsI^jASdn{@b%tYHZDt@g1vYb}Pb}FbA_ld1{XVdxi;xULrT*<<{tYl0 zY@3O1S;_pVdxw{~RV6}g{E1JOku9YG+os!##4?_4UbfK47-!>F0qRxhGRpTe~BAx)!l@?KiW23*oIv5YX? zQx|5~yYl93$zb2N@@GkswviEoWtV4ANTQB*>D$BAkC^g@(y%hNYy$mi5352vVih_k zM-X*&2N>yb(K=!%>lAJ9wplNB=pv9bvX(}Z&}hemTLV2AL}H0zA`UU9dA*}q zEvsjD%$+eHW-l~FO+ASeDn2uOhtQCg*nXoa#ql<0mMDrP2{<8{e6%_+*_R);;~ zkMWBs#K)rI6$4<(#8pnNZ1Bbdg_lUW0D86<0YS|GGpQP~n#BqB$%KNaAw}j7P0&Icdh%ho`F!0$P|Son z{JZIK6uh;#bF9MLT~DuZ>c2&jt2I|?CWgj`L&_El7yTU{*~l*rDvjiyej69#7w4Un zI>&doK$5EUuDsaSqgg4gfw^))x4&I1wl-V!{G6gcx~aINhhMx^?(O1pf4uQJMj6jJlFODPGFLM?CQxlov~Pg^czhO0i`bx{1ClaE(Z_k*&z8B(##&k#6oAT>sjoyg*8nvV#!+4}8Jq!%bF} z(!26e^p441NV><`k_76Q){Xgk&!~^dFV@F@Tw>nED4|O7KU_#*fJTZ)MvwskNa`Sv znGse5fWiU-AWCS)_3Os*qVkA<{XsOf6*k@N&j-?nSsbQ5V?_Jis=FPnHr^MWoA)oD zu==w&lLgyqUtNdtOkf+kYxNcUVKd4~(d3xxlV+RA1r#v$_?n&W9L5<2?UicU(oTFo zx1N;hEIk*Lf)CvRNPP7qiLJVjh*aE#_OBQy@_ng~WCa<-8)w&emwsYmM6u4dTKY-Z z+}>QQ=#I3NydW!^e`6z=%Qa-3(LQUSmqiwbrt^%e{wnL}DFy57-n(8bdROgV zlNqu!58HASlmu1m*DRrhm9mFE995U@Y)XlpuzF|gUsF=R8#$F$m_h9RB!=l-CXzEW zLo9oz7h6sCYC4s8im%ZVN-D<_1)hLfG;A=BET2F{Wo%reiF6X4>&8s@2I%tMJsU<6 zewMRDo%>kdgRg7-F0C&GDr{`T}R)lrbN$Rt>*8Ul50I zQ!Y?G`A`AOtx^EHuz*H8DriaehJ)%cLx2nc0PmaErfQv&jQ0bxhniTHmCV{zKGl`lI zx^QEUW?IOu|3mtQX#zOdrT#~XAP}dg)YTC|++CU8w*vM61sIr@2e!l7Q~_}c-`YYs^lwclNozA-@k-xMew=*#Zb8|}5D@DP+eFBq#bHzs zu`b+ zKNpN>$Ea-!BP+)9f)25Q^!M^+)IBRkBesLCpMmpkoK3J_rTVFLD}UqQ#^{LySCo&7 zjN6u~0k#Hl}UU4slpq*dTAA#*fKaiP2StY2+9pSGh+VX|TSkUzMhz93&*2(%j_ zoH+1Dw{k|pd6Hnk@twh7yPyq|bzuzP2(o6b!|q{y!wEwi1nHQpAVD`mUQ{i()tocY z(d4YTdcvU`&NljfC^CFK`$-T}Ua)^zUW!b`*Qe`NU<&1|%7uELrQz*J~1@LoOtJuAnW-Y(0_$o-xj z4vHJ8-rh6Q>Zy2*&%0`*`JTaPUOYD=&+165itk8EJd)|g+af>-Cmi5G1P!R6wL~FJu z1@qxQ*F82cQ^!y1%of`kGiblBvIbw3^gI-H9v!HUSOY{#^yAb@F>WvnI?Ur?(r%;8 zZzur5tvz7qa-FjZmky$hL=maI-VkMlyg?}Ot(p1D{I%ei>CNe|rc zi#1Hx7K2>m8}=wfmm-&`?|J~+LG=$MNq@wXZ)vX_gEnSCFck%b6Ky8j+7b-ZYH$xu zLO-GpiJuRFk>2z7=$@KYXV9%;NxBnym7LcLd~6$3Fk!@O@XM!+u4nKt!lFXEpk+GP zHUBjaN5=x}q%jqKgj+VKvT138dO4!xoD0|V@8Th8M{A|>dURYeEb9Qq|4cbKoEG$; zu*;*fgR%na@M$oA%BzXb*Z_|tB6eaMl!%Je?~)A&eK=$#o^^Q-d^L1DBAt}!t@NIm zjL6x#^DMn<5|%Hn<_+&xZRtme&cr(5=GV_yI{Rr%_peX$hI@Ttt%feSSIxMiozR4a z$P8a8pGI0Lv2-*UQkYq#L>-GYCV`Co|wiuL;bNBs*xI7MOJT$s|ag#6~Px0~(V(z9n!UN|O+XsKT z_*<&}soOhO349=CPt=z7H^OaGq~1CK^Cv|sB>I|6X-`25QG$OCk?~z@CQdNT`Cv@`nF6aJAi&DP`E(4o(Do4I4OGe0c zo$|M(_cbtByLnA&9L?g_Xr;0#cUpGSLK2JUIxN(jU^uw~cfzT4SnjLB4br+|cSNek zsgfwk8B^B_@pWZIf*QOK-3FlA?tsKX>~UbBex)>@t>QcKfBjq^Hpmu1GpV9NL0MEE z8Tkrx#Fj4)%+R$Cd0$%iEW_wv1 zXAYH58KH)+`2m{oyTUTLBTQWB!+I8tX$Pef0E_cH~Sq&lWC$-@+XDcRzU<` zZu&ohmq?WL2r6E%7zD@j_ni2-urOxNW1Q8pgBtq2P9N}%!*g`1wWdR79l|>Yn`J2U z5H5Sk6h@n`?0 zTF15_pY+wdtph*9F3G+u@h0--0;V2t^`;&tqv^e-+@mWkrPd$>)CAP=%25cQ1=KD9 zKrIGrp2&cJ;eON;q-}X)1^hSGG%xg@6A@t0wM15QvQ!n1Lwbjq{Eqxfn~KJa9> zi$<8GQGp@nOb?nV?${)JiY3#NQWFKIAIW{SgX!yj2_j%h)ZKZ!MNP8N6G!_ti;7zn zr$~8bU64S=x={6A?WdHr!o~EoJmiRy)*e|zX`R^r0g_Z9>T`)=kcRH;(Z8Jcx!hij zE6}grQmccA32#Lp`!6tdiR_fq+sEem8FwSGiq=3*^mHlAdK0i>^gabQDEdN}useagT6T!_QmS?Mhupt>P~+4sxpt84O4IMqNk80KBri6W8ak>pgC1I2rU`vaBqlS&&r}Y5djoajlDVJnz~GgPI}4Q_w5} zc1bxQOFR#pTpT@lZ)aSwNXZhuTipz+`SPDP3YI)u+&lPF+y%_t5>X!o#hlpEh|Eg1 z)-gcU5N0k6t&l;%pnNXFTZ*aZ%AZ=iBO`)56%(cCVgS<0wk{~)WO^t;aEdA6q2X^F z?~RACTepAbz9{1)Zl%HXA`OiCGUQs`ve7U=fg}QyGhP>1W9)0w#Faw0goP|;#C?=a*E_JW9-)Z{Lx%XopXpG5f zL{zY45}mm%y0UZ3OoLu+%^~;fMOv~#g_eFniTGZTF3{deEl&a(%0wDle5wQCSw_AB zWtcOFaZG3l^6KtFCx~Wj;!qJOcf0W`q!S(!1GRL-5MDbxobJ5St~o~BI3@wB+-Lm4 z+%F+@x3=}@V+_}8n&n^-ZTNS2c9~An=JeMrho-!W^&Ed+w32IVApUiRgiEHEv>Gqx z;?-T24uwe(x*p$h<65ZCONzNZV{V{xZdM`F$FtQua#yL)BZE}Ao@E!DE`VXAE!Hga zk;TP_B4^fe@=}?g+iV@UGhPQ)LW!XjQTcRg>ttD|bIHB@6f*iRb7&6%@WsUv^d*YeG1d16v6Cn+lK?ci>c#rGd4ZW2ZlCHwWIqW!#%fy zo|YPxALfTE!@W_&DZih$JSv<1NPEfP% zwFi7amY(*W7_VfWYGxS+#H}FP&nu32pGVie)ev%$-*7?Dl1E21J1D`1N8Yp#={Ceu zPgek<+2BU^>jMEKAIv4k}YySiOj+~RW z-yYIpESL;=UvCnlMTH;qheG2)RA+48zq$oyHRySTM4_Uh9AQ|#MV~AuUg#5%YsodM z-cLdV9;%$D>`@{pZgQ5hQ5Ke$SAQ3_%VmtHD_sAikmv_mvO(DoS(BZj8^%60j=Gvx zLvYWjl6o|?-~-i2zNUiWIJx|kFmfMOBL}koPWNdSpX2pPbkC7R_`!1_tWUJ1=$TKA z-vzj_efh-CoaA*Lb4`A@h)jcH{NvxMEwg6>>jhkaPI=OBFqfK*PDNhDfWa8nQ#2p5 zbLuL&WY?Vr(ia)Y%dn~g+VTnx;Ssin#o4;mr%%|mAgIRNT`B#;)|-J5Xg-uhL^6XT zWC8)-pu`1XzUkIw%~(PU`a-N$Hb}F^L|^C}i*7jIk9`_NjvUjF=})7dAun5MFCQnz zL$`L(@w||C=1`-~RSGZf)@KWkUOK9pn(5swo#+Ybmd=#)6T!@tUX*lY&v;Mqwqi;|CFkD zRk=_)%J`W3$e^jdr^Ou&cc@jUwFA?Y8{C0Z%^3qX+R6yL*gr^?GnF2Ax z2s|YETA(0_bZ$K#Wa zQ(5;H3zFT_3kmz+x6{Pt<}F}Hhi$RbGa^+Xt~^7A^G7J@!XcdM*=so-Tkk=QKj=^v z%)?HEww1!Gm)0u`{kh!GP~{v}p8w`r`1mmSld9MF>WQ2-t*NUaWPiOK-BZFr?L(~% z99ZoECTnQ*%ZJY&Ji{foSRLCup3v0cOWa^QgbrR5@wTGL{$Z@ph3G0$i34|1w}2Il zuq7m5!Go1N^sTLmwGR5fFWbEmmxLpHP#2t7J2?e?9?$kzPbh^69J#h1&M;qp-nucc z)}_jQ(RV>7zY7d#T(~!v&rT@tI|sUPpiNmsuR>CWoL3Of`1QNVBcr&5yB!f1Oio$G z+&p$Q{~1_|xgwYZp~L_&o&br7s65P&6dPZ4A16^pG;3)bTSG23H5P_vwQZc}V77D_A^{1`(X&P=o!4f{UY_qBxJ9 zEztqCJva;QeZbqzI1&cs=~3MMR4xJqrs~i>Wun7*cAbfy#${efm!6Ge$yzRwkZuj3 z-0*+DgB@(mbCIjPfTU6bE{A#)0j0ylFH_c=PAjxMWYQm0+8Yl}4TF)D)#p!yI)WR8JwvV(L9^<&7)S+ra#I*Xk+50qb5XLC7z zJsQiri~^cUZ-_l8dfghIp70Q?2pzVPc;T|PSDQ6$V&{c~vIbR8ox{7VrrSc+_PNo` zZh;uBw)1W8;CT!(g>^qRz1mm*MJlQ2)a~AB^*~HVcf$q`MKew`)kciv%)V?D>2%ca zWiUE&_A{YDi>-(MxSXELhA0E*%=qxZ99Pt#RX)A`@w{Ayhu5DOSv15@SW)^Oehu;MY4?L6A zHY@D|h(5qt#NQEKNFfHbWIEp|Y=gl4UY~Jh7)}gbo1QngnvM?a1-ptQf;Hy59#$98-*< zNO0-Vi*}*4CI(nEU&sbXaD#YrJrIO`C>ANb6yCoN%tJ6VyekfBC4CyFACPUG_9#3> zK?0gU&Z@a!mi4XsVw1Njl5u_pLR(S6^1z z)#mvR<~?Av*w@Uf+$Hx*xYSze0e#5kjuqWjFH+qvWl%WSd6BF*5*(&`FlBJIo;aL^ znTV({o7Hotl6W2w74AzOFO%Mt{DG9;nQ|a#_O1IS-*$cmgDVB)45k@OeH4^a9=lk0kru66xqffa!P)9EqrMOD1G=qD7R|nKC z+Jtd^l~B07c;p6&Grj7A4m-SLq!Xq;_NOkG1^WCtXC;IMKa`2jLx=aq6RZITLQLEC z!>2SoeC;wcaL5l8b|=IQh12evuwk3zOtN&a_Xjj>-jwe*X!qq6^AVP z4Zd!6?%F5Jg?~}QH{uji!t>}Vb09i)FtvptRUd2@W@2vLGTPrKMKrRst;Epg$d*`v zhY?Ex!H0OK2xX7zgQtAjH3zhR-zkR6JH@0j8%W?Tg+0%3CWcIQRfn6=WR}9150zj& zuE@E1hSXgLTgf47_PRqZbB^Y1+={jD6c@`}L=-#IVXh8(G5oFuxj*3y!&$si2|SO! ziAoo;NzKr(z6G5L^&hx8M7{ePT}V6a-(`k>hKYBz{8N-f=1;jd;Bxd?XK^>Dhpgd{ z?!Iyw(0e*Pg;d5S70_fg{anEqN~%Jh1NVAEV*3|odtN;!524==eUn_d)!)>!D@UyY z+wHy4@RA{!c;97UWsBvhLAEEu6yKgv{$Y|+s^E3^Uj?BJsN9a*0}cWhD0VQ6VW>j? zfhf|TSVfiWt^PvNSKn1as++H>z)jVQ)f2rf;OOadUCxYA%wV~c@mU;>*IzFrY&5W# z;mM~^Qpy}}E2vX1vDOgsdV^g&bQ69`E9`(A3J175ThZy0wgAeKGBL0P$k5x$Op@|dr7qb)|@t+ zmFZU`pv09V@j+fArsGTjG}R(%3q00)+yBsP9a1wX!`V6LR=f!#QM{)`T1^Tnm(`R< zfvD~J#w=V6VWrM|^s`F1w<;v%i*W67=oi+b2d%2pV zZqD~j47_{3eXTyRoeaT^k7fSS4l2K0tU_ll3SW#U8|3ei<3xhVuWei-tf!_aU<| zbb_0q##!vHd#9Vd{ph6MhiS8a*2z_yow3U6TEKQ|7*&-MsXk?7zzM_hcr2y2aR<68 zu=0&!V;gn`_3oDdIF=R7M4(xlCv;@k*P_wi-&KVhcly|B3w|C0hMB}_RBtSYcCL&v zXLzqh0>4LD1gWH1cQb*KT_BZL$*tKAJ?lOpNqQyq9NkAm&;HWQjUIN~Y(L+Zv%x#n zXo4W+=k!)hkX`pBm~X0PoOBt0KsNu-QO4ORgS{AuD>F+7ZR$ugS$a>4A(de=#J(L-hE@E53n;*D&%j z=@km5v$WO8HnoP2(-zL`$Aes1;w5OZMY?%uDJBF0pR=!2EU@bNkpzesg~za80_0WU z6sfRx9r2@*ZUgsJDc8Burb(+D79Ix3^P5uu(vk>Riz6op+UKti0rY?@@tXIT1^y>8 z3sQM7FxZ`6$d{N(kp|h2cE4)45o&xPpvl6fsXvjFPrpCPz<8%WgHyjF3W+-Y${7UH zAT=g(GuC#XpimK^6K070iy;BfOvYXP)dl*$`jQU(ul$W-YLjvD-V_K?lMS@0p!OI!g6RPxzjwTL&Kw%d>WeH z9`5fFHqPen=MFX$WVC#lnp)aNXeQ{2R`;)#>r)S33Qobfz8&1Hbstab6Bh?pSCUbg zvDDl;Umo$9GITSv)YB#=Z|**6se;uN4WN~QL-{1-8uC?_OCl(Lab(xx2T-2ppmsK({)6OZPijl?5_3K8hnN!XsV2(nW?dvOAw)Gk^ zEu4yl?Zw68E~8eBYWf}3<;BbM7j-Qg8#Hj8&BGgd^{p*j8rRvZpFCogo|Vf#dEJ9A zbMxlcb?aO=+t!`Co6GCVH*Rw~%g(L4^S4)*cy)YNZuE1fU)HLlf#E&*Hm1AVc&4(c z)^9etv5PBgXZA5LuP`t0(H$OOA7a^qGyOk^r{6F8J@xheJq)vNWuN(@O#dk646F=u ztGjHh>?co8o#3G(p<0H>yt6}VZK)kP_fdb_M#x4-KgqUlBw8n#j&rl1{=Ns;RS^6h z5!Kp0u-Lk>??Ho=d<*Du<3PC+=Ii~zf{}G3&?Uw=Ds4Y^qQ{UTYhdzX&x9EUTBp8^ zELAM0M-Q7SHDM|rb!3wGVO;0_w3R;-&BN0Bp34^)oB~tmpGcD@jk5AhH(C$(Fs1Jkh@1Qdw6s7k`HoG>E@a&W@RrqGBDts!dDVpHlf z4-ni^r@Q*wTUy9SyBvRuMH(lUuYoA66T=8ol*EE`va*^-&ao2P6qL27AgX`95;<+R zq8YqwCA7x>D>F7@4Ry=yDn;_d)Irepj^iXLj=FAODb)AVQ!@`7RR`z2g_6CyR(14( z2KhbW13$I3anKh$omSIuiu7Z)Ijy7|;M^lwXbh21m0W`!3Yp?U{FfN`rp zbE{GZ-bIA27~R8Yl94m$F?jr{zGCUpwGO# zJWm$-1HBwzi0Nna)n^g%{f;r-a%V$cstjo@zn`1omeX!!4G6bXH{j5jo%~GaPo9)4 z+v3m+$(-@_?Xih#==iekO`-tX1K@uEQb4W0uRUPnV8D}avVhQJD)6l*H(@}ki}!G{o4({xoQMXIV5 zt8@V4qS_6J>kg&{Ed*9YA+VpX==38i26p~7V;AZO_3XjGKK@M;z zqiHS?jmIOQXd)4dCsHX;;gUQo;*y||OmSQ^1rqq<`+ z7eoaFVjdS!u?!4L3Q$y8SBgcMi7&uPMU@rUluFx0^gx-DG0-wfZeyTz1~9O!d?5)y zln*LU_Tk$3=!AW|VkfRJbhRtmFi|^cIUh2 zo_p@OcT$9`F^n-uvNyH-m?ZqqCb)9Rhz(cF5l@wDYW7=R1CYYK#Og@l${|~%k6SwM zfz(Kva@r*WJk}?V_X$E+{)oiLNgvu!z;ZJ*V&PAdhH1U_Z1=gNY42;lNpC*geCZkG zuAe+O`{#Q0&U14ozTZpGzsV?o4yS?daIC*_n!x6f_omJz!F! zb2XyDEHM!(Xwl$b=fGNFPRVfpYn$S6t8f&`v!SmB-{|_Ca8EkIb$`F~rt#_Pw|w^B zOP7t$Z(O@_?ftsTZv67{hmLT~%OKr>V8$tvm{Q7siM;`SoxvZ&<5SL`n7t~M66h!b z6lA9Bu_h?!a5zR801xoJscBZxdQAc0WF$0#FOx)mtTY^v@YnlncXq*_us8A^;f*01O9M2?Eu{zxz?tIPP;A#S9GE>J&|4@zh{y z1F6nDq9GmVT8sSdL?27*WD;=MS9FTSA8d(c(MpM20H?i~;W(X zVCDfZ)EV*6Aom55L3wCG89BjrU}{MQX-l)9mbg(*Qr<9hE#eiN>lhALs@$UAw#>3q zgfX#279N8wRW;hhk<8UG(NL+oM0wzj=TOsD_MKG9uIQ zB(5@pI^i7>RFm?se0B?SX-EV_bti`U((l1Z(CnKsN3q?t|M)=PZcbuXy?#l-TB_6? zI;Unurq-9c>?8P#`WYiP27v5ksfLH7w<@QeVa#LG` zSJlVC)nCCxgg-4x<0K8A`Nw|aZT*>~n4j=ax~Gyk8^QuhBms3~%C~!kR+_uqvZ+GA z6FBE@II$-j*oQ(YVP`KuDb0Y;FptM%971L>tsE-|NQflhfTU~6cj6-E{H~a@_o$E| zZ$=Xv8)h;9>2ZE(_Hb2v*2xg&C?@B%pg+h*l{lYaZ7Bt$sbp?Epw#NJ;lS0ol&B`# z1N1RKPH+cB8A-T#Y1y}MKzY5e=&ZHNqNl}hM!b220;N-djS3rg8zLJh11o6(ur2@- zd*75X;;+#$0!{d!#e_n2Gs9I2afjHZk&>OY!W{q$4@wAWi=3_O0daujy4g-h zex?^7{lW%FluBquwgVU{_6#Fyz(a6QHMpqeZb&$}^cMRkSCxm+q(NGkYqC{|QCIxp zuKsR*Bqr^XlL;Cj!%x93{xuT#eLQH8Ir=(5+|1_UjydW>Z%u-fmAKpZ_F=XuzS&2{BlS)idc5no)*|4qxN6JjsOjs97$S@aO zO4G^934PD#VewenEM7V)2}9S5#TJdW842@lac6MXjKxXJ1eD28>=$%41@1)zJPygz zWAcKYJ_3{)PgErYwU*;U31zPe@Jx@$T4i*x9F}hf_w?nJYzKs*_%&}{#Ir$U*qF$x z$mSy%Egn4@NGB-1Paq_~V*4$_FvXs|uGzx4OEG0vm++w>%D1D!)|Ph>FuTE#o8{gC znJ2p3d0&DuvBzk5>?x2LiL>TKSK$16YymdS);6kvptTALA~fngGU-M#3L(^>vYw*A zP}D&aUX==bg*vjOY?nGVqP(^_`qYuv9p7zj>)YR2^4{D!9OpS+_BMWW8T-o~ylrrn zY4NgL$3V0us2IIMVHw%03fWd=y-dUGWuvaWxz>YBv7PEl9F(v<2Qm)32ZS~L7o%a0 zjq0}#Y!J~OzPEYvnRnBRhYqT|p8MX94__dieng$XeB%p);ycRcq!ygTe18bLEvsc> z>L>Is0dhg$yQAT_K;BY?v+=s zyv@-TN1P|fU*+*0d?mxs-0mCXyxV0B6L&%UcmI<6BfnyrV`p6Y^NT)NJ7ADz^1{Ng z^J$iUD)X5-g=UeofRJ9Ql#LjKlAsKp40BfyhkcBmAKsmis=`KY!d4~IpR~ZhBAygG z^Qf$1Dy#;~_z9iFYz(~L#Bvua8cvGtM#y^Y>cuC2@cT7fB0s#MVc0){1EVc%?nR7x ztG{6_?Q8=-f0wVdU%rvMpSE$!ooZy+%M)4tk3%{i^uIlBUs!QykssPu7v_J`ot|yX zw%V10WI_-t&?((_S`OfOOrS{_d z>ePkCxrt79vAfV%np;_!=(O9d`S#qx!enE-HPbxZ?X=pfjkAl*$qUWt@v~#+rxw0+ zcBR$sc4yCY7sh60+c;&exjZ{IJJy+OOps*+vJCwFad*dS! zt{uij1;>BE>evKH8-5XqHDIO* zCOP`{CUQJ{JV69(~I@dS2ZgryLc*A~$jP6smo+ zFi(n~s#qcxsH&V7H0(ATnA(4X?1hv5tbI9dX8G)daQ&`;U|aYr+1*SodRs9><=9 z!xkY+$!~t?E1zDy>KR1>NbUpDLS=Tz8Q-maty5=h%1c%nfWwfqBrP2S@-aQgp@CWx z^Je9b)U_&66_= z#@pIA(y6XEOSS}hY+6Z*m?wjp>;sjgp?4`lR2qr`qW~VY$&0PX73)>uV>RnSlUUG32y47+X=$E@RBXE_H=_*`FXrP_p7HE1(SG z50{FN5ndph&Q2Ocpb1i}^qtd1ux;H=feyefi-1itQiY&MNbm(G#clfOiNtl9npQ3*SJBSS=T4@B8vEd{!oCr&L*R z6>v9cY1Fie*V_|aoMit<91@UFQm`6Nube|n7DEtlUii_eo|)`$b^9) ztff&Yl~C;&uuu|bXz1ugt7z)KYgLB z@eYW%tkEQWaLnT83bKY~uWD=tE%wm*M&RtT0rJ;8Hh?9^;vWMfkBwHR z;TY4QG%g?s;Jj;_ZPnpZt+zXg38P8Ye7Ub89KQyT$B5f1%tWN zPkf7$l@-ho`2bJ=sUWywYhuo#t?LU34JR~K30p)jyohS9+x#n^b}3@1&sxtRau|l1 zR&ITY3!L)EG-jP4*B>FGFvp<`-1HKI5{V@t-tC4rXPymM5MtD$pqP+$!X>jZYkEuo zpn{IB**q?YhkKa=v4sGiQA>H_6~H(ZT({Iv24kz5LxZyB%0L)lS&{v6HgHfPf5kGqBx==VgUFbt(MSUu&-4U;sfg{+rh=n z=LtJat5{gT4DfP^6|Ne(?3}#Ta%izPN*0ek#8s!X{BfTkMSel(Wqre_o>h+N@cQ0!tJxxECHZPXGXiLraO z>?Wr#W3j@QNU1VlV@HKk^vh3EddixMdGe4ny&iT$0E5d;ppFlP(k4@ExBZqYAp4SXbVGN#Eew1cH3N8P zyc?+Ej|Inl0zYJY(~E7r@MoU8f6eiE$?iqM$N21QZUzYok3EewhGQK|V;0P#aY2xj ze&cU(wBr;8a-b2lzVo(`uYN10=ajzQdy)pS%v>4@t@8kg2*DwM!x7y14#r=YZ$^x{4Iw!PTsXPHZL1=u>n|t@+ zHQ#>opT=7b>qAT8E08XBWrZZN5e&sZ2yaR`=-qJD$~3OJcFx3)AET?ryN~GBu3xv} zKR$|C8XfiJX`!}VIC7}`M6KEws^&|zLcLP06h?+Cm13b%sh4Wy(RyvLUMQ3*rFy9_ zI-DPD3?0Z9E4AVJNVQx$RQh?PI9w_X)C-NqK(#ttC=3h_96Zn{=J%I%C28D}FBS8} z;gM>kUanRKEBlMJ!SdQteXv*_DIKIom3;oCq2ZCi;|Dj~`-4CH{$zitxNqRaef`zp za-~o#4ONF4^g4K;Hdw0fEe_WY6c5vAPbQhxjhpsAT=&7rL_hO7p!?LZ#Pl7F<9Bw@ z8Pd?t+1~FWB3YYEw9o8|D0759q(VDCY5=S+-5eN(faXs;wWzIX~eDVe>Sbxcedi3 zj$Y}z5EF{C@wo!PyDS7^p*7BPcQd~e{(4%Va3D4W^XDY*DU$@mEh9NSVriGN$Oks; zNG2MrEq71JJ2QLE`@Qe;K9?Vjzq+oLgr_(9Ng;mfXIIC@gD~w(#`e$_ ziy%cdVbW8OjzVS&n`9Hwo3w5;Tij_O&lZ=)N<4%ckt^NW#YJDPoLv36Pk;Ur{0tPH z7uZU-IW3wTd#YV%Fx;9-UQecN9C7~OXY+S~qf>kd}E$_(~BGRP%K};*6=QuAeUwYx& zpZV-}uNb%8)An30y{&d?O0ph%keLYTE@^lc^$*`tX=fY-Nd!p2KPD!^-h_!sq5|Gc zq6pNVPu@R>PLDx;;F74|(D)8fAc=Q6WK}5G%2YxrLxqs082RP_U|i{qi;L>-D_6YF zEfY)2S)_VCKEs051ETk@hLM`(|C8U$(5$qY@uvf;I1C_Ju`9R@%#-jj^NdDit!zQ! zZi^0NoPX?z$xH6ABQl(IB6QYtE*PNqSd=^6R&XNIzb@d?Np7Q z;}n_kMn@0K@|~ko)_1;lBn(~uo?0WZ!BT2!?OA{VbFzT-iaBEmtSJJfE%<)xv3!22 zZA!rz+*IeG6(h^m8r4RQYgEit_F{Yi)sEF|U_3fIS^dY_z;~aE=uTU_DQl%< zQSNvxI;bxYAveiN(S=mlAy2Nth;{3amkr?MBYd)by0+R+RhGkGea#mz#2 zD6-XMdeNV7t#bNSH ziw((1_Qs8rdPv)p`j6j}LcAoHYv)a=Wc{&tZzeQMEpchtFj5`kNHk@PqFRh9ic7GN z#x?@GUsBT>9{IsEx|-3bEQ{?iv$<&F~LLC>rO=hT36$yN( zQm}F(PVSuLD@FryOyP}F0h{NeK5Br*CG0@WPhb#m6Ck#r1@0)(K{K-eZHULly7Ssk zRz5bxH6}}AUig95FmwD^YW z4g8NbDl_{NRyN1Hb~3b4^aH$D8G?KDrM{dMdOjIX3#>`xW=9YhOmZRH;b|LB)W3(8 zEV`j4F%rxM825R$n14V_pH8!JvoB^iuup&eME&VT>`_ZV8E6qO7%y`3Hr`Q*pgnFU z3Bi-Vrv*hR@ysvF!TBo?<<6t0M{ksK`Ju0F);NynCCxlm4&TKaPN$+lm8?qkOh2TP zPc_Pn_s1d+$?GSAsLsIoKnM;v4>JMdZ39H9vR*UB-9oREKvk|VlCtb88# zr4gkD06W#x3txQrCC*ff!T@)uvmJ+Ez_2|)E5{o}jx>slc1MD-`23&gg^bjRtSJIU zw6)T9#9}9?Rrrz1hh>0aqm^j0)gYj{bA8!5@#(U?t%7&^l9Oq}YidvF_x7w~RxhC7HAYH6T1IhC9_V)VyQ|qRA5s z`vO3y8hBsaCm!7J_e4u4zJZBOzV^Lk+p)1(G&+_(&JiM`IB?~dYcRF3|JjJx_OacZ zI~h;`*heo!A3cgNcMzA@ZyI27SKVUgZNH4jGUF7_A&>%MJv&h$4o^sM0S15N$dW~G zDzWUM5D^io^OkWb3Z!m8_Ig7M4m54T?vPdHlD{7FLMm>C4lzqeiYFB8XsUv6a4Pqr zAN0jgLdQ6CI74y4?4Az*sB`PreBT9Ev)7``tS5_lKqIW5L(Ytc)&h(qO$+eLWD4#n ziSaK&08NrOO;KbFr_yH5pYjmZV5^{xevZMD`@*qwia2R8{xo#{0-J!eG*H?SGRNS- zWF9siY7T(5lAj_mVchjdfaTM`4tXOFv-{<10(9Y0rWc3_^+k&nsP1PJEX$TJWYcUoywuyMRUQ3*xuG zH8T2WElJaOX8q{Mx?8#U>W+1epWdIGJr@KdOiz>#lQzJkB|KtRSQeBfv@S{t@c}c) z1r@v%A9OvFi?00ckvo1mKYsZy0pvUMwAeMS zq@P%SZmk7H46RS#4iay^5R$gjQ1CiNbx1f6{S+HH&lmqg{KzHXr%BbFe1GQRnKOU< z(yCp?Np&0VAV*N0^u~@;o0*<*oJ3K0z}W4)2S7I_Rv-s@iJQB!&tP0;!zB~#+lO%_ z`}dn@*HA7=Z?1O2^ufP9`HPL!fxgmEad4<_YpH9nG}O~mDh*V&l^!qmo6>hGJ*8@K z+vDZ(K(#c`H`KGaTC5cNs+DU0K-ZS_UDZnOmcE~E8Y)&dmwL8sDOS6SgOy^bZ+mgD zSgQ7H+EVN)cXySGmENu8o?`FMi~U_aU$2&X`umE1IDPh1-#lV7Z|yGi zb{9+C<*rii=HAk#Qn?p*?5^|;RH~J7xxZW;sP+$TKVTtgGW(lW^$9uSV{e&w*ROfT z;TGgb@t^~)~tPa-G-ZDa+N!y z_%ey7gJIk$M{Ace5d3L#i!Wb^2HTq0>s8X`Rl9 zOjYclB0AMk3L-Mr?=rUFOj~U`)!N!|S_2kQS_S!#T7^Mck(4L|LJ(>`NC>eOD^Lii z2@!$pz31L@?>*<O-}9dLeV*Tw{+=hazupm>N7h63%<3nSOZ!mn751q7#7BKga5d?N(iK5!!b4meY`yc``NE|0d)<86yYK#gYc@mBUHB(i8 zVCU2;zWwz}H^+EsqjH4Dcv`8*eNgchRbY z%R|^V+tK;+7(zuX9b8mTfut~Av@8&_b9(BFc2l6 z%&MyH*d-}LUd`4vO(u%O60mGOrXdo@Wi6#VRXO91#j9PD#K7eNo-9bzw5pL)>U+bh zCQVsg@f{X{axo;e6;Jf0tR4M^^wN6KweU#ZEVHyaxAw_H!j&z%HK8GAi9jL_&xFW> zvs!Xcprwc0br&yP%@$p%<$~d&@`c;~*tOF?_B^pN-lEjTh~wcj&<01P8W&Sf^b5oP zC6dAH88K**p4GQ@#pEuORU)y6Rrz3{U=Ivqk=tMENS_rm*f9-|v4Sr-66YQ%`Y!J3 z%e+6Y(mVUg`4wlg94WUi{Nqz?1Id?KW?N8ypb9uIjJnC+Uh{{7j2o$t zJ6+Ij_~aIiICo>H1IOZ|Z}h@3ctV!N#=^+Yf!v<_$K;3Y`e|~Y~U#jFy?iolj0h6IS}S2hg)}sKuK+Ff_O)*R!4*F`;7c}Wkab2gG-=%W)+0uU+5yYiM)B<8 z(KKhW=SOXGDSKIGHg?GGqH_V`p@gwavy5?k#CXOT!Zj0i?WToEBeIGt~U*!oeLtL2%kdRpeR zK7|jWUi8H(?a;o&6%h_`-lS#l8IG#q%Ezu&<6nYV_WcUSuCa2etM$Q2m%aYrggXy= zu_P<{x(@vciX(_h)QW_75bXwR-o<5SsU_NIx3#gXYL{x+GCi6B3$CPqA{xmf8V1>; zLFG&$DX~@@kbOj=K#e{%sqxd@)2H0~(8UuctPoSKQNF8FKni2ariV4?VTv~^Q?K`jB#?fn0zWR9CF-wOJ{})qr?thl@Cm^=8XX zApu$p`Jq(Z5}UWSkUzrZ@`09(;TAeu)Pi?Z2WSu~FmeOFL!Pn0&9~h8ov%%N2@{IL ztB|80<;EN(qZ`HQxHD0B%dn&IqIZaD3hU9>Lk z*0@NUl^JAd#XyFDRo9UML*4+FKg|tF(g3G`bVT<`6eimzeEJQ_YrFi0^{tn$37A8n z?wo?axv%VcnazzLFGnrPMt;F+FTU%+JJzQu3-4bZWVJS0y&-)Ul`sEn`gE1Ibh0L) z;n4Y}=GS_Wdd?OHR?3XrcU7c{71T%&sWCofU5!^Gk6u6PlVC`!NL+T5pUO(Cmm8Rh zUL-QIkfwoT00WwVgz(jd`}Uqh$#|v_L2=XlBlhIhBpK+wU^rG4Gw6S6?a-d#$e!pp zl6a5Z|9n5L=L~;7BbsL0cjlTV&gaOWtb^S7wU~u=5zNEP_`D;i6U?;+UDZOq)Z4Om zY}yTru!SnAu&uyC&!|J>?`)f@bK~B!Q&tG_jK(!Iyf{qG&DHu zXRqCMBuY)qtMiv$c;EiN&;H^48y_`m=R7<8VB5@R=dFs(pVp@TJ}Xn&r`@`yEtI?p zSAnoko0Iee;X^k3!~syCj0~LvLrga+D_~Y?V7ukYnkiTB6TCL;gba59mx|XE5;IxON?lCG4ESaCWbylL_pSUH?k5DVL z$m{{NlqkrNuk#+6_A^Xb;xJg&slYeztEbSq93trPnmJR26uBwNbU8ZM+1WS3wN9gP z2I(q^njh%DZb!$3eTTO`oMrug*mqCsu3d*ded*yFx24&_m)$+Az(L-^93HP8rU@n0 zK?p1onaLUu%`m4XNi3eVHpRm@JJ)V+*P$1>1fW9Uc`NSY3rpa(NF|IwTzJjp!vAU+ zOu{T@3cn$)Pucaou?Mc4@j9tPX_@3Y4QG;9XHcr5MoWa0KQ!-Wwfeo@3iP1d{!V1J zE{ML@Z7w=J(DL&v>v<}iv0eK^{grsx6G{BsI&IzqL)*XFsuq}MumQDU^DFzU%^Fj? zckR1aLGO)!>Z~qH+Sm2*fOTo>n>e5v42>#!d6E;3E#SaBrzY=z<|Ld{LvQ6_{IN@} zo_SpOJL0Y3G^D^lP7|EQZ=rJ^+y4Uiv$&XAoTTgSTko5HB;Gye?u%~k*t{^y_WjxP z%zWtP*1z3&&w~EbbALSJm&tp=v{hCxi+EFZ-V@KwZN?onnvHW-%ziCCF>CSf=6ZEz z!P9Tt^@@$Na@yJ)IQHar*T^D+MR+-&6yZ`D>^X$$kWctxe@Qsb;TkWL_$~VgFD{aT zv2goK*WR?qk0IX?ueZb#LR7Wq#vE#0Jd7nr^G_*gT@kvHM$kX|f3nLpD5~>}<1D)_ zUP#h@i0yRxsncnvV<&Z{W2e)ZrmaRG@zNL@iI>qZW^5dbPNqq{Bx-D8ybK}4cnM$# z)@YM>!-^7hciH;|Sr)KX)SwUy0TEbs&*eSmecyBXJny>@I{mONdpu|NJm-0y|Nr;L zPX@KxFz!r{k5z%ykW!VNT~DDJ`llGZwopH{h0;w8ZmsB+`RQv|4f8drGWX@SO74en zOU$xZ3iKj7T~)MPDX?&b!mxxgBiAapejwkn8V+qURma`8oh5S{yD$ei6=4U+SI}`4 zrIn(zO3?g@Cg6TyL16g^{)I|zC9#|jCz>PH=)q=g_Z905BbBfK=IE?UiSEIwFG>D=5RC=^n?Ooe>fBjg?;cI@J0g7QLo?U^LRpG?)#2E z==C?pLjGp&Rc|=pkL0k1*NqD}+lQrgZD#iUl8j{)Dsy{nI`7WDcNyKk-)(F;aqPL1 zjM+0SMk5yu9TSa0RD#(J)xv@#rs+UWhJvhu!3qWyut=4(?NY$zH36AQ*2+QqR8==J zxOxz5X5fI1!P1RjYk?`VdUmYqz=9twJ?QoBdonSijw+e4w4PB(MnTC+t7(*>;r>yW zgzt|H4-P3q10y5D!{A>7nbF~qk+d>&T|zK-R8K^SO2u|-8-R*dQ;QesOTJ{^%u^2T zH`%Ml+@Ug)wJ*<_;Ag=mQ+LbkKy;Zk@seDh!aNQ(MQ}3ga+w%`kAe-2#nbv|XvvMEv?j?NZ zL4IsKiF2T7u{#RG81pwchwZc?i9g55?AhrfGrW{kZeWj$P?&9rLN5&(q=_D zu-VW$EL6!xixxe)z4_fA|MZDf55<+*r28I&WsjfAQo8=%oYnuaq?)?<`O=LWZi2?-N3RI2l2ve_ z*-m`?Y`h&P!%j>B2;llSwW`{&QhyDoBszj`JKnIYoR$Q$}sK6z9;~;*AB$xjDaB zJD5>T3G74wAIkx(z+G7r^n}1*IeMX_X}UiU&oHnn%Vl*{P@#CX{g^fI#@GD*#m_nb zIPj1Kb=-Og?;LT0Tkbo$ZPbNm2IFMylVxuxJ@(<-#Jyuo_ljxRrFj2LG2J7#Z2cwtHs2@NS*-=`ikE`*M&QM z1cck}TTuV;${}WC_z!7(9fMZc*e<&Dl-XQb^~t7B7&lD@XR^l|uS54Jl9k3-Z^M#y zi*~K+6O|qLpLSLW9CY*GB`8fiS=kU7;j(y3nv?`0L#QA^JkQLXV}b73@N%n4|1-sJ zs?$&oMCrLkIaP=vpos*ZivjO>Fo2Fe4q(eu7d=-RE;L@gaHXli)A(uQxf2adDc)0R znC~}*mX~dwGZ0%fx^k39{|>bbZDjQDI|gG0zg)KR2yfW4Ygg45^wPSQ>R4p`i@T^X z_+kgN^RojPgpYdm|AiKCp9fu)NUqHn{3l6QlQjPTK8^|s9EF3fn%~TeXKghEcBtC2LkLdg|H5r6om6=P$_)F4X&0 zbQj$)KAOEVQpUH}vp3Gb|$*#BG8N&CYb_M1t}K_C;zCf`>3|2rnb8F zNNsi9p}G$a*B(C2y63Om)Rb6GN!#qdMc2{fl3T?pkjOthl$t}nkC%S#E!q6aEB@2( zP`dM9XO?bzwLDt$+@5xLHduK6=+jmP>aCwVx%>mDJ7Z6eH)60PQapk5L_evRG)!TV zio`%G*gr5;@N3b1)vYCe|4b8JVZ%bYzzBq>qC65}=p2+qHWieom*0aublQkgARZ_v zg{EbXl$xA&Kd-Xj?Cr7jjQ+X2o|z`SaDuT6<*aH)pd8-#sl688(Qxr)6GoSQ)42M9 z&DM59Vg0MDEK2Z)lSb9SE4rbu$AjlF5z5qpb!Z|}%Id&$i9D|2%wo?KkP?m~tP?H_ z1y}C}NT2A;cyaD&sDoSnuwqPCAJIgEQL~8nVxY_n#)mv2C)*+p11B1NloJ=6*~9K) zhJ)(A$L(I&A1ANa$mVAq`ZF?_zRyQjz910z{{dpy0 zyDy9_tM%^guky8)rypKeb7t7GeA`5Sk6DxYODp+Z+k~H^Ak!_UbwFQGlJS6wmS~H4Ovzzfmg3;0*v;TDU(H6$iCl7u>IwFjFzNAAZ z>aLP_&GDP$?#biF?{IbN)iK-2j!xcN2j7ETo}Osbgsu|I2$tX}*hDTIq!3#taRu%l zP12!D*T+`k6u5Oc`nb`UA1u5QGU_x=AUt&D9*0-NroC4+*hB+0jQGf!2 zSDwKLHyj9;;2L^flMgoZ#;tK!CSALShmCCPE z#4G~Ll3;L=khtvFl~hRCA5E59(YFJvmG`Q+3N(Zp@(sc9YY> z)kH*x;=-pXmN8!*i_qgdcttGEU8CLPS_C2-ifvr~7x-ufP6>_?3n#IdV02Ll1s6ya z+f))Ad)QRXAPUQa{nX(0DlthW$o$g)PLVSMib>k69ES^)75d9wMaC2DXIqbDt*HSr zEVM~?QP0qWV6w$u8V4xg@dQ!Rk8`;}a)s((JtF#cxlJXXE5A+Y3sIn?lU8b6bp*qv z2ZhMHC{PT}24h>Y-o+gcP8=5iQ&>+1TMz3w3IOaR0Ht$+oTa|P<1f%R%1K1A_)&`! zZ5SM#OuSGuWN;csDALx5O?%hDEn|>+R>pMO;j9hy2APIQL}`Oz(Zmxxe@IO8@JIk5 zH{h=RifWLqI!g%yN*7F#3n!QlAeGFiZ2-XDm&xY`D+Sz6S8UCykLdztldt7O{fL;u zVbgR0l40q0<3zF>2Wcgzbe=)=4R%o~b(&)s0bI5UER@l$fHKPdA;bfoBoHbd=0{jq zPn&YquDuE;a{vSUl1F>MhT%rjM=!5n`6Zy5FuosGG<#X339A$4K`Q5m6ZoOk(;0@ zaBM+sfx7t4c7$(Y62_qhjdP9$b<&3nu)AkbX@x&2P=v)M)!0}IE|B2re}SV3r}%(u zdX3oz92lzUw)($s*fx!EGeV&=6Rjd418nnWWbSo+jHX z9SnjdI%-5|h8wDA;ljf4`~NthngczJjsJM_eRKw|VD&-NfhQ@p701yDkWN8E9Ma41 zpz_r^Uk6fk07l`X{RO{mbhVf1R&W2;yT$J0wtf5FV^KBuhXc9o(t%mI59EZnYF0A_ zxDX)3Oo{@K;5H2h0##IU$NnCV_cS)eZmxLy7|}uoVHOZtX8FKSh*=as9>9C7eRzR* zgysH(7v-C|xb!g?q)heuHmCJHap{k)^Wnv)+*R#L7u<%{i|&--^e{3(xKv=00zkFDYg}B0GNye~aXmcnM86Nw@Vd7Het9-n9M!$4v!HV0;l1M$c`Yz;uy_ z#6d)O2K)rkR@USF2bKKt zP;_?lq2u2q;Fvon?{!xkX=`q}b?auwoz9Nlp3b{ny+ZhZ)%Bpe zyX$7};CJoc^*rkB>%PVOg)>OV$Ty3aXtOx zxHav@;b@anPuavQdqKhj<}?nvBt&8oYtV=MZ$|wkA8#m^o$!|4-Y32ObzCWLBFob5 zilOWyN*>6LK78lo#T|bISGIGe_2!wQtu6I8+FF~MT4MFJv9`8YZEb5q^R?^O8(SKi znwwhdYFn@S#_0yqO!8ANA#;kws=okU$)zXG%t zUJ^u1(Uw$2fIAN>SQ=Lk32492>DkjZlgIQsAV!WYg$Esg0`^gzPCTti`5Xqxph;c-< z<(VC9d@1@9CCs*uB654c-=^x6PG*ZeaMw~@zIENM7w(xIQjUDE@%=ujayD%(b)xS5 z-~4*VeOM3~y1mE@IYT-1fU47gR#3!H@RvvX|NA!TF&>MJ)t&mq#%0U)gRc&W2ze%o zBb@vw8Yo=wvphoHIMo)8?K=-QC&`5`;*g@WOi}Qk)++468yIYrswD^~{9?+3lN_5* z)o`KdmW4qAKup8ACC?DF$Z^>UN^2(EV6zwDim)Cu?fm)L*FQ@zOcEi1YZO+9#MJ;Q zyMS)Ty(Pxc$cv;Hxxq$=$i04=xR(bNGI5JifpJ74Y{U5?egbg$5@7^W2&1tM_fsT1 z+}y{~Z`5qaT7DcT=h8P2aNsiVG%im=40!hl4-GY7GnLN6pqS*~=VaE@e~JZy@wkaw zWRt?^ZV<^7t&cQjED6@cHYZj*Zl^tO{&dxrG3+88jF z!xtW$Rr3^dpYV*#WPm_=XqNuygSXZWa8krnM)X}2TtO^$Akx4qg>17+r@)GsS^{zh zCUV$ER~S^M#0vmXK(4?4lbWSA)8NCD!kjpc07jmLMzDU+3%>y%Bq`jU$kBsUQtYe1m zEce?TWH(co5N2D_UnVF|YU<5@>8|qMsID{W8QWvbR!T$qOVmH15fM^;YSfC5fWa(H zAf%NbDW#!_R8&<-163m#nifP$5w*d~*yClq5}Tx;R8^aRje!uV5Q5{d#0G=GY~JR* zd*3qe-q-JZ_sy7AisZ5Ex6F6$x1Dnw?#@}1zwwP5UbE;*$dq0}WuT-v%p*28TV;nJ<3Py zdQP_Hy+dGzQC~@+?6lqKOSoNlMS3CkI$FC3OP={cMbx0o2Qxv)X1PBt{~3CY;*^*& zI3g5tZIQ8TEM;_{<1(GmBZhp6@SP}>?-=hI>UeWr2LxsoOZ8xydlKEs=)mPUbRM`Q zVt{XeR{UXk*>Q>7c@hLo6A+;*l@{d-?C0q`I0aU94L;r;j4xNdc_O^)-=YOt|yZ-&M}rhM-%{pCE; zLOGWj^Z&rqs=w$o1#|sqAH^5}EUD%(BLM83WPZC-@~F{DgkAMq*~fwj-y_Wfp6lOcUr6%n~@{pPL+z{Pf6 z?3$`A6=R70oP~)2ThcC3yj(HI+MS{rY+SMK*d^+GLY<(*gU9d|VKGf-GAp4R>wevT>LDwvz?sd2AZ(j<56!7DUCw=;MRbfJ zba`xkeZDpROoWusZ*JeW<-F42+~C;e{cAgvcw@)zm+gcKRmBUV+Q-l~y9gT-q^si6 zGJNMy?@-C63E+-r%X|7yTUiD(3qBB)qAbpq9@{j)nSl7@F(EyU4HCN%7(_Ciw*$L? z$lWj*^t>Jb(JM#Qsh7mDS6uI{o`ec&-}v!}3c>~CV6HZBRY(sI3IR5tpn|dhi8BwG zupu^VOud#1$w|36Aqx_x=GV?+c!IRDl!Hsx?mgLec0xc=$oX{FhSCrgzfdY7UrF7H zZRoL>(C&PP-3^Nk&oN$Pfopt$WV7KqMidn(J3V6?_u!Pb-qhjMRW6;$7Chty6+{-+CI5svsb?4#zsd4K; zX3Dmvgf%^F%X?M^O)x2}jQijosGiCIG5Ca-nzZEf6kYIy^UI|#o$TxDJ)f~DZPtVZ z!lWEXZO17Y36Y^u^k}7gC+mU9T-)}zhBzOItS2Os1GgA^Lx)F4kOy?W4$M)rjVgcC zeK_jC&LI4%Y>JLLz4UhAJv(@4PoNv#PK>-dEXqcypf68;^zW7f-Cf=9r;m4cAMN=2 z(bSRl_Rb^Stz8}6UGH@^w)Hf1raRl(n_F5s8=Bj?+G^Wcn;Kg>(&^ULx>QT5D%I3f z*N|*Dm})qjs;#T8JD95Z>(76?U3>r(YiRn?u1jn#*0>*|_Y+M1d=s#586@?cYA zYfZW~{ed~FR_U3uzKgSt{!WDhMBV!B+gES9?1u?;p~H17 zsYD?}n06BAT1>8hETSLKB2=ezo}&M3nkDK+++x)y1q~y0=FQbV+I8~8#~<}qFMg_( zZU`4IXENF@;?AW>HYm4=Fx7)_k^X8WwK z;CiEJ{1(e2k5#`X#MhCE_L@~r#=c{Pi;}B1ZMoq$uk*8C{$%sovnu%gFIMk%vF)s9 z#*`l})EBy0VY*OjMk58#DzH+dTEN&OdYKS2&O%}LyjZ^fOz+^Q)l0s=WXq(0WGa>x zRZVE-8;`waQBLi%24=Z?jV*7X-;`erdKZyJp`IEcikP3(T4k@vka*(Ogx1A6B;Fv- z{T|s9tUhVhjAJ~d%$uEn`3piSMp~1u5W%{}aAGBYS6*MbaZ~TPL3`r2PcGg(8QC1F zlNHK1lQMHK5W6s~1hz~idPxV%>#5;NylW) z#hATI610)YWsu6R2e6QWVfHegH5;kUY=H9m@SmJdW?NUYw}B!=J{P)}ykkEo-_iH! zG#(nCM1#}bGm^!%S*t>X&Gwio&_mGr0COcbQl=NbLdyIBg0vUu`nJB@Cfr;dBUy^z z7#K4PoV5bh1SotcV|Zo(ErqSC*7csbFThaLY;?;m0C-LUBl0cEQi&lc*T<-kK);@| zm`(ZNI4~4u!qW4dCM`%Y4Hoft5sQn!2vGXU0t^8mGS?N6W5vqlUH$jD$Z>j^ZVQI# zq7;)9z0l>96p&DYr6Qqpg?m5l!r?ZA1=sHzNt-W{PiA>M1WEDtD$Yy{nRo0!yW>T6LF<1%iETlpi zn@Z)F<9HF3vU6jM)UhdQUCh&89>MrokLO0NvJjN(<+}prvD6HY!B{G7d*H1ND~?>3 zEC}TcNcAX0<(0D3ml+n;39~^NpoX&5Y%>!K@2Y{v`_#aT2YXoC7whv~tj1{kva$#( zna*8cE7PdTXjoz~f!3KT2;B64_N`q1t7}3Aq6o@@l`Q#5VN{fMV5$_I)6NKDGLPSP zTz-spCwQ||Mn(m#QS4fdb0z9(KdEOR9w3OBu;|or7YO5Qfr=$#^r=q((%2BN6_}Sr z_&k8T_}=p6>rY#B9dr!+jeziBkD?@YaKRCU02#O@0z2COL5KwxZ6%P>OpVon+tiRg zd!!5RbE=VhDgpTlCmZ=cfI^wg*N6WlyUJp#xX!SBeSM9wL69h<>h{!!N+oTjRDI|J zDwH+G1V~CyNh6v@Emc(1sHh69C`}b91Oi528!vY?HnyQoaRjB%5LU+t5s1bRT(hJ} zj7f}Qh+pC!UK%lOEs599a-1~ zmxOdj%pj$)ue~&HZS9$^wZ9xO>g@BdCNQ83NxL9|(3A=?1&o>~9mM4mWjID$;##y! z0xMKI`l)IGbu{r&y9cA;&N2~0dgxgo6M1v6DHM*wxqygp~LxbAR#HAWQZ{_(MtrX2%hG|Nqubh+(@(VA#R`y z*gP;a$FMs+-kF04bFX62^Zz`(;rmbgpxJhevEdx*&crDZZQ%O@-rZuBLBhjD<8i?- zOP)u1RrE#J{H&Usvt7VesxEa%kKLYv#?wK*;dLG`^E0GUJ;L>H^JA|pUfpxy#kt>p z@(?W@G##TCNTzjR`WLbQE1m!wi@|*~U_u6TeS9^ikel}x04h`GkGc$qZxl^CJAydN zGsvIzQV=T7=&}Q5a3ZM8&Qm;A3LODxxU7O3F3#?6bF#2%}D% zaEn`~7~9zXNoMo5D`qzJ;W6LiPZqo5AL4f6OPkp(7baVBvSgg)*6vk5-U>=QdDJlm zf$9nam0%x8j)O?rrYtEizzj{=P%Tq{I8MC5iZ$9Yg(5epRj}**f1=X^QF=K(n z^=Q8A>=bl+dA{`fC#an~!)_5PAQMl4ry$}Mb+UlEHBFqWT(tJS0Ih(9T(b@!f`GpJ z`~}`9koTyOhFHg+>ZhhCBwMJ2KK-7gX_VX*N*J`mrs07*g!xe-;o3thE1tauQ&i%y z9|F zCfKBVr1qbag|)=k>y=CY5jc|BIFcUZGN2`MWZbfjbUGv)MbsQ#r9uy7Arz%@oDy)~ zh>PO-LHi__LcJZ*90W>fMf9W;WeF7vbXXKpw9v%v34QW3hzgI5N9h6jpx}Bb-pqog zjONE`7B8=3pT*h18926{t`>(eXXFWvoh}9%NiF2E705i?dB9DLiE*hOX`9?R zDxOV{j&0mh^u|r#|KzlsReeQ0izxqob(O;n+#^ZcFhuzxiT~X@5)SJ zkBK{H&Td`2=GM{ zx-);$U(|t8W>;d(o5sR9Ef4u4x@Z6Ig7D&M8jW)InSM32+)nNB{LPs}Kw7)IhVD5% zP~NHI(#g{~T0TZRz!`^E#FOm6A)ci?l(5bO;2X36mPJO@xzlxW$HK*{Z;jaqa28y) z1*xHn&LCIFdj_Z|-84`P?U-wSRlsTZ7$tVKuEPgQkNCl7Dw}I+Or;uFP{2ok`WFYw8*@sr~6w z=C;afnWFVOtuWEIRfRpzdUV-*MLrx}dS_cI&{fq5?Oj`YM$u(UvqLfl+E`Nm%vN$o&=+H6vKmBI?Ct#9Oqx;nqr}`H4 zbx!^lzJKHu-@U7YH9e|pO|bvZp1-Lxp?Y8FA_DZODl^~x0GdY1Y1m!6k9sm%QK+Ab z@q(NBy2+R(vH-)EM^~;}Sl==KJKud7GY$fS*Qd8Wj%5{W#<1gNLVua2# z*D+6^j~3&dcupv1(`DJuL@dEf9CL6_GUOv{$WtMP7i2U?Z>h@ts@tpjxvx8ao%_v^ z;LgTO^>6PdM%Mf(eK6~JZf7)&-b0Bl&Bh*}WSKtyx2tz?PqbC{NBvz6!dXMiGMh-a` zYMtalwNqOpqNJChQswv-5PaqPia-axRs{iRraICirA_cdk9?%`P$}uLBoh!B`7mTF zLA4jN$GUect*pFi+h44EZoqx`262uqGP(t3!G&Egx6rcOF}Lu*s-&m50mz>36m#r8 z7}uB{Y58z+@oysSb`V5o6j{c1i&<7AVuDAJ)Urn}y|!k_3m2(0cZanzZe|IsU1Zq~ zYhnq96p4u}5OG$1$Oe zefa+|-Ro+osQB3hQk4lfmbPQAv4>Dj$$W%I8z2Ry?83MW>6*plKuI`mM2bFecnXeK z@CLcFu`u?x9;$7gj)F>gWCBa9{_d?SpZe*inimj`v zd=_!0&=G(l@I=6wly6Laz#tjsPQal9gu~wSlgJL1Z=l4aY4%W;s*r_fe`?KzQ|P|O!(;eE!4-vVcZdx5nr^h^{Cc=!XSNQzG)kJsO+ z3_rxwZZ1P<&~jC>gOS5*dd&cdvM)crJJhv#e&x!;j^)ur!oX>JI?b#wqzqzZa2zJ2 zTWGt}_&*R2yhe?QGn;B>X5^*}@d^QCrJ!rNtLTX=!XO59Dz+kZsE24IF>d9YZ}BRa zEP!*M61HvKKKtJPn6CEcD9bCH-6R_zP}&)5JJbFH{iXe(?R19D&>z&cc6yPHI-r!| zSV1mzYLP)G6sWqnY_hw_-a=w921p?;l#D#g{Ln~l+08k)77!ss!1Oge#V$?e*TU3t% z-46;OWI(PiQRLnzUlh$*WvdJEE@1+U${H1lr&tiGXVkI$-Z9HTT^7Nb_Z%2ylmdv> z(4-h3_zCi zsyaO;*4Xz9UG_+Z)9T3}$rlIwpf*v$K?NT_#a${ZM5qQU_K!j3Pm_jQ3X#iQx_Eru zKoO&ykW~JV zn5C(12q(_CiK(~JeA{t|h|3q*xN%3}02wMl8A(M@=p>{nsPVDT zZG?_WObH!L&?NCgrXqn5pfhO*l8LHF-~jkKQBpwJr~{yF4*_>E%o%h7PF<)glfBD+ z_|xa-LE+@8KYJ>PrQSm$zD)s3}zSQh?Ip= zl_Dof3M$v~cbxPXIq$+$q16dQe8$Y{Smzn62Ci35Z5W045@ezkNac!4@0C)v!3Bb= zGV~^@2xM0v6jdUeptXyMT&SScai@T9oGTTu`ZgI*CE|0Y1OZ{pV4R7ntEq4mg_;FH zG465}US6O3$<;BV-5F zkr8S+fIS>z<1s2Kk1|u}3smYPiB6Es-~g|x5u4g7P6o>3npcr*Rzd0m>&|I{Fg(Ru zu03ZR@#{@>P+%%~a~cGAPREik9BFIn!WCHn+*DhZoJRM^X*Z^n zqnb7_Yrt0n_a!DqW>cN0IR@yJCf$x8iAKsB9$1973v>#WEQR8jqXmX9xZ%2g5W-an z9Vlna0974Mg32XO(!n6e0FY(Wm}!WaAb{`$rab~IS(Lq_MsHN-T&o~-PHUc`BGY(@ z+p$XVs%cWJ!lup|^g+tIa*Q)rna6a8hUT+Ax1pKtny`K1>MO7HngXQ1Xii$XD}Vun zz#boIb-Wu?MPLYax(e~TP!}O-Vl7c|$$QgfzlF+QtgxgKV=2O>~vA5Otp^K?aS2f38-M z#i%?{o^Wbj9wh|?l|teKzN-e2y-*Pus4Y2Z-ONS?1jJ%T~p?BMFEup zsqw8`5xi6kU>&uflLiyyD8M2kc&VZgYgxFsN`r(2!p=h3;y|VWxjsUCjW?xWeM7C$S-TMTl2!?7x&WrJI-}Z@6#&zl42aD`)nWPr7?I2BML=U}Go{ zX>1M#1C8;9=K4f19P~Ff27_ULLrpkX7pw`y!--h^i;aO$W4I|CsSkyk{o(rBJ<(_) z9*@2g2`A$9u|!MVo=7az7_4il-_-DS{LTI0SUl3YKUTZ1HXKPbwKTOx_O&ff)CZ%{ zmRNg3B-9>i4krRJf6(6)3^a$~z^0}EJd89oy&Gz64K+st(S}60Edd8M`9q;dpw^TS za_zEvM-MurSDk)gf3yv}`o3VIgXkXbTr;736+_A~_}~z;KPY)DK&7Clg?(xU1uyVY zA)m|Va(O6|oKncr?;;Eo3YmO5lh3P}_UT-)kj)oUsVq&+p@Zb?A zVKM8a#j22tiy>GXbYjww%RpmNIU-9k6sS{Ndu!^Iu2((rCYg zzBk-q&sfidT?94(oA?wE9)nK-Ev6{vObEuyL=ur5#vx5?u~0t7Ck5MtkO^+ns~p~8 z*b7gS@WqCOI3J&tSwdWq(&y9Cu}3CA2UiJpWp8j&hzGWhrP^yQTTIy1EY;I;p0Sam zq0Ryv&a4X!$BN9Z78g5C8Wx0X@VbeIS6b8E2j^kM5^fbwe4ucfXHIs_!TA;J*2x*L zx7r&17(T7^e}+vsnLzeRDImunAYcO<+i<1xXt$zR228&x$&(~RG$@p`PZ#^HuJ)pvCnx5 z+}gc%_lipphU(L6_da>a8ebLJu)!Q4L3;h7tBF0gdMF-N(-Fa5>f_UP6~F$pX0_Fz zdjl&C>r`AY#wXXAWXkr7EdRtkh^_VaZgcF(jFn#hmu-wp>8v%`o&#vgi9ehA_M_~L zINTkqs^T|(Gi&y21P>OAwfC(LUgFW?mbz+q03q*ssTPL2oVe^b!r4C#L0lFHer&5L z-roW@zvRU0ObomZ31FQLP+a(5`x#&RF|!$8ImpysUN?6fZhlMNP{&ar;(l%~ZfN4X zCh_I+aN9=~OWWV!J+E49UQd zPHkfLzqf)h)xCST{rP&^Hiw>@O@b-w207n+8ZwcszRbnyp@x@7{k!L6T)J$#YbVAf z7_&uu=lJj9U0ZkQV2k*03uAX5hgCfJ7`Ky8%sl+twlxVRZTX_VWXqJ3F`~Oy=Nr#} zE#DP4|IdE4Mn_d$;XMh06|@M2D1?f2+1mDx{n2HAv}^gJ4Fy*h<)M`&RKuf&r9ya! zJd{_UP~K1x3kgXknVCCt=atDMAtWJ&kjDfPkU|Y1Ey9vVkwhpaWbQfl-hSuIBcUaT zHcIX4+BtLfJ!il7KKq=!s_EY4I2F8Zo^CX*}k(z7S;^UvFSX2t!M>%Rx^FW&hulmu2W-}h)nq$t{t0zlo>b1XpEj>*IGtCoI=1(}N9iO>=+0sviDG5gF;gFe)S`sIzRQ{jKIOFHcZy>^qYb>mz zecj764HMIJbSQ1$4Q}GrGj&Z1<4Bmy!lenrb=LkV*I5^Ok#YShGfbwPVw_(whv{dI zbfSGPCO`#7K+0jIODR&WRgX z!@@sAbsDAw*?9+;;un9HMMDJ_OfdS%?NCHlW8B;0W$_EZI30>FpNuY-nU)g`A#*R( z!LUjs)2R`oDQ#j1FM2#NUj#}G-Do{OkMn|Ox^j}mq9U;)X!hR}pvOarAl$qNyj z42yiUz;azKB+7mLL7_}=NNJibc}N$*hM~+9T*f`(iBozh9^;EnPq3gc=nDD+O3Xspk1yR$sug!sT{3+}T09;&i$FzI??W@H+!`uRGxKxJrXcFj(MI zoE1T(&|jnmN*$_O&D-ZF_4{3gO0m~h>MQfR$_s)4f1ubCC~!O6`NfK&`n+nPz0g)z zVD+eqGf%ZST`o1tZS^=5hs~dbQ$IIKP;SFzcxibKuG$+zVyxelMr zYTfH| znM}L<(UE8{4U$D9x#VmZ_d}S5`$5Qu0MR27!zSvMB?_4)ipgY8q53r@9`O)@i}ZRY zW3q5%fomG-S(AD+9@fRl!HLtwv4Ux$HW{mr`nC$k8BIZ#^~Z!CaIaGs*CBg~CDNuW zf+E(%gz<0zO(rqYod%lGP>4YA2#t`(jRBGPm}XdV55O0bhgJ4TT?Rm&2s7Feg@{CX zWMP95id!i_oP*E8v&^qEmLsa{j=pZi-7{7>h~=&DyYFK+_Afcqd%ef9Nuth^mvcMWy|Qrhq>Ul4j#K zjb6mc19Tr?CRXOtT*z4}A)Q{49Le+qBnkOTq^!lje@;Ka&NzAjS{BCjh&iI=7c`ZA zOVa_Vfa%aSot}^Gy+-puxqy~oET^}?xgfeTo#sH=JdF8RONT8f^!<1oZiXR%_?Km| z+eemW-%BO+TefIz`v$B7HzUs-$-*hjyX@){z@_?4@j}IhXd( zA89juT?5-Pu#-dE=@PY58+}A)u&aRf9a=#<;6WDcA{G2|0U5Lr>+jN9S_M24eC6b) z59wq2gs#weDu7NqXuXiU3bX;L0Pmm320go>#{nz=33l2-Rp4!gogdLTP#vH{R7cyS zHY@D(k_U2f;KeRrS)kodO@M>cNM|Vo>?pKeq97fklhi>i^mlmPMJ<;8u;)BH$cOc- zrJWn#-Bwt!2Xa-63-Gj^%D|fid$!Q;LA9P%!eE8eTAtFH+)ghCCCjSWW+H`LWsR#faS zF7m1Q`PsX7y}fPYx{TG!mMoe-cXry0m!?g5_SuOOCj9!DvE#;$9W#cfj2b&`+&}rQ zvZyGpBn(YA%b4lt%sF%BoJ{6z=3yS^abEK_CnrwCI3{B&CMaP+!hV)02}O?j}Ee71??~7!ANNJyL}9wnima{IZ=E_ z9+Z)mknB$Rh9bu6QFyN?5Efv3Ce+oVeLCWtxeyK0|DY891F!=5`}|NQ+~qoXjK$% z3}56l7Uh|lUg-hD3eG~Yt2E<7A>4?TTlzLaVNmy@g~E5#Ebe8V2vJOj4&bARQ?STv z6V#^tEY!pRJO;!gp*rm~G)$)7GQ*Ygo9g(AQh@O~vqA-v3N*4Za`ulRhW9o>gi475 zFok2n3U$vgk{~|>S`hH2`S>|1!c2s{mOTpN;3h7!+_qKK$PzamH;XeADGrc6MnEy? z0gWN3p|eMT$!`Mxp}qlJtb{Ahvs_{KDg^#H1kT9BiNOA( zs)T9ALe4A9;2%{*m!R7)Gb$2(SD|ub+)y`Fnsa9Gx4t0gl6U*88GCy+h|NlaO3m1U z=^*B%OrX*ifxa~^Q6NgMpnT`WW;lLi4))P<{3$*taUNVwsd&Z=$Mw&_KBN4dj)1%8 zU`1FdIE7J@!Xz zP@&;Iv*=e17%8e{0d5vq7{_dr#P*=Ge@5qX$1O2>s7+_O!Xtzf%)KFjYy;o@yf6y) zm^gO--?!kdZ+bf-Y?R0-XQ2+tCV8nS3^K8h|5wD*4`Xt+uv3iCqfst_>hUA*rcPv4 z2i$T@S;UnW6Xa|dc`TJd0UBw-2$Z{J#m|{4Iz=qkFK@}|VzLp(=xt}AUBp4d^2HS( z84&I{5_h@qYEq)(4(lf9fg^KyleB1&d-H*%HvmqhtlK=RYt!rM%@l*%stO%5s`y^S zai~jcuXRkzW3Usevvqll$q)KnD_aD&3sC?5KtE6gPn~MbcIXzrW9hfqjn6gOiJ#f6 zHzs?Xi9?W91HCCrt}zn{br@}9uOty@&%6e(=|0LKt9$o;kR)vz5%P;b`l{Uly#6Sm ztYs^cBr8X_EAa=}nN z8f!CzDEyL){^BOQCLmYoW2=i9mmyz-+p0B|dXEx`>?+Fv4jshOyjs(@R{^s#eDS_t zuP%Y{uMYZ=Sl(qRPqa?Qw5un;j^(Mte;a=K*I9P3fTo{Rx_<-VG|to-8ZiwTsK^+s z|L_%lSp(?WpY8NAqQS|37FId>vC#gpu4f*pUw<2REGa80cXx~5!`U5&KRXWJFL{E! z8UNmLOoNQ9L&=jkUYwM31*lSm@myb)v@-E(@HkrW+Rd$?XWvFWH+SFGr}&86I98h1 zgS^>(5pn9_+!&t@Q!S)}w%6X7F^Uj-QGWih;gMKi^*JY>(GlaoRs8jy zen#nTgDYD$x0B4uw9BbU_Vc=)zhcd<32^2)R-e{ogrBD-E`KCXf$nV|Z@Q+jT1R50 z2XB3}VOeu{go(BlB+6HdZe3dbt~_lO7cq9@x0#RHItN`wzjncb?ZIE zimgdKBleUws2-ZwTfr)~2RxgeN!Fb;T75EgagJrX1C0*F`QZ!ys_Qs3qn9NE3ul!d zghNYodDyD2n4Wi2vc`RL1_GZp%P-RyeO(uoC|mhafvFFP6E5usZZ9mSQ?tq|a4~I4 z+tJZ2euGQLxOdsO^nUgQfb`CrpQ0!%kXBY_01nOMYRd~(kK+AA(nLXM}^!StH7`*unP<7XbkkGd!&G3^2{ zN9)C8AM<>TsfE{d~+7)?DLR!2|L zf4h?22=YMubP-do9Fvp__h04kuS!M+^OtLz$P0AL;sWtM!mG3?sw|0$HaglP>O{=P zp5HS)9o>w6rd=ZB1?;aEFG*0g$Rw^>_Qi7y?bxo zH<_=DZk*_d`A}QbdwFi=%RG6G;yEPYEB+)K2`Q%v=C9`AUy+rHsJ)G8a;IT2{rwvI zBxG!XSg`##XlI6uQrHN1sBm>(n#K5jVm0WYz}?>31G+m3tFN%IMqTv!#Q8Z9)5gYq zp1hse#>aYm(7ETa-<~<92zH4%Xc&8oJS`Yq1B>4*elZC zfcYNh9Xj2t5akU*OvWVG^e8;-PJB%Tm>VOr8t`2Iko;+O?Y3O5Se0TXuX;_2?aJbh z9Qx~;p0uvR7qH06rriyIt=~}aZZ0q|t3$*A@~BWWO2A5w;Kd5+S-j;SP+waKXeVDV zrYX1r^%!WEq7ETxYgUQxFor5fdZ0Ii*Mx?ActEz{%W~WQDxM*{g2FTW96@~q@&J&E zwlE#W1N8ucj1pC;pmF3u!jM*=S_BKl97K9Txl8*H2^U)u&xFh@&=4?w1nFCo?I_jp zY+_WC`3y5UCAoPQ6XYoR@eZ@XVES`%*5h40!`d{%#%rK%z_A}M%6f+?2r0HBHlrJ8 z$VF>p1Zo{RUblA`ZW7rN?-eve8ltlhbN&Xl1J8L5XrwIl=bc`I=s)X{v@3pc{lUI; z-(EyETM8)4bekv4%hN0_@Q4IP079AN7uzn25{^Mtu>|LPZ;phl>F zvDgxb+|_$7Q4*OICvWy&A@L8deO7uenV4g*;@80Drj&VyckBxa1*Rxr%|xNFo1=GN zmd3vyukeh!bZD&WR!O#ku&uEmLc3_pUj-tu)K_6m*-$tW!vW<{K#lLw0o-$#ghu&o zF8uq(>`k&P5nE)Z*Ky@bSS;6_%pHQ=iKtw(Q!IRzdJmvluhE>Wi_w{|!fMeW6_W2! zwzcs9$7^$h+;FfR=0=}|aos5Pz1^tf-uE{soJkkYXtJ z#sbwPvp{+8Y$DVnGNNAc>QtgRIr|2g5~uBUhN_kn;Ug1iI8AA=`=L;Pu2_8Xcf6qAB2JU7OQ1xWk&dnNo(Wa z)_Ws%jp?w~vP+Wq>=;frEfU%$0^vX&#TRv_B$lC<#p+tAsK_+=BjjQHTg4d%d5Gvo zO5^`AYk&3&wK^dEXleu>rkNwXS#h*Ys=(ihMX-sZj1yhbJ5mxbRD?qPS_)(#tU5R2 zAF3786#5@wwlXm6WTZ{|& zzAilyCVcEO%*g2GfX+Vxqk$2JHj|t`bIzpigBq`C5;9Z%P8giuyw%~~ff5FpvM_Ek z<38iO`MX$rKt~|w=4$hqJ)GlHKV4WGbTctslPS1WRd=JDs`dj|%gvB-JMHYJRssYI}>8=1r(7 z(;8DNrJUK1qhwW0d0IS-Og4b5xrK-0+p&Yg9-Kr!PAR;ImIO0ktH7=&Zw=h6h~OH3 zO>yqkO0qn+OhRbgn5$F=uZxBPCGL?$k6B={ut>#ONFbl{xoH4+l!$G`bJF`uFU@KB zyhXg0YnYD&S>!!Mew{gX7 z2uvU=uVxDXQJR9cC4sM!ODFjT0%M=c#9Q>e)avC?z_G_EUMsTz;j#>yr@*Z z-`~Mv>Y|wj} zzp7j5KdYiQQD;PLlbYVa$(s!H?H>>vW{ZJ64CJdovqvag28bgx+jER87bzSv7^o|x zJOYHH88N!tiaxDi-`xHAsF&>fmamy4rXC^+q3i@4kQ7xFRw{O|3Wtb;G?^fF#X$}2 zFSO@WGKgcEs##`qK4k6HE$WPwWiIeTS=gBV9iwg*F?f3eSO!&jsEr18w8=JO{PAleNHcp$`82R%(EG~iVIsa$yHT#^8wD?Sa8JZVTyoYo z#{#5n=Q-H9WCy7#7)HAk=#j}3lEtec-D6e*}9cB~P0DSEG zZ{GkYF(J{!;KHwqk9zH5WqGlV&3(HzcV-bHszh6gVrCL%J|lhwozck#%!Kz`x$mK+ zcLKudgvfYAVsbS6{iqpbU1_E&gIY*}ROl69Q&9;EZpMq<*kuV#2_%Ar?KBsT@2I@G za?S#KTYRKi6wT68OUjqU?+fFkczbm*xsnu;n7eH3bHfaW)xSw`^)>L^d|E(;(_x;D zMyhE-fvSc)q8#t00<-xq;Z^?BRGLL`M6K#B(o@y*sc7hOEP5X%J|3*+CXTkwq3|kyRKLZID$UBq8tH-rW0;8Pa9d{G^Y3@1A$Rd+)jD zR26Q94@fuKSwq-HU97?z&L%-!22n`fEauGnMdM{5%Cz+Qjr!XzTikvpZ(JH#)D>*P zg_r|N$0{S1zaVRxIK68`XGKKW0|X*PL=%8NqC-U#j00RptC-ST3rlP7Le9i+1lOt7kvk)-5#Yp|pKw zVZ`k-jVok{ZNzfE#a@Si_?Bo)HKBP;(9cpw*q7U;ZJrCy+!ty5Q)cpb@%9qh7^f*s zYmSeF-_!F?n$iZ9{}4)c-vJ!2#(1iT+rXz$20rFGNc-Kh6K)b35@QJXKt|oG6XN!c zRm zE-TuF^-_83*h6$=j%0Y*wNoKC^MLG6tz9TWuqD)X;0693xMD}|42@bW&y zp0RrmjGSQophtEk;H!P)9E3kc&Hp` z>ib)0fy@Rk_mTq(bk|Lzx^Cm8u3EibT5!3ly@wSOQ=T^iS||?XYCybKu0--eVlR9q zE&lnJ4fM$R2H5S3eZPO$L)fMK=_a?22kWTQcWyyFfgd{Vvu6%0M%aPtruXV)fMqiQ zYg83oB?@kVgyJ7RNqYg?I2^iqI)2uIg0E38jd^cQ{jkcyYo(|+WaZ2vw}a*9K2TI$ zfN(5y1O=KTNrviI_0&hI9mlcrj3*0`(SqoN!Nsh zNC=!%Da-m|WWU^W%2hSRydohgs1V+ur72(x|3?45%el({0!P&l$+PDf0>`p-jn_YN zi9Ik|*>3e-RD2&@f*VytdQ2rJ>1j|Y;OzOj;95jYt&l}rEvB2DAgC&@5WEKc-~~dbXFI?9J|5>qp`U=j1J6ipP{3ML(2KPIDoM3jSFc$P`FRZ*1d@ZPqPzCjNC1Zvn z9EO}^8>tV1o^h&Al_kv(xF5MX9&#-x0Ubh39uj}`(zXk;V^ zyUJm7A#O z8s>bf_>pRwiTCMQFS(e0)=<~Fj0)oWiShx)t#4pBR_oyxMqYNB1$UgThIi(UxZH0! z(u<5NgW|%0p&4>gSVabTA_F0bVNf`rSCA#pGI1(+q7vdb3ZpEXWyLi)Vn`s8A=v>! zL6_nXqy3ODfCCbhNc=DMArT!uLH%%~&|nQCk12Tap|e8uCWDAT8ia3g6bhC&#gGiY zIIn|9St#K)APYzIxfqgxF&aUY15?W&j$~GW0wz0D+QAtH@&)T7q$MjbC^*u!RqW2i zF%tx{ezYjs?(n)!@^oEld@o18Go4Ak@La_;-x9d1Q-VGZ@qJ>&ZOq!8U5lu~bFI!U zD*dkLc6asikzhuv?m-Pt(FL{I^98E9@1-R7vz3f?2Z#FX(cgW7oNKu!^>aH|?in0jV8PmMhqNxZS(Mq!D&VXp7Q3M>W{-9IT9H`q$Rar#QETsj z+w6M?9xu$JoXz_$j3+9Kq_CG9-0%cGkUoyo-Ed1&axJ?>X<0T? z9LCIe+HY{fPCZc)yHka&`a0Yu{@hf7Jk9VEQs(fTH$S1!&H^3rIL|0YtLRe!h4 zd4rZ*mdsHFJt}P*PtAL&Pk~*-mUM97ue8&%BrZncE-&O&@500YMzSB5d&~)2MW*J> ztUa+#C8>i;C@D!qnQp!;DGAg5U!rQ6+yc9*Gcaq7Au5~8&U!~^Z>hxAGE!Adluzb8 zGH&3s?(`xmXI(j!TU@GKk=aCH)h@N!iVG%ym?~WxRqbTf-GeRsX z3ddkc!9OyEKMdh!-Ppt5fsr@Y30yEG(h(Jh+>@D>oZJDZj$$S+WmyT%)*lfF&O7`s z*E8%()*RukGFnBO_j#`iyTX&7|%6=%>t-^diMOgIULruNv$)~u@>1+ezyI6@RTEB0LQ-dfAw;+ zLckLh*zyc3;m;J+SDu*`6D!7w{Bu-ps*nf@PUsL+2SZOlc6^>w7r@CFB56bYB~821z(;60p@OmR8r(Mr z?7pK~P39xf?^z(zD$ttC0=3!nT_QJ#vVZC(`ZFWR^vmueEwpb8caKj`mz4T0c-&th zftm{v^UG0gZAt*Kqw^-93R7X8vRFmbXHbp4feb5R`3>5Q*q(-3MJe5J;4o}D0pnPD z5jC=*^GB&oMSl`NiXNTG2#F8Ty$+*6s@PFzrA-Xp5a>8WT>KL&V11^5EGsxyVJZ+Y zx0n<{#^rAtj5tHS>sLoZpR4!EV99J(TFP0%;2GM#C^*c$4J>)EcUfd7fhVl0Z)beB zD6;im`iU^v+MCv;$r0^uQhVdyS#V}qWKhISC~S_JmG4`FD_;6!wh-|%&deM>u%}3< z`Kbua0sD@;(Pi4>PM*2X$fnq@oc|TURw;1Wl5VU6*`JYgV;02X#gr!3khW_)rKlg^ zL5HF&U&$l@dR<;u-uY2MNPRvd`4jUF>iDyjELb0go4>;`bU;M~eW=9pPdIo<<^Tkjm-?JJ0M{HsA50VrOGZ7| zIcJ>&9q%1L@98ICV`7cKlx_L7gN^}WgP!M}9Cduw83b8tB@tEhbHl><$ir10#<3SV-$Le&(eD$2IvJ?`vKoCd zstJW!ewqXuj-NNRe{KkV=#8oV_Y8T4VfN1a;O+?>JkS*%n1s5h+N#VP7~`$jalt)i z;&dg)qSigelvXIdv`7_xKL;!34d&qJF7Zo*%C}LK>gf+(!`zT0YRCm4tqHhkJNZdb z6Q^>RHJ}$n+$b*z11y%ElfI+Ug@yDo?p!NDOzP!W%HMPy`@Ml#Su8Ct^(T>ALCB)*QxRgKRlGg?zC&cQl#Sq>JVwWt@t> z{Z7RhN}P2wW`!=n4}uqQDUdvRJDzTl!hamK_7k*j?BVU=Hv`~3EOM@^s-;S-tEfH< zej%uJ#|fIHPQOrTAx!=cjZs(Bq(|j#TzXOQd}|lW^U!o&QH;3{SED9WSD@2%(XuLl z0ngN}j)bne`!^sjTbbFn2BIxeRh5P49+2Yy;iGTg&|}jZai%~#`bTN&&(j~(g|^ex zcR8_ZO~hY=z(v8epm3W1I3X6w8-o1C4IHoqyy?!eZl<5PeIEvhXmwsCuTuYrDhD$F{ojawp!?Wob^blv<7+dG1027XCck7NB_G?uYguXv^)

      H^+9Xx(SlR=Cv%B3u5zBo-VOe6&JnCI$xn^ zFDA^{3hv@05^`lmd^g}Dn9Jc|#vG64Ee?$5#t9@86amrIAzV%n&9 zHD~C>MDM{(zV!!OKUpyO3U!c4&F*=nX9$Bc-IS%!i;}-s_s42H$F`HMDU*W@q$gzE zZH#M``RNM^;A&ihR~1Z|@eRadbwDWCkFVO#f3EWm4EVtRM*xosO`s^D+d$?>VPHu z@b@_aOPO4O%HCg5K02mpiqrDq>^#iqL7us|Dr|x$DA+00pfT>N%*P19BPeZ0NYU~O zSlWG2)Tb#<+k`8!jW04MA4FXd?>u8!j!!Z5XyIv71!uG5dQF~c+^-^ z$kPu=UZ12AjHBqeRi7K&Gx--VU!Kt{*Q1 zu%(7p%+io+mhP!fN0jQF*u*}-!uyCrry{Gpyk>Wx>srCht8ZofL#B%tR?>s#xdkhL zkDk)q-mW%IPyw25HG5FLEz7f$d3+y{S z0mwjbD-bJr=xhv1Ji=5^_Ar`W;FjO=G4s&xK|IsGBpc|~pK^o!jNIbCyjN>%8(9^$ z6DQqlmeoQ5Y2nxY;0M3?zdw+WD)ECNfht(u3x9YN_ywv!MWRa|SyqMJB5k+bCe1r> z9Vcm%w%OQuG}**<9(MeGjK_|f#GABfPq66%g0{!_5E2Qm_3oR%woHCiH5e#G->n79zumC-$Y1MRdS7lT+ z4N}`RI8`;(cwSSt_LN;k-y>R0)ksaTRJv7pzVS@es*m@+u($ik&d!tC?)J{Jo!WLy z+j+iG-L2-fDpiSBf4o;N?QCwRpURuhb~d(lpFMxNTdh={W^$XUt;f|*s<}$BTG`sJ zl-A`}0DXtI!#Wl1XJvg^5=T+Zf-MX8iYWn!t!+FCTZ5{)O)v1B@#iDlxa zQn|HMD3xB0MWc!M^6Ki+>Pjpgi7qFjiPdN%va%crEv$rR78XO{xs}jLC=!}keiU9@ zSXqoON9F?y;l=UkKqMSzp@X=8$-3To&*%5v@!jn6b=|(<>+AJ*c6W8QcX##mdprGI zLp=lCBYo#bJG{NU{T+SX?E`&--Tm!DL+w2s?Oi=xcY6AL{hfVYZ@aIfy}M^%px1Z1 z$JghD={vmxgZ@FkchEQ7=O6M8c)R+B28aEFL!-W-d;Y=ULGRH0;St{h|EPDwH#BnZ z?w#?E#zx16{r88*#_k6Ef#BrBsi6lW_opU<-x(XZzc@MbFgSU4A~-STo4q?Z5%f(? zM}m)LC#C~4bD@c;z+7-PI30Kt93P&YoS&bXoR2Kbg&#yBGmjoE&M!_)1}5jH=Yx?z zczR}GCN#ge8d;oQSZ1NuB6EwOg{6gsz*0E86b?mJqDw3BmDM;zH4$C$&OzgdT|e}Tbm1gZhn4;wCMnAy-&a1R${LS*|(43k+9!N%Vv9OEK462N7f z$PRpq3wB`M+q?zYfrP+EkA*!8XKqY=Hx{v0?vTb|2{bYw6f5Bp2t>0^)CJ5z;Km_T zKU?rf+~dFmP6}&)q8SGka@6LHmRRFqjtfl)8o{{g{;)cOn{1&1pe+>Q&bG5V`>c)1 zxYWjeSD3(t3e{ZTc@xUekw)Ha@vyxIMaf?eX@hmqltf{9XuEqL*2jfc_<^vC{fm%a zJQUtOa!L*CFYG{Y^9XestjpFhTL%LE*Sf|8bc7v<@lbT>V6%o>$0Tgu{shc?cnm<> zp-$k+n@g z%hbr(2mF}Vrh=1j9fG5O(b6>0)IlCJ+fW8wNmY8;h?|XmOh? zxV|7|ktsGT6TuUI3`pa)@k_wxje;h;QE&tZ1h-K3MT-f}05k9nDEJG#KVE!r0?Gqx zG{xId=wk)2vAMBeg>AV_19y2*+@RoNS%zuahHbeF!*m;L3jJc{4e;wWrUr8yyUf6` zuRgWe@4e{QrCXf0byzI&19a>UKRoy5ImNQSVvgVGxlpRC7t6&`X}we|%Tig+7xHpR zF0U8YbL-_|8KiQlR0g>O@=}=>KP4B-rDCxRYm0JG;>FfNS(ZzZTq+c#0++e;YF;i& za-mqrX9@+mP%7n9iEKKb%OujTCsWyUDw|1W^0{;_p3bI=xqLdCO(oL#d?uThBv8o} zWLT6dfJQ;e<*+3Z(in4y2{VClkyt?68A zftA$IDQwEf2@Mg@4ILfzFzXgN+98O6W#v7hLZkf4Ak)r7&E%Fb^e2=4dema^GsJ4P z-W#*%*>P%n%!`^~aMMM(4&0)q(LhZw*@R|v-7sD;DGm(-|EU2_%xI;~6Z!~RE^6v0 zDLw-r4dx6=6b+sjcnj{s6mjAKu3^wLMwrov+j8U8{Q!YkT!euUJ3XP!0lMFJh*+;r z@9OB*@Q*sr{?4qOx@WGx@&2E`r?I)VuV0TeTdA`jTza!+0Dp}O0JOyv7y%D`1_n)? z77Y^+yD72s27t`;22Hp?pus1Nx~UUeYb6j_#Dq{GECk|DY{1%pJ{c|hVrqgq)nF?) zo+_Dg>P9C&3b&0RT(;&5=-hnpm|NSvah==J?8I!TnOTx|{0T$2`eg_@g8-u)HwMOK zqCta75MQRl2hGFC#wGeInkkNeC<;IU&q%XM5ESHLiweg8@Blv7n+TpFrPnkEpK%o!#dQyQ2`T6iM3NyDF)koLq%9aK zxT(Ol020m-oY$0^tuzz3(SQ|hv?4zM9Z>-xQU^?%5c1D!2pQJb2_|Alx9TyoI`?0% z_~z>aSpQ_Z+G69ns_5MD%-D{hK@lK?5aO#6Rip|D2`N;7s33w?K-5A-i$o>zL8N}5 zQc>{=RcdgcB(a^uXn*x#wKg z+UI&~M|}7(cV^DsXYaMwT6;2*v}|%*T4?jc463q@pI9nakSb+F4lAJef^V3Bv4c2C z;{sY%k^Z1UKx97?@|2JQxc>Y7e1J~l5AKD6_ayO(%F8v^Emz>|1+a3xop*EuLDKES z3=%WjiJ{MkhXL7?lnmNK5=vPUxC2v8Qb1dV1--BVv4MHxgt@UNWkY=4ClohW!e9fz(7o7rbxyR(R2=qF^rIY6+iOlit zVNq;cL~{IXCz`dkYZ%}lF0pUq=&oBTlj<^jfM)n|l~ z5t)o9ah2)S37@b)WoZxF7vF>~^$CE8?!*vZ`d?rY4Ewt1DBNB1kK6dRlM=h+^pgtI zQX=j!IptVj8XGcHL6ngw5mv(GiWES++rha7u)okLsTFE!b&+(XiVss0zL3tr}rVrb|eBOQqQcN)D2XF^l}dpGQaLOLiV#Y`9=WawR-!y+eOJth z4I-q^nZYEE3~$l{=uy8kXSgIhYej@9#jJVR;}7sr1?n@XtwR85BAJc{C5?4pD7ZS4 z7L~<403SW937()S0|}j%7Qcl9g4LX&)5b1}9uvYDaONijD47b?C~|PSDRO{PRHc(A zSdj#ic+&)sI6A<1D>Z(sn;8K8e{#c!YQPYviaR3NIeg(v>u#rYv(-)Zt71k(Cu4CR z1@xnr@pM-@g;dDOPVx&`K;!?>LPEZ~siDcGP&_Y04;2et&h zqAt4DuKBLr5R!JuQwatk#Ya(H{52BzD!yoNbIf&uxM`dTJ7(w)xwYdt$&e5#!cCA_ zVF^t879p&(y+BN7sKT^tj0{}e@PVTtj32(?16g^H|{qsVE)7X(OK#P2uJZVqYlzwE@@Wj{#xKAJ?l7;&XK$t?$PM71HxC;?sSCR03AcEyEr?t6V1(;Z) zLQf5thpbU4Z~EPHE@JqQ1? z2ipd}AJmF9&t;w~KAS6z)_PBaeix4x|*j?SfU` ziZC$82KAMLYs}~mUtPcUl{Y#U58b1(O6J<%I(&iUbOY)*^okDp&ANQ1!L(a>x_)x>D@%HE;Lwfo{6(y|;$0Nw8$KDpGH_wtjFG?6`AD176^ zXJ5QRX^TSY3GT15Xb;{JF*M6t1X;JcsA2Rv3jg4rGI!*cyyoyJ+xg)|mn~#Ixvttw0 ziAJ+AGf``f*Jo#%Q`N~vb-pn?HZ?PKa&D?N*EruCIo&$jnwn}(kIl}VTc}ShoSSL3 z>I-KtRL_l0&9-Kzt22}H^P^MEW~1JmoSr^i9chf$PR>p>nhVu4t=j1ewXu;i!{^UV zf9%YBqd7Y}acXvYczmLXQzmP36T=h3Q>PneUwP@#&mOw;yZKYiYOT>2tDPPmUl?!J z>b3D!ZL-yvX`bA&GZVOQLm)hZnR?f~*Ru5S1>W^k!^UG{Hv9YM;;iq@2hRWe$P=$y za)BM_=u>d1Z4xu-g;-UXj(4lv9}?WaSfrvh@#LajAsn_HmVwqZgwx!E#-df6P|_ml zjb91z+CnahIQ}ECj*N%2;Txe)1GGKF=Pti|@V-YcP3-^l61^#0v)YJ4z99}9D*Nwn zhh>vHy5>6Wc=(kxedq<7ruLb^xbuUHY5I?Qlq;;eM(N?lUv`$9SBZxRN5y1uH(~e= zP`fuLPlA*AYpT6URcRoh?VSzcDeqj)EzM8u#+oY@VEo`h1ug^cc@Z=-ypx|MTJZ#wttrRRQe zr9xu7d==YZ*(HNq8NHy!8)9#~qkyz?oym9AjJAjK&n=18Li~sG?#G$_oIQcV4v?kQ zgP*_eL;LUeu7&`@eNbAEW>Kw%`PjF*dA63@**hJ<;UFzp$EJjQiU$=I&{{BWNgdPM zSu!h@E<%^VcJw1GmdW>x_I6@kcrv{&*JGppeBkbx)}2Q;BQb>ZR|6)WA`@NP(!Qx~ zc9UzcCDdcr$qHbe9_Hj9=q#Y#6@aLKibA769`&1-Sdk6yRq11`=x<3BB4FQiE_(e& zkALRiThU*&@}J=ringMf!IBopSvQ}0QLy=ru|~U8jEBUZaE-ubC0Eu&8O5J2l}kqa zAJ}wp(j)>4NQu&Sqete;AAclb1!$KeBc_>KMTC_oHv`tSy!QI=wz2B1k{-fgvP$|+ z1X^ra>U%`LD-ZIA^aE7%EZ2L&JEj{6lur3eZlI!6-xmGtz!xrtqD<6IrAy>0;%>>) zsOwDbv?q3QN&F)?#6ZOYvKTGoia;V0m+lw6TY~epM&;2Hy%$hDe*ax-svBDTvl!{% z%{=ri*0pg}HkkM%=EyH437djGU?IciLgry7dXNuMA~;1wSnrs8H{i{-ur9o!5_ zVj>YASQ{G~)08PNm$~n`kIu9h)Pgh`uvS`aXsagGhL%{7c`?k;8HRh#-ut}vKCW-= za|bS|nVCB?=RVHbYkli`Y~ABX&J{`|16wMY^`*cY(&KFsXtpILs*Yn)y~Z6Nb%ueA z83@8!8kIt+NesPS+G;9+iIjS&xHh_hfn)J3Hc;AHl!hA<p$|HW3aMM4B9OOWu> zH_Dn=1QC}t8mC9bEPfV{H8guwW5Z~YcOq&Eb0H?+ds@a8x5?H}&W(`^WJ(w!Mj^Rp z=nH2*%8+;l8!kat%Tbu~)4R7`ZV4#WCp~6=s*x&$j479WnHo=$L04V38QwH!xK`~x z>md%>TG_lxx{#!^<%D-4A)hDZBWm?pCbz+r(15l}B$pL@Z^^PkN9?g;YZ4cX&Bt3G z`05^q&K7&0l3c8C_~Rhg)K;okI7zWOU0E~~BTNfv@f59Z0M0(|A%D$d16Xn_{xLxE z*l2Ycjxp^^ljH*cN{RD3HjGM#dz^s|`XUjSSa;PHTcbxW*)h7m^gQ<*(?FN>{W*Z> zrrRN}C?t|J=DEbTFvjx7vRBEI_wAS>vka-GsRg1-PAm#q`*dNGv79wm2WV57>2W8? zZ~=f#qNK!!#6QSo_68pH!m3m^^vRQpRZ*|yzWaXwZgEvN1eKTF)q;p<%1`9JcwO$x z77S)?fcO@7R#q^5p_x4}Av`Ya?eYf=- zB8y?DX_c%`slzD`Ph-{@a{U1!3UeIFz)9yAlt?Tw@oo>iIrFT?f)Jq|1;vE46E2yR zS<@o|02Oq6{q_k#JiMGa5L*cF8MTZzUIC1kyc?Dp%3y3&vuIGaSs3&KEGx2K)&>qr zgnT#O5^zQ(Tc7b%M{x;%#`NxPHfgL{Fk=8qR_*WKEm0g%5itP#k5+xO7wl`*r1;3X zDt2&D>lcKbmQ^e)U2p0v5XBxU*zn@jl;yll(N(c!NljW zT@;RCGH$PDxeZ{`ykN;#4lu2|z$^Zkg-&{j&4P7stzMFbm_@Q;98O0-^FxAmg5 zgeQ>)BDqX3^-8x*x$T>GsHCY)asm2kj@}v&27AF`>p<6EfxbKa0TO|Z4$2IN*?E=pLnUfxv_-eG)m~xSBlcQc>2{1h4USDb)*3S z&&GIJ-%I9T&1j0?nFerE)HI9<{21_Jt&tp!2)a`nH$RCC#2W<3k{OU~Br{Z*YuH+) zC%unU^7^dZ?x`Yy1hb&ReBNV~@@K4>p~@^0_>bFt8$$xcgQQSo>0H{n0Zv+J+Ax=W z#4S>^a+~fsLr@W{In+G3X@oSYPY~nx5IxB;mDKlq$I4ePyChDrPML^M6om%4$>>z9 zOrQ9mGq`hh;Wi9((**s!Syd08KTt{b(%JP1h(=5V^v?px7lma(f6W+o(Pw ziLtwO>?5ZyBeBYrNU73eV@HKk8aa%m?sZO(_6}J2w+IE6R6`8zO=~{+im~k3dp{s61t%?-R66) zjhY@jG+qr<@yCMWK946E-}GQxFWk#dZdiYEUb1_U@G&ksn~#G8g~Oi48pE+gOJh3b z(Yzu^N+0}36zqNr13A(R!tcIjox66!!}rsvDpc)H$K$8s!M!2}0vK z&g>fxtpE0_?-*w#tPd@Tt3bNgl~t0+MlcjTA)HGpf!<9=txn^p8)r@Q=m|P%wC|V> z_x?7F{_-$pX>_nZPYdajbgD} zEjP-=(Lz4g96FLORqKVuaII2*p?tJjDwNBEjbgJoSgRF^#lgbh$dP6#f4HKnadUOP zT*{XU!?kLoQmf{whfDQbWn;OKD^-TeBXp^n&p$g<7|xv>>0kH6pZ|Dzpj)U2rd2HPO-G4mGLHi}*IP?LDm@eLV`I@Tq1L?mBD2m%kH6 zSsfhQeGo{{ zpxAlHSvS7*>F4H8?rcr$e>ZyNk?}JRwsdg%aZhKX;+_x2#{D2(rpFG!7PBCQHete3 zfQ|xW3!7v$>rI>(&6HeV@=Qq>EA|jF1Xs$|TkF?7@rV1q@VPI&O@4+H9zVoZqSt9T zOrX(qhaBFtaKo1|mHFTOq;Vmdt4tVk_CWcZF(;oNIdmZ#{=PbLurd)4?ax%f^qw`U zY@^APN}H}U7ud&1iRp$)HWD!@Yt@UU)}wd~A!w4{5W$LwrOvT?Hl6+Y9e3`0-^e9O z*mFsETj8`^&U)xUdcsd!(ohHW56!sovMBU*NRT4`s7*+F6KJEuEM3)MNYvk>rwi2S zF_Is0NlW zo}&dz0-~B~8>tTeuS?fpRx)P1=3B)<0O?}8LLWosiTN0LMo?uLv_PvKUQ`j%MS3QN zH}Y8Z7-{*ZUp=Z5h8a4n_t=95lUMwc^toau*F|xC`^=(v#44^*{2T6i9=pAw_-v54#u){-*KgU*1BEvM$1$;7KBo?OBjN<84Dlc+aE7O4DW}!e7 z+2}I8=#RQqXLSwv_|%Nu&@c-MdxVqV3;dzZwlZGa= zI>%f&Mt>cIAu0`+(=>Wp5Gn?pxH^)l6RpiPT=+Jbp+=Dt)B&`{BKJn!tJU9@KiDrG zM7y@#BpIV;ljvp~w$u%A@Z3AKq!ta|MR@yt7S?92oD7+gPw6|z(|`@6Q7^=UJq}zudmdc<2NJXFPK&236(>69REYs968KQ1 zVC5`M?z+oYj0EJE=1XS-HqS?W)Buf_umd$efkD7cfY@d&a7T#_nwbY^Lp(OtZEt^n zxxz@wvaf9DTqXx==qQ#( zlo|kRQ&Z0`T6df?)uJ%K9qMewAs8@h575dRS&_q8kh=ydm9Ds_N^e(hS$`d(pUF><>ARlH`fvZ zwj6zJrG=7-CFFdO0q;hJz31xF-yzt`$D=1rke6iA5LAKiycq6O%TSvnI}lBtVAvM` zLe;?g;y&@<%-<6&ZMXsxoxJeP72C0~c{DnfKF$&%qd0Kom}@Y#>;JbAvF&5489NhD z0oX?`L?1nhFn16yvEMYnC-;S8X%lhMV*F|7`~@}vX=$LeC1j4lgULK> zJk%TjZ6rTMV#2un3&{^^VtmD_19rr&7ReVMN+aWB%SQsK4?V88)BFerXg0~UpB;Y> zwHI#x;@JBYwFV2*~cGx3QmH~QhS_;9j6Bpo1V6rl=P-+ zw8MWHJ;ZzJqPfdVrt_aU8bs|U5lN$SoBg2uxkB{ji|haGr}N|U7X!$5=xMQQTuDE% z{@hv%iWpj-z#Sysd?6%lr=j3=jG8UsK=e~=8ufMQr zw{cS4!aK+jR2#jq<5Xv+XB;O{6do{kEAIi&T^B1*0KLTZUDDe!Kkaz-sY-uuX|Omj*t@mVK2RF$>ME7`d$yIHF87(zH+s5CmEyLi z%jNz`slRuyYfGirQ|ztuRQmecJ2tjgdb&G$pWHlHtZXTDZR;pjI*S86#ZvF~;y|%f z>Dt^;Y%h1Vmy12!TgzR=?jIEU+Pl77DR=et7Jqea^la~%RnKoJb@X=jboOoSEOmDl zOP%HRQumhb(&kdR8+YvN>Fw{S^pwke_kTa@qVaQpY3Wb!h^#x2y0cT4fxay73^S@p5@VX6~Zi&fN?u_Ew zB%Th2ai<)~IZj5@EYZQ7Z-oCF)66!WFe#0NamS0Gz4&N<6!i`l;`Hho&rjQuQx^i? zT5rf2EwAt`^$TB#p`(~8OY-EVSl>&R;4qcpCC}DEV9W(Lu?-3Wu(s*T=YP6#)n`6^ z|C5d)$%tL0S8(!LQh*jsjHw0h)a+<{;11i#cn)t3uYc>G(T?B6uRk(%>(Rdef)i^M zi+^b>ysLOR1ixOq2#VYA0kt!nDH)Sn%WW}P7(PJ@CF&2$3IFxd=EV%50RXC1)aZ# zAymlHnv3idND2#u%UlsV%cn}Xo3sV(v;Nq~0VqbW6<9V5VxBdl)z`N#U3~xNUVtlZ zmM=IWBb3MEXl4)@WMbutUMbsxLp6%dC41izUwr<2NTe8XS|niyDk)~$6Z28iJ}o&A z?ez70Yn^Hy7!P7-34o9}G%UT+1smcm>C|YfsBmyqK;L8Synu(r6lq%=;kq4F^ttxAa z;BorqQvgx9=@TC?Jz47bVlx5QVT9`|V)YF@&Xh{H1>^5CoqeUR%* z54r0$UfP-ybg94v!=P#l_m8cs*S_mGB4wQ7f2gkZ*ru*CZpXoSkaZo~0PU}75|cKx z|0c0c8!fDZtRS@l24f6ueX$}YK-wrwQ@3i}9|HnQDNGbbd9t|UX zIh4WFeKOcfGpmbaD(JhQtPnbOt4beOD0mMz#vr1W18(Yh%H%7@W)4!*&nL)9Q z5h?@wd2DWJviRZSOWrDz0YXXO+G1H>L>R%+k*TO%H1(4FJ@MLYU#P6==7W;>rBPk% zF$I|cKrtR1O1($G2?(2h3UC`>$n|Z~jI9bKHIG1!kF!h~sWNM^9vCTLgw2^Qw(nl_ z=on6u6pM0LJy}`s--gRVWq+uM20Skh0dhxHxo~E%EihQm3&5|Mr7osz;(cLPG<`Y{ z#WaoL7u5-pAM=45Axi+#TDELtNQq)^1b~Z;zDVrH-+$pIqioPfaE4(BbmNLC18oGc z9oTXlBWZTb0FgX+BA%!tdU>URV8OAfbLA+x;sYZOtwfa;u zE^<1Mmm=l_y+Pdo={DieZ^mNhf7twT`?BH7ULYp?Q+;AdrDx``KLdd7%*FbFj z#P!+oKC1T9oz}UagHSKbMRB36eFz~!K16Gipu@*-R1H@Quv(3O4%{+hWjwp4@>C|W zahDf)kc;ArvUkW1z(G)fqzy1_ zdFsulR;~W_*B73I3x(#ng{MH}R`8UhXdf`-5{10H0cPi>M*)M3paq^cYT4PG=Nut?g-V(;c(du z%_nQ*M*AZx&PE9)wfYj)8*sQb(92x~WkY@eXtzGS-!Styszm&$B$PHUsHwFG%M^ulug$GMz+WL_Pk;MYMWZHZdLt5u^cVXr2f0fl&n1qtyl_m&^7dMsE``D*@NC!)V;B> z(XrvtPx^D2-n+vi!y_ZZW6XQ+CwFXD*1WUz(7flbzrX$$o6f%^&un<@iCgV!U)y}V zBL8y6{r6`wrP{CI>Rv+1DJW-B4KoZlwlfx1oIM zu_b+EuO&``j)uICgJ7Wg-(VTXL0;&(4!Azy#4U8)v$!8v zJmzXRb7Jsu4Pw8AT5^k+J%BAK3gXF!jh)TEfh%*g4JJ4R@C#VA3n3aT2zt0?ys3Z- zxyklKgMBNVE|w71u02~qx^nEcU-mEW=$Ti%edR^Z>;H4#vynvNe-kHPTp4w}mbdgC zjzJ^;f;$|oHnSH>3Ih=+NMzD$glGnLDji3`t4g`>wBmhU#p1#;ES&(jMSfn9`Y`em zuq|{Y7=aM*0>K6UE9fxM%;HVKCrI^?c9~IsbMcyU=sLKdOAZTACVICAOcfL`5^~BP z%K@)eT+5e%4;tbrTVB~_FU`vN(}S0GcwTOgwI(LmNPoF<?8N_kDLDxA3r5Hv1)AiS{W#NRDqgJC!FPiT-2TapJ2Kgp4g4M4-#r$E2| zKqq*q615eZVf6==tQ{r)ZR6IU8+3stbz@G$r(klQsvBVVy-Ltk&`IW*)z5FeQ%P=k zX8uomK5X&4zQ4-c+U-w8-d_3aw*KjjzgqKK=Nft1s#lQva8qjYD+f2W!H$~b`3=X` zzgM}puJw-_jj-Id|H9L!RmE#?BWm} zNc=7WU-0Yc>$$Th^2K5yT`UX~di(ne07*c$zxk`Z`QBV1pDXm`3h7i&cTZm?lS*W> zg>~R;D;D#qWKSaBmrp0VlZ8wsnN4*kQt8g_?o2wGOm@Swc)TZ> zhtRWa6=Sd!oCmGtw1LbR@buyAm;Yj7O94_U>p$EEb7$ zB~l*KJ};2R-KpH+S!o&YnGC zd)M11SDlv9o9jv^`GIX=qG5sy%x=gQE+jG20{3Jy^ePyv;84L9aqYHi8OXdzCX*Si zZ`$j*WtS0p5Nu}SftCPtlek*&l!j%L1`e$F+UkSR=EKFveh8ctH?@QyM~Iuw!BtLu|kIX6DY!y?6SZbKf(LT8Y6ho;!2aZ?Ts_6)p0$ z8t=^hLf)N{-0?S0zPUHnQsl|21qly))?DW~G2CJqo5nldaT$ZYz&OzN_`00lH?pITXr28 zES-FVYvY8WSxyI=jn+}3$wce4yeHS3|NHlU_~V5S`J_E6?qMvG*(KCSyGlTw(^dt5 zUX30HV4gsKg=>iLV`mz?A)k}Mv+C%)DXSiMM~bEDeLa8azm=?hDYwjzspI*}mwgJ1 z3AffWR+%gmV|IkfFVpQH7>;p!Oum!*)2#ZP6DR(t@IGMB zAq~Z^U{0bT)gtOrGQJ4imX~Nbz>~mg=>gfZL8QpXSI8$qq&keYl#TKPU?d<{CLRIl zDmh+BnUwSf-}O~Y`!-&q3CCL+g|RH8O%2M1QkKwXr6*JORZ2ZY*uD}e6SnJQWZ;FI z7X-WJP1RpoC{6uaS6K8QGH{x&xjWU6ZE~e zzEXEi9=HaZG_}|-K?3K&IoD=WRiH4YC*sv z+#&NvGeXjV4Uh*$vdpw$RVcAUa@#Mbc4a3M$KHNqC7qN9A?)CelBWw1)so|oBEv<4 zzEszVbrI-e2*)RGugCqT6Eao;gupSJP1YQSGt) zHFce;C*Sq9*0mHAt(<(XZQQo8C)(Slv7X5;$xC8zyUOJ1vz z7ni=e-goc6dJXM7uq{sFqgwuNqFJi3fml@-T^nZoXOymO)cgbdcaT-!AZ|v>e>SB( z5m@0w(&GLo77LMNB4KH^Oe~K`EBUyOp7lxO^`Dn#{yZ;#R$gvy;ex#1ygVyEciNn( zvlI7cI(_rIr(Jhc=B21c{*H#ObX2SJECR7z%E)p02EUVgG zQC?nAR zu6*N-3y0tJ{dNC3GH3Oh#jWMP-FOwXp~S<3({&vAR*#-swH zq!hq|0A;+VgRk>F<#*4uWb>poZA+#9yW(o;dH#w0QpSBHOV&0OBk z6pgSW6cY-q-giiS5;N1`R5h&ofBg0QVaIyH<^~gH34SqDW}NIphA@+@MaZRzCLUEH ziYI&IE%I>4{@W@@gQ!9ox?e#z<)1d6Tm9Ve))iXSpm&+^fNV$5`$%aMeldtS- z*>>~b7AZHJ7@k*gZbN@bLl;gqBB)6G)UMjeUjKRJH*AoqqeJ@nJzoFevdT+R4t=oWw77Or zs)jH8f&EoyMSJGI-#SAi@ zT4&@6;wO>}IfnJAl{5u0$BaI0H2DWjC*e`Y*jCr-=?micZ5W4@H31;tm@i?I9TH-g z5b7-fS|+v_BQGJRz&Y(Gx+1FpPK-K*of1us>I((;(CsMqof;p-3ZUmf2G~EF9tpgS zrIG;3FCX!*YAb_NM1OqBg%GAJ$+g+SG{$I~D5s-RgPkGb46$Zs711cpSdKw6YpiVz zG~`UHB(nqtvS`bJ#mEt7h*}7k0+%#_c9SC1BQJnKBj7?fn6UKy+d;$^u8Q;8jo5exCCoZm>~s0h`$gc6_;atk6l`TIv+$&wsV}B`r;vB#G%A=v(h4J;z37o zaW`ri@fFx%{#<}7Yzg5T>}J*CQiQ!tFXg?CTf@i_ijfK@shAMDgoLheX;d6jNmA?~ zQ#BJ&NS1VSgRdTSzh)6+{%8cJSeaqOBr~g^oE*t9mZY4 zGtwaBZ0Su85ehV(%cGgHbCqf5it123!us+-hfDsr{0_S>ih>}Wu~HM&aTpGND1)_& z0%8cer)h3(A#psEI1zxYsGc@hkLuZv0GyEkl&(noEVYf&AEP@CGKf;~W0v5tv5`89 zcvta~Asf$CjICjZdDkPBF_8w=xS_V~xw9HgWEz`D(1vBvJSUWYhC3uechVtLre{}g z;~HeEt`9i|f-Y>4j|@f!kjdiIF#&-0<;eHblmfN$Nz?RcEBFE1VO=YD^uzAsI2_(C zMDnFfb)$Tw8zoH1(XIo8zG*JXz> zGiIDdW*%a|n*!zm2g^;O%cnW>D5_Aez7U*6LH5X0cO-WwQ(yhaO$EfGWyfgeu(DR# zk_L>1v>B|$sUFa~A|+y4$A{R8@`U)nL#>DP8_6j5t5)fn5@c4FeBQ)ki-PCv9WPE)NWXpPN`CN_#Z zf0_Pjl)j?kiNrWt}BmQc2@d(!lijqPB7Z z3QvfRDi?#Gj*bee)XNQBv{0~c{a#)tbaS|`sp)U8?m}m<1iKHU4me4(Edy64taJtj z;u2p*M`Xa(`6{HUW3USEA1!#R$y0uoSG)7yzc2A#{QB_Ww^>|{ymRbyhj3w69soEY zu4-w<02hG@F_R(znB1o2z(OUp+_k^OjlQPlqxszC zCZ-EBW&nxsO!x|io}#3%l97W#+JgN<`a^s#;3Xt$`LVS8c<(;tf3*R}Ft@hfw{jjG z{g)IUe-fYH`pL=5CR}sxi~GHm$J<+)@7}%Bd9SOpzpv}7?*8u1j*i=19UYxt-tXjL+$4|$`MkjmQlWi@H8@ImyY~tDT>5<8)r;ne0f9CPr^t8!mM~!J?c;@N+40~oy z8*284hBfOMaJ3gRPuTQ4drrgy=F|XQavbvo_Fw?<--7&0K3+pE*YsC@d06;^8@ZJJ zbdIIGHKV!5r8t%wfB5E^OMCtdu59mI+ntI}+gfklZf|RDZcW~-Pqw!w>+9PZTW;LC z)zsS5+|u0EP~Unj*@*vbxRPvXxLMzL<3dYAV|`s6{IB6^Oiajl~q;cr57%&t}ZR9x_GXvy7YWi`Gqga z3yTU1i}DJ~%FBuhii=Mc78IT-tNgq?zp$YA^Spw*lA@wh#rgS#`KR)V3O>uf?$Tvx zwr5heJpi{I`#|`uI~~uH?z+daH`_RQP`Zas#K%_8_>=2qUH{v%vlKuXIyC?p+Dx)X zl=^CsU%{Y+9?0;GstA4ijC$F4fNFAW{@KMAjrCQuo51#uTpp&3W z^6LQC!b<>&Nm5B!1a;>F_fzQyp>(-!fbZY$)qUiOy~n*z|0r7Cm>Jo2H!k)xi^`pz z>t}(@a*)RW<_@wsc}u9uVX)QdL}&0uL|4UxRyNobW}8!u&3m$cvFb+^bWKngU=YFM zV2E)=mE~&<*1i<|iFCBu$FXvII8al0R;9AVLHN{4b#D8{eb2p$JwlAXyLs1ukf*k6 zFLUGGgWvpW&jS#MOx01Omz*J;`T*5gsMeu~A>l8d^#8jy@-beEO*WkU`Q}xtj)Jd_ zI5F}}6h}DuQ8Z8}@bf%I-Ze1)S4({VJ% zx;#jcaJc>)%eYXF93#LF?vO32a}kZh$vW8fI3J8ED`t10Tvlry%?TP3*z_`(bPh&kOWB) z)DoeW4nkmbEu(#J&Tr=geHc9*JZWRf>!)@uQe%LxIK7w>a&a6hL}#f(HdE`ZWpfd@ z3bf0iWRw_UsJQT|qdiR$bhB+}}IwSZl51$|uyAWyMl}5JNqg!A{ zbT6TD7dCP%sID;VPN^ULkcPBO^^|FYfrqCN*D6{C8Uv*&4&Vj7BnQQ`1^Eu+JTN7e zaXlyJkO3Z$xKzQrm`_c^q7{Hqqa}sDF2ghM0M0ZNfV+Y!8D-1C5KM)OhUiffvs8Bh z`b|AV#W1iiO(k&x7ZOkwwFjGme+$fuHa!OZo;nUr51?(%{bAEskfY z%U7_#2Wht8w7|GBdf2c`L*e3`mWyzoOD&DbjzR?+s)GjzLxdpYEcoJxqsUv@NXQ(G zI{0Kkuvm(7XIA-^ot0sx)7aC>=$p7e9?wKAc_2d1$|x}LuXjPe8QW2Wjl z7mPd1Zn`lM%(le8%%MD~Xf`&XGXwfJy<_`(2K>h-Nl(BSplLSgh)IC+ZOv2Bq0qN4 z*oq_i?4Gl9Hg)CYXVYaCj`t|-TBkR!zfM^-INmZW+lAZ1V?hB?=n4GkKtH0xp>0iN z2cefy_2uK(f!*Ot2rfjCj!#%eXs02`lU~R`8l-;VPC#WD{H;y95OZ)&LXW|=d@IYe z<_!}`84+l6k~4Tji%%MUCl1QBb$0bttSIFJgxb9JIEkvtb$!GhR9`s0SpNUlmr%oJF{n~*N@x;- z?xEE|eG3RQ&BeJ{@Rhjk_&>n73k(|vU+~Vh-A`mNMC2&T#B7GZ!A`l(B>ZMCf>4-J zqwYUQT2)tt9vF86K8jKW7)cea85BU-iKW;bng>8jSmufB4L2mLfXW2PdqDTXy6=V06>a8>ZuS zn-Cn`7h>EhDCL16FW0hv9~I!+evR4Q-o4+`ikBVt!D zZ6>LP;MWY?7*tE(5=rEWd#v~@%wWg**DrSi@}cTDG#+&fKLxdD(CLmdJbEM?ehPHr z01khNdYI1@O&NrQ_{gGmV&jRi&={g%lQ@PiVQ0=4ugxxKAH{dz+&Ju@2^Wa|kLoIo zjq7nC9q*;zIo@}d+t5w zST%{mP$;#=V~2z(k}!h5Z4^Yy9&@ z&yz@4SYiY#pfdX`dl*#P4on6QY}y?!K3ll#)t>Hq?65+20tp(>{T5`Qz^k*sO7GZA0QM0YCwkyssb#| zWK_a|*>EuRMoyz7rE*3VB2MHt?!)*5d1WaF<~;M>k*;II0**pXp?4iP4UypoN<}tT z5?iqiJvI|YO>sHhu-Wijn?RIHukSZv&aTV8+NL>Cq*x~2Q{bu&Ew zYW1c-fADTecxm16+?zo(SEcS8Z~F4~#i!_a*M=Ry4fd?g1j^l9;aX&Iyk4P2=rWj{Kmq$lX26Qim_NqZb z=dZdISM7f*jLt3?p{tJ0xfyy-4eZ-|9+)>|}Y;E4t(Ad~o+tA$BT-n@IpJ;4JCYze7>Kg0H z>+0*PYO8B^)Ya~)tE{T1+EKUrFE2m2sIo^No!-C9*wQ(s=unn+aatgNbPXl$;pZz-=! zCaZVUCz^IAE0g=}U5!qT-Su7E^~UdX)W6uHy9Q5RGji#<@*SZr-xRM}zG1_Xb?5vj zu1~ipHzTzuf(bKj9IVCU3fLn016hRYl%mbNIS%~Cv*Z?hS5S||49o&G)1e<23e1Wtaw}X{ z=U4b9y4ei9@P=RY8^13Z_^-6-gDcgs6*BY7zsBzm4D>8MBK>HxInx4Fp<`SgOI{Gz z=7Pk|*bo~i@XX^Ew46?dlJQ!%biwfxon42UzBlu+m(s#Uip)3|RFsDO66BSJikuit zobe|3?5~h|v(xw$wnrYjeou&tSr_d!=$wsxI}=T>Ub1q{7kD zl6MrgU1s)e?MKth>2`LQ3U1AMq!3;OQHop(6q`&h3u4-xCY+9+EZ)}JIdHOK*0*P^ zNeNh{5}Bc{3B!8han>x(xqbG)Yhwi69aN2v;vM7hWDooe}kEH?}g4YL_^SP0-Ts(`C`TYdxJ(TMqbFNva zTpzQx6o+GA>@0BAV(baf_(&GuGgE0PtX;IMv-hrmLJ`^MEhh%>Tm(ksXQ)c!tVk&z zqe2G#N-kp7=Z9nar6?Vh_O;rwpu{v-q~FDCE<$TS=__Lx0zzb8*CdXc7S3zyxywy1 zq=)Hk!7vqCk)qR!6qh7MMhTIMjM91LexX9bt&L*F8r9(_rqdjx`q``^cBo5q8k}d= zDBAvLcWU?i+1pMGNge<;ZvoDAB%e!GW5gO~js__eyL6Zjtj!--5N^3egbjT@@XUUf zJ3v6`4i1Gi;aX3OJzUD`fRCa9k@3v+1_Vy*FuZ`Up zjb9*(v6AWDF-KdXYU^Q1#RRA`Nf5Zve{Ws5{MUm*hN2kGf}JeoNnu@-aS^IC-P1`6 zQZkR9cNKq(b|-YRRAz$;s8OOau6sVqYQNfyLEKId(@}BvCkhA)IRceP#^@7I0Mf<~ zs1=l#P55MhJoDkadCQMx=yk|3{5K9n4to$Kse^(>6ai$Y>b)w*+)giYTI+PzqeJc;@KOI>qKpGv#1V-+qntN6qS=c3) zgmgzvCZ!Q)U!J{UXXnusYf@I7114)61Z7A@VG%^ORFElPG_=yOxB^-kt`(PJBb&y6 z73i%usA?f~G~UadYfL+e>KS*TFH^{n6tK7r)lkz5cu3Up z9vGTyw>us0&On42S~&M-e><}7JKvg>6s|QkoI}+Vd`ot1;O8jMZVAgE;o+h&T|j1! z`ADzI3t4PILXYum8?cq?Q|+G5Zcjtw>5Brp*O_4UcSNO{#`RE{^s7I9_VbfJfApJA z?4_ZDrh|H+$7@~M{zWXnni(K47~Dq-CSpK?xzT)Jx%qztpozNYQ^kPzMp?GABPeEh z#`34Rl!VH+I_xS@HfLG4<0PJVv;nC^gPM{T6}yU%zoyVyMHGccNh`aa1NJr^!l+wJ zxaH-;j4j(==sbB%po3*d)CBh zUYdnUuqIf2nCdyA?MJg;8?k0bqR18xjfrJdz_5teK2rz?Cb*t;d!%4KE2!}%GG+|0 z9L(}dBpyKb0rSiB{+-&%99BiFfV_BOzJ`c9)X5liYrO3KAKB#^8^v|SaqoJ)#$ZTj zL{jzjsb8w5$%nS8#0M%;UI~~w1ZY%JlvY)mDlKYNRE4$#rHT|n0!CmPy!PzF4{RQ$ zIHE;R2#-LVrUKC#!YhU(fb9Ur#yj`U+>0`uH)n8^wp2W=Qwo_MZb`Z8`Qv&4Pafj$$>At%vq9iWYEWXj#WT9U+c#6o*GC z;nA@miYir-1j;woqLjY3^L{W1y@9Mb2*OZ@kf$)jE)gaJ9hFB|Ei}|Ut&bcdp`zEO z;_ZR_AtdU>dh;-O%4l({Vcw$c%vtQ6#9J&Fngge)M`|eobB;XCYo|*MO`BT8$5y6_ zMCSn)H7QG0J<@f5=5TldAstw?w(iqVN7eq7^?!QnY!I}se)WKt4!YN@+Src;sN&>5 zY0D&aPx0IZ=(iO2cF~!Fh}B?k-?pdbW?1@NR2X!OW_MUu0Cdh>*6{&$SCl|pHo=7V zcHQR&|1A!t_D-06T~jct_xe3A2fZ&k;>F&yf7$mpZ4HCy5gqsk-*=Rt?0H_um*vCm zxNf^58pL8z&R& z6I$XUA^RwtnU7u31k<^*e&RP&po-NMs@ZQ4&gpo7kC5k$-v!a>C1{Om_qiM4@FHPt z@%%NpbO5j2+<-hM2cdWLpmK_Mj#e|E1H9w#hpJ{kC5uI}Y#w!_ zh)V$;L-iLt%%Y?d&V=UDn<&q7f7DU`LLYe!&K-_K&5bu&0)KN$8Z&Zn#YJ$%A3p2e zxprG~OEznDwB(z&H04^dR=&{MY+0EWE3-Y*)LLlHXSZ3|Y;%1}b8Aa3o6k1n^0}7Q z*2b1YN3FTD7w$a#YOateWVaRag+gOXuB*Aeu8^zGHFoZ7&UCi7x3urD>N~T!wp~p- zx~$er$1JP0v$M@AWb>WvyP9&%JK76*t239|ZZ+mwEyU8=U|EgZI<_}uviV%LK9|qt ztfp+k_Ds%d%N{k^hF-@6uit1#>C5ZFsBfu#ac7)u*+0;rZhslC9KX zaPTPi+hZ~YY~h&mCdCp=yR&hTn~!TuKVqEhqP)EO$BUlX^0#@j&f1JR5<4uM2PH1r zHkCp+LfO2}QdLoATe`OR21bQSYzr0=yhBizfY!ld=bKl?pd*8jKgXMkUspUc2Yo5QlCmmi~c?tsP<5Z>{{*XKk&S}(L zyN`G(9#L{Xm)eVH>T71lG%E|m@WtP2SIlYZp8f47UZEZ*0VCGOt&h>LN`^6-aWnGt zC+h8lbc|y}&Lr0{Z@@<@=uUc1q^2WT=9yR}Sc#Jk9hYibI$jWP0x9)2yPP`C$BhR%!;5khe9Db zDMK*R<=DBc^J^C0y!Pyq-+7MOfl&_o82>NaD%L>O$}gd~Ojo2O93cS(GQ*pUZ$gz+ z68HFSA|~Wuxbwaih8wjF6NO(!VOUMy0)!v>eu$t0Ux#G@JTu(ir<6eWkq3@c9-Wl( z*pd;5iaCsSD~Yq0)5m(>UQknWUWn@}elp-bm_dqH7Zqngz2Fiqm@Krac1#u?sVe-G zG9a<%oRW^XOyHW-BOU*`KluH$?RFzXXOwms->qOP38q^vewyfMzeor#jFbd=%voTEuPf zS7Nl3eiz+2f)D?HOt(*E7B2khM{t$#aBMA-uE9fcPQ`jeuQq{{nPZoRHk4}ylNUPTy3bO- z(t0$&>n>4~Bgg)|ea`%+H%OP)LBOZfcA4;;7$!p23n0ADG15gq4HiWkR_L;ZEYeka^HG6eh)Ls-0;uO&Q^pk|L`jxkj$CFGhqxYSf9bm500g zAS3A#$~oWUQ82pzJ%?OE2>a%V_j(VmtX;P9G>nV-Bu!D^=@3wuATDX<8%;t+SWLV_ z*dh}G+Yf;dIbbNK3iE8j7vaR8iewel5;x$gnNckgc2Ud3r8x5I-F~dP!B(32MBAl+ zTY%IWONs)@D>KbAjF;W+J#l=?;w8_%HY9DAcSH)V9A1lA^U?3Ld@)JWhbPI{&G7EY zl)IGij!852Rppu;NyV$4IVAHhgnsavXyhOjesUlzSy^!_&tNKh1(QF(4EGRD?%oF{ zdtREe;75CG^o8f7jV;o76$3HZJe(C$Uy|=6VN_(dn(rz@t&*i; z>8txo#Y(u_I2LW)gwsZ#fe;!;s4cFYIJtM`cfa?-Eyj3AhGZ#YR0N?jNTqo3@hNSR zjtXiCmqKui@uO48Kv>WN69}1!6h=58U+<0+&}e-upv{BOT{`9wN&;`Ka>b{+XFl=$ z6}N#nQ}KSA`_$uIi|^q9;0AI61aI#CQDTZTm?rbS8vY@pQy?_U9W(!z5E&=2-?-Wubz%mme&QhuiWZ@>0vRPmiD zAbVJbi)A$7JZ2!4o~g-BQp$-?Gg!c^rKFm2O*{;eM^omcQnOs?K1AK=O^^sr;+cWx zhHie%!Fm~(Jn9O80gt9dNn~_ui_*+6SwQ4wXqAK#7+yy%XHnz{E6BzH280{b1dkPH zs!@_gM;QVoDY{jHF(^t!xe%_H?rrIi5i8SJgHnFaBtj`!W@aI78doKklIKX}+ek7; zxao|@8rW+_yjLo*P&Q4EnhqeHhvexnY0;$fh8tM2?aZ_cmMVqBu`WlAJf z8qYC0R%KpODP>mSrTQGP2W9VaM4SO-Or$$BG!HwChGx9!1-GyV#oJmD1MAOR0h~4r zFpv=7u}H5j&PKQ*03tfwq||q&{Z5Fcs3lok>fF+*-xAJF+B^vpUStw`%@O~w^z5YW zU38$3$3lROr~@&)(9>`5t`X0PM)ndc9<@YP^gLg8Q+6sfk&MK~C7Yx*nT5jlAw@C* z6#P*wUm_OHQ`i$Ko0qxL0YRlma{}MBj1+sOSp*ok$2Bv|gUZk(QbTwI<*O7HeG05N zQ)I7viG7l*dl9Q9c7(t`rm8u$vRSmoL?cfZGc7NvDOH2>)e{?nmw#aHIcKW;(9$#&FiQD6-vX|FZY^*%)J#@n9@w$(m@RS`XbGm)iwbe)6 zM~=<+RoH84YCUz8ZbzNN<@DJ+R=c&@ZgV+d!Rl%o+;mr0fA2VY)ZwbJ)l~YN$9%A0 zwbkKp+scrlkiIVCjNaC(T{T!4zq$i<^=C#{y_9=#<|zc_o6IOX1{Vr3TbPWA0!+q} zTKtF>7KRseDISZ)qR|+XNi-Rc$o~^C5RZprp>Qmwh3m$niFhQI2nHka(Qr(Bi-qIC z`O%0NfZ=dF9E^rS;ZS)f5Df-H(}8Ft6o4;*Krj>zL}PFbOizYllYu}eG93=Zg40%g zPrcp7o?f0&d3R$SK`tNUor#=!3a!BR>=`#V#po1|g5VSHQ*LtTN!!@rLyt#Y!))Z~N%CfDff*K15RjWi2lc~w#QoUt+5tixBl(&o2f6 zy{Q+^QHm*r=c1gmC!DLN=#y;5jn@H}?uQ>SdFbcgvVL~-zV0AQqm9O>nLfSm*B@>E z_0h*&#(STh{mpv^jA7Go%L|?WH33X?31Wsm>tF;O*osSZi_o{ zjv!==a`~GBpD=8Oy8-yZVWN0m+?#)?mL%)X2IL$B1Tc`{B7ejB0C@*+E$L0R>&qTccxP(0 zvuSNFsr9z+sbnm~=i;8F7x(U>V)LDa7q(PlipM@L#}diNXH^H6hG71B%$oOLt-DihS=h7n$hrrFb=KzY6p=}8p;qUIVGT6`Vysg zwUL8fI6Ih?PX|7pL@gU&2eaAAH~5D&wB{n#mJfCd%InY8!eEmgm)&P6`Svu#WhSHN zwj*|7E1dkCOFIec-U$hSui0c==-2lNUD-i6q04%R_F+HTea3ZIolt!nV_qxevn#79 zE%m*c?>u%DlMtUrTee`*y-1`;Vm_g-{}R7e)c5?K5fzxe2iay}^o&A7tu2fmZj_N} z-$?k6+W|~LYYF9#)^Uz{Kbs5yl(jvSZn_4UND8|sE9|XYKV;oErQ*`WdD9*d7rTcu z@1BuQyiMEprU47PvXzk0zridT_$%ds4<_Di-tmQxC@hcfXR(aw8N-@e({#gi!15>d zWD}z2zk{kE_qR~idzj$Xe?3DgFbDe(UVRUupDDUQ(o04T?JHXGk1By?ZvAOW8V?I9 zICcQj3eVe*PSwc7?Gluq+JiqmM zh`#0XqDyX%7hfT_kK*Lwj=1L%KDo{xe1`=Ta?zK%y;LKm|08wZC2uUjn33ZSnY;7a zH)oO?uj2NfGJOk!fx<4l<~(g%PgxkS1Qt%9_W$6)^NfEzf`43#cXeX4xmA_Y=sly6 z$p(hE6_@|VIHaaaQ%Rw zk2aSAlRmIuNhu+#>M(UIUR*)=qh+f;c|cf@zu)%h&cZHoYANS~%fDIFi3YwZ`*wFi zKryqC9zQ<`xg;v-n(T8i!DNijf(T=RaE1bX&BO@71tSU!g$h!HgX(dLPzFkZV-t}O z=29F=5Q@{lMJyh{jAJx}2?_A`>F5Iu=sN=G74%2oz2kQuW~f3i+-D##KkR^L2znpm zf=Ph@Ib{~$L`9KPz?xJrCnzw2ftbin#^sM>-h3`T;de?9D$D{1ELYz4tF?NwyB+Ar z3IH4SXNMo_!yVi-*zM;hU^xIb^ndoNH8`s3j{i3spjA|aLKH&9I<&U^Vn1~3hjzvf zEey0XtvXKY)ILBu#p#2WBB(6|+G^!ZRV*Zs-DG#~?%mC9Hk&{~0))H+0Xh{36h=S- zAwUQT*~h*2oYUVq*=%-^AlfL^>HKr{p7Vdd&LcZhS3nj&yf1~{U!8_OI*30|lZJ0= zP2sB=((wD+`mdd=UCo17)_5#=8C5l>9JFfN-j8H;r;_p&jcHn&+6JuUlpaDZROSZ$ z)EqgLNV`ypRLPVJTmrawWWJfoxQXoZelE_zr;5S*FD9AXRBD+j6jviltw#))lJ&An zo@`}SA_rx%l{0calB-$?OO>|^Batk16vLD%ByUo!p=xX!DEnAd^ZvMGxIEb|q~ej6 zDNl+>m05h(y8{WDTHeqX?@q)`GtRoKSkz=u^f=l-ZpN*IJp1MKjhsA!JKKn&Z7r6t z4D1WjRM$GV(chRS5{Ah^HPQNpCHc&e(1ZPhkg_do6d9UjmwSjaf-J~5`4F`=GA0$7 zn3?h|fW5;;ska17*d)t1OFby0CHZ6qx<#39iEC%$XBYB7Y8eXJ43#z zl1MldE)RrD{2qT%xu)sCV!hN|>MAX926W9^sJpyApPuh`20WU_< zRuFUte2y(4&6lV9wV)mjhJ4;|FyCF|a0H7h$~+-|WUDu%d)MAc3lnG5c3=Oek+}jK3BOLVs#6i4g37R&ehE#6E|Mn{(66UW;e^@aMb#L zufINwmp9{$;vip}!S6-(ti*{FuNSA$iD9qUXa8;(p4nBLt;IvEZohXQ=j5zF=F%K|rvd*J`Z~QxixI(#G#_Ir#x!~q zlxg$?Eut3`bqR*#nVZ!1V|p6$bD`-u{LZCc0CP9p0hj~KLYfCXFDaN$zflso^e{9@ z{Y#auC76Ggz6Hum`YEhDpRyyr{Z_t5&(P0lHeeQDHmuF2pCoC&qXpnxL@#6fk^TV5 zMM=tR`aQHQz*q>}eE2erzM9HICX5B7R<J;msDrxbGM%M&LDj(f z7A>QVh#;Rfkq-HJfR(fg__ygVv>fw1$W>8@PSHiWLYJtWN?_9s-ePE84&E?TL-rr! zf}PE<m9dl}nG)a`ZDaXGRequmI}i-_|$Jaxd6Jmhc#s0(0g8x_LuH(+HO z@Eb7Rgucblz6Kdu15agsJC$d__wwLGx@;+L@9k&Gi zohN4>EHygCGce1P9i7IJE;DH3qk@!A*FCho0c!tuj5>dA6vapN;^USW9*uV;VF@i;A{w-t@-$Rj;mG@$%Be3+FvI z_t{_m?CGbTdgAfNfAswsGiS`0KHZu&dB)6{KltGjPd@X{tF?{I4Nd$0)pp`c$E7Ph zeX&HsFyfYt@gC78EQ?r3aKU&vMjZb+SVHhlq2W#NZ&4?}b^-S%i(x%t#MHwHW+ix* z;HF{O8Rv{y!W721gpr8HqOoXSZ*NaeclYIs7dtz7$Eb7dXV1R(-s#iUnS0K*x1aC4 zbh*#!Id!3@&$Kv$C6>*lk{IuXD<%)&%1kpXUy!y*XADL>iYaG8bg>SL;a|ni%SCVJ zm6*ZWl6P$#{5~OUo8ycz@Jp^JWDI--^a~jnklB6R*GzUaQ|KhzA%0p0YJy8h>z#7N zguS;X#*c_iBFi#)SMpZ3T{9RPU{?k@@y@qIR`<2U;iT$9xNHeq+>-vcOWrn-)f=}4 z=~>KxLn#iyy-AW&+D}ndr5+RSLr^@C$q)mB;H#4ehs>I=Ma?+4)?_04fV9JPzCHs_ z*J2Va3ock*rbxFHgYr0Jh;0!ya57e#PVcg!umd{VEcO7EPNYkHpsj-x@xAFnol0n3 zrloU6RC&S8WbFc(^wUYYs#dqm?R5+%jXsuz@@>pSA2EBbL)i})mURskN3q~`2B{@6 zB&pW4tR6+;*OMv}gQPQXeP<>)kWy-}b7%pRS7tJ3rewgA)kLz-3p+njYhB0Uh*{Pp z)-JNG%46($1OMT>%EF?`jxYkvGLAi(hkW_I#Cgm^9`l&jyyVN5XhvLTXaz+PK~Pa# zfB^*8alj=5%C5*F`!X6~5S0;dKtNU%WKdykDZ$;qKkHsDVY=(`pY&xLRhHT5UOB)&I>1?3IBwV<6ooKV zf06SNSMc|WO_Si9?xu%3yw*l?q~FjvQko)H@HZAaXqI>TrYrW@yd9gD4&89YR?gV5 zMXCgnJ~#B!35fzxE()r5p6?3#jV;3#dL928ACWk>zfPr?>k9i0EyEUF{&L*lzGc`Z zyy+u`?8}+i1J%O|g zq$I2Ww;J*G|CdE$h(3hE>^zYOp5bcYS7VbFE6HMUc<9aK$oQ0!?q*WpAVHYic?lpj$d8z0aWMLtHBK+tNV{*1I(i!1`O0@*a z!V>a6>O|hk%Q-owtl_p-lay>2>y^e}0~%?Z2y71u@`srsx`hwd%8y*=VX_f>Y3(L_Xqx5La+~G4D?*e3ph992S)S2)`SBjD2 zRhgz)MLZS092z1zYE3gT40bIzMU!DnuNyLNZx!4qK-uzGJ5vSErj(i!&?kP!BJZ)g zdsW(r=O$^*A&XN1Zy=%u217U8W-cVuVbnu|l0={}<~Bg|Ba}l{U(#uiB<+U~((^#( zs>1}l@iL*T^%#>R+sC*$;Ah$6Q%bmX^H23BP-LV6)4ps%XA;T_n_4$+C-E`$0K`?w z%I8oV&m>97DURPJGf8rHKVo-0k!S}lNfIq+iq8l3(HZf$Vhv2K)d#uAJ5NJvScQW` z-lA0DHJ6a7=*dF1qZ2WSoc6-9gL)KIF`VaIByAC&HXlRQm4Ilu7BPWD02>ulH@=q5 z@K_zQec4;V@2H7i&9GD!P^d*$q>90@eK-J1! z&P11E{hkZ`$y>;Blxq4&*q_lZExenaEfkfsqQ@5>cKJm+?Ej@WHn>LxD!J(e`3)iE zc-Y0vlP}5Pi`1ow;I|ezo-Itv&y9&0C(}#{w4?U^tS&8-@ z&Odi@h*7y4pz_G!4qEeOYI#_Yu~^g619vA(!c>|mI7gEwJRBCVwNplcbH}$u-&R?z zDIjJ6f7o6Gqz&fpo~G(FwC{P@ zuz!JAu`Os|%oy4Z)o&(~OIXDT>q7Jk$r@LqHil3a=U9+rZ8q7azIe5?;|{)=)e1s@ zIkU@Dj${!%8` z4-d647JtKDB3_TeR1$bYLb>3v4N`nka{-MdrBsj;5e+c2d(WvjnPA+tfVioLN)jV( z0W-Cgh6qt~hPIfEEL={oq`gLmv=lf6Zbu++k2}cxyX+f;%!)tla6N5 zZ=)@;8Du~_Cy&`GuSm+(r|UQztzhIZf4%2N$^wO%pCQz}ogBSc&1Dj#e-`8D{tSZR zid3k$LSeGNr!f5Y_u35bq-*eQ{n(QL1ygg;e4s>S!YRyb`u*8-bO}&zuW!ZVbXBV= zw5vvC!tB7d*O1t#^@rCCj#%heS3TL$S{-Rq60>l0)9nW1zUPbKNsUd-tURRS>E1q> z->m362^laD+y_13Wk-`WE$O?Qz!&U%#O0ivQ5bQGcQtnWC2IFqZE!RW{(T_kT*zBJ z-i5?1dmb=|DTVgKVR2FA6z?i_KRNjo!1Y>y=ZU9`tt$H_J*BJ=mD_QbYRRw9Ijg%| zVd0a7(;P-JO5by^6lISwY_GgiQ$LF?w4}=ORx{$_91Xk+?=)0Ir_=!M52`K+l<6Ka zR%xE4S3FVH^$Nfy`CZVbPjJ`7C#aj!93n?sMM%A)Jp{Kf@OIrs_`_JKw2`Gn+&#$DMDNpPto z$tO}~pbr9#`I3C=V>^xNH|uQh#nk?uX(ca%B_znc;k-6>~?2bmP}TC^P8vbRGQ zWuCSzumz!gbMP4}bnRTXHP@*xlA28%$h){}RB}$n2L6ZeD*uWqJ)&U<8lBi`PV!^^ zpvjy_JdPuRfU?sdi_+|Svm-PjD*GZkG>t)40Rcr>H7ttKfG|u11cWru(C^z`s$O$O z$nl)~(91ioyY8#{s&3sYS(VrFKbj3*ONhCj-qIJWhXJ-*3+NqlSVqh(hZp}=-EQN} z-K(9!z+FREQUsD&aoWzPH;RA$(r)`1kt_w#g) z#M=0kNfOO2$A^Zx?v~_A0Na(oS?Bf_XB0)pi^j07~-`isIXjQEAzBR zm~B%M=VzMonAmo-pP)v+mABd{==)1kf~rSR(`D9hu4(_^BINEU&{qy_26~J|&kFYX ze#8paC8t1|cQqmENfFg7XhR0loLC$Iri5v`mo3XBMQ~(HpUK&|7pSa0PesvyyeEa8 zJzTtlB43&&Eb2M*8%-{uG_m2mGZ%wFuq?@<^OQ2?)+R5IRh(Edsv#KlziMx<_O!z0 z6;SaomodnUKF)vwo@tJfMYta7#h$8(IQOI!1U9!^*=Z=#>7uha15~PMV)UXBI+h#K z8FA}3{kSd)v>e=)C8+%fYB6*-Ti@cQgjzb@52HYSagnTtI~ZvGa=Vw;R`J!*_2tMy zgkJX;AN82!P0@7Mv2FTnKnvA9dtDqPfx4NDXW}j7JK#0(AZ$-^dM1Bz?kx;9vwNxk z^dA;wMFaUaepUFiL_wubUE{p&9B^F-3^iYL;0mWnEtf77GOjIVUjm(+b-T!E;=OO+ zAQev^5;hkSpemGjW2%4d93JIzqta2VBPDf#nJOk^YE0BY+6RS6y%x4nmRV-xhnToF zzT2HQLf4p1C@s4tkk3xTbmJnyZNdPKi&OBz?i9!}__A7E8yOUtB7c}T0k>tCaV~6; zeuOaoAG7wYE70m3=tof_aF`Yf^kzfBHpvXGC97a#rwB#5#CM=1PCyYd`Fp{Dg`n!x z0yktEqA2vQVfWrCmJHa@SX?)UaX)l`9ph`-=r)FNzyEmmM&1T|m8$A6t~t~D)(phu z`TjRv3I5K{A=?6sZVBrD8W;==v)xH`J>;AZ{#A{>b0}nH1Fu1F8gr*Fun!~*FlAxl zhwMs1X~&NVa6l({Ud%?vXA z$SWT1LH<^tk_N(xb2uZUG9)s<)pZXN+Pb()n^T}y*dHx!lWa}>pRD^Cnt(y9TVxNF z++TAO7d46G;QFxn;-=ITyKAU^teydIJK>Fbx1y-aT(|;CS#z_#6p_KLrI=hC4H1P6MfTHk^V+XVPXG8lt-j} zl6SLyk=am+)(F}rBdd?1HyIl~Iv_C2Rs(y2qp#wMJp$n}h8&^Tp3`W#P~o7#09_%( zNsc&*5yPL`;HM2gGI!q|^^zms@)eUrWLu;V%#QKj35+T;8yPxS=C;T|icDbp>^lYR z54h)KG>FrRs`*Ut`GB=IcCjE{I|Czfo2X;^KoF=xZ3;T1QOr*{aClFZH!hpdZfT2F8SF% z&kCe$XM>j>{iYqK9bW#5ojWHUYY$fZKOm)&*jBO+#k1>Hi#5ju%wdSRO=+Bs;=QH?nakE=(6PYWE8>7evUGy_gG$S z1tq~loqj?tiX&MWB^969Zwuobo4L7~R)Y$OEqNM;-66vX`A>q~e97tkd|W{Ki(x)a zMyzRafh=q4F~{-@PE<{mn_;6;Xb)@EY_!BFym4hm(5qu8B;%_&bL(&O6QW*CLqeY< zUH!t3@8k{diKU2&O(@7-K;4u+{L>+_XFI1Eg(z+7U{vFE=vs3sWU6jNFR5RR%D_px6lX!%rbiwW1&@eY-frdu>I@9oN}rUXBJgz^P8%s;-At#RW&xJX`W-D zT?WaT{g!3jOtbDu+ZPrmoVRE~B}?lj=F45jbqI)WiN-b)TG|f%EIrd4R-1NTU+i>Q zqKO8!>kNE9|T6*sLTrVKoqRETDZy|$1v`z}8&^6g2)rxv zZ!!}9*3}Dzk1X)#1Bg9)?0;b71RDW8Vv>Nb4v=#Y-iGdd{T)!iZgfOsz)Pfn&*d@6 zt@My_N_;$9VQfzRm+&foiYmLpB*K^)%XX?JmHd**-;-21qhm%9Z1zP!1r!llS{Ol` zMg_s3*lfcpHp|E&APvHR$R@}lJIJD=vdZ4{yZ7Ata?WE&AeE~81h4z{`QADAobP-e zD0#m6JIiE&HWR$ui*_u~EjK^iWxIIn8e}vo(=Hc+Zqtp)5zik2>o^VNTwttMmcp_x z#+?4l>H>1kCGb7#8(~+@wEy~UgJ5TKMr+*O@2sOH-^pqH5WVQ2&&FnOA;ETCULV(g zKv)1Y0%7FLM$TxEkQK3Zju#ex)h<&i) z#5+!^3lV-7)<*(OYQQOlz)co>;BS1E?UBz3I6YNWBkL&Ns%Xx26vFV1Z32VOtwe4!4=^YIa{InCK>z|r-B72ZL+ z%UG&k_(g?)6H8UqSV-)bmCA*#yikU!>OG_RK0b>T)kJ!9sbHxocvHyPQUOSQyt( zZh3s$^C1>qhsZK8eL#bBj=i@O2MGy!d_?G)?F;Bxe6HM{7Pk zU3~s-YUKEqyp_R^_HHwmr*c2_iQ(?|P2Nk8l?&}>e|kOgNyF{dxBl!t!Bf-OP)J{2 z2zAxr*#Pr{YwIE@fiDN8KhwF*@EbYl#-Dhp*PR0M0M+>Cpu+H6=yd58qZbklnZS|^ zrr;0U5@CrmZ0^Yxw~QEw_P;tHFgd6*7_UY&?5H@_cr9@nM7b42YkYkBHd!I~SWvvq zWlOIR%Z2xKqaepq&CNoNK6_ee{Xh!h>!IQ<5Vjs1j=3uQ23T{`rWB5&Pw+RBdtB}z zLG+>$%aFKm05U^|HC9nko~TGjvKJK&>J?%MvP^h*>z2&!v!n#;A`}4o)p#9A#673Ye{OWtCRbJEITTZ#-9W$+rk=bx`u>7k%?=w2h&`*|mUcJZE)w z(HYldtGlb0kAgE=b{p^TAfMLjJ%1rp_qCGfeykLDYiO9y2LIJ3#JNIfo3`Gc_Md`bsQ#4A^vc9z#t8W3(1(18-~k zD)Zj<;Mof0sxc2A;5WKb^=BtG(`v-v(Yts9{{RuLH{ zJi*HiOsNk;B5|q?mm;A-lXd3>`{MZ{UKKpCCb{G2g{B)CtZT2}{%vHH5;DcMXKVin zDQd%bNH^zRonjxX@C=Q}-J-i)xoDks+tOywoGYL_hPt6XdIMU0ZA7d$Rhg7Qs1-NS zZMOdtJzls+F-!$a51O<^a&$_H&=%aJ5QCgysPFPp)s`ztOwQ)y=|$BoK;>&RN#00BK%{B--_=EdH(^SmR;rI_nm2YfnN^$D`9D`s=~*F z9Kua>L_!|EAb)VxaK$Y}%heLcxg`TM zhcPyo@(3$@_+^v=H_ND1J0k4ztC|w(dEsK~tgA~8s|A6maIKwhot$B-t0E^wY@d9y zd~8vDm?ov7^yxSMi{W6XZGFJ4ot2po2UcB_orFJnSbHMd)IzgVXZs5RmWbkP##Kp4TEe{Z$EXTW>u^^!1)JxAP+>B|{D$$i#|q4+CF^Rq7|y<* zzDU!$+D51XS~5$Qg;M%ag`xbiHEy>T<_;k-m6U(@zh>-zJ(;yua6qbZKpE7cvCV6h ze3_$m73c?%W;hX97anEW0YMr{qn_QJw0Ct-I07~9fu zJcdgO|EL^4=%&rOxIy0|BQGs5EHG!v9u-I2^DreTsS!~fN8|kh~x5;|%lU}FSq&+pnhoWyM9@7^gR~};3XMD1ms&05q?TMa&2-h@jYYaHGp@5f;?=mMet0_h9B>j`zplU+#{Pf*1_qeYtrR=>l%O<3qd9ARFZ*Y(&FX7TntAG}Ba2^KCa$plc6glAE?LEyk{H{r)5N#2gXIA4qV z#;M}s+qb!SI~P2BNydBqxqTu!!u#qfPOc|k7QVI6NB9Ynu1Ul z-zEf6mcZeb1=c^qgkFf`97OOKmjBscs59hT2kZA7WKZ*9!FNEZEg%S|?N=`IoXp%O zeQwRkC7u)o+kQpuUtNB|GaEV*Z=+1Mw8gflvQPc9RNtLyPB$)b6I$HJjH@Y={ zXMoS&iK*OrrT%d^CbI+n#e123HJP7rTt}fZo;EY>nbV8j_oDwquY1wcIh~nWXH=l< zj598P$|5MDRX7Sr>!9G0ke!4ifQl^2h_WPLfCvPPEJ6eVfrRYu`&-^VPhu_hre}J3 zdIRSTgf4}H)l2;RR}0RYXbjH)MZ6$p<{DC!SGC|Qg{pn)(^U^j+j7uYAK@5rKxG0;pc2ZD;^M`T0~ig* zpw5v4*tVa<8)7LPY|enzIF6eUOOYAsssd0CoZP<>@?Hx>xR;#IZ61iDgewYCJ-uJ?&+b?UekGi}h)h>DMFZ zOk5JXGyO5?B^)mbk5qFeE)4ch@10)9oL09;yga_-D6TRpQ)nh~FLa-5f`kj#ufWMZ z4IJ_l|CbB!a`AX46Epj{^q>^tNT>4#`3}qiPb5W+V)S$`!reg5l#tMkz^nDOh{H*| z^N5RKVr$J3Ki?h~ZD6qDsE57^2!S->lzj1Hd^fPjASiP-inw{8 zcL@Sm5k^{K68(taf8iJ)GJ-`115-j$V6dh9g2x}3h>IDe@jo+`OyfSbBhEjDdlF?P z;R1)}lK2Nmq~K$_a4d64fVze<;xx4OGlo{jJp`TA7j}RhNMuex_xgylg;8tM-G^?heqV3AQZ03`NEnYm}}Wtvf8K=lcyCZ8MS9- zTm}eEX3t?WdIl%h$Jf6(f2G?0PRU_@5X#TzPD1j@DwOfiulWfq!fe=)!kXS%b3Jw3!O z9xlQ*nocR~-O0AF`L)&0F9@(NCH3dK$5%-LZC4u4VoV^I*0R1dilW!#5oq@(rs@o>D`L;_4vkenp#FND`F_6)V9CqWO!(6a#vdJ*Bq2~fbM9VZNTFrX3u!s& zWf8pPjjX)<^p}a`$&6J9*TCA9E3Lh?3dkWI8ht8HtM3HFS0VCSx5Z7!TN{9C@aVcb9}MWh8sN zH+NAyui~z+yQd3ms40t$SCl!yHd-NP~dsioOLIB$DbVM0nRn|MeJbuZkMFIV> z)e&LD)jSBSU>$kV<73ipyDuTvh=qz500UurD6mo#?uMX*Eerug4}7{F7VgB{3bJpRU zeeq&qdTe5HYQ`}=Gd=5=o&25C^}=a$&e$Cj6H}A+@$u*5V~)wu3H$WK)cC~c=$L)f zHas@cKWw#)42;>vY@@b*`?C@2@R)VdK05e#c*NTI$!E^1jJpY&G51 znN-cUOggPasa7fFYL!lJR9aMKO^do+ceX=e)N1t#om$?aGpO})vstcD$W2F;}6@Rg(bizPy{NXDRJV0lC}Y5kDC%vsie(}%gUXJ*dt{O0`5%v?U#-+yuFy`kdZ)!}!qoWDFgSp07P`OD*j*RK`_ zFAfw3`p=GB92_W~9lSPKyfHFxZRq;VTLZ&GH;W_1YeP4Rm(Gn0j*bowj!urfGI__is;6J%4+CWM;ZFGkdo*y*xiRH@PrZnprH(&z9$=7fPjIwme%e zm6qz2=1MT%tj;aXG@HTna=liYFV8GIsNHMSKDfV94Gx-h?mI1RBd7*cKVn?aD6?^> za5?A8gwOV8EG4rSLQMbj^iG}9B!E<`NgcF{dv#FW$F7UiL4u&qoS`#|vuR5GG!?OK zmxv}&2@Wza`kuH1LTIL=ZLkS~G`*tw#a>7L9tRiH=)D0&fnE%0G<787j&SaVJSqOCmRKlb^kPOB7TaZ^j@3N zjM=MezOY=4(`Uf-X5)UhW_-(j%INm48{gcpN*VhXyJk4PK{^?;&usFwW^jLPj~Kv- zu#YgVn|jtJ%beU~v8(~AG0~m|I%^w z$i{%|{xuVl;e_1;Z+|=3kK?TE9l(((>+DgtDQX>3Bd$YO`Ynbrf2czq6liH5OWWgz z=gjFT=Sn!!+EdARn~Z*&aUy0k?k# z@IHD;#`YSFwJ*JGD?2~JSa)?->)sFM&7p7oL}2W~ZvusDT%2mBZ|pbcltYW(jdlC` z9v+8>uC#FiK1VOUQO44T>ijSc-*`2671Zn-iwU+<9$O5}5jOpb3FG{?@5lP5*8t7# zKW5BtFF5=DHx;1u_LpWQj<|V)>kCPiloF$xC(r*_h$bD=9}nMUy-ZxzYXkzqE!2L= zSg#oqg)?&!x;1&HZzW6&cuX{~6ME&c|D#~7t`tYVW=N~e__ zrnsy=hPd9O)UZil`z!+c+Q+f|{W}y`&q?Qc`;49ZAqDn_AMJi|cWC0T=u7`Tv!`)y zrQWPJ8Y_)@GpIF#O0^O+g62wnrM%LtH(?DLjVA0h*c(k(|4dMCHtO{z`qqPb&DFcB z%^+yhf=0DktGd9|wpW5?EvVM3m8EJms5Tmvg}LR$N_lB+@vHL-%Zm%kOY=*W@?yEP zxV%^|R~DC-7v>f#m8IoMt%f1xYJg7VDn?Xm<;7W@Q_nTXhf;ZVV&C~Sq6bwnXUL&zp{GIKA@7sZHCDXGOaN#6j((55608NMu{Mfhmq2_FcJNMn{;m8EH&+P+E<+)^hZ#?SOv zCJUH8oCvX9pI#Rf*0~>_-t{}(dj3Cp<%Pp9f1lZ#z27)8SuhK`j`qCRQqZs31E5{n zV+0=g2^?x6>q-N0T5=;YfNVvE`4Bh`_&h7L;4$mwV3sfuRM5h~KaYVmLounYRkPF> zE*Yl6@;u_hN!>W@Hp1<-1lP`<9THAo`M{Zv&R!BOu8jx z2&fxIrF>_`Q4tCL!&SCVZi4@sti>&YcR)M=YnUMxX)S5ZrOId}@2M>DX^M&uZ@6)0(x#HbD}6H=}CEJx}fuendZ2jTyv^>vltlKZ*F z!5?h-oQ0H>{{T+8qGD}T4q}O5OyZ;z&yf_B6`kaVL4#~NfeeX0WQy=&B~poBhY6CT zkCC;{N=CA!boRoQ@=>de@8qT|J;V}x>HrkwM2@0F3g*0!0;D4G0s|rKBC2px!L$I0 zbwuziY{g-L<3=u8z_8Bn2Z22GkOY>8ijW~r za5@lqWsurlELcl46qKe0K~; zv_Pb>&R}Q7m!@wD6>FhWh;oZ)mqlc+^Lgofd(L|%d1r|fD>DE`e}(Tx6LUWiP4CrD zGlOb;JxnOG{%n|FO<63a`3G-n^UtzH^?~X)O&}6fox+!7c&3Wy{W8(P6}1pSdA~fg zeDVqQrB0tfl-){De(?a61Y-Zt@1r=~ofu!wZ+q1H&N==vLutuT-a$Ee>C;pSs!%Dv zGg6lLs)XP&v;o4ZF>eah-AYv#FG_T{&0%R-l8<^kf3AOXQq0|6g`wWskv9WmBLr(}^j_(Cm z(_kXR!+oaFPMW;aLwciT{$;9PGNjXq zJxWG`BFQ54X#e7*;he9t)^EbJ6%*(AB>#{;EJgb>N}Hwx;*`mB;sK@de{5H4h+JnG z-kF`9O|oeN^+GNF@K?bQD1sowXvAouX^qBKOIyK$`C*_?sl|AWB}S84lil2Qc6R5w zlif{XEv*(?TOuu5kRU3UZW{$5N%v}#YZl!gL3(K5W z-X0U348?u)U>^NE&vd0zNQJEIq`rU+wEhPpB;=oEq2ia3>wpfWKEsL)xTPFS4J>Nt4OvbiyT$!UboSP2 z+8$caHE~r!)LB!(1n^LMjl*P@&~I!SU)`BD9a(N09uOdPh~FpCZVgf88YgjE_>2~k6c3Jr`$BJ5 zQAe9MownXC_TYwz;8K=O!U=iLnzh2Qq*;WHY>P+dQ)7!oTMVT0aed|CaZw4A*yBJZ zkK(>yvk7n~AmHn8d2&pWwx?48MvW(Oas;uK;D;WJJtu`nWj5(1V+=U<2$~rPvnJ_Q;QdQn0WQsZ-Ku&$*0LCg zw9#}blWk;20fauFtf>hw47K0-sFc>1q9YoQR-t1dNct8J-naJ;F|%!0{@MfM&e@qg zDoGIb7M^?w{$(A~2DQuxmnBA_qG_p$r)LQ)E50g)ZBFcE+iNcub^4FfO~4fH)MS-M zLRSYOirvkI72Z`?m;(pR#T^T*=r7+~y!wr|+vj%QtCM`&jTTj1sZu7VQJdIy*KSVT$ z{q1;R@Sd?t0Z*OjIIQuNYv4-P8EZfLpCtZq1s}yn3Q_d*@hEw7w@Lcl%ZI}K6ERlg zyW#V-(hnNLqlM9Or93`btc;WzJ$HD#uRLPt~i{N^Q7t zdUC2%othl4)Js#R&K4$*R~z+4tuQ_|F>$%|ji zi^IoG4xKqw`}E0)a;4E29cTCvgVx! z&%ChrskdTsK|IhlgK()$5;N(ASk>5$59-t(65PO;(yB>3In^(O!?D9M(3%Etn(HuF zjEWmdS|q*kkpREPkc%u{|B28j>mhCVhd`(S+8*G07hd0S{}bm&H*KGxH-&4~ODf2auLLVBo7~Y=7IDWtZ$!}}uf$OlKX))}|MXlG{rg_+dKO(d_vpUYT};l)hldD9 z&0=vkVfZ#syCEe{f|NMJ{XZf)D~4M3Sbp{EE2~U{lA%CCe1r-$98%l6g^v^VK(7`n zr~Cr2f2#T7C%2Vq8$Wu_lcXOun7io%gP8OA)K$e5x+*`y@*MH{@}pBfd#u@d~o->pFA5vQ_NxTjDk8`x49PI*(U#qo4C=jr_QbuN|CcMg%&*! z&A50dvmO-(zu5BNcQ)O<@rUygT&(DF53EgQuA}MYZs$vL=)Akoc+N!OD>Jd1n|yZJ zxqqC0>9-g2B*qJukp}x*>mVbe7u0Y`?2UI6kaotIG^-}GJ=}k$Bw7pcAI`fUXV<3e z2^_Y8ETbR(^8Fv%wDCs<0toj(X+fD;Js+fNU+>mgpKT`ZcLaxnv?T2~BIF}{kY@wq z7|ff~2h7bXSruESFlDeE{Ro?7)4b8VS(q1|#N3hUvDJUyyluRG&;Dg4hLHYhz@}Sd z)zyynRlC)VEx?vgk6kHSkcYQj1kDiZX)uc5T_Yqfp#ey9uj}T7=dIZS2jc$ z#h)&fAtU@RY`QpU5 zA-qhYq@P5_h%Jl!jOcgegY-lC0V;Zu>OJ8d(v4)aiTID)K&!~yt}bo<%DF(4iQ1`6 zj$B3D&3GDh?Xi{iBp#a){|FATP_YbIj23cEAd!em_d)NL!+Be))6-jK1E6~Nfh`NV zd$jmxG18fL(xY#&uI0;;V8Wx=BOgjy917-uK!)T(=HVoIQ4difI7LU;?~r^q;LWzM zF1(@^JjPPvhf^sgA(+o^f4r$BR~VHJY^@g7*NP8hu5?JC(UF*_a)p!XcflaknFcZu zASiEXOb<&7 zSk~1ph@`B^Br|c@<7bIkBNngfd>BphPK2fi7jgojjdkL2n{EwqZo*ukdz1q)DlI)@ zUnKh>L-H@&a80^e&%&Dfw{D+bR#d7FSz&+FhzcoVCJ z<4xQxv3F@HRyE~ylxwsV6{}`iY@8`~4aJ1eLPj0L`nJf~mn`$wb#8!2j>kU-2#?KH zXXqF+p>}CLAfSx8wChuox+y*Gr4EKF6__N>*1D~UCujW_gQu+xriBKwIt;H7M7JEr zykeM0GMwj{(8HL^pXh$0U;M(Z8JJ~CHKx{5S$(xDXr0@&8-nG$yD^AO6{hD&THrze zyHrWRhu|OPGJk+YFT6_Ss83dRt3t2!_rJ7{+!B}^1yz(1W<*rk?8ea?FhmFFo!9Mj`T%)JQt^+3XrlfkHK9!(&{#!{ z1{07!fF>nGAtsXGqd|g^AH&7jH;2=d%0Qw&r4q-0D*M`&j z6LB?t4fouXP5^vvrLQh8r7BD?uRehl5T8T0N4w|_}2s+TteMKP7ss#Ua=rk=@U8K`w^MT z-df{s);rhb?{B=LBg?>PUSaz%OYiG={vl={nINt#(?_w*OdpUb zC)TQGI{L&-K0f28`&11iVJ`qImN^bf@mX(XfXp*No~(*}3`s(1BtnswbK`N7oET|L zm=YgxsnMO`bsJs+RkZ9J6pwD2Ar1I66n_BnWG2G`-{Xr$zI8@nIpwzGGO#F19dnbj zrQEt6o5uMvcV;+>IqY$o_+g@@m;MoqclIkKI7Bond@yQ>&Wpby&oaTCg_IKRP`yef zi@WExuif&2&zVLtlc7T>V}EMR42fki-3>`i>m6&CdQ&PNNMCyN&@2+|a+kf`+IJz( zv$N0Jylg+1*ztU5lYFWBup!1P5|2LvWMMG?+^G)J&%y#Xt|3xDTboU!T8I zx$z(0?(%Z}@~g)l`x(+xzx%KP4~gzA6*ojO6xoT=@#)z3WXkFGPXz(&OR10>oaw4K zQa)-%^w7MUtdh5-#(kbI3cvBgmtLzg53RZ3@T?K{V(4R(IGf8Tf;tdSOuW^g4y9i7Q2ivWM&-0MSA>BkpSWmL z5X`*#og04e;+rm5N$Z0lQ6WW_vvP@n*l3|*q;>E?SWxexqqa`-sB33jcK0D1HGANo zP49my&Hi#Hd+BVlwSs}V?cBj9n)i&4O^l3H8soKgYphipt+rbATC3G=j5qhS$A{as zTBFryH){K;mEnnzJ(YTEyxJZeYmPtB*x#yG8;#xV+Qh`}v9W5cw!6A}@1BWzWmnU- z@`=kUje4bC9UW`6n`5ov)~@>aaC2>=JzQ^&HumCDt5W&RNOg4h@ZOE9AN=zlk8E$$ zx9xs(+xD?)vsJ4%M#e@a@N;<2_;92BNWI$LQ-2bzJ(BmO7f;%MdEA>$<@V>#lDa=R zl)J6ZWZ5fQa6{go?Yuv*S$=gEXD3IE30S~LOXgr1jdI~zk<+={H1yP`4-z>DI!!e`Bf}w&8>sXS2Q+<%Tpx1N)t4qoSR;>thXa1f0H-F{n zBTrwy=|4_=wnNrx|1%N}&#~8L9v9RJzfEkmYtc4o&FcIrxA`4w?|vmqvh-IIS$fA& zmp=Q$G%MR=$JTQhSlpkTsFA!YVltMyrtsVYqVM3}(v%WT#>Q0svXMCzk>GOcGm;)T zv@2!FM?UNr5gLxIR4+6uvHZYE9NtsdnJ?=3_3OU-;xjj2`{m8r6wF4EBwnJN^QuU5 z_?j$MW>Q;x$QhMi`N(6lhi~ajZ9SH~aM#I~Ztd9Q$i0y*XSMs@pF9~S`7%4XleSnE zQtA^XJq6_`VYcu|*2=!g3!_;wb0VH4Lt`Z#!lcwn(|P@d)ervut6%usm)?M%!G`Ap zYNeM1oj?RM`^X`u7Y*F#8Fpp%cfV*K&(1feoIAR$@wRh^AK$z4csYHpwRcBzDuL{u zZBgkXZ&bxb!;~7IuB-qYlB6VZ1IW%WCYAm6Le~aDX+uhxlz+%*MfB3(;D&WazkTg> zx4i4jV5t4M485%mI!dx0YtS5__z$I~mW5*B429kKE6QTlOzosl#84zMMWym*|gX2oyyXL3rpEqti%_$R0 z%Uw+ z$fE~>V{$!!UC~(o4X2h+UUJhPRqVW^ zySEO+38UrQ#}LfY-^8@O_~UHx@x5Yvoau$KFgQ-F+4zP+jvZP605PIdGZdgMfD_68 z17MqTz6kH`Pm|Dl$vi26RD<5~qF)4)hTi;(m^hhPy!8yw;Ryv4j$27yFlzgn+o_1X zV#rD&MN24#urIg(UBY7_HrR#OWJd+ciNYNhN)W-ZcwI+QhR zD-=N=^s0g9``ZUdJA9~%mV4wBGIRq~z%vI$A~2=q6;H2nc~HX!nFbUm3jhJK&oI5{ zRmSgGT`(Vi27y;Jh5vL4hr#bbcDZwS-OY#7V9?{oyQR7xkmrI-_ZS>zfN8P2a_p|G zn^Ifar_^IlQ9?o+ukiimswDnQyf+gXx@HY68(OL}9EqlkQB;dj1vra=bjHUB@U>rr z*qQzgOXti|+@$92`PTR5P}Lp{WWAUkM~k3g78K?PC&2(sK(fCD{G;wptKGQ(wJK1T zySEO|U&l!Tq%m`vMs52=iXkUPr_yz@wOsHb^2rPsWt{*A*qX_@cj_vw{7@IG#;W3-1!y;0dE4vmbK6w5Casm7o<(_v6)_W{O%j? zyudN0N~2$RLTi`@y{HnW%OGQ=1%Qg{4)rdnP}%+Mxd=X}1C?cv=tj>zvWIWe2?rv{ zJQ0SN5dOz@)dt5^mEqlF^W86s;ve;&Gdk#~{UKOeO2>w2J410C7>YW>IR4NwLw{JB zWRu-ylQa!dtZgN>NK1>u3?g0pxGd(Qp7=lVSF+1-FL z>CR@iH}}5heV_OFAg&~sl66oG1tW*yXjJ(b(F*B_c8-2)j3QpC; z{%P?IQ#JhWuT^G76IRw{&YTEs6#WoyR)*kSeW@>Jg`Q8w(*kP}x!Dl}29sROc6i#x z6ZQVcie>MqX^aH30mglvE#@B()2GsgxZW4DC$LXHcf9&^Blaj0PzEvr2IEC;lZ|&& zB504>K|=5(@M%F&N<8yoIXFK8QSJhIdh|v)f4yz#W{u;BUee5C z5KW$7*cSjo)xi7WKJnn1zb9Hca0Mnhedex}+pw_>Xml)nY!f1*IB?~dYcRFT|F;pb z?PIH%I1x|**heo!A3cgNcMvbJ-!#DFuByduvi&k5%ZyVzhd>I5_3T82I6NW2MHu{> zPp??^iW18%3K0>Zy2&ywMS;`}$WGP7U~kyRP_|wq&i);eY(m-iT z$Q*+QlX=*9s5t=INPddMgmL>9lONR7Jn$Wr^ zDZ~fNATOv0LZ$37E=3O={(rM;rxO!L!p`{jRl)?AG=E{H(}fQn45F^1h@{b}O@7ezL@s*snLGaDrwik;vjOBg z^t9MDuB4w>e{QV>MGUP^;0_XRp%9X`(@^j_Mzu>g5d9Pzxxg3yL;T1~z)zE^JNSM1 z!s*k`eWP=yaZ=sFJIE1K2feZ5RLZku$4L~02aMgydjNEo#R}v=FL8ZW9x)h~x$n;= zdgKv|D;XU%(aw=vl3rcygz4ulZhvTFX=tD@k{=!!*iz^kE{yc{779cCTMG{q2TkF- z{k?@!e(M9p;!vqDG%(V;xs>nE50v^#gF{{28@fvUecc21ZyL#$HWzxgcIQhy`QiS2 zVPIQ+IA19BZtBi=6??jh`To8w#om11PxFIay|!R4Df0jy?SYL;a=xVsWro8Y&GAZ`*4jX|khrtNNgv@rSRO zc;~Np#yvYsyk|IP(y2}_#4JDWj=$)O_EqTmA!}|KL{Ra(GBqwRZo75^Mbt7;prfB< zs+6>Xp?j1kRVF5{DPPg6(xV|~RN%spvpf|FDP!w%n3Mv}mO*gUYvW@tths&N`unbm z$yIJy@ogGU2gA5Cj^rGtM$|0P!JMyz{~OcHR-P~^OoVawGoZcr;7}9|?90XJr8S

      @pK4&y?7B6H}eU#Gn^?IlUvPgF5{F@crT%3W|RHrKeixg5=V(i4e3osaoUW}ah&iF z$%z-y`Rf@%g)FVPsGR~yVX<(TD`IE)R0(&JwxE619~(IU#R#?n%Z5QLux7OK>bB)e zZ~WTRaK+8?1xI9r@^~E03?hR}tX$D6)wbZ#Dn)0L-EWI89vcgZ6eCWHBzrMC>yJ)O@@TwYJ20i4GFQ{5|K(_)zx6b8 zpvF7NZo`n*aBAGACkjLouxtuw2*l*Fmd0wTvcesTR@)|tfXfGbnUScO=y^n`a;_b? z`PPFKWo;2$Eml28K)?^IqURUF@qh`06ms_ops{eBTe1K ztUk^8IhBj|+_JG^WtNb#`@$bZwsj?6`hsn-`j=}4=h3>F>@?za&GCzL;9{@&OGe;E zSIC{t_!fLJ#aNVkp69#Pi_?9h7uJJE^s?Ak2>Alg?erg(u6Tjj6&FVG$Lx5ejsC?G zqa&tHco3^_**0)49VWKCCiC1&0mBJc()X)-KvU&;^Q^0Nt>Ht0Ko1%%F#$-jwQMWL zI^VV2X+4OJ6^RzttG4prdTzRVMnU-)T^I8LPZA-lNV($bYT&S;k&nh4-FGbt6Z2R- zIBb_{8@m+SVL{GDLwW=NouJqIp3RHX=&o-SPxo?9Z`#CUmyS3O)IXk zo1$2f!&=44!hbtPHCC!kKnv%ok1L1u?2rYd^h+>vT zd7~CzuqwHmK{Orr}x9FV9cqm~k^;t#-KQW#WgTyf*)y|LFs!uKBlG8z6 zi7+ShhPnaib^-KDr%ylIxwY~H zb_h;e40I6nqA$sRsjm9irmia<$H7S;qSZ73+F#Q&I&E~@AKSE6nz|M?$O;u5ATmm6 zN1<$p4vl{>D-Ez(ihmC5vZfVq?P?0+ z$>63(etK@x+~;o=ZAw&(;&P#hXjidq&q9*A~*!aK!-Utvo)MiFYkvP!2^fk(!s zGGLi1$v_gd=n4e`y~lLj^CXlKD@XzH93fFajT&-N&1me&$JcND-n_YoNtDZVP1Q+8 z3f2}6-7JSQl<;8mWq#eb!4)f^K|KZ)mr=3xf|yCPwgB@A@5C?*N+|0=rkkGrsxMHM zGLlN6Y!LjHD#ED&z6S3F5bjXr*8$sm7X7St?)T>%(+SHs5L@|-qE7=V=L{?tm=~zd zSHd+vLdBJX<3TxWzV1yV%p^`;L_72$rI0!1> zGyzRno+{(%Wy^p3(7fZYq0qc;;wn(NHm(w9H6(S28O!YFJx~?Ex12Lua^X6z&*lcQ zC+B&1IVejRPV838DVn1wT};8)hcZh$h^6@qS^}&(fG*I)2_X2TCs33Ia0}2Kp?Wzw zY_^8xQ=6_ATOM6}Civ(H19K>_J8prY)R(YcjfZOiz1$X1Hslw8_TIIdo;@Qa7M?$3 zxD~=W_K~~-l^?o4eX7bYC9o!P!=}T$PlVW~_@z3M(>u`+$qu=Hsf(z^aN zeR9XI>PCz~k|I*sDgRWhlk_42CGmwrD+|=r=k&pXy5NN1r!c#-V^A{Osez#Q>4r%$ zcG+?IQnQ9_y}$>wQ6UDqhAnZg^OjTm%ZB&zFrNSW&$o%wM5N8*G*Uk0462#oDL*5z zU@C$YVP`a)5wH`8YdM@MBj<~JTV3q0UEBarEFz^*v=N9d6hB}xC6KB~SSCm({Z^m* z4RLRHcxZTF=x#op?7BTLI50RkFs!*B{^ph?dHDyM_s@Q@=j^KAZaBY#pIZISlQ&vc zzO(VD&EGmDKmSUm6pae5@)A;B0il3qA7zfx6A&L{!x3eG44u=`DPsuR4V9I_u9So9 zRu@h@{zNy~YmO&DOGDnr!L@W?z+meDQn&3s_nTU-E1OIu5}8CQp6W~|lbK95*DH(l zTi3t-pP{AA>Dfn{KHbb@`i-$=q11`J`}d@DF6G`21eVYL4#PMK@jCk7u;Aog0QAh(Fw1K5(HAg+9%xV`pe*fK}iV1iQ_K0qsV!C18kK@Z1_ zJ5?qjH(4&Lwr(U6xk-ezv}SNfSB`bzclkxFowIW{FTdit`8T`Q1*6d~MvuR;BqZJX zf2uhghDJVvJsc`Evj<8F01*gCWZaz&(G2#KJC1<6LP)r@-3LTC!px$n5`b=!pBJP) z8hHtr7P=CQKnQq-;DWz0T1+&vxKr>6QhlUdtyp#au@&dgb?A&XIlw@f=-nZJ~AcOyg2K51x>%O9w%etB;1y{B z{|UUZ9GStmGv$0_J$A$Dbm#0w2fA@q#GTX<^USM`v*ldCSa{7owGF%B;Y+&8eIBY5 zK1eMw%VH}qi{f-$GrU#+a5W@Y#LVbxHH06~x9Uc~*lgYR-@o~5=U?c>9OTzX4$xo0 z#C4=r2dPyV&D%}_>IHxR_!$0%OfJ*d&U;hCAs7vB7jFL|6WXyC_PgW1=&#=^?E1z4 zZ`>CBQxG2T$BCZwnPZt;E}O_@d$V2nd^U5XE7O(EX42X2bT$$1?C9)HCgagmDw{}l zrDAQlTsocW>PqM1>0B-ok99^f-I+wJBbH4jW2tyYG@fYd=tw3)u~-LOMIxQCXr!$( z8gFlFZEuanBa6OU`}<({S~3!jv_w1F+k)+pXlt~+tvwos*GMQ9Y3T^HhQq;NdsKuU zY;6m*w#3_8TSAvZ(MW5|vo+#KiNN_TY_)egckk2|q^!~A_qoo3>$@7bvwL^IdiDL| z%T99c&XU}TU9?P0G#b+xW;bLD2}#T_!97_TdKC;-u&7{*bmg`yG?00NOr} z;gU*LVPP{4^WEf01PACOa5cAq*{eWEp&v&;KYkR|Nf^t4`!WG25-`^^cngTG;5CAC zjpGv>%Mk(T81NX0Jl-B=DzczARV?fCBB4W0k9+rp=bro&Us05i+ok3onZIarrS|bp zez!xcRX?F@3ClB2pg!o%ukY|c~#&9HHlh~*?0+&p+pF>!EKX2F1N|Bvo! ze~Rin!|bxG_a>Q6+L=y&Y5#zZzob8Ork%Elibk!LDls?`YHONl(aE$^tF2nw8q?GZ zUZN2YO^q5AEDESmM8I;5gqs%-(M1fRsKD-?bG~!V_np({eZO76X*=V3SDxcQnt~=#i$;|s?%_mYhj>MDlE!&n0JN zO4(PsxXp9BR`qjd`=4899^1jNsy&C+c(QsSI>N=MBvVs@&>@r^AwB0Lp7FqYK3-uX zJ}__2pN%O*2i$sMQK<%^2slyDTx|TA0ssd36^yNFt*E?MT2}s9*~RmvmF1t7|LbV! z`BoLlw4Gh&uP)13`^sR$^5LvuRsR?CGPGK{``)vqwAE)hS^HJ#*3FyqF1Y7b{h~Vfo*UPEu8sq^d&u+93Ns?Q~7;<{#sq!|Vcw@n$Ihd#^Ue zd?Of(8@wOIW+62miy0nACbmc9m0Y}!o%Kufb#u}D?=Q$)xF9_}J8Qvfixy_4&(4^& zIQD41)&FMi>>KvMnVafz)P}?IPbEO!=^{rq&H44-R(X3#B)Yu$Ml5&Ex)?q+$zlpO$v6rNagxqd1j)1W*?NMlnXny^23LiYi^j!24-_3N z$j>i0P_Vz?K+%Uqd-fIVE0(>pR<1eUw9FM>%=~@*Dz{~E_Z$OGqXJ;;fcsqd(d~(pW0YX!BS}Qgwx}F zx{NeRVcHcjpyRYZh${4&w{L{amLJYLPoMB{kRb>GlPb}p5VobjEPAP6o<4OCcbMvv zl>&JXp-gu?|5>J^+}|GM&%B&slm-Z!vK`NwUS*MIj+{Tfe|W)7;Yt7XeyrCk4hMdgYs@i#ua zy8HIY9a3&78(ms(dCNdv)wSG_CuP|sPd%?{J@5BpZ^C}v9qO*{;Okt_baSx<>kB4H z22_$fhq4V%fK|atF!B`cmSP_3K0Y>yP675hE{&InkTH{(VT@e<@#12GEDXn9V8>*u z9mA=6W)veBv0zjp09`O%g`!fU=k}Ms;tX6-ZsiuKnwq4W8F2=R4-_^_IdW|81<_t7 zRplLb=xEU;(U^bambiQD$dMjpth+Sor^>>KcN2Ja%TV%w5 z5ZWyfS{kkxke9Gi(40mLT~SnkCWfr+R*5Btyy|6x*mj8bPKyuW1h8{I1?oSU9`T*6 z`y>&Rn?IIc)h;HdRPT#(HjFTJNvX{gdNJDDgt#4*0CtLqGR5kfRV1VMjA3auGp3rx zQ01K2g%p;cKn7hoxEMX+GbAlUOukK?z_a5b5RuhT&{Sw45=>CK?ma)%6}F1<*^R}5 zZ3!7{IAdGMpyt5wY84A4eJnFdoGHd;8{o2TrwUUf6lMIy@HDUe?FS26;dxmwCzCX? zQIL40*itAvK;{yvL1hLM3?Y6)jWk@YaVMuVA9Fs5o$TQ{)4aMtGSz9i%k{w)%;|^Z}8SAx`bn-!ATk>j4m;uEo_2{r6);_ zJ)oziD+{<`ML+owRu5CBZLNgbDA@fW4A zcTr#rVMc0}q-T@H!-;Pv2EnBB!@aq5c?*zD2+EQD2$*kOC>Fo=B*@Tl=Usd12G05Vm!)^5Uhu_ z1@q=zKxYnWz)$j72P_;nnJ$-b=1^6EKCjxpgn=BAiS0<g-TCNl88f+ z{TF<&tCR!Z+kTpsD>NBSGszIJX^No~DIAUe1l|N28@7Qn7;9#%rKV)=(qo|XfN(rw z8k82qt|j6mgTfv~x}-S@2H5ii#nZe^y<&a8KlzmLF&Ls$TDJdI>}0hu@Hy( zG7wP-wm#$~scI)qVfFUIS=FxRPj@SpAILuHK3n#|2RUX~MON-CY?BUdX@ z0$d6zq)bW#5Em972NkM#mxI4OM1WCumGh5IA=BYcnJB}vw5hcf(d*9OmTokwdJoz>$T>HXXD zl-#i^9L?DEQCS>q{`T4RuHwB7S8G52yt%!lqrIoQqqVcAv%RgYsiUo}{o3`eu77uS z-t6k?Z0?ENYP;2ax93h*OYiO8uI@W`@b~+XzPr6W1NR<0=Gk_!LEjy`m0x7&shC<;PKGY$l!nIuGZfut}DK~@vd!bQb^i-${)}#m58c- zZAAfNAOuJgplzx~d8ldpp{fv7iBu^-AvmP%hX#rOKh`$3A+~|?1{>S!S147*(@hB& z%*!@@?0RSB&b>4D-sw5#&W_zm`LGD@&h9<;oZtC9rY4?Dd?)*4c6!?8xlwD{x}TlM zXW27*+S0l2T29Wl;A%73F*coNlSDjVPA%XiA?z9K!Cl0EAM!8xcmug=J9z1zpUU9g z8m?3@UFm3l`Dpd$O8%ufb!SuU->bHQE88+V_>ZIe2L~=+85+!F26``d_6`m8c6JVS z_g(7m?-}UH^koLSItR}8cH_HUXM6j)E_ZfcI?>nF-FfjMyw`Q^^u;rm&-e6qA3J;c z+`03;$2(4*Idih}$ni5L+S@xWWqNwLb}X-WzwOk?j<)vp*5(r@mUc8BX+L?arK9`oGm( z@aVEM+uG>1JK?quKbFD3Tf+C1xAKYls=_+3OL@EZr5-NL2IDJpUhpk-y%|7RaB2WD zw3%d&$Rz>6bKxl>06$D(Nds1lW*o>P_hnyq`wv%q|CN0VsROhgzKYnSRExXn!*eeJ zItjWYzXG@xUJ^)5kxHrtsJjlhpGw~arK^>9`Hmg_#XX+f^0~kNL)rIc_Q4xhQ?e=} z+uriMpd4(LKpq2_3uJThmQa;ou+>STGx#88s$$Y88|(^m?WyieRmG2&eD5e-6BGs* zMDi3EVq8(}1V)36FGYW%gi-qxR_@*p)l@a=C|m4;Z@r|CZCvw*N&je-l#kzA_s(6Z z4z1tV;-&oCKYP9EHV8zSzSdxtoFSbC0M#5+D=1DKzpTA|t<`2no46OcS?iphG5ZQ7SNwNW@*ZUm{EZK3^;hVG3b5 z*5hG{gu~7ESjm-(uT?HR0Fd+P69_o)7oLsi4 z4KfXgJ>^2QikwqFV=xbR986*~5m`U40KJO}cuwAG1z40A^C31P>thQEUz~UvYAG29hb|{ zEf>y4RQ_)jQ&6_UrjD-KaF)$I?V}@rnSh@nH-OkQD2XVkM$MhC2@WOdW{YPC3@sAE zA!ckQ+I09JfV*m5gzgj0D31aJ!b7u?k@sF*eV-E}CK_h2I*hSjAD-DwWupU{vN=;0P)F!1mq;#y6sKx3d(#R0sam*k+Bu^@{W=bfFu*$>vfHbSw0F;gpWxT#fQ zy?ikXeUM=bP791HV}=dOG*Vc+!)hMxtEr_4buF!7Lrw4iVTcig#GEgV2~FP8MMCCi z)WIi9f<-CLojI-R-)bvlI)gorZ;c=l?CqvB?U!v~+>nqmx8!@O-ZYnk; z1l>ccgZdT{Xpx6=bKoa&-SIuZxCacI0$=d%8}E;)aEQoJj*Zz2frFj$#5nxVod=;p zN{xGeBx%(*j+%jSFXW>*Re+IH)0#m6l$}__?$A5{TCrpAt5|*6A;A~mc`&%r=_7C^ zSU%jGhXyuEM$na?+@qV{_#&jp0P`cbup}{riI;|G!D?xub8~R9b7%eL>f4NNTJVNR z+-}=J+lEmzLAnm4BT!XPS&dtO0Vlu*0F*@rrzpqJ=5;a3nz!t=s~oNIr5;r5^@c94{Vy$=<{&ocS+($`?dMgO3$1JIwuEg$4Hb+b_jh6xKv z49fDM%^t}fE~*&^ZU!xE-Ys#it=aI~{=O-4SkhfUg5cOTa1ZRM30>|p+C@Z+g6g8$ zyqX9apMfBy^w!_(efO%;LAgBj%RjGgRZi8mojh@>qMgv<)1OjXU7063jAs z=K^+MWV2AwoKtUe@w<+ck_W3^A5}6~1PSI&Elmad094_i8o;3rbO9~SLhOW% zX2Zs<*X#vIQoLYfQN#iK+Wj^@0bZH0;brTqdon{a4mt|MLa7txNfp|+9B%2Ze57YqjUL|a ztH16_%6lKota#!FD|mL|%Om4sBacQOk9{?ro1Dy!&&*8Zr>4fnMsiQ5p5>;k$$ZYX za*j1SYqJR}k08i8R-R8zpwz<{&+_nYH5bp;j>t#mbKoFyB=+f#qkOAGh(p=TASJ74X;#F^b zB!hpi&cRh@mpzeU`SAWdQrG_ezf@Owa8*|wetCJhX-KFP1^;mLZ~v%PT1ID_k*Tdv zAcU>OL8n8h6lHXV>d0uR(^jg^uuLIC6A0N}mY0==mf9ApQW6rNfI_j6Ei5gKv{MKn z@7;Uuxyw1%-}gKBy`(dcz)S8u-}x=yVtxGdHD~cCHS{OrhyU4L-PhaqM&_-)zSq0o zd_BFttE*>!Uq^3uU+-%@Eu9Bidon$pU2W~{JH-`BXermnHJwy}P1T|@nznx=gYj=mLc8k@p>e*+PZn)@2mO9%l z-JDQPF-(|tEle#o*MTjfKafSZPT@XC|FdbAXd3Y&c74L3Wu(cxvGj*8_aAxh@KD{H z2RrBoj>N;+thQ4;xwMJgB-ewZ(4rLck7vm(_^v}ec4lK2sF^l>!BSvXTqjTAsKA@AU7zcQs?aemuO$-%*xVtp z(a%_9FeTiY@kk-O3ZfLb7AQ8EUKYfxJJYcbJW;jt_`vy7b#uQxcip%H z%TywA)HO%5-gulfQ+c<~9+>U!2uI#xzqLRN`ehP}Vtw~xl8Ac)tyM50BGQRZ?r2@2 zBhn4h+;31k0rd$(Gp@;$q7ZgM)-M>TBJ!H_2??w;ffJPcRdM~%)oTV$p11G({((79 zjmI&E`jm@Al0}&{7>Ff8Yl1adl1Q2Zh`p5uRUyM~VpLLxEym;&=@;4NsSl7+U=l5n z&tC|P5u<~)mz#6>3zfxqtP&2S1o$iBx%u>Pm>_LKx$e^!I~|$t zV{A)tI2Ok20#_};o&b%HL=k>x29d)0B`XGwf9^n`XxQjSb^_qJ2#m_qquS~&s=71;TR9Otk^$Jsg@K|P+$6zcIwmtm2 zA1~T}U9ce(lOWYph{`Ktt1q%_tS!T!3{b<_YL1x}!@F$YF`pWE$#5%s`x1S+m)#hx zUm#MTWV(04R%TF@@vx*~4o0WKA#fA_+EKY`xpAOyk1tOQY-?6Io; z9}T3>8R_gBTx!&wT0ptN4dVO_KV5M{VVTvA$eOad!X zJ4UH$A$8O`-Q&Y(xU@p-!kIrEU<`3{@S*7?wD4<~G1&cy_baP59Uc7DcfY@O0=@C+ z5+Jt{v&kGuIbl-0XiE}43mx7M2NIF;c?>Zr3cW<2is5NaoYco2U&fk+hq!@W$mW5e zxrW{8cy~4;%&p4#PyVfc!*{+lH{-a**l-S&_u?%vZQ$z!?`{dpAmQPn@wi}^J)TGU zR9ud+1ubfF&UOM@nL5+w`Rw)-G@f1*7+&WAGv6aB)l9C3%w>PGVC9FWes=#iAKFh# z2TjN5g&xzoF#U^IfE7=GgT>%J8ZZ$98p*Hb6ms+b2teg(=xxb>_(t)xvm;2cJcImc zF9o6UjSjogsd;q8pl!E2bblLCiNa_KCMtFnA-^VRtRjlStE8l%=YYM9hcN1<2)DR) zgt2AYCz;LPu9(@>$wPt9PnO91L)=dM)n;}pgvpkiEE#8oUA^Mrmq3Y!-*$~bpt{09 zS?mMJaS%y6lqCfQn4x(NRLc|~g*RSd#k$)ug(OJ;cM7XH1-8(o9N+ zHNoh^49|9YADOr5t}#0TMK*Y7P0UmU42uTa=Me&eX|8A79x0g53aY(w#*76PBk_DW zEmP3F%JZd<|DD>&Gc1c)0hxFbzJiF`)X4;O>mD&!HGlPO0a^hINwW?hf{?xj{1?2D z@NQ8f4YB4=4VtDXBwHv;_rK@SGN*J`mrs1I+!~7^=NoQ<%(Dj&&W9dOI16ndi#x3hurz65qOwHj{D)LblLQ&@BDFOG5xhSP4 zdM3dX>Fto_FjPt_q9>&&OQ>Y1qvD97g(h~l^x=LG6^>2C=>htn;CdT zCqCT!$ozVyen}lBcTB_XGOv)KbMG*Z-(+>A7C4s;7&Xy5=^KJ=3}*Rl)x1Rm%%%gu z!42VwwXU=FgcV#4f}O9bF#56%gLemA&%y0^U!cokhAi;5G)qM0%FqP7D>H?Y6`u_p zeQCjCPuf(rav8q?BBtGY9JV`B@OG37cIEiQ_P~wPVD@1x=@G>`O3KV-_prgJJM$;~ zk2+As>`JV8)mS*U;|uC<%4=B%0nUcYwjnii z(f^ZOwy{}WWgPGG(x)x2qK+9ge)5ai+&-u=;R6O`!iFHzfkqsO#%wNA660cg+ZK%p z%iIQmw$S!@Z%cXWgoVY7fQ&lE+=RedpalvWFKsE%mOl46=RWt#x&2?)x$nYaGP?GD z?&qBAT<5y}|KBwiRLFfsp;GD^Nn+4ruK2tp((tL2m}*_c3u{@ck!5qMUl9 z!ObiZoly4_mwAoOIq*9Z4X^NV&e2D1M`Go*zvTmeb3TV28C*9AuK4Z8y}O>@){!q3 z3*Gs0$CkEIzE~(%svU(wd%n=Vy}hkk=_nVs6^g}<=6pvrUn-W1Ev0fPU#+(04<0Ez zvSh`sL%%Oo+AGCvm2#!hnlJ6_Xx>yQHJ4g@c6GG(bamysb`+X>ilxroZ98@rs_os2 z3)P;U&O)VF?&;dyR_fT%RVf#GN~P_E)>5^ASgI|BLhH8f?QQMFa;ex{Di=$Iwqncn z_EMpVLw+VQVXD(ZuqxmkNQ|)SNTkxgQ@5ao7eE25%kV zdb?l7fGw2GHz}52+FgQ&Tzq`T^efuQsmb$uzW=?)w*2F}i%&U>IubK1oCjB2a~!$~ zp@epLo~2vGH9OLE#Fx-2bj6NfA;BJk3LOPOe+%^T=dh5&69Y;I%h2ce%^3<<E{&Z$|CXloltolU#6w4q(wm^@G-j*GFQ zkLaRZ%Z3|}76aQrb%ezn8eyj_jw-@R zg3}0hQO_)|r)Z$iTxXK6Bx|njBaNEbIedw^Fk^NNdb~AVrqt}@YI<NPm00`|p^q!)6rSWKl z$6cZ(C8s~wzI556FH4ulLBOXpPMz>n3=<*i1rXln80oh_P4Zn(+on7_3I<&Kfy!uk zHfFqQ`$MY_>2Ncrp(*G-qnTjz1VgVaAUXTShvT=8{b9+<)%%p=p&|+3jF^R*l~$BV zSUETzCbXLpZXp85h=I~ycWIYquy!wVv?pWH_F(}u=gxFyOi;a zNj>%j?b;bh$D^K2lKn4)e(;!RvqBoIuB~&VG4M4gR!-#2nh3W})^k}opdvcMN^1YGnx$lt z!r_BSVY=;n`B_uGuDLxG7q(IJM^60vS5GW^_RrsX-6Dx^ZxI(Bh)D7PM`GytJSd{4 z)EqbQbIt9Tv)QqRN&}J0r{>4I1PtFN`>Uh2+-$}!$$Zie4RfoGuCzoX|9Y`)K z5>pvZ5jE7`MmNG^~5ITcYmIoi7j!n{0PbJ|} z2+A5iDwPa`1wF8VkeNtfg#+^S#tZ>XHOB(lF$&$KG*8kYuxpbmKH9VBp>M3a3B;L; z{T;4Tk7q4@hZ~R&pO(xPng&6dLt+oZdE7cKY=#hOiJ>?d=iZ)4#`tTLjI=3Tt+5SG zlH9>6U2$p6H&@@HcEX=IDQXVSLg+qecnf;ljcYTo?uAAR@U~;0SS++uN}gyfD5It? z#pQAC?L?+(?QtSn$GmBm`h1eQA$04nJTrv+vSd;eWaT2U_j-$MxIi4$rrslpAa{kK zNULy$zdMJ`g&SI4j2rmF!!r#m^Bh2fX&v{h2pBy^d1kAg&5bJr4-1BKnxZ?;asWYW z?ssFb49X^yWp%Zg;PX?LG{u3`l9}%8;iPA;wpb-;8SyXUZ~Q-x>=U#gZeHWf+#)CU=q)v7=F{Y%bb|{ zaLWV${Eka4p<}f5T$4Z+gglK=iJTx|9o{Zy#S=U5;D852gOYS?wzPv1gN_9PYbh}* z;Tf9JN-okh9kXpXl;kRPrD~nO<%Z`eZnHF*n~ZGBDZa;$R|`ajXj)U%;H;X~WhW+Q zlX2GK0Ni?yZ^tmAF?r(ypVhX}mqp1% zK&Sv<84qTPG!pO7%Rj<97sHrs0|8970k7t1XX3H(#O#m1ogm`ky>U1|mMF@l@UBUit zLqS2dvC6tw}|W*^EgZ_l%lg{=nv!05iz^OfufGdfRn647>48W8#tEabF9mJ z1jGw-Q%`JhJwPsP&RPHM4p5vArCJLnSjtK3@7+q zYBqZ#a}*3di)0$#LuW{iG%+5Md|Sdar(nlMs$O1&?Kg@2bYIfSSGvvRsLs#5xgqeY ze+<27zS(%g)3P>ABPiAee7$pUW>L598+2@TY};1Hwr#6p+qP{Ro#c&eC!M5Y+tx|< zx6eNNp1Su|jal`qQT6`$d!Di0T60boU+DM+b96zR8f5lM4)E-NId%KtXZ#fvti`?b zU?|9={C7s?>Z#ag?$5)|tlix77Nb&Lyz1dXS{vso7)#u0XYC5G);bare}MoP$(05{ z!7%-AHagHj)yfJ2M|mwfDc;1-8#WiOJ`#IboX-iDVW|mTWC4&x+F4e$gx4}MO$-}W7?sRrVw_S)*UL&FOo9Ns>QW6i{{FU;LbM5 z3Wf6&m6fbm*@`+f^U9WED&X1mU6xwSl3LZ3v&WT9tD40%6$Mo_Q|1f{I!mWfAr&4* zLMG{5x?0uc)@7@OUFIB)5^8ocx!uZoKWhX_*_T)rvX*l@>Q>c@%PXzQ?37QNqgOSv z6;x^$D6Cj2G;t}a$`yJGx=IeX&!2BsSGiQOSIau|zXh{OR;$)l#O)z7@g;@N&XcWF znv$CEhW1wSD@bPwcN{Y6C2c(oDcx{@vxB5nM~giHM~Ur*AGHa`ApmAl3*zlbaAJBG zp@s_yuld1)%vms?z7fX@*Zm~Ki3}lP?B*v?4@CMvg%W+Q>?f23a$vx^3kCJp&tuwx zd42a+>$0cV3WUg=#)o|AL;Cfq+X*SG`{d<6Q>jm|<6A8K%EFd)eH^bb)$x(7UcoB3 zL1{mZ3V`+!E7h>|3<4M%m_Pky7(`ulnv01w2{NPAPD3By>)7aUM;{9eX#at+7GxhV z*2hQ-xm;YisV=I{Xtoo)|1}c=>(;A4*TG`(Gu9I}uaKQF4)|Fic z7^n+eGyYJ1i;I>P*LLUAWN7XJ31^3jXv_N9CqA?OfqX~bKYwwkZ-j^VWEACHady7ReE$ePI6MuZ%e$t#DB`muwEn zU$?ChxDX3rdE~juLQrkwb@=tJ6CG7(8X&Ns2;Rj(Bbj@dxA5&+ZFiw z4Yq?Vxw8&My}LtNDj@t!Bh6ZF*I`2NirvO<+(D8HUSi=VBGG5bDP&2%7y)pc7^yv> z9=u^gF#@wRTlCgI2g)3ypp1(ooMhjI{4%1VtrtMkH6LOdNK2#&0ufJlSc#+s zD^c$g>pm%p|BZkIl$kHXTO*Bqd*j5(j&;z*mD zkhh(;Zz~`DxtR6Vpu_nR=YaCrReIS*Sr)= zb@h0kMq~$b#r$q(C%tv^xie(9`;LuR@Km6>cTutNUjCGWxA5w1=~ca{#uL=yiu_6^ z7^ojE8VzW&@JD(&aqfjgQO_B1yjFb5iW|Ndu$O-Em4skN=>#lD1dQiao}-u^JZU^8P|K zabdIivQ1Iq^U(5MNIWR?%Y@h{F|%9KRjU0}WRQK>@K2I97yFJ$Dq-rA#7)?vb`X+J zpDIuvq!fino)@iH!Z&sjq%wKMSt8S!dyM!ZR2--fRQ0sFgggOQl%ya{;X*=T%mh=! zA-)H;bbJ|sXZRl;&z*$7UAKpGm4sXLU3iRsTugiWfzw~gVbm7M17YTa$)oHeKO_lYu^EoR|9y_KL7TEe`l>MRF@4$?M3nggsPJ7EMO4ovn5Dg%UtFq{cFfRra^ zLMQ1j_bqTNIy^8lI3-L#;d&D7^Om{74RFIT&6J;lqBl;1GIVtaLS;Bu2Wbb?Rqj-V zawXygGnKiaip;2L-1p&$}BJu9Shkt#vSmeT(V$@rM~vE<{lxD1pT9 zJ4zS{!7$-_B1O0o;NkWGF6|A>qb13&X^$*klC25Ll!a@i)1!X%KrC@%%JWf#86~H{eMB0IQvO z&>b?6M@hkaNRZ?rzhtFn$UfJgW&E)~8lJ#r^Ax=Pm8obd75U zrw-}PE{TK2jT-IMHt1TB{i|p8&Pkf*s)_Fn9qZQhtJyKCjr03WzgD@=>8wH*ciB4D zb>JKK+t>b_0}LJArP(^F_bWzsoisZpd9&eT3#Tp4FC99vYI5M!QrC^`&KWapVq~>k zJzce2)f_`7tu5-CHL6s#3On2SjoF%6GuI}TOlPcEU0XP%GI7pvKaIMz4NrfKaePE) zduE%B$2C+2rK@OQa#hS#(Ekt(E^}64%|SEVW^<(y!WFCU_s3nCj3AwZ)HEdbnUpbX zwMYsgq_w!cD5^$8h909SL#)I4q44(WaSG>SGkv&I_AIV~kT8sc`Eers_Ni<0kz?~| zw>vHO+E;_0hgr?n({>}*+w&s2TxfUKQB3aZf*k(0sm#XP`<3!QrTai7Fp|&ZH?!}}z+3tAF1hR^ZcQ$q_uif-c??AN$JU#tm|VB# z^}sVTe%AB(tC^4E%ifCXbT;qfM_XiSt#+IJ_F3q5upHmZQ@_+9f4lwj&2Xyk=jilj zQgOrk-0-{Im20^EiDL6%f4Oxtv{d7{Ny3_urF5NjWDKlC zHfnOk#s#|!+g?MsECc`_`WDV?C(U;2q^+(}U%Ig)HlTZUj|eYvi{SlGu(2FRjnl0V z*w?nq8>@Ohh!_GX)n5Gv%fqDUtzpfYPY`p0V8L7MsE0r&82Ux~7^P-P2@9TrF(W!2 z6~U;J*@{KtgaSjDDqG01RWUCnK4t3S86FR-N?ip{It36Fk#P>Pd$=uHLmXkJvgD{Q z4#a28dk7#`3*z^uTkQ4|mSYit5>tTRYt7h1)Ak zV|%ix!+oiz-Q{bkGj)t>-_ob|$Gv+IVDUE?$xUuG20x5P^}f~qZw=!@E7w1UpRZ>9 z*%t4hZTCl5a*w+0pT^VyAx*a5Ww;T6{>G?{4}2*l0); z9ySj**IFQ0X*Gv7(OYFU%dCPvc?)~`cfC@oz>X8l(JQptYP{%$M+Ma=!gM1!W2QJq zw@Z%$BCN(YhOf?E5^P20zS|z9yBP(~Nd+H3z^xX%_Brq@?*RKJ&!H=c z57+TvUYipa+ctqlxtIjD4At}`BKr3*<(O&Yl(LrvaMl~q#G$ACPF~XLf(?fB?#Sxu z4fZk*Y3UM%vPju1fQH%8GTG%)kr6j~1(}B>PYItPik~qBBnPMU)Smv zjx6=|$LKVodLU7IblGrbf-dj4&Y}F+qKQYPeWBv-Ai8oI8z5UhST834hT9?O&Wi-n zp6kcRaL&(01jc?+h{fB1YtJ~6%x^NL_z8QZV=g4IZ2f~2B0{RHX^NCs)HOA1(qzuq zK6}_8-pf0r{g}Yx*C&kqYY_1 zUre`UCz{ESl-Y$r76GR@WKNc421yKV6_vsj+Fuo1Uhv128!ZK#z;C9Gq67+)Z~$`L zqMrv{QXMz&zGVAJO;Qqg3foi?JY4kCP;2!w=4l4Leg5DG@YD$nMaFtOMML;8qpfMUEhJH_h#-5n?6%K7|Wp6Kdkp;Bikg5Fhn+T%^ zGgX%Zg8WKe8HG$HbsE7iiL2&4P&YRUXNW&!3FS2vmIi)&9sZXO>wLLj2tlDKTTr zcLpqq5W;@(#$NMU+KE%JCy6v7=sgilTCHxRz?hfZwV1Poy;dk(+yj@S!WxutT{Sxe12EhX|zn5fY+Y}o|0*ek%~Wm8miRAk)qst0E$?X^`YKDd+f4J-OYW@mAFWx=_v z_`ZW01od|59@uwqP%!k|r9jKEH4b27S`vRNf$z50u8}3l)RWPjR>`+4Twv@31e?@} z41}i7*MwKZ93?^4a@@QVSTy!(?CgtR+g((oA*z;^Rao9~ZIO5}0sHq-$|uL#aA<7M zsF<~m(cLrp5pBRIfL88&Cp`KYt>LWjso6FD1MM3{UYoi{+_(#jfKGTjb~3MM2P6Es zF;7c;==F* zOhWPQFK2TVA1;b}>lw$^K>6`JlbRX}JH3}iDqlmaI)-&?qGQh1UM+2!9?MHTUURTl zcv~9TN>6pa&Ty$ zdXprx2nexAvtkv0|M|6}H+suG&ShSzDe=W(>$KAwAbH8|nd?sW`8nwNj(*<9SF1ma z`}Jag~>&%VZDJE_bV=V4 z0G+(+aw=*<4u#8pduWkrRdoFi2t} ze~RazCdPTGW(Di=T@1F-gzkIP!jINI=mzgCd({58Iqh5~e2(70j^kO&4BmU*;2|(8 zT%jP*o30VMacF@Z`EdW_A&67}j;56jSBmq}%nI3qVgw#F8^9FLK~|apkT)12veI;? zc0!C45MssgkRK2{hx`H_wF_@0crN(`HR?L3BmN=a1vH8ufk60dbj?WOOT_2DCpTCc z_m=(yn}8oK7WXF1cUC9t==X-mHXOLvcR>J@hfYDsk-o)N~M zuyKv`Rb_$A+ofUykOZ$vKJkk82G7GEazLD(l%ABSiG(YjJG{VqXYLO;39)8_ec*;} zNy8gP^1cVWfll7)F!HHBkjH%}y7}0wzN)CCtPB;CfHa7E_QA}&j}|xV1z##v0dJKz z@CANkeE%1_!ApVn#~p;Y92rxQb$Hl1{K$1@JW~}fIzEVd`ho9xAIVS93!fw(uqVDq zz7Y491Fm@=2-kA*pQ%smMN)cG{x7dLm}Q?T4+J{yCx>|-F!xgOzIyL)bDP&6PpEUO zAsv%z_8Ff1H$FN?{ZQw;H%#J>^v|gR?+w1seqCO5#o6h4m)3SH_#f7t^Q>#CKYyL- zSl3t=CBNvb_iQfHI;;6|J^QZdR$;%SJPNd~wE}S04{A@*`4{DaOzi-hhNo>4EH3TU zgE3txd%bV`g+Fs-mNm~8y18)C4hrx)nbct!yx-SVy#1_Z{gS7UVJFaeMbnrRNYIu2f@kR6sWZ)Gty z1neg;i1%M{^wW|)*g_Nh0ww$$6is6|O|gxF86Q{YwEZn=qFC&d(_)#Bn}3?W270{$ z7gk%h8D}stonK8Grk6xXS27$2S+Y1(MJOd??{zXd6h_Q@V1Whhn!9QV&ETP&f$tNF zyN~4Y824f|=)>uxD6cNFIB6*L*wI*iqq7Whg(QVR(eV6M<-ForxY)fAo${&JYV;1# z*>ZFFu(b4YxhLuwrO3W&lGJ|9SNLbj2=0<)?3`!y%J%EwSgJ4~rtr_jP*%0efc|+H zW^3f{V;`X3+8%s8AvHdwmM#-4zt7Sv>eAyaoEhd%qNK#u$#pkRs@5d4owdrb%M}ggpcc(ZB+yDp zxJNyW_C(RhTdF&FR$}7Y-_gTJR?=U)SJE!iaQu_EyoBo(@jJuV27}FM~hzG|AJ%$lxIPI%Fz{rP%W5p1|N*x0h(NAvzuNewat%mP(<$d77ts}F% z)H=5~c)*Ji=sGWJRqD+?*$tTgBmJ)Ck?y+IaoG&0`Ea`VZ0Y>1HRFr#cDg}pH@vps zd+Ap0BdBw2hCVl$+_XL#nr2m95?S3AZCbhu!#kaAYgOOas1cR>**f!QLwB>C-K}%Q zsd`cNz48Ul!SVC45k(FB7PNo)>Ixa_VfyPtBXjjFC6q7gz`(;B?oV`kI@A4Cza+CZ zR1sA$dur~48ToQJ`yT@dS2Dk2!O9jWG@Cg>ZO7Uzd&D@w73w4oWmjJ===>iBvJ?E; z=mTu5Yhj9>NsTR%@mQ%`xNgfg(Y?N6+rn*e?R~6Y9!Q;i&y&R#I}du8uOLFo(ZphT zbVZAJiBd$5bUDKb(~h>ADipHp5@~NiS2U|da0z>dK4(r_G0AP<7Tr=%fN50Zl?w`+ zIJbEqk8ICSzrmJ0(NbBGh-p++rKPB!Lp|gzpiv9@wXNmm9U>}=Pq%*6O=WdZi(F@^ zM=QFxvt!-jbbb8G6zU&d_hnCi?%B`Fo7%?FVg3IaLhC<6$oy92`eg|FUxu*sWeB^# zKpr;to9ERw5Pq51HcXQ1=9vm7L)g&{+_9{HMT*v2^ZvE3hf>C9Nlo}xDM46OzqFqc zVcDx*JqL5`z-&%%Rtg{W)dmxm7e=KAcy(=e_kNS*#i3qwnNZK#t8OD=-+Id3L%m{5 zusOtx4!dyK9A6%=(mYs~7eM{0IE!;8Pu-kBIB~Sv*%_lT}Eju z(;FvcHB4E#OR%h6q*;GYNHlY$Svn8x=U<@I8aOXi7f!W1FGOpX|Fg=5qW`kWgu)1v zwI!V#YY2&TpG=`Y;JZ*GZhiVZ`AmPEK>eQ+Q2ie#AY}gAjtThLIfJ;TS@Lyp{Xp@8 zEd1f>6tK=(c##!3(*1`ZipHf@c->?59c{tRMk|xsKMxP9xCD z$ak^CZE9mf)kg23f=bYVC$y6OtuI&j@&k|m;Rj86-X($Sor4wrO`ARp-Qj?Mcr~0o zG)(tFA>HdZHRHchL`-)!Ud?F_4cFa7Y-9gT$z_K+%a;(=YXq2&1oW>Hxc_qkrvKvv zMWFahR$gu_tb76Su^b~}s(X)SWbtZ|UTX#IFB;(}*U02lGC0;+g>!qo>%~w>Yd=b9 zeY5PN&eG+{YM7cbW%T*j6m<0T^gi7nU^Ja?R^`60Jy{-^eBYdw)yAAafYs~o zmoop&9~$~^dXUK)=r?k6!$FYS*>3dQ9@1pD!T#^r;UrhAFtxr+z>HKje|Fy72_!n_ zN1@V@WmMsYQJL%4@PMlH%gBd#u;XmS_FItWf2JKh{poA=QR8eOzijF;U_ApSs+rX0oL!g}EPK{c3^sG#Z zc2P0teNKC{-8IFt8vIIBp$j5WB-*FCXQBbQaCB@fpn;6ED?(C8a$^?MV97T~>&0lk zChF!@d|EvR%1Nx?+NVN?lzwiOTXwHFp{=wZM`s-m4_>O!u2D(X&b<3|l&|!Fjz*SE zTQiVlqeRuz+|XqfAil?C!bQI02FQ7Yz5 z#E6IckOa}DnrOpQPWI}iIBC6?hkm*XC>@#rk(0>?F3MS#zEk7-7z zEhz#TQg)J?QERJ6yYzIZ!pr4%*3j}}Flq&csKIuVlddHP-HHtX2~4^Yn6(2@YKBA9 zjJwHcf7{L|QLf=31eYJQr2rHdr4>rnELR7(qik()k5beEKDnm2`!;3BS8b|pBFYQL z@_@&-H*i0C{Vf<=_uv=+QFb~tZ&C(PHkLU4;ZRQ-V}_~zz+}%+&A?ZMW%?trgA&_; zi*CS10WdM#nHip-8#UhAwJNYNydv}O7;n%;H!R~?4fm?y-7AGQBI5r_9CvE5jj{Mv zhrMds4~?uRw1eD0e^;!nYz((j(2Zk1SHr)O9AabC-_>C&8^KMH$o&NrMewpa;0dT;mXSb8^q-HwS^-?MXX^HAN%}h)%(&NJ>SwU zneXi_(QDHC*X6di7iO!U&MCpxt*`HLE?MvClMO!~U!|6uE-Bb@aCHm&Po18SaD5!mHu!k#Rw<}mM~^(2UXmjYrbmygsJIB^ zSbxch;>XQ~8s9NudP|xbWiM=yHCq)uEM0#8qw=(Mn>l#exlaf+E$%dCJtSmlF(!Pw?1yhta2$E5+VjNP zCJ|OU^u4Slqt*qho_wIZ+@>I3hKH4*Nrt6SZBnDy{mk6Bwn8>vFc%=+E9lz>ogyeA z^lN+o8Q436I8C}~+FSRyl$nlUp|HR2My zdB}p4%Lt?7&rnjNsxXA%1xp$?TD7c52u#Kuo7CHcr^hYcm8F8|UJFCk5t=a8lh7I@gU7}hyXhCQxT@ynh#D?mx< zI_UfhL>=h2=z9d7Tlgb&S=bqiISl0#UJ_bv7t<6C2q&Igcqk1uXef;X9Art(Ee!|p z5$D|=aX2sb7=#5vby*=7PT(*&_x+&owlz44CDbK(6?Gw90|P@pm3k0f1mXAC4i*siefWvQpI^*(#6+3;Hk8O9oCc^CQ{dQS`n@* z$eSG)#03MbbRS`50wdILd&#Ibl3?z|0e}QST?xY4fjBk85o*T0WQ@OUXOy@vswpl% zs(S!RFpghT=Y3IqoUI-9MRfz;bQ9u3o3i+SsJ?V82YLFUI*eX_=l_H13S0ew^`4`P zfv*bd@JDh5CBFQk8ZHWejp5GD@I>?3G}?$r|0}cH zsm(UV(pw!4Xs3A0Ks0fl(a7=w!(FL%veVp3i8qeJTn+z9a`KJQa94+&>@2s^vzrUk zc0g$QBh>-#*xUUq?6o!DaKjhXRKurK!{pSV?P|GIUsPB9qZ-8U`si9wJ$M-C7DJf_ zoHX{wsL{+dh7%7sTI`QOBg9*bBpz_E*#C>_osQ=}(&UW~TJzmc>am$`lhcuBwN+Ce zlcp;inZ~8-)A;MB^B4T@zU==SW!)xbPIJ-3>_iW)Nr-hQv%|z$CpKL#!_Q?~Zx{!Qh?+k+ zT(XM5-bpG5ri+Pz{K*)xvOZ(++W#0 zuWz90q;CL#EVTGX2VJ$2F0*sI&(ik3=WEfF7oJe|o=~!qb^oQ;lAA(h?FZ$$iPZ5w zdKCfVDLXnXsFw|-U9OCx!r^v0Z%7LMacWp2)RcS4(0`dF4gQOA`2Ro|`sRd;;1U^5 zVdGuP-@O$5ph3w};BpUZj=K%JI8|X%&|P~i)9}X#f?Knuq(%BI7Gdkf$v;5 z(75g*T+C`76s#g#tZ{r((f*D`%IiH}_|C3}f7M@zFa8I_H@5m$BBqT`&aKMa3{O-- z$3_RV695%PyTJ)9+*{RQ02=dO$$6_f1xRML+n>xDGlN_<*s@4OS8_Fkv`vm+{CAmI^O0Vwm87k-{Ao8jpUu z@xI&!KBIqk{y<+Df6(=|EnU|1ytTylx*m`HIWzbB%4fsn3JJEEvrCRlqsD{U<8t@< z<uW#34FYYZKb3eMVpOV*sFOFhN}OYr zciz8(xw87)t2Vw#(5t##N_}`j@IPHneiwM?G__K`%%vIg+Nf<=Yx&sdesNH3oj1Mq zuydE~GeXX0&b&_3JTaMtWZM$UGza>0?OnZFcw=oNZ2C;s%Uh-DTA^%O5Y50^CCgYD zU(8RT?y8e;Y3SQVu)sS{6k(=Q*<}W zIU171A|3Gxi~hKjQ}sexAGTgYIZ=3{18jj+_ZPMby^}BJhkU-->LR_Y6;0NaVuXbKx@V&@b4pNXn zRwL_Qqqbu*aC1foi!$1LT*q~Q=D`q*<=0eBV_H*Hr|vlU=W7W6%zbyTiY9K`aa+j* z(=&F*wZ2Mj!bhh0om^2_;n{8^T{l?M>2{7G_06T($J|QtCT}+C=)&JkC`WKat4n|` zj>cg0a6}ABYU3saz;RvVAxbP&U7^H!7$!h~(C_qk?CW}8zS#yA5~YKK!4x`B9XDD< zn240|49neMT0}`eECY<`Vmw(#Y!!m1!F)H8kuSCc%iCaj@oZW0twQi1rv}J5^7_x1 zo2)+1FjGz<#g?;C;M(G{di+FeaeeIfew@*zOi$ zx{7hB=6j@Y?h-<}1@V6+o_n~M?oNEF+a784hs4*0iUocX2wep~HS;YrI5!bc-F*MQ z63;CdLU-F=&21|g`za5nR+em-++`01`X(IZ*_9flr<62)ygc7Saf_s>M*`pvYGbtn zho^oHmlyu0!f8+rF(#ZF`Jk7vc{febUOJqkL>Na2D~1woI4Q_TvX4<@Hx2oxG!)0w zQsYh4f==fm_R)n${krIBTTMuzgOZ$V4tfVy`>o3aUc<8Wh>J$ArD{FW>mQu+v`-yJ zXMG<%2AdDp61CKVWO9$kV!FyvA=OZwPCo7P?<#0N8+R0VwQEH?=GmoVa!@@zJ9{5! zSn!Uj4ay5+CqktMCZUJSQcS6vGA{cL;AU`if+yL3Fo&iNP4^yv{RTj0^7~DuB1}BC zTI#d_9MGFKK&$BqteoJQHUg?}w9)txH0k}8BJ=K%%{xInjF1*`z?)(69u}_Q*cg56 zD>>eZP96Vv62IwwkiBh~L+_C+S5VE7wzPCIM(5H9-~KquR_?tn{#JS+lLm}DD~e2sV= z6>=5TKyeRAg`k(^Y-?7AdUi$+ZNM;Nc%y`$N2;qO!@K9A{>NhlD2$)V>DZ@%-Z>SJ zfo0w3RYfmbe`N?ZTzA$G)*s8KeU{ZNmwx(EmXh$&eMoF%MJsS|C?P?tg##^P!s<*B z@RzzoX&*ZLlA;4XILiy#hPbW`A{fhKoA$WLrencXw@i2_0r^|od9V^2DO{PrSC@{o zxmMSz{ADOOUYNM-yctIeP%-k#l!OtkB7(DTVEIzm$l-K0@*G@)g!TKVN-dleV_7>r z@{N(8LX&hQL7Jv;%~1?I#z+pZy2hBBMN#{;CC!C1^Oe6!|vm zhodUuOph!OWm-{(szZ(-yPPT4Sp#mehJV2~!knIsIy4`0WcdsJSK9|U3R`TAfIam( z37c^)SyW>C&j@86HfMrUp>V+l2iB+uu}I&B__bEhU}rqCo82Bcke4+CUrGG;`H{%? z9L||FZIo9Xqxn{E;LHKPK~uc_}^Xp@zPK zh65A;*P8cGv;38PptV;$)I3+v2mqo3H)keJzIx(Z`8c_(k#4PYAU@h~ZCSX*L=f_P zFxeeA9CIxcyQ>~cJ0O`o)naO&0DI{_@eBwt<+#I10Y;JojHEkhbN12}93><;O2{#k zSi?zSMv^^0TXK@kiZ4#8Hw0XlBhMeKa!xHdsMzoK_AKfv3%Tuv&m2|jaM=tytVh5P z9>L}he9b(ZDK*^-T=h;GGQ$2RkFBKf0xqHrwP9z_CUlboZ7BGhdE!CyS)OU+C z_UB_C4fI-aGb>LKjpO6zq3s6q+K8$4hCg&tp(m1+JJ6?vB9$9>*(F;Z)I`AMu?y6d zn#dbfkecRicW4%~6|;XKZ!%9l`VZtcJpVW3Q{}YcXILu%19U?reTCV|)Dy+56Qudo zDN{8bE%z~_Y6+_b5+@A=9{&~}s}yY?3bP8PmhAo9dWWbuM5v;&j^S2iob=eyN#(>|*; z)m{)@EzLd<6a#rf)Zkn&by@$Ieeu1tCHuwqEVwJS4`(sG3=eLo9^OzEwQJGRpLpbw zNEUOxx)DJSzDU?RAM*4!?F%Uhr5{)wn)Zw>(aUTAc>KK#1uowOh*u$^iNHExAT7KBl z?NYKE7Ewnh^tHt+39vhm9E*kvcm8BaxEGBG>WtrMg^cthCcWAikpp`A4eupQO#cP@ zE3ac-Ya7`^$54sgtLSfUVv13LFTnF`!oTV-=Ca`b2lFRmft^0vW+eO#SNg0k!ne` zw{P2NzlaU+aFn=XD8c?wJ-}GJ{TFtLf3UN}P$CWA8QY)z{&~jnGpoSuu5cA$@(f|} z!1w6PYhRvMb)N@g{+wEPWw&GFmQCqEFp{<;lPiv(&`RO;>&$9>~ z7ZKc!1e}fpypB1}r=aBF&L6CQFsqMWMrc($dnZTd4b{Y4H)2+l*o;9-QsJM^j_s@I z#@ZR_SW_@y_8{FJOj_)8w+c8#WWhapD;a5bagWISUFdXVl}2|ikXJF ztq1Vx1Cpyw)iF9IyR;4Q8%!RATvFe|I`#R@e52^ZmJ76yy5Bd>8{bg*CpQnxp51-? z_4ZPq(0p=hZ(^T?J}5W$y0^Obx_7z{y0^RcyLY<}eYf;(`LFGsa-a2{^qyPa?A|Wl z@ZWOZ;6A^9vioxLvHJLWxd0e+arE#vF?{X3?A~_j?0%=Z{sw==e9iDi(TTRbVSdBW z+lqVx{m}7of7^KC-eul3_i_a=emulsPkMCYzi*W>XF9WAavm%^kz}=-ezdBe+gtAP zMs8w#0#+VDwgQ(z_1JQ)`7mDFi1r*mry&F4KPA9FA}QT6q?b>Yy*nQyPdz@oG#hk4 zO>;%gI6X)3(k@?wzu%X!%pGjVg#@nBxZiXyy^hhS(y*5f9+e`5yxTUZ+)?xLem2p) zbWW}$zZQBtrPH-XZ=N_9*Gx=hkm>Kw)}48qgHPhuHoEBWbLClX&j^m#?=xcLpJX_YQO?DYRB&|Hh ze)jt`v$V$V>Z_ew;5%-XXB0IJ;}n$UifPnl01_m3wL6> zUs&Lr*}$%6U`h}UYNJn^lEY0S;4e*w{H}hE_&rjX>O04~{e)dkM{brMXapR1%}}Wx z!i6yM)1Z7YVOvujK?03W*<=-BFEFGY>)0fPMQqTy>D#j<^lg=d^B63yRX;oYG${|) zm}^eB_>&zr1LrAIN7v)#M|}I3`g|O6vq1u({mQV{f(d%F5Nq@Z>ds?aNqSlXR4Ea9 zytJ_`AkuONS9pgj2|q|7o8Xqb-2@@j#mN*c#axVtOhF9Ocv;wb+KqgFl&2ruKG~CK z`Xz7ZWl93I{gn(}xJiI-a_bq&!T&O*#Oe3*J=MiYM;UJyaBQu%nS-3{oD?hEoI8B{ zT5H8k%KV7!NNQkpA_^#0S{kCQo7-z z_$+QjG8olaB$1(V7yk-DYrm`3j=gx72boK?G)Z9rMANxqK*x$L5s@X?`j){mtXh0g8$Qy`lWoz5A##VKdHU=a?sy z5%_P`Hk;E?;sdB@d+WysYzyB#V5^uHqzDrQvQM#DAt6zfB-;*r4vOf-BxWC48dbBa74qXicZR|H$`3Sr{G`=xjigB*rVTQ4-|@7EPl z4lIDmCQKF5`;HH+%oMQO;$hkj!9iB=Mhkvm?YTVbd#t%_i9{g{UdI>n~H{@twx)4G9Leg}U}obl*|QU4A$ zdoT|FxS~M=_hN{)R$tKGyp~aTV8eD5$GI%!qDQ|Oi6R74zaDXLOckG(ewUjrd)orY zBk=HUNYxtgp((7H0#XA+>Ro+zD?kCMz+=+wtOr4Nhk4oT>=7E8Zd<-(#vY&c>O7fP zrk;9x#x!F~&C&QAk6=Fa)lr`HXp5LM+jvVALDQmFtABSuvu-Z zlbmfl?aN;CXwP+DXE2WB-Q&Id$$HKG_1K1aYYAmr137f)Cvw|X-#ihsU;99FXX6vh zudC~pA|(F4NY$@LU(PdL>GW<_>GY<2qWWvarL&6mIZ@)8?&s^J9qc<0C?ERcnQ#Z}VYjaEP(!v-h*?asoSloTg!31id*L z>Cxx+NCAM*cZLP&8213R0VV^!Se%*IW}KIQ|M`a>SyZCAGzyR$L?9}zT)I7C^x@OO z^Z9?_b8}r_FQ#Pp%zi$#C!tdFy7F zV=BY^L7j?T854udIi`3&Y9k?jZ^xBj`)z`?k0v<+k!lzLK2XfQPZ$d`y3A2HQ!2E> z;_y+@xm9pi1+~SGhMQch8ci8&#Xy;xo`{H|K7;8`9Q2DvuPCeLKN3BwKGZ z(M)kjh&R~+h+k{%k(n5o5lz(HHK&|nwpC*@>X@-^Dykig32LFOOCeAIdtasFA573E z*v=`F3-SagIOki5ERU$TxV(|^WJ8gL^8|~G5NOk04nz$MV9$YArT&iXg${*wW>Oi4 zCl9H5&9i$J%Eq~m&KwV`7T$ufEL5Jo5b>RDdOrcUyQ+G5C_;ncTQoNg=bbE+Z<=Iq zjB$S&P_@aCF?TEj1!T0f4^hU8WpzT7b%JsXO7htW#yK0-X#wcn7YMhQfhbT@!=9Mg zGJ#CH&@0B`wv_e!=_GS23rb3<-47c&!3v@YVR@z3(ud@GKcL0Ogn#vn9X5c;^5d+L z-&~NBZ}}Mp`d3~bF9&kRe{-iOW1$(OrU@g7#5XLU7Pj{jEQ)ntmRu#yQ%O1q5@HQ@ zUn=4%?u=>P#tuD1#>3s`o)#u~YlTb8a!%LTe6{-&*D z2Ph#$ijy(1Z}?jV*T*9tfGXCZ7=H-2HkBu81e31Dhe<3bFytWD^X_IRk>A2%_W+TM zu?!1l9CMQ^99?8`AkKog;~6n{0LjOR zE_INR+@!MRN)?yO_j1ly{FH;t(AXuk=s@!#D1mY%@wAJYSld3ncCANa7E<9&YA&K& zdO21yfSrX>0zT7b4$V?%_K9v~TjPBLmO}ON<3o#YQn=W7Q1Yv&O5fp(s|pDgf5ZTO zwK&U?ItkV(Ei!4}qaLX$DtJJ5>1iMIHjkZ~(~Bi*n$(21g43!(MO;IG*=(h-$8Tgp z{C*#Yr`?Nt-BE6>=%@}>d>WMO^!TRWYht9Mmsr$3qCxD+$r7wBIcl)QVDUhI zSbqtzGK8PHUcaP8M!!9c5_uOgu&014RJ!61$0S1BmS-w(`$G>4OvOtht7)eNtpdy; zJo`0|(UV`Wtj+mM`-{7T8a#;4PQFcFxzm=gbm1%E-9z_xGZ&e&a8&Dn4nzjt8cC#C ztF7Pk4Sk2VBqs*BZH=Bh(JfT4OIFvhaMxO#>|F00TGnomm!hscYRkbNp;XISZ3{DM z$GyI7s*0qA@TKi*Vo9sQZYGG$p+MrR}M5UFP zTzx*KI$m9u?!)d%Rc+H6`oGwF3$QwtZC!LC!992g?hxD|A-Dx+;%>nwPSBZzKmr5} z4ncyuTW}8+Tml3Lmf#*>!koM&YpuQZy?3vD&VJuJ@9g)zQ$SNyUDZ`xJ$m$C{}|QX zW*=gP=m{M`3u@RowGW{iUpFhIOi6{{RY>MfQa2%6 zxeGk0w?|>uXFWW#xhieeF;?90_!iJYFlT5A^)$E1!%Ut7XQ-xYC5yJmMqD*+XiAKcJN`TC22l zpxSOd?EA=yb>d$5AAJ4LV{b`-qSj- zx8rdu+Sos}^Q09P<>P*0Fa94t>kR+)P`H0o2!$*pH^4HO32c=YJ^v%^vh+ntcY1o7Z>bX*F5Ey4(KFQAPc4xVvBcg^T8^nIK9 zKb!v!a6%0BHGE_nm4PrvVV% zr@9Ms*2WBt#l1~esLpENr>M0~+Z2H~(i$B+emBB}d0Rr<>5xe6(Fr-K{Ip)LVPy&_E)RF09iMUIA$tRfL>MN)qk zsqc!L0qY?^f`UZL6RVT3;HG@2X zBl~o{SqiWS1DlA?w7t%mh*|HKyb1lh&dVmYdS#}HJD|L@U9^M`I8Proqb$p4KbIL9_U1tVuV^!K>tzpjPgT zYL58qv6}1<@l6hoGz1MD8y+ZoK)l`Vf>2KJ6IWN~+w?;_;%=#f$C;h6f>sS$gm#wa zmFqz~ZA749|T0ZK>DmG{M}`1!ZA&Aegrv5-sH%&YV; z?T^A6ovS)|?pAq7{L`wMCI-$^R&`=c(jk~ov7UC(!=%w~?~B;MTVO*8da_KuNZrT= zqmn6dfoa1hIdFB=>qra9@oVF?)u>jq7J8bFkDpLJNpgYWRZtYa2?e10O*RlKb1C*` z`r@5$eh*R`8?EUI%+J%!$%uGoZEJ;<)8-O1dTM}-oQ2H1g2Z8tpZ-Fe02xYv+$AOO z23?63*E%?$l9=@|MIo}E2EO5A@gK+!%^%L8hIV@Mpm_(wS7^!6X@c*rjIKyr5E-L1 zbTB5P;dkOZ!!ng3kbOx`Kvw;didOFv_VMc;4Mt-8yvHdTk92T~=pIX!=N0uL=NPy?vj(A2x|zZsy?3cQLIp_i6@s~97Y3u2QyRpgk6#G%jm6tqt6PTKVH z34L@787tw&2Xc1VZcVn-VD>S}T9Q4v*W)HXEKUXd?!1?NIyQ@n)|t2>hr#d(BLc%g z`eAkikK&xt#T(a9*GL}KXUdF3m$FE_uUMHj?+%5H^q8*dt|G0vtun2eta66QR@3{& z(kt3CiVi&9rgx^>V+fT0_#~D2Asa?|rtCZ8De0sl{#aoq0?V$C%5iS?Ap znIb>r3TVMtt>UfXBjW7`IoQ+Kv*a~uiZ-Uaw+Xx?&v4F!&M+h8JwAj?@Yzw$yU!Es z;n$AZYuA!_;(dL`l}$DgdFpkFztz8GHlE2tjw38Dkn`NaywqyfHr+B{DZ$kzxBYT4)hDb*_ojG$J zfD^waqH|UlwAFT%u9mTv3h750eXWu&dsxO_x>MF*kXaRE-Ccv(pgHHcKvmmhkGx5XRZUdwz8ZS^zKHhw-p_fTQ9iT0e`-u+tYu5`-1y9`+5)GP+LZ0MVC>V z`E_MTW!PjeWRSI*SD150&gxdEETJA~K+4Vw&vEHY$QerS?vtop9tLU!hz0ZoQeS<% zAiZ!oe7JKp&;6-l0y2D%_=Z85$m>m1Slh|@soq8Og&D3nDkEy`9V*NVp)n2(lEw#z z6;g{?Q(0gsmS6-46;Ubv63sPj4^ytldTY!*%M1~dMGk~SJOSmsc~Y3$kBG_@9+|n$ zN@yr{H%Hg`t7S7<{VYSC`W2T~+OH%m6?&{0Ne!qjgVwD98I*7k*iN(iZfA4)`G-F* zHSY%Rl_hmQtasZ=GCYtO^Bw0qs%V*2qP34}%&VeDqDS3FW-KC1g?E244>O`M39(Qo z5#x_|ATN0Z+;Qhb%)4nDJa`Zp!PxjzTN-;`q z7C$#IH8zDVtP} z)_sdbZkXP8Jlj&*&GaZ^m1f=kSo6{;taQCKjv_?1%HT+YqKr!8k%n9$41BK4pnRor zP{J^EZyJB_!ywuawLN31#Yn@(#PQz7DEkEaqtc5izKY|=Bu&MQ+l7fa!0T_y>nmIe z+j37PytbGfyBvh3hkv{~6L-v>XR1@ck+^=k{c`+k399%v6)ChpmV7^)bm*NZlI)vI!=8@H9bpEn&xB;mD3 zA)*fS*2_d@>}Q)=PWA_T68xKoKc1Qh>xNX!w^5pu89c0FHXlh8tY}X7YIb^YhV%1! ztmFsWvdnI8Y@TK|p*-ye_WnYBMx$vn0v1|`+YI{xSB3is=etNqJjeCK4`?s4n{4Xr z=-f*yN{dWmd5yr$Lo!4>Np4JGOo>UkPPI#&PLocnNT*5-_a^t!us;q^%MzV(L< zb`2|y294uQ%1vD##Xr_Hb2S&V(6ywslC(y*VYR(#yJ`1pKkIPq*zJ7Uxz=UYwa~5K zJ=LSx^SM{0_fwyIUw6M$fBUD0pIQdQ2AT#%1{;QihU$j}hwDZJN9sNceXbuB9&H>G z9s4*gG2S*IIng;OJJ~m-G&MA>Ha$KAo|&69o?V%C4f)_x#nu^Tj)h;a>^9 zCN5DeeOP8&u2>OTY5gYqZFp6Cbz#kFZD-wM{d(ioChlh9cbe}-KlpyMY{_qpZ5wTG z?6~e+?S}3V?xpXu?$;hXJ{UgKKioKSKe{=7dqQzia4K-xb*6E)^wat0)p_^@#YN$z z$YnoF5BB}a=NkPw8O{d(h)_W+-Zr-90>M`T74~tOWV^ z0fZ^|8$SimQ`(-+f1*vhB~R^zs5Bmey@Ct35(k@(7X$LIIcbP{yg@r`Xii+c3&Kap9D*?QafLPh#@Ws$mc(ghMjwnBdAD~X5WiUQKM z54k~-mW_wm<6C}8ivu_VTLEgB6@KsS%W=)$H$5YJIPU&j)YOwnEHax!H+c!upDi5c zG=SvcEd!2okSehXo}Fx{f-b` z)~yO3_CksU=cI^)s(QZv#L4SqZKi4zYK;+#tJ{WH^>k@#SjOC8?FtxD=^aZDO(mD2 zfW9_9Ry#A6)>|xUgqjT4*fR|eTb7GjblP279gBOCsD<#p9s$6gd7`WEkNkb$P2|E@ zKIe+>Soy42G5K$l{9p_nAaYL>{(m580z7|8nv}bzG~}5P4;PRJ`~lP^umy-wE*=wr zQ+4qK*jW!+0bZbj7PpK$#Pu%=Ke6!eRE1dE+uGY$v&xF`@$iTOoGKr$fS`z=zylsZ z79JiJHf~jbnYH-KV*o_&EgQ_sFYv294SO3a8zmQ82*CYH0VJ}Gh8@Hc;$a7I1v36~ z?P<8%djq^LtqA|^5g!48Tg%1+;^l5-bIU0I$vOiGSsPmmFDFke1!-Ddf!muAC=YPS z5G!pPPa|#(S^3`>VHuM@=wP6Zk~0sj0N1`c>F#Ca`P=z;{Bf6R0DSVJ zM}H9FzXtVpLj131l0t%i-qng>6Zndp?3$HT+x^pG9JuQFnQst2zEg5%G3AYBx{b;ntM5_{G)pa0v?X@bK_+ zYe9TGesS}<|9ja#*?d_Uo&S@|SNbKczy$`VetU15Ul-Tj*~Zh|-s%sn$tTDoAoPEa z=)ak}*$3hMl0%U7bAU2Ix>*3d0%4-v24IVcgMop8gNKEQiG@dqi-(7YOZe*_@E?zu zl$4YhkCF-ql#I;G%#0j=3rLt47+4rsxY*dZL_j4XVqgQ5C%g@$lt4WoP*U8#4HUEt zK%iv>>fZkS9&S27gcvB~$kr%G^dMwHBosoVn;xVOKnKy0ZUYec6;SV>Afq9H&@nKv zu#rH>$S8lm7sx-%Ole+nz;J@t8=RM5~r`~6%* zQQz*_o8-dAPjf#m*hG~K?0v&hikb$#Y+bU8DH}TYg{KyO9Gu^V5d!A}^zzOf;2cmf zP*9wK^C3h*z3uTGO`ykUZZBf_va1e>JIB8_ zDjQ6u^9~ptatdZ4IZ765Pq6TDPE9u}+vM8GtN7g7|Fz5Vx_@^1FZ=vYx_mPa!a@1f zO+t_)Xd8weFVVU&^5}uMYIO(^6H>0VZk){5b$9k**U@cK$>UM7>j<;02%HwM!nQ8- z;LQzag$!nM?;bs?^C|;e4w2mE1jg|k5jm@Sb-iY`^;S$MZrNdQ@p@H#E12K1$ln(# z4XG=b&rB!00gZ@sZ)9>cnDC9=fJQNHK%43OBjI@pgBb=7Jxlm+K=MboWtI=46K+7; zlQuUX#a|haG!kWn`0Gl^E$u(@L>)IOIEkdUyul`s57ur#sjlOZNRLqNHb}>U{LVy* zaRVAQHm<~Ml5apc&u$xX9rF~t5(_N6l%lzw3_h_e1v?4gt{>0*Xmk2EVzhu}08Hz3Y&=%+eFGJ_C%_Srq|%cl_tBxpXQ$lwOl zMt=i(4h+y{ug;^qr-+Mxye9|fIOh?xgZp&kjD!2U$LtUr&KodS{CcXieVOq0e96Dh zcWU3r;J&znNNLNl`TeNeX(Sr3$fT>)U-?k2nj27n!VL)2K1n(fUIYt;i8^8I3@NKB*}B0-OWGZ|4A% z5Bl4l_F_X|kJSz61vhlC>g1$wMgqNOLBIK?@&GN|MAy=W|LhKEb(U%He z(_TVZud2ROf!k7nNR6M{4e0lDJaq8U?o#^g*4qgTDWExyZWhkZ{5^?^&^)&p!~5b} zrCZ3aVYAt5m^G9&l1AbXEQn_61TMz;i1VdN&lbq>cKSaekbvK_4Eg#5adl`2qtHnp zLV9hc?7LrTEXzmIg#NuF#iY@n=UEWe+UIZeknF1cKB~sQ&sbu<8dt;ZHAzZHL}OpN zJ!yb;nUD<&+hBUOtGM9NNKAe`S5jj;65cH2^zRwTqt=CL4;kuYj#@b_2PnGEVoJm< zUcb+7Ke4ZWicn;}zgjlQE#w6LQe)d|lJ@T&(LdO@tcVk!xq51d|B;x2j^h4x^YSMc zrsNr<{s#2UF;3$DBPa4}sJV}S#tGcV>y|fo2q`q`b>5Ec&&a5l8n)j_?zv*Dp}(AIq`bItD8ey-|@6=HSXR6f1h zRCAbK?;ik*JIHupdgToD4wF;f63B%+hPwegF8@8+qndlae-d_dF^A~r|0^XHGVK%v zyq>`RTjRY(rstB!us2%ma<0{V3kIR9-*pmam>Qdmj36bL#i*`iXN=#wGWXZy3Y_?- zA)zVxCfiKDa4k%hZ-(xtQ|**jlgL|ovlFH!Tl2AD-|G~a&S>Q$u|Cs$TRmX@_Q3@~ zUTlUJUEJ$M{3zZQTji=uS#&s_&u=w|&<#sD#)Vb=d8eOT=L%1!xzH!vTX~Oe zlBU6OnoTg^lr|%7rwvskKUrtk0KCe%zwCuN zR@{I-S9|@8SkuP|CGb8&@9s_z^O$cW*nySu2Zg7KdlU*z=?<`aoIV@DUOZt}XD{yR zN?3+afu&7Yv|g)JM{hg3iETe99H4@b?Q51B?o8k^^kJ?pde7%Du{$8qC+zxL`$2ge zWMtsHINmD@DQit3Uk2hFeGT!|kaK>1!Kb`<8$-t#J}eT4#P08J`QP#gD4s)n>bKI~ zee3-f_eSwuY?Zn1Rq?rlKddsi9%pc2uy;^~17F&WEigbrpJ6t58Ye2+vda|HsfIb2 zmGEJ#A_(sKPU)qJ$`2-?NzR{E8i8sMxz41i7>UP{1WXUAOc_u6b}9wG_O6Fc*mH50 zl}XAe{iqSp;%Fuu3M1s>#hGR}?A2Z$^ZazsR_n`8mS_zuG*w~j2+LI*^@M*d{vrc{|(%NCvdv{U6*U7I_%-b_qbG=o1L-jXf<3t7vL$Cy}2+k!5 z*B$4BNsq04gic?qF(-a<$%~sVTQ`caJE|>%Z;8h(T%7kB=>83nAWzl)sCcDzqT!c zXHpK+8&L3qa@bSK=aa*4()C5c!ek#$Ax@s>aSVaTolVBnFSghX! zLLO00^%2PWq`L0yyzyqGMb;?#w5H&}NbNh3kd1d^ijS{|`~pPI7`mB-Bzn`4<*Y3z z(ezxN;1g<$EMBb^U;c6D{=fOC&$|-!Rhi`eM~D%)VmbwCC#Yf}6OU=1 z1MF0y_yi8k_0!vY71!M)k&7{brb-rdgn}Dg3D_9PF==;o^Vp|;@ZRI*Hu>_=_2b)q z8ryj`!`M6EQLY^*cd03h(ZDXjw}9XzA-Aun#Yp zcP#TSTr`k!GH|wjW)m|+?vPa`3*L~?KibY$~E4qImC+CT6(?m z!&TtpqinZgxj=!LABhmo#6DJi#XecPsV99h8rcm6^R%A5o+Etw^RP9I7DuR-r~cr4 zk0owTjbEI*4`+YUczAxwAD3VbTXQPpMYupi;=cV5#!B#WOJa9h_)cFf$}-wF?;;z2 zfuFMWIVJb;RsTWP%(yZN&0)4YW zSm|#R(rl18ryomJIw9s)BF)4*mc`t1MWtv*W+e|teHuMR8b+kjaRTeAvZAAEJS=-e z(@zM$QzB4SJiyexMdx*Y*e)AR&D%Azlwzg()!NF?vT!JxZ>xUZ*s%12x|%I-t`rBi zAd`vmOz>;8jaH#hv*w5X$YOKDU_V7G9^7eLAaLc0 z7)s>p%tLaV|7`yI4xt0r&$o9cqqkqmN53Y) zJ%j}q7WjQ@Pl9k$+Lw9>CG5|zmaB-%{up5M!ln5Tdvp&lw-A= z!h`TE8sioSOK%yiPIJZ*Ss8oyB(e0hy2WTBGMud>QsG+itZyCCRxU`R#;rXm6ngR+ zk2+Iq&-9_V#no1-Vw3^nOFF8=9S9pODvyFzp}(7{0umznxN$;x2EWiRqbPG`Vfu;+ z9u&|NG~%mQ&mKQivJyT3MS9H(nh$4=$B@9B5-s+k>2yNe<+d?G|}I~R}xu_R8I9mO6o6!;J;WdYsG9f z@KT=rgI1~|?dxx++uS*Z+qz2DHZ}1=(FLlGw8grsx^~Jig^V*;lb}OjX~`9?yno3B z(S!_4ezR+nBeeh{4qssk$JZSvBZBa;kBEQC@_T-@)C-p4ailJ>$#=XMS?{-+tppY> z_ibBhKgt>GTFcr-wNNQh4wj<0Jep?P3$I$h=dx%mF@y@@nY_N|mzRU7iH@;>9>%K}&6(jtEUwU9cGS~h_Ju>;k1KGv0 zY)%!nhKjpfU#Zx{Jv;qOb9{XReH|s-VBP_DXWvxmCcI{m`V{nO&Fnp|&gkFf%2hY|7$xqKuzhPo7xIDThL$>Q2%&49AxgG_ zPNJuRDt40nZb1HZY^E2_V5g27XS0d)GF@@GjAO@f;f02o!&7BEyeGJ0jqv+tvalP_ zOh`q+4vlgsei^K-BG1qbRXfCSuZ_Jw^j-OUx4no_a$abkb!|BLT8h@H(!5-_#tto* zU4w|N`fOlPUWSO`IguMx*D0>*)~mS7@I6oK8H>8GwQM5Ulj`=;atmICJ_;0~)rg5k zUkdL?L%Ef8uR0#lP!qNDc13S8OcrWz@aHGxey-0>;iuhjU1yIJDJoGWCw-;YY7t?Hx1j z`FXW>3Y>Yg{DQTN6&Qx@hSKqm`-=+b?O&c=VF)aMYa7s(G8_O8BtnhDgAV9}$Tkp)7tM)YCob3?vrLG~qQ>J*xenyQ0b< zsO3%P-K+hlmb_DF-*@&cm11dT6;F!!EeACp=)OID#7 zqDPfSW=3@}li3CazOQ4@bLpPDt|vGIS9Z>S{aQ9PLptiN)w`b;`cpB_uJA~9w@RWa zf#V3bSK$em0x#H^Scr$erD|(`vd}N+*mmP;HtSw610`;8U?|198unGNgYz0u<)lB*HXY4Y_uK3urkLi<((N$+3 z2r7v@uFkUSIczEFwGFE$Qdn&l^BPPut$KMq_i+FmCqnJ|swZxkBquEMGFc412AZ=M z+elZOuH&Ek5^;|vTsn$9ANy%E$;BRuoLm?{G8wm> z$ZLwt37=t`U^23^@$Ik+Mn>co-NSkb(qLsf2ruyc8#ct(oOTxI2>m`~#X?U+zNEYQ zvi#Z#=UJJL2tSrrgo)}teek6_jPmH1iz$6|%`Mq|6zJmh1 zS#hFWClaRd-yW;?YASnmjF$dj?%Xdoux#LiY4uCk+?%;FreradYd$^in6!hv7@L%P zBQF=PYo?o!9Id6IXFy>LdRBC*qZiZ|pK4kTv(3AD6S-6-8k*rx0n7W5u)dM4$L!x*w zkzSeRYXxO$U`2w1-@~JSH-ThvV||Iq!VnWi@#+3W_-e`RJod}sJK{ne4RcY(A zou4WJ;cp0}r`6nowFjVnY$iYZOdV3=$tKm}3Z@@alzE;w5tXiPn3tySXh<~?-)H4< zGBq0i){r_QqA%wfaknT@TX8C`s!wH_SZ}usjg9$r{!oA*S>)SqiPET14EBW27^4YX zaJKKDkd(8>8t!~t7_L7Cm+zOkad9n4tm6X=BOHzLf^7F{5+fbIVDxedG(Qvo zKG`<(St`*W*EiRNJ{;#Ae;vAoF_`RcEMJJ&$bJs-mVJJUrqY@3e#-aATrE1*Y>-}b z(K`=gp$@~ScaBAeu+CTtlF4)~E6X_TskhY!y^Z15RXR*Fb*#sylyx83N1oMxAc@NZ z@6U_OCSVZ}4{0}cjFvf!+c#9ZHYBd8eT3CcP`feE>8}&f2b~`0X1T4SYa8=t%2hSK zGZktwZ3*;H`X$q9N7Bj5&s9Tg8Bd8awG_msmy7n!aln`r zm+u9d3pvZ)s`I8Id2QFBx(?CH+p%N%2`W5C&Ga~wBDohlw!-nAy6>3v!$)M70AWPNI8!_6fPN3YP5a=gz~SiEVNh6E_y-SjQ?bmepC~sViFD}jWO8}F zm;^dJIQn976*w$uYUasf=p0~?jI4n+NnYe2Xh`I2JL;ycX|I-Hwi`u0ijphK2)kZQ zgG%m)>hLr4>$gx?L0U!u;_^9QPknj=D%LON5JDw#c)tSJ}gR!!n}K_DoRn@@X(a0Vw&aM@2<|wUGArhWP#duITNU-JPD6+{nO( zDFO{8ZEwHdTY<4aerpq=r+EWPeAd410iEW|5y}P(rJtbR8?L|Hc1Yb!1K24CW1=}x zGn?TqY0ZW)KDq5nMB3+{k*5+*5keFp(_ejR;xa~Qu4jK$Df_Ao|CWZpqJfp9?IcMa zcS~Lq)0`QR$ZdAKJYJ7J4|PKf;={_4&W55dEi-S+0oSI+T*}uKy4DBm1JXb}n!m4? zX$)MJL<+$6odt~Y7pT!~60jSu0KF}41P1*MSrR%zqJU=iHsecM6JW;V)V^*4WCC0T z3_1okm*hq$v<+xBZKr|w2K3D3(S_u8J$uB+i=ZaS>nip0ZlI`pn#SoMZ01C^bb#D@ zMS+c+KKjMnnZ*Lo^?z*0{0nqFc%SdDo>Wp_W_NrL)YaMu+1_9trsNxta=YXaFx41% z;|iER=QPQZNsVgX7&X=>ZX2OC6)xGy92a}7>8D5??L|)uwvSIJhPj+e>NW@`NnpK< zd8yDv9`)pzAbNvoa)Jfxc9Im?DIQ~+UdzFM|9xZcKaFftIJ zupHiy#u0NwQ7qx6dt#&WY-7r@ykl}(NNAMZSS?n7uyo=zty^Rm*!hYm*F5zt!;B|g zv7@2$xE6igri(EFshqBoWynk&Wa&fWd>RcESg5JBruwa_zl8UA)hhK<{Z7Wa%1!si zZ0lQUTcc-cGQ{6>u9}kR8J^|oWKubAr2AB1BMzp#SDg^_@x(WC$0m_F0{K*9H_19CM(+V7_~&r z6sBWEH1Bl7G&69v_l~?)3+|yM6?Yan=&f$zpI%H`B9oRn6WF||v!-jC?VV_wBfS9) zk?EbA=_fuj$R*tnOytR`12dv@FJqcFvuN+?(aeKz-bw)nIz#C%ELbo+OTG(E9njSlEe<(%Q zVmHps42BK$>2vUC6Md>?A?F#8O=&pc#fuRcet5~8EzM2|%F^I27c zw&}uZQDRQ1RQ>=lF7fQ$&*fWps{Nw7*ggDooJ8^4i6A@%Yz=Nyqt0GGV0sbvEy@P4 zF*XdZ<(_ZV`E;Bcde@)p!t$Eu;oju?Wd{0+Rpj}x)XX%_O{`&#a|e?s%)uoKi}qvk zGbdZA#v1*oeBym7J=r+>#c^mBS11YSrnPiB0U1^`4Ig1;i^8PeUrmHDMy&95h$^0G z^*#6ZA-|&Gv2R!}ZZ>K>4bSU1jlh2Xgh}-N<&nUB?;fV{3Kzy{7wbksW795YP80TJ z-8XDGkp5LZUfWBg1uVCP`rf100jBTg@-bJdgkuY7hq!?kmJ&%??cA@+nwdh6+|Df$e-(51zBPBeO>Nz1oT-)-C- z@`CO+TR}!9LfcCoe4pwy9+nm7N(-GXX2Y*SU7Q}$$;chl-?#16f=j zCw08pV7qIN;F>D+4qQ2K-8>x($s;@FUgT?KZIAuk(dNT1N1NI~7133@A`1Tu*4OxD!?KQ@b}rnr5BGTM}^28GC(+rUxA2Ei_=dSJ#gR zaLf5rkh-A{;UaQOaas$0lDOH^%P;eJOFt@nXq)82IIcqPB-7k%IGb_`p>g(l$a8^5 z^o=F=W*`iXDjYtU+xsqM7Sm7o1XQtxL)AF9WmuS3IW%X>iQyK^F@|54M@ZjOiM{*s z^}$qZ?Fj0p*mokXW|La>T8>k*EZjI;_e}*YSQhR`Z7i%F^*yYs>5G+69H2lGV8_rB zb0c0LvEc9zIBq%D9-_`6o`0hIQ(9Nnvx#)`M=}a%nopTss^EUn6MQUYFE${v3tozGWObQGyl@)6)S4qmGjY-93?fSe$uM=J@7QabTsSnKeY;`D*yuk5 z=H{vjy9+m<;U{JlcUDvt5D#BR_CR}93tRpbFQl=pqD zb?@9JA%9B(##rLosX7#28(*f$s@ACkPMc~M>QouXS;n0pf=&Rb^_H{-=@%pmicclN zj5z9FJ`jIG`4)}#ZOx|zXDbXQwrhY+}TU z76YF6jhUNq?Ighx>--`9+kKh34H+DI^>H+hn}AUmm_{PvqDFDt@Bbqz_9LRqI`jxEGF$KG_%-+^nLty;| z1p!~6+x7vtUVKr^xj}_}w($N2G{zNtc@^hn%KAEHT=?H+xRgsQH-!g z@5}2a;6(28Aw)?~U2kQx>XfsWq}ujyO*dn}T2dI+cCVdIY#aGsiPE2pBW4i$Ob)`7 z3_(A~jcf+>x0P@~|3>xt!t(!d$^BDQ@6_H3GV~8YW)Gn>O>WRKEz3pTG}krgaoiT6 zf5ktMpJin|UYio~amWUxEE)NWArn1qZPr_DbCIYFa(*H95I9*r+~+iD+7h@&e}^Nryv#VMvSMU5GpI!Zg^+_NpFz2ssD-d1YseuDd*3(qryQc1s=H5sX< zI+nq=Guo}uD{{&0D6?r7$&GsG1vzv(iajj%4f`Y4s-{K^)6KR|Ib7b2|z^vDQUvlNP4uzRc z6U`Ca6*_l&I5!;=er;s9?mD#p^!p~D>M%kz>ziq8f12gdOBSI4YWs`ld@{j;>CYBO zz5pV{Os^g2>u4JjqOq7OrCw9JvZF03OLA=s|1-^Hi#23)zHC1%OGzRL!_?}BbXB%I z7rfVGrw7>$jQ@c4ge=|5OdvCSrUwx@IjW(Izx1hK3owHWl<}tq={e4a?5byPC2oK8 zdKHkV700)Ij<=Yr-avK|@K6;E?vaH$4c+(vyvTL=_JPqu(|QB4x|VpieWPv(VJH{vx} z>(@-UY>%snn{H8By`?>uZTwO3`eHZN~L{4^nCTb5{qLB?Bm=YCWaFGB*$L|fiRn?BGc%FHe~T`kR6 znwX#9C&^X9B7OReGQ?D^_iJJ8;ydl|7i-C$gDlwx;SB`TRW~5Li`9!)@-@P+oU?SZ z{}_>}ET89hBP{PBo~XY(WIDK-w73EB;@*ImS$Z}9X7%{bI3;!GI|09c;o+u`G~y9^_9k|- zVpb?yev~k5q~z!+SVGs+a*8F7c(pxWAoJ4smcbmj0SVgdKo1_aU-vFR2c|n|)4|v< zGsTD8&ZE~q)h|nUr#;&*ooXJu0__xb%UK~6Sa1^(Pa5-lwmW}7d4%=5}t@jtyv-e7T z@uf+rgYyr}j0}FsgDvGM$VU;5Si$U|IO)aota3;?SRf$~KF*p@5cuSEO7xbBpo+M2 zkga1xJ#?wl`Cb6VUE7>HSp|l8!D1uz5&4~{ZVy}dCG3hPB{YxS?_dj)Xll<|gy$R= z@~}kneov!Bys^Bs12Z>j|{>oOC&WyPn(o26V*Z3P!s#6V#h^)cpEv_RebgVAjYo zH;F?^QEF2az(oEr?<$=x0Fi387Ep%0t556$4Sj)ZFs zuwI`_|JBmArKNi+&-R?B7&SihQ{sgeixggkvPH7+Fp!v}aR3Tf4t@nKlr-o)lwg6= z-GHXdX66`v*LQtNoUR3;`t(uXQ3i_jK8n39~gvxfd+{ZB98)`o~70*s#` z_w`h4~Rljtj@^$ zDSSWZ%IPtD zI3xBYM8^&6ZADfv%&LbTOPt+Xc4k*DD0%pNMCP2t@R8D&KO{N%Rgh@z9sH4X8B|}ev_#{e zwtS{=XEUo;Bd9)aa=U0xseNZje0GYhH4Cur^vYw8glF~ko~gs=B-!qA?+9C!rNQxO zj@({WAL-mPF#+EG(Z7C+XpJk%jR7|NPA_x@n02poCtDV(mn{N0xc$G(JRCbo63`{= z=pV^=7kNVuA9|UvcanmvW1m`o#T>9@maY#&SRQ!u9@r z@)GQm%>w^Ixc0zL0u|h)(v_i4eTogz2BVz}T6yA==JHCrQj?|MDr+adD>{!`zC{b( zEiAaYVlb5rclOtAKWRNCcB~hg4{%28yucN@oP_3{545qrA_FW@oq+1O9B}@Y%1`wMt1^25WqbZrs!f`Soc+TqWMV0Y>|DVEY58to zxn*BN;B`|8oPZlJlvRuDm90uq%4h3nVCfOGRi$naI=f_yzL0py=n{3WCO3RJgy-$$ zlB>`0eyyBhVV(9Q!q4XGWic=ZPF$J~6!<#I$(1zYKEnQH)n4X7Ys-r_j7YO2;MW6& zfptB4LdOK33akBMWw;;V9Uq&zWj=XFSAm7)i5yIpHkc?(>FH-(tvJ?~L^%5mC#X`1 zC6B#s!3nhu@)7oW#)Z>xG5XY((H50yIcGcmv~3o&j2qyu9YAKWY18QM&t?HBA2z=u z2VxVT(T8;`UZX^C!@4rai{G}XhC0gC@ykBv=Y3X28~K_^2bV%lD@p{Oy*8OoZe)LV zVS5ySv9Z=K#UXMrfo~$JslCb^*~;kxi?;2&SSGWLUYJ+)#DG*0!&Q*lR4@ul^e91diM6 z3YjTLTvH~LA+Mhrevx}7Qym|!q(GyR%9laom^uDZU}x)lb6eF%Fp+_Bwh0o}k@8E$ z`B!xqU)2X&x59G{@6TR)a=vaUK-@($7mvR9F^_K#)mkka{#UrfZ<9j*#Qm5|6=WnR zxqL2p9Q1_bh37onpagLP0<;34B0t!%`vZ%Po|g)~7uWK*pB|DnY4H5n(j(1Q=}#FS zDwqVeg$A7+pBNpCj|jsQcnPV@-o*Z2?7ekVmg}}R{79onN(hnyQUcPVNC?v1-6$m` z0+P}pAYCF|igYU}NJ^*D4bt7blePCb`@G+G_Bii;|NF+b*BEQ8CGtGaeP7p{^A~eo z&mA|Y(e=R@jk%t5gize9>4wuoBPA-HfX19bbx>BuHpFE`BQn z_E>hcYN0t#GOgWIA5_UrTjgm{_*MVAh=SMhNSwOSnLwQ@N}ht(_(E37)Bie1fEbyv zw=LQ~V-%yYnZ7cZ4rg4Q>?{G~Hns#~{M%@+Qzy7HsAtWCboEuGJC0GkQx_-aai4_z zQz`eWqV`IBW8J z`$tkMxT&lY^2d9PukI1rurWFqeOde&zt^JWJM1DjBtJY_M~%qb@%)ssUBUKWG$nrQ zFlM&@tmsX;Vl%(WBk8|mBKpq z<2Q{3lM90}JWpjM24iM!O4^c3SX4|LWKV1j@G!;J1-;zqQMa>kxFb!=&=v6E-gJ!V zGj+98#OA2$P)4T~A0lvJAI0A$-`&VlKSEz-*i(5h2T#gAo7AjD0a?ki_G|V|y(*B%avY+!UZZKk{8C9`~VaVdO zDy3vzV?wdI!Na!mdoLcHI8=@sQ?{ZRJglGlY;g4^Hsw%%ug1|w)Hw~ zY*sZjzWB0dw!X{!W;)Nd;)cMuzB6${ ztJz&b;bfjC13Eaz;1#r#)Qcl{s-Or&_+HdZceN6V+(6>j8TV}TIT>6ye9f0m;^t@+nCGv8>MegEBOzT;tj^|&Fk}VwB#@uHHS1IKJ4d)~yeoRLJr%=aQ ze$1!xY`f8=SmoYe0bHtF6(LA*_=TiZu<0iNPOto|MiLF9$v$lx)<4dS;mnnM9<>_x0c-H zqDjj_`V=Q_4ee%{^dGWHpSFsX<;Q3*5m?IY7y7ycViE-bd9JTLNO>ee(-cxqJHshytZEW(b>Hv zQp!QJE94g?p1XMR_PAMaF@N&P!&<;R46tbu_67lwr@j65#Vsk43S@ zGn!IXI~;xmyY^Mjp+B3g{Mmz+mjy)q!Ewb8Ik!CeVj?^$gJ zQbB%|6n zOCw*bBQKJ86kp8}DStAbkZm?zY%ukR8DPBF|Gw8&KSC(BKoO5?QKM_V-|2ZwnleIu zq6``|wn}i`!c#{TpW|)AR2J7SYbW&Z!@P6*u+Q0vTQz>8>eG^h@dNJBq_ep}OToX; ztCE}TM6>2!b6x+$BzeM_81E?0t*7rYIowxZP@;?-VkVE4GA?xSYIyi4-)d-D++Y;Rc??y38*W!0fGBaC-IH$cO;+wE0K@JhI;)Djj$7;QJufBP|XZ>a)rU!KL|KxT$=y$e$fAHxhe6 zIhnKHqR8D@fT}AlYb^HF>*KUUZQTdY5i84!J+P+HU=h>{EY>UNS-;3jW^k`;hyMv9 z5P6NAUF(CT>LfFH9Mf0Vjy`W0_M6ZGXA@G-_{`1j z?7NO<^Ewy_Q5XEf|B(g%H(}2v{7=tf5lh2Ixlyi82Z+XyK17(U3^6~4FFdh+T%4u#{yKM;UCaIpqiPzJUR6JB|>3@gbm5U@nkVU{@5IT?V>rOi5oPDiEwDz6BbZHrFsZqxji?fd=q}Io9klVBwAVh5X@{T;1vVO@g=%rZ}{MOaC zxU+WOSr_lxi^a$_$Hl1*OfK#d-h2FVns>Qhx9G+Q&%|=91m`m(Ul0Gv@EvnBJ@M#m zSZD6lmy}pIvH!3fnbu#4wqgmKoV@zlllZDB=;HCe{P4RxAH8C`aIfQ>Fl)q>55OTf z>cpVrK?b4ra}=UQiS;>&$kgpnk>G&_gAdP;)#DZg75+~OCxpy@7S75>XMFjiKic5Y z3$&ieP5p~gC;tOXC z2GXROfjKAjR34P_rv-uw?tGv5e!iFG*_5iNOq^AZDO(sY;LmBHrr*xYfpeQmlGr@! zomTH%B${7UIKRA`pl5zZ46Ck2JK%BbxPbOr9^txPl2Ps#Y1efwXIUr&k@z@sK8${e zk^1CHtpl-yT3rfUEX{7@Z84Td24SQrXJtZvpMX^*9K=0{oxp3tM&Kb!?wc-AQVLr0+r0}D@VijH9jx21neMh##F7yjmzDq>HJ+eO* zF<{zF=Y$VaUgR3(e)l_BEH_>_=h2lruWG?fRXj-U855(phipl@mPr0C(LX(QTQuo9 zv}wy>`q%mG7IRcvwzoVMZ1u-JiXD}AIY&t6TK>^x0+pi%yGJlL>B7M zrPOJ-pLHW!J4YiUmquK9Brd>i&ty)hmur*NJi`2qg>CSI?FSR{p1&e`Uh^HjbYx7I zjQoXL!r*w5D|paQKS*mF*G`xo+B+;;o^6NF^dkAh>cf;|;6R_Ho9dmi4Q>8af3EgV zuPgs!h}JmU3WM&iG1+5^OT_+DwxL0BZRhY%dgGH>l21$tx$JC(9)fd2@*VoCKD@&= zUw^sx7j9=W1!r5`*#DY#kPpSrXq$3)?!h0rFG3_Dio>wyOQMT2Xk{6RZBRTN)FgLu-RX z2RxUEJ0+a>#D-ee!|EMv`}gl9PGnSiV7nfLV=dOuPNhHI;BvnwAEoq-Ra?3Ct03XG zmx6{JUJMwMDa5j;Ol_}hm@Pn#Rsb>2|p$blbH%UWD|k!pmJKFuGu*Vam~|S zJ$xM@?P`YMZAQqf+ghAsvA6DX_*3bD>fq04%+1(0MqfS*{@9e=h3{%G7M^1Hp!#j> zDFd8HHg@V1c%as;rlxlE>5peQ+sWJoO;rW8<*@$#C1OtX?}pHS^MyzMX@8=)@4pD} z`&J*)a?Y-Y{AhLVEXi0ttMzQ)U+p-ic6PvS{kO(`Nmv84X)-Snt*kv4>;U_?070;K zU4QMJXEWO0&2}75cbgpTq@>7k7bd3kSTiSsz~Il-EI(yF-xQfr0^hrm3YqI=B%`?a z)0T*#N|ZY|Uq*HGe?Q&lNYN;-3SOm)juC&rEyc-T#Kc^C^D*a(SYjgf?h(J6Eep+Y zO8KHCjP^+BrKt458EIY!Y}TK@R3n{0Bce*HytN@6&0Tnk z)ha$9uR*+=doE6>_Veu}LIea|qFZw7nRU`0Yswfcp243R>}RR~VhLR|SbDg*eW0;$V~f_pJQz*RXt z0?Plaf{WP?7VEw;q3E5VhN-kKf>Uw&dvSmL!cEda(jZpP6()z1`4&a8J45S%@R~G= ztnN$1&OS)8=4ZhvTK4_pClrYogSzs1ZXc=z$=}#*24|ES7-nes=&LPVM4G|(qU~HF zM1|`&3p`h7pkGEPs?5#KyBtl<`ZC~b|K7e&(w-t(`p&#(sq#thY;Hk<2HBoY^skd; z_Xm_m(c-+z?WY#Rcb9#R8thc$#wr>zq^r^DGYi5i$vjW*fh=6QC{P#Nf}GiZN+_mc z_8TdgO>7%R>W$H3#=yQ0bevs zY~Lne!EM(Kq5q!eHyHmX%KINI?=9NN=Tq%0k2ud2?=4cB&p+3#ab|Zt;lSZPuPy(0 z^?&@17CFZbAoM@##@GLBGTeSJM^NbjC z&B=T1YUz+ytZW8nuY4J8&y~)8M(;9hcPoo3CgYijrjWTeN$YniK}+-*M1R4LZ*10I z{L;(nvVL~xK4RGptff<{NR`vSzWFQZj^O{}jz)?8s0>(ThfVG*GSGeWW|+6lAEFk! z_Jls=F=2!a`wD-|&*AinignwX@@OJExi2I{J-4EWp6}n*ijHTW#r^}shAfA;T1|(< z9JK5|Zaj`;S5-yIEagU!q*4WkHZI%xbQO)S)}ZAWo;+Mkh}Cu#lCf@2WSbagqdyWd z%Lyab`YLHn_RabRAz|q9ZS!&*{O{W>st*6dzy;DX!SVd13tbrZ3+nOSqV?P!suJAU zL_d?eI`s1|d>0wS-7YqmR{!r#m4Ul(*K1;qn;lQ@;-pD7lC;lA2by?GZN*4&^Y{5- zGY!>jd2?N;Djs4fBZWL{K>4v<1t5hNi6 zvIU&EBku-!>VQkZuk*um*!L2?fb{A$?)RlHw15#tz>tJ$DMmTdrX9{%pv~XT)Yx2| zor(=~ueY7r*Jd6VtY1jSImVsZ*S|X1RQD0s(S2Ocwg4!c$F%~|=a&d{`NK|_y^a{Y zI#aW^FL-!HxdU&$TBn}#Y2bXhvhd8n^Q161eb+#bG`?^%^$BGSR1Qu#qnh~TEy@FI z!8wP&&Hx=Uk7}o6wQfChD`(w?!&n*NM^NALM{l*~9eCp$-+}TZ&YSniv-2_Kj=&WY z`|DO@<58Jqz}3HWJ>lGPA>ud zDG9iMsR!8C|8mrccX&f^A=vYX!E?3X>c(UjTF;8*Jjb5G7CE@v&s}K1y?6)w?Ks;l z-5&kJu)oed!Fj1D=%n4cI@z|bPAF!ev2vp1N%^@ET%#1;5eSy6H-)AZ&+p;L3zvDn znP~?^j)QG5){sMV0@U9sTEH8UOyBe{bc# zg?t7nD$pF9$SitlgFDfvHrO7;K#B#i%y zr&RND@^W#o$r`?TWvcxEp40O8e|7)!ffllc4wh70JXg;n`PUy~Jt7cDAbY2EoA#@d zWcMR|9Qi?IMU*Ld)RrGjO(M7`HxzrNZag9*yTL46RMh`Wp|?qd1%>Pe-h4N)LNl>K zBeC04R2;<_xh~xjmy7xE?~lJG#dli2+}%09)oJ$n^=q?(g*eHaffggXi?id?gLUmX zw_|VA8#*JhwD@@{QXQuE5@hHv?C*$&Nd>LF2wEeS-Z}n8WFg5KxBJ+}%1Y)}#M6>O zZB>R_dpX0=>&`(N64e*c{C@ZXViKo|x6%SkT1zF!m6cy-A_rYYc}U&c7ai-v!^~q0 z$YfWg;dW%|YH(x@;OFO;aUWZyzCR*zo=1=sH{g(ECqS#c?$sS{u6dfVTgaJL%7px2 zfuHM(L0o+4o~UaZzus8Hm#{vk=d$j}8Uy(sjaYLY)t%I3@7;3uaEmGo?NnUP9G{xk zUkuI;SnTUR$!7dw)y)xC;hG-fxF{QhomN^pfYthVp8px=>n!<*?xfg&m$LWvS#C$` z{i-wll``#{gzxHguI7;J>cTgNM?=wDEfYDO@`OiCSl{3K8R)q}=lvP5)rSNUy1 ze=nvDO(N;e7i+y<9i`*PD~>2Ww-uInCMzSK>PE>D||JTZB_7XIygeMmlKQ+n2N;PB0f z{~fod?xpk0#rGO{iyKF!Q1m8yd(^i)P?@72(K*K!GEP-5<`nw%dicw!Z>2AcPVo;g z>)W^+7d~EP>inFi@UrQtjj**lvwBWRuWOoL+GVVJVf^N}$+Uc;0A}62>I!OKdb6z@ z^18+zMVhtyx#PU2`IrK++&7+3NANyM%gL%h&%Z_}ZOL$cm;6oHILYDKn8Qjxouth9 zL)6RLB9}C3o-b+LF|bQfKVCx!CA*#MnQx3&o3%vedRoZPZ%S|>8U{NT?CBXKX%Iq5 z1E|StxUH?Nbj$)hQRga5gz`P4{xT7A7|PcW>x^8?yT{+=y(y$LK1)mXRA`xZVBNaz z*VotgivPam3ZLBRJ931AW_3Q+&0!+?IdTe$*s8Uam39-3yvV9YsE8LB3ne8JZNWQB zJt_Fn1KF}sVy5F0$LJ3Auj;KgNf9zPOE?sRlfo$lUpqNHFCBZu|3!1ffk0e<) z4x;QK{B@$Qe9DubA0C#LmU2e5b6wQnBiLiwq;8*%j*f0^ZSAcL=#IoVX30o=l|@1{ z(DxajU(;lS#M}KdQn<14vb`fL3_Ia{l`9G&Fp7;C?o^iRg$tS4!sb-HL$wZ1lB4wO z1~x)ehFJ9enaiP=_WaGn{15ZN96KIzSrHLfe1CXvg)$C^Hnsmk7aK) zBJv=3sP4r)F%p6bzgnjtBO^n{V~CO2JOm3{U6nOg{i z5f=wXWV^}LD>{z%|ER00kN8G*7UVY)vlM#4tGMD|%?|hW_`;OW8KZhSM9r)DBVHmQ zaFcAN>V772OGka~IQ#UFx!k@abNB)Y!9G;yanAp|`%Y*zX-WU?x85BExPsK%?q^5E zg@rwKADU50`}Gu0;<=(}hupt%Xu|!l+Dv|1+1yM~P_rnv7d9Wk{35S_gh=e{jAM&q z)%~QIm)^lK9FFiBzS?*~X0^e)%(BW6_p(_PF^wRuosYI=ewAD5j&RfUnJLVFmhRc5 zWme9+1#cZs`t<43Bwm|}jC+w-{m*Cz(|=0clv*jZs{|Y02qywL&_=Q<^ z=UIGAkdjU!Mp%U@0wJPXZEreKpd0Z#Yl1Wg4e`Q)m`!i|tCI~=3`ZJ~WSOK-luhOx zP4(e&cLc%;(qpRLvwl9~hbc{Pe*Pb=5)Brj>!_`E8U;v*>>p#L&v7Uo$1?@dGHY&M zLuhs7Dd&XUd5Aw#6A9Z=7C+Y-PWk9H#7tDoGwU=-H6-|zz6^2s4}1|!)Xdiq82tA0 zZS7I_bVrii)P6CpxagJ8ChEb)r92J5hDQ(3M>^77Exsf=_8mT_jSq8teP$3U_l-9v zYl&HPY;~PDH1oJShuDZh2rO*d`gSGpt_T>%iENv-AN>Aso;{?AWKEjLSzIFw; zQqS|@4jGElBaX(m)t^6K3c#T>>;7=ulW$dQj_yS?{6_P3;Vb_0)uGST z4ok6}Qc7_DizQ=g5X7e^Cs+9;@-zOy9PG&M;!jS^73m+NrLg1p!*Eks11k^>Y#K#Z z8Aqi8IS9K;d|!)JlQAOGF3(6_5`iEUrjK&jTkh-6l5W3xGfA~4&RYh@I}5MXA|nw9 zlB+zAkyM+6a9ikzx%yMuUu7UF|LVD1BqS2&gihfI#0!?lm`a3VsK?3r*v#>=6it4BQIz3TsmnQo8j(` z>DdT36ehUu2|%ggLj9g3C4u9jTh~#q5a6t2CFS69lTrozU zxV2)-uD2)BM=Zs(vdFBfe2mQH8@(ND6qv3Sys;;Q<2i4rg&Bh%M5^@BwL$UFb?J|j zS>?JDrPDDWL&~; z-jvYSr@WBr=;+vU!X;k=K(uvmC+fS?WbD(I6t&&q;^BEFD%zFAi*xeGem*cUF_E2}#-^gItog?eBk4zv z9=W@_%gV^GN4|gW^;JMXz|72ym6bI(IC!?e7>k8ueW5e1v$In%vAn$8&kvO&Ff)^u z^IE!%g+)hu`^@ffMMcH4XU{k|IF3{r+MslBadX3S-pb3$;uGM%rlzKHa&k?rVurJZ za;=Yqah0#zFJyXQ+rGPZ@80K6pML%Ry|l0ZZ*9kSC-?1`kPM&4Sye#+YnhV1zP^Hj z?b>KD4&{@EC#$Qg&O}kk$;qLip)I-{BpO@0OFhMlxw*NGjg3`RRYgVYaOo`Z3G5sk z__(-5c5^?Dcb8J&ds8PS$PenBw~bU)2{ZLoR8RtbG&dWVNlId}7UPUk&di|*;|_RT zTzHgO@g(Um(m;)JJy?57j+Q6JH1V`)!FC`=_P^`S>&-QUFDqi#~t85#exoalRE+^@jx6 zvb(d>=bE*ZRnhc^4{c7s3quiccLQR!;Zf|d|r>FP!?b|I3q+fOJr_PTj z$EzLaP(J#}Dk&>N2#w@x-rZ38AtYA$a${p%w*}1u>q@>?N zL*=$JO$P@D01;19-@JJP!SpU7B4T)WxT=cp*3QNGDH-oeAwOJ!66#x^nz(uk}ni(4#TUoJ8rc6%i1(xUMv+(n4J$r`sGAk~aDsZI{-X0JA z)~#F18U%P&#IG>Pn%-n*XP=y$yraL0Ao~R=YwPuy8AAqSByR>@t5JyBiK!`^+JpUl zVM>W;Qc}|8z^`Esa4Guqs%)>-#6?H@5~zRC@{0h3wJa@q zA3x9@d3k7Qkv>6-Wzj@({q*UR(fii9T90!rNy$9m{d{~RmCIQ)7)Eap>a+7#LLvXW z-Hq6*TjtuFjj*>f?~&V+llOUB0*!9tq?8o!g;2AhB9FFnFubWel&7Wc*s&0W=p5hs z&WCN&gmsPJ9y>j`=V5@?_T8=z+dg|rcqk79yqNo#7#IRwsUdVw9*9w^U)WFyJRrwY zj&If%wp#2;xa_(vwzO#(am36Nwux~%Cr;me55qg20t*W(6^iVvUfX8#@-o9K_Q#J| z?%%&pN4HO@=f!aB_C)LU?b|xn7XpQ|eU2j|BQLiSFVP0Qhpt=m*;!{GDPX+B3~34U zO|99!`|fp))?4^|!S?BCs%~DQ5HVpP(bO2=ACLl!jEwE=?c`6~NXXN0ixZ$2uB@yq z3x&bMEg_`3Cb4hcgka0dy?UI%^VLl0XrC;-npb%xCHQ_CT3U(m@m;tLG7S^i+4M5Y z8ygjsmHO58bVT7=!66|J3O;>WU0Zu+gLX?>MP+Y$PJA3Nqkm|qg-s@z0}~d}pH07R zx=ckufl56Xsrl_*^NejOGAC#0;GhcBZeCvAG#&PthPTKNCEArQYn?VJ_8RB5X;Gx4 zWMtexeuMo1Nt@IC(%A6k&6}8*m=_lpP>G?u=&(A$-!~Zq^3u}Mq7WKxK?;I6`St79 z^PZ2^*4BP>4)*r%-o3j+PJViN3iSy})%e($3-~G!@{W#<_HVzP{7 zZxyM(?>t!l?cm_Bu&@B=QJ`P%u{Qc3jX}`!Vr_O7_8>hw+rJLDhg*kP>F&-BZq@sz zUu$Z-y}f=$^+&0V0LWYWb;uWzjXAAhl=D{KL5M-d>xSn7DEM`gB-L4S(Pc zXj75Wvhs3NG_)pi_7xDZ1-f6~7m<>YNlQshM>DGzP-#6A6O&Dz@SiU7kd>8%JK2kh ziYm63mzOsb%e~de$;EZ+Zv5EbAnZeh^>6=Md0AP0d@HM~i76@JIYrb*s8##TK?GgI zO@oY4R2Z|*snq4JSEbh0lJkhlHHQri4t{v(fW{cv9)pjhPLoI-*bWp*;*E<7Dhi50 zHwY+T{TSijTz1h63Ea1dXrNNv8U`DyIxmlr3AXfufGf`vG&76_-}LnKjt(g|{ArH6 zcaiP)4i5vE4WE*eC&$JTtvxd{qyN}64=}KXwzD|=McdC6+_mkm->dM^A0=C*Z$0%2 z3AtfEoGumu3o!iq_n*bZA4|K`hli`Hsye=Y zeXzAPTJL#TV%kX|=<$wpM(WmRU*Frt)YPko&APbx~G<0>zZ{H3Y%_=C+Q&8C2S&+tRdS^@199(Nk!NS6l|M_!BV4#pUffJ)~ zLpTJf7Qc}J9DGv)v*T8_oaK7eNT}le22t($v%|WL??CNFs zT-}{J_Kb0?z9KbW#mqT6s5L`bLx!cyvlJ4vYf@wDbmO`u{B&A}P0cgMGD{u?G3drF z(+v1AUa$T<<*-!ytfJzFlChBy zNR1+oGSKr0$;n?JKDFNpAvP<^%jsxoLDm?f^H~4N%+6L*RJgx}vblD{E_IrKMyKjC{MKPO$T1V}kl$y?SLE5-uz({Fba`R?z*#m$^e+ zkaT%%bF-D}xUeng@VWqr7@2^TO03@%HK1vW>3{p{;^NdsOsoZ{DSYBHaq;i&Rv2|& z!t9^Y(jHh0=ANCM5!{m#inGE%l9iOSv$NAIw;+521S&2eA+N9yX95Go8-!(N$tO?m zA)wq(JTG*#wYAmNiLLh}YIcBOKx()>nfmeL$H)lrS4DMoC#a2Xk4JBIwJP(G-2r?F zxJF1Avpv^p^Q#QArT_2Y!I%t%J^7Inwumnh6zsX>ku=>|B+=0WKo$UTL`OkEK}AhSO1h*&qbH>y3v<>`RgFnbcAsyA4v_T=Owi!OGA)D=vT+Go82W^Eu8kF`V4iqXe zG4XgLGp08Q+AAj~&x^B!o+X@9L9Vm)OVQ9GA!Fma>9HS1V}R@cT^zqL(*Z6HIy(B? zPtfGu?d@;*ptkbZOujQfHI_@}9~u}S7?{p@=&-oFx=KVy_(h|*>F3XN;t?%SQ z&(+j`HD8rdTi3;|+hSs3l$4Yd;fG>fem96I1m2X{Og$Oh0_52TiY6@F8GHY`jDSGx z@UWVd#G5z#M)Xf;(-Z=4KH%iMfrZt4?cIXZ!{P^?p0!s*`Z}zty@SK{5+w){p7G}v z7Qs3}eLz)MJoZxe*%6os#gs7wU-83nUbn-Q`k-8l*{UijkscJB zJ*0Tz7TEg=i1gWz&3F}_Ui@PhjxwnD)VLU0T3Wc&0H_hX^2z*u$8E|AXrconBj`z8 z0E_LBbhf5CI(J@if@x+sQc&x5Y!A!jQ>-OPhK+?~TfA|qh+U;bi?6DpVl`1inDNMI zL+6|GHlQUGc|5FQ0}YB0amThKbR3Fi^Ty6jOOQ99^+4b{ZH!CG%8LCkp^mQIf?ylH z?dj?HFi5oBBl!uZH`RscRRP#ZZ335a_0ON4_y^xxThWsh&@PT=Zs>4waHPudp<@1N zi?|Ey$li#pAzmcScD6YPIDVC%ZG_NGEG%H&TU00L#^sSb%}BN}G7f^T=(1}8$F(ZU z%B+A*wT4p&bO6S>LyVhz2ll_$Z~>yUEk0LKUcL}^$dvCzX2>c}Q~U&NmwrG?65+xhXLaPRQ2{{X5Hv8Y$y zNTI$l8N`QeXEkE``hoA$;>zXbGKlgy3o|o+3Q514tFsGrtC3@?^?BF5nHd=yKcLzg-Jt&&mnhEJI8Gce?S`BGj~R8(2ny4X<4$El*K zYX0H{l|2xsPR|8i6)7O_x$l{?kS*B<9&}1%^OR8|E#BopuZ$$9%Hh+uZQnR-X0AXS zXpi&PU#_s}8>$u|BX|=+d_P!^$!x?5G)+<+hge1HNa8lLd+9uskm#|4;A*Bs(FtNn z1+DbQ@2t@+L#%`re#o8yHMc-TNhxw)Z2YSi(=+U3mRZ#Z4TwLGWPb;#sq2vSPv5ko>pM6hhT;D z0I>nVT3lNCXMNp|E{;X>3OL@q!@`;w11k1S0f?x-m?RQro#*8faK^zp>-`WH7Z(r^ zkV#-i(bm}sdLExY`NIdGIzHwM02rk`9|bshd4Y-xFr#yB-^cV5!5Hc3k)lPmsh!>3nFv5$xD66pa6KU>{fHu%zkmN;9oHa^ zdsBptLQ+P?_t}>(Urd#IoP=y)Sy`BvK+(G@D=QlqOvBYFVmR4;DlBZhjToA_8x$6H zaCn%)W!|5_`5cTW5F%iduyayT3CZcui()Q;Sn~DrYcFHDB7~T*i8*q~t1By**RP9^ zoe*H46ciL#VQgQ|7DD!Dz6!*$GA^K4%*;1t`hX1U>rX*m0lvB90O7tyP_VbZ4<>td zKGO*r1}i70GGMVIBNNjGSpKj)FJHdAe*L-?Qa3V91Oq)i+LWY-2$C6%GYt=b`pD?$ zQKJt!C_PA<)-EWh)2e)EP;I=gqSMw}hml;A>8KmrtM$M@3^2=_eaU3yHMCtK_0q7u%O`K+f=_OQ_0)usnma=zQYxXHM1Vso zgho0`HG(1P`noKZNFudN2$$cpkOwa;NIBMh6Eo9GqN8nZi@eO9a^1+=oXeS-i_5Vu zJo$D}wd=TX{IPp!e844{m%kyt?PYIno79O-(KV5$Pt)olb!X)H`kI?fz^Bi>5qAxa z>w&={kzDi~Oc3B)b^C{ht@lO1aMKzuHWmj+l9HB{ZBejgCbj$8fRS$tTakucUE)b| z_bza*kuTZ-OViT^V2=aYDJ@LJch1bq!=z~BM9Kii=^JJadmj{JdMYX^R#rJ>WrB04 zAieRivDt-%HrCeno6_I-Fak*a{3t-?Xy~6iGCn@u*!b3gZUY%M1GXghMm7HD2bRMu zI%Eok-@cuJj|jw|ukLvd#m$?c&`pkxj@~*xgL-8k!}c5hT8TJO6=%19_-L zqT=GbJUrkDfOLU~?H6qj<=NZb#=}5)kAa2JDMUw2O&zH9f|s4$>kjmUzM8b-LosVx z2D3clS*QpGKr^57Rw^)%T;@|G9w8`mGBWR?qLhKiW{8Iy85_e-z)hRm*uZ{UQC@z0 za`J0ztnmoQ)XdCGyqlC%2YAA`g5WY(85zxj6`|`(*xL>bT(Cd?e8)xO zEKsSt4A4RBYikSSrg1QA!TqWc(BH4L_f|3h6O3l?Kos7A1AT^}pV|{b%m)6fp;D%z zFWV~ub4|}(O$kLsyhRr9+>DKp`;5Dxsn~=p)i9sd0y~_+DMD95>xx$+st83Jm#(ZW z)IZI(u&BJeg|j-6DsT$fegOyRZjnUGwAL0TwS6eQ$mdyQH2Zek9;hG{M!IL)m2r#GCph16ZCew=m4wHN#1f)u zZ36vI5YcexpS#pL78_qC*Jlx*rIiA6mq0U9zkbh*em(YcR@MS6x%0;d#{S>Fxusxh z^ykQ@zQ0F$h)cIk?LaOIyZNM-Ls`}_9o1j<)*7E9aCg64YgxwA;s_Ci9; zV4niagU_O~;ZZ|=HXUbyS%jDwx0FnF^62Z~d8aMf)HxsTus2ntft?;jj|fql&-?fw}PT@XY@dB(lQa9-Bwmo`d^Dk@Es41`^T-9cPxo z>k$`qEhgCfG~n{KP3_k$|i*9esFmBb0)(L5_-{0$FrLr=QoI1g|;Dkd0&o8 z$jb}9*<+yZG2iHjVeXxU9GPi_wk5=eVWqQ+%R_#Cxs)dYJUj=5^%wTGw$1>2{x`|O zCW0>7Edj<&rcoEIu0I8XM1n2T@{tjX5DALQ!8I zyr2L z3Z|PgC<{hrW*;3lclQWZ5U@bqDIYr{N})#*SQE`=fJ}vxjthtw4b72fFZ!CAyj6X% zp)btN&FyG!kB@-@u>wk1!30=>y*4X}>dJ}?dhU6j(%^m& z*0vMfsk@l#t&s0`F39IQ1aB@%QG|=vw;g(wOF@B0(o*RK*~ycEDX zU^d`t9)Yo63U4@8Vj7qrDJdzD;f%UEUgOA&^{9<=)8UoFC3*zWgWB`c!_RqnhMZIe zMsK3%Wt(CRs*&>u3Yy&!g{ezTemA(exQvX9x<5Sh!2>1%GKG|aqB~SmRn^ZVSU6iI zLBxqY;`@2;l;`Tf%9!g?Z=dX0@l_Od2SdAds?MDZEh0AdwWA}z)lh#wD4rIi#Ds)K zu!C-IZ*SZ7LPCP3niwBX?fjXa&vPt@C^}b z5Z|4he}IJ*QS+evxgzjT@aJXUP0!BagTQjaV^>yEf`WjLj}L;vY5iAAnDRj(i+d&yKvQc&EI5HjOYTjgbydvNur$|z?E!BhpqH86cIG>TO1&^Y4~SSC zFJTDmGa@D?na_?!l#%+eBluL*Qjk1Q3GUQSdCFZ_s2^Yeur=*vKpuOY^X3}C-iozLrbJL-@r_Ut^od@EyLWdz(P=T@ zUZ!ooGu{Kge>DjA(nr|VbaRg@^`%V7+HIVCWc0s41M{tr*Hau#p+N#_fH8~*e)gu9 zdqL9pQ?&HMZ$oquf7+XW*H zNJ*iW`z|!J`a;9voj*E+t(`LFZ!~<7KikgVo=jawL255#zi(eyglZU?Z(FwOi)D`q zKv9nkm#G4gX*}WzU1$r ze6-}+JyyE((6w&K;Uk0v_>rkrAQNV1o7A-d>_oraGF%vi&UQ(8xo)Z1O?#STxt_MR zXz62pk2Ap)Myd7Cb3Y-39qF27*rIQRK!Bn0uShdGV%VVqK}FnyWg$$6`#>6_tV!V z%&%Y;gesSbp8oa4nG2ZZ;E#!g5G5ogB0ZHb#6m+ZzC|nY8dK%i;IifK33s?zt;PL z3pg~%8OH}GTzKdGH2L%NES=NSsh>Yv+Sxtu#($4Ix;3-!ujFyKOD+TO`YoKL{*s0cV@YOy_(9|Ot_gwStj46y%(;LE^LUbbBw zWYi&qL(^X3?+1VXCesHI1=9s@Z&2+(VFM0=bMxl<>MD}zH63Rx931hpTX&MK_A?64 zkdD_-6Ur2Tp72wkqAa&cRNuU*@%2SX%pD~pA;Ea&6(h3N<=6f5=g&ahT=4)9*uZUG zPSljAr;CV*q2dZRphSX-&G_==r;X?33+RUsEx+R5K#nhsizB800D!f*G`o=iE=o^( zJEo~~^FHEWW*LUmj^2P}?CSdH1Q8}3%W};Ef(Ogz3Q##XPN*(mPo0*tE7B2t~^mH!jYWp4lA?o2B^G#PK&2#Ec3Yi1_Ik6}KA#8%; zX3PGck%%;q90+0XI-#7?M@cTwgS`Qu^x?xDGBUDW+@q%-L}ea96l;_^Z_j>p+6396 zt*QBzanLI;7ehZRENsqmF8gF3fY-pb@HoNHtLun)+=DUBWi8me zKH}n9u{+#0iY!O}TGk%>R!iM4P9(aIKCY3on@=t$L^U2(;ATU*Aa40G!f?!>mp@D} zp<`rbW){6_i#G@WV*t8f@qrUJ;*ppcdJ;I%dz;mJnVLQN5IT?&4Mm9=ljOYMk zQ-@?Q|E0?XTIgk%z!3Ywfx{gNyCekfjj1n7SR%ZU|qBw(B7ZFzL=bN`b^^!-<`Mo%fb`9`IeeK=SR zXlbDi{lvmklamk<5*Kd`BDnYM+c!}$vEAL>sK`hN{)b-xWq`Ipl>zwyf*N=k5Lv{Z ztu1yw?;iNs`}gl-nALYiFvO<~z$1muIWT+>^<-`fy>j(zO^lR8xx2)``A`U zZIE77bp*)(%@4%eloXg^f(F#JoPEe5UYki2q3w9+iZ!Pqw~&i+a=negLi6!aue(8( znwpBR>+kEs(|8AY5E7Ea`5fChAoMM^t%|m`>(Q3s-mBNIVWj8jb3jxoC3SUPIyx~u zy~%+A+-d6k~+s zn*L0sAWiyh)~1dXJi`TFUu#gdlEuj35{96UbSqzy=j?;Qp`lcSAJ4$Z=yI~h=q$yp z3ytZFjPEe;2W-`r%G;9?CH&pH54<)M6pApjqYDkP{e!gq9>Gia(3S}VH&rUUE%=x| zjR;o7U1DtzX(DU2dm9sv_Qoo0QtIlS=vxDz;cYAV#t`7Y2T>eIxO;H$!&pKh5T+u5 zQQz~^{pMT@+Kz{ZNcs&7S;C&JP1RHGLwJFsVQ6Rw2;y1P^8DUqaElQ+4ClfIKtGwt zdsM5!>h=Ogia{1+#@DZpC}u37#Q_uzBhtmig$gL~;pTX?&l~CkJ!rJwA|ym*Hs>O( zPsTe(qDcr`R{v{R)K9?_1RQ(CPafVD4vp@>gj^Gj1klnjq}UCvs+=4V9^ONjoq1>o z!B|&O6EyUf!Bz5An>DxMn*vR zd%c6fM^tp^hvIx}I)aslIteL(P0sI|1|a}dZ$=j^yX52bHOmNNm&n;6B&ABJRgPz& z$KMU}KEl&%wv^duqex|f2WqR{3KwY5pW{X*e~i83Iq#l;UQX2Gb1 zp^x>sIUjqtIa%3IXuN_Ds;?Kk4!{f&rXdt=Cbbx!;A%`4=9O%ZFV0=zYN6Kzi_XSY z2$rCO!!8)Wh?7z3ts8G3kY@w0A_aV7(1P2y$;m@AgVLa*03ZmuxYglAw%#L!z?kWS zJ%abx+zqqN4u2`YD_%}f`hi@>W%KknQRt`38Om+zfT`z8@_BIaOf1Cvl3&P{Udq&7 z;D)q_5VRrLrc!Wgn0#VCXgmAWAFn4bkK^^f`1$les$LiS85d&`Q-sLUc1l92IzoUix$_4#~mzdwH0AKk9HTsl3U$MHDskNbEW zZ$S)$AA&wP?i8psAV4%VG>Xp^K<&?~5lC5QO*JgjdrWCil7W2B%sMd_ul6L1Amp~D zQE7Zav<=g|5rQN%cPNV~bHu1`q~&88IbA9zl`4z$=iz&kZ|_az|J?jx^HF~L@2TUI zv}Z%0%f*Mgdm3Li&9_BPme-w4QrZa$LjJ*`qRtA)u&ct?R}~BWPiE{c zxm2%Ge7z76N!tHx5hQEsk+)dB{vla@RKFWS`yme9z`)>*?NU!%)W#JEAIqd2TA~*} z@e+RB%Gr(F?#N{GQJ`~BRIcA8z9`7UX@7>0$}HU?8Mw!&MKp9n>&i(^S{0$72>U~zX2i!u)4Rk1<)JF%HcajZ{DsopmpWu=KekV z5-Q9^KAjjOQ688G4>2LlT%8!tfae$>70kXF89~V^SXlg)?L^Ul2kt;)vAcT?B!MgolmzHdSKCX!On><@ z`Te)OVr>|(b#MZZvu=|p543}Kvsev2`<**?V6hjlMk=nXuTzkdi~20zl-381nSCVt zbEJ3g`>83C=BE;#)JN#fK;0(3BDWEil#J7CN(PZ}U+ckx3!syLbWP6|w0&y@KuBc7 z7QP{1b-Zk-qnoX@5je5mzkdgT8vN+Wi2zW68ZxZZPS412z+v|HS!yTl5((P<1egl8 zJD5UX7qWA5hMyjCfRWVHG?!5uG&VG5(;(dT3Mjqv^MCeN`%zRd$?O`06M|)#WN=u> zG(iiw@g+uPVq$`bn0S>8M0Fs{tzP=tZ_ieI`}Qq3u@}WczJISGx>;NP1ziDf9Ml5O znNro0;H_zvto5}ujDKR7;1N7s>BYQBCI=w@hKK`}AtfiPW8brpY#3k%O*q;)D*_Jc zo!EFrQU)vh>!Qtysc+uMmEi>SfNTY{0USgGO?_lQ@v2_}X9yn4L-=v}rjjRJYN0Z(Q{isdDFRZUGPLn~;dyj)z5l+7-zUj=M~BLdC@H!cniFcT@KllLvf zf?MTS3BUmrA9UtuXjgaQF*nA#F>W(kLT&T@@|tdxOb+~Dkf~sJK{S;8?Af#U%ui|q zntXgOKqvwb2!h=abHwL2_wNDIG?4}V3TU=_XJ*pJYeLa~>IfG@0jsFsFkzyh;Sv)1 z1^%cXzu-p#;PR5a_&ZpQ8c?5LUIQWx zpjJ9H_}4&=1x0a{43-0ECs1u!B;y`EqM@YB%FRXjJ%%PmN8ywPLCuLjx);(I5W7-& zN>%?dk`V2u4tRV(eA#D{_W@E4lpNqw>#D0)4}yWlsS*L(mb^TZ1awXFeSLk4i}Y+F z59Vu(Uy{3dcp$;6Vojh#iYP+YXGJH5Gz+{fphyKoL_`3<3gaQFD=Uv-nb3v)!_mho@z$Tz?*7w>KmS-y!~sBK(Hg z6s79QjAYA2zw4#eL?YLCfQ)))`7K+KIV~fjPrY@OSvxXm-*39;oHvFJ?X3Ipos$=Q zO|mZ45i)rp|2p_wgA|u1z)H-)$2b0m7q-vMG`_CrgU_(HV1e-Q@`7Foy;8S6&X>xH ziZ>BgHtOoG;0TvxA}NHb3IO*L5KPtpy^p}^1(qp?QV<-#kW(;TXZ6;PT`#O3REvFLuwO6R;D72Oc;pFIEM}$p-D|r<&rnVv zwxQG;Md|7G|6@}2h^(sOjzPj%2HvN1Hg&KmLbwXs8>9)db!f1`Jp%_G9s$8D^bryg zZ|;8A0pPBoftRT=h+cbzq6ShJ`w4*PzPPx6zd0qmQoDe7nWD6;3=pW@1d3fCz%QW& zpD8d~DB(06rBa8V2LnQCZa#!h1dFNBk%2}HWSe{NurQb40T4HEaB;D5vj|XAQUVte z{}Tc;Dq&%=SO+Huj={gdXAav4AjWk`ubu#IM<8xTp6-08OH4|N@mVQ^oeok7^-M

      q`wKq{zMEinj*_U6Y)8XGqp%cS- znwgf?vwk2eEBmrO33mJxsur_H(SpQDO+$mrC@wCpml~%ATEUh&f?xsIvjC|;%L1q1<2XZ~-Z3Z|`ZPHJnz6HQ-15ibbtQ^l zN1p+Qmb<5CH<(IHu{YG=P${6ZB57`ENmo(rCPu;68=_8lE`G*jsNJptZ`Df+NM}%V zjW87Y*rr*Hq9oZdvhlDm%AbRitr(Xnk`ay?(4tVMkCRhOCoN8A5~Iv9*oL+qJp`x* z4-rICk;0v`%VO{^fX!GV(Tv;!fsYrL#<(-ap_Q}yxyw{b>jku62NcoJ#_yvl36x-X z_IBL_GA3{gk&&TyfQIj9MhPG5E5MLzd23KnfI}9>mItSc4ZLz;VbY7;htU2#19z-G z!25)$@9TTOpD;2okg_zrh|f&BCdxTf3_O)@%zI!&MobM2GshPZC+DYP&8vXPOS<9b zFH(qL>P>r>UDY=@h|L+x2c$;RAs84okRP&PvF@6}vV*2{0shF+@_ho>+L;d$Ndd*z z)365FS?(h&tlos8{JSi-fgquv$OI71!laxyjs8WMn2?%Z@fFlGRc=Cje5KteCA<8s zEw|Ry+b3j^l<2>K&YvcJU0qu{5%?g2nG_FfRZYBrkio)+!QTeq(b`%ssF%|m2zNWX zMhH{E*$lkPr?h-CpmOx~W&Q;+ksG%TqlXRo(MxEJx2h)UX+5qI*23rIVc&1d&Xc!ne*HbajC@7@omm>BZL(&qTtP-qK;L?Z(-%a?8FQ&4=5FmHL8Esz z2`UF~E|5&WP`jR$2B>D}&qc+=R9!iIEX7FU45>Gd(>$ zAh4IJL9e1R{qof-);zsH*1O)%cSY%wP3x_cew?13f}0gqE(@K=4x4%kI~Uh_@5tzA zCuA$qSX3ZxLk7AV14EK8;DqvCyQ=znCMh2)X#Sw@kKH1{!y{En5S!s4&y3%?H~h*V zze-SbyZp?CdzDZ5{kb*tEwG12u>CmY{Yvl=TKTt1EQcaO$r5Xp8~`S(mTn zOW2xvDE0Jwwyc|aP4~|OE=2@lPna(uK0Zt2e}B!k_uFVMEc_fHTVwKKrsuia(|0bl zyz)&oYve5mfnJs)H}NO+Py2Oy_6Mwl?L^4NRcKrC;`5@mhEH!Ets^%61q{ASxC~wU z?69YQewvp(2Gs}ZHF#dtlj$V_e;8$F(X2td17vb|EdZylG06sxW$`%B0k;F<@CBG5 zv_Wx!4Nx6F!iY0XLGWm`v^FOcc;f<{Wfv%R_s+E5$BZ($KwxNJfp1(2$i z%9Jb%g3(&7c?-mM0QSsq!$XH;3Z!ycT7E-C7#|xWEqsZk56YT@3}Ff`ntnKVC9%Ly z8ltQm1ziMkkvtET*8z$fY)t^k5)%`D9~}*V6|oWoX;eb7NWu0kRn8jF?*QMR!UN(q zc}h;E@9Jn0gvIxJZ7>nKeP;FjKj2{lC=Vf^rU@kbAoTSh5keF)TKF@BLcxR%Mwa0u zy7$Y=K#5b((@Wd;VX;?&wPTT&Cu)!VL%~yQr@uJ@mcSb|65kB`F$ezFv?LFF&iI+3 z;bDO7tQTZaka`%>ubqH&g`O<*tECADH6b zDH%AqxS(>O;DyCYfxaHBW&ry%Q*M>b#5ZsY_#FY{hf+N91PY0eMJqQqH{OfK1%H13 zR(V}&){h^JL#)gM*;P!5+&%uArF&4LAvn*<@8obBybf&Dt5lK2J* z7Fbh)4OC+oWUUk@+>%0?w=l3 z^x7#3FX&jG0yF?C5WD;$?Wuc$hKjaQ!^Z}*CI@({K>FRJa7M+^OkNC*!h`kk@OT1r z(PEVp6kK&py4o{FemA&%wO}jA=U- zc-23#AN~4zWvZJQU*##xClgiP^E3h^e>f{t4Vd+!qN4%rka5E!2C&5OSZFQ@UOAkH zpJ4T+MZ>=+uB})&Vg0B@F)oX3gmP{x3`gs&YikZ!?*4vfiRWP^p!P8zkbRXdgiTae zS&3u#qM_jmEX2i1(Y~4Be-N~KNqTVa&ktj)HCXI}E8tMw{{+76Vrx`CdGQZy0$}JV zP>7J{G}* z>GkW0FE=Pu5fS7r6{6+rhfoP%JCMC_$|=54XeM<)#X;-AT~K^xlgvtR|Id$D-7sTK z=gMBYo;oXQYgK(08S{h#ko>-HY}lnhPYs=Q9_NoS@Ux&CaNL!?>qEq{Tp&w;zX5JO z9)@n5}Eu$G;b)nMrV@2~Iz;%ZyLe}Ak9_zkQvVr4ew71qoAj*@>|9^j-a1vd84=(8c{IAXW6G-?Ood4fny~&f+ z9QPtg$;cMCu__k4Tu|R=jx2LDM%RUdj7(qsKi_}s|Ni~g9VDO5d$hHw+w+lTnUQ|T z9&1FLP^KoIpPR{Rj1`XEyF5^4Wo_o+%)~F6KstZYkB>8FU38d13`H&r9W(7I8*-@D zg=zfkc&)em+z@ACgM;-4;(tHIr&dUd0w{#i@*7AesPVu*ZtX60H1yiJxw~&ep#ek+ zdwTlv?9U5eas81Dv)ci3p+{9OUKna>31pBJS=6;xSC7ujG_|!+T|m*f8x#bbl{(kt z@Wl*u1WiHp#~nXPmPDqqnNM|=QU%dEM|K)7F(qZUhJ~klOlfFxhlbRWC<;%kkH8wd za&7IoAB8wXYJ4k443Ab!H_E9Mk|lqpe(mE&aD@sp65-3;M1SOajb%!kXbquA!o$J!g?G z>r<`kr{~*<e}JzZ&Uw3Zo7bh*b_A)yINq&}Xf^Ci^ddbhm#aKJon-WDwks*b z>jV_u3t3LgvV=F>SD%q>3Sd^hQ%RiA$H~AG!6{C&F0Eh`D_wi+iiYfam|V*n^8l!{ z)1ap{;5eamjtPv$`Gl__oa5 zUBjP6AM|*K_4wP3%5q8#{<@qx<#fI<7&IU@pY#Ps0k!wyfnaJ)O>-ETrKH2gavWQp zrVcA984b-Dr-z43inWzl6?&VzT4$qSOLu`m@6MGDA_y zzN6E#a$;id!CE~9XA<*u2c%KCU;u8Js8UJYMEX~hNh*NFzK3NfgM>M*Kj92p*p5Ki z*rA73%e+8nA)|xnXl;-%gYMOD?pst!1n)Y>#Etuy8*>=c_Pj?AUUC^3(3fW4;mUG# z`yz@}O=%6b5;}bbe`m7BRUF5rEOFyX&K)67zT=E-O}5mDC~ExZpP$|*VjmqImZrnl zjE>6&x=n#?+^(4h%Invc+B{7kQ@Y|hIAv*7xZai&m~UEsaim))+sEkaUX*IyOrs^} zq*;H|k-@_KU9zjxU{lK=hJf1Gq|)_X`wa?5#4Kz4mHRPwCI&2FCy7?CrFMu}j2Kmh zn8szNxIxwy2vC;vpde;7wN6v&FBfx)nBVvLWEYv+~(lBF&8zVc>V&UMqP?sFY% z`2_oOA-$pW9r|5L<0oC%%VibR77h75RjJvhA9w2t*CDY-%r_W(5j-gwl*&> z&%QrywCqi!{?FX8odQOUdXuoQFo^#kv$$7x6(OPEUshh)D&(jt&3D^6U)|YkJ0586 zYCcf?3mM}${5nZ4ek;?6_n5D!?5c z)>wI2=^Y18wdS1(izw9bG zYpFn6B6W*IcceS)lpI0;!E zNl0hlGXSpXUSOc}_xE}E`J-(b>8t@{l!qtV@44!si~ZO&p8Q}{F?Vim4tfZ?_pR>l zLH4HNH5%!4W0ASWc#iv<+w98MXNSoFVpOT&uJ<2j7t zZfRXzT~GKY?L)yTE4eSt%#4=uyrP2fmj4DoVGv1oX3B8U#olFd=@NX+H>yBpFSfe( zUjWz#ClfN8cfLdg_mxa@Tn3Asdl5eEMUlh3rn>;03K-+{CsFU(uA-r#;px+-EtsQI z4t#F`>H-=C@ET3nvv#;S4lT>y{ryI%OXH9~06#$stU|AW_vV|}Cd=&IKa>-q*2RUmNSBNdY& zlDr((#ZQ5j;$R}GaG-|(-~(*jP(bXc;SF!ne?BBaTV=oki5Kl1!0Rzf(JPc>1UxEj zO&_&@g11L_&#Q6PGY65-*y8D2i%OSvN!iVROM0P@tZ78pI zKqg6xZF6pgVY1qF_AyTto+*B_S~5M1&%nrnWn^+6HJbpo0sI547;6sX7KX$gI7^gc z2Z`PD(|Ce@0aPvF2Ow#$UEu$M9vcjBwGci(g8x|-{{xS&!|}<%y73DW^fK^5Mo!ikzxeRNH1$(s ziEOz)guEmJ%3^EY4GyZRVJ%OS?qWO``2=+bsvoa$&Bzk;Rb;$jPL+r+60vM?_j46H$Kd^HBa|-EAMhqY2(cq$_>KC3 zv+{veZcI}Df%KTdA*P>p24^#nMHt#iZsXqwt=6d|ca4Zy6I{w-kqqJ;4?@E#G-p(YM-1Vr0{yNd&vmDa&dR9w&zyiUSl zye{zD8I{d)V8xn{78bIAR$6&K?TKCpR`UkhLm^R76kRZpl>#(PV_V4YZ)QLE)M6-~ z31^i=hPQdl1CBfnQ=2$RueQ(z1f_##u5|b@faNuxX%{kWk7Q zG?9?DApuc&c=%Cawb`f|b}_?cAF~0?7lU4VyK25$=TOLC_SDD&6BAU(rw0ke2}l;( zGBsk}n^yL}0lxM4fiu^8sU6+KLz+jQMO30VPe1oIaDgel%Ob4evc4-lNpxbgDAyhc zvgm?}nKj8x?Bt<-*^T+vOpDo4W31s!!Oyr4eeg?dJG6UXuZbz=&Ph*KqVE~vGpr

      #x-FX-|0mUEkvt%1&*Jn66IUxwan0Khr z<57pFB5((26mYW;y?2(|qxrz?3W+8e5XwLc{Xcd1X7l;Q#XQg7ziYu+yx)XwUpaSA zIC?I=y%~O0#gomQY+#6efOIRR6i^+UejMWSuB6h<(~I{TtrokR<~x;l4k@w*WQOcj zM#RQ7kKJZizuoHo`YW@`!BysY-O|7CFMH!MJE>0}9Gl<&)%I8Z-h&UO5uPnvx@0mL z1@69tYsH6k{)UDZU;i2t5TC|jC`+O9X9Q_Jil#L~!_r4J-Dor)l5Qxx1uOx)0Em+C z9N>Y+@`E=9CkyzbT{woiq1=5FRD{|h-Y3Ar1DdrC8VxxM({{%~lRr!_0$LbNV)_>F zZqPZyN%GBozJ`jm3E{iyU$O*>&`c5#{p$IBFu_WEO(9?_?VX_eo7b;F_cY70W|p1F zfCS~r($dmXA*>M$KXD#^st+x;CeL&5I zjPbKs_ux-J3x|rzPNWkzf6C5$v+2*TuV1I8?f^%81mcg$4?!KYBKR^21gdq-p& zXVVQ?SM`R<%=H+`^$u;IQoG;2#ry<7fSTG`H}JFhkjP7)fc1^+z54d3cl$uc61$J7_`G#D73spBDyAOYXb&g+M%@9r$*aZWchGB8JnWLo*t?DV~-oE)2~DBZerqrQw;+H!wrHj;+&ju zlFDcmA;6Oc#7u}mnj8|OEGlu+oZAUbdLgMgZ@gQy^wlLxNdo%9J53IL%aHRnYrIu! zv&EI#I{85GM?BziFxr1IJS3EZpc-)_&bfR3BszK=DA-PE((!_ht53;ByFV0>ZMUlU zMs?cqpRD+Zjst5C1Olb1OO_yHtYzf^?VWHJV$J{@`a%Ne%qT-#H$^14u`_;Ra@ zy2aWP;ioJD*KgK4q^Y0Ill;!r4j}Dq=6Rs}W|;KZ<9Ewtzvd>UOZ%p$kVVMU#^7+O z?%Th4%*D^2o58z)d1ixS5v{1l3WycxFos(dz{5X^ja@}m)(l$lT{wC{TQ#OnN=&>i zZ1=EHR9gBKSeo_nj)A9?1l<%)b^Fac5l7$O2M54_PJ(hkPC)^4C2Ly9RiY05?XRj7 zFLd5@-Rd`nfhRK!(VAwJ^pagcjzUR;bh=C&veNEV9g;FLPWmh<+I@TyPkS^LJy;mU z$s1pePB@QcrPG}l+sBin!shH%D$QV=G4aH=cgCm3@GOBOz)CSI87|OAcRXzQ-wC}K zuiwt%Gr`7e$h(3KNzN2m{ds#67t@)1p>`SLdb$q2jkjTaYWvaq6@72RYws)P$!l8m za``?EGz`?Hq^NcJZx&pQ3H{`vX&I&ROCj0}GO5J1kuI1M55=5pXhz!sQ{_mq& zf~l&!y4z8u+WxzMjx~ zj^t{>>a|1XNL5ATh~}$1yq{PZ-}ytERbVvvDm6tx&M5yjj|67OJiBx(@gvSuKtqu9 zUV|0`f@`3=!I4$(F<-L~K8Gd~w2PLtjGDpfGLe^_l{MhMJUCZv$n%JHzDl2s_7zlJ zXsFFwT=YM!^jF;V1c$3t6QvRC@e(J4z*rU?IrcZyv${<8e}5zXno-i%R4e`os_jfR z9F&3o=g7egtoQ^kK%?&dwkbb(aCv?!?cL<08c#9bb#XVnIY!8L6-WnqfEm*TF;>RZZa4U_vs9ZV zDdi;BOk`R^O;Rq7x9PEANa9mB?%(zB2S zh1nTD$x!(@fY_!Q8ug03*Q z4xR1Q$$Bc745&6x2MEYCa^?ZRV8YO2RNDiM)GB8t7zF}B*Fnv8k`9c@^UYy_R#xqi zr2A})CIHcRen#0~;k!`Lcr>fnEEQBjD&CT|J#a7Pj%Fu5yMSA7MQ};1Wnn`4|Uh~py@FgfS@m+b&;1Pe4DjNIgC7psO_(>IJR}PWIk-ZhDFSGw zqp?gL)%e)z<;-{gzr?CyVZ&@ z-g)x+e8ZmW8@v1kSlCi_Jr8F?kSOOW)E)#P2A$*aHC19KndP_9A@hog&eCCji0*t# zua_b;4r0A{ocre0S_@U>-NbG-*v43F5y`NE28V_u0sjIEwc-yJOrl4gphLwg`7=B1 zF1GDJhH%Bs!GTpC9y=V9=+zOIr(jqXU{9=1T>po8Lt-4+s(s_sfOXG~H>kNZ$%j{X zq=m|8T9xKALRBe1-v-AzfGp6F#@-``IiQhW1xc*J7maA`%Mdn{(ejx6Ct&r`?5CXA zl=$0UGQVdoZHdJ0AJ@J)ewP1d>54u$XtfVD<`Xny9)A8XC>>@B%rFQ`6;=u05P-XZ zfq$U4hEp5=h+3;oC+!#~4ep0%mFk{Vuv+1R$!>35-qCkZ%=ioL@$GGaOA?NYFIE-s zYCuhmio)n6!W)iUh^{H2pit8dP3zZr?6t+mgLm)lYfNGRMh>;AYjeISb14tfZhBye zEVv_E^d41O_9)poz*sq$?@BxD27WX!cs+RuH4!z$AnYwbAayl0WkRDts0@%kLk$b7 ztW?J85%i^4dssLD=$M!oI~Rs*ef;=Q3TA8?8Bx;EJhG*+m2TP0u2fl27VrLgC(c5E z2K#+7r8b6O0sdKBBxpC)4ho?**l8TNT`flKE9z5l z`$L(=mtzHr3?^~yrA4&E6$G91@I&%to-AQ?*=Jfm=WDq(6(>`;Fa_r7>v6sePR{Zk zTzXtPB11Ni_!6C~n$TC)ZI(j13R(n+xvU1UT1-}$yQ>4N!!!wPA&A_JwDz>Id1fTr z`P}e@pwP)V0z2PBzdE+1M{oJXEVqZYEYgyUhnVn{-_g@#H(K>V{$3s8c)Hn)L%r9r zU)MAwb~LBOErTRnTd>hhz$+5^oA06@J7NnuP#{H?br9p7;(U8xwk0sz4x+}1idy*a z0p}&cR#UXaIv`gV_ugnMUGuDRkn{`tTNEKCuNlSI*Uo(|a%BrI&QJZT3q^|azfuyk z_3q$1lQ1W7Us;a(Ncu!Xbh}hY&4aOmoIE2Z=i7gODraYBSWX@@zoVYXKUn@B%LmFjE;iG@0#I8nO-|q53>7fgZZ`+G=<>kgV~t>S&i?IGGGWm zqYd%RF8&0pS~*z#xVVNVG&Lp6o89BSJZ_1u;==xZUSTO2sl4`#W)l6$$xQ`^FosD| zksnNIjGsxhKXGp|b9PyL$=6N3L&9#)76ij2quA)RPr^^EE~$ky6G?`_5s;Th`wmI+ z1585D2EjJ+;VRvtdH)zil|DJd zv8$NW1hg}K#xR>T3=^cDLPis)krq(;rKy#4YP4j=eJhOZ^JzJE4^et~bKjLLh=neZ zs#r_=sV+g;!I5tSpFrVp_A_HoPrld1a7eu@jL*62Zn8*r0`fP;oo4dze$anmu0oWl zqKUsQg4#ga$eoZ~Q{{b>2BO8Kq9n78i4c^0m9DXV2c*-*+=%aZl6l;%{c5`AjPHsn z%r_p$-$;tBG$^FhvH z<__LBKpnx21SJi-KYzj}$Qh}4A}?a&h^>+!yhcf)yjD`>W@(shnDa9F5c`>v&*Wsl&5PQ|S}n6FFc_%!WypI|c~FPJ-^0h3*phLRo626yWbq(0 zMgzBYgX~10_3@{opALzy7H={ztlr(MHTwPc8eg?DZ|%mNv9#>Gb1>(AfA^GYg19!v z(!ZP0BcuqhfV7Oe9-=y|gc;!~uZ}}pUyJ=@;dKnJ0zCR=}r`*rBxDUur zQ&jA3FiGU6#-l{*%62_&dK*s4L z-|!Vu;_EjTN*M86H6FF-vp%n%^Tuz};B%DRgfN~{g{qW*=^PXiDylY!^ZdWN*(4Np zvoZ!Bn2*fQYkUprT56nF zg{+9YHx>6?Prbts^Tv!+R(^BMYahL~-GH}0oT+#?f-HH>Bk*zl(bzG zuR{NL=;)+KJ#dB*8w}v-zhyONG3LCdr%{kizB_Oth1sWv-hJbzaW(e3?=V;1qqVzD z@uNbcP5yTu=LTqT*OqJ9k0P@_Q`g2k+jmX(&Z1^e(v+*1&y=JJ7!@nO8-{&z8Aw84 zU|!(N`CEf|?TRrMwZd{;Di|XhCZ?vYtW6fhLk-D@`~cCctgJvoLO@YlRZmJ7s3?s` zaizTH6u;Y;fnh+HAjCg&Ti8smW_cf(xjAQIKKflto~Eg9PhiT>n$G>nhgyjGQc%bc zxRZ?-IdI0+Zp0gzk6v)zj_~z`D2s`k?KVsU*hf>OyK&>!e+xLw1%xAA(tK2_%0una zrdJU@MKoZQ>w`}0e!K~aDG86o=%l5|%^OL=g$;{nSkTsf$8IXF*0OU`oERn6T#Gzi z=Wv+ej~H#!+_8I8CR{-8D#dm4D~rYwtvgqbsk|NMbSH$(U}DtOIFpgJ^=H6yFgxVG z=ML7WYfIUa9t)Ri7cLiX%<+$m9qw6NUJ>C^sG5n&IKm?nJ!Y!arRjb_~s_;2y&?Vh*5d9gFcxIru#do#6m!E^#8z%`~ z+1iT#zA@-V1!QDoiW>$pjKPLvXxIXTC}2PVkaEGGspnr!B76ib@%}obv4Jg&w2mG8 z_2UPO?-+w@9t6FOb%G_}>rsAsNQ=NYpoQX|F+gAt_pa&)w%(klihH=?p_;8x^TDZ2 zEXz;(Q>Zi1-Le%Ys#s-lhmMk$wk?knE6^J%@3LCxReB17k$;jBpX6 zBT&2qh!I?%Njl%rQ%hX9(QrYFp6HorCPr(xi&a5f;TYW!=Q=h_JfC(kli+6dX;qJUb;!% z!;N3;E@UaEmr9L$9LHA@f_Zq>1nm^X_y$gk`tb>SxWgi3Ilt6=zhV@_pxlP)>d5S` z&CW0xn?N!19;QiD!$x|Yf@xjEZD{*rzRGfP4*mC_1?THSKXh|^3=<~#Ffe}8?=Zcb z0TR0ZPSm}U6qtbq$q4YY;!X8xT&7-#5>_|=>pQu8J3GhvoYI?|Et=p*CHiB2-ex7X z_o8idPm5XcS*qN6aFF!x_^bI_CitHU(leK^rU^y~^1f=^@7w3StJZyTNg`-f3-d)7 zY_B~iTraw?8o7Vmb^OKi*S)UrfBBN$^v~>>AONr`K63yZ7cDxYJu7g-1g0{uZa0y* zzQk>0JiQ${`J&FC3n^X)FutU(d~ll#?JhEwh6GWCF2`CRAtm)FE{;|Ek5Rbbj9ba$ z+gJ#7di3P0BfMg8U$g72p<}}R8ejl+^w@Z4_nP&a12?QcJjcPE8j zVk}6FatbCbqrV+nD>>l`Azm1lzV?)#+?<7jf#8(pSjl8`q0^zo-9bUs9!tWruZN>Q z>NA7tSk_kLNqwlmb#x2-kCibZ8*0t&uUVhvb_*pRn>LJ0Iru&?o@%Rwv8iCY6MvI}ILRpTd-w$XVnUBE$w@oeDu#=+kF#wbX%HBm zf*zV>h1Daw_U#xLSYU=AiUcI{tBr!$e( zhgJ^8xAc=kWWNh+?m%nwiK0CL_d->5H97%I1wnrV*PV3V`(-oN3aTH_z#N>M4#2_u zhUqIwyi)dkG0V$VpRnj_AcRm0@>Rkk5-by)C*nLTEJ_%$2#I_G(e>0fc@zt4^U*hP z`BcokggFMsB|i&%w!O)mw{Rf~C)}nLx=O zI~9ZkVJ{wdX??4`JUt=g(~Bv|5L;hTVh@KKcRK`hxYk) z%v<5-zSSU+KcLop=aNxApJ9J!{-jOb`A;^vqQBzi59tMOo=7U3ioIR>jNq`-iq?d3 z{p?e-;nw;@v5!QR$9B#gYTDk%^0Cq2cW#2&T?{pFmx@&@^vcKwa79`(7?>VDL?cSP zOU20Ot+@TD&-p&s&Ev8!EaI|tuuNbnp1D%-3JN}hM_i>}RzOQ|?+@Lu;@u#Iss2#z zT_%iAs>hnRFR;tHBmR!``)^qOWVPHN-$!!xpPGHH-&5vRYc{yQV^8`x{T}`!9f||s zJ7w-4^Q(P=V-F?)LNxE-HNX+*s=qV=4V~5yAX+(7GzTp$jfS30Puyl~^;Lk9cNFWq_wzy#Dk4ELa5POmP;}%o<;Md0*Oa-r|@tS40 zdc-`+G#_zmdM9T+Ew=Km_PXb)v9M?HHB^zdVf+;p6Eg?y0MFXbB<__s$CMR_`bMzBt7hw8IRyB56-pux6iV+$9-F&r1b`zb?=hFg@{kvMO z_pi8L$ZZ5|Qt`>X)Y>MHbLHR=!ufD#K!(%w-IUv}pFfAV;#{?Lb%$>u9HA=#z433~ zSGXfd7zD~kHyMTFKXVPSBzrat00Q(xGllLuc@gqbW2JjBqmM4v^`>ApD zggg54G@?}+f)&3Nvp2H~oic~Ncvt@}(a<%~f1c2dY5LW7Q57b`1v=e#`(t+D70!H) z%bGzm$L4}#(p{~Y&AA1ir6pjl<5MX>5bCtMn!&*@1sce3OaO=R^&_t+2u8p`rlPDI z_TTyrPK?*>4Rse zEh48Flzj-n1I5BICZEXLNM7+Y0y#j+nZ;+HFB$_kvdQo+r!T0dBTx8o(4Vv4T@NPT zt#fe+A?QnUDiUvRpXC<%SQQ#FoG{upPCNPGL)BQefqc7&|BG#|viHXrJut)MwE6yD zAFLa4p#dPLGt^o&;C|`=iw~p(J6YKjWpx{~sU#pibCwIc&VyqW@JyxqkyS00x}2 zB=_()kHGo>P!(j17K!Y!?6`I|ZvErxhneCg7KLS!cnR;GVCCn~b~pR*P$220kE1Pw z?=A!-d$E5W4I1_`ANBkm)UbDbFZEAzN$kuC%pwCjHz1(pc5gV@=pT^X&a#B157$z_ z=DP9BpbYYY@YtT}zHdM+_sfYfmh10>|?~T*n)sl zE`DT5TkT%GskiEE2I+98L+pn-3bsHfC|F8C_D7W}>Hr2s17_HF=o#m>r|fhePl!C2 z>{HeCM}!#Te4f`GwdIR#6Wkr7-LY^$+UZQL<!v_By(^ z0{R2QYp5!os7SC+eN`2+;kMw*GWE+LWXSMI@|uig1exFx*w$}i{`bU8|JqCrcVw7# z_*lb)*NZI9Nk%@7YXvvin39KBx?MJNRXQCjKIo7D5nM`_J*dz;l^x^Xha|bx<;YRP zuw;3!*_q>ya^hVR|6K4xLCsyGhTRaeLuzbsZ#1(3=E@wB{{HT4rU{dqVAx%m{r?m@ z02LK*Z`5~v1uzpr7#`Ab;r7C+0TDJAM1o zH>$IpX~cx%tIC;Kw{#Jds-%=ultCp+A{B`y({H%9ZCupoK8sd&S2Jr>44 zqo6dyaZys>?fUd*zwp<^@pw30-R772^^(OtdId?(DT!}+j+1R4f`{&}q7q0B`&oL# z0L)WR_eE8aec;Y^%QiVwejFEV^M*Qsr(m|;TILIRT?`9HaYe}9d_dNn(xj0QOS3*L zkCRVFRltM=_$DZ&Kgr)(JS97O-FWl8`YJ|K%=vXg#(Y43g;#$^yXm6q7 z!w4qrTacxOy_>6drzi9Kuol0vkpqg^yxp)s!#U>3aN$Fl$jEzPPFuK$4$c5 z)H0IYJWUMDN%?Sl~MY1W2@@^DVVv*B&{#9YRbFp7Z{Ro)%n*wpo)r$0!)yskce1 zc5@ZD&L*sMikeejN5xUi;jlxjqCu?TK_0H8>!Sv&2`yO6FEsaTYFS$fW^Yy_O#E3u z2w3~v5Ks~Il9bbaq|vHRl{JuASctE}b>5DfB6N``8;t=3Qgd*LfW-}luYfV`+5IL< z<{Q~H6d$r7uoOQz))StnZ;C@waoe&7sSpH~Aeh56yu!13;0>`QsOYmaI<(y9!UE>3 zO|z<+Ps}tK@VsADUKhGqwT%^15w|>mWKpqCuzO)p@lAtH=4XugXj?1evjn_SrP*Z; zyFC}iXx_aPqgjdHMw1gUmqDtrYm_pHehh4O)))Aw*)E;nu#}KMO^^YjrYw38&++LZ zGif&IGYIEX7e@}p15N?N-)T|SvzUW=hVc9UymqHeApZmq1Bj=MzC)r~FVk-K6;PR{ z=-cGrMLp3{?5wm*9&)0^q6m2xm>*q{pjChzvLIa-k`!dkJh7nfC|~)cEPRb5M(A}) zRKBkaL!`7Lcgbz7B_@@B7$pe7SAML2cNV+ahXV66yah-%pnV4~TwOy$k%*%jgt@ML z5PbK%r_9c*kvu;!yDqE<aTcT^ovWJ;=OO0Gsv!(Y(IzA>BO zZW1x0RC_MtRe!gUYdyyN*ZGKgY@0x2cB=_HFENMv?dPi&gx8fEap>TFGnn>>=RVri zp6Dh?{E!?nj#o4PC_XhbLHq#*3@-6wfB434S8)UI^)ATt4vhi>>r3FDfQ!E(*&lOq zS^dVoc1ue+!&5TlWY8ehjkQ`rWDwuf>-N3mk=I7eQIkKGT_V>k`aEaL$KLTOVK)i4 z$tF|&CSePF(`kNrC}j{TIH4-_68s+_;Q9yB4(8=+!%6iZJ_x^^E|m2oQJo}q35MP% z5Mm!E?ty(CCSxXGoBSxm-z~C$MQCDUBY*$cOQAv9SPf`c5LW^B0QlMpu33f(c`&3b zN~&426iOP#4Y^;lCNOmA(*;rR z|9zR?D<+i6SzLSDT34vUy|mtTO^~DNW_pmfuJ+C=cJG#@RG+a8h%+m)+a#TzhrLz^ zm)Cyg3UKET-;C}l3>g4pMC|Zc7sY9J$#Y2bUVS!il_NCU9xmpC;VG6*93G65Eij|6 zb{BvLj4T2B6*wIF6KeAzAYD^ii@1%c4Yc(Vc)PP+!mMJr!x*kP3Wesj=Y|gmRWQTg zVGWyFk{MtHb}I+Ls9KA*ngyp)1rxFXd`CfY8@8s|18(H5QPhm?H84}tRXLKizkdIw zyrrgnfg^x3{m^eBAtCi$%D-jK-(cl?2Yd+dVo;qDf6!N`JEYoA9m5l(-TqMbbczb| zUv?1CPLMqr#^b|uUyw%qBq(PnG|1HE2@WvA7aYwfpAT3#K)HrXj6z`Y544%D|A8$K zJfCa*+b~NP=oKKsL7+0Vv`pmbS%Z*691&fV6kQ;RD7q}TCmw(s0`AI&ns2pclzmG` z=nhy_M{Z->jx|!X9I-?12y;@j+}nHZ6k@;rQr5a=npem}Q1I+)nr75OV|`{owU*E! z14$*@X9MJNqUrqN8{g$-Q3IcJjhf7W)lb=}5-(S&Z7^Rm!T3nG9B8&>z_{zujl9!- z{tv3LHc^1H7rp#Gz~l}yMT|t}|9N50Z$G83n0j8~1j51_nBxVd&i8HL4mBr}bU^%9 zJfu0y>t!fr^!*F^7Lcfsc!A3E{(#NFm&E`kLt>cvaW@{RCm|s*p8}7Fu_Al(0Ah(i zmItQ*Lp%Hxu5E%*tYQC-i60KV3T}RxcHDa>EbKJ}Z)Z#{QqW;7hl8JiG%deheCDm# z05Nq`v?|eeg2aIeIqr|K6iQXn?|NhJ>uc95ubD*@HBT^-tq_R8Kw$=)lwh-@KQQ4;!{>v^7EfA+fXxUTQ_b3W(1&wJE6LRJWPd&Cl3P#J$m z9(Hi4%oDVazin6;1pMJ;py3_;24w68l|BnR>6dU&0c8e##?6A72On@E0HphQ1g~_r z#*T9M1(yvl<>^G-7&-(F!ApOZ2{nD1L4A1ZV zQB0c(=6yHI;``UuVsa0$`<~0qJ`z~P;Hi^EXFTN}LU#*lGe(sPW~QyXr2wLRa7YX# z3}(J*&WuG%q)fc?3U|r6H<0z{)-AUXEdaHSi4rLX5^2)9ga!I64hk)Xyk}#h0x2U1 zC0LCfVug)c(=xZ(35H0leWb^H4xqwV%S~R)lf(JyFQ6ZSi7J!Rj9BWqOEz7MKk50k z6_aj{-nkL4ua)$mHpNjQW|hkf3_h=Nr2Kt>M*Pwk`y<$O!MX4K1K1CeM1g;wxSvRl zB(e`n0?bYr1&0xr;84Lt<^T&ADjZus_-_J%D1B}Q^wjSn0?f+{7__|%&9R;^I7P;*oQ3)gT51Nd zm-c2-Io;wB9#s5;_=(<%vpZ}vbowt8uM55x%RustK!QLO-Nr2$0vUFnIQPQac(&-j z$i;47vmUqMdV6fBhvUo>*vLX`z*S zgbewC`(N0io5Wxg*$T?3wLB0S5?*k-v zJ!J&KjAZe)|HB5v5yodiRXhQA&dnukQnqXfp9WB^VFk-&rKclFPcStR<5xv|9Sp_6 zUJOo6!}TEDFwXmv-nkTGTS@uGM3b^XSCw{?cOl3U*YNdgT2YIrV_tR=4nMT!vK;GV zbT;pFVddw;t`C>7Jr@o}a|ypWy(5UoB(m3R{XLnOw9M2j;w*pvVd)oxlq4ykTyi{> z{!$1`Lze;Q74qH>?IWG@`@?;~ z!heacUOTiq@Y?~I7S!YU|7-c+z0VSI)Qx$}7)?0=S5*$ItlgBNzJL`0Y&Bj=`<-jU zeSJFtK-o8Cj-ViNpXgbV!7+Pg|Vb|d2t^*c~%9!NcXS}molh_ zd*~9zyS`(!5!4be%6*n*m|omWb+Tk`?<`yHVsU*LR;+jrnL_L(1+#i@r3chTVC*d^ z{uP3~1<#1dFNuGHFEc|8r~GuX0WmynIrz^1Zz;!%ONr5B>64 z1#nH5{R4huowi~=CUz_IDj^Y{4Z2*x%ueNBNfDM%t`pc9dH6Uewe2(PRE?^P6V=kr ze*~tsa`5s#U&g?1N1KIQ+du9Q-qrw?jc_`-+qBW4+H|3tKbinup7hI0tRy&j)~LQZ z1a?bwuL!HalDJW9ij&Sgf+MlVV;7+&{VeM_?RVw=pqi>Q{i!g+R4Y z88a*Q(YGmIh~0X`&=Tl3dDEFo#02y-_IBIl?n=fKM4LbCBBw{c&!u@s&iYf5sY|n9 zzZbTaYtSb&iy2TQxdU-K@Dtj`XIEgXKtCI;ocX3_i~p=j)_9e?Hd-wyo`$v&oz{)@ zHS>cH{&PdeNHQU~cC6xVU(FqsWjhLdV2iue@)qycUkc;Q81VS8g^L;OGvkYu7|z_c zVFpB0S29ugWAn4K-WVq96K7R(hErYbO6iIj|9pp5P178Xhh_@a|tL* zA06Yj3Va>7aAs+w>OOLeAil(0Kj!VtYwQ|%fPeT4fJ4X}OX}j5eE~KoR!|_KpYUz2OxMW1I`@w1A8 zQ*JQBjE$3IdJRi((UK{L-oX^%BH^U~3;Dfzt%qjGBO9h_{C`C$i{IcMe}XaxStv(v z3;}loZ~7n5+Q5hj+Ms4t$U1D&G$sd{Vf=7@_20i4fZpA%!# zU70nLzG}$8#S6=D9m;P#Po03zGcXteqth?xm^9CjzYrLn!USRuQ*+hyFh7~9L^3yrcWDgekAB>jn!)5CsAuZU{py7l?Ae(?&NWaK?p(d1wS0QTDrP zWeEV^K#iPCr6p!&A-ucF7m47aJsNG6NvZLYoTD|lBN}azmdaC&Q|-lSi2gkmyXj;+ zCfeBteV3aTjh;(V*#2jiyn938x=`5TqGp0Hqa3a;q>KTIS~PVA!P)a)zkY=T3Q&BY z1CzZ3y8N{-Qe<26rTWaLm=^cJQ4Hu7u|XI#rtcx)6w2;&)(44 z43|hgQvm(HvA*6N3i{OIgmdMaY}vpu4+N8bvOz-8MWk(Z$?LOheGf^Dl(b0Y1*Y9( zY+C-8g^6F7KeI6oV3P)0sz?_s6dDrTb<0W2c@QZDjutKjlha9o?cSyi)=7{0c?b8E#8ZyEFf#(akyy;q6AQEFnJc8t+%NIJ`@<< z&(6;;$`U5#YM-bt3L?@t_Pu`i?lF&_vgBHFWNYW=`a%a6Zhg2g+ zFzep6T2zC;7xl|9twRtLz{%s{;ZeFv2Ls%Ii}+85_T?W!D*8jyT_ZNs^rs;GA^Gfb zb9DKryTKMeZA!az^0E_9YL~99eBTZ$& zV#jcCI*!{`FJ+;+PDsDF>lpJS9Ks zbVHsh-Y@pYM^8)qD?R@lg`7DdUy669@F8F!jMO|hnpiI^f$;$xtlGPkLTZ;nqhwma z<>!O)+Q~(x9|tC#1^Drs`*jCwr(b>DC8AF|O5<&L!y)-Z%wix!v={Nf*+c2cROi0O z>yMy0$%X9O5SSw2J(IK-@R(SW+saBA!%3#Q@30noZyRX{R~6!qk>?zN^QXy zS-wzy*ENFj7EV#GGbrUMk==F%e~}SAeg|V6>~LY3@vUcM#mKGmiTBLWNEF6>9-YnE z_6eE3%p&4@Jojk7(04tm5!Rv&tinVUT+i+hW&4{Y0+ht3pSHLG5Maup|UbXg#cI8#tMP2wq-51jS;ZVi1s@z;T>MUVh~qs0H-L7X&xMZYZFbeHd$uMY{u{j> zi+lY1sMX*Yja87P;ebvf=j`Z+!u3~2rb@IqWQ~}x1BkLTILmMi{rmJ-b(BOZ^KhlJ z=quRgE;meTx)BpZKVOgGV36=((r3Q>B+^9h^WoK^TtfH{?QfE+)ACzO?=Bo&tLykniejAeXl#^&l(TUa!`UcMObhaQ#UPlx)xoW)bSyZ^*(=* z(U-GuvZT|d3-+gQlOt5eA{@n97?v?Y`l-GXaD3v(XAI`?@NWK*`!#Hx@~BQ$#LxB0 zJ2>D~VyeS6m

      e=~y_<`N(b z&Cn_rlPACpmCv<-zqJG2RA3$fIb|BAdO@GTcf|K(Q?)*cd@dwXaJl@*hCJEW@ms6V zv)#<~$WQBuYQ2ffR4YucQt3}9V`obQt2X`0?|&jSo3g;7{!SrLIJr^UI!E<^n|NhO zF<6uHm1k>c8%e>AUXWw8ps9gL|6^d4fZwki48g$5`TO(a#Qa^Hj@@U)&x3Ccg5U1p z?00}4YIqH3()WKllkI=}0__ztSj}-sy(wRIhHAG!AMU^!OfNQ;a&R%d^zHi6)bkc<6vq ztj{19ZP->KQry*)q>X>W{SnIMw7Stipdg*>uzt(^$mWdgFy%T<$4Hb&pna%9iDp}U z4i`CRZuVGL;R^HH$N^T=PgOb)1nNQV%B ztEU@6_o8t?yIT*+xhS?Y2A*-m^7ZJ;%n1Fn$L^O$LjvE%7?U}Mit~#vih>-@YXb@$ zL_AwL!>AOn3==5z^M!6vEo_KX;yc)ejk7u>Y6paVwlWP+2?>+iO1bns9JN^L_sH{n z_0~+Q_EqC`Yxeu!i_Wzle&7Gz*l9k{Hr?==?Z)rhZyX7fR6K@7_s1TR=aSe^`FK#U zminzeFpVd3Hht2}<=Le`GUF%DSKKI&%~EVG^#Z}qWtJk8!lP>D3c2;*`HjK@BV}%S zI=c~z7Q$5^kJwpD!^+~o%-Px5&8;pkFV8OX_X4aCTtr^KB_|qvIogHjSTZfWH;ZIu zjb#bLU_A8Y!P69L{UKo7+1uLkv)PcRzEgD)E2(R|e7IbEe^eYLQinBy@1)gYghNEt zW*no+0z>~K<@>bnPg6~W#QPnyA>mYe$;FJ^^uh%;h>5l@2I4D=(1Hs z3Y$!`#-IJ+3&i{0ne=+rb-!pZ0@a+#a;1cOFu~WODhd0Wss%~+$ibbTC*pM=&IA*A z*w)ih#ebQLZ$rd}RrnG5JZQH9X@<8N{_mBBAYpR{@GY@7Sd@KC!8ML=umk-u00N4P zCxNLPt_gN!ae%FXbLsbkgRhW+>+LO?iWo09i;0egE(q4lfI@;dPec?5qCjVslbLzn zahiqnMt5~v<>V-l#;qT~b!B9HJT58<@TKa?N^!T<8x_tkU%oUq&z`42&(eFkz6LK3phd8| zo~`+Y)s|Q+cP;8Vu98t_$H>q1g32wtivJDyHyObO27_51NlH6bWk)d~8ie$C%a&QeSu{wWViten*SSSAnky5V@WPs>u{5`K&&iiUx7ab! zG&!pPle-n1tu{Q){GHK{@RYB95AX}L`CXz$7ZZNx@a8jcfsQ<~6RZ{5L8WZNw#=t< z3=4Q19GrZ7;&xy?w6suoBo!mTu?oO$@bEbO*+Amr>Z&Az{zi-BZlwC`qaVGkee%G| z?W9$bHI_)SE8y{64bpE)eK&qSW4@|H;YUA;{!qyILx0v9y#W8&4*@LRnH12R{NkW(wmit?V&FtM8|I1wRs{H3=GTdjzO7n` zt!ai{xOu^ao{VU;eXy0!)Xu?s4hVAf;Jfkh8FnwYH$~uto3UP_zK1>Kv-dd+VdI_9 z^==M;5y}yrfuW%s3$ST3_Uz^4dSE_*@3ZP(AKWU@+A7%ZNJhwlgE^vfz$~}*-zrLg zs-m^Gy*<0}D+*JLTw!}+B{u!fI>T#$okJ~2%6;!>vk4HEuWp&dI4+|?0ZHb7Tg{AM~M=%e>kXS8M zRr=XOm3T*Mow?HD)JfAXKfQY-UB)|!5U)`W_uZsQY|+xrcAy_0^Ia;}rb@4XeDwqt zrbjvseS+1Au2PioVL*d=_WXIWpx+II#8PKKXGaJ9sL2*zwCe8hT~xv)xymB+oy!N5)w;LYwS)lH+r&jb6x-c0N09beg%29#Cy`h23e89Up1DU^aZfd#AX0u zVmfOt=mQx=3WO(h!4MVfOC|IcKoH{tZ@i03)pcOxEz0Y)-kbT^wN>Y=LfUh-PkR+p zqor>a;Ec^>ES9j?+)j%)m3g?!OYWmYj*=))tXq43N=Y$yU|J!%!a7G~Y0y%EZD@oR zYovm-)nqY5f=<$IE%IH% zEcayjU21l=x>PRfow$BnNz#y`t|QwDftx-lH$9IP5U3>iHr!QYrOCwVsSGu8$Fu0l z!_K~L&9p`zs{UfFOY{SA7UmRxSb4zSX4S8|0XX!?fRhHYCvxC8`)!yIA?4?j@TLD2 z;X9QC>0Lz9yELEI5ZKNJ8ZKSdkVS68EE*Uu9q+K@4pxPF2USr*0tv?-z~cZR2SOYC zg5=R`5c4R-k;_pBLpr##kB^Shz{m_9chDPcgJaJc4AXE^If{yVI6FABf~EojOXd%& zimA@({w}vsqBI=W)=m34$s0C!3A2E9Hjf5dH=NBLgB-X6*!)-)j*ScOlvX~xh#04p z^c9-8^-h;Z<0Ha<0zvK2hq88s!gY)zn~=r3)PTbOemVZt=|^d;QOwD%kxt!5|19z6 zc7d1(`{zH&cjd~F4gA4n0twWKK2fqUz?e7Mz#J4RCSaw|3?XAqf=q!O-ortQAH4^} z5c92h2G*q#m7e*y=cjT_{{6 zdgLf)8gTMGn&7*~cPqQ!{`1UC$Pg_Np%6xxTzZOHm3E}SW)-$Y(HUk-;bJzS$j#fg6j)uQ;I2+c00>_02}pH!s7OgSUQT#ao>^pIyg{>|qNd(E zJUp~hAHA4?#yl}Mmq(gu6fm;4()LpXWQGf6_fz9N!BX5_Jiu8&6#eC_)%vO;Oo zXwO~BD4GKf3l5U6$3eT0o}4`M_3Hy;V^Og0@Da=UtZU1p#Nud>+}1S$JR)$7Ss9;c zc*zHk|6X?z%YWZo9DP_ufQyR^dm(jwLw)@*EVonW=lqhAvl@p4>o%Vw&L3S2U5quP zVE-L`c$vhPa@I5Q$S{jn@3x6uq4$V-hEzCZ$(q8$Wc}g1sO^{AqLILO+1qo1%q@6; z)-GV~_)_&^SV*18(@%>gu= zV5nd|Mnza}ye#WSyAvjchFQ$@1Dx-;Fuq}sZ3A+;apRHYD`R0kpZ25Dnd z0#z1|+3sq{nGnCZz&o=}9w?-HVFqMLNSvpjcy@X2&M&Bk0yI}%$5PEN*E zr*gehU@EuK@wjoJ3L##G&*~10VzivF-_#GzAfOW{yWV`-f}9}%Q`+}ok^=4#I8S<@ zW@npzxAIW#dnu0o1hX5uT3i}K_ee?HW$faLi(d>-JoCPQMJO_ z(oBto72T1$K=E<2NK4@_p0dN=FHUkrsRTXWJkfcwvMCkN-gda;`4KQC&)lDZ96%tX zrlJDA5uf|If|tM^xo4w&f}zcws`2;9ka7rSZ7@i^-<|1RL5b&Z+6Ny-h+(0tIdu{> zcf_m!CP)PM1#a!i2z3dAQ{FFtLtu?-R<6rhJxxrWTxO_%mblB(kW4vP)Bfc+k&Y&s zWbQ!z`RBfgz{~WJ)MHmD8KFWp}f0tWBS`OovBseJu|X1azb!S z8n=mD-*{f+c;MDzpR~u{u2c{YdbTzcuEFI7EgZO#0F;xhXZL}cz$h!IC^suh%wtnU z>t-QJg{z$%TQO_T->|gis@UP=#V9GA@dbYetbrUA1$NU18y=PKuQ|xV28>(Vjv6A2G9% zw-}M6fPerbt$@i)7|GSGQs!UXjs<3xhPhW8-IF2SzV()AY8KIH6~T}8^oRASc}e;H z0@zdvSvr?Z&YyThMCM_tnr>#T;=!-<6dZ241Ftr;Ze@nmi@c#f@-GARjI^~OzPB7& zZgJcB%AhYlyu>kA%MKw$RzP5SCdeTW#|J6_{DK?Q(?h(se6E*BaKziJb67cr#kczX zSg0c9K59H2{>U^{R;;%d{rOd2HK!+vsju}5_aG;$rguQMgU?-rVbS7Z0+UBm`lxH% zGpagVGj!2+z^@@NG89_vLcUS3&p{R^&T1q1_P+%B`RO-|;%V+p%mnSYL-BwXA(r;O zZn2=+o7V`8fF4fuS(8HB@+=hrJ2eUU{?<`a2`2iJRI7qXkGOG)p(NzmM>=>&oiM8;LkfcCC#>W4eq3APxSXU}BYx_&$ex z3Y*ZNOG1rCzHR36ZeReaDS1b{4^v6`o%6aBnno=DOL&Fv zBplu8^Q_q+W_GodRNTnPYW|~u1}n7=VVYQxSQy)YFEsvTL~4pxe+K!+h1P2 zg9Qus$bM*Uu_a#J&mvoSgY^!X|OX=<}#>HIPV&7Awkylkk z+Rqu*KCl3OR(AFhEa9f2C~3APJ*GHv`Hi7^B=V@ zH;kZG@q^ncwV0+w@EjnVbR$X3eD{A326{%AM}K=UP&2du+>Oloo6MITb2T3>(LL-) zVj{F|+jg(`p^H%}`#C1WZoS1U-s17|!B=IU#vYk3K$OLvmD7$bGu^Hz8BM{XJ0J$OKW zunUDT=YQ{uegXJ+;)4k#@|A_}eFx!IBE&QQ_21QvIo6l`VpG$pUQd@A3drvoHPowQ z*^O7`Ok8Ag7e6h3NQ0&LRB>aL+^tM#V)UWl(`WI20RMnRrv*H+T(GbOSGuO+k2Kx2 ze21Mpb#W<729d{R*U?_^Qo4fio{7=5KSL};M1b2ctzctrKbQ{fk;U`u!y*^2o1B)` z<&OB!_wnK3axfEwy4mk;kbV8F2e!G8!FP3eInr!UCth!=*2E7@ZELY+$=QF({=pfP z1vn8Bbdi{?;m{>Rt~U-Lp^-^A4u*lpZO-wdlwqsB37bAATm1qLJC{NN}6{p|Ihi+gKQMoia$s(tP7 ze-9JL|9@JRUVuqKZ-V@^pT&i~0bC_-@A_GRQ}iE}c3aXv(`fYMucnAcyf_9^#$u+X z8Wm3Hqy1haAu$7-_0dlh2}$}%D-ofie&|s1R(ah^y4y|}IVEtep~0`zFK@6JPJ*)~ zk6wOTz(UtrRYzCk-t~M3^8PSPdyaT(FRx)E|Vv3)iV19#E zX@5fwK5+uRK-XT??PXk1vfbq-N75a%wskwaP7rQ@mNMigT-pPDeSv2%?Op@BuF4q{ z$~!3FZJd~s^8px`uu;`s10o#c*fzqT)5HOt9`uAqkWJbQK78J;pK5Y!XF9KBTYEF= zWO0#a1ALa#o=XsnkRz|aOF&a0hkg-xEqu=B0cR!1S@93xC8~y2-1}FO zq;h65YMEr-9BS>#9@BSY$CJ&Ar*6-j@R%@V#B|0b>IFYoXNlOW>!-ByYTHkyZjGl-x~?kpVUuHP7T;(M zKN1L{7IsQ$m8q=U4~8xV@O217nluFuTijTr%`i|KgT=rkxgCPm+kue^Rd63x9KhTW zeZ1HNX1D-osOrB!V~n@k0t(8@~dTu04aUlhV2^PX;9V74F)^OBN4tCkuLfZ}BS2sJDxH4!vDD4aagLRF|T;_N1Jx|-Ny_Fs1HClb^#C$ny~jzzuSGa zyh%>`pBF2iq_E)W4CN;uxcpix;PJ>*E|u%CCvv$vgEMjH0d*Lvg%>zbV1ik929nws z$VP=qp*hKpjK5>W+P@EW9710fC41h&S*SaltGuO3Qr+O0$8}eB%LMhNBgUOUE9_9F zcMUGBNoQp5@1BuV_IF?r z^7RhiTwDJGd;z3+9ne?c^n+eASXST*`~_@l!NKAv7S{lzKkdQOOLY&?o^WjU6vHQk z2+hE3h|aqg3qe$9AE?O4^lN-LNb4R5HGxOO+T8skC1h6~ePibd2(k|-nKM`47Z*C1GQPYKSTbz|f#&X;t7O zE#*{5?h&Ck!Ng^Wyf)f$tk4|AZ$P*yCXutmJgavc4nS9*ZdFLg=FUjV+Zz@id<$oN zlSEMyB8N?MGSH&h=nKyT4W3Hb5#-k za$A8u_t7cL@LgX2{mMbDTOvEi{|~}7p#TB2()+Q=cG1t!mnPs0o<-R32v7jrkMFsB zmhpH2so9XjnCb>(-z~08^dyhk?{k&ud3n+hK4yg|Ey0RN!b1|=g}|%Csuk!)Z;Fc( z@EN$vd(UD;-$QXaDK0dO6rD?Jtow8@{}DS|i$Ug3Sje?dNrHp1k)bK3x^QW1ji>fA zXU@N@T&d!v(@pi$cQiE&O{HhdB@N=7{4DZuK4@3<0YQ8~doX;z<>dqjy?NDfyYu@ zAL2SMfMBAHza|RoR(Z+k(xoe?GH`|x#Ca^+P7=rrbu~R#R2!khB0D5SVMT$P^$-#W zv=^8ec-Yx*cB^~^>sYiKiY1E^$jvL+CP{Mq4mF9eYRG19>+ClOZ?F>B#M$IL6N%gO zlmPfnnVFP>lT!fu1c;qXepeR;`7+P{jL=5jIM|&q%JmDTJ54Hv)OQ12T{(5)T(&A^ zR5k$(RfXrJ%C~|iksi+yVFZ4Kd{%b_h(4UFCb0-yj}h5RIFj8|R~DM9L5;yW6(Hsf zL7-S+%!tQDt6YYyQX~8*^+{@<_5Fm4R)ysyP)4k~0#OjU$B8`Ke#H`#^;K323=he# zaBS%`pBp@>T;TZ@@8Jjbzy1ltZ$m}VM#c@41TA-5ecEoE{_;8Rf7ctWy(>Dk z8%(q=cZ3w^f%nr09nr}dFzxw>OR!S`1WN|$3cP~gyWQ8 zJOgqX)bB+wZ-KeYek|kRXwVoU=^Gf$ctf}z#h;=!qo0CC2A3Gd(={d*Ng{DcpTiUo zT8=uOQ7r2)-mrXAvq{5KHQ_G)3uy<3ek8tW=;}h$Q<2>AGaT&+Cc|3lN(HE|Vq?+! zydGlZuIj#<;c$uv0<42o`k$RpADo<$TT+)PVRe}jjPKDC9gpM|WNZd(8MATY4D;oz z?t7(JB;BGm$%$1{9+33E5MsS~bM}qa?FAc9l)1e#M!DEvWABj~BH*)sP|VhSbZbXV zIGE;cXphDx&F9-nyi!w%u%r-7#8X$6rb(CEumNmwgdf}pE>hJqMeDmjl?>HXmPqaS zQ$q~YulJ$;?vLDCmmJ8Ydy<|Kgsv@ysmBx96+ z*nvt#;Fxh!_`YpC$IN`Q=o_1P>@+l`ZFR437+Ro`LxpDRgD4uZ>b=u@CXO{dv_07c zkIC6?Ys9~1XWH~X*~AW@v}{We*@y*T(H!$&>=@(!l{D$ zGA9p;8jxn8jwfwF{R$fc59?$KS^)bYkhlU66wpcKHi7sCel~3oxT*bwbEK_{rL|O8 zSO^YO#fnP`%_g!q99$Z|Ob873NXE41KbAEpP9B`-c_qiywQT#?{? zG_SBlk@Kz5AZau7u=wC%OyA^LZozx^kiK;OxdOHb;Ol?DCU=UE9BUq{8#j4tw0#Lr z4tm)0cMVNcZ#<9J6`d-8{&JDoqW=0L;>n``?O^$EJnTUe<8o;OgoA0L?V~y6H0Gi# zQmoV)!*c+5gb(c?mR#gBk`y++=ogT0rnjN9KNkuvV}I==*j%t9E|_2HZ(Gwdk)qPV z8d3Nv?p$Qfu1!^rw4-3QE3n)p#^nzQ_Jk zCP#3J0;djE&1u+%i<}f@$B(|=I>egr#T2X*{uICVM*PzZc4IBIeMC(x*!jPD^;_`q ze-0le9rPv%X=%Ug!+&;#&SZRnZK@UPq8@Lmc9%0=R2`>FItG~+rpaFp)1R&k`s3`ZV@n=n5Wd*DVyX-y9_KV8;VGdJrE0B4!14 zJuohkKXueJV}fB8OvsSYqV}WiHZAu9Am@ag-5y5Eb}$t2>kh_1X7l)nRl3D4fR|Rz z8W`UEys0_(cEuiflV2g(bi2o|;>t=6c_lMxveL6>K&(t?v2j^k(z;v9;2FoPp#5-% zw*P`W%YbBrXw3_oyzjy%-36C1wO;J|H*{x#WgMmlxM-tR2^B`KhZj{xVZbKO>oz?C>ka%~tLHsmmj z_(aNxYc)NDPe-=YTel z2(q$bWPstJdp=-wP$JsZ%AlPmc?g+13L6ZdwqvCJ(F*>FwOC&$?jwGZ_tii@mt*4#t}6F+~{_?BtQRDd2V}u zzFxy_KAY?{iKpTDTIG~>vc6v{0?l6eOL)fKSgKTu$*{QGBd|LTOxi~*rqF(G(w_c^ zXKNNVNaB+67WF2}j!uj95SQE0`@<6`ia}(5Wx_DUWdg~GoS~=V;p7BX3hh57mR#~K zrsok_03~QgMRn&u>jqcEKNx(R(SAMoH7e0ku^zMW$SGXDd*6N->HxKyAHxFwJ1jVBnw1J=TM)iYSF zQvOqa3&I}w6CRFvabp2SgO3na09wOPlv3X@5f9uM9&`;m?WJautO z)ic*6AK}5!#}G>|{;cZbNF?+W2LqDH$*IZ7qz5vzu^;|ke6Kz1{C5q;Idha14;qtu zbf&x_a>X{57!Q_Tdu(9|r*Cm}l*I%w%9XrcPs}*|vs3g6h%MgUf40(fWKtZ2b;=x# zW_B~{g|zqX;V3GlhjxuX%4_F)YA`h}YSE4d#z`OZ%yCSOLQEp7+?7^W7Y8C?15K#S zBCrAsQ}n-rG|X!7?_sC3(=11s7*Lid7pJFDPux_(6*CJrwm;_m`}*P#AHWh`D=TUv zkHi;0nm@t)2b$kL1@3Gk*Z@5m0*&KB79fc+3Xfe}LcM^U<9e+8hi<^xB(PWA@3J-~Vp>`_S!MPMn6C5&j zSNTRLbso5Oq_cbvN%jOfXU6&Xy_Gs;ut^mCxA96kkh$i8_Zo&5#{?j!*pi@|>6v4K zPN+Wn*gnsnqC$X3sIl$TCJojj(1!cNNq52qYP)D?`&Ys6pHDiko3iF;{SU&J3IU4 zZNG#=oRxP&)q$j~5Bh7)=sw!>;Ek>`w!eIzg=$;)MrX4F8|w_a3t1B+fF* z4Zl9R`eYek%Oj)iB7JqL2c!<)8Jui_uS|l~H_AWorriZjnv7i6C4y#Z;M2~^GxONS z*qX7?QQYSY1Z-K)VZ0`kJWXI^F<5SCLbyKV9uJ>Xk-zZfp$sVuN1dU%w>iT@c&273^waGI-@*(Ivr2kza--dyB!6)kKc-`D!lxPH3H-X~^7@BW>-!aciC4TJ3 znavwO8bY;I-_VdW>ePzn&bNnG?~Vt@?cs(&-AU!GXE;@-`nLmL^b=sR4HAgGI&iu- z_xTQ8@iy1NC~p(_3H9h~fQ4VhmYUX613uIl@zF!L?aG=~b!SH;e=o_;m5_;VD;TA( zFR{{pu;&}!kuo<#Cx+a*gzRiu;;PFhUDxD%js-X-Et`$Y+IX4;C{P_niJpFHKxILS zui(Cm+fn8^lKjaaRl@G-s6%ttvg6&G;on*}-wnS}ye%A-6-nU(pb2hc`Vi z&dkUd(iq@vBz~MN@Mqf3Q%Dm5#Em7Z7g_Fm!1{*BK&?bPw%UDxK5c_EdmTrNh;n}> z3}y`LLj_MS2T>#bFR7)Y(fWA4_AhQ<-OYyxFB#ZK1)`uOFh)`%Y$0Mw0A-=@W>G~Y z>bvN1$y^>AnM0-A@?Uixa3>OXBVK3*`%{A5F1+7##xZ{7t!7^2n4LMGY+ z(g9lFcPmrZw(lT#O{e=)eYp}j-a0Wk>W78dI}(RKTQFB)w;kV$y^d$%`78jMqVP1A z$Bz|NApgi%$=#_{c05lyZ>%zfI%om6VQ`Kr`-c~!S4b+*L}lAg*|rKT-*SJERMs!J z4!TNC^u9gXwYa!=dg{eMQ^9ant(^H0@tl-?JX4T;DM*x(yrHSd3)X~Ws#ha>7D>i6 zRb&OlD}TsI% zsXv>rTloF;#S?e;V@Sq`rRE@*i~ro_;?q$^DMgna2ufXH5fNye&e#m2?{i9VovIC4 z(nLLf^cy%%a6ryYeOC^abdY8Ld=_NcdA@t)Za3Gh>P~)slm^i+)1DHY{94#8-JNaY zcTeLf@%EZ#pPP=Lv+C~65#<-*%3m40;Y!jrxV<&fzhrX9Q9&P6_yw@xk(k7PihUc< zX~h#qAn8LWpD@cS?_`XV7}RMqiS5Dn#BU%vX2Ji71YirWY>>Yd*+c8mp&^)A(&=otK7>q9h!u~W`? zl_TPPpXmgjjA*CF>rgSaRjDXfd)UTKhs+|-cK##=__oL%lIBuD-cKM{yW4Afj1%V)lYWWf-zZmNeac!47Geh~0B^%2X##omw~|1%!wZ&9 z7|Kw`X~2ZyG}QP9cO%+_lk%H_XCE4;JrJ$$y4<264HWj4vl;_$dA?YVB1Fm>8cwE^ zZ-=E`Yp@mmfCB>Ao!HOGBtMnOf#e6m;Qn(kW-VX-v4xC2czuc$KRI~t;rp|HRKg(G zUZU)OGhJ&bJzAdeInlnklD^_?0qvPjh$GkE{qA?WNqRcN(<~Vl`qV6Qe^tg}`vH|0 z2H3AHfsBmI#@@b>i27rW_*)>H7(MW@1&qS!0acB}&ruFX{Yk=IB_|ekO5M~Nuyq7g z9Nc;*QvH@{=qtgQ<_>w@>rp#94$^DH08B398=jPZ+u90)JGiJgJuM9u;|xCfvZaX| zcS3PQCMOWe{0>duSx$Nol{vB`sr*GJha8$1#)V1mJ|fig{4UHdjJM1$7#L+)E)ti( z_ZFtyN&Xjx%7)ac$*T7)5ly~Auc}hw?9zb60XL>FBV)I{t(M@gvcf`Zuq%PsypEb! zhY$?LW$#0wBBCGg5#e1$esvtr0SxuuOjL#(juJ(0Mppe6;SBnzf6>3DG7DcMzePMQ z*LmLjdP_mopQog{>RDFAJ9Xirq$gr-21gBU&$NS^xlvyajxNDOtkB-%9sx!a)Q6U374rxOlW^kcZ)(~aB3M|ef!sFS;J`X)Qs}MH$UYW7c+;i ziffI0+#Dpqmk+%PA{*Kh(^+^^Ef{)}c#0`(sl536$H4aDnoorYk;FY7TiC-CGgR19 z)x>@GdD`4s`+iW!f~hm_@8{f0;O|B8;=lf0ZQI`4F>fnqLXBWtg$UrIlauukE%J=B zl!jZ@No9;h)HU4%)+o=36*;~$Pgv^edoQ%F4i{>%ytlz@omES59J>|G-LXZ%Pu5x3 zG2+{wS!V`@;vn*^uKocqEgmKs;oUujsl4#yWuBq)uZ3c=1Z6>r?o5}jrD#ljLc?nI zcXp0`{+uCfAU6eb6l3FzkdTlLappxYLnj(eT{xFEHpO8RP(kw4w|910A!=0LR7V-I zjhahKF%>C)K$eB5ls5WgIENR2(FECJ(qWPE2U7pzQ_gA$@gKRqR&C3f?+6 zpeH3o3q*=R6rYOfkHQ@R{6Mg})=gz=V>EQ(Jc}i)kBwW8GS zeaTA-MK+T>ClgEDqEyc)X7Ue7(TMd#Zz{cEIm%&I!#<*IPNiD}f>0gtjt5{auvbCa zHoa#UcoS$%^x)wGNrV!>~cuIYPu2cz|F%GE|998I+>l_{gs@IEHD+`zgd<3?2MjH zY#aTL<*UhPMo)-&E~CHmkw5DpdS0L{RF=WG5!IZ;k!8bgE0@%hq+l!NDK&<0=aER@ z;M*m?N|ntMps0TnB>#_qgG-+Q=-^QYo(OCPMQb?Y(j2=03qc=L*;eCEJ@exu{< z(NjeQmj2C{IBt8@0;SZd{oUQ;U%%!F8=9$pl|inFm>Bi#7UXNK{bYQYV%Z9Yt@nO^ zPGI=ucE>aTUvEHr<5mLMyw-t%ejd1b7r}3X8?WW>FUfb)OG!}?bT5GO6!d_noD>ri z>KAtikOpyGQ~pIzE)Ne+gC5kC96(bGRYXKY0QtD>OA)73H1+jsM`veVou_KpBlSdC(Tw|aN)el8a3mN*RLv5M(D z9x^SI)C8CzCqG5D+>Vk+>0(RAq0CV}MEKjt@XbFX#jnpOpAkK^0?0&+OZnYy)vQR0?~pvM36jtY zUmNU8*0mF&C45d;KFFy7rTzvuW--#@$eKjz`~4?Pv;b=EU^Db zzmJIC@i;KvWvD#)rrq4><}#YogUd5a%X7}iwBN*p59yZQ;M=+7h3>*!kd z7&2R1q12Va)PnXKy^kHe=$2AdGF*WNUQc9m zjUO~UdO%4%tX<(9V_Ps6g7)LiINc9#-H8l>I35oEdlJCEi@&0@k zOYJPQ(7M_6$20ez2vv-DAInJZPiR!>=;%Iko4Y{Slr4il;MvW$16q+AL}xv!jM?rS z^MUP)#q!v-tG6^Mbm%*yX1yM+9>{P~?<%37_K-eFq?BZxIZja*>idQw)sxIaP8rO@ z;-v%J4Y;-@Rs#N28$EIs-1qSDxnI+FDfwMQE{>;O;H-cKZYA(;104MB=?V}gqVJ|P zRafH&Ppzy3z#baJWdN3!g?d|;>%0W{avn6VL_{~HaDu2vNTz3JL*?*&t(A54^kAF0 zw!Lj=W`?U?gokiqkwYeeX(ABR_grZkLvTg)Lh>2#kHRi=4cIS+T-%v&G8<>pqhxZ6 zasJe{>2_^IV-K-0ZR9v{*4B3P2SEeT3=Al&e(&gd|Gp$+4BSF5clUfHB6h;P2qg>~sX%AJ z#!*pOnST+a!SeP4G;~6>i*6(kyUu=-6z^FrGRZ431pC#PIdYj=xbmlv9(RyRh#3Kg z5jNR~bd2H+?eURxbvetNgxbHLk*m2p)jB*p42=K`e^aKnc?JkO9C$^R{oEzIOFEo7 z-C5#TW=4HwKP874f)~`nSKKE@F}v}VHw6XQ;mKr$4>%{;e00Bs$r68SfE#Z(0xk*S z)83g^MTvZ#JskZpT9OPYTvFpbd5esO_VaMSn+SCn{7b+jTM&(Tu9 zGas^_+c=a1^<=e# zQJKAHW=Yl^!7FAS4D^!wlU0`P9q>6Ak<9aFA=Xb}tOdk1hRIUShdD#3uniy`1fReh ztGC$^QH%5r_V$no?+p9vC<4bcKZ2ruF1aO9iIT;RZDJyYa}~{)zuOPt<=?d zg1QPtbvGYs$Eqq4=R=`S$D@vP}rD7c)j7uiw+3NE7v))dcYFn>VB5;&fo96#U)@ zkMz2tvinO#LZ5&6J0bv*6zIJU{q44KMQas zSpM#2qj5;{1tU|C7W}3@_f{nYPotFdf-*R1YV@BG7;g0jcMc~IUXQxMw_uWNs-%^! zr#_H=Xa;bsscCwb6-?9qd2mpO!zCqdR_4=igl=|xF{p2>2RnAN>?xA^s&M+YSUdq_+BHc{(|jrml2KsyCx!a1X;=YR%hM3EYP zx{$u`4@Pt{gTD%CXb0kre#t3h3rD})GkyE}J4Af{RJxhX8SKn=QK^WEa$Wj+L=&Vd zhV~zxq|-MT$e0@x;UgCKutG zig`$|sku3cB_T>cZ&ph1F5R-S50zU(LhZgmJ`d;5I+0JblI$5s7y7>{>l))Pbp50A z@El+e4D_=Qq~rq^1Hd4iM&-av86eVrXHy>RQ;xI^?)3MMI4V zEt|nJTSZ+%WDFMp!D9OWPGx^Krh;s930oVREC`E4RRn$=vl$g&6qJ1-_eeQv(^^L?!)r`< zZuPfEEr!Ym2afo~l1;U4?k?mWRU>_Mh(dn?`U83bQ1uT(kpi*VFpxFgRI}@mL6_FI zAEGH-Gg6GZDITiY%840j1sGx)xava~7=P8?e%yLd2OQ@uU_1Kv<6j4vGXxz%9dL(t zi6eOc_GLJntMz3BDtb6{76aP6D(XMZ2&%fdTg+QkNmEZYJ4{e8SW6U#OX;{jP~?>6 zjjV=~^D98rz$Cg8gZltVQ#C+u;}Y_f9=3Mq9tKzQSvu5ji)wCiC}vx6JBtsWhu1YY z8~-MRL>W`d|pJpFi{IoHqT;f*S&rqjU>MO>{D^yaays86Ig=OiXWw zf-JMVSlBsNu+~W@J9t}oqF8LW zd#x+qzboirK@`wRp$blc0ESNMXnXcoDP6;#3*CZ(!ooxE-|t?dtaP(Cb(#Pr3Wh|_ z$k_7c5b16Ob>?k2Dn8K8t63C{EGoeG~Fj#X@c^Nb!FxVZN z4^*uZP?eChKKXlP=cK+6K+lV`v`)u@S5X4iP7KanCYtMSH=T4ERgaprj zg#4Wap$VuO*8Y8nU|2S+06MUW+MNH83wGQomUqdG<|&>O6D8YUSmRR6QY=f$ z$kjwKeqMB;c6y>9|_y*=@L$=G% zHx+bu3cLWjDSVEwhhg5r6H>5L=VWGnkUTy>+ZnGia?$Ws&Y2viTB=YRqijU46FF?y zxrJN<6N9}ycZraBlN+ci0*QwoeVY&_fpNwkfq)}O?lOra2$AWlmjglPC=F%}$ce04 zabMAR*Ud>8FQPiI=mWzRhHXu!2}2tV?%Zj&>!)Fl+3E`? zk{tbKP5mQqyoBY4ml2@~65`{n+OL?LK3Y5iZ!X%rdGy~K2P}b=y}tfGTPhkRfndlv z;C$Y4t#OqWy<0Tf&f@#lEYT#$ZPfY0vG{haen3j{BELf5;R75+8+=|hkvKMvxBF29 z`>?8D7sE7A;^O--W(z?it3vwjBeSFMQf*c-wr+`wGtW#m zOk9UdgU~9D-U@Rce|bYC1hmP2@8kIRqGwM8CFZgE7GPi~zC}_hQ?4gXL#lTgLK!FT zIN2HIy_Y4mlD6TX@Z-vtZeK~pp&7K>P38&=HvryBf!)&46nG2=XePgmEpKs5;IWZCAWj z6kMZ^dwJi3xa;Q!PW}bUfDx+uXgkSC-7(GO>Ev>RV87=cX%OD)62JdZF&HQ4(&WyUdZAr7P7D08*VGYq2({Lm0NoZgZ?5cg|pDf ze^&#oxC7(}2?=ks%2s|AZp(%lG)1MQkN>@FU@PEJ>ws_7UUb0N$Y>nKLF@K_JmLoU zy-mOB&O#*)yj+AtuBdf4=pn>NT(lm+)(eXc_+{voU!I&-VfxV_L2SY%R zx&}ZuQTckMU~~YHNXW-2*!=#3_V|nDTJ;C!JUsISKJv*3srU=?ID_b-uB;2`Rp)p; zcM^Si-nvx-_1odTtOi1KMa3=%=r?lXbc(kto=f#<^FZ+aXp^9SKq-FJSh<4xQ$O4F zIea%BkR|;4@dgG4{*RRd0dMbmdbj}f6K~4TU!1D31#bf0CZ@&%%Mz$l0{q}82Z!cM z(>lDnWSJNGutGulRDA(NG#JM-;EOPYd*8ShoHF?z3!lOV@A6-Th6>96NP^K1(&6q{ zyca4}J-rjY-;=J*vT;imhs3%!KE~Dtcy{@41h*qhB4(EoMv*VrpuK|l(fV2fH zcH?Sw1?i-VhZ+$1q~S%?1g%Q0xR;Z$H(B6*FnEyu#^vTs;@4lHXtK-+GfL}zECYGS zP{Oup_XwDqqB6W8+}!uN2e(7Ma|#FvzfXGtQ{o7Ea&mf6E5LotHGo29WMYC;pAkGs zs5t*#?r_`w4%ZF9-}g@dM2KRBS7N*Ukh0Rt%*dFmwFtk(El{u)XsO%zquJ>?u z6FH0+GY$^wW9c{jL2g--^D$KjQ%|qCY2i@_4>-JN>O&VTeacVk7;W8Cd7Yl@W@pEB zls6ACmuo{zxu3%Ops-ow1Mw|r^B}gWKvei8_C-RjunUW~gX$Z{lv`i$F3-GBAFz~p zWM-^n+REiPq2DZnB;AmNDe4TzZ;j8$oNtG6w(Y^gC?xyuiv~_NK1HDH#K;SY@Fdcb zlOnNGvS7$DL6sR6tFG(nz2RT@59$ zPoQ<;D1Jm>aB#SPI{j(=ZPUcehtrnEAN!R@9VUZ0QU`+)68Ap2o>^ExMpYYpaKO?B z`S0^f(=#$MUc6Xpw+c=fcew&xW8+4UUc+F_{%L8i(S$M+8oC)gNv?u3JS?1^zOPjQukgEC`wj0HmbV;5hd;yNJGR%bDs=Xg<+c# z$Ap(RLPXN>>C+q7qb&)>1=S?-uj{o0X(*zaK9QDP&Y7Q|9~v5Zj}-&>$R2h2vO};G zP5CX0coOd-$5DF!bX^twgumu$SWeZm+ zN8;t?&i4l;uN;^pBJiNX#8Dikr=y~bWtORh=|)eVo{x^|L&5_n{!%Lk)m!3cWlGKK(3@2-ws+LFchK9d7>1rHy@jyJc8?`e$ z1sp{_#^4;2M^SM{J;JzeUqaZas3=7$#Ub`EB~c2_6BPwFGX|WVH@zbxlu6w>DhiVL z`1o2Oi9I?(llvtI6!^55m4teg#pYOALf}A%B3;tdh01QQeslIXiuIqbLH@@ya)?)NSjxcme z7ZOre0q4QO!kQU+f6=@nfCZmXBRrRF88!yp5(!pUc;{iD7j|jnPv~+%tQ!TGVNA>$ zw?%A67)+R(lytzF#FZ2SF^;_x5P$-9%CbMWSv8`%fK7@sb?Y1z-lPDpxpo`?qKFs@|%rN zJA)+%2$b)*(i-WuLJndzB+3_b9OLlXuqjL;8FimOz)g&Npuklf;a44JM&%Q^ZzWP4 zA%4gDp(8<>e9I+7GJUEDVuMVa>QL-jjrV)5ysQU|3q12~qSyA-N!8RZ&s?0rmD?lY z2l0B)OjuRcgKoT()YN6hf9?_OS)f;kR8a+JBs*0)S4~Ihy=0-NhsJyH-p-ddK-u29l3%<~LofO<sgWVHjs*%qR#?MbG!Yo; zQ1*-$Iz<^QUs)1lq_i&2Gk-dOG8YqNYy#|4%tU5BF^-88<*@$s(Towq3QD`nGCev**ofs&g9v zeKU*hz7Ol(0Y@4najXAOAu$zvmNFCEeDLd6xES1US}c4B6uIXATa@MXNwOFjE_SZu z*>l=ruLPAlQH9n_dlP{AHUy=m7#$c=hqEv+V3hH|pt(H`uK`#Tz*jhmusNXF17r01 z)|NobL(erOCvsj>D*<7rzPx%lv@?YWHEgYJo}Pb8-AQgWRLg><3izgf?iT}k4CUgo z4UrO%yj=E>L!kQ$BnaGfa2Oyd+;HZmKH3n@9b9{Td)z-#Ot>EznbRM`7elFN_eQHp z7@{}oU%y^kUthkfpn#yWgNS-Zb4$xOiwoCfBIvuAS)JyEa`~%XZry&MAme76({TTT z-IElH9=sEk%$%G{u#>`XT8@*O51Ho|7LJLFoBVg{hdEfA0PAmVmj81_V5qqUszVYs zBP!E{qo#C{>@^jZ>6^%9%H1Dz`XR0FksonV^6Y?v26V#J_40`=U_F4+aCsVd=eg@7bMxBhA5!Q;X=SeVhlrj{~{B8>j$>Vtv+5ExHBRnB-<&>TXKs_JXkKnxA1;)q(6}}2L_x^j~jDu3Ts9;^Y*uEu7)!8z05$^WpH%)Eg@*Y_8s%PSY z5b)eNps6!7OhcII4faOxslK5WvwKN`a)w;1zS&t>QBmC=Duy_g>6w|2cNY{re;Y6= zd&)=0Ju$`E+u$*q7J1Ta*e}v?pn!rs@%!p(G2E2kDmfTC2P5E7eMpx*JuTiV53`1|;H+43f*8H9r7Lu1dco33 z5v>Os1%)d4RaI4hxWO#~m<8t41HmgR`xpddS!qJaX%g@9bt``1Z)c4J*xBKbir!P{ zBob8{vQSO7Ijr>4G3BXfq_N=+#TLxY&W2t=nAyUzUtTmuaL$#@{}N>X!L9b=-M=vs ze#mtB_gFvF5S8ix@wxH&bC*U$P1zD#7G4Dae+*Ox&?le<0b#^0Uvhq;Q0-xw;+klY*sVK6 z32PdW_e&%LUe?F)_(jJu-ozsRAjp$R{8glyhK!8t{4$#6h_|{HCb!DSnEt!pWPEJj zha_=mv5aa*QMD&$Rb0WOru^x?dw-7Z^&d8KEC3)2M#pDAu3Wzk^lMfd7k;XcL$ODO z4Tb0DY!LNyD!g)5EXOOhkTBz#eKd9Nv&;W$@$MGOSdH*vsp zS@+td@7JzfgHo~+`OlVe?+zqO!=$1wk@U4FJi&$|aE@YluF+R;MO&Mj{30S>8eMZ& z(M96Nd4yLjoSKqd8%+B(mfVfp`@9wyZHUTSTU$ZTkRKKv4g*w;Oii6!UE^5XA3g+a z$Wu66rYvw`q+5ir-2c=z&fI%Hl~|+Sb|FG$_j(YY9J^qzu8p{ciMduC6 zhqNquLj+74G;>@lFww37mK3z0GY#jpmL(v+vS7aPBS{7|>R7mjUzo=cv2l~y*@j~} zuh_xn39*0t@Z>E?#a(PkGG$EH0?M&pM^tja`G1>$oP6=ML>re8WJ)rP8mKKeJ>}wbYUTj zOZi=bP9O*M-J?@lls<7h^6##3=KUXa4Xre$J69Umq!}sO;H`%hIE7(2t}bpa6k|w$ zN@}qcGzn^k&VLmoGc#sYJ-xhaV|$qb(BKlu>(IX!~w!(XMfr zy*4{Rm-gRjGXejawNiQtSpQ*#bFB}n0DA>m9?}P#ya5E5hhkAd^Ggg$MM8iqR!P&4 z^8JQc@SqK&3b%dwp9a2KAH?t=c`$4IzPV7CYJYK#zvJTVv;vTnp}jse9+F?oF|)R| zhE?_NZA8H$^Y!%wNrO4uNJuIKU9UB?@b{AsbF`_mMq6oz%qvsW3>}8dx20H!WaO>& zB$T6M`OwLAf;rls2xKTn9i5#aZksU8#MpRpZVpoAa#K?$r>3R=K7jw>;o!U<-+Wp5 z<;?)MXd=y_AivlLuIZ!9^0>UK)wL4yYvWo#iRf_2~g0lpFgko7q=4X@ZPxb zbvLCW2%a?xhOdF2j3}X!x`wTKAI2#ECb7Tuq9oD`EyMGMz)hUYv9~X2wwyf0{>nWq zolS;jz0X+Df8W0scX?qn)thMIXA-X6{~Ad(aW~p0sXxScY;v-(a7}znubVhNDX9*?Ut=g8O&8~O zpmo_2nlpy79uh@8J_#H`T?CW`2*@oboFfIM3+Q!JRTTcDyb9kz+7_Q`U61};BmAez zl&UZ>k_btWL>YD)!Cn0u3I(YBVG;;T@-@K!81v*sz;V>dK0j-}ZmW;hD-F|z?V8t( zZ!Bu*h_=Va$HBw)b8pW*fKHi3u*hZ->E+#T^SiVs#Eg7xrJ<_Y3!pd< zaJvtoK$E6|<-zyaoy;eloAbllz{Je^UR)XS(l>CMwbWl*P%k{FV&X>mJ$~GHFFD_m zO>O`nI3bIcvGGWH57;j%Mp&Rl-b-;;!8-9s{tNKPR6iJ%TO^wswqA@EWD^M?eQ$poZ;z_fB@lbl1tz zA+_|O{{7qZ?M)>@}PHtp^qftCzxEL1uIi}_g^5d05;&)uU~P| z(ceColD8LvMGkzR-aB)TK$ik)3H3%mnm|HT`0CXI0J&}Zp0ih&p@T$IpsfSB(&(Lp zqEZ9%%)~l*^rg>(x?Eb?26gL#Qe974(JLPVIRn66{}`}$&|YF<5r8yD6uY!bJCYpz zM4g@9sL_AW-ar=nJE?1}|?& z$^t=|F);e^@ouMoyaT^?23@H22Xqjlg%lIpgC^LD8BHD71Q}!y3IwvU~a+fU`;=rkMCX$ z*R{8w0qF*WwJ;yw#%S?}YU{TUsvlwyGG7yG6?-XO4)25!b%t$i;hXJt7+mG$EfQw9 zDD}4MvW(31KPwc_sMzGf8z?9Sp~H!#(VyxATpp$YGPb?71~J(*W*iD!=|dBU*-`4c zaYa&63oMM5!|)uc%$pM-Fy}YG9f%$fPPyNT2r3R$4XxQfJX~Rm805nC1g`-#1H&mA;zhaoSf1&^?MTk11s~_J5aEK`DlVbobGf$rZBgUJI7Pzt0pk-B?S4l@ zywnS|0M>%=cZ$g5X1}9Dqj_rggUw~Gja74I_54zYO_IFt&)Qy3Oq3F+}-`7Bh|b0wlqr%!F*c0A|yo%CKv6yois!>)$%-{y7Bh*h8R(W$c_tmBqlXB zsu~&u+>w%w_`gLJOiCZ|v)P)-^WSNgN{XgKrY$X8Oh}QJ3(a}BufXwlcPs6?I957) zE|zaoH?ozL=P10YCo}M!o&WotlD6%I!U#P zdxN!v0p&i2BH7osDWq@$WfjT)JDPZavTt;-BcYYPmol?f_$>u& z$fcs!&ReG@R_(mp%Udy;5O|4izW5>{pHDf1V5AetEQ;B1LrYOG+)cUapSoh>&UQ}ttAi{KGTIkd@`o^H6Dq2_O+M1z zN&)$Vmj1=L+!!VoY}E^VK{p+)XLD~XLCdNjgLUx}t}vT)i!}j@1RpjFZJ@B%TVdyS z#$lF8{bPmdjJDRP;I6USc0m4G`|o$KI!`fLjlnt8(F@;QTG$ zSnwg>2|m5RfUXyATZh28+Q&AfOXesP-ifNZI`j*)p<-gGsQ>gAlMc}GP z4w0z$>vrQmQLCM7n`KNQI=LL$CkE4GDjUDqHAhOf(HTo+ym!Ptj$Q^kcS{tMcz@S#+&zp9KelqUJcy&*1Ih zu83VWiNw1fb8;SW&whrJWV53w^Gv?TlvwY>^2#H1lV(N?K*$Re?cK#)U0tvM0oF39 z1wAzI;UFU&m|Kw)rS`C+8tbt!D}QdlUv;)}vXojTs7tvSOE8>F_?7=xPU7t9hw$)l zFsQ+7gVcn;iOaP0{?MPpA^$~N<%59}Dg)>>nX6YPpPujhP(p3;+S{2 ziBq7h=T?7q!rmfX;#!lqIhS~*oc#0p#zrvS3 zXwFY4pZ>Wlr~@{A##8`lAL{R~;SuaQz{EYC7YHDwd>9hjimWIS&~#Dgc**X<1V;+r zheumR8}*ACaDNfWaD3)J?qZwsyMJFuPR?AFK0G2ru4E`Txra?Exw6unM-hcgBlHpK z#w8t>52+32%+AV!OqOAIoF%2DKwgudzHX!***DBcS;M{rXzJ~xlm$VE%Y?)WVN^xuG z=;(k5b#Mt;TQ7nN030L;O-$ekK{7xf+?JPIF6|DIg`qMr_6ql{o9Y&TTBrUZdY4J0$sCKO$w!Lg>*wDeA}+Ir;12 z%*+f7kpQ5>8VpQrn0MWJyy}P_QKr=p4tt zSv_3*r5}^O5V;Vd9GMB&@-&Y=_N4;>PxLuVf`o>-f%&di% zqXZ8hA4Z2jY1NM}jLq*`^Kug#%|C?noClLpb@gzDE6p)-r>)1PQT526qK3zslqJdP zP9JS^JQBtR+1lE|ecrXVw#Mpl}XH8s=QN5_t9tk}skw?no zd3#QBdF1-K)U}tOE*c8BflhO9# zA#NNbaa;v;!}2paYwq^SFCUlU5*&(~LHGdd_RC{6=+r^w4Er1MJzHwHRJtrpzk?04 z6U9g%jl{75llbJK8*I0ozUu1lpeDk&z_PPRB`v{9WVnBRW=WAwLYYtPijyiT=#e3+ zVeF*REqR6`VvA!|Sui(#M-=}W{-*n9Zf7Nmr=yZ{G})Qg-cw$t-{@!eC|c5^xEncH zFUuGr12`P$eS&Y)F7DI^Jp282$qz&%V`DUj^}uc1!!3pt2udQ%3e3@QaS@Iu5ar5R zHLew18FTD^nuT3kCfU^;t(tid;oPdi7p1j4tfZr@-OWS`<_{Kc7}msA3oj(d$Kjm> zKt*360zsX(cJm`K-Xd}Afq>mqz3$9!7GupcC z_#;rikQuvNxeYVW780vfA9;kZ6Ys`m$&2#IAS37HSO=-s4_@vauxnfUpV)LGTV!3* zU2)vQ6vtwN^;d5ZWFvBfYZDXmN!;a+k+Jt@D1T#QMod?z%)X36#ke>PX_X)T*=RVI7a)w{PD-0Rm+fgv&twgq|tC3De-CfvWump8HFP;7>q8!0LSa_z3ze&|U7P zQLvhQgL0*_QvsGlUHZs2&MI6d*qJt{bfQh9-hH=@66UpZ-asH$5a(ksh` zN)XqU`8t7lv}BR+Zj7$hrZ3^IDdAzQvxr4%Q>UTE!^@LkDp`EAJyrAe-wT9+s_ScO zW_3gmwYdsHCx|RIjORw|?N`=PT@AgjPu#E~IDQppvvb|;9Z1I~rl*}6XMurR)Q64| zP$H1<@QXdygr)dSMXSqcPGs@ch%a*CMF0^m4!?AZgkLhj znzWSe$Q%4LpH%$p=5FZEcCzr1bX(GE%gW2&`HLj3fKg?iK3(SK?)~pIN=bqF-ZUu% zUM8rZLE2HVOf53ib-7&1e2L$pyJ4*<*(0z4;~xY&3djll{Qf{pP@audXzF0XD zA_;*G)*B{qLwYHM(qg-pky-6ZrmOF3FE+2s*u|ANzwPqVOr2eQ{jn>P1;``Tm))dc z=v5gUm{@{~&G%tQg#7AU5D30L=Yc z(AhW6-n@D9W&Z#`M&OfyRlt~l#!r<=;X*C3Wk};B(L~uA-g?gCHmPYzGL*;lzzKI* zioKutYmZ-sT7J=m1aZCTdaj{cALsltn{9lZeXY%pPrr;yT^)BuXkVN&JQurgi)&uICOEA;vso5$gyS}uQ_n-W|N|r@?KgZDb1_qNFPm7Zu8%=wZ>b_1G!a8 zzN^%3GF>dZyTZG3ZsyzEMbEe^D=%HHNi56_PZVD_r+Z*U)5nf|C$wW1WOasy5K~>XWUouHrnq~loZEH`Dp&ZoNC!MkH=B`~tk)$TN!-fqE*Ny| zQX=~7ac|iSmGPR0(S^&#L?bw8k?KXc>5L77lBT}WQL14PuHp+bGrhIM)=9sPs&((Q zU(I*Et$XCox&V)|_HhvMK?e`AKFK6rqB_qDwiVmOIXfGrj^w{}k{~tF@4pZ^$kbJk z%wk;zBvX00X0=DXWD6Sn(*2l8MHUw7AM)bOsnEglrzdpIQMzJmXvbg ztn-(fTG%9iBBD9BypJ4E`$8RXFEL6VTgWB1FYn_)&b^5gWu}#zGm4XmdGU*v(4d+0 z^6{awta(1FHdR|I9_Rs5jh2U+j$Yg*GWC$0*Tp$sO*K;6*a-UxofJ08ABtEcG78wi z*W;f@N6Xg6?YJwsr7kqB{KyNv^z~B|BX*L~BPMvjmC; z2Yh^8R;Mc!IOS1at%}zs964vmavM8MN+O#Tb;4MLp7LZk5iXw%zav9kxq4Oh+O@4U zVOmDR8Iwo9b}Y!r$w4MM-^wM~(jAV0p&Kv$sRT<0Oli_Y-cVB#dIIMpI6$!!(P>#( zasaaC<+0J7&|YxM=gY{+d8J?8M@pbf6EN;9C8$g<#rH*@*D{u})Fh!h+&xU<3Td2# z!yf5`!}G!`x3kGPh4v3fe`~caly}8Pc{3Psn<(Cp>6?6wR(v3eUzW6I+(n!6O#ZzC zGV0bDFzXVTCs!CwAFb3pOT;mmcpGcs5hfa1r|(Abj`w8qGcN>JKC>=YC3Kzl}z28A>@%z+(IVEW2G(la$hPiij6xB=lXHaa@wYLPr?h*QMlJiNf#+4;}u--lCO%PWMOWQs)1bT4c-adfm!y7BvodAjHFHARL~SRR(eP#TJi5Hzn0I`GrRE100BQfZger0D5e-k zupv^(6ncIIg}?{$Cg_L)D(f3yEMFA6dKJ>@u8D}mRtfT7DM(h}m46H8#L}Oc*;yOL`~8sGCITq~N- z1hEQNctF&Z#7mKIku1+(MCZ|cxG$unX&kOYgM(H{?1?{u4yq$xE?(BUl_QrPA9QJk zN3EYs_W{_8W@d=O_oNw35?+yijDKvBK{njojhzi5q~D<|Ck6NtHHv1~-^33k0&Ro` zlotpC#PF3j?tWoBihfS9X2mQ~uBcF&lpkI4j{l~$;p(z5W3t1r-ht{X8-z=UFSCZN zEoVUu`*=$H_gMy7eM|--pi01|7A_^mKc_;E@%ZygX91LGQCka`B8(N~;lbO6!!slr z#B*oCCf9L+X#6@mo2kV2WYRxI0kOpXp+GFNKPRzhXpHl?lKwp_MXo8LlwIKdaa3ZI zL49O(RKN~}I3FIBn5m1ZZ}EP-&~7Hju;>Rc4(J91w8NB-#k3~n-EO|)$bk4*@enw$ zXQrkQB0bVeLL|WpFeISc;CHlk5r-(QP%RbJsRl_|5*01|I|G=vXU%*VlARNvM-}~>$g6ID`=EK3W}CM0T1&XDllj_2xwpdL0zxB z`rer%613WlkeW5E9Q7RA9+bRL$d!@Uad2rq*#4?!h1$_mt_@KU($pnc5kMaPpzUq@b*l*9xa3@uXjlk7(ULvoW$ z@fUg}b-`3q(yq{iW#Vk};sx$gd(Yo@BcHdeOXij&NJ0O$3AJ4m)<>evxXuAEu)!-k zupKe10b6p2n>0qr7!=e(qDaGDj;5zotJ`q##TEn|=mtddlrf#KEDGPcc@tvwFMl#; zzfP%d2?|-wB%c2N{Dksb3R)mqgH$SwEo8eEeXDwa)3B~GU*$51_p^>da0CM%E+|;p zaZGWD0tg7Q*+eBIl4dFM6Oh&VnYwc@Z5*gC9DMv}J}xdUNfHP}wg%8NI0cWbdKBai z)d~hZ1Aym&IWPKvl8TBk?3H=*63`eXP6++VarjnhpoNH72eBQ8S0i-Nf z>-U&kh_@=f!mh#zv&zo=AvN%iS^>10P~w5|639cCnE`4<;4E+qCAH;l8 zD?q%#I()Ec?}gaTVX#N#l{PdS0Z0bC5De(;OMx`0pnOPI0*qG>g%+hp*?a)30MrUT z?(SVX)t9-*@6+7wvm8t~B<|-PO96tNqmMBVwq-)B(h|#v`ag6&F#HV8DM;TVPG-9Y zBEH<~k6+Je$3#|lfxrPcK$oxWry$*jplrZDV6=Mv2x$M9djUsV(`>v#>ZEe zmp!*KN`G6B?F)>Qg7cz)sK=uGnm}-6K3U-cqr_U?i zMjGr}$P0;Zhk`Jo0|4OE`6e1QzWw;Y3bPL(g6b#GJOB)1c{OJ#xBm}EO1X#r@^oA!yO(IEse0(Yl zD6dnnUPa#oErmek3oShw$##<%=*mf<1jUce4k}=PY z;smy?sIC6-aoRZ&7_9mjlJq5KAXovFBm3~7x{$!tj&JSZp z(KKQc2rk&d33P$<<`eEh$}?|1qmY2mM_tUsAJ`4T!@|x+gy@x;aEGz-49g9n#|G3u zRV*}>jtSOldrZtN7(ZCS3xW|5JYodFP)AuMDd}=X6a?ESiIUr1a(MV7?$mQV_HJF_ zRln<*o*lVMZazM6%Xl-7Pcd&65%FnJ3J*~%@kJ5P!dBcZKgB(#ofX}32b;3nQV-#* zF)ZHSpc;nPH0I>IqF@SYJD{W?EtKiA{~o!$J!nMq&##{wzaOxvmjn$GQg9da8UY@b z<+$6QzAMn;54dj&L5B|Us@JNXv1wIdN<4TkW`P`sMTfCF0E-D*5+q&bT=PaUsfA*I zEbsmA(-QVQaNNNRqtAf0&&{Db=Km8(S7diA@ig`8N1x<^UBa*T;h}HGMw89Xj&+cT?>?@7s+y z`{Ff+%CZNk3wc_rxspl!kig({6DYo_m?D?jWcYtE!2kMP5MTl@(fIc5O8+tSqo?~T zk!G+Z8fq9C8rcW()dJ}?W=3kHO_T!MGL%unH-hpK95ED%0= zp?RY=u!+I-#JTTl)KqCv)Yj6!95wTSjHddvWV1`nx@WeV%$$$a8s8#U1w#za$nBn9 zG`>>S>o-FtxcVlyr;Ypi2*l6>!wyktg|sHDFwCJo6(+`xHUd3dAqbGP*DDUiRTY~{ z{y88Rbh>wsQ;<3kEu=O}J-+_=^JjRugrpH`3vi3^$(Y&x^Jkef_Qg>@!NC1urk$#@ zZFqkEC0Ym|-NziijqL2jn$5LMVbAS{Kb!ON_J#!Qc&RH`@T=;bIEabt#naEu0$893 zoi@f!d-mna7qBEJr4TBh=#qvUU}Nh5B`+NLsVOPF*I5t;pWq24r_jv)^9>(XVd}>) zoUKz+8YuYNpdy7zkS-pFO)$FOP8_OgnCN5z!G!kgfilC4qhG#!#Lh&(HO&}T@XXcS z)dBaiDWMhF1DHK`xS>Zkh53tmDA*f;mI1^o5sf2?51k$CUA9=7fm%F;oKFXortiOo z6AZT9mX-`N>`vzRl*oLv)_U*tgv7$Dg-=#Nl>!eKt?H_Y<$U9@Y@=~0OIhqzRn_-f zGsX}2zAej}J!KjH+R*BLLf6sp)Y{Huva4gj;`Y=X-_PC6&A{G1G;ZcSx@#i6{r&>o z*%zYAUdG3lKmU;UcI&h>diUMoW&AT)*sCzP?a(UEQFm2Ep|{+UpTIw`4G3SpY}w|! z*V7YH0FldDvxD&8Vq#+}oaH!EvQc&xxxP(VO3Lf)Coz`(%S6aWYNnpon4`<-AJ{PV|;W!tP_ z_KnxrdC8Ij=dAR#t=mrw3;QM`|2Uqt4Dh_R=_Q&UE3p>-Nj2t(8@L*+`ux(@R}H3{ zcNj&Fo_I8CdBym=Ou>IOe`z3v6cs)-c$&FYcwNtKXwP=U`{(l1xab-B{>Ps#)=rBh zSSQyoI|qJ88BTQy*N$m2#~TJ&_YY{{@2_`f{Jyz*&RzQ@AkIff!WNk^?Xa{j#QqR zp;DQ~ux>`?HNkI?5_un0!C~m&m{n53({PU`qjdCZ@SS%6PC|Tmxt{W-N2Orxqo3X5 zHrz3N=CyW_*Yng+g?%G|Ev&2O}f4NbTUE5{U#r=|a(u6xTe^?Z5$XG7(} zmU+x8UyVnPzjU*_`b+xzMwo_9$FrMHCx!Q^_h;vyoRS5IEtr{yevdPq+IX-SkbAZe zdO$eHzAtcckC-^;ee>6$Dm#wLbyJ}UzgW}N>{d+A6?#v!a^aJMFE$Ha%(*`Hok%wJ zC}D%3kNmECW8|Y|C){GI!hsXF2+O1ojJ0p-tQMvaA+N8d>cblVZSyZE;#zu^6q?c0 z-nygwPsi1bVZoVw*(~g{bc!_$x6ZnTYe zFt*NRw_0Xrw^r%j5i%=YjOrZw6{@)S>CWE);5+I%;Y^4eU3?+i_-jw+#3lATI@{Zm za{BdPOJwwl>*D(dTDQGj5*~hSi3`YRJ(`X^Q@5QpX>3#f=@szj)1LtSuT`^Wb|-3A zXW#E!Hqw2pa!J5QcfITxM_*2F?YRA$6jtXE^(V!L^--$Z*UX&QqvUWKwZ{x7T?R`b?1%4^+-tq>e5lVoLJ&@;-* z@oDaB#BUrxW{)ef8ZmC(uH=KiJKn7J`H7U^-!g0Og4_3AUu)FxeoA9;=SAu5sVCms zzzKlZ?nApc)_Wv^aG?VC;RDrR%X`Nuk+BcHX8dVaavM*^Z80L=`ff8ap*36F;-SGR ze0N^m_~LYoXjMWAf~v3Aa;4|Vx2LN!^Ua}o_uPZNjb7<~vKp7Qzm)mJ9y>k-fe3-` z`+t0~7iX}ypQ}S4^1STpOs~Lq;QYUR@2W?0Qz-(WpvftSg&_FgP)KP}m3xwf~IiN|4Qb^ z=*JwI3Mgy^4t_yz^J*)_IciPpS}Ft;f2um_j1GP-{mbx8uWLJ|Cs*uNUEx5)5Z(V@U$8wMxqre&1dgi0huT%fd`Rp6n=h-D-zP^N6pGTQ>ZNO(p0oBb;OI+b z`)DVS5|PiI=a+~g%E#<6R0JK#r7GAAlRv#FhD4DIKMO_L^PaZRGc@?8h5${$@{xy7eFj7@OrdxL4_ zr!ixtM?&z@Walw0_Z6h$I?K3UubfwY_nmS6&6Q76x>DMI-%#IBA05+Hq{esK8TX*9 z=1CRAL%F8Tqt^1E`s|J71n=RMd=S{dx?ebacY2UW320!{Y zI&-tR+8VUW_31tCQ|_ln{`<4MFmWwyms(nqEd1_T?kJ|UuG4n(DMc|WM;*qrhji!{ z>tXM?%V5hRCrfQ8GunhyBS_s|bUdO4Xh5$uPHIV7NBm!@`M0F-^2|C_KVM&0Kht>2 zQUhjesyR>=KNI|?{U4adnvnim)c#*|_Xe!0O_x0pW@M=YpckcF^Z#$_Ch&jZ{-0(1 zpLFBOnp0FS1+nI&0Pq-RA6aDoamV|AkE|=SDNa(-f(P+JkR}cC zQT4@Hl13YI-U|IE;{PP*|3jkx===ZA(LTcykDhhEM0mA=b_zm@00H!Tgn!$7 zXHur(0Qo@)wVjQJ%-+_S2l#?-{q7 z&+gL`E_&0?%X2`I@WpxngZ*6Qf%UwsdiLY(xEAvuZF$@wlpLk26e7+nsZ3zLyYK+N z4sI>;sFN}S9u4dOS8-t!qFJr5gYrXnvW`Fak>kcL7&gg0aCsIrjFC@>(O_uRI0C19 z27)RmS^I;;g6hSlP_L&k%u#a=uspGhv1emx26Mc-g^wZtd9z?Qq=`Sfr*kfBCS4zw*IW*jT-rxtrOdl?e$f#BAA@G1Q> z49%TBNcavCpi1wl&?AHHf%5Tp?;9%sggOM0;V7WNqhc~goQOu9jQxUvL+jpxKz7!d z$6FNlqweJz2(`mnm^gY(ba8CL2=~TBZ3PBDj))DvMW=i7I6RC2^h8i=Ir!JIN06Y2 zLy{%U-F?#* zv}EGY!N0Djqjw`&Obcwc%wohhVvdCaB;Je-Jn7UZer6tb7`z_sf*iBLedrMUOsOTb z8XeX=0b?435&}0S^#qIpL}(8DY;w8q*zb_ikm%ut!u{BRjP>nW*!v6;Zn3_6LR9<@ z@F*cpeNXq{YZZX0A_b1bOvoi5TL7RUM2P-Um@tKy<=F`^vll2tPtnTAPRq*DTA;8v zx6Xo(%=PufTUp2yV`VCqt1z47WmrmE{7!?-kqQv^Ut9MXRsp1h_RljYU~h3jc0>m7 zGhy(6!Dc6Ov~lwC1V|8FVjKKq4FS;D(pbVUcw*qF!AFrJNx0(-5DLIDr@vCW!TP?!?(I2*mj%>HYL5%H`xifo@9A^mC&Y)3}QQxoXVpDhAJ!>Fs~aA|FCK=5^_Yy3N=X~ukL zv|~rJQRBJmY^Y+Az9IeB>8h)$m9zX=xC9QhoYNY+Q~VkuM%IHC4lsH`3#PCtb!+TJ zd*Lz)b&}IfHtM(shfOz!)_f6lZX2*9$XKn3(HkyO)BR&w4DMLNTQj|ofy&f8!w?DN zZjh8NUsrZ@){Wa(SqkoXb~Ov{ffut(qJXLF?ZNQ)a`-yNGSj5W5h6Y|ENHYovpcgj z!RT(d2)^dgsWNQsvFuNGH&9akeGqRwYHRVuiE!Y|h2luYVY@4N&xUMIXXVdobe}|V zrQkK%Mny#t9t6rnN%@{b5fkS&&6<@QCahn*TmjEoO#%9^L@t89P-^38ztb+u*^WSb zmd)W_;&3WghfenNd;eIuf%z+v*;NValRWiadIk+Wwl0lKmNRw~to+C_Bh^F$XXwj__m5 zg(oZEE%+cqmhT8}MOZvF^+eNTIM9Nr%LRP!E_uSE6SK#za@P~Z6o z-a?nEHn93$fWB#;CyQIFbmuS~YfWqZJz*yE=cBr=g5i3{YWrT&Z)|R=U{gD>ZKDf( zClef3fn_&sWm?!NGD?G2W|f~Ffc6dR+i!9^n(1IuE2RdhI%=;*a0dz?KGA1wDy=cy zfG8Or4@ULUrNAQ`L`y#wF^5zy2_11b8qX7k@;z>(#to z*i*wTmWtfmQnaMEdH4D~TQMmS(q*@L&m5N$J^S-_Or8AMXF6c`igbENTRK_(0+TeT zp@Q1CWo5e|u;l9du5*HK2_|3z>vrl3WI1T~{nR9=*7I|7@HO_NC?690v;GwVNCEjG z{`o^$`GGD1tPu)3{8xc{dL|~rq5V`fYw3s2*k{2AVr%?Qx$Sf`S&jByTe(LWo{10l zQxT+&RVS9_CaseMRAJvWx2Oy@B*Mps9|S?PbHA-gD-0?ue^{R_|Ia1^8Zr>QS_mAv zDM)0ASoPh;z!u_jh?d$#+uStiO^^zwRJGS_uCfl#U}Nn1dM~|}<#=y$B8+FpX|$P2 z1q%La@OyHp_u^v6 z!g_K1qgx!08V4abv7Qap+S?<-dzAW)yv&WeN1Nfo7XMN13s?uvrzcu%1(i-hRpbt1fsT< zS`&a*3k?4leDP3}Q14KZP!%xHP=HVvf=-a|sQxOTyfkWII0ZWN@JD~9yp}GQaZeO~ zT|QngU@&)lWyq}~hR0{qIUrV3%r(pq|7m22-IM@Ds5Rukrj-rCPuPY#1Fs|7%tQdNiq^O?xOn%y-iFVaz_ToM<$Jez{Z<6tzFX*ojY8jMHNXajqK7MlJK{C zV|t6{4J!fB=Ba22QL^ORkSTpVs8a3~Br29>l+tO_oLazf>L+zEXwI0vJN8(=FR&Ww zP5(_HuMW>5uhnXA8ueCei00oL*&uCkmYt9)6E1(v6$7@ZA4b!*u0LLR=z*=(9t7pdCNT1fvS+sEU9l@{!9d$q($rN`mH~ z%2D**F&-(=8Kw7qfHJC7Pu2yo6I^hgc<&?&$?I0c74LH`p{v#2sn3vDm7~~Hu!}5B z46PiIhl_=f#~Pelx8G(9DIm&@$IaRW>YM;p%Z*HX8eqV)n+>E3(- zx9wE8mjvPznS9XMO`AGAlzhVGBHj4 z!1YkxceYEYVxYaA)gRHv5yq<5+aN02?lM`9dM6%xrGIz#_*>O#$NJXN?#sF3%*{_v zj_P#8dn(g%GrT`kEEOdsEhY7C?yHQ&;qkX}+wJ5({z)?1?%ZvBr0Q#Aek@gtrjnC> zTh0%FKAukdob_umo0E~r$upF|=G=D+#+tUaAL?uiOZ^jzJba?PbGYI*!&=i!YwKLJ1G~Dl(AHL zChNVaDmpoeNl)%{?Np_o%20iL1{=MpBFe0}@kGgnwh~)MTVGvW+pm3J3V1_xXDp*o ztERQZvn|u3V3Q}O#g+bcj?1S&*j+U9hOl-1!oIZwHqHX|1`w}x^!laAYcpN_^2`Lc zfVpGx6#9&doh}pWFs5X0fMh2EZ_ztHy@L+NjQ!&*jk6kz8H2pPZDfu!eH?=wQkH>< zb0i_O23w3F4;*M)cYB*pzjSqTXJ>?0>(ZrhcztVW$yyJ2m9;gj^%3sjL2e&;TgVN| zQ^7n`fB@EkBNh0t49p{V4x<2BAuJ-cJeE5RN1!la0hi%8ZL(wlK_&!h)B`fJ{b4B8^bL{i`lL7n`Y8!7D;G!IYUb z6v)c43noa+RHOj;TXKI7Y!&oAZ_e!V*zuC_z79>9tlRz(zve77uc}I~&0|G&j21O3Ioe7b3jP99$rQJu-%A6liHC-a0A;Z%PA4ze9G!FizJACjCn#H|S#<%dm*%~nF?vecysHy~9 z5{%1!hAwWmOl^p(dB%E9c4Ejf4~BgSX#eU7Ov8mkpe1?>2eDWeLV4rOS&x=&!gv*v zjl>s|4Mw#O%mGK2tJC5e**X{wf6yFpEqllP?9YLOm_i3-9M++F$PBy&H{uajbS+W- z_{(dE!-Bh*K1M!&xWF`kf^LD`HWVxc%k?gRE);}BZ>(N~x4w)=44e*;hq+HTMyoAj zpmy+MhG9kz!*aD+$1G9i6T2@VPFn)nJ_Q8URu>q!PKX)e@YGh;&EJ&}UbH?h13mcN zcC)Pt1DlwchpI7f#CNST4i-rA9-h{%X7~Zi#p>`*V6K-7tif~>PP8s!1Qrvb1K11J zda3B0t5g;0O+&#;;BLax4O_@&Q6c%aPXX!jUj0-NfXzJYFW#v4WTTGzr+2T8FBSqw{!MGazsc1+nTUI@og^4Twb6Ts z#WD>B#6US~z0cWDYzpr5M#1zVUABUSTwh$w&kRk7r;WlWhj*%wr*|zs6anTtoM#U8&PEd!Jzr*gyuBsj+hCu}!hu#e7GCgTi55On#Q(-u#(d1%8 zQT}j5Ky(zJRwl?Mj3S~05a{duf(V+bB#J|0uIoS|f(f#SChc3#*EKge7q6!O@v_`< z+H>9Z%&oa;y(lmJX_fr-OLOILrbr^S)!^Ul+IjwGit%0Js`FUn5+vLTqz#*7$6)Pt zMtHTbv2ergnc}~@ad$qM#|g_m*wELlheD7FzvbHtzLw*3S483c%9OrvFgLxNlbXNN;TMUQ!C^8Oa_U+um#W^asdoQ`(!VvrEe|!tXQ$f)LC5TjP^zt^q4; z+BosK4S7jDrSMzk-BSjl!MQ|!IG_Z`zfCD((IG3`8COJg&R3uK$s{|FmgBBC;2A%W zL+q3^kK7NHXzLPb{(!Q|Fi$%9pKFiG5xG)askP-Vw%o0!UAQ9ul7)C!I?EK)NK%FdRxjBBe zgD?HAkyvK%dlu^%K+UnSIEsyJAM+yWsyM?X$7CK`;yz46pz%`dvTN7Z8uOX+d{jf8 zmjkIZC{32rloy0cf)+*KNUyP*!v3b>ZPTMb#mdXX8xH>X|r zeaHo5{+EV=c}U2}!=|##G(bx&2gMVofGe#r{rC3`P;(J}=NDf3l}yp<9$1m7%%1*` zt5`jwQ2|sWYxxN&x{@w2Y}F?gtA6<*q%9$Jzntm<#d3YiszL~-Z}nO5I~iHq$&5(= zfSfXp*R-pRkbrFHS9eV9b_=8W6@V3)1`u~zK?R7MLs9>zs{yx}z_4rl6ycHkkb~g4 z*2P+Sv^z8R`rABnf7II%-j3JAY^T0!MUiz$w-W`oTfVH=Hzd9!j4ilrcXm?PMK#ms zg|r5L^)N|g;9{N`scxxM@*elmk7bsOQtYrjtksGs{Cxx<;dJ9!j_-5j=4ksnA2p4W5eLqWU`n@g z`~c)}a_vb|=ZU-^%gJxlz%>?}jPFu|J7B#MeSyTU!3yW7f$E>Q6aj-j?XM@d>&q8UF;UX)bUoePBLjoUaHJ2aGZH!pdqp^UClOy zAs2wK_Etig!AW%zmS=kYCt6~H?@kKJDo#j>dq!{OO*JUWkrQ`NrHxB{7F!MDp3~Da zblpgohhFA^*52la3~hcWA*AEil0YVe_l%BJOLr5s^hm;u?+96*(08oBxUDuzR=O zw$NW@cVX*?r|BeRvy;-pmbW3JQ-=*4pW7>33wg_VTr9GRI?e4pVk6o_+2d;(bGRt8 zs;~$}$@R|jBuI?wOGaZvIf9mWO8-2Wi@TE;eiXyjtQw1k12+6YB_GI{D&*@B*kv=e)%@SOfvIR( ztR>%w7?@G98CR#M3CXufDoEQ>s8P*HUpAI2v&29PwBE_{fJdU)S2el)0|AKz)KyE= zm>Cgn?rlKIfV_>vve-oR1UbmXHB?C}*UyqMDIrWJzkt@+8;{I*Z%tn!U@vSr74{BR z&6U4mrEoJ6xKAV3+h6H~8Hy%dIRVBR8S)cmRa4G{LN}9E3;Ac3UuaM>7dOPX5y$zD z-&zJ8S|Ot=lJ}bE{b$Qcjh_^^un0yR4UW(nBo!NVVmwFFI%2m&b?E{9!4h5ZUa146 zEP~F8@CeG39xZ!N;Z0fa;xOJz2^T@h6-_RYi*tzyrGs837NEO~V^e}y2g+f)hcR;l zqf|KZ=Vm1NdIQHOL2Zg`$F_*X`m$ajYNEM4@PF(DB8Pe|Eb@Ast_;z=9Ah_T`29V^ zw0Ki@jS0mt@<8|lP9CL(dnIchO3NCkqZLaN6;`H5OiPql zlYhyhienWqM2Eyg025?UuuKpU!BMspbQBO2<7JBgH9^2k)j<>mK(#?k{7E??6yyG?!IORihJsUY6k#^+OG^5Y_rY~(K&dTEY**Bh^D%)S0)_? zXGifd?5h;{_D;a)H(r>=M|n9ly2eqg8fzOtQ?xtzDGp(^JsaTPpc_426(Dpya#jpk z>z+fT3>sWBSEktRLRn09y$1*@rh@zv25$6!UjOh;Zm8|n>lo1e>xZJ#$dSc)jg#Iq zT}GUiE%b*mUff?PY6*;YH*$ZVRK0s=Rli~W2vAcp_HtNWz$^wvH}?b^zj~&qW%TK( zJf=%mzY>-l&Mnf>a3_&IGkhI$ zOML3id^2X7&nAnP|HeZdw6XRTPZwA3(ZhtLl3Ht!QFPhx!}j1>9F?^lgRX>Q4v~8v z%4yk?U)HP=m<-=b6ZKZeSOPTK?qAB(SL_!2;nX2YLwtEo-tjXY`;3pXZizF#noJCe z!hOCs!%oNMwSfn!s|AhYUG{uG|4arlEd0p+egWlPlS>P9S0j#&QF$sQppZjB?CEjU zH5AQPw`SIS%yKJ_xrLX5bKS`!>eD36EnN5r@$tblejEvt)6$&*ZRWA=^$Keh(cRhB z1Se^Av9!HH2OTgIYm@t5_tV*@<)Ba`jX{Nxseb09j$P#W`HLzo?~muxC2|$y>t4GP zCCj>HCCVWvr?Fl?ojfcb~k{NErQsPMX4#d)Ni|9#Y26& zYuh`?AZr@B^08zu&Z6d0mqL0p8y?UtM42`$SH>YzetxdtipO!sw9^(w?-k@Hy>?z9 z1~D3yWeQA|84z=HuUnuZl&zK_y-z#>t@GU`L8s%nR7xEBL*b2r($n9c+R^HgrC2?m zQEvokPP|OLE!s(aX>Fp6i$Ctz7WBLf0m*>xSN&`N7nawcCqIKM7*BqO_1mW^yVEwX zIsoIDd;dr9i{FRKk)|$M_;)@n9zLxR|NEBNd|K8NCmOSG*azNYyfie8VPrVzfOAST zhe9U`bs0kci*+$0t2)CqHWQ8&S^fSeFV83j&eue9m7Hqes_DAoE?=t_bTg-+l`yWq z>2#%ed|9|!g&a-PZRSp%T1N26#p)sVwkRy_ZD`6_)N#!4;^+lzP@?WS0LP1!D zy5(=pGgpeC4n&XM{S`=N2f@PL&=#hbwG`Y}p=bX#0b#zoT%Y>5ef8PIiFeE)J!VF; zMfl~W_~FWz98h;KHJxj|19Mp^gtce*0SR}qQKf`TlOij*lBo0$()cq)Jq_2R;YD~)3dIz# ziRdP#EqE&B3~5Vu-;UPns~LArb5bNUtL5;5AeCe$eqJ?KvGHt20?$ffsFm^rt+)aBOC7rTrn?;-==%a2U zVX}9_pq((H5;dVR-;QSaX5b|5pUmR(AYr+9Z|imVcT`kQcZLcRrmb*Rks_Lt=i`lb zM#}pyaH*!Ckh?@$K&J{M;c>2_;A>z!Onz3WF40fbLn~K;E$Tx^9_Ixf)f3$1E_s!9 zCm}7kfZ}PlHcJt;J6>a@#i=9U!91&N;8bNa`Y`ck+P^FPfMi|zgGk52a6qrOqDbha51?n0;9VFjqy#hP zEFtz=A_q(hX7@A$M)z4JvS2HS2F8@2I^D_P9d>oXWxGuqcGT3o^yj4!3hq_(Ro<{#77_TI!dFw3=ocM6x3mVn$MGr3%neDUY2I0H>^xoRCRGpoREHG9$VE|rm1quDtWYmRP2W=Tl7SR=hX zb})@b7>F!C46vy-+}KHRDWu^m%!IQCy^65cIb*Q&Adzbe2?ox7owj%XFq@Z3)*k(? zJ~J|dTYy6isI%hnI;{m-G`jBQlfNC!5Pw~D$@7RUmkxGzp^gSI!Pj94sjU&4J8*U# zwDl9Nk+mSYhrCTWO_(*Q%(0*6<4+*Y#5V|^6aN!dYOR7<<}CAPk6xAZt7LY9`0@i= z?zYbtwGI1ipPoHA8~X11vjn1YBLc!A&K(MeJk_E?T7Gc-qnm|svZT-sg`m_O>i|_` zB*j3(CdqLNrq0E~EWAu^&A_C)DPw^@hs4pT)mIsic8sifFlo zm347hOP7_IS8ba9QGP0yVR_l6`42TgX5{o)+x|)u7ge=tQ;_tZO(My$9zhKtumA%Q z&1gW8cpvc=0uq{WFETPcRm8qh|RcIrk0 z(uy!gkkFwx)S|;!3i?iTPCJgLJH`ryy(kP1`%NG7=U~BIj`bg3v{u|3N|{&1qjoJn?g5cRbY8EgH!qNwKTPM&X1v9A zIIEPYcDK9W!m(W zgUh>!j&F0U5Elk%J2c^9#5KV2PwPS|x296=tM0R_zclYBu)QDE$0NG)x? zD}UR94fLNDimUU!a`nSF8upiB&x#%NQ%GEn0&6xTT0)Z7?ZlZcF~+CeN@wQxlL!M^ z5+NfwkWbiq_WA8 z{`zX=haL@rZx5_nr%Z|a$~`&SIi@X_=*yN9Jycivt%4N;f8L^&rL3M|_$!~?fu|D3tk#(JHK zL4QXXR2~ssnnW04A48qMY4E`HQs73MInLGCTRSz)1WfRoPI!f|Hr(zP!bvd6^Wgv}8(8L(gzU6CWeSGib+vw&8~9;x_ZTLrJ>6x@bV- zhNd-jHI*B`^A8pNvMPILCO-d*hxe?{jyZ0%jZIH%YIZhnZHHIb=SOHLxjETLN$J-i zbN_08F+jF^_%>E}mWzgqp#wf+pe;};ZWKI3ocJ+NPUJ7BGbm3)bXX#) z1FD33)uKk#KAwTXN#D&dUB6Esco>NRh<)fA#MS7WIz&%@2wh~q0#z=Q7Xl=j7}n^h zV?Y}pQ-u4-{Gx&1-T|w7JOLOrO5kLC$|HjIuHQk10$cQowEqH!5a|q?f+Pu5aqt(W z-+*E0I5i?wtwazome&f&ehGAuKvZP zBU@Vw`}>Suwf2gN3EgDZ)M*_fRt;FRYS~Kml=3Ptr-T)2r!(nE+R)ErxXNl7<5rb3 z6<6*0{(^=yS}K>68l6HmY*n)E^`hqVXtwP9A+uF=OaM{4WsB#IPqCPpqDBnpsAzX#TWmP_Jedn%T7k_x@Pw}qWXfdK`vAepv3} zJW0aa3IgSN1JL7R5jTvO7~l4`Eee%FNvj?<`#Wvf z(8tMLl?-MaGj7#V?jn}GY`}!Q1ol_5mbFX`ts;xZbzAq0YrIo>5i$30%Nj`!;zhz^BsaYQRq>8vjN+QavuYD@-n{B#d>V4ugO99aDc; z9M1@2J?7By9xT%?vo4ovQ@rnvmmsM4G}N$Qv*BE4PdsuWwDe1Boay>1*e}>g&2$K@ zm^NpqvGV$!w2xxV+ zMN;N@fMzZ-aHbFMOGX_;;{0}*afn(jj`w@LcV%pN4yI(7eM*AkC+OX(@>h{JY8I8Pa2; z@27}|r2FXF&-xBjtMe!rT^%~Je3mvsO zavBY_$whau2;Lu3jQ5DUU+f#w_N?*ItJn}{5>9)R7J2Af;7w4OUjvAQr zoAi;Q15;hI;34uAdrQ}&tx~?5Eq?yduyZZ0IXr;R#XXX4W6O@NSOn-vQ!Q*)b3QPNwIl@TyD#TO?7YZH2kC%{KNX9}gjyP3#}5Wxee~ z)yPTds&9S2s6H06`DvN?10jPcBBMR>3MTOQ+bxYQ#|p3`vPgH`$6 zP-fr+U(E>=yzsN|#QJ)lV?30_H)aBYvjAhgBi$|UVr2~+B_xuw_V6|UM8MJW=lVNC zUYWSa(uM5pb$p>?1`cYd-SK*gj858gnHJst`_4PSszT_iuDDu7e;$_l>SFGB*b?`n z&rLeu^+2o5JUu_LSV%eVSvV?Bbk2%M5(>KfNTtv_icy3p9Q+LqGsuWQJTgL8w)$@p z8$&y-t_4~_5qJyj8JhPWt-pJ`>j+VxUXjwCWnHmP_0+VhQwa*eRP^Giq*$sdv=t(# zvch-b2qzS1#IeW-MVvwcIR3Wsb1|EVm{!4kwBQcYN-#FWsC7SAAFTeP*s#cB2!&f| z#GNg3?>qNJ!huh@d3C{sOeG9Nf`WbwH_ zcy#R;^5aWmLH<+V9TD^Kz8W_CbtmAtfd>KZC*Yu9;YErJO$x_SOQH~JEv}EVmBG>m z-H|#W`NmsbbqxrO-d!Vgch#!gV|NtHK7Mn_@<696Jl}G~F$`vnW`U_e+}`y3S$|1z%m(!9;Wc?1>f7S^B2aIsj^?B2VUujysP?*(oI`AT)^v z<^st8jGGe|SQG>o3_f%xNzD+W2!!1UJ`K&9o6Eg|FjK37N#nzM@wMkwQmVz7dfw7R z!{uS-VELqa8lT3DWM4aVG-sJw$F(&2oi5K&5y7&epl!4_o%IR5K6qwCI;-vKuoX1 z3E{qK+7YA<0!gG`WZPX*T|q8z&;JuMxASqrO0m&F#dV1$#N4_3i>zl_@1m=^WLI~{ z5~O7Tip1}|06&E8eFtcC7Of?OslsL?OSMgD}#*I=NwiA2_5-xAP~o0>DJsY@h<(%Q$vr9GT7p%fxP1Oca} z%!H}Z%=sHOw}pxMcpj&(_l<4i+aUK^UFLHl$@_Z7oQaRWaQkiXdAnK`n!4k4Swl#? zolfL;HfcYB?p9Wr)s2g{*lq@u0~`!B4>|%T5j`RK0udFCjG*=ws`WS0JD$D-?M?WO zlMFs#0VNVM3g9e3_ZI@l>8wjhczTm8Cf&CDvN3<7yJo)w&(8BXu5jVI4>RP*Wj+)g zIk$@$*Axrs+*!++IJ26zz9Q74tOUbSO-@>hwBADMQZgKf?r%#f{tMeZAj5C;P^ekE z9iZ%uk`IpN^exL_%y{t_M^dxFbDQ}t_%^!@s$7P#JM&$5U%cnCx4tt|iY?gq-W#R0 z-cbmqtgN;1(K56gSx>yy>;%+xgBaa|1danVAeLtg(2&({uM8XoX2Q6vyR*3``kd-j zhQP#wZ62o>pbu7-=9EEoU*@1qq!cEXrKK+#@yZn#P}nG<3|@M8np&5z#Jd9J?lp)H z>h84uHnaU>I7tNOHW8-=Nl!%#I=FW~2V(a>H_CrvSJBcirfL&qTKZ3YfK5r*rdT46CE>!kg6Pc&8iuh3 zDK7qPA&4m#cVj{cY^ zjiI3GvoQrQOfS^DwXm2EWjQq^Y+^!OUSbYh%?4fIP^CJjK7!44FNZ^3NZ^nSYcpD9 zM(RaU+;iPwH!Ic8Bm

      8S2i^Jital@(AlDoZDGIlV}B()F+CnDlLt1BATvf$Czp@ zGdun@CBsuXr4yiXFY%Nqx2IjGgCJ&-GB`ufMh(fTi0{o}Yl`Oy^>N{|y_~8`f{$ ziWh{QRyh&G9fZbfVl~n}@%*`Ax*6iIN7D)PzK40xYm=ITyiOHO8_5I4j-a?o7E8Ue zp%PY3(#_>n0>^n8Nl78F&_m^fdSw8mW9ly-^ZC7D_)f^P_ z6RB^GUgWnF}6%--dy$B8RjU>0wF~cwM2e^CC%~^Mm6868?V8R!K7fHIZmk z(ZK+~ISR0cQPcstE|F0($ElNqEdWZ!rB4^I?2z1~t$rxMELwuuvf^S>v>0W@lUW}w zQfNio70Oqil(53MpV#mo$R`9mZ~1=@)Aiv5;wVyv8^_(odc zl%%Qk2xU)3KwPCImQ)uF2V*5OG^wLFIHpiVzsk_}t#2c=6BH3CK~P2OxkLf>01IId zh~P120T3<^O=kUs3W*L2dLm2Qu?q_bx5p(QbV&u|mMGg=!)$6!@!oBIzml#d$zVy- z#%E9l0VO%GW`3N`3Dqs11Ghy1Xgk0#%LNUU5Y?4#)Y1x}KN(MiCJzAFZ*qL86&| z*v@=@9FkdK$ui6wtT4w4JCpfSYQG4M26&$@Xek#xpM4!8+iE=P)b?`Ocg6&rv^-Y# zi#H>HKKrvjJ-%&el#IOaY>Zfs!2c);<`V#;iniR%V|R4Q~x>P`|>Yq``df+}2fE}8uPWuSVxEBWWj zrB{=-XJ3wzM6X+O|7S50TAA$YkjR%XX;OJy>%uSbH?$+VgRz&G3-qWTRk09q@e>pM zLa6+B=+mo&A!K19lehyVq=*Yu)`qsAAn{%|r*A9iC0PrSVC;LZa_ z+FK9yboci3^!FYwMRzBE`0FuC&Q-(PWNJ{Z?9il`*wXzUG3(&y2f`K8h3Bp zwQt{nwuAdy4Io*3-yKRs})_Iuyh)OU6Kv(d2$m$+WWyZ2w^c(+9=z12g?(|)YWm{cfNJF^Z7r&)4q4ud2iS~T@I=_W>Dc1UD2_J z^h86L{_c3v_0)2k#A{!P;y8*vzGu$42vM~RU>}oZQ6@?)3rMvL&Dc!nna29z*@n0J zIYavyoHhn2M^9Rr1*o?eGr6dQ3qv!1Fm^InziY4yZ?iI2i(-q7;!hX^naA677+l)E zYUQtwKmXOQA1KXDWx>63qa57!q?9f{`M}SAdOU8we>%DF=x^^mR29X~KeFnDS(oO| z-w&-QY#uhWH%wEU9k~MP+4=2GhD*%ei50=%h#6TKSP{q~zx*%;*-^!%#c%92ZY*au?p)G}EECZnhRKS5@2Hu-__ndR@x%Zyy zTKn7?9vFYTd2jB!@7%TbUVHDg!r*E?o=1WjjaSXuqRA8;61XfWk40Hy<|eOQnZk4~ zMB^b+-gBN@$hf1UIx&e%y9p%A&9azfyrsFwt(S%EaxF?Z2zf86D#Jb0))Y3$&EboxMksh6vF!{> z0v^N(WnJjyi{@V=Z6mw4De~0A$t99V`=#3;iVXQ+(KE@C73{1ybRRj)1x7?meZS!h zq4T#^uh$dbIFN?LU?NvBgLkF~>Lq>Qtf8)_L9vTx(P4Y@qvAhpk@1p9ESz|NNGwn$ zk~5y8QZ2SRp_vtMnHaYZ3Hhv#61(sd5A}v&StL?**69pYYGj~S%G)j&+AHpSJU)%) zhk`;$e<>PXnoZkExYz?iup}yl7HNY~RlFLD5*Aivcy}@u=-g7VTrD=&eRx7Dnz|wM z<_OtsRIe^yagAfG2%dSEdv2GwHy8BV0W-Br<46Xew;4Q=IGriUc6T(fFpfIFo-a}) z#$g-6Q2Ex6gl^&(p{u<Sdo0Y8q$iH62A=099^Us7P}zgkg&`N6|y(zq~B6n7-~Y1T^Qk6>O5v4LqXY9iNE;AzzA8{Frv5CdC7Bq}?FUupJ_ z6UAZqB{VnhLrV1K<&T=MP#r%`ynXie?9RK%{pPA4&)}6=$Ro7!K$%j^57Q{>J;W?Q zR=Jrldf0yQS*A;!6{BMpct}Jd2B6G#PsP79ns92xvH@*5Dk|fC@btU?g|qcPvv3OJ z%mUeGVZdTDUrtm#*SidkR4}o6a3EAw?k-3R?}QXZ6@;n7CZqN&`^*lMV;jSW23|An+QfApptn%vgHB8#qsM!~578iA5XK>zT=h zibQh}}&co)n#tYx?*n$acrHWC?%ffMg$2dU=qVld_6FO^A{od|J+c$E=LB|9OX8ah&Fes^Xrs+WBG#ha&{ zSpbY=VI;%ch=4VczBUmhOu5#gL7ZAl;Dmf!Xn|BI~auE=_Qz2cv! z#1ya&Y!jt7SdMzVPbMA56+I-9MnWl_s!T88S_rC!DQC!dVLsPsCzRxSBl;Dw1mL5> zHC52^HF89TX?%&Q`ui34b|aF3RKP*i1xa`hw*R5~SMS#W@`I;~jw|0lRN~b-YDc3) z&=Nl#;5H*ngQCfUpr=g@H7R-$h36U$3wTq7fPt8z;(Sr9LJBR_Qofs;vC>&cOnm;R zq-cInW)vDT3EZl~jV(wyi)fIBH2f$7BQ1RSLQzy|WBa=6=Puc0P|o7?vAadmj)gfeL}EC@Pk4ivwA}4I2dV^wbnX6`&4H#v-fa4@5uu zid76P%N4dVspx6}>yRM{!v=nDHAHe|YCg=C58Clk7qT z+##G;>>29S4KZ^TH%r+>p*bv^MJCsXrf=EWOWfE9QOH=2sU~V&Bhz(Uo+E0=px_YEhz#F7f(@39MIqa z7TT>ZxBozUi`QgiiBxY2xUI<;dN-W|*q^8@OG@v)S#`KtO0QgwvsRZTFq2uF-mKt( zrQ{h+)o!u88gsqsph39PBEL3Z5Dk@7hT7*TG@|cZIO`W3gb$YvHifW*JE$0m3@pi^ zxmnee)e)S70^>q+eEDZjfnCMOmVE%7@tF*p_jZO8oh@?q*~fnP=*0xn$i4iPjgQ@& zpV$izpU#rWb&s!o4#TUE{(@G>P^Q=dNt2^z2Vx*vk%Cj9cqVM^NN|_f>7h7X64^qw ziQ>vtw~eY0fa=Qk+aCcb3an0{a!XKdBT9E06ZUK;G%-q*cr$L{Src6RLO>h2rf z`N^)Gy+Z?gh7auCe{f{vPp|yp@L!G|d+q3v*WWmPhRLU1|aymOzJ|OWa?dN>P`in_T+xrjpCtstX9T`n{i* z!>l3sF@2SbK29kY`$<9|NfbPmgZO|^9%BU$$ z0Q(mjnYft8Rmg|ws(Qdq>zm=swThY;|M!2%F4q{Vsxu6q`@jstSc<8Zn6|MdnpB(g zSJMcC!g%G6Nt=dV6Pl<^ZTQh9wn47Nwz0OsMy-I11)DZaY-*!eh%_B8#RyeE5g{lQ zaF}5(Fr2+^d!N15?)!f0%naa{{e4X{QlT zF?!59H@BoFjiieUCMrbMR)mBy#d9Q@VFLXcb49HnoT-t~bykk9fP=eDgvQ7%)(Tu| zm8ydSOTX2-{hk{iZYID1EzpCThA$iuv-SZN$1wJoxl++zmJO1w{Qk0shVsXjhwz(+ zf4*#}J3shz-*0!eo_}!76Ki(CZPc5s5D^+XZ;iG#lA4i}Cddiz5^eB{l8hfX2G zxvj^nv@Z&cOdMD$t6*2=SQ%W8h7t)xsA`@VMApNA1q?K83OS&GwF8L4NEdnzkSoC* zO;Rvt9sig~G!g#*JgYYiCK|cU6Xn_J_^U9$$rBZ z1E6L^l%PP)B_xQ>(yN7{{tQ=97{ir9Bsqj~ff`O$<0X$G5wKY*pYwOfXC+-lwB2 zyoV*{8ZS>Ky$w0OBFI;^E4<8RSM+1jJuvL8e4}Ej(Fw80N|qFIGrWk^!+$%$H`)bI zIj;xRjZYFxm7udB^A>J4Q*7dP$GRzq=a&Jsw5lSpmb;BsYyFb1zWefRZ(#@U!>N_a z+Kh~cNUi;oCzUz;Lvpw#T`k*yD2l7wLr;_Rl9sN!vOCuozmpJ%LU@czCZHr2s?|QDsF8m z*3s5Qf5>xy*BOY3CWrMb;JXwzD;-H1w*rBBjD`fCDIi@H3IL@JXI^oIXE_{==pb*+ zvCEA;zPNWw>S_u*05JltU3pAJhze7YRlUR%RDv|}FY^D4=pZP;g4+nsJE3t3NC_3M#qbbY^5py_Ljrc*VV}WaNOYqy zy62?lrFG==Nb$CoUAN=pv%F`aMTF%q56404 zZ(T%~6Q2k-oIDZ_t6qy}OX+(U0&Nm$+wAzTNY{uI⋘!2$LrnZIzW8TO6m6UpI_A zvhew^~4OF(RASNLR==EVnf=%_KCZv8W&!` zuia*U@13iZ;DKeOYp5*lN$SjKD9J!P%z<&2w@v3DC~#E{{=oly%;C~6rC2$-#+?%3 z)r-D#h^IvK2o%WKayb%%ROnBUhA5nh8_B9fA;eExs5k_;X@vElQy_ddlJdec0qu+oo!M!$vsyj8<^ifE+`U$ovM>omfCRIvb^U8%i?kYI3o$@_IFWnj3kvzBID%%6<`*#A#|Wn zJXo=T=t&v4Za>2}xrl_RUDvzlDEo*TTNphpR#oKv+$G}YscEHXcVh23S$`dVY(0xY z8-rSZ&IBYbe?1(Aq#xUO)M{yZn-(I55x%+8MQaU2#`CYq`L~} za-&R>r4WYBlqyhT|t0e_b|L9HbBLa)5--m2R28wJ%N@AyYxC|B}YC#Ba-r{ z;fJDNW2KQ*GrfQQg6%5U8c+)E!*yH!1XU#{#knYq&xgx0cx^ny493^8o3c!j1`vzTroIf!ARZa#hl1aBb-8*>mAa zo>UhNBh|~vawd9P(ZKIrT^Gld!6hxglk$oSLPwot9S2RTcKiT44De3yr+m|W)-9m;$ z4Q%0*%@~UE`-ka7!YdO@#Ai<~{qci?S%7xz`0m%2UuyZGAH9e9u7=^?*|x+RbiOWU z$VGCg39%_h)frw-3 zY>cKIl>a~5Wf~jhb%kNijK^kGk|w_@m0y*D)Spp*v}6$qVN0Z-(56+16eVrdHcFy& zNlIF!RisL7+5%xQ5CbKF*f^{)3yX70-4*S+Yv&VX5KEt5E zK4FEUP?XfN_Qn2@KVNL82!F`CMVS-fBCZOG%~s&I0>?h!B8m*}aR`b?tKpW9S3UlM z7X74Iu0bWl&szn`&zQK_lm=^`sWYQc|JD{`>Yt4h8_hlVTVqeYXsr3sd8q%{P<73Q zH{V{rY2(&S8!I+$-1OFl%@q|pc2rjG`qz%FmAh(oz5ni>eboo|9sclW!|}RfpEfic zZ)k38Z*T5s&vka3?e1*9aQ5u!|6D(F`rMW7&aTfpa%Vd`Iy%psX>C2#+T7C8)X>=2 zY#Wm1%&E5KrX`K7EsZS=E$wX`ZJoI@UvysV>gm04qiH&fBVjg!_AG~UGkF? zdw;QgOJ&9OoxAtE^UfZGyRu@#hRQA5x9qH_*u1I6b@{HTE>D|%a>YY02jO4QIG2-o zmmeRG*8Rg6|A`)h`Y*k<4aPJ?Khkrcix*{CT0P3{mX?U50Ilq%EWDJYax3tJ=yQ`PrYyte%Q zg^yeS>ZG_~lyRJSH}axwPc%bYEwtGnZTwZQc3QsWFi0tcv(8&a7s z+@=1XvIOo&8}~Wj#VkU+he;SP1KYcobYFRZ!CVi;0+Bk;p_qnKo=E$aUkq*(Xh}Fi;l#WU8#}c;Ly3n_D zd9^SR4vR287WpMB?TH_ z!qTB8s-wy>LW^eM%ZiJ~mI}oL8ulWKli(LSRm=tRSmpor$m$^#ie}DY(o-n-q9--# zT~1@f!m8ySrNE4(rt>|fQIrT#5qr}f-OC|6Ha&b&QnV>VCUlwQbVLpSuFw-P($ZK; z=IDIhfq%TwrHi%~c)7eZK`dBs({lsU-#tUqp+O<=3%fmGE}{p{iyQ*V23qQFE+q{s z(u%g3A_N6sa*=@|10}l+sRR&`4vP4vD_1;vo84a`FTg1tk%e{Wfub0%W_mA6nS+C} zSa$7I6Of#j!u9wwlx%()g918g$Q$ zC#t8dF%=({XWFw>YRq|uW?iHhhZ0;|N*KvyBazD(6tsY0S2=UxH_FxeCmzaSbn-{{ zO9)c&lJW5V8JCQY3?{=#`gBcrjh>F@bc^#R^cZ0}7rs)-4r%-J1EWx<|jjljDw7nyHuEl%nd40U>=sA%YjnRbwUyziWjYLUP@<@rdWHJU1x+?I$- z!3r~^9*cK50iztv-Il*FsqtSm%#E_L4%@L)bntf4zuGqX+EN(@nLDNBe&3 z{E>3$l_K3|_wXnjQa-tn6ssuWkced0DRT=P$8+FbbL5>5mOR?Y=a+a>(U?N<#LtrA z`+Wl;of4I=4$aV2<4QeOqsL@GWCJlcE$S?HxKMjifzEJf=owynyy&K7!^dfWYHBVUrfr`nkX3vLLwka)2{WQPbU~ z{fKif9>6n1SjbHdT>?`91UPHSJ3}mC7kFYibY7N_$kT3B$Rc6SE&h`cZRG``5$PB5 zvu>7BT%p&ua6!`rPy5y3Jw^rTlXZTR)q!^ z$;8Lscs2WWH)3iLS(`RJS8XxKNs=|uxgl!?@u5N$-1u&&pv|C*|O4#5m_k$ z&YW_U7X}7t;786lR-~4KaT6=n^JPvkj$HXfY=EtA7NhIsF%B4@`LYgbZ_Q(C3-}KY z1F~5U7z2or!Gh<6x{Nc{yP_{acRrWn7c-5|bo6EGwt@>IliX+H-rj_Ch}+?HYwuGX z#ujg9`s=4}7goF0YC?^p3b?&EkCHfYT3ES-pod|X8_6Qyb70QwB`T2&&u67GS6Z$+ zi^mo6s@Rh9bD?eVveS7(zx3vTQzwAUc|bo9fyj?v^!ikP^37=E_Q>e?*yzZ)mbT8} ziM%&~Z$@^@S{*J3qv+%3fB4U+{_lTzslGApdU?%;=-;pZbp6dQk3ZFAOh4|4h}fR` z8GZAfyJy2uWT2E(O5uVOASkMxG*~*4c$)TSA{mge+qI* z&U#ei?7XL6c<|?JX@hrE>?QfK2{5@BAx|ZQT;?@zwVi1^)zaM9)YRN~^0SWCrc*8L zx$8;q51w1Mpe?w%=5qMj=QU4%dcLN5Xyq4UFJ659usYIb&9mouO&SF&yZ6NOMeTt? zQWl4I&Uvi!vN*~QMR79EMk8KqO&G>eESuJeT1~9aq8kO3vr5(lq=jY>xB=?%Ldv;< z{V&;79u(z$hS_yNqQtbB&a~rnlJ?L1-D##Bjd7%+kQfcoctojSl{6-5sZ%G7wKlez zYNL^IEG)2GYXr|ApuvO40wM-bytot(5V?fi@BV&Q-}m=nVcHqpgZ=i~-}Aih`@GL1 zXBuk_hR()52Ac?dDYPF-{#11SiUJd_D+-XKsfzpF^N+*$VsHd55g23J}88|0M)2Qxvd< zXgf9H&=JyCzqM%;FLUUaVMsdQ0eZ|av(C`rEWFG(6dF{DD)m>!DdPg)dc<{;GSAgN zTu3rF`BC5y=cQHOrV?tKB;2sBR*2;f+lBjj1DTYv0CExEFRD_J3;VYfG=H-lQ@vK{ zUvWd5*Ta0g2bQvyH+5DOu6l@;VgPefTMERHw zmjWg5f$S5|bYQ?RWE7mOVZpU9YNBBqsPZsjCx0FPH7@7~m>CO}0`dsGX`s_VZ{K5g zK-Z7yAY;D7eOa$;YEeJjTAJGJ-z&KPVmN8f+5Ll`m0wD2?ygQK=%Tkl1@2s!R6C9Y zSnHV>UZep5<8%9ISF9GZ`(Kpo@tKLW?9hH_hA4Kn3Ns`o4%k*8!0<|C`cDkZMOs)< zffMDw_<<3wM;p@8L)T;Bh-_(`f#>km3HZnt(`Mt7j`x5U&%uWh5)y}v{{xS`B@MO& zFBP2LzgY9i0HJ#8>6@hQu@JpasZv>Vjy2`x-6maSB}Ly8gx-F63iKj?u5IMPnmY{8 zd*jCV@Nb^P>?mO5ubHGe_2adDoQhxE4g~(O=imOK0#~5sN zY&=8GihQ>89_HkRw#LauXJr6Z|A>o`xDf!`7aL+v-*_6ctC-R41tafvT-&^tQAl!> z)_kk!Fl#AT05y!Q40nc8g)}3qYVZh(H5wio92p#ZFm(4`drxmi&+XP5?X6dvzi+6o z`>y`th4ZzSPSjMMK2cV2vaF;q-=CS4k8EY;=Vtjc^K!73Ag?a_`T5S=j|SS(zC*MTJKTOO77Fo1UzxsyTZp zc)6}N7;GetYj3_XMe&cQU#gdwB&O(7Q(0A0nM7$@3bjEMPn|=h zg8o9ggsO%jEGHUe3pyQp?*(U-Vb>C{*+8_4$`8)cWrIAtsTmF5x8zZAxFJBSh+8#mY6LtI+z-Ep zis#YMLUH{E5*4x`!Lgvv@9aZ|fl zRS@s}5?X1;IT)zE8bg;0TL^^&DW8cBS#z>0Shy$)NPtsNLC_P*~Z%#RUBLXBx15gA_I(l8>;Y3v$?oLf)D!gEHCVEWRNEElyG@t?2t#kthG?#9WJ_f%AHd?oAhA9=fk`@_5m2Ls`x?DmY8FQE!g_}i} zo*TAkq&z*oST}FOV^c>vO{L95E}RgGKX0K~b#;?w(9Q_qLO<+=4QhhTh!BiV10jF} z8Nn4y2Jk!%P_ML2@&DzI1r-rY5i{tSpp&*Rc%ZL$k}Ixl>=YaJ8HOB)TEapZ*JUJ$ zwj5ipKaabP#gbNDzM+sHD&AahRK-GRkOlE>a^2nM&7f?it-HXxiD`CUC-gdS9_}K{ zCN{7Rtq&#OnwUKLlJAZgn(hV7ZmaQ)7Dd$bf1((;!bxk#-Y% z8SOsO3Y9WslEf1;&3JQPon7a)Q3(1Awp8l*%h`vpCXc)zzeTu6uek=$^ zQVl*h)(n(kHgVZ-7B?Io7_@B6l7<{jY>5yYavB&sxZ(xayx1l{wajubG}CZiZBWLj zgNx?DG(c(GGNjt*#;}gubh?p%Ia42k2cJ!EwX}8I>Aioa`%&NUlV=0>LP{uPllnhW zYtG919qC`T@jPGWWt(-^Gr`*bM%nKJ#JW2~2di65^QP7_dfl?e8+#cex7t*@bj5n8 z?=8(ylyT^_U$AhsfwO3sNjFfkKwIu&Ny$(vLX;+CNfk)YvTK~p_*6)&1YTp>^d_R5T@!{29?8;{B zMk=%h-B63IT6c32qJ11gnwy<&!YNTegSZpLM$rP|Jj)ll6fFTrJ*ciQc+Liqsa1_U zFn@me2zpUn0aUXb!9-eYsR!t)d$4egJ9cf|mX@~t3~7no`)LsN?lqUg|cw0MLujUW_wP1Na9IEE@h3elG3NvsuKOMQmS&_aMEw!tb{^ zdo4u~#J23~Ybv(=z4V(BE47&$ar(x+zT9l%(2{k{oL}35qg$EN*#|i3(cu);drC;0~JHNC~#tOs$Q0)J3U8TWQm1j7~B^wD9 z2J7@+r$5@6PF>1$rlZrTmZgG~rhDhk zSrQ0jA(03oVM!nX3TPn9&As=0=R4DyUmkBd-RV?HM0iSoH~s-2n| zS69BN)XR0crbg?Jir#qc-zq-mFAIyE8JG0H6svpsiueC^eCCFwo7ARdudE()^_+%; zpHqMw`AW&5WfLuHljm? zGU*x@XGh9`1-~z8ImCCCOk;u3}9Di`ti@G8Ghp7}zDr)@{6qHb)p z+QupE+OAUQJzN3BwzZ-QAWDv_w=CBb%+;VQiUwml#S(Hiej^=D8x_PuIs7!S<&h6% zKO=(qAS=pcve~Mk5(=Nb_0ZtdAQTS|HWs`V> zMu0$sK4m|}T<$wm{%lFYgD*&+4E%V8lLqBj517_lzkBZ3(Z-h_``Ne_URVIY3OSMp z$d`9uCX<(&{bU-@DHLtX;IQ#=D+x`Wj$I(hl$;>Ck^C}oGZuuq49tSbW%KO}C$Mfo z16r_jL}RucnCFb3T(n#j)=w&0+J1b-BR~E52~&^<^h6;#QLwk8P7YWbkHkx$Wg({{B3!1IIJsd0RMy{^Dz%NS$;!I;a(&iO_j&el^7zm6&qJ(koq7ZRdfX=hVO3Jc% zYvQvrFUm_(#y!z0XnmtKNFad*c0cF;BnSpkBzp8cY;H~O{pMFe^Lyo8{Ct!khr6G6 z{jQk^B|)^HLbMqa7c>x1s7jxv4TC&o9vMz@^|&=49^V>G9E}~UWc-ucQl@qBwRTU8 zqO}t-8%QNs0kUIxE&nRg+ zEiSW92~e<5f_I1jX5l@U_@Kqb3iJa@ROh6r#eJ@+MIk{n46L2W6y|mqLSdN$-NO)W z9dw7)d25i&iVhF@ZX#gZqG{`~$(d%;;7Y7}c$kCX$Rwkh;gFI20WT53c45%IYm(h1 zG4L$JBy){v}L_WEJtYFeI<2}tj?Lx;eH=Bp_eT=G% zJ&d=ZgWdqcA7G>mc2&oP#YfwMt zQtbts?JQvq2beX~jcK`yu-X`wMU9O#$3=#iCc%>$Bwy&l>VPz{Cus)+Khj-$g>=CX zgdZ?v2;mSjgMK|RlEp&^%DlElAxO()AB=#(OJgMW9*2Y#0(muD0UpF5ZH;DQVVbKZ zOu0>)6*6q)l2@fR!h4J$)sjfrb#mz~4paMnKdUM=Z0vO{0@0r=U${JhKyvhvMSowJ z@(N|il11&loA`A8!hS?jpg!s5oC`_K8luVJS)>whp+i!nFy3h;p-QoR6iBQq#+ZiS zVPk;!!w?EVfLfA?h6$672wIjL-kOjqJT;qkCR%$&1Uknt(DIkMiWtz-Ud$X8gxZB5 z;%^PAcgvCgoc<}T$pzbWL3nZEz)MmsUq95VY=4YfaurXfp#&0}K0Wl%gXCvSkwU*< zm;f?mm?^>P2_+!D2jR%?qemoq8Rre+1!>T4gHBPJzh}kUPCoziLcw-`S}C7qh0;ak zC}8rmg7pvMg!0qihn&Q`q5laxG0S+?mvdlkvmvCw`<07eY=5Z?v2 z67d&n2 z7Fin(N267h(elWqt+m_t?B88mzvJ-!;|nA6~p3`h%@_O)b;9TdtR=;W0CLG&9n=iZ_{e_-p%t9;)8!E zf0TCAYHTZj2}FiAUlEB^(ij+w4}8~u`{vD#t6dk)pF4N@^traylV7$qo~S?GeB^l3 zk-ELRwr|4XML1Gg75n(}a5xq& zE8Q?Ly7Oqu8Zu_iqZM1y-nrK-`ED~80i$r79)v?W6Yrnu_57ZsnUDtTDrRh}L znU?l5T^Bn$x;whNdU}WY`i6SHIhdl@gDBq+}Ln~YIL21F#3~y-}c=zY@1Vk|Y`R5j?tMEpcl4#HpJnJv{D@Z15;Wo|$d1WAkJ|FxQZO z$?J*}ES^62$7c2sX8eX5L{=V@F4HE$xw+Q>Zqah$j@F$Q93>C$>~+0S?%Bvb%kvT& z%g$h{QV_h7JHeasf>&BJH(5|Y@(o0A1lSbzEq0uy<;ZM@h6B?9f><{G@m0V4$s-dw zWZD*?g5;1g|3`PV##mLI(YbRU^I+PlZB5&xzuFk1P5-t@L5hP_&}yU6$giep6Vuio z28~86S{}ael_G-9`vnN1R;x8mk;f2*mw-G*5Ri_*4BTPn-kG`QoPEwdXP?uxzJ2c< zG-)PxX1Lrrd+qOA-}=^4utTVV4hr~D9F^MFn%?MeWr*@yU}lh>YM^{sBq#)@27YHi zF~*?kIsNn~%P2M)%99lfY73xE#XD(s1&$G^K*}93OnJ5gak&Fc?&ouw7vK5Q8|R;b zkn>5r7&cUFz3Mnlu!Ej5?T0D|CnQ`pnq?yaFM^{dr7%ckny6r}P#4YjaCluHLa9{+ zE=^&b^)3{dhSKu+&8NTk_3YEwhZzcv%1dJL@VMfL93HN(9zOl9xXyUx7@n$`bbN!b z8V7-O>-5B=obQL2B^3l^UhvM6&mvy}WKH=63M#kZ)STbF?D(gTvZ+bH?X0C@P zP^P@x1HW2S1ldEW6HBQ1e-b7&qg|gkJ8Lwiam1hkD{MN7fWYush_tJ8;THgnL!Pb_k8Om z8Li485fG>px_Hr2b_T-u4noL8PnVcGk(C^cZ;@t?>y=mqIOpl|^=ui4E>%f^b=E^X zGBb9x)cl%Sw`oS}j$ zc_LC|$Z8kHEd8UI5}e#^tGxn-R)E%qI8lpilkhMu+!qv=jIcH0V_lhw*q3FE52Yln zs_dB;7T)^!w#=SO4!2a++DSwuiIFv!k~)e9-t|n-AiECJTCin_Uaf*UyUl`H;su_r z3GqT_$UGzf2<5n_49Z*!-;L*bTo(u&z<`vq_x`yH|GgtKu;fL?wFcDAmP-U`3e@`^ z*Dj^rDmO7yX3)G*#V~AJqnA!|ZlE1O$TTTkva$eXm@)bl=Q1^A0gJs;sY2dzrlSgMXul=xN=8E^ zVrZFDhZ=Lc==cg$MZ)9?xz?sXRzmLWp167TLpyi9m|UN_;i0GsN-@7!P+lU6mx9G` z(LvY|m=2Mi8C+3I71!}&7T06M73*60o)+6LVwWOgArDxZ0reQOlg8?zJ7B=zj?FN0 z;Bdyq+@Eh>aA?=_*Jp0H@sSe9WK?ZHw}ceQxEM*>YY;HLqhzHrQBiV`b@BK3v^!pg zI3sF9Cj?^jcRB9=K~y4X8e6D|_|OTbiq8?|G;~2<7Ui-jszvRsdU^u9zw= zn^~SKX@pL$#Ow+H=&4s4xb@B@MWrTRNj*0n;o~`ckmfmd8_7~nB!k7o$7A=~42DF@ zNaJ~susR2}+8euEUY)O1(H{H4qJ5NlW4$D3q${SS*4MJ}LfiEeT&K$U5}W8h(WhDT zbVpPZcdQwUXN;;w7>c^h4KA9wC^uv$o#}_mY zsPd}i?X#-nAfv@47+uG>iC2S0Btq#~ZV*@p=2O_yZvL_v{QBZgj+9Vftayap06jp$ zza*W&z=laJz9Sj=Phhnqx?a=@=8BLNZ3xuWXJzT>J;GLQiTRYUHIDv1@sgR+R7R?I zZkqoLXo+a#ThKpH4s);Llq7U<$+}90!dKtIpI?DH4su)q`AcOo%;@FO<4#f&BL@I` z&LFZHlVp-8)bQbH6NM(gC6>Ao=Dk7g00GuAIJ`+3P-Im_cIlGA8P86gunLXAJp$vU z6cy6VjxJhw&luY1VbCyivDbtPko8SGSb-BZIIw7YgKfe3xlt}IU0@2jGwfNyd zAkIZco>{id#7)7*Rd4%ntKO#14CgyTv|*7HPqqBJDuMild7pr6pcHDqV7C z@F(82G(myLl!pd+?&MR=cO6u6gA5eL#U&EyT2^Ww*h-inr|sBBT68l%@lC6C_yjI+ z^5Nl=e;ULE4lLR;u;`ec_1LPIL_m_Q03in*KQHT*({0v?`9*K6kX~ z=1FsT?&ZNhOf2r?4X@qO*7iVed;7ZAJK9>>T6Zr?e$ zW7qzDyAB>YbojHOFF(I<{^I#_g>$19OC_%`JsJByD_BEAV}q{%_tv7>nEH{yfq{E& zUa;4tCZcO9_-@(lh@+4?x;`|ij&z`Ig%V|;*~;1mx9lfAfI{U-$}FOya+)zY&?M3f%K>aiEZz7%z+u51&7O z`t;DjgP-m{ynoN&-d+25Y#-RNwf~>*uYYe-@22&w8+&?M+t$3%+TPmT+1J&xv9D)+ zd-sN}jtzZX-7RbIH8{BaFLy0m*0;Ll&92thI$JwBo7-AmT-VXMrlognYkTjy-rg-Q zZD`rDx&MRyk3ada|D*rx*fx0dz@EcLhK5d^`ttaHFHD>};|)){o_67$s6>8ss%GrW zzAwGxnmF0;mWiI&96`mpRv7bS?_|>*!{*bw$CfXD>W>ffQJKAG1NvjQXGBa82a}~~ z4jIlsBN0pzDO3>efVoWxjbj>Wp)?KYiBDdgefNEve(_Mz3zQRhPB32uC8b%t@uHqA z7M)9lsj*A>kxLgwPhJ>4J9O;i-hDgw4es07ziayr-15VBKYs76uDX@9Wzf&(psvWxBK9 z1HWP5J>!bBN+S;9e~x6?5tJw%vU!ZC)l^6mGD(TPY~m)1_T6JoFJHR*dyjtep9zyD z9u_7nkvYa56U7L+HXJ|@ql|f+BW<2;vbbXfzRH_L*x5KS_Fr{iM^k za5wivQRIrFE80A_xiGI$dl`dyyUQ#Hsy^B3FqOY4*%}XzRkKXk%qfkBiADZ1bY(IW_$eFJ^oW+N*H$7Z-V04ed4&h!EZPV`)#@R&R03BxT$nRasIQAZQ}fC^0vBwK_Zd)iGN%4S=?6rYGT$GmqgZd98HLI*EZZkt~ra;5;$6K`}U% znEk?OJk5P2NF}7KLy}S2LllAa3i=B z(rg3`Uy@Yam?kYU=y+@B^zRq`Xh(dqCb(hL6r7A^5+Bc&i#RaI9#xPeD(S`}ZdC2se zCN_Yx11LzEvM8|Ntx>EM23_#W+D@Ti>5rX!ijTFNhBeF+Vr{`uDxhsL z++?>+e>CjQ|Ai&Q_^r_kRV$bNVi?c0{$E&<*n?XE28(jXKaHz*d?qfp-~n7C2G`qy z$8;FjJkv2IW8gs5Xf803=}L@VIDfwJrRCX|NomlfKqBo1l;)4jBmY3oK^p24=8J#` zq0vD~qt*_NH%y|*YkjanQ6TA~Nts09&cF~Avt!N8XX{>Dm|YWhXCeT9U~;D+2wJ@d zAqdMrkfJX-3Bk#khVbDSPi}N8_lOY;V(O(zHCja7an-!>)`t4#&1+T^*vxV?w6krC zoFe2zkW1w=sZIDZ5*a>BUJ!N)O)*PJ6G>K*ETVO1!fdggK`AH48O!L71QzhPhTXv& z(icb~I-4U?B4xVbtHjm)%?)R^{c!OMuUs)g2-tDjVvqLb)U{xrH{qr7GJcEi=_5W<*t?x{H>HAbmzElJ`KQ`xrA;xm)s z@hj50eR|jY?>{sDTMODPJ5Je=Fj}nez=HfJ<9IV7kOm7{Soe^HkwSd~X0#C>Qf<=p zJF$dd7tbi%eS(%b_;;)qO@JW2bX16T4R!S8T=pA+dPjBvE#cnasmD&72v>_Q+A@Bv zVCCXxp7{26*YwA!6mg471v~)|pn<8`)@LSM2VNx2N5^m?0R>@0*zK-KoYU#B(&7sC z@6sa85HYGx9y!yX#+Q(bBNntc&8FfaWVX%d@aAXQR;>5<)7eiw_Q<2p^~F3pIUYlL zN~5J9Ez0_0qO%os4TLj3? zqrDy{r4-Z-U+md)3`U|)O@YQ0^I$I;RxQcOd-92_+i?mCROApR1bT+GC8Ck|6W!Yr z4)GfJL{S<7Ol@Ea12ZW4tc3hdm-2n?c(6N%$09d9zF5W#}qyt1CIksK*aF@&F+jwUY`b@7*O(E4vk)Q`abQyNbZ&ofWw*EB53tBP)(oc@5WsRYMp)8rhRNwsw~5Q*isjdnA;q~?xd|mfDKHtBRr|*3tgO8; zE$D<8)d44y3NtH=;!Ai$WB8QP<0`4!HbuypI=I}4`N^J-+XpDG;eQvuyI7Z$n}ys^ zV4kIn#JVz5kY%I7@UnV|3(+%&4Xnr7kBJ^ymAzaofylUsd*@OEkDik_0IL1Zj())r7O4W8T6ct-tGTr zcioP{od^-Qaj5Q)G3RR10tH})$gHH1L!iM$QBusD#4*hxIuTy*?4M)AH*m}xoEVNK zh8$5zJ*F*A{?v*b0Tx`m^xdw=&u!PAb@-<>+h12B89yniT-xR2?W_8SvDaxFOBAgP8!#0Wsn&2)IBVG-qj8KBMNwf2Qco;mTHuAJ?BEA(99Ms}Q;X#v z}@3_ipsQA0ID zSt4{3cdhi?7wd47=i7bn$1Qs^c6n~(9gMm4@@WKJ{|8P-N!c6k<%V;^;gZt*`|+>5 z;=tjGqyMg~tgfm)TX(AI;^mh1|6IS?db4lf?(oq4vC$ZM34%;l;U>cV0S>$0}I^qsB_Z*{c(+uJUdX9H5_nM%W)027}WyVrkjY;=66r>pbk zC)cjEwOl&a)Yy3T)Pf=>MD~=sFbm)VUNO7ci&z^8eL2*&;zI~DKsaF=Q*jQb+ ze_N#JU%C5=BKeVUVK{uCXn)0#lE|Ur;)Cy(78FDZa|@p=%r7bomlc+l>_1XbS^Ck5 z+S(Jf^=BLE8_r+6+}76KasBo{_x%AY3dJMUg+ZYB2DbBLYK*E9?^K2ri>8GFcm15_ zZtQf&mJhgCzV%i9Sa#o$IU61KuVGi`Y=)ruDfLw{v4(J-7NickYFQkFthi^TM+MHKnah zG*O!xqiEF_e`ztTG`23Jt!ZpxtV?1MG{H3K4-Ks*CR(-`)?tPb28Nbp03#IX2+Xik zw!pA2WtL(K2+VfxyWHJ#p7+ioHetBmcklh)XFumWY12b%8&)^2s;ghs)U>X-rFqk~ zEo(P6?+tS0I1=RgP-j^>Y5O0J{&`NUf7+8a&bhtl)ue0Oa~&Noo=WEay6dBU>Y%cH z@4$M9J(6-k!^5#!2pWr@(vc~{7wspyU?_IjKKIh=`w#4R;`38yD~Sbq zEXa{6mE|!AHTR^?IN>QOoH#1tkpIxG05wt*1u!3C`GgjvlC8F!cKk%^?i|QQqH6@d zOp2S{Xz(KMPra$Gn>FuF8dbN>oYflZ-^_mH7c&QgthlG0(7}VXh&vz^Gp;gJqD*93 zVv5k7DDOiGb@cjXPXE#GPPf1N#8*G}?dt{^f%MG6F$^i*yOQpkn2(}kkek6?1_VH2y)(oEPW!KIq4lqB*Mz*X3>Kh8NR zMiH>iQ6(oLKT8x_sDeF+ztB7gb*enn$Upm&r=D-L^a+AgILyyQJ4v~4%?*>^GVK25SOo0$V=>;hdBpGuzjzoRi_SMh zZ&AhKA+C{`f=N=IH|TAg_T6ba;jKFN?5l%FAf5-d04RrPICn2BMEDQs4rGgytwk`c z7;u_@kG20{SczWd_A=~%>C7GIeOuTml$FfYW6N2j$cR-aaQr?DEAw(v z(V}O#xM0pqmA>=)Cx7r-FUFiy$$3?w^aZ&eQbP3ZT@(U6L)n)B2fO0KSqD_z&8%?y zpCiUMCSts~BXN@HV~j`Pkm*XJj=%WK^xA%3qSp7BMXs}8lv!|`8D;k7juEqONzBEy zSIKiwxRAEeD_l;nFA3!bqUS?)cSac2<+mHBKlS|TK})&C$0gz}x6=Y9Bm|2_tVCrv zEd042nV@%gkL5@dt-hYfP;`&-$W6th#;aB&q^yOmcQR~nve#L+VaU93Wx8?k%=cz| z>zCIIt8Q2tN^WxbP}-Tt*ohOO4fn4wjjFgoz^y3i&m9{pQ-T&TS98yHokr4z^vjx5 ziqv>r+LC%-T!hH9t}m$X2*fhV00Q%%?%DUocV2#WK`+-9VmYo{;mU1}N?9&15?e$E zkuU=Q7jB@75oto9Wyf&^GNSo$1~ME>qFxK!?Erj}``fiMhQAlGl6c7Hb&}6&+Ud67ZirTkiCI!&)A%3(b_pl1S<6JE=3GQ1Z z?&EVnVTD$IG(s6zVeR8}%Bzrao$qNj9&_mP>{9AfyHI83pH6D6~?KRotk`6s(Db*loK4zdyi-MH*6ng~ek0BK*C`6&n@N26x9ElUK9me(n zM<|jaahKPG4@I)0H(|XBO@#XcIkKGS7)4f&H5T2Xgp1t5rGS2n9?gl7FUh?{7pd{) z^t7+cx#uaDpU_T_WGZ~3a1P)rlmp5HTEGopHDHF&%-*4(H3iE5iagH=unTvGa7(?P z`*-So{|XCl{YP+_8qbI#)n=kP^15eoP~oTqwwiOoVWP=i+b0U5BNZ6IN`+7} zs?y)Yz4FC_ZVzGVK~HSE;4XEh}9&R4_c}cinOsZ zxmJJ&$;+Ec`i)$G1@7aVxa*8}wqNYm;27j}gHtkR8BCNQc4)BF-wnMo}5akCaAm zN(dzwY6-e5wWdhJm9b#|3IZ9LQUPAhM>&y$=a&w!A9IIy-H~-7Sm%Uol2s+Ae`dnJ zY>3k|`(}&{u}(qmk&KlrnZ{56GDSfS;{bZF93>9|(Bi7dCiZld$Rwa56AU!BPFPG< zo_2&|cm`fU5yr`xOaogj4XOAj*o^2xthvT18{krG#*>#F1DQY}C8hnB5mlHKQ&9AU ztc(`~SOU5(P5*vtc!k{Rs**On8OEFEMoIRyxZ~)-xvl&6w(Z_~p#5L%yAQRsA2@jU z*n5Z1o;o<`|9_H1v9$Chh zx@oefCKD>=;?aQjtjKijP?Z<_Db|^B`HJ*QM!^Sc5WZ1^SK~f}b>)A*yj2Tp8y3{9Sk}H~l?#m{QGfVPJGQoJq}5WXJQV8`9bZ4%sa8jSsDbjZlwiTs79|gM zlihFMn`}ZtUO*m@7wjfLAZ$V)55tm>>~40m`+fJ}IrrP-`x25-TNwJoxqH98=bpzs z_ndRjJ@<~j#iX{y#msVms7G_bml9+2!W-a|Qu zjvPMv=Apegf62{#d*7kloWpM&d_!SPGqz|S(YL6WQ(J7`d}nlPgOcQF71YVo=`lih z8es(a2qY#>(;0y{;S9(zD98$UP~y`Pb05|^@g!WQ(Iw$%e0<_=bU&d@cqhprZ7~y1 zPs-X_L@jt~`%yw*twCH%&82g#72^vT*can36Dr6ckqMub;K$O#=mL#GTJ)UZZxEgad~`CS+N5?AsK8brz5j|5pZE zW-HcvMichkdd^?01z~E|6*l^vVGtI5Vt}g8MeaOV)kRU*dAKSkoJ)^H*9y++@}@o_w|&#Pw&5a<(fPe)YAjzlW*^#gWV3NV1mag*ZC$ z^q3H5GMGHrpo!bhgh39SGp+D(WW0On_-F0Hab0TRdl0YGSFL8!@<22&>8Fo1a;jc z(+DTk5v*iDM`$XgL=}Y$Ycm6fHKHT(jR;#*3{#GM`Pj!)-wPEJe4Acp5NkZz@Jd;Y; z67VM3B0<75596g%wD&{wHd=?6kZ8 zS!TBsI;_R!A`=*}wCZ$4RZV^M`Rc}|jt%|}e^=Lqt35-vgCn8%cqF03RT_^ZsOBpb z9giNC#9>+tuA!QL7+a8v1@t**ONEl>?@>*|{;Do>So-KAv~8`Md(=!JZT-6Q+V#V)taX|WfZEydP6n{0QP zopPCMu~oZ01$Jw3v8}+GZ!Ih`+Z=9hX_dF;RGqK7zOJeH?77B^9qoZYu&1;8*2rii z4CQw`L719JqKblrpt>$eu+mFFkcrSr5-biOG%%7Fk;L&?u42H6PO!ru6Rj!Ykcsj- z&BUf{V8QGyPO7MTB#ItN6P`hz38!J_nhz;h6ITIYpAey_Wkm6T7)MobaY_;(FdYVz zEx{OP0)?w&Fs*oH8wkF1AvKeU$Yf+}GCDeVqwlK!QqSe?_Li3Otwl7q?%M`NEi?`kw`q4)R2>B zijCqWp=e=^p#^g@7_;9aAkp3Wn7#LL_8cQ_SjRY?OGYD5)XgJDr_Y1&OlU6p`#UnO za=%x66XZ=AAh_ug29Q%D1UXy>1Hf4`bE*?E8N`3Bcm?Q_jFr6az0SSw2Vt29Y3=)< z51nWHU+H-e=n~V^gW#w98FNMO?FEb#{;vzJduOuwO>w*6+pd&fg83^Vh9owW!egxh zX@uepq)~JU>cljS8AdmFEk;`shC%2t?uV})I#VQk7DcJRhD8mF6jR%~cg6}c!T-V3 zM?}RvKSeFz{X)Mgc!h}DSY$vA2U`hfr>7Plk=nh($P_`HV3b%7^a&slRXDsUAV>QJ zNf2P`J!BH>9*)?>6p6$v+zBK%#anesF`Vg2K{>)u*>ghkZCnQLsL9|otQqcM#ruOF z^`W24^MMavKMZD2$!!FQ0i4b8S8*P72zV#{;}Ww+9tf4rIibDcH3Bnq=8PA#qB;wL z%m_-X;{##L|BoKtsGCcq(Fn1|`y%&)H@XaabIk+2{}tvddf})Ws@k-)lWD(_)=R6U zRnl5%1GG;bi2;M+F_;!CQ;g{rpim_+U_%TMl2AJ}tcE3m zP(`RA-RVx(-+Q~8Z}(2TQ*lXV=k445zF*tlmbVX9o}j5Tjb@Kwies&*4{UB++#G8?B?aXe0d^<=fz- zXQ?IQT1hE1k7gs@i8KKkzlGlOV4hcz|BNQ7k^c%&NsTG0o(}(05t)qOHyFXxNL({f zrl5=&v5b$*PBb<;QU==N>HG9!OR{C5WeKgKS1@1S!@S8@Hev+t(+6}ILwS}QX?!~q^+or z(HS~Tm+2DiqJ65LN%>Sq^{7k8j`{?=ou*32cf+Tb+AN9Wqe3d69J+y+(qMldJY7Vq zkV>JIk9R)h!e%M7Z=fY(m41%W9(di3_DSfZ(i)8QB}DvpI!J4k|5|FIF6y?7vy8S_ zNXIxGK^}UCr=6&fiR(R@xub?lom(c^bL9Vwq!!Avf0gPe)j3 zvdEnpZjDpzM3hm(%7CO<60zImBTtIND5=pSNDtQ@%$fW+?61dBCScz_i!)BP6CZh$ z^)on8N`{L}GGiD?uO`EJw9W(ufq-jZioH;9b?wolG7Vw4NS-f=lUstbP_h!ml zo40OH-L?0F0|$?!9ZNrb>TJe^%#3F;GC%tG%GK-Fvu7~1E2K{13#DsaSv*A^KrY@G+{OTsAJ=jdv&HWPWZ>PFjO}DM>1{@9>K`q zcz;XRG+hq`wP4Wi^ZUJCkK65X^>L@Ax5wzVb#-=j84pE|#o^>G-cN4s5nkaJnoZY2 z8q);~;m?zEE?@YY4gb^P#sTZN{xhqAim8fQnS9A#Uc{u@R{4L6zI>D!f~ZjDIQOwQ zE?EJ=IIiTm6x1V+6@Yx(!kkdNQ1&H^P?%d8jK#2FhzSE75=K~84nHCm;JWlHR4$Pe z88%bzutAG_--kel5+dP2eN$Mu&NW=LLc%gDAcxzEj+1p8(&^nt7p~a0kc_NVIC$10 z&?d1hk?u*DGlWftuS{4Cv8F+UMW!!CW%d&h%XL>k=gsEjZh+;A?e6gCYzRyEEwp(b zxQ#~9r`7^LG?>05;&@B1&wvYr)j3rAl8DipoL;C8AudBN*yi>bd?4a^u=c;`brL5Cvpl$LiDAJ@XQ*hZi5ivaxOrMKFjUZ4>qWixJ4JtJCO8}n&f>N)4h$HV8Q*ONhBrd_)kx2pWTzG;*>LK9NK!&>9l6KliJ{g@lt@EZga_n)27AT~=T3+j z-H<+RLe+q}Al(7cToW!2GNY5pMPLJ6LWH}~$G#JvQBjRo9 zG%-Vr-4~ElFFR^NJAy+YTZ&&oebLaGz%Xc~PeN`?2F7cq&GzTO$oPDJ7(Z-6$;yNW zDGMRTCrx5q%Q;Z)+UtqAxFM^T?uze;pNy*B!83q2xC&3WDGJ;2i zGSP(fDEQftrN66S9f1!azUd7UyG`h+{(!~|EduSq`s^3QSbX)u_ITe&l)y1>8{H!* z`H3+}j>iuHtFB4yxX!Q$@m)$JRnhPm-zo_{X#d(CYZ(s4j%}9VN)vaWe9a`{8%8E# zM%@i)>HyqnVhOdwu=s=;h4CF<4pn>&C?=sSq_eG2{gT1`_~JqR*!WWP`8E?s_$*`$ z1#}(-*b*u=w&hXRI;w)bgH{p7o)g}F&-H8`479Vsz}t_sM`~FMT0PR@Rm`qB37f)x zPZhPQ5B61w;UJ9QRt!Lj*I=D=N{Y#^M`Q^^L{j(ju!uYd2ZYqQSsxZ?uHZ-x*EM-F z6Fi>DT3*kTKY4h$(QgY2yZfXt3)FhRKgNyTAdCgOy+$PHN+l*-#M8u+{BH7^#U1ht zH5wMJnp2?PTe>v)gMKdRfW)3#x#F6Jo6mSwzj2-2r~3}9+W7$1+S84GH4MR9B59HK zj)|w3vHP@se6uc3#w}-jrKr`Npd zF)9zdW(=`o{NBxKUXXS?vt5S1~0Tc-m1jYsv0ulrS zD&2ebK47vzG@I z!p!a+N9H*!#N4F+pbe8*4{$D*ZuC#p0Zi1y;=UK$@{e~6?w(}!7=b%Od*DG3SjU%{ zcORQ_o|dodwr#7;r|dvGbh`A2 zo58meu3~|%CiD1+1bwfL9`330AHY;SGdq`ed$zKyxR1HvTr4yMnSpnH31pK|ivac{ zZwUE(&6rT`7t~u|zOk%g9JL6*UB$s+PXV&(5PuEuzXi;kejsIUkpfjP%1JFQxsdLf%E0Q}W!qfo<5hZv%!Cb^lP0T9xxGRarZX!^CrmjM;I`=~ z69lN6;-obWwhnZdTIunpFv@Qtuq2&Lr(X9JiqceS2CwXJ~CZO#X%S&Lh^0u>O!D zm``fF;Wn{~vY1h#;D=>si;$${y%VtLGOy-m-8cs}R8uuT_+5I~K5&9TVyWWWjL)4Z zh1mw@&J~oftV7zL@kiu+PBeMj*gg}tI=;RWXf2Jh?T;6?a=er+7gZJqq9j56*BCDB zG0`#hyDzRG<LnYwYY|i2P&M)lbf%lb?07CcE7<_ zdu9}+M?ADj&4J&GM8D50Q-k|kLzO7FD*$?TB7ZOnwwk=F-Skye41lwKJ)0q zPA4ObyFODoz5+pBsKLFLckG_zH{+_q3uxu=-=DSJeb2g1^|w1tu+Uci#-p|8P%oxl zUeYDNo5O7*i;LWDcU)%epPNdDn3$|p1k`5V1zDV*J+_g+S`iY`i7d96L$gnaK~-ks zT~g-Nc0bnxK{abgIkJDGVBI1ER(`a;c8H?cHmE()hq7jiY*q!(h&>>2RfDW%dg>)w z{Z}Jo)avbiQY<#XM0NE7`I~Rh+*mpyOSaNG&yX#&HydR-Z02ly3YffU4vPz9e3`{c z5yKg%D%jt&q?w}Pt_Ls4xyupBS$kedL+x3}*s~KU8UM54qFj!}p@yq>^}cF>k;7ic zrqCMi;vMsze}!ucFk(a#rz+I_)1q3Ggywq@Co1rhd#9pG4WUS6ou}B+p+N%focT|; z>Bu8??wVSW$dyON#qc6>2iH_I64 zu1gU$90GnNNjdmTdF=>XRgD2nxQdjgY7nwT+*Ec^h%0$=S9Pfj9tTey>QUp$m1?(3 zrM`_^yrNl5{EZhiaDFY9(fyT0qbN^P|2-k*_bwvS`J@AY@Ndxp*&IM-BgXR@#7Yt%zD%RvnHa`;7AAsF?B~yt)*hhtfhm z|8g2uc^bR=gRSa;0rhbc%jgH$e=rQ`~ojO>W|*1kf`bUKv>a3+DY^vG%NS&}rSs{)qm8|VA_ z%PVYlhE53IAInKQYC?ZKx1LEVc7Dg2qi>(6f{wIS{k~yUGd5pduwJzkNl}@c;kaeN zMENi_DogfOHf{uDea}slgk!`OGOERQZ;A@XIoul{|5chlsH)hI-m2h7LsG^txv(yK z>PD0*!1?b$cA#7e6}<@P?*gfw)@l-c^Q8znFojdEwP_|SJSSNpn%O@kJ!nqk9l4QRxG)f!eBO0J zqp_)IXQwKV76@uQz4T0d73q{XL8_>p%j#IOvXU@FkC$}%c-zlN#TWCF5H?w4yOhN6C>$BZl66p zZZkx&Jpgf)vd$Kq2cgUU=(fm59a&F^QmtDpaW+~i)#=mE<>F@Vh~qvj(eEJ$PW{~Vb#&c?!XET)FQE~CK}k0S-jVU4^J{{;9ZzQ z^^y0|G$mqIn@x-gZmDL!Zk$tiYczvcgA(!(ngf;c^4ch$dbWZ?MmSSKfKL{%kSkyb ziwF(-r1&Icc+{|hp!1Ojr)-Ke>}R;>yR3RNh$YX$>uzI8c1(LrxeV^YG=;ChIiThB zFy}kxmpF&cHd2ZC=9)1|hnM#ro3wEIBgdzixubxUT>{_gbdNYX=%Y$i8GRis!XB3; ze$PR(IKXUnPMWlxq$3oaTx&6?j-U)JsW#;KRty*Yde!TF{h%k4htf&{t(X2oY1X8n zd!hNp+SQq|?U`$BHA`>z;)$6izV4bssY-&cxAKo-9Xzq;ZstpYshMYK#&&Lwj*ao2 zgQckB7fU|-vZ?6(0WV}_*kR6b`{^mLws4ms6_TkbvQ+`s=cs)_bTGRZIT-F~tJ)Z32ZnAk#3E>-eeF#$Zh z23(&!x%Yna?Z9P63i*z3=GTEg%J?VJ9#&rCCDqdtuo#na{DRpDU1A%w4g42Ki_`@^ z$XAeBkCz4y|IOjarHQ>Wzz<^=I7)9y6iQ@;5}jSV&Y!JaED-LkeA&B?qNw#C_KXfOzi*zB zFf*OmzIylet401@JSGt5?uO5U5GT8=2U$NSQ$$?sCC+u%gfTq+Tki#F@V*{Mq_BoF z=jd=bUWY-~l5oK`w69Hd9ILx=!e%>jyW*Qhdqr7Ss;>zT%%+JHLA%JuTj}~ovG!vR z12H-+g{iI?EioS|@1~S1mD2h*3jjDp(iOT zo%IBPSaFk_U=>&3N)8V;TP38a&8Z|_io5{UuZt4WiD#Wkl6Vb;kAlJ%IK+DQwnK2L zHCi)PEaA9Pz0zH@JF|`}pX(SS%i#u=*ApbbV)~8NgV}77%6ca`PXs}pz-#=KV4A!M zyVwph=y}P%74d)f;pCZMy@3AE*we$9vtxlp+);CL=>f4*w74&!ASG#p%kj9_ay*Bn zsB@3EW9gdUQ=n#AQ*xN`z_jsr3vrd`4+(jq(ZL>`nKe@xZl!HkM~u`TSy?-*e|P#R z7?1wg_rVG5AvK5p7?RS%ic1Ubl;U)C(^38XCN4%pUZ&-(_YLPig4MH^nv%;m8S{SM zd5o(EaZnI9I?2JARteAiw^gOSUc}|W{vidr%1r;lQqO#AV587&0D7V&I@W{N0oN*k z`!qH9fGUgk!S8M#eol z$>u~C3x2HH5G-YOj6L)gGah^al%V};in41Kzy6?Hsf;KOm1H<(@FJG+hi98XC7f=7 z_hG`;v&eLhVZnX0HkgUV;PJ-x7h%`uw4jjGD~#Wag9$`d4!8VssBfPQQm^vlLe3)$ z^5=u%(-}L`*73Om7QJ&sPJ2^KQRV$@#8ow7~cg0Im*q3+nm6lRNopW;v(MQEaRqP+Xvsi zlGJkn@9XNe3cl3UGbRuX24-P1IGE})%Z;$ApHsXwwd|AN{kLwm*u-jmM&c_JWCFJ$ z?t-?0&dulwT%6(yEq=p>9@AMYDLcJu!Pz4yQJNj4vqFIQ5627ZsH;!o>!~av^xt+9=O_b=DG^^~kSY;R#)|Q6e*7ntP%WEB9B9=jYXKP4g z;AS&fkj9vqaV9&rBaH^MbOc#Q(`QeXH=pgcHq|~YJ<{cR4y5eIVkKmWx`)abo8_-Fmc89@ zIS;_jmOWcFq?>pii(6<{@&V$}HU0)}-R7b+9@)m^Q_CD^X;WMtZzoHcp3fojS*Jgf zHPPsKcuBm&p?-#Tqfn{nI$B%SZ4O1z=#Wa%Ry8iz10j<_M0U`%B<6#Ru6gGtRdpyj zuW6s|cIQ3*N#^HDd8&>A7ew2{lWPDoo^N2C^3D%}2<$}?mq~>ZVk!oXaA;0IoQs$3 zgySL;H<11ypGTU_9<#jJz&nE0cxtg=*@>9vh$Hg8=SH7NF=>%C2{sn+X2E@i7bgRl z-9N%>tuM^h^bT#Bq7HM75~~+wXvC3RnCLE811{L)ZG;1B>A6$SL0r4b>=lt0u9)RO z*o-5boYZ|Ab&H$7Zc@hR3y~LXtRO7?=zx^>ia|QU)!`>)A_2KTI*4K1?O9G2Jdjyp0OYNnDjATm??B zxZ)ik5LTKus!c1^H~6H67D3gl*`75uNB?Cxrsd(2DJ@uya)cVtF2+RELQ|F8oVi25 zl+q&slhDHe+E>I`b5hh5ePIb%jxQx|EG(ZF@Zm|>Gu#pk4hYq)z7W%$J&Y!}Nf_&< zq82ugw#~rK>U=-8Eu)kZR#9N>ok;7%!O|Be?~D2Jh)fO392w;wM=gOHzq|j`6{{3h z-%-9zl+pK`>XfE14MkTWxqE+Ih|OMB`xa<1NBa~+H_gR8N;vxtS9jAORFC?lgq&(@KXYhPrRSBpcLT}5Yk12^Ne##9 z)uWULXgJLZqH3>aa=Shh^CG!OTaL)AVIn;nm-B1=C8=^Uv3fm*+O}4M5_K+*KR?e` zipC)0j_q~8r}AVod*&wqGRo*sdypnrLl$SDjbdn0Jom9eL?v$6eR#Ve+p`oM;4{wW z{?*GrhPrz;GE;`S~*}y(%>yN}>hY_gCuo=<|hUQK?=9 z4YpFP0llL^N+nj*xFH~7L>Vj+(L`M15=n>>j2a81X?nf4yJ_|o zL>gO^MFg}31!NUuYXq96yYD^Ao$ouX2#zm4%){-z=bm%E@0@S_{Zi^FeOdAgK=87!EEBe#H6A0p=P-rppvF;cd_(8`Z)_O{2kDjU+)ZVoU9IySqpUkFfWkiQ zp@EHn{2%-Rc4ULQyvqPXK)k?ia|@@JX-N@qsg z&dWh+jz6%^Ett)EMN0oIu9dgOhuN*&S&1&9{+jh4gJ0SERbIYsVF``_aT@(tL_Stn zGNNMqQw0)%s6Gf@l*UP$%}4lL1JQVIWiPn1>0V1qnBQ!>RdbsxB_pRb?2jey#Bpy8 z4A8#_wn{FtPE{DTQLbU`0LA0*kI<2bE(h%j*ETQ5IZ*k>t=Ts*lh^V<=~WjTyXBJQ zCDUq4&5pt_vdxujtSd-`q%j30DIw@}guf*UqnoGZl|nfZB=1ydx|0^A*X5-6dCtDl z61%YLI$FIwbMr6)T-N>B*ZYPjov$bYr>hkS3(G@@KHj3L7S*sh4#m!-=cGyXsV`=gaB0#hu~2>pM(6n#Q$}Pp8T< zbOlKgeQ-z4IvxRuj}KDnjsqclE^eGXN(9nY48c5n-t}U~vtS@?L*ZJHpdvd%y%E0&1+EI>KlxBt0X(e-F{lBq$lx&~Nh6a!>8mjV_5J6v})X zdKS(!sVx@>-|&d&P7+lm`ooMqB1D%?7lo=jgUph{X8H(CY9Nl2z?^I)n%3i~EB?YW zx0KjI=D2q6JVTf@p3v5$jVZ&lDRIYXKb=X4i%T68MdDAa?DX|rEn0W7%AEU*dpv5` zdE!I`ST$yFGg;ow6f&nm&QK&8;{mwUB%l~*Cv#JTM}+Z^%P~N-IX7^jiqb~HRYzG( zHP|#}rsRzDC4Ve0W8}OxiH2RL2r;v~KrTd;@2lIf{eeYbx7lm+GqhI>re^k8x zKx6Os{+6Wo+Yy2bSaFwLz|9pAQv2!;VYGNXyC_5t^&pA@Z(uRd^f~-;0nlRv&WK`B z@GXi@z*gNGWqR$C7E5KJY%tU~4lj9T~I?lz&Oa(0OYL1stbo(%?PpyJa#lr5WWJD3vep_55N^L6Il-> zE5a%;;IU3)v4$~-L6`%#7q2N$>~3QehfB1)nYfAopy)GWduzYgcek;*xvjmU%iH;|f4KAM_|V9hZ*une@Utm@ARGuS zC`wQbso2Ij`;dl_i&CUh7?Ug(+dVXQbO->_h>__!bSQjQBh*zuVFbqLSA>UAyf%_c zdMze@R*=sa!9q2Plh~+ZAaJ4qg7Ih!peRZr3gP$nlnG~IWHGTe3YM)vuQP}hJdjA8 zSPT&HMnyRN4mMyoM#2`8iNS-qR|-LY5dj^U!*G1{f+!mP6LAEWR7eo69|m^^LqUId zMwtzdP0x%@z33Yr80zXBZ13vwwm+=zXl-q|U*Fj5xz}{7)YDY%uD(@camlj1#86b^ zEHoFGit=?u1+vX%H`*Pt)hSt}&kfg2=BgrxB%5S|)od#?Sn59*f=y z{RZE?uhmF_QBekK@n(R=)O^moqDkPaZ7wofhZkl@oK~v&ueL{47+$_!fuRXUVb_*i z!r~j%E<$ObVis%zR*NM9YeoVYFGt~WXh=E_V;8JcwF!5A|p6*k}Z?>eaLbPOwhR%!c-dg4zds?Ano>X|UzTbSnRBZitQP zk6#|6{RO%LeJxSldA2!VeaI{O#2v15EVZ*0fbFbH(P+ywAUO0}ASLx6=;t@iht>VI zKPx>UH7k?ZGG?A{>(;m_{$E7FzyZ@eOIAQX`|;r8qbF6=e=4K-`^)O>OYNovWyD!3 z9XvqKqv>~FVVjhn9=h>CtT~tQ+i#SvjJlUMv_lhVc$=@ZLO5g$ z&kRc6pB(_IGY1OQY-m4ZV+rQv+5Mba-dVHqI(MvUEcgakh0gU&s{$1`JqfCgdE`l% zKK7RbA7E!Ng?#{DCSnTKdnIxN$kRL&(p2OmlNh(faj;xt~S& z?m74Q=%vfo#vwy3WuKG-xD4B?6Vf?5EadY&b3m5N*GzUbCjkDp=k`cr*Z%&kg+zAD z+Y86!Q@m>F+BpTwkC}!;A#0pOc0yOkjNN%ZF%!wU-__lI=N`6ZS;vZ@xoCM{?y5I= zRoP3%kISr}Y>(6#Eboq`{m#*xZt`$JQ864d0&~#7BLx(H2A}&#-onP>`H4AW(*B{4 zbvc9JLRPWal%c;mcx2Ii**6WzoTp3gc4pbMJBgI~T%h zj~OB=e=GKtbZ$Lrbk5^^Q(4bv2hFM_-?z6-nD)6{Lh3mU{OW=+=Yne=9|2%8h5u

      s7`dHT<9%P-uLurlXFMz6L!kUk;wwRy)BRyA9?oE7`A`HJ@%RD(>dT zzXd{he`(ITyR`fev*rw%m;qnu3Y+hzp2s>hx!#OJMjrX(;rYcta9YQPyT{+lin6n7 z^TEH5mesbmaUjlJ;4tm-5-O`MT)_SPFAG$24f4la*36BSU9iI5Hp5t&-DV7&Sq8k9 z)WA7wDwT{1Ee7`>+zH$X+;uqxg#{`(O|@@HN+g1KfNMw%N`e|G6T4cPCn>Eraa+E` zD&>xD*tV!kik;bKrRZJ*xmZ+QvZI^habyH8U%h6HhNC?8Y+Q@Q<1tN-$Ko+vC-9FE zDo8RVf~FHFbBuvF0NtK$sMFF^YJ|Zl2YGE~Ds6)b*!cPQRlw8K&6GrmQK9CbsG^B^ zkB{jVG~m$_2GkgFIbDCvWs03`IAl8*@L~2TDO#6~ushr?o6}}vKBY9_O!JKCjd5^Lc&VQNPpa^23wg>+_8S zMPSP4xNmGUFySlXjk|f=v z*@RLZMrhzX4SqtOLgB8%|4lt3rh#iCaS?ka3ioIfe&I+Y3{b;i5qfGo5(fyR zb9+5LC;asS>n^9u<1^dP%%PS^GfzS;{7RT*2jZQx{n7n5#kp_9!zEcG!e}XELX`f% z9QjTLaqIdTY+%#`0|j|T2kk`}C14wxMll{!fB=J}qbft4nhudl8NAOVOeaK*13Dy` z4v+ASfu@5Gj4(md2riY%IDrjbf#>@5;h{e|2+XWnHEvlr;(P0QbVpt6K!Nx6`|-h( zgF~~gz&G67Bx#C$fjg5CVctd)`)@qy$(YP0^`&LQB36Faq_rRI8OSnN?dE+OJEXsC zbxFTLW$N%DG%kf=SCvd?3?3OBA?au(eo0~iTs)N`YIJpk;aC_c*fhn1zU2tv8@|&7 zd9J8Ni|x5|K35~{8zPIFG%}-KqmjP19v~r{C4q=dp#hrkn=_wFmSxj{UDq&R% zpo)!|iZ2+Hwd0HnI#r>7i8tH=z2x|cw9oV5Jdz#}Q;N8G- z2d@~BOp=U(I$d8~$AIF${hN@_>l)XQc=PJ`%$tPF=+ZP2U3dkSV(AH#xRzikWFo( zpb4NUV46W*0IMqY#X_??v@WZ@rCih2-fwy%K+acc@1E5i^L@I|GXH*1#|%LtO|@7m z^9Z5Bx9@+y99E}IBr^4WHP-zUm2=5Vk0DBMZYuI9SO%ulW2(Rs4h08VQ;cK?RhFFi zK*`IT5PM$PmLi?JU8#32JY2j=kG@k}zpPikxTs-Ag;u@i;oi84W`ewXt&?Gh zNCPrW^w%>ML$4C#VJa3Q9X+QjN)@q?lq?a1;J_@E_UgjiMtlGmKLfFpWG7NU$JoW{ zBQUD*osRYz7)zW8aBC{lUH>P%T4S?3%kX#VX+SfSMHAzH&88+M`a=^9o4NtUxh%+{ z(`3;Q{b9_^;*Vu9Y*A-KNyeaSOKA%&Eex2P43u)FEiDvUR?cOzt_Kb+^z^>Z>3!el z@w)HlZNDzj_@iIHe*NC(x$e_-UAOPPtLGMM6_$r%UHj<5kN&+BLK17|CQ1KQAVV)BOcx5o_Tbc zJtIh2&h|CMD42tVxv z`XN4>ySlq?p+(}vTx#YVl(DW#<;ejbP@ITfa(F}!R0YIRfE3X03MvV)vwtM!&gXf~ z=yLiht4_?YBxVPRv7u!FQF?;FV|dbfUFcuH%dzjG-d1QEH#^9b!z_c=3rcTHqe#!w z+2}L_m1EiCxinnW$V40ff$_Z+Y0feC7)VFD5V;a1>=!smC3M87N7Qqf5ycS@HE~~; z+jH-y(yFY?8G6mbV#q|$93h^V>ty)aJS7JHm6J(h@L4}VX%j2TG>YY$91vv+pU*&K z6%u9?^%cq!qbikN4e88s!9l7td%YKmSX)!97j}^B^BtORky#uiedF2`XwGMffrB#q zsB(fLRS@*BVh2KL=5fWR!K`9&&XSBQqd=&>zC$ScbD%muES7YS^#X9NRj~-lh!w`+ zsTj3&%$H0`bRGH|wGy$+1^|HY2|7w$`MvE{shO;OFK^!^Dq)hb| zLn&8v-&i1-iHFp=2axi$X`|}l8_usK;r56|HGnL z#eXH=kV4aHEY+Znfq4yTjc6>h-T$;{@5DH82E7FOqBE%PxmO8vLh?&Rn1IoNj6_82 zB}xYP)Uj#O=~b*=Rv{{xlO{|y!C z`V1qZc>wT2KphRrr2hXDvPB-5prs4PmV~oHlEN)SmY-KuLS)<9RIab8cLlHzn|*0mPOn&N4+3BMfUY)rS@- zj3VyR>z|Duu`j3`Uxs1TIc0Rnz++<<`M3S10b|X26Rg(kGAR5H9I`F)bCe3)zoB=qzUCS z$VNbL4vdEN6QPBQmd_$`o2#lNT*jN!?BCsYp zJGk#M_7_)3MtVl9MZt{dJSt%+;S7UjUG;wm0#WYMLnY=xOh^~ssfqenwLPY*~g7im7tb&PC_;dD~li)G&(6X>M*XEnds z6an;=U;OFior|O7#+$Flh$Z^__s5mX9yn!a2cX%9_l{H|vn*pW8_FrKm%?G9vqU@2 z%-}MXWG3KAd?CaaEd85BnZ{*gQX!BMfeCT;JfUhUmb#fy={47r(eFI~s#m*`f3IHr zFgg1A+fkCp4S!pCFGfO3l7k%_`65ahS02||{RMi5al~{`>;dHhGwQ7>7D8J5SVTXk zg|~-3y@ET0x-elUZqX8a>M}kUk8xORBk>3sG`g1!XI>!^Dhmphw zc;ue<1Qrq2afCOXi*54K6-4-azq4x=Uv#$dEgMG-Z$13+XzX6JL&wg(z4O@a!zbI@ zj&+~w>F)0BIdS~bh2AUIuifk)=pXucY;bh=!PwZ;t-F)sGt)DVlo0{|m`p*s;7v_K zF^%9r^VlvWF=dQl79sIoA%yV2^ZY>4*M#8q!LuX@T88vO;ex<9WSJ&F5MiNfgAb3t z_D07H|1oTnG|)q1#X$GOp)0-l!#Igvyl7pCU47lz)s;QY*8Mq7dfyPktEMbk;I~Qe z$>{o%gF|<&-nu<-vF}oM=ehG2dwSZ>pFVxIv*Ya1BS+g0A3C^qcWcwWoz1(OT56kW z8tQAe*1l6!TfMQSzP_%pd2?fHeap734b6=;o8R5Gt);4^vAJpcd$qL+c+>Wl$Nw8`N z!|z@gbn(+mK60-9kBQy-qgU3fUi*mweeLR#l1x7N8scdimQV>Kx9DP@XI3JC1*gJ* zA;JJQN?T#&6Wo@D_ZsOJFKo6fJ%Lr+kJ7f2OOmtLu1I$BO0OInlZ9FCVlY7_eR&_D&RoYKkc+{YqDK`gu80uiYQc zBwcGOO%kvFYZS*(bnDq!Ya>L}+=qRPmqm7zk{6J2HqF>fNHdl3=Go}Sz0Z)|gOiMb z$}y9My#VnoY$h!#dfqhC4{Rp|>vs*B!lj0NH8VELDE)@FMauI zuc}}qrRUwj0*^QAmgw;W6B1Y#PhQoo)Ya1b!;mNMO-0Y~{!+Si?J9 z!iV9b$igmF%6-e9Irz(`zS=^oMYO#$zejAkf|8&QqL^%*^7cj0tK_j^?Jd*3 z^>A{5nn-xjEn!E7d{EIHXUQ;jsyKWf^)Lw-AzJ3=4QFsW|9a(5#QnAV5|t0`r!J=X z(`Nvf|&^7XW!n5A>*px*R0q(7Eu=`9hjaJ&O(UV$82&S<`s7GleAn;8b@cyaq8 zH=prQLJPmXszIqqwn(#co6e4@1vbz-S~pkFiSNWy7lfz{p85{t!A1km~a&|U4ZRi1U2({tL=mX1qC zoW__K|H1uX;y=bfWZ8gh%n&j|Hs?$>iOQD67-0?-h=@ZsrZ|zyT6(`RKo}EH$TsM> z4m!Xx3Sk3ez)GRep7wn2`+nE=^Lc*n0Sd-HPAK2`&iDN;&-+}mG>MU4jW$$K^#g&M zBu4mZ=MUjb^gXi|C- zWXXsQyVk`8rkx7YJ^hgn#p4p3y{Rj>-oIV&Rw+2M>VoyhMxogH@Rl_vt-$1XzPKr+ zabdJL?m*^Kp_SMlsd+ri2H0NQMA1_Lr$LoF;BI!A2(^_4;<6Lul?wMdaU3DPgy-gc z7>Qo?@N>q`6nYP_-lp&lcNb5SedCIwXW+_=t0e4^t-Y-3OOos#GRW509Vx zE$lKXl%Nyd=SpHF5&#By+!M(!WyZhp$mCWXk}C4Oj(A$^|CY1r^IPR)h?)CD&wP)| z=De)9ddj;HMe4 zjWw0nmHieE3L{x*@dJZbN)LgO44)av8E^s4!QAjZ9*tPoq$pm+TqyF(cVlBXA$&3( zF&ZFv@tIi)>J429rLIhZUkxI@9mbI2yNd(hUcU}1iG*uhZPrL;Fl8tp!sCm@aWX+p z^A@Bgp^sbD0r(@T%fRT~E)OyDc6mGn%JfY8UJaaa5N3yQY(KuMyxI}vZH}e96$61B zGfVm~co~JC1EIM49_=#TKa7_FRz~jP;5bVx5@~>Cm(xPKY#}F->qH=O(K8i=3dD1J z%O9K73pj*^+?g4^me@0C#v)y^!Wf^31^1+xhTu-AZSLs)<$4lUI|mX9x-|LEr`ks{ zPn;&miwlpXl3l=YkY%JLhS3T5HV_*M!U^1YM5kmUzn~+-6T=@$w2HwZ%t2I4GhRE- zstRYPO#1_`15~4V(Ys-z`1HLkr0k$(1W>nH2h^nlR08Zh;=mm^xjq7)2e%A3L6s2d zGA0u3t5{bWPhqdd^HdNScdu3VlYq3iWHhDu!CzUBg0kM1mGp@3>8nXtO1lPd4;4a@Tw`_=|F|;w z3Fm0K5f)0(mm+^pQZ6vyQJ(aQ&d$!6`Cy{~6s99xF+*Z#1eDT=O7#TFf>$scIa|gD{5(oqfh7Me!+Aw79`LAeO=Yxv zjTsSP8ed|o?tVqxF2gV|3M8meUhF>r_1`h|@vYj!eDHShaf8>D0x8T_L%9vd-PMSf9L0tzkLQtmWYK+?HLFg|~jQw%>? zGZqa_0=7os#!8HwOEefm;y=j72n)A9UmTTMFlA03F@b@x1dx3Ht;|^yjmVsWv5II3 zAIGgH;TS#+ZG=>4?Q(#xq*NGOMN=_>DvruLDy-+p+Y^)Zm4`i)n-Ehaeqj1>uDC@% zbjLqZt4BaStk2NE6D!957t zz_U{pX&3RzjfhC$rWCg-?!nnjZWq`Rt2B*spByPzT+JnyFGXpUO=5(}G)ivf@xolZ zRMWMG5U;YLU$yWc)U?3K1_Gj?lS;As;s}lSJL})dix$R*q64K6bWnq`f!M&DJhT{A zHEnf(e>@zmTN%PxU!Q#?Tv1;g_RRl& zcWQNiGWgUdnEw|NYvW}&qO1bWER3A}!L)LMbPI1Ynt@B`Q)D)%AfD*0X}U)dFw88_ zMai?N7!64$L0BnSLwutj1?;FwqM#%IUMe@bd(W)LJ51=iW?~@9ui(<0D589{6C- z?tSn6bH_h+Y}@?K=8pQ74Q=g>jZO76jWvI5s(G`aX>Dt3!}^vrt!)kM9nI~{t&I&E z+MDa!8tQ5~8rH3=X;|O-R$Wv3TkUO|HZ-?v+PHDkmbRufP4(;7Hm_M*yKZe=eN#v6 zx9Vye+gmquY-`@See>pB@9f<3Ugv@RoqG>{cxdlO$GSc`cILvFp8uTdyK?nL|M1cM zoinG-KA#6$qRU|*6BD~R}{k7P>|8j!8bS|{X+Y56xwKLD5(Za9(IOwOP z@$Z`-T!4KTDyZq)k%r#v|2@Z61Bfgs-lN_jM-c zW?YY#H`usp#>FI7i<-f*Dg0zvur%ONa!Dc*djlVA!-?oy+76sS1@zc=tiK-Uz&Tx9 z&`u%3q9PP1Q#?na8QLCgf#79MK6 z#du59m{c)5G^R#V=pfP5)RsYLbtq$trZkaMu@*s@ILvUFOQB#v&{~ws%)ne==A5>i%N(;gCUY6a8p(6P!zFiO;Vw{k6I8V@y^ufC7LV=&nyM2)L|mP zXE^)H)Mc7m;xHXrUYYAQLt|u5w6FN=-FJTS54adrc|Tr)!e5(ljnpqo+UWdj-rF7X zzA8CaczHJI-N^A(LB68-v6ILK zNRLnXK&{=gCzUzulN@e|H_0~O3P}VsJ&qdquXQd7Jk0Cc-jf8|gnqpviQ6P&E4C)W z+O3O=l_WHi5N9`+L>X_RJ3*VA`7mQuBWqVbQd3tjnM{Er%G)C|G0{k2mzz&Pzm|>U zQy9GDaWcjd#FlW?E9N5W#X8JO3D}RR!3wL_6@&>+C^xtW$*x3oW9nY$s!Uhm;0U82 z>8)(2j)I4!YeM*$%1xzCbBi;EWOydutzW9#l zeTY8Z$N(y=H{z@+adD7?+hZ=JT1_dsT-m`$fYJDWX*tV`^_ncacE&C4!2B$lCM zJ7Teprb+aNJO_APfS71+D-{}%)YK?xSzMtIH&jZ;7hsCXrWhuG>*Enhb#VCO9M861X0 zHxZ)ymGr!j?MB%y9F{{@N}mw%i}95R4;D~42YXf|&EeBg+ zE`6*03pB7wiDikooX8BtiCUvfZ;LP%Fcfp4z4f{r-Lgv`w;Fy^^GR07%}8J{x;#;? zQFaZ(n`BZj&Q=vCO9vkm^D1U53myo8&f3g!qlmb)j1S(^-rmWhtmPm<`z%F-`MIvm!h1JM@ZvlxO%*QISs!ovbxBT_h%7{MY;o@BIDR%&Q*m_~lx zF}{Aq+EFSi(`D9md{asgeGCq%fwTRkE_@|VfU27 z!t?lbu|C#*|3)QvU|8u2DvNvSP0VPlo`86m1LH34p3gy0;9WVmq5ry&!^}^mSQ)y; zof6>HiM}+8r$qD!6v&y{42eN1qFYHr6i&sBWK>-t#P=DfI0U$+h4r9QAbeR{ly>8y zG6mU-QnkdAgr-y>u^T^pVC9>59*K!ZzY1M~d#!oZWYtK`1tERWO|wlI61g^?$dQYU zX4E#DutuEuAV(P$#LOyrix#OfgbxNF%gRL`gA*g}#k?WX!sCQJmNTX(BQ<7;%akyi z+m(C}5RPJ_jXY7ji3Qh@YU|3z`qX{*ZzNk;p+=cCBcoq~z+S5PigHXvbaHn*=l!#?816r&f3RTX(3ogsc+m{*EMC;CTa{WZJE zEi4Lc3~K!$Bk;>XVa+13ICVt_$CS8Dmq`{9vcRX@#PTxf)Gmd6AWopjsJ#|OfZS;% z-Bm!BkH|C`3NdMo%@Y$d{?O_THS!(lj(cn|o2rRwxO6G(%U|ClE57%t3ptE$VONpE zBBLcx&26CxVtG{I85-M8JhHIgHr zpAboT)bK-5u(8s}s!4Qg`Ms|xZz@13xDUJ7@F%FMj#7*UVSL`-l)?TfA2OKgU^iu< zkoJn2KLD4_5kAZKJXoj91CUvO8?UGkw=`QoypH>eykPOY~JY@e{lbn~n-1d!;xQ%Kbt%k4Fb-B|K8F zTbu%?)CV4+lok+MnX4zU&8C5JuE8&Uo>35WVny~{Kt8$C$F0E>0sLf(x5lLF$L{&2 z!rv(}Bx+y_$85$}kl*L#6Y;N3GZB|O_2ut>XC(2^jssu&{Dzs-jeYMd=DX~#K5ZHj zuhID?IYTy(OGSuHS*qSdKpSr2S^A`|SSQ$%BiAaS296=Mi*Wzcx%*ak2^ncJ2}i&HRz&t&AL*y_oljx}p0W;Zo627ab# zn34V1?8WUjLG%IZ8T<2F)AX;8qdEw6F!Y>eW#Cc>tlUVVb zaKbStT4vc;S^wytm9^7=KlI&W%!zO*t%BxZQ@kq<>;o=hkjbq9K~ZTv+5eY^*M8SX z{G?ghpaSu8R5ARr%NmE$!S=a*?gpZNa=UW}zLDiVZQc8*^M7COy!+BW5dF6&UV8bN zj;&8`>wI=w=Z? z9PH`q9T?~v95^vNc=Fuvz?qXLkNxw1L&x6u&$;2#uMeI$IXpNxJT!Fl=#is+{r!h~ zdVBkPPu^EPa=h>Gs@|jhz5PA?1IGuC51$x1HGKB;`F~%za^cdYk+*MLy?$+?ujfY( zuj-msS{6e@DI(NPYW&dZpT!X8s&M=&Fl5-LeiWh!4 zt^KJp{ps|F^)?L1y_NCO+KP3sV|CiBC(HNiw&j7vH4v$AJWq6VX9fC`;-$WakxPVuNEQLoSifKvXB9k|J+5n2!31gy9GV z6n=k1g*KQxeB;_+Pj7Gc>8|!!-KS2rAOHNs{)26;t!*v)|G9Hl^Uf`e%}tGUb?>iR zzqaXM%eQC!Xy4}N)~%^syKeo)O>e)w3E{3?yJ}VKnssZ|uU)(PZw;=?H;i?8-fR&U zx4js}e?;T-WK((;j3g^xHzr(o+Mxcc&c6j=8lWEO$*_x#vMjA0Vs}eRBvOD@c2kyN zCi|v#U7xWIH8l@&(CXX5fy2MOf6nTCcYmjidM-cvWpOck)X;HJR4WBro1jbf(v z{3|OTy=a#HE}N1q|MeSBoKG)oUi4NQNVZ_ltRAzodelzAZWxLlj=yTC8aFZzk&LmQ zQWZ7luGO~&y>n(PYMyu3w;n19(1{MC*O@vbGV1@zsLh)?dp)a(_8uC^?3uGrOto+8 z)y$szc=w*p2wK{`mV5#^xy?~D4lEN3i;~dg8(mN`!-i2A*CC|Tf9YN9Hdv%!p{!ci zA~~4q?wPl2?wxl%coL|SI14U$V%w%i=1mLH#J>AqTvOMU2ldX-kXmoA>aYcg;8zc^qX}W}+ax=uaRk zrZi{k`m-AxlwGw19vf5=>7YvBsi}k_Ay+UKI6J6NvF0Y_ESor8qnJeZ;KOhEwP5~e4eSHe;`4}pj&*?}Md*R>?P*#Q7KM!Qs|n%yU6 zz%!*&3EL#?pPN0mUYH1nB^V#_bQo*)??os4HeElah`DqN&BPYjQLAJH!l4SgU&NsV zSX6xJ$WMa`p8}Y%bZ8T;qm@NMi)P`=ii>NjgkmBMd6C6Q@Qa-);(~dsygxno=zxmF zX3k>LQ!MzRM{U#_oQ(+!tC@S00y9>bWA8DIVu=tHu{R%3y&SS*)5A9vWtl=`VwYJ? zN8|wD3VRYpS{h5q9GyxZ_%9fmeeXJ-&Uw-VsbIn7zzxiB;{=RvS?0Z+R z)ui5##%p1&-`$y(>c^!qmo~|r_VYS5?6gC(E^>@R1ssbHpJ(t>A0s$ls}`!2-CUnRY@*~(5`*+ z7q0MGd<;Y=45T==&N(zNrR`$`lrs%A}d?Gh+UL1tGvqu^i7l+K^shN4FzLUyieAPzCq>7}wo1KZ8Gf^4C`laJPm3G~V1 zl|*YaRVuly5S4-yR+4%wKIH^V%E-!fqrkL=c#FqkSs7U8Gaq_EA?q<@ADO>UMx~)f zJ9fLNckwu~)jEBoxztKAJ!JRrC>&Bfx{;KtDB+MuWY;OW1&-r6a<9qq$p^D$9^?HL z!B{lLP&^9@r1-wjz>s4Sm22B3*wx@ly}dyX%YZ0EB5+!)v)tig9Y_T_!J(j6((RG5 znidD=KJXF*71rjisvz)rbv`nVOk8`Dgv4C_s+WatduV%k-ETwUNcW9x4rURe`kTxmvbY;hQp3)tx-rS)kC-F5}C|!z_IY}if zG%aP7L@uaS%36eTv?c^L3-XDcra}_6Qf?gb8RReY4$Pj@&T_(5gyEX=m8&(G5ttPm zFhQ3-omE*C8#q##?tS%Fg}-zmrWTR4d2_ngmV=yS1(O^fu%;hhDpbLxk0voN=s3Ed}EyR;s7UoMIfg@`^j9dtzPWj1A7}GqBrhZ|8%REsKwyE9`g^T$q?_x=p*g zGtwcv!|TfCM~)g>_RjR}8TT%(cdc~*HI6Fa_Tn^3;>c-X#S1|X!!9?HMSkYMoY~7% zCK;Z}N@uRLxLd>Hd{32IQr`P*Gv<8i8R}&)1)N#}HhX}6AOevee;AxoecA2FjjK0? zMuvxO96!`{Y_Q}7B|MqfH7j&{N1P=8c;@jxCwpG|!wY*_(vBCOT$OzB%1_?7{NKHg zbQseIKM@gode4NudC&Rzubs$16{(bl3sQifXzi%LQjtW{bXbEpOTh6(LBmuf>|y0+ zk>CW5tC3&6ILTR$YMkT+`e*k&%a%6yM5RII6-!`p5kj6y2lT3f|Z_Tt^ss0>lm1by3B%GBz`{0-}BJ%%JUGM!1v^9l+ZNg`Tn~z@7sp0 zM3xVzpU3-<27)_ zX!+9DTQ|IBZDVueV=pd!q4S+bmi^t&vL|}JK$1HTk2AS>7x6Il3t#%~F^NaV_m=#i zE1Q!3^@&F}n&hKrmpp%-@ksaV2Gj|vhNB_L37r!&3GY-(#zTcJ9!2a{tZ(;@QS&_n z#QI+j2p;o1pdqm{NL)BZ)DIW@^g17N;h3x?9Qc76b1>_gj=gZJu}CyjD)kPx4X4It zd|Q>B2vbva^yQC#tZg#AZk4s~@7nuZlEz_DYJF;dmOa+jndMKkCgW08$5_m}ob7s! zv524EnQr)bJZ1M{@ABgv!2@T_J4;QR)tIK;BE9gwKqmuHA`^a7yM@m486+jkr7y)F zNTaZL{3^x-ph@|t#-j)czK}YBrXvDc%PM$#z=Q`SYNC!cRURGIbkG0DuGXNa&NIBb zAVDRj(?9LxN80|(?@T-GXw;F4O6w&wUL%g8h9+7~shy08F*denbMZpCEW5z6?ykyu z4dNw;qAWpz0tupW$0&*jh`W2P-{pLL-|t{yrZd2v<$QbgecsFSKF^|KxS$;{GbStr z%p>%sj!Fl$eGln?t{>BY#=IH(3SWD-S^4w!V0O1JS6IF)v2}Ydem?YZ_-b}j_l5Mb zE_Mf4;BL(X+gX?Zb3GTs3sgwJ^I4BrSE`z_=SxQSdX0=)e(-Z>h9rLRJbFlU9I&l` zfZCEYIeVK9JQSk;35!?xFY!iC$sO8N5%Axl2)*t4 zBpOg; zBzWXdexRtJpvawH?k>ppxZR}(i~Ys^W8srWgOw-FRGq7`&i&?c1XwIm*Vx*4^Sk!8 z_V%tjk9r>s4UEQy2V=_E;235{kzP|HGI=KCQdM4uHK*uudqO^juHl8kLMZTI^54U|oYr{mN^9lf~y>E$;v=IP1kQ(Jr-h7g>`v_+{ z%0}MmxVa^lGjMW@Rez&uFl$*@040X43{QrrqN*NKRQL;wH5z+5G%_@F|LMKnwx0fu zo;xi+w6%QKbnDytx@+}UYA)AaJyl(G_EbgX>54#ksjr~06th)O>M8UUloppB%0E(4 z?9D&?i*m2$aA{$o*I()_aTj_+-jd?OOXg*ULV==^GLNU+a{tO(SX5SASdd@rFF#%$ zIDQl#db;|2^~I}^>vgq}NCUN1d((|cjDJ)CLAYp;R%h|PI-)MEH!rNEDgK>Cd{uST zI>uVF7y(v1a|xLW`U~X}vKo@GoM@yi=ydG8srD+vuB9NeA<+slKPXEl0eYOS%hjby zUW3yrzBBM0*SMA>g`x&GQji*BmGggFi6jXM2B#^}Kw)XAiHar_=ro)l(`J4oS!a)p zj^Avar2S7Lx}r6ot!!q+YbZJUPX5ALp7Ll>(XK6OG{aZF!NU>Vxf($COC%pDj%14f z6r3SdjwS|PR64mz^0%2DOQ7D6Jylut*6tlHicBwUgSNq{IAA_MY( zdV;heWJu?iSZ~*0~0E(hWN3E;>I9>ozK(4=)Z|_ZZWC~nx zHXSu4Y$S$TDFI$6;SOqwpRzNxM0&;X#V&0b%1RetKym2;>f`WjAfq*taCE7dD=CrD zRB0xpUXx2GQQ91CB;jV!q~?Y#Iz>j07n!p+J~T9x(@e@t%!O@2@#{?#tIlrP1l;Km zPSnFL*q{c;42R%W0uTW>NQV_iX8^Cy0qTv`N%}whP%z=(aWRdZi`Z@pjR)#_+qvS} z#!exy&(P$6)eUs(6V}At>WKhV;-esZ;@s9}KPnk2)UFvE1>A zsL{P9N`q?H(;%Z}n05nu8Rb5v6)L4mCy5br;EDLM^tJbGNBJUVz$^tXWXIXV?@MRp zfTW^!aaxe9!TlAj8c2@+jV#fw#7V*n^MX$=dap2?qa5H1_BgEF>p>`lV+T zLJYinm&K4A+9s*`BM${dORB<+6HSmZ^d?RMvA7_3$e>BkOX_kou_dAqWC930I58DA zFSZG!T6#GcngpCz0?e3nV8Lvd1}Ke7npA>n4C`nab~jQGXUdPD!Cz(V&8;1G`}^*8 zKNuK({A{o{8jnT^t^XS{XRhq)$os0*D)Dw+C%n6!3*Pn*#@`E3^WIZ7bfMWWZmT_` z-<#xlLqF%Vy;UK>~ZX|0Ae6x-iBFAmoCgmOW&B9 z`o~4{md;Om>l5C%f#@^eu1mjodHKE4e?OfyXl|<#f)_SfZ2QhGgR=g$zRd^BP3y91 z-yG{)k+=Ee@ap}$i#Y!w8(M>Hti@KXyFCGsoJ5o6;%6IiO5(slmTkpGQ3B#T%L`4C zmH?!Q$gVJW_6CuzRhja|+_~Wq)S_A(P|dIj6VpN@AE2u4!NN6sxO@8tIXOGF=4}7V z``I6DT$jCWRdyb^`iGp1Uw`G^M`&KYw}|a`E6WrvtemJ|4{}%j=?it=XZ2?m=<6@h z_#$IhUh|1HH&%}tst_%pH(XXx8KR1GO)6XvQBCLmCJ2IzN5V}P1ojZgd06fl2jE1u zklA;@2}CnR?N432p@qvOgR?coki;fQ9nV|xs7vnxKrcgkaf<^Rzz_W4$?!|9OF0jo z&7kf=O1$~*1MK#4pO0Al^{lv{#3bLZsr=xd!LI{mc9W&2X`6Gso+AC=;>;$?y15NU zH&_UGSWU+S9_o=*vQ9SOx5uFnE+7pIdPMe-Lwk7hh5h}piC^M)-PD&_Iu=+yMu6v#2+07g8O1#j6rha1F{CJXeC0CkBZXjAi4 z7un}Q@9=FGpD($zIA9A+$cN!GG2>DZ?C{<@W{=wPD@joyqsyLMd9bbk_}q1|f^ zJ>zWCwWx5_^hqSJ0s_Km9<@g#e2dD`PlbjyKsN&y=nyCVT9V@A$YW}OG)!E#DBlv1 z-yqH@fDS6;#4{Z3PSZ!XFJ5w`B?hFyP{hcg0Th5MiZYO>9SDb04tNA;l{cuRz1?mx zlTf;(7hEkf;TGd2rxbb*PQb=C8N~yzln7_XK4l1|-!2Qq!8nCj5_q6ZCo*kV5DUs7 z#)&N%b*R)csy!blMP->xDb=77^uJtJdu)~E9WE_xDJ@f?Gy88@vMpKEIsaK)Hl19e zI0^GIbYd1S+ zx^S@!;wryNqayQFGE?5O({~I<)2QN2lG3p8gbXB8>3J0>cHmP`NIyr?7TAoDNMLq{ z5xz0DhuIdMSNX|xH~#xTTie|~o_ETLxFtBF{CZBHW9g&^fXtOl@h>q$dHJ+;^kR|Y z%@$GWcz(-faYTdwfe3vndP=xF30VG8&BcQkNT9ZQyePor?urtZ#0Ubus-kB&EpLi|N%!(TOxH7dQh(DxWCO5+%Ofj%5 zOetI97X?vIRolWP&m7r*_tii8$pKeU0~%F@PE?}p*vXc) zaU^bnU8XYhub%?%Fle@Uq!6p@jq<3uPi~g8%b8<5+ZPMKt5OjH1A!4FN|=@|Dj|ni zbjG_(Gt2I|1-IURN`JoS+MjhR+Be!Dg#5(AP7X2IUP-7i#HEnZ2r(Tzo{RP z^HG8_>3;J1l$a>Vf@nd7XfteF(14}TF#jW3ant9d1DILsKBjay z{!}6;Ih~%AIbi}qNGK&9!osYYhKUCn7tihwn5h1Ri3)`+0bjS-(3WZpG0&$K9y-H2Uo-H;jjS1F@r+2D4>x2j+hARE*$z@ zmvWcOz<7vBmphN#JipszsY^U$4!%#7IXPgYVT4#jKBa*?J83i0r#lmRp?#Q}4U^GD zjA5N<81r^7?*PGXF){-c>@1d^7!w&~j*CTzs(A$n4Iq>YK>QPg2XDFgd5tUFI;gC} zek^D0m5A+PPw4yg3Ncb43RuVDQphExjip!9pOfPOQL#xDe<*wh`{**i>thavYTNE`d<{&ZM|0S1|Tb3j&E=dG3klG6)nWk_VxalUeTf**)27ia2qJtR zL8O;XgiqBY|7Bx~y0edMi7Hc1W`zI24jmr9?Ox{U@$Q2w?wU7%^IS1~NFIomyiQj0>3c*4v0T~@+xU)J*Iv!?>JD*I<-rodOw|6GdpFV24_4Xxy88K1v$l=DOKep7=yqp6J*s|q=o!eU4-rK!%e|u*~cX#`tPY)j*=pQ)N`*r`hv9B-W zMlz#gYBY^HDC`H7qj=SPjr!>cR@2Lo-#u5z_q)z`XZ!YFE_o?~PRPqrKB+94hKy|V z6)qKfPRi{0b}fs1hb_sR?UXnh3gXm=vvgN&Y}y_&raXCXd16}c_bc!0iNc4rZ+JAL zR=f}FP4>x@sN$G;gHIeWJE%YnX=Cr%tadZMTM(8oO;2io>` z?%98EPwV#gx4g4{eRE4wL*rZZ^|ke>)aq1CQ_WiqO*Qpv8aLOkt$TTWT|=t6rm6Ae zH&dy`R9(&63u?FS?fS#b*Qa`3Tf4fpe$5-Tb*mbytKVp>u5D~?Zrrf36Ve3cR zT08c39X#A~tn0|Jfm8jxL%l--r-vs;M<<8ROQ3O6YyIiL}lWRyg4uv`{L*v-=-&r6tO zP_?eWH>i5ig2pXjc|?PNfGS*$8d}-Ym#e{p>u$LF!Ckj3IgPJOYJLK?x(cJKoiOgL~hafQLoEOatl_Hrcj?LqkEaB4&Sk0@rH$0UHe-RcubLT zOC3>cMpxRo#`@P{R|0E16Y!5O?4#WDnb<~FZ%a4BC*hpk?f|#yI&dM1`ul=V@7_8b zn>q3E>K&djnRRu?;Hp9_yj2(Moo3lvdYqeLY(eS<5*z`$%0DNH)Aa&f8gMu;9UzEj z=Uw;GPk(sz{9c`xMW`SZ(hLnbge(O91fJ68CHKYgy6D){5RJSGF$4Eh1m-J+gMx9Y z;3Ex69LLCdS+Mdv((T=tvZG~*g>BW*BzZgI4V;ph=@EG~{qpOc%1>!)v?-72cnym$ep z26Q@J46|x{->P+LVz!*;g_tGn`}w|L%;L`?PYh&H{tqpvRmH&dx4r6kgP*aeiO=mE zNXGIesyqno3!E8D*rLsd8$yVozA0dtRst(EFJ$Ol0-9F9!*PLQEm`Ez3k0+nl&(lL zdnpN&xJhfuv|G0H=l7=3?4jg|DGd0Tn8|=vu9W8jNl@aYzbQZx7nxI2SjJkdzgaOU zNix0)k^+|%5Q!XFj2aj}kxalt5Ce-e$p+$Pt)De-$w|8~;^`a~=iM&Sgq%#hi-R(b zg+F0SX4X!Z?EHRlhVctoEpg`vhK5T^aU?I)Q2{-eW{n)YNqhgJyGmoDI^BmWJCT)=65nh|Ja3~Gn>j(pIHcpbpa7i3V&9Z4wfdg$ddA3L{B)1NuMYkmgoEl-3 zT{BA`SoPAc!ucbDQILAvBn1`xiAa$aRXaAK=x@)I;M#dr?bl&w8EB@36D7+w5gx{c z_63PcfZ1x($7(zkuEEP15BWH)imaP^ikEI^2(%6-X-j1(JBg^oF){;Fl0)KwcXh|i z<6Vbojj6KO@1{ZBZcv~$>ZUF;EWFSeVjdCzgmR2k24&8K@5blqv@Q@hfB`9|ZN7f_mShwM$a3l$$V2&!BTSjiFDqMsAs+xq)_=7Ntq+Mja-9gb%uox=l~vqcR$;H7CRp? z7V?0lX_6jecKldf`(J$A|AQ!4(j>M}0pUX@l4*QNW=@`- z3@%($mK^>4yuiFQQ#!-T;`oWmacIcAt#rh>k3<)ho8eNBkO7D}+kIW3T~B(Wyd-EO zr%g+yA$j9js_Q2-oFv;^f-f-Q0M!-SWZ$xWq5^}$n5?*uIojSL0)2O>$iHt>c)eCR|B0t}gJ1UG^ znd&e(9gC(XI(Gh>l<>7(M>KU#tXUfY;%xi!&TS2jTVNjD{k{RWs@Gj|P=CMq8qFcQ zTkKP4k!0LHq8+F>?dWVyX`Y^oN++}#{GL9SOpwVkrK3T*HnFvE`9;Au2tZ*pT*Bk7 zWpV9IRSCz;mTK&6$+{UG|F%`@x{3>2TibW-PZ3<;!phd>mECgItGh3~^^RrPB`=qu z^jX>_>YJ1S6hzl-2A{=(iP3bV#hQ{wod*^mcgVkhC3#>5fF})JOj>^5h0Fh5^310+ zn(!SA5xBVsgZO;#(Fy?U_^3j8FpaXaSMze*(hpr{XP77w+G5+gYbFbxy6g13VA=J1 z)+2P<_Bsl`v=U66E1kfbOTML6{+!J|FBTyTJ3iWcw7m#BMHs9qp4%Vc zEwCE4L%)6gTwUSvb)X4x98ZDDIyIDp9imB|CiQ|~x$ISp6fY5&2$4rEHlY#GvD5(6 zq%YWhLkC~7_t(2##SXgRzTK{S@Xad)izl4Xg`<%_jIXJn8_qphR`yD`y!_C6p|aAl zV0EziXsDv<*m3vRPd_;I$>}c|&qbPAI@((b>>ff&QWXyRp0Xh7t)qHZ|cI zkHwUsA!CCt6Ze*^*_islNOSXxi;LPc(nNGknBPsg9d;C4N6mmH z1GzuYR}iWqUZii zY$jxyh|!*hivxwk_*iVLudl!V#*N;K7r*T2>S&F$wRAK!HlO^W{-aYzKCTPb9SI(- zt`3&%KO8I%R#ntgRv)dYK2ly)TN$dYsjMp9kFQ9i@vqB^x7C!C9;*x6O z9ts8bmxd1p%fpAl;gkDnOHUrJ|Fr(h+0W`vf8Nv(xpJYk>vC`JS6|)gxic_+_om)A zrRh?Gdm<$=(o;2KXWDP+-b1ced&03d9k-!km9IO_YvGB4=lYy4Ul`fGed`}zsUc<7 zcbVjm;hqsOK^#n$By&jN3^ZcFBqCV?;%!oH6HH^53^h}l4C&Rg?>_m$%XPn49oJ2f zH1(wUv@jDwQuW5-av~m24#y@(hNFYS1NW{C^xf|5zSh=$u07IzuD+$Q3Ag<0!!sYB zsH~}~JX&=i6sin`%EEQA6iZdQlDO9S+evSB|L-Cvemf-pdD`jy&Dl?u^tlDA4-Bl| zZM&|uwua?S?1R36@UC)2mdqs$;(xZuYsa8O@vvYTQLCwtDrC|o`mu_eytKzo6)rC- z`T3(y988%sEqw!RXDO1-n zJfG>l@A(>U;ciZSWmUIrebnVTZK2YLZZ1I9>S;TOxJRX2E|DLshu)Q$1-s2aP#+R*!dVU;6y6$LBxt z_c&@t>jBmr_FqJi3AqUnM4-Z_n8S+CZsiQ9#y;{sd2$=K%%qI#rz)FN2COziT9Vwa zq_Anwq4>OH=kel|Z%>_ke8oMI5m-4AUyon7zvO;Ts3T+Q$neaOt#|0ifU%iGR+0h4 zkob9<;o=fCOsc3NDCFWr^COK16TN4Oi&squqjdG%U_TA*Z<#iA5N+o@Jk=oG4sI@;QeqB005!;t;vCShMCQV30e zBqRg~gp`re60(ta zjt2^eh6Y5RPqqw3PORxp=EF3)lNw8}Y&958Y-sgp5$n4NOS1JQ)t)}>Vc8TbOcG3! zouuqLbQJjoUInYGX~ycjz7+lAlXW=_-uCrs#qlhI7#$Ft=k4oqQ> zD#@a!o3z1p|9In+kmy#N?WLzDS)0i-Bvh2>L)Q*vz?h&nKBX{BS_-;@H;>XcF)Q3} z-m!eqYvYphknT54Yy{7apdcAaP+-AF6Id$@y5!4_l}f|XZ(M>;^?}AaO%!q?z*VxJcR3>#`T`$F&zdrUw4ej7&uThnhQ*1rjjFthQ-qvIa;f}GY7_p9M24Hm3&KvJDS9bsBFRdUMHJoRdW)TDl=9&i zV;R{NVgZjkusfJT`U0DX&f>@vrc6(Mow&Ncx$*p#?=Ak(+8bI30o$ZKCK885i?XiT z$SlABzVTR^v?Njtb%aWGXe6`fFJLFE=ma`dG==WO2yfZ_f5O!{QG_way{~4H)M%x) z9GfH#F_mo#Ej}|Det*>#9p`q;`|dOIzP+GLSSDph!YEkbfd%=|Ht}IZAO|ccuu8PvGp^kz52>T65y(7DTmT+(I z(q|`5gzL!1EZe+UvSRTwk3aF9)%_-w!W3L8;E8|$HB5(XeRk+NaFH}09m5j|CE@?^#Y1i7TGqxC}B%+rs{!M@*AhhIoWWFtukF z^%Qo2s zKFV8cd3}{;v#XS@)@pllPcWzscrvLlv%(0zgh$lCUCJ3#Nj;V>LjL4~54uK>><2h~gz_5x z_we4sx}@GN<%R-tn$i;M+1ZjT8x@9^)ejFuuUs~;K5IWFdT3SdqAez62g&6~;BNZB zD3IR6&u7#V$#C3)NjQ6bBZ&Hr;{r?yT(av2>As7A2@CDxyHjrLqXtB=4Fn>}4pvf1 zRm`!>)gXO4-I8xCT(D^zT^VP+@ntW2s)#*^+f|npj%EJjJRI~ykl_c;_PjSb$fl<` zRhxDW`fgV5)_=5lUVG_wgb18CT7OuZb2VXsBCtbbRx-#T(BPsdsd`RKOtVak#}@qH zj|TA#95V+ehT{-J-cw0;bz9t`$rU*YEI4@OU%KMIw7ekg$V)X_f2Zzc{j98NNtat# zT(i1}B1~#a6+Mq)f~4ukUT1JDQM58_z*It}i{Xp0oTa}{m>4OFqEZ*6fmlShz>iJZ z!2_O&qrcke$Ymen$*6waFha>TrnA^tLnE3ScBdK-SdEN}A=Kx^a5DMasKrV34-&AvO}F=Vnw10C%Q z9h)2KWAGt9VGY$ZWr@>CyfwD({iGfzS=ko&KW*8SwZr$~?_PluXLMt3YkqMg=)cL zf<$;%>M6C#C)-ouiXhojYcQ9qTBr+)F|12l3p2NSPHeO5IDdW5!}7d_)Oo&2Gbg~9 zWc?~jg*4c+bPy#49To2@NZFI;SDsylnRrmFhnsbj}a>^pq;Kt;SfUcPf@tfHj6 ztf06!9y_~s(ee$|^?SC&%XSwOm&J?XvC>#+t^HQVK+l5#k$~cn>cSvUd;{D0cDg}T zF*}uJ#j+`(z*)cOdmB2v(PaZ3mM`yAFq+$Ubmj)vdpqVi`R_u|g4BjncDROco&r(_ zT@`|ZkT89bnSktCWL2O^@FwJx41CTaKQ~(>#?~xdo_D@BHt(qpu()Yp93^*E`y+Cv z6m9}J2Lq|>G2;5f_}GIx19#hdyKjBccJ*rOwdSTP7iwzGR)4s!`pBWZ2V;KO?08{m zanbIAqO!8`ibE9#jvkKhuc);{=Qwr9N+p88pLOC-7dLHm#m~F_;*CSwe&cm!t!Qie z@m255S33Jg$p=Nx{~J$N$dP0h1Q5;?EYJvkrf{q%-U!1JNfwzM@t9?peAyCXZ?9PW z=eqi;`QMzo-sH2ukJ%wp`5Yc?B`7C-O&d>k;l!hC4(T7p6{JSeLh^~;xrcPH3eVOH!y;YcS67M|l#qM=m?)gq;b>6yaSG>A@?Mr#%c92qYj;Mpa zSg^SRQ&Gju0G)`kP4lc2cu%xG@B5W5FE@6@m2()C@Y3L&-+b z3MEU>vdm_+;!%?kPP(m^$vE_1wyQM8sFD!id z44XOd?rCg|IimxV7psaeUzF{WFw38$`HIlmE)$KQ?`IAac1<|2+dA;>h0KA9EP>QA zQRYEHMA1(a3hpwCEWwE|@b@qlfuFePv41UDEg;(WT#?I$1P7Jq^yOucT#L{ve$Wb z!;pF7%5?u)&yN;;?{~Kit8Q2tN^Wxbc-ooA$chu94fn4g32V4Pz^yPWWR6XjDM5>v zTbXD3E+T2;`ej2RMe4XCZArZ^E<$8_wlApf2*fhV00Q$leedYs7rgS)%2BQ@#Bv{dpI%he?+w z1L=M{j66eIdn}UBz2W@T;9+2`G9-P?ny^P`P4i(*_E7HSP<-y|%6yK;eSSxVVO~o= zxz7j*QMihDO3XAKK&A-AM>Rw9mA+#~Ui;1;_g@<=xthtqK;X8)nc*4bABM*FaFI)) zDFZvF1~??GR4ojP8IGXOH3{h{$P;4|&K^S$bG4{sE#HJ~_Zr~*Fl2fhrn$?GIk6ezUQG8b>z*{icD0zas2SHgLTh6_v70N>PL1DGo8@v zxX9uJiEHMKAA#OuW=xf4f7k$K*)q#W!|B+3k&;f!v~%_m2ZN$aBv;tl1AR=HF;CH?%floo4)#uue~y2lsH9=o?kfsIOff0 zeL#5dD2GMf#?%5R1Om`G1)jrzshq15^#y%*^|!zN{O`x8j~OV_q9ElR#U4TWBS?iR z3Q=e?yzS`}pTrli9Y)^MmQW-`;x3OdZ;E6`Z^C*Fnh4j68M2(~okCWYHR>Ny!i9F> zQb0dOkLJY4mu23fi_|Q0asD^|GU6zkpTK)clBsY;;q1d#CB~Awc_!br-`4Zw60wk;AIsA!nH3DxscdaYkS0-Jtn3-!Sgjo%JQ4r*G1P;2A z)c`6Oa)Dnb3zs3>ac)t9RpwDG>!7^-p-)}GN^iuV?j>FlV1to z8!BRDFVn?+(4#7$NSiK`>k056d0A6QzY%?PA|I)?JnebV8G*c)0K&&yW)>LDsTvrSvSK`%zSHqNyAG!d)<**=T} zbSQW_H^PRvT0!oSjFl{z#!vtQNB%mS_3^ezwu$ZeHZ3)Nl8+Zgom?__68rW({K*dMFW<(ca%{5lp0GA>&i@a^uYO0scz5N%%^#_6}B-qR-*cO5%) z_`sp#M?N@mp!@KV<0np@`S9eWE0=q(4&1xff2Y4N;tmvwU?b%e-9TZ~q`6$e4m7)M zu2@&#-~u(C;nDFNvWzQr(_~LgCREJDvp%nRBGa`+RUYuaVx1Y6t4P0O6r5m#aE&V6 zipCJu&CiAzPlUPWwheO&Zbv&3DQD8KDvUQSW;y>52aej_|H;j}cWz$4(sR1!eD{YZ zPIVvbIlt)qQSb94RLwQcJfRyNkJ zSk=(f&`{gj*t~A@nwGkb_3K+2>RQ*XUa_vOv3=$0wpHyN>ynKXyWiW~`S$ZWy7uip zbOc6DojH4^_wtQP*Zc2(JUsAdcoPtn#4c@RNeA!ZpJ;rKk{% z*AU|naC2xfMBj#3oorneg)Ob9Wm%HMGrHn1j^ZeaW27ee4Nl`E=9M@O`B(nLQ2?wD z1IjOiZhWa;a|M|x2waZqtE&E5y(j|5E zb!zM-jhMUb5OOo%&%CqoRjWFcPo+0e)@y8}PX?T>e*<#Bry zrMW1H_+A8HO5^e*LZ74w9%oZTbFffywIudY>u4Wz>P#y-y5NpFOQZM{IjM8d8rz(f z`<>QS6mDGb>y{{jtp~Ifw#HAgrP9g-`DOprFw+<}`H6pX5&%cU->gBnB+hJ&P1p)L zF@_=AG)x8&b{EWioQ$SN(|phrC-V3fXEG0_6E{-;0mL`>L0-V;`9gU#k_f$SRuj+1 z&NjsI2LAgW`_&p;)m4SpO`w27fQU#_1Z{Cf2j4UHmz8O$MUh9Lh4QGB3bys}gIY`L zqgny2ow3zQt5OSjaBp(ox%cKpAg_izATLM=ArO*4$ipNgLM}!?6(E1J!W3J4+Q>Q?Kn@xxI`X(eC1Eu)G7gtHp5^ zY5teOdB@d(0dzCEZmMGFwr4V_yMI^cb7oMSIveW+`8q5dC)D_ zrn1Xb{R%33EY1S2lzy0OwG>G2r#_#h@%0VD){E~(3ZDwYR`|#E;ff!zp>K9a6qQR` z_ARfitiwE0)V|sWIxELJ)>^C^d$dH;wiUvdvf?c7U(*d^*B|O&%G%(SWqFNE7(0Qh za`3TYB@wj>TXyiJWtXM7WWyY9kDA+FrD@Ms!Q71%=e6+aCYWnq(Xa6x*9TtMwec6| zdW1Q(VR@KWJ|@kvzDKS~b5_%qH<#+>_IO$M<1xKlJKj? zVXhKUo2JyPP}JI`Na|P?zCS4K9WuGsTB3)c?#ca|52{DB`TUoOYVHe>p`32znPRnf zhZ@3`|F((=dowsw+TdX6(~7Fa+<4@oZqDT1`Q!MzB|ZR?QAFnBunzJg%ta~>7A+Kt@tIZX1bn zi;H@o&0-?efik@|h=iHVhnkUl!>ENEJGZfq=21{>KM;TsbFnC6X!O&fbno8|8&CN|3j-bIvGBaEQ2IHWdLt|p@ z)N6bk-NK*{qdKl}HjArrzfdDoQCJx#jAHc-jL}4i<$5&%7OQWnDn58D8b0#`LmPQy zZPwB0BNX%rxFk`!^~gjEHbFPc?~)>1cP@HPxJ|oPt#tbjr~9n|PomZ9as-l{sewa| zEL)1*>CN#T&dRoZ&Fi+h+=skQzu%ec^Lx`Xa`Fo^PZX4vRg_m(R998h);3-^f3Cf) zwY{UOSGjR@IK@R;SnPJCN#J>G9!wN;DTl%rzb-!yJvaV8n=o zzy&GZu_Ka%oDw-C%n@kQqG`g6lmZ+1AyQA{Q)L^0HjMD#A1s>Nd$l}J2S@TzTqEi< zv5)GYh*f-K5Rn`h?u)csztYp&+1^y2&{)%Oyt<~OEU%)dq$2mo(TspEGu!S$pTtr( zBzfF^XO=B3-RJV!-Dx&^nj_KWbf??A&TOaMmGAQ>yB%q1u4G4&BPG@5^7sOod4YnX zMOpbJMdcO8j+dP}T~k-r+*03kxvxJsfcAShq;h4tdOZ>mji9n1tcp%Agd~%x6;?%a zh}007#8r~VXSN~|PClx5fJ_&=Df5ua_S$0QqkCW%)mxra+4m3=5wgh0h?vQsiAU38 z$grDY78v`KOhvsS$`^86xFRNJY6u2nfG|Eo;0V!K;A{%9pD4N8MA)g3*>}VqSTZ@@zxz#hi0ed%0BiwW$(@Q@6t@JMseYeE!>IdDBP~ z#t6ED|8a`(m>;Q9KjG;2@^1tbHkJ~ASIkfmLv9`tKmC!|%>QF|4r|g#Ei;dJ*)6gA z(Zd?Bw)9CxAAW|(nqC}rQ&(%T9Jc&~7ScSLO9`|H@M%B-o`tj+@L9Tt?xqDaU&1FP z!~+%p?t$Dwd>7-H3$D<*4-|n5iVk-Jgl!=`7xUErVIF$wcwZ!z6VU!u>^T3SKh0ely}NH?UrZhr}P}+bsyp;e0c>c zc$@x8{{S4M1K6{dsF?ccpVUq+s-h%vgYTlhQ6l|{{!aVI1L?QvJ-pwex9APf4pA~? zL!ym(=o&Rp3oQBQHN2C^PH7Y%KmD2Bkz+Rb6~CLgd;s({upe2-BPY*s)!ADHk}%yWSLf>~b&ZiCL7^di=}4Icl7 z_S4I9{swBLZtAhjvCOnsNWnV$L1}`OEA&47oAW9Qj_SCgPczy~Y+;<(_yZ@d@?SoZ zs#LjB`N&r)l}g1G%MgRi<}#SrG71E6%wkiH!EC{@Y>L$=0u&Y@%nk;uNJ2<6qXo2q zM6{uOpBc@*yxwxU-$-w?cuA`3Eq%`I+qdt#_rC6S%?VA-TD^8ftJdym#aPom==l^^3GWXm5A|w)(XzCkBU7GLnJ3#X5zjK3Wt64k zT8K#dgUVi0Mz&|+yK4!H6B0EqV*OV$M4D_eQ;oML)q5J+tZ8jr(rjtSc6rH4krpTQ z_zcq1M^ENV{z>H5Q)tg4Z(l%-lkaI0Gs^osR1{h7o>7*j#YW9!^Eb8GXy47I#Yv^b zYSQfgX`cVT&HN3%zqG0%vr>|u-<)@=xVW^Wgq2$E*d4t3#hU6WTV-WcWm)O1q8ryQ zUp#-V;AH-ZFOKZb`E<{&ZCf|Lw_)9y)vMoGx#ErGOP9R1=+y-a($imliTv@2SLUa` zoc^a*7iKJ3yma|;zT&x6nOT2bzj4!+tsidRxjQ>&-+@DikLDfAKYgm8@cg;Ld4=aL zT)B4r)~%v{7nPJ0m6n#3-M&*^ZnITX*d3MBkz8rFS2*l;=HPYd4)leM z+AS4!8+H89ZY!^_mE9@FC@JoceF!)#l~q-|T2zT@arXyx^$iX8o0{9(Iv#b2PD@97 z8*3F0@tb}i?u$mzV5zUG<#$D8a!uvkyS4T8tU=WC2Cb1j(3)5?fIvGx9H1DsnH-Rlse9XESXDIKroprc`gM>?6LrmPpiQR#S5ih!Z3w-mBJ(} z8;Y2q=xBl(W99N=Vqs3?yh8aBPLXCa^)wVF$Y&1(29%H{{J7s17EZX1jaF17EDX!# zcBA8F!&FY%GO^)G>Wxavx`m4uO@LO3?TB?xLLC)Wg1OE?Ym_~jL?lS}B`VKe6-k_U z!i0C4o4awAD|UFmPuLVz!?DmB==0JJF{WaHADK*F63M*F8Kjs3W(`gqeMuyeNA3WI zPa!U2T%^|9vw@L2@BGZiPHkEb|%c8PlAHQAUR$ecXf^01ZKU0HUQPToYk*kjbF3AR|q}QXVCoj$i;% zVMru0T3QmiZ6@rE24Ezfd%1|o&a9I>SK4}s!g~PfeB5;FF_$ib5tztqbec{PNejSlSnC&;A z7nQ7x%{cHEK?z3jmk~V9l%JX~iGyF5S^6gmCNO*o@uPr2d}cy(ePNwZJqCS_`1A<} zg0EFrpBkHq5-9W5$44b4e=#P>afKjYA-Wu$JZOk$JV%LSD;hJVbW4Iy%3teaUDLs& z*`3l{sp269-!zGo_L+&qSuJ5*6~MhFmfAE8OG#~17~k{lQ0@1C5>uf!birur)=HohkadQD1=!vpshcj`qVN6?~1ua>N_UpGWywRa(p|Hm2ti|lT&MIwr&>UtG6>*)wm*`GAy#Jm(?xRvA+r}Z)DL|I)%_ZSq(}Ly?KJt zZKtK4>J_@k$)oR|C5>Z4w z!nTC+gE`UHis{IL5k{|WVK{@t^!SZs*;W+1Zl^UFwc^Z%E87mR6Q5i>nAIi~{a9~* ztM+Qx2%L5{<|}GBNt=W*M}&t84u)OKt%v?{Ii*H_r)F&Ej@89Ox-sM z3j3If05i4WduJ)1gap&Nfnn| z$lW!{fGO)YWaU0y#}qOXENUl>tvYghLaPXFpGZ0pJcW}6i8%IwM*axM;Z)E#P66 z$u9G+sFEv=<2V{k^yHi|Ccl{VpUIgd9E}b;E`SK=sK_cd$Re^UDhP-yLIVO}83Y={ z21gM__C9`|<0m z5j?8;HKe~Fken+IUxWM3xvhNro{iZrFgD^}v+36sHGgpCIz%gSsKp52FwA>h42?fF z$7$3+I|9{@ISJB9J*dCRSzo#Bt8szM8J=kTBF z>goPOyRQtkpO~h>E&RQEOYgaUmUwS9B?jL6w2c@He9P&$jN0EdmJCrbQ={JBdu=72nw~jEw2=bJuqEWwT$}a8)j}O8IdVl>0hFZ zF1PEAG931DIyDPa-ZTfpG74X6v7*Ot3WUJco0c?_Ch9@ps+_wP7N2E5CI$7$LP|R? zCZzvt!)cr^L@^at=i+hS0wX@BF3d7(w6jOV2fhQ>cFD-X8aZa6o-+objbr9#VHeBU zid&aLWDP-2q+M6&>bZ9aJUsvJ9+Ph?P0l3cv0Q028bYpY7zjAFo=b1Sa@2@nRiLxZ}uW7M#%)n@h zXMzzo%X_~-AE}8K;$|79eXffjv`y1|!ol(H-rYq3jJ{6f;)84*Rs7#*Nj-y1Ew;9_ zDwK)r8_IX1V%8n;WHmaMNeS8a*&0@9jU$7BR&x3cdDRH>$Cs?BsZ;?=WQ8(tcAn@m zxcI0FkzJrF5-R>oe@szG;Bz{&$huCMNOUn~6Vi4T(Mc~36kM>B^TgE z4AxTLs~!tj(r8L0&>XKQukp`I*yIdah<&*5FzLLB`Q>rzjkqGG|51JTlZ%zmk<^lR ze3+=h=JNu(h(#-l%FH}x`<6`@50j%ZW$&j`MqqTH&xAoZiEJUgTKw_7ws4BWvp1-} zO7ha3R3|U*V{v?q%w(anJiPBpJqq zEKV4ezriPv1E}|L)NU&nodkt@^u~ZSQ!P(YDQ*l>B?|}k3LDzSFcWrJETv5;Zg$k~2wR&x^m@;M3arV7ViYtMX0=)-sg zX=cBK)PO~i>-#9XaQRJe{4JMhl}2a7og6DcN+75{c`A>Rv1^X8(^wTra#qK-ofU^L z=Kc#>pFQz5V)AAAaSZlYv7@@*W0PflDRk=CtkgjhZXXxFAEN2nwX}3>!%}>bwzD!) zg$RBsqbUzXPs4R6xS018(~(#m@*lKqEU#AK(REUM)`c;8x5VT=%KNVfF?_9J2kaWE z+Rz3(&B4UY)WDqR3u=s0x{93vPi($^PVO;G-vKZ;(=zvYFy+ zv_#C)SNr7F3T`vV$i_6prySVe3U3Lg5UEpwUV`3V zDJ!edc-GMk9HWRc#a!~t0vePCmXNUEkQK!cf8h!d%aja zS@^(pQpt{Jk0_JQU6`csZMfacGCs`t;iXm1p{ot6#FD;x62sw_XRl1EyZx54*BLpZ zz$&^0n@CA%u45RaarQm98`$|)F$VoNIQ&m1ih21Ee7ThCS6Nb8`OLo zf(zf?)OtG~@=)Y4DJ22-i{F?OYf{j?Rdr*{=1kf4EVi_mrM7$flNl$DcP}zol?2~q z<)4Hd{Ir$3m#_LKX57RX2e~;sGQwjKRyE(>DPGrQv*8Yx-pb5y$o$at%xj=+q0U;u z*1S%+dFt_+Z(~L?ZKXXAR){CM??LFetdO`$b}zw-ir7XgFC@+0YME_3KUeE+Qcjgm z_}8%+`#JN9LcgH>f!{9|Jfc+Eu{0H+Jb2CJQEcMJbpaDL#;D66+7%Krnc}W*_cV*5 zK$!Vw+qhb^KS+_>gYOPYNg#XM3H+Pfq{mhWezi;jic=Z=A$IC${)op2@n1-%y+T=~lH;cfjovxgDD_0Tgizs(HVd2<3&vgaORWa&y^=t-3eZ6XfUfRoiWv(5%S-#MWy$3}GY zPAUP0nE_)4(=?&ldcAU<1VTJPukrW540!_`JYh!sPlrAw{O{fzI2>gH9EwSeeML1p z5nje!JvW~dmO8DH`xftHo_NiLC&ej}qs%_WCzi!;Syt>EqGWHj=`u#fi#trP>YB>DIm=L~BN-e5OKx}QZ zpXo+3hwr1Wsd zn8c)-g3!`R|69)RCP-QX^e0Oc)JLxaFH|EBZhjPuvNRE5d;)i8Xy^gB6&=17WC1qf zYX}=b-1oF3mqY8Gn#eO5A<-{fqItl|xNn!TImzX~gKEuDLKLOwG5O58s|{6w4#{a% zU32vHvD~2ANY$YfjILRF5g+J>ho6E9jBUlyIMDhQS<+ox@ENakwv~EK zb3|lTL_Z*hgr_P$_Sz&h@q=?OE*|AmfkUG9PVt`gzKPk38^5VHrGZ*r~?j9%brS857AT%7F!%xA{)>u$w z#TC=MRAV^ zeoYc(*im&>WYX0K5V0yBIxd%K#k6_^fBvlK|1ZJ`dRB@ax@PEl^*qWQA$T zu*w@3ADBnL+4`veX~)V(%j>i(DV8C9XRAbHxKXn?h{l+maVEMvk;cPXJ0l%R)8`IU zwH)bjHrM}BxwqTZB_oj~DK~W$#ulG^qzL%^eVI}3d3kz#>>)F_b%{bMJzyq9B3I^mqk(iM)E$XG-Avv`tVxBJfV7BlaRT;*rV zffZ#?of8h+{Fz&Wr(nt<>e4k9Hn89`%gaw9+I`+)uQ3-E8G1)HO{xiVRTWl0$I5CxUHZh;uw>L{`@{b9pG*Xk1;Tq^uRpbi&WrkW&Fo$ZML1|<#WBl-yQSF*b6W4;%;ES8MPF_|i1lN~H zodB6sOGf2i;a$rsU1Gmo;`^o!wXDxP%%%K~vrQJO2rA~PVfMUGQycw>zS!5Wh4_Xp zHJVD}gZ^QX(ehWS#SNzWN-Ewah2~0JrBJvM-C!x>bqEA2>}%a-wCVuesZ&X)ZZ>Ss zs+?E<6}pz)q&w3_usZ1qHEg^Xo1zxAREke4*8xsT6A`cydK@PEN;s=-in?qntx%TZ zTfv)3tKI{?xp)5|Z3#z)LH5Y6VWz8(sRbJaPV}gz1`UPwDX_ab-$-rGt>g-;EWG|| zf^%|LW!r%p@V+X(z`(L6B!(VSBf&;~ZO6g$P65t+TeG<{pr873<6N)>k{Y2saQ7g5q3yOEGz)suaIq=0Pm0ur<;c|5 z$j1n9(qy1;^L@^4^^Ut#`ouPGx>ZlEUM~PQ1yp^9&_hwS1XkN_PyIQd@|6v+yp`g zP_|c@Q-UW295v{PdYe)9iVN0(=#yTW-J=4|Dv`>y=}bh0qo0s_KfSj-nvT?QpT7$1(a_+RiZVdavpOqn+|ncgG<*v(RlrSYWhUOR0pEeewZ5B zkx{jKQJjssd$GV!s?8exJQ|=891nTHr?xF1@6G}m@Urqfz_wyr8W*ESfY^cgft=m` zqAR}QaDoN$vo3m98*;UIAq{ZE&#u7!ISTfjP z@_p1~#AD={IZeSLuzQ5R4YE=>T_m*e@M`YS%o4VQKAFw@6(6T- z5NdMfAK{7FG%#Ho-D80_0fw>thJ{S>;-hG51D;$-f<+dlJ%{RaEV7Sr@!7%%)sN5o z{IeL;L~$4j{XS(}e{tB)KW`OE17aeZjLBxJULJSVuUm8nX!t1PY)~y{m(L!!y`t~` zFYQ(O+|+f&ZG*uuZKu;@+DSWM+RU{7L}%J*KV%vh3QU3_0m9+}F&Ky&mSKs3uoD&+ zk~j>uWm)^?eZj^X!r%pC3%tbphHZI~u_eor-n(1RxdPizzVM+RB)zA5?>Xn5_4nI- zJ5@8g0LOqhLEn>^j~$i_shIy%fkGgv2a*@1anfk>5bmuef_D{mK{#t4*4Kyl-Ny3L zdt@OQIU{gB=DZQdz4oGm`9*M4a#?k%!f=dofwcn^kHarQM0TWQ34yE@tkw0F{#53QAIfFzX0^O%!G~Pq>{6?MRZm z)47S+G&8XxIo`*U_vGf-rC;BrC7X`N4kEy19c%u*XMoa~f=mdyTCi>Q)fA#F8&x&m zB&BT{B^8HBTpgW_ucYTpaPM$-lViOk>ils;Qb1}4fBJYqUJ$FFVO-%_W5pm2RV~a|dDL4}0U95T17L0v8NPsIg+=7^4kP^o)2`4bav&Xc;9i zZ*K3uarz6*@Pa%-q0F8J;LZyLNtkVPN@2MfSHonR1cwX z)x>cMn3F9>h)!ok*2hloLShS*Q~a;b&k|%$C6janL@lO)C@(UG3tj~jRT5-apIjIJS>a{ ziyeJLcq@Sm739_st~&BcOTed5Q#td(=)%Hy<%OyLw->%pkDzZ@X@`2WFFeKG~5^gREliC+Q2&3iWxj7+P=m!xL zcms=qq0ix)OMo6FaYh7-fd3-+7#!8iE7OYi>rI6jR-LXi+ghm2bEM}NSoF3#CX>Nv zFxoP0pPCG57Kc99nq|)}Fy$BKJMydY3-4E!72T^St*flNf4|Y$__(p*QFD{a)!5w9 z+S>6`duM-FS6{z-eE8YesAp*0H{$bq>E!H`pU$d54`3W*YXEWJ$CWrbMe zQZFf#MiHuTwwx-mP$?zk5BL)bF)Ut%P&J^;j89L_Je%~*dPY10Jwsz1eBgIIKXvpp zx3o7mKWS)gYJAer;Cfu`tgWrAtFA8LWq&R%DK5@0DRPw9E!j4s&1luxbp}(O#%8o+ z>MZsgLvFs+m{ycyv*&3Y)&jl8Vb3yJHCBsNlaZj$*JfBu8neM-*4fP_yWW^>cNmI| zAjM$Q>J0iclU8rmTTSU%7K7PRSn4P!D!+TDu(HxwRpxw9SzYt+K}}swQBKK*R4d&1`r`Gd2H5>SIGj&aVG(GYS`igXHdlEvV-hvAL^0YDmdGJO{V z3V*9%>MEfy0%MFT!ovt&7Oo|&h)SK7h0H$L&ZLydbd{FmdDd@K{p~GvKjxQb% zMZ@oQe1l6WBmmbBLAV3KfG;$qOo!Z)Q^OM@J%fD%ZC(9MZEej>PpVuE4fT(zYU-R1 zYs+(;wfU7L<)x-#tJR*P%goHqFs2(aQ#G0CR-4VPw>zxnY>U~lR+nZl7G*jtR)bY% zHrg@_W@Dzopto2pwk(U;UTC&LoO5hNMpK#DX0d1JO?sQrY%yjS&1Qqns4-iuj>0TQ zc2QZ8uBx(|^QYKTuz~8l!_X{lqRY8tz4*bxC1fd8@sj8^*>u8Qp)wjOKK)XL5+;)Z zd_%#=a~cE5PN)w)j4W4`pz01yJ^zl)D>V90;SG3+6u?!YvGSOZ0R$ri0UgjEuu2KE zK#9y^!bL7y1FW#Q+U4N_Wq30{V`?gA&2mWKs?8f-t-uR2 zBuEPaA zKrG?zTgQ?o!I$sRiPUp9g3PT=`rb`@(>3YZGNM-Awt0c|A+PL_clg1z(9dQ7w$sIm zp!Ji0;4p6f_=JO?pWnF{Quo?^qjUzekl|Ba8FS=mCy@0653hYIb!aN-gex1{ecQ)2KVFBdCZ zD*=}LGr-icwH}Cn|9Y38r?0jj+7}Y_tIxxjTt;qf+_iG=)-*;3q-FMb%QAw}GI}QV zzf4zIa1_@Sof(Z5WF+DWABjIw`N@Y<{z&B~RaBC4Q6>qoW5jMdICudHgB@fWY$F0$ zTv$NLl;gzM5D+$!3}Q))3v7pg12Q0lMl2GGkTjZo5t@-Snwfq}cfZcLuLq>k%yg^! zE$5zl@45GVDQzO_MxeX%%5^%L)$H4d!$tc|`_HYmxx4WP))&iy=xq12SaQjg!Okmt z>$>@^dG#AnW)$V1MI{9te}(z@ZRa8#EWS7P>k%jXvT|DL`r$&k<8|8^|7FCSSa8GX zoU`6QHkcLS$x$SO(#VF7O+h9Kz-8)w#?e*Y^l2fgq>@C<%?YQBf3tLA+?g@<>hi^n zX=}v}(f9nmcUA`<;&Yzc{HGoK)Ph~Fy;5`>^VqXy`k52CRr@TJcYdh0HFRy*Yjyp` zG+%AJ_Lp7u?nR$J4| zjo<2NKAEpYE0POPFT(@v{kA#@A^7-^1Uhpl9OyOdaLg2m6Q{H0cjeiO|2=bxCk5xlpJ<(!AJAHUH&W=7t&WU{g0U1lHnNd{ z*kR`@>Z}5^K>V}&3pAMq^2c6w&a_?#V1;)&EbFP-4(rb0W#GNx0P3u*yJYIn3b#ro|Ho4QRZM^@%Pr_TiQxx87JSu_g8V!>d=Lb1RY$Diavaj)P?lyk_OlxPmn zx0hSGTH3lBk*IRWYr9(aHq-%I_sXvZ?$;OF;kp@BdJZ*J!kt$t)9qxy?I{Kvu!_zM z_Grvjn>%R8n=s(z+JlZdzZ^~4@)Ny>7Y}2bpID+e(X&6EjHly?cs!P%Pdpq8#}koo zBpwSzL!n4C8V-jdL&4Bc2;XpMC^$5vf>CIN2k#8t2?mEE{h{#S&>)S8M8cs^ zG#rY?qF6B+#r#Av6^+Id(eK1k$!I*4N~V%`)6r-wjk|O*l^V{fOy%9t)X3e;NLpnc z7|xE3PK;$o$4AG<;h@~~e6E-)S}p{`2m{VD@KLN% z;L7m7%_<58Tsu)zg$MJv=JWXECMI%#n#-y2X`>V4<%H7$Jf=}@|R!>^t?AG@}0@sgc(a%MV}iYF7PD1MV*Jr<26 zQg#QKInX|7=BLPoZz;R+y<*qgbpG87>exTjtwlA%%4&Z_Dz)Wv8Ce>Yh}+oTVS^Ml z3{?CB+63?r-WSr}9pu^!aaEo^mJsn<1E|u_e zTB=N%92-1>`_`9o13!&$%-sFr=-~X})DvIlH?`P=~-#1e|S#WB3>z2kLRoH&j7R|41y;Eb!=GV8ayX>SJS2Xll!YLd2kc{&Q zI#qeODBxC#VO~yF(i@LdaB-C&)a2?3NnD@74_?zRnM7`}1!56QD_L!FqTZwhu%hsAath7+(erJb zz1aja`O>43{cT_CN`tk(V9aV4;^&=3*6`TgqM*s{^0g!D_SHd z{@uSg|7*+9)x3CaMRE28&SwP-gXia;!cwx_MM-NZ>EmNA(>)#6?j8QT#{e&b1HfPt zg(QuGrb?oczSs>Q9Ka(m4llzKu;is^qY+9V8lb(7&_D$Rg>ZrTV4B6h536=;D~!** zYy^UA{dU7xb>r+WGW_^X>6v+rx>2+TS{;dd8pL$-3r$ zwDCoje`aIrvL1GFLEEMsM$^`lAI$0DIy)WkhrAR?*SS3xC)qpfV!GW-f~Nq%qjiC7 z2PCpeY4!*fA+`~)I^N)G3Pl=76CDZs0`Y879D-5@ifL&9V0}lwC>HsdpkeehA4+hZ zY1!Q+g>h_W(-@0=y#4I~o&CUR3W{sL6j9qH@A~=4FeIcI$FKTYr7VzFIq^_MV#LUE zOjD|fMN&#P2;smQo%Z@mxlQ;0m|lZe!E4zI zrzNpOH38&QYYafFa{nvI0ZE3*y>S=a_0Id~JV)c8%%`q4TX3LDgW}W3SgGOVv713k zDU?oW`t_USvm6XZjUzBVFkup{m_v|!!Z6%yC(v0uySMeFt5aJfP0W=R%|WHEtBkwi zfCpqJtY_Lhk_YkvZ1JNM&~+NQgw)xcV(G}&`Rox@G*nj|OT%Kw9T206N*53=G6WvU zQ}S2WwJEx6xlt52h}x!u9b&4@tVFFhh+d0Qk>=Cdh%|{Rr^}wsOR2qTN>dv^VBFX; zh2~ht7(|CTMQ~-5>wZC#R8C7ITtuDMH6qIdqGlb}RjT7~skCy%e3E|4&|)y#pge*- zmiCj>+m;bA=wCINlm_2+6Q~r#oS25Q+#m-;R)VkBfMwGdno;=I;I1(83g%WrTC>W~ zM)DGSfv!oc2TNGHTB+>oJ%rwcd9f6816P%R`dp?oa7c!ms+u5^`wg1Rbq7K;>vYA_ zLZ0j5?4>d?lMEsMx)DO`-vf1_XVRrdm0JKh4su-tnW-y`gIN}Q>uA0FKjGCL+vQb; z`|GbQl+rQ`i$>%BnoUhi^bbs2U{eODb6JqZP2-{=8e`0s=^x8t7*S_LiR03>r8nAA zKn8L%P|BUQw5;4##;t77wf%8vp||fl=R4>7&N)8sd%j-q68~r^zsvca_dU=1JkQIb zM2`c%aaSUdnE+t264qs-S$<%Vz*E$Dss1XRC8EU`8qHl4fgp{XU{R*~7JaE!bzYlc znZ`qEe-Dtdo~a&_W3IM?+G5-?1NE{YYUD)cWSBeIZugaG5^`2WMAS;f1OpO8XR zQ7-kMww@^u+7{DTW;*|2Q|=@(-U@8Zo*edXQF!5J-WyTsv?aDVN_Wlo4QvEknh-LM*+?{DGLuk- z1k&hi%%1I3DXW&^8Dv7`sfRk>$07vEti*Itb&|D8lU9g)Orl1mSP#9Mk~P84CJm?a z=JfrgE_m#aR-rB;4oS_@LoE^Db)LY^iza=_2gfNS^!Gzu#KQ#Cghb*NEershBLVg> z3S@|>GaMx|lsbv9SwKm-bbAWR-?=xg#fK7P(Ew&kH_kRi79%u!GTjd?QW!-%OK~pD zD(()AvX}C1Wnn3T{)&agsfb zfOwSTTAVD1C>RUQ&_o?U!O=k#{VGGgul*QdoS=wk35qJvo=YUa9$;35AqyV$ECj+b z6{XfsP$AJOD+kiXoxC-La7PjVp*4AsTS9rbMWw0P;d}G_e#KKwB!eXlN4|p`1O)d$ zN0V_n!&KMwIdGd5fNTdC#%V#rO|a_nG)f)?ZRFn?^W0D=oP2)2HYofEgdoE#r zaRp|eYrvK`>tujc##t*On84mPe~4w08;)c}xG{P(mPbhwCr8*!LnEpGu${^NSTr+F z6U&e}=!Pj)=+V@loc;_r8shu(1x~4p#DDqLP~ls~zU!6>}e$!*9GD z8za~KdD-0r4J|bL+qm))Y8u}>9&6R-=r4>Trh{q^s27+~A62ms(&EP^`e`M6JoN1q z%n)Ls;UsQB2|jfJAB?YYSsWwr6$)tdTn>~aOfb(s6j-Rjo)hguhU8(u_yP~z^_jq; z!fLMY+Ovr@FJ4B4&s}tO<=k`5)~~TiT({=I_XiXAg6%tU`t9vUb{;(5+H$1xOjl=T zch|9_=il$XeD%upi#-?nZs&Rj`|sy+qc`r142_SCKa8{x0Kj4j(S>d*8j3L#2bsrq zDM=|446_JH_XHfUC4Ec?rVqYLmY`%vzo=XYIF~Hb1_%-?ur~PM=<9E`jq`u{ ztw{?#kee>_y(Dx+*T0jP_=R)U71|Y7on2AZMF}C>MAR$>NZ!@R5w*s zHa09NuWBlXxMS@%x$y7d(sH&?H%*j!a!S+TXUvTjdp-L5U~?caa!@R0*8#}2mr z^8_%opT5}Deg4A9il@Kc@cx7TyS;q_*4Qqpci+9~dbh{IJ!S`&DibX4!|=Q3dtI`) z^dskLe`jpX_g-1KV$~-a^0niFloawQ*N{%zu#m1mGDYY5KC=@EEI7p)3K0f~QOXJ{ zA7@%>-fN^^ys+7_^#nG0if9UD1Mvgmeh^KJj}4E?;nAV{{R6qd-oD-|*Dm#3xY*r& z_EblEN5|2Qwxx@{d8~c)A9uIz>#^P&b`4J#)tFFG>XnZ8YVkh4mZ0@WrpZ8U+KXJnsx< zWV{Jis)h_EB(N?S`B1qcXNT_e4?~?ZDi@*UwbzLYjyziB@sdbwmjQRVn2nj`&7>hW zpAFllS(M@+;ytG-htE*9hCs4RSgwMgQg8;H%7US#-+1};C!cs?{kRP8`kb|623*Uz z@7-R=jd$4)EXeW=;v7w>k>NOw4o>9Z+>9a+_$lTffki`el%uR*HSchS55r5bMO-SA zdlo&t|EEuWxtUgrbUEA}&Ik&AkJxw_R{|cy3B|g|#}`4rC65hz?=0o1hm#A4M8cbH zAty5QgD%~1mo#Ii8%ORV4wHcqq6L25a0b))=gWQ|?ycHmqHJ(4O)*W6wg~CPR9umi z>uEvJ^C!{4z3I=8{!^-?k3_t}@eZJP1#%oY<0&f5#Foc2(+tk>;`VtapY~P43%|O& zE{aAtB27$gI$K9)#6X{vH{O)AUXkbH@kY&!7)8kQ71F{>%cd?NxbOicSfUCdjkaM? z4e8aGlQ6T&;a|(LK%1N4m1~Ypb03~yI8zr!emO#Si^7&gi|>%EWx+EKbKCS4*QJ4e z6JQ#>AXY4Ze$AjG38$3>?CzG9SS*erfX`v63Bu9l)N;d z>!!Ty8$y}J%6vf^MP7hZF6U4pO}P+7b9hh`g*&2vE}{m|j>gc9%90{_?pnVt(6&=7 zFFmuklQS-nGv_?unrI5}ZU&rL|FMnc#hPQio{Z)sD+oD3#AzxNcwsgtZpHm679qzU z#ylTk18UD{BF$9bsVeaU?t7Psfvr$+$~M?niv8m_acFuInVUX`mWVZrej=mHM6QGI z*6V5QPN&KKZNSSjcqQl25hC8Q>YaYd^r25fP?pGt=G(Q@&j{WO0y=`AX9t z1iV7Z5P&4<%$R4uFL0jbl0HYHk+7Pi=9TV+Y`^qu+!!W=PR0?lL4set^xY8d4PViW zD`W7j5v*@#(4^#1a3I{;`;d~DwdP-RS9@%gXC3CWr!8&ixCG*i#%Od2Gue#(VHTS) z4I>+y3&AYAsL7P5j2L4a%TNJ_2)dz8U1(YF_cG|X2`FS6bX8`WTN6 zjXx>66ol?Xc(9oh;c*I->6!nXDkx*m&(C0N&)gDT^`!7RLJ4ofuqR_?NgoC;;ALnlBe$41<`RX38(`Q)l+cN{kcnhDVTcmz8Ow(9L~}dqAAal_+QB#E z&Q#_`WY5Pb3wOx~Lwo`T+!Lqjy_=!7CZqe8{>U#&6o@a~rOAITw|yY_#57^OB<8U| zybCxEYZ-2dW^@+5^+bk(aJ*z5fs}0IW_4gVG5n!es}L+gAHS_{}(g^_E;fB*O?j&rSdA0oh zZnzy%w(B4-qXRHI9&ot$i~!4Md`$i-*c3tY+p`m>wk6{itR1uF4#dbV^n}cf2v{TO zD-%(|lxr;-#HyJLoS^|4qC?Ee>NM#AeKA9JF4O`6W$E)G6v${~hewJeoTli8SttN5 zMgE?v62pK;If50)dLLi-(=4O_exph1?%0k0hphHCWDQBZg5Rmoq_7VBB1&&`IqEe> zn2vNs4~e9)p_GnPtY>j8I9bD#6EZ&F=PBAsOY+}B%qy@s=tqS!mD2Jxa>NeP_!3o3 z?kn!?LL>vJfPnvqU}qRD}v zr;Q9XDP|Id=NfiX_(!E20x|iD{Gv*wDYR5eCDUAtmCizf@%f{)qWM9YQD|@ydTR%OCG!Pat6o0VF>#?m4T1NuE=BtTKaGzA z44)fXCqBSc5-J3)qNtd~Esn?>Zdk{Ww?`)5RSxPCi;o zFlKUbv6M{|n#IDIVR9PLG=5{zC2nj$lxEBWtBD$^32$GuCBcghQpNlS5u6hhh?zn1 zG2(5+eX!?a6sRo0Cw-0o4RGvXv+)A`Yix=by2y8UONs!)#gnfE2Q;{Yg*N<5`AVHw zydon@Bs(O*y&CplcB6>^n?n`HVfusPS&P$jbmejom)armE1n5k+mpD{oOD;5E*sg0Y!k(mQ{BFo zg#c7neqH{3G)0QlNsSImlp7hPy&2_hMj0LZQ6|{*iVtPozv!yJp{~sDdG4w1*y@33 z~DU`O1kqo+DI&VTf(=Bl8)9!|oo zp2UXD5^l|(!tmfygd6Stg&*#IA&q1&{?Nwxfmu->#6PnayStu0bNs~7Bkvs8f9TDB z?D_kiogKS6+UuG(x3)DjG}cu$RQ;{7>b3gD%9fV;n&yg@*7~;grnaV*hWgEIO?9pH zwN>r)n>JO|*R;G|+t~JcTkF=%P0d@kY}vZ4wXveHuBNi7qOy8ZWo=z!d-d0As~g%{ zHn;C=+P=G^W8bd52j1#Da=7#0(SN;r@V%2=@0~n<>3q+BF7#c!J~)s$akz8gyhRsB z!InUoL1!XkLt{x@CIM|1plvUQ_U#uU)TMKUjdrX^+t@C=0HE1l{$a$83&P*hS6T0? zlyX7BBy?fy1D{Tb1O)b1vcg;~+>3R9IkdV6J0OF0SJo?ob|EXHrg#Fnf4ULI1s`W2 zAI7rkL4QmSxtZ&u>c+K?KRMTX?!)uvPW}7+(_JTyA3M@{^w6QseQ)mHxA&iWw!N{X z{op%)UA%Dp+fTo?vAU+Rs-e2Rx~{6ZwWThpXJt5fyAkGzCyoD7MR=$)y0D->Twia) z(ghzyp<3AlmW`n&3%xZSM=5agEv@Ss8C?+$?!B^Tv|KSp#HDgPr>pbn?>?~i;V(X$$wCe& z5k0unH{2~|?E;9S4?L!C-RL`oLA=$^ELnOzT=jEn|M={$mRv6jyEZQP^ZuarCu=sW zc?)hM?XLus$fx|m9V@+FH#Iu2UO&jVM6 zpbXNZ=8A+w$XA>gL^hoPi!e~MDbxXlpdE-Pv~;XyL2_krBSRI;UdI>3lqTXIAkPXi z8XXO+#k^pI!z`2$l4JE}+~MU9-M{dzyY8+r@>4h-MeWx&Vj*h!WfR1}JOuzzS$Z`a z7gUgn>>y5JS;^L>V&rf<8*fBN5(PF>6@~m8>od>$4c(SV7flPs|Azi_&L~5rEG3js z1uhkynFXzqg^7SZ!|XdIE8Se;CEcOr zm9d^~XpG#G4}5d+Jzx6T4jigN-p5Oj_#0zU4*C^=jmnSX-WU;gpI}b&cpP*yFzyz~ zmoh6O>CMu_k4g2QVejD^9YRf<5R>c(NdcSYA*hF6yCUCc7of^{Zk;mxlETyx>8z=F zWA_e1%;37qyg68&UxBElRh1QM$ZfP*>%M*8nVt8Z1PAcPo{?jv`-g0zTIlP5R1+go(MuB#-;$j7aCJ1qM6Cm>O zHo6m(DKejDtj;HoE?AavuA(yufi24G$_xzTAk;-SA?Ur~f61=0*eb3wd^g*~W+_mq zX(QB!_MuYyR`n$cAp{d>Kq^wYuTooerKPLrqCiYhqqJc&n8hqfAOut>0@_drSQr~) zgTt0W*}`TP1Gd4wcV^C+<(%pF{pZ>y;lcQNm^<_R%lVdDX&)9ZdXXMuG_XaadXKdT zy=a4d$-(wxYd~S8k_TZz5=s>=Lb3~fNvV<*ca>+VFi3>Hlk^%6H1J)9WoiQa#7kA7 z#Bhr+Eo z|BrA9f)Xrt8}N)4H%v8B-%gi&$Mzrn9Avtup z_$3j)5I>Rl!3;WQ5YMtSxit0o;K^ge;KH&;@&e1(;-#60V*_lJggJ>PdAeu%|BOVM zR9E}wXVxzBr3U$$xP)AIHxO7G9vEK>Twt%%m*(9uvllcq`p-0RHeir4zb%4AX@JU*nn-X9Mx;#;)-1Y#0H%g>o+^tHStia`< zkXNx=iOWC$Iv6wawq>Bp2ZUQK}p6o+C9v})`d6F?!p;R|ww~hRnaBucAGXPUStiNtkSy?Wt zF5w@~6N}!BjzC9GrhC&0XlJ?skZNcgpr?>g19L>F9YS~Jf@`MrUs7RI8M`xY%DoxD zY0Y8k2_RKPBAewzsR~p+O+O%~*U)D85km+5P9j^7drB3osJj%w@vsKs&Tbs8L9D=sYB0yH8dt->U!_?IrbbS2=GBP4R7s`; zdH{vxjCF#-AQk>tx*-auM@CX!$pggk3Mvi(E(YTDpi^-8LR*w}W&At^*@{wChf+j9 zsX}27{_xzC|KfRcOg#FP&?ThTqV+1YcdKZekiKF1Ii>`K+#N3D@b&UAiVKvZ5u-lA zRYnJ~v!1*q5UEo%9|Ry|W&F<}iP7$byulB|kJIe2ogqaTrLjs}riAHKPvL`L;V3qN zk|#Ywl&pRc0^3!z?Vqh)00j1)faTgLV0o zY?Go8)2(rM5@PN>KXp!#{*LaBJT{6$4QSPHsmt-@nulb?Hs3L>hIsbApZ{Rqy*os=;3a{y@kF@#rg1MpnS8Re`VhnVA)Gl4H1*5Tt?NsWAdL`%w} zhF=~98>iKK-_5RRLBC=|hiF{0&!CLMv`NVO(b)s$fr_brtm0ahgIXbbHx= zzhEw_e0-PqEWA#h2O!ZfZoJ|-+%jx2;w9Xl(TnQ)6fle$ZpuZ{er&I^!x>{0~3-e88b*5{>M3U z@s&KO+66|cmlkqLMF+%2%EfY&6MtjXV^lgty+b`IZXY4XT#4M9vL_h{Q>vPudgg#~ zCM1>Xq3}w!+qL`kWY`|KcRly1?|b+= zMuoH*VBwI%=yvkEYPb;luYML{qF2B1iyz&JEVN_qcfLGlAU54UKa2g&+dGR@S>gjs zzCzBBcFv_Bj?L3ly&h+6$i##0le(gf*q#)%R?^fUF~oW#?(aJ{d1|9LqktZS?g}ob zTe-!KhdaH;17lX3=5Gbj-Y(>n-Sp`_gG|keVL#*8 z?Z_T5dv?V`CVH>7#J+B69KZ9^I8Bq9LtjnIw%>Jn7hTA)567!3IPwB$Gbx3ec+1-G8*eFC^{YVw*F_l?ScwSCKufA4PEw`7KtgY>ETT5%}p{C~M z7Tc7z(S+$M* zULeHaQ;O*FoT$seQrBflc^fyHp)&1u%QEX%nPk^*-~w&Uu3wpS*RO4weCeFQkj&Vm zYbBXK@}-GXL}$XZgwzR=dBrjDfJ2i(ml&uotP_$+F*oaf6#Em3hodnd@p}V-wtjX0 z{d>KaE?>TQ{@n4}i)YUqKY8NR!It*6w)W>xWKx&TNqq|M|->dKm}j zQabX|jDdL3-;L2T&l~K2;p!?7QxEw_RRb3b@?bY60Ho4_pnl_^h8QyqAYIA0@?Mp|5`&tK5d*OXBX0ZPscT;=iz@EMD zh2YYQ4fH3Vlkv_)w5NK{B1UdDipdB0zUgr{RW!~r`{h|MF8F~k_K zJ@?*o?%aFNxm|0YF}BhQ4ff1jpR@PcYp=bw&MKK<17OA-2r2bndKbG57AZt1s}{CM z4yL+Ct6qEjp@%1*ht7YvRQ)6k0#JR#_!Dk00D$?Afd|VNtc(Lq72DB1t!2lL` z`#^ZVZhK^MO>5Ppi(*+Roe9537{IVgk0_Z$Vb(K>an^KHt&!Mg z&#E#uaw1`XW;oD=AQOUJOsi2!t0^4Jhogcwraa*XeYaU~c7cUKmng#GKv?h4u!tj( zI8vMYe5Gt4iOxVma2~=?r7S@J!zG@c?z{|<%6R}HqGShR3AnDs;eE~k(8p+3%0#pK zBn)JxbRw{g(*D&MkJpPQ!eKGShddodn*IBw6MmblzNd(pWD~>07TLB^$qIx+6?VS@ zhZ4-9;!79&Bq;GIfGMfNm>3+;)?~|YG zQ<22XSxom7iG9&SG3qrg#+by~#XU;FGnSh(wJf7VB94l-w=|%7Im?bs58sp&WeUhd zuCkntr~!;C;)#j0G?tP%I+i)`U(i2eLbcE2JZXYNY(Y=p24+|@BBt%#;=s?>1md}9 zJ#b#^ETC+l>jIi@^j9!+TlAZ0nZAvTcLPBVu0mH6x z;=(5?)LXN@--^-6x9*PsQZdQo_LdPzCOf;++iB@X4be4fI_|kB%AZnW#M3$W%B7b5 zXxFZpvlja#AAtzP11XNJtIisj{LXt0C}SF!PN{9(OkPtB(`ZzoI44-2GMdPwP$qO2 zhKV(omxpg7w@ZMQVwoLvhKzp&OFDB#6G)FjgzQ|`KpbM=>GfhneLKytf^1^Gqg(1F z1m@)NN?L0)RU)-55tV`zmeKWCe98$J7cDE-jV#L=;w>JFWMv@Fr%qp_Q1uA1kIH{h zv`YP3?Y-Mgy~Cqm7HO<|Ae9|irV8n?@q$`xjs)E3ms%r&l&yc_(ZgS`nhzd-AlNQejVhOt-5YeIXl0p)mcB?`b z1)D$R4@P3E@M(?cei44w%~A&EcZ3!yXxd=ZV5CjLI^EbkT&H9=*_%1F!%2Ll7MCt0 zWla)+g`p*6Nx^|?h1MdRL!1z^nUzoUI2F=SE9J%^pF#aX@5GG9T1h8tMHsFbUpcPH zjKHkmfC(<@OKG`PkwGG5$>BGCn|=EtFttF|mYPdfY!T!%&6@aZpEce1Qh^26_l-!( z>8$;5KLQ;kE3F8T6%ugfR47k8Fq{V7a>kL7S_tDNR-(tsoFa}~`6So^w!TWD8+aH8 z1Zb?RgF2WyeX);Uco;034PawnVq~!3o=E37V}r~3bHwenw(`NUrGq>|zkjIm;UA|aHvdC{TcN!!bFm&Kp`?iX+M ze06wsn=xI;6NuPLheq^Gt;_R+J*YrAT`2<>O92PPXom!riX@t*!%E;Rfa8m-MyN`> zhn4?xG*0kwmGZ-vBsuHB#!+6Ne>rghTiW0gl?17m%fpk45b{)-kWQv~qv_-0r%#uUhkL zJJY04kl7tah7+}0{WO8Ue`@I2_zpuBssqv%UTlS{CkyX%~{JC#0 zd42znUw`!0S{9@>y;mz5j@&{ zIRB>?(=o|APd`~>;(ZI|zj%#!B!>>b)QMFMhaky_JEzU0d8b+u4;4B*a@eiNZ}*O< z`5pkV{?`G)W1a_VNZT324vs<7rtpM3JsM?ywgns ziLoi)mZ#^!#FV%E=IArp#t+mjvv%YD!wcgi3gdj^&yS_)oUZn?^ju>+EM;}XqN*p| zzmQl&&+bXq{3;rAV4m0WR9i6VvRU=2iPB25Wz36Btd(M+F`QB=|yj0!;@3TFWZ*n!l#D=7an*OAapW{r#2?7k=D% zVCLG6VnPp2shMYOLpF1Qs z4ooWuFn;rm`j+Ni6y!Z0n0WW{2O?HgYO(ZSJqs5LrP%{R>HEd>iI)i;$XTap(APp*FO@9{U|M18vJv-o;aqw zX6o%HMxepuU+rDWx#=O4P#D827A6WR(yz4eeAGuIh_m?IAs;OOD zT~oKJ=AHGcH?Dts`G)sataz__`MT;A%U4!cuUYnf?fbQxwrs24xM%CmeS7!Wz27@> z3MzK$Wb@hPGcD)a&!6wO&~v4y_xhcD-_5+=f3u(H__AxNNWd!q%fSCG#+(Bb@6AGhsGa_3XZok@Pp8vuoX*%mfkHu`3YZE43IhR} zQ7BkSr-MaGoettytum06kYExdkxM|4|st^b>sT>4{2;|4xVFn#XNg_MBX?Nh>%xr5ZlBZ0uS-8<0wHlyPT76}Oy3%EEsj)=;AV?%>_K z*ZVJCIp24!r|*Af&YeH=Wyh&wZ7t1hha10WIa-IZ0lck!nC8a`?G^hoQ`mZsL$b{VSnj^iT`e^&~EaQbc8kgu<{ z2y0fGcj!f#yK|kJoY!!0ky4%cN&pr2e@3Ljd{HhD)d<37qX}D>bk5%Bkjgl<5;7Zw zP7(Q`ETaPOIMy-LWf@$}H`p^PPtyC)n{|HR15*f$8Z=3!rb z-7B>^Q-4_pxw^mRqqvsw+NyRkbxeQK%6mUTDIF>Yhv;i*s$8%TfrKR=ONDHO-W3uq z+d~l$g<@s^5A+k#Mx=!s0NqG%+{>dD%eE7T#*eGR6%jy=g`^}!I<>CzRk|z3E{=3$ zDZJ2XEHx$=Ns*N@@FazfNH6%l+TSFMS4eG==>NK#feIoz8H`aMw}x(u#)G;(bgrar zPKp4Z(d58t1s-ACHkKsE3uV3it=$bJmXY%2je>)ypD<~6ijA`11$j3^cUS!mAe$@f zD70IUA#U|z)=~4sC8>oJs5(X;E%2>il#)RpmDUNuL(hm-RWW`T+!SuLyVYU4lMkY% zd(AWk)eX17M6FnMm$OW{&$6OZj&YKVSOX`LvuC_`J#>`c#*Cbe;6-(!efqj_RuL4H z+9m3v*x4!wT4$}A8?9EXe8m>YuO8-CD{9n@f4q>t{u>o2e3t2MbbJs}lvj@$t_^}) zf9h5Vg2VX{s{Z|(futq1@WqE6C>gy;R3MfZf=2~CK`-f;)#OOT5o87g9!`t~^Kwj3 zYUAawG#T7i0c6a6=c)172DBz-Osb$7V;_AtoJI+8mih`B{70(mbZ1ZZwX5BiZ`>OA zX887%crqRrvhA8`rFHTj|zRcO$Yk?zm$HdMtT?f)!jp&ExS5XqI%9^^szfH$z0oeALOdgM}e2AAXeAvF+q+ZTV?jdyPe(%M3=&DhkjF; zg2areVsRYB}rhAA6l^?NfsPDSr%dNfU3HWjcfn=hSjgES+jQKn$>@P zx!~2MiwYLaE7&5A{9#SrZ{99`L&z;#%Zk+I;?(Sv4*WIoK;78%{2$-4-gv!j|5MK5 z&t!7CyMD{*4;LJtKjd0La0YrK<`?Z?R;`ytG_IOijnz9l5QIoaqP-XbyGd{!Fgz1M zovlTV05JRAbMBd}OKVlE0^&zn(-RVgL;WJ!s}AV&CUFp?}PWXh@WPXyfFG)whhT zU=Bz{m{cTA0OY-h!#u7l0N%k@gJ7IIv2q@1tT;X-C)Vh6zMyEvR@J9MoFjvH#$-Vc1yGj+ z!4R596PE=s0dMe0sT)B4dEXcxK}Sl}Q|K70dlX60F0fQCo9 zrF_dIz9G&mWQPt#c}C;gG0xEHXJ#HglK^NaiWsvr$O3uADFcPo!*sON$R~hSc})8D zb6vjjgp@O{z||@bUn%WrDKUFE0mk-}VV#>}4()y6U_mOxf5F zAMFUzz?MTDYV?d1?gyo)X_IH98ag5IKX89AymwmO#^%<}dtv0{=umz|%&ja^T(TP} zkdh1;Nk4X{PWyfiR_4n+7#pA9s>1_m-WuZ@O`v;M_50lFhMW4k;QcgK)t(Owa( zuuY&C7RNxeMQQdnFBY`;` zzQG$moMDcI>yADB_{29`4j-QTi{D*LDY682l*f}Mbdb)yONh)imEt4tucYPE{(%Qg z)^%Y-CFjyCo4_p;5=2CpQ=_L0mIs3E&vHmSc!2^sp&pNjbWp;5#C8j2%x*f;I{%kH z`*pi9EC|5O5Doz-aQY!86PJ$#iF80G(XoW1bg^=SbKtnycKyzn}TqsiSj${^+k-Y>OJuw{kIwmeF>c z$o<+QO0JGJ1N5*P+W0b1yHb0gO$(d_B#xoXxpPG&^FaQ{X{6E*# z8XViExbM*U+Qr+=I}N|B2NS_ZAPw(4|hEm}wEjq21g+RAN)srJH9 zN;h}HMcTAb%0&txghE16kXQ-O1d*t`aJL1gp32(Z1!@_^WL8K zc~HWPbWwsFX3@poEX^#t1M}~F_=5gq(H-CEP_%EfK?(_U;Qh@1tsn?QmF*8FutjeV z-fI59Hh)~#E9avGWzzlR^>Hzg7z5FQ3ejfRxS#<`p+VtoIt*&cDHNPk_4ukKp1e1M z91Rb)VeVaT_lnX%o6ND!g zFZ`>-NWL5v1pe4o1M>rI}iKPeOu)Kwh0l zfd}zY=*X84k;YA%|PrVyXOFf%C@SqM}+&nrM`1zU9hEH)ihZ0D9 zKE~*w+o)$;l|#Q^m;f^8xH%=;6Ptj155m!3K#yqjGTwK{3)pYt-EC-1-e z86|RntyIBTVY*n3X+oZ!wSO2Vl%Ip2Fxk%v;najSoIq;wKEi2T8wKw_#hSD%^P}B= z4yG+{3e1vI{Xa~j=M28%zuHGd`4xpMJM1JE042e)0Kgy!hA*Jaxk|ppEc^T~T188B zJhUGYfDyxY$anUuBtC}@kDqpDxq77I#Oep;_ToHOOdpa5q9w1B)qMIMQ9&%1_Dm>i zw-Dri3qdxTTTJQgLyY^Y^7-S-7~}qD^Kr{hOyzxT`S3R%9J%+trN0}B!~7Gc8XAAy zR9*dAYGchC^{>}#uC3aXO4ZafZmFrO+P<^t-S_wJX*#m&(EeksZO1!0T2KD_)S2F% z-mdP;Jp;p+Z{&uuH;2{D4Cu8{ASosqWIy>phX&!Q6w zvXsBn7@CHR9P2N-RO~q^v*+8jEb<+;Bzv_@;;f$(r$(H~gEdin#0;js^XPt^uInn-QIb;z5VFX6aPGRu(fsH+wbjutLl>N z*l0^&$5KZaOLZWZ|NQdj{_@N7(bF#k?z4Y<<&m?|^h3Yc`NX;~x2$T<@0;T|$j^w^ zT^GtGDLWjc*aeFL3AguGkbvHrE#6=RKO9{l4A`zSYaC9;v#+0qsJB%G^z9pF~& zAKnPVp7SQqhjtG}@$~59s(oG@XSddN!BquVcpGlmo2J++JfEii`&HBt?SS1ej=CI~i65iV?0r((ThsxwZmv zp#qia{OtKFmVWgc3wlB1Jc)r}L&a9B4&w$p=*3a(nQ??8VlJmfs|I`qf~!X*F>qyu zs35P97sJ$7KfO@?iVK zu*+%N|Itxo+8m`OHcfu<<1`nZOji+dl z3Q*2th45?|h^~0t1(sV4@rOC3_jd6KUL0VfL!Zm)H{xp18}{agiJPxT@QH9;Rg(gwyu75Y=jaA@c5B*OU59HJD%RN;0!ZD=zkR_u@O3lwGjy2gIt$8&|;1 zN(r|ZMw>@|GJ_Vt<_Q3o+XX`?ULfdS32p8@P zl1r&{Ysh1jOhxR;vc`vs#jWb(rN7;?@cEX~lY5L6becN^C(sopX-G5nA2Dh;l(Jfpd}HycDnJJMy^U!8Fjmmi(! z^pB$>xRGk9I(4Me8QZa~Q|ma4TCEFO(4ykjMnKJSv&!zSLy1Bl43{LxW=O#WjSxa^ zc5=V(d*5&GInVng0ox8-vhdyep7(jqbDndiW-xqx8bhCHjkk1?a|7*geWpq2l92^4 zBTOjBUru1zhWh*1X2xFA-V0@w^V$v9G;i<7RL{HOr3C9NEy<0*B-$`lV#C-e$7X6O z0W9`TrN;7xGudfiz1@biPcs@S5kteAGSryc#f#2BHBOjZA#+XoV9@Ksm7}UJ4e&Mh9U>U^+y4W^e^H)3^@z7+en%SL7ATziF}kB6cY< z7V?0l=~9m|J87&gx&sCb?$``72M%X!EdA5Z7w+Hn+{KxBmp)hknL<_U(k&rHGA;(v z_96s~^OUSqCMrq}vM%0_r|pph;*6;E9ubJa-{iRe2T_TndDudg#D`8;)A%f5PK9ID zUVTlSHGJnqnTzh9bOc_B#6K&+2W57&0mzP*2|VoUNTqF=iL`cx^4~TJhXi2SUCLd^ zo~Ah@p-`@j>P=a2Wd*Rs=_ymiWi#8cC5_O@6_{NC06ldI9XI^q(Q&0FUQRtb65#Pt zJV^5#*|W$}MB&^JWt#*cnlhwI;8g0*K2JJ)C8{;KGBX7#I z6l+g5o^QIIg6mYJT4EFZC;Bv-zFejejuF$NW?2Kjy7A`YV)#qNBlCWEtRTN)2ncPw zlP@I>Iks6^8R$sQA!@N5thUN0kfVkv$njw!o}-sT8Ms*aVo5{U?65v6BSv*dmy=Rb zP|^tnS3h!;@yR49qaVIZKC*B@he}p0Z(pJc7BX5?fYG%=J9diDh*&5++jd>!z%+$D zZRdx>+}VpiK2$(~vEmVW<8%xI>&M0T7s*IJhSd^#<)T(FSA?u+L!hpjm8GY52wT|& z=2ODe>~cC8CiwpueXq=3dJxNa*5{wUrEoR_EaDXW)+9QZ9k~ zU_yo&z5MjB6&FRw0l;1wBC>{IoQVV9gAY%KfgifK#8NxJyjRE_Ai$ms4sVhM6j@b) zS-NC!#xYYTtU_aO4>xpDiVA6$3@om?Z3u02FlZRM$f?8yNPfAebX4hbFX=Fyj?d}I zkL*615~TEa|qW)?33C^LoTkKP4kteuQ zq#dX@<>&%QX|Yp|N*C-I{IN5aCdd_;a?l{ho_KP>qJ2tkkb%P3xI`>nE0Nl}rV^oB z>Y1?*Jkibk=(nxffg`xU(FgjD{yv8b>|MO4V{wl+`{9)bpL^N&gX-JsQ2G-4G4{># zGAM{+2LirC1QVkfdcJ5%1v?KcKpxV+fF%`R27p^y7Lz@zZ||XhUU&Tm98LHRfe74E zgp>Gu@X^lz?C7vTxn>&W{$4vSi)!AE!WAu~NOoxutZY49dDZdo@U4E(_WVN#odFsU z+K*C>K=$)}7bya0EP89DWyWJw0W|`(p(`S-7l`BI=HvDvc19SiDw*3K;8$QZY=`sJ z?wuPJEP4<$A;<9)sO+$z6n2OvJx%h0U`66pbizvnCL)U2Viy{bA4vwFb^3x`UpU}P z>8iFUZg`qEd~szIt$Fs-%J~!F@YTb)-;Lhiz#GopTvvB@OMU&TuVw3M>S~*7o7ZI< zn$~ZO*8lje_uk*~ar@5Pj$PedyY}thf8b#6v48iUICbLq*zti=g@Q9SIT7j0#*Cq% zvB4h~_x41yG4&^N9UZsLU)X6=6VWy0ekXA|;wYq!wuUB^kq*=?U!n{&TN&Fxw}{My zkIj!J@>zez9qsu1XiY~H*E|!3QMB~+Fs!cbsa$9U`5XK0*tqxJ=fA-fuZ}DS{s|!wKl&|-?X+dySBBlsb&@awh!C3e6(YG?$f<{4jk(3{rvM|hrjM0J^rQB zH)%Vb4fjMP($iBlV`sXKIq?NiymnIZxHmCAZVir|9vaM_9PA%B+TZt8Z_m-ruAN=EuAObW+IQfVAHKcy z-A#?HO^xfCR%f$~*=$|QhOvaDCS7^B*6y#Yc+QF6H63WL%N&l~aS{Z{W(>(M%K@djxooS7|m9QehhaD+ZvmC0{@)@QP`QS$@x*`U`_Q}2Mg8zXn!D5{-i6`c*rE$vZ>wn znLY=Ihr9l8{f&?RVW6vWdRj~5)KJVJoQH}L&RjI292afXWnkd`>LqaQ$U zVid+)hatY=OHuNT8<)9{2o-R;@g0GO)XB|)9}q)LxJt909M6;bd_3!ncQ3!;=4URy z_>%j^Q9G^&SaaBal}9F&CO{B@3ZLQ*8a_vjGoaf0=zS`@WzsU288^);yDS4%oA!K< z?$=}3)I1cQXYJouwfLpU&6nRXKpBCRqxi=1!u>tz_k=le%pBP=bL5_{d1OXEPLcI! z05K$K*=D%7hZ~Cmqn4Tlkh^YC&jSpWlG?vkeD3oRpm3F31bth$3g7)hFFT#Qr4bNhZr_bHcSep$xV6g zF&fzH7- z(x=S_0TDuDfRx784xZlqAGWJBHmd84+Mcn;U^_)!h|)h*`=hETQWI4|QKbSgF^j9P zBxxuu-O@%lAu6Pi(ke}xG^MnqG|(c1H#{D%U>if30x_`xW6Tl^#-I>_!MibL@iH^- zzW46idcN;Ik1Z4l*>vT`OTU$ z69M=GlRFK;pw)X6f*}+H(-@9VL9h#_Asn6H$&GL29x;Nun0ix&lonBU964w5a(mnP z_t&l7t24{d(9Y5YIYr2cK`xcgq&DHtNMv|3c|q7IG({~XO(a=KvWTKTrncCcK`9?i zGM4cVd@SH`3w8%{NFQJl(ditS{FLb!-yp8ObH4r5wnfW+xZ#=-LcrE&kBP)#(Soe2 zCNc{!fNva@CMAg!LoFfGEE>sd`U}_zD>{WvmQ15NJkDG8@IP>MRuEy#vLDLXBsEH@ zb;~4)Lri7cLW|E#hVNf9MbF8d3%>X4g6}Nu61qm&kuVBYcwj+(G&Q^!5y%1y3aooj zV5Csr6gAq24e`55~RgL+4H0WIO) z;76C8I1#R8JfWM~^}TDBJ^SQS-(7b{qf%&sO9ebBAV3AvVq2f%yAC`g%}2*@A^`kFeH%q?C@@;e%a$w!%pCX;GkYj5)9u?Q56k7C-%DZjVMmfr=dD zgg`%GZHZ`1{E6=E8aDA7_(W0~0!&N6G!)E$F)V!foi61*?s#CJkmQ0m)CCcuMtXp9 z7<)d-TWon%v5H!E*^Z|f zLz*gA5yLP6qh8~Uy;%f#199>!(Wb#su#RRjF;JiBX>tmwR+0og1w@yvcf7GCuTB^g zvrr2~BfRirkfahxHi>w04`0Ay_KO)#F~tCug9*Zt*&QaQN8Kha(K~IFsu4!Kg!MBov;i#AwhM($)v)}3gh??9?=BeC9O%BI-si}6ebU@vlCvL>*4k( zl-KaTgWnyjOL})1Hx!sNq>@<2%rVHaQDJylUH?M#lg$R!W$njAkFL#Mx=o|(U~oC& zcsIRZ0!Z)U>jCw|U^sSB5>Abq@Pe*o*#HxOOSWAv+Sx%-cGf zVnN?k0)$B6z5$RU=9LWb<0P(l25K2<`|YZNt)l>~j4P)QwTD^KH+d%eZjZ;1$sP@~ zlrywUZm5gFhxqt4lrxkiLN{^No38WY)40itU7q`sj@{WiT_^HajJf#5Nd#SQp?#~e z=J)?93KxaLl~vW%_*ZwR_Q0Wo|BXhQjy1KOK5_2im5#2fH$J)CJv{Q@-ssrGcmlnI z!7^1U^+1VVlDE!mT%P~R6&PJeBx$wI?51M{f{J0$pCB7`x&Y-lo7F31@=hVM$y8r0 zcubH82Msl)dPTB5mA3HG9JwBIxweD4unfbxva>jAhhv4e+LrbAzc^T)-yn6KiYn#= z7%evO@Xo`D@yXG_zTWPe*ROYWTsm{^?Ag{6A2&yvjvPC9=x}XA!~V)hMWkZau5jhv zit?h;(n$EkhNY`FHJz^B7AfCTR9YS>iG<6-;o9=*LyeV@hKh>%eN}t+M#_rHo-QjX zFALX{RaI6u9*S0dc)X?McuQMrdt3X3i&r{3yKdd+85tNG5pgIUsV)ox#W%2>Ylae3 z6|Gk)RxFC#wQYf;Sm6VrPRMuDSZ)}L{t86iS=Qw@IDk(hAopbmP=eBIN#n1ZP(#@kEyy^62uj%S~ z>5}uuS9|YFkPix;`X5f0$dP0h1Q5;^EYJvkny~aBeh~>rr0QgL#1nc#&ket3nw0Bb4dR%t{^p%CNjYE5aAPEkeqCm zLEDbE2+`*g+4Sv7p)Ygn@^_2lR{YOnuGsV1w)?J?)l~3WlPzA~xZ&l3nCS(YPZD*| z2MacLU@EG(=AjcowrP$YfcHdu=W6IMWYeQpc%xM)V~6Es>RWx#MSjno-dx5>{>Bz z{<;B|9JJ0|Cdz<(6K%o=sJ!Qp*fRY=doT>+%pe(x^L^7!qMX{TmMKx6gkNW~fjxY| z#_J9L#=wMkJPwk@KRN%<3(b5F~(Q)M1YP)BiTO(fI@QSiNXZv{)$I`DP^Fd3Uox&bL4Eg{j4kQ6IDgcKs`2d1` z0m;kQJ_45*MLZVYxpe6-KLIb0#iv2z^TF)q=bk?-LzrbsFG&D;j}Kt1hSf=OBvbup zxQY_#d@39`-Y;dyZznlg%nSt=?3tb^?!TS;+*@N9-wZ@*E9R8mG}uCNEL5}OA;EF3 zGgQLheWS=Uc>T%`R(=0h-8yw$r`G(R?J5thtE$6!NwbtvXa^j1MrRxu{}RP<)W2|J z(3y&YfDVgd9dul992rM&{G%{10;O$|Hfho}Ewr|U8oDS$k)})9k~F28B;C^`O*b0T zEbqO$oV%QJuHW}NFL?nSO74C4-t#-Z_4~d<$xSYwNIUbWoj4)d@cfn7w2mhTxRs{) zl4Cc>l%Pe_nUZJkypN1E=Ht=LMytFM<6AdA2yKTcoy|q>>kJ9 zo07j5-q!HlLidXESBH;*wSgk(hpY*Egu8|OI3#-n{;^bi9_T3f zY$kkuU54S-=0S3w5)z_t74c-%bY4KF2qi`}Q}x+_y}O_O+7sJOjurio$-qG1wZfg^ z9pxW}CXVosheA~WcFq)VNLr~@7#1_Eq0d7S(oK*j$|amVh9G8#qLM?giM{=kfb&ks zbdzSeV|&XIcayY8&Ef&1jnP-abpy%-pJQWCXCP`oI1hzK2B-IRb{*chr+dY{XK>aE zszN^^GX(%GAL1tr$vv!s?>ILUnFRNvK-|ZDOkssqzb!=>SmDse=ag3o6c9Ah2u&jKX+6G z;uJNGUl)aV=_$6?Y*mtU=&6WO4f2Ny4kkatLxS^i(slPSo`sRjZZ5*i+|2V7tAT|1 zfp0G`8u1vx*o!6(BD%f9l3JAO4zeat|a zmH<-T3)mw_zlKz(p%8^O!|Eu^U=kK^I@HlEj!+~;;x4a-FGaGWH?eyinh4JeC1g3& zH-)SmYcvc|!lmxO6#)GhJ(?3EUs3WFT@=hz?|<`4PmX$l%TE&BB*_eLN8ud9S11RR z3ABI*z-qt@p_#oyL923<|23sN8(uH@g5kNTIZ9~u^1rp8mENJDjV(DRI^ zN}$3~iK7{u6Alx%9E-+9K~%(fT$MC0v93xL2i!*c`u}%c#^_H<#D~rxcysUrWV(vT zl8CysC_tqUYKA=5l%Orer`3w}Ac@2d7PMGG{6c_aReXm(22VA3)4SkY={{a|#bIWy zIiHql7>j}+rz3FCl^hMAf*}`Zoh)2|a4Ti!9NDPGv2BSZQ&F~2iR44DU6ugH{EKey z&U59xH_6_$i}O5(MB*maLpaCrxKome+dL;!>A;vo?hc7MuBPUXNK8q!ikuQg5Acoz zZsKWz#G2Pwv;c7fA35jJq=s6>yNJ>11(ysVHSE0wbX+}}pk3yeV}_U+V~ClVnVHMX z3^Bwp#CFUSGcz+YQ_Rd|h?!!JVJqL)Jw4OYJ+uG*yXWjV+w!SfDqXR3rB{!xU#XT} zhc|0>(fFu!tZ+l=w zXfDNMr+_8w;`o(cVSZF`CFPW0ZtZP}EIL%@)b#dk{;G_e`X~{3bdM8;HUjq4D326 zCfA@mOQ@{uH=N<}g`XLW;zpmW#1hTau`zwg z(gqPB%K`eDEB;9GM5LT;rAzEg)Q^!~B_o~XzivGyj+ffXT!tz=JRCMV^4eVP+Vp>+ zv^Sj}T$=h)SL(NOdHOL69vP0|bW42Fyod+nQBCY&xMwfxyQDbczZX#2*=hHVl}x%U zuqR#qK!E`}K48a^B~CUg8d}=E^%~%2uIDH8NSU_ zS{>d4rG*7{vO3tD4BlSGv$-LUNx>CmD@mN}?B!b1t+h_mpb!|@cgbuV?`^f$>YdlY zx?$C;I#<@THfv3m0~2o|R|`*uxtqpkLcyV46Y~0A z&u#6=k}tk|V10ooZh9->SJRD2sxug6RUVeTcM%_Gms%z9SWx^nk{WHtZEOF=`AZFA z&4T^6s@Z+)x!PWx4|#q067MP^g{@B%oovdtF-%on5(OowyC2zdo-piABr`)(VT94x zZzCQ^vWS^>5g(kIe_$nOYPkbHuF-$}iX4rCiW6Ez_-pHAzUNchFYh*==(FRM7K>kv zcCXg2KNc9@t#DRYS=s0;H`eDA)NBs~`}>}y1pmaT|L))UP=Isv?kEjE4QIY<>cUx8 z_Bi5(5jj#8`@NLyWT?m*mkJ7twjsjh@bjW1@sR?Ep=rYQJD652Xe;PWxZ!svq{x&_ zQ>P64utnfUgp(m+4D+4iF-GFKDa2`KK9BZdvYHiDuqJj-s~Dr(ac@diSX_ISs#{n( zrn{5T9e-V=A1-CQ8ha@-Eo8C3!gw{;288ZAERgv2B;4X>tpxC;M zL;-zjOU=S+t{%Lr(&6T#lJNonpm$Fsh(?)+bT`FV-ugIleh%$jv$CS6K= zBbhjo4cpHQEIX%y8TW9?B2*3Awf&}v5)Hp?pQ>tnqxC^@1;M~IAiS|{k~f)lO>245 zf(G$T0h2=;tt(5vziwv^-K9j84<4CJVqM#F%%<+HX<45pUW!0i4_5dxGFEjwCB-(3 zWre>y?~pBKw!ThApMZ2`@0Qknp{8BvM)NmiUDI4X6ZbE7UkzJ1uN=&i_Ntzsp7U zELeCh66h1NJF~g?km2ID`6JI|H_$7_cUFX_YhiK4;a!#?S@2Fi5|tpknDVB8M5Gs& z(Pj}W%kko7M#CI;l!q_Cpb1hJBGKpTp;4TB;NaTy2V#$d2uW3MP<)+Xf65QBmS?CLFQo#oYe`VvLm6hk3o?=RmHW1H=o*o$Pl zYBYy>$7LFD`92VNwHSaXatWy8;oc!rgZpwvb4!5^)ov{AfB z`@LRlN*=P0m{bDK^)r_7lNKXZ5+Y*VScD7bkA3qZDv7#7S98n!^DCj+4qhUAR9F!| z7J}1=x$9i1yYy(*nUZeegk=X<8$JTFcc%Lw6$?AI@U0(0 zYxw82gtF33V9xeSn_`utAs~>^UpeO}V7}0PB~_ya*g3Gv6%(p-hun8heOPw+_%(n< zE&z4IXnsk+lq#TACqmMe+>B`@wmi2A<)Cb9Bypxz;OABqZ}5Pw>JHP7kSgT-P#@K> z9{EcWM<65kgkfMvm22 z@-;^G(6IcO3FL#?n5azkJ4Rl5#-K{3Yqo7U1V0G4xjfiA!3>_Oq%h~j@=duBKu2oQ zK~s0ILgS%UAoOg%6@elTL;F-T=?4WB;8T5ABUids zBD_O-{K|_gID173V*`4heWDI#Q{ua?B!ibU;J06aN?ND@;4kJuJd5r3$m941%cOx! z`ZN<}4b2AaO)pz#pp!K-bCdm*xr_NS%@CA3}4$xo18QSJ!#;_7FS4LST!8Q9CsK0^qO*qUL}O}Ae@g79N}(l+P4UI!=_T|7UcNi;WN44?%Y>~p=g zUXiz?E_f$2`Q@xQet3EGH0jT!10J*ZLZBPf_IAo4fk7s4wG_^Jt?i`bkZd-$M)m4| z@xCT=^Q|sI9(FXB2(bhg&3mK>^oC=8x!8cXSJXm*G3v7nO7DQI?H{t;^g$k`1`v!y zdXzRmMN|Q@iq1YMd6E$v1Y6in^|#xqTZBEXx}F1gv>I# z)NSBIWh%p;dy(hc8Nmnp0WYGIM;x}2wlg)_1-&d$o+-|P1fG8yGxx;?DkN}CRnYtG zJy@DnyWbEuEg=Mxs0}s^bnaB4Wlv2cFsFyF$i4+Cs2Q0~2C=+`W)iUh5h(WhwX8L- z1$?I1n{|!gPA)x`tPXoUKqX^mJD2|=m^2LCJ8HBSD-VKgsrhF@Xz>|q<~fymaZh6+^kG;Kzj>UOA=OQa5x2HJ0O!5 zld7AEtCu5?N!rfX0?4HH+p48#VhuEPWzw`V1A7LiAt3OV(jiENoy-Ws1DKJzyB|2$ zOWp)K7m-Ade_pVKbIcqn_WGLougkyc;9vdVUys4RhJt^Mg#Xu#geP^fLy!Ql`TSHN zSyP1z+Q;P_YUUoCV6l&Ka`~EOx<;_`|DKaBBoaW(9}D{*i7}ji6J!2?Wbs#Vf}N9{ zNrB|UzZVnIlf2YaJ+O!T9Y!)^607@6k#z&AVPn`C;3G~*zKBSPyperFYK#MohNXmw zhE}REs?{`&$B*UK+8ouuqjgszi#pd=oVPQjqsQxRutjiFpOK=_<^QztV{NnJ?%D5d z!{a+tz=%Q9nZfV$3Sfe$R$x(S8>u~Yygnt(TAfMKkL*17T^+W=W?rXFi2>I;px z0L7{_4M63af4b_$ZeE74@?27K|UG-k-mlW%ZdCXg>-EbKWEEmjZ74$r`&^F3Y zR>1%Y(oSF#bCE0r(+?j{yMVq~M{J9uU z?u+Ef?TivS^+R^@;dGPCa<+2 zA+sT=wjk(@P}4v0zJ>IE3)w5o_61Iw1ljEK$7)O(A-rNpZzWV6A>IQ>ek1-R=#U=Lds|sq?3)MggS?cEXtd`K1H09HwAw{;0phUkQzuNv?$t>?FLxKJv2Eh_UL%EMJ7B-Abk)+m{={DS1g&76$ST*&=Hv(=_$FdM5|mX6+iXtFp8PKGh|CZIi*Jo z+=$O`Rvc6Od90zb7N({QE@fnHKAXxTjcI~uLPUbqC_P;oUABZ$UCG{@`_WrB!5gF- zjvM$$376d98CFaD73Y<=r>OOlR;u+lt|;sA?{jcwBCp-9Q4fa>4X3l1agjJB*zy95 zjmk|=%+pOiPI%f6vj1d>PobSy8J8GGNz>=>8P8|dPhlA^7^m7N`T6!I*-x~HUT0Hj zEoTjSn;^FYx6kZj`?caHZ0=ZX$sM7-QNCHCpk^l!w~PYy52)|7-}T@3y6wv}Bb*_e z;oc#6q)P6>d$JmESB2jBY(P5iogDU9CIkX~m*J~sy_$xk?A6GPKXVv(b z_0_>QDKELM64bX?A+CC_n6GfG`WgB3xG#L)ct5RR(KK+DuuksN>09sH@*MD7bc;&R zj1r529|{pVN$?VtV#=aL$q|$>Xii{9SP&&KL>Pq;Rh15{z^y>20GEEorJ6DDz2H04 zcj^oaJpw%yeI32q)-~6H=5YNnJe4x=g~rpQH&D%lO_b0vq0yW%@!Qhi+Va*Q)9 zg@+4Ym5)3h2Yrctwccaj+h6b>|5{-hu9|TeKTrBXE`#p&B`U1*=iRmDee}H{vJo@| zbUh3K{5{7My%JV4<3*M5TJ~JFx-j+U7c2twa?}mtCz5{3e6HP&n0F?bT>5MDFMJ7a z@!zdrKRO*mRBthhF7;IVhamRR_ud6<8j@&b>o7NN*$1fx@tH{Wn^9nE6Fm6snt}Tu zpEcW2n&l5m;Pv+d9~L5(J(gc4L_?1QN2Y?|zEtq>4Dkffq9F90)*UJk_a*mb-=!fn z7iBTVE!8*$EF}juQ8Ie|$PDt#J67Hlkw#sPc+9wZhC^3Yer|d%u7@f0hj`?8{$rTHMzhQbkU19cbi_NAFl{~A zmwt$U=$i{`a*FP^Hr_jJ13d%(ja{-$@iFX-$)@j%yTr64Si9IK4Bzw#x;$q=hrQXo zmA%KZ(6abR>AKb(_0EUX;^Sms)paH!P6n5mAmUxCE9D29yvVA3un{;kC(Gp=^*u;(M|<3Y=bVp5ao*(dJaS zYZqvGQG#j{UUkfwu5*&#=_m{;++@$22;YxqjAA@xR2?%(I<*Yek=0RbnzJyF_?ZyM(K)ri8|NZt>9X)T5M_mc{bXg=+idddaci?5nQ#>iLYOw&0j-hG?Bz! z)t0z!czu6^bo(?_cJORcVR<^WLcEw*nRbA9w%VB4Y|!@d7*dSf_PG2k|Lnn8XwSzN zfb5F;v8%*#wxy@L=QOP(Ei#Qd^aZ&9Lgz*9TXPCUN=(XAs%7eYnn+qzIzf6^`dx-u z#!RMAW@Q#(Rz%igwpI30j$}?_E>&()9&Da_-hRGD{!jr|K}jKgVMO6`k$urtu}X1& z31>-3DM4v;8DyDT*A>pB}VgBLv5uTBjQLfRZF^;juarW_s3HFJG z?;PJ7CpjmZr?{tDr}?HkX9Q<@X2oU)=cMPx<`w3r7t|M)7WEdlmdut8mTi|WSKL>A zt%9|ouZ6F_T~FE|*vQ?a-K^T;*y`98+a3q0f>w7-caC>mcAxfw_L29Keh~jCIbc0# zKa@C}I?_GbJ9a$&brN!lcA9=hb5?&YbUuEeb+LEpeEE9y^(WrXqHDJ6-W#Qxja$3h zUw7g6c=yE*Tn|H!nvXwzc|5^AeS4;TZhet`S$nm6eFaOFP~Uz&{Ugbe>%WvNC9IrX zTuH!`>MtTD3nwR7!esrEPl552s;k}Kq)p2WvnY9lUgo#KRjiy+^I!B6-j`z`1S%cN z=zTRW|HJ{GQgU$GFrTq{_YXEvv&nEL>Cfv@J$jGCQ)Yx$A9Ws&e+9O z-oebu+zMz$BgVtZ%*+iYf2=HQ?A#wX8JXFsnVG3+ndHIz(DizmJY5CE|w0CV2A&?^pu>f+`)8`gp2)mi~?Z8qylttaC0^V z{^p*4W24|7VnB0aH(OT~Nf8njw%=6*_75hW4yLL=S6wD0F^NC9rKtX2p(Qwsv>h`E zJImkVc5wZj8Z(ostFxP_>!0NTqtie8k`kDD3JCla+x}6hf5Eo@e7(cL{cI&FltW;g+;_S4)N4LxRfeq3b8FQSG)YbWYa;HV*r$AW&O%fcYsMe`Nmu13U)T&fl|RTQGGceN@<%@em<50r_7JbDfFJ-o z>~90U!Xv$T^9Bh80UjO!1q~Sm1qB)Hk1y~y3MMu-HYN%_0odSEP*G7)(Epo(fPeD_ z;SB;ZA|f(6I1oA}_yYEi_S<0NgTsLhJ|5w3gGWLRHY7CQu)jZlF|XYKv^P+=kY-R2 zWB^Ds2q-j&*M5jxa0cNZejBjm4+9MY1qllQfO`XvfCvGAgoOI{cfk%&&@ixn+kKVX|&P&fx( zQi`&v#^u(Uy7aP(QOD=iap0(#x%SO~-cWspN5I7kN)VUGuh*DWr@_D4`Po0Wdku68 zPAq5`nBTiGcMnM_Y#dzJzvYzFwD1T`E@~QD{Bg%6rDf^)HIcyR6D;!$yk<5Qcts&iiD z)%DTP&hGpSO31JOk6D(`_*AXoQCCY zyIiAb{;)q0-o|0OR90vH_ZBt0V%DD~6-u7wAilp?vM3mc{S>#<6j`XRPW8^EclJ;zh7UAzkCtm^Yeu&_fp0t-c;+6%B zO?(Rnm0IV;b5-b8D29dzqy!Wi{BNo8|6MKjpW>-vcnXZqiX-&j^q6JZsNsCF%ix!A zu6h`%Go)IN-kaMaz7kpcp`je!$g-@@dI@f+L}eXMlRsM1-8Rxt&x&~GO(hdWlW4)= zmDG%k5|-7TQWl1Tx|TuKvCo!2r*-7}^q;E~71(J98{enft;v&U${*g(4^A^-^vNfl^!gJ8CiJz)aQ$Z>@j zg`bZYY_|K6SWs^jXT$6CmJtIHeM(#{JByPt8w*_6`_ZaB)s_b+U`Xw0)jY!V5PWe9 z8yt}P#BVH3lH@ftgH0Jce@4v+swnA;#uOc0A%9x#xYRICBUxlT_Hs}Pd0R8$RZP~@vz#Pklr^pmzP*D_t-o9rZ@SniSd~} z+}0nMU{q#Dh1c+FjK;iG%GS1GcJ6U}AhLgg9*@%-TRjq7GqveUisgzQj#|xQDyM}# zEs{WDl-fz_*fF7)X-eppg*EF@s9eEVM&ps- zBVTG*r6ICKXq!s3r^`bP<8w5odQl@D4sYw>5#9j{tUlFeeL$8N)YtKGudmkfYrw2^ zMwqF+%vnfjDy;m8?j>6MT$Z3Au%90<^>UO*LLVlUr#FBRbLgGRq3$LLi|Fb#aKhF|> z=Ynmhx87HNI3-DfeJ24-5+HXWu-&>kUihY2V5520+J1{JOCc7KhnB>4tw)h#6gMM| zUzQ;y* z%5^{=U7VIIRCQiUjW~O!&ZN|QV?7Wy>`n9uWZw2GK(mh^b_o9>QiSQM7~qF{vQ#Fl z<_g6GPS7Zvbo5JJ=4tgtCs+L8Ejo>6V{oF4&~yo8TdJDT*QL@RcMYWk7GX?to=2dv zB$1&_B#7J#9DPgLReAQK${Q)(qn%d@1c9o2vBTFF-(X-bev1_FP94x3nB08{TsMCHen?x#aKD#TyA8x{c8^XT))Ir&_HPY-&&rFAUun^F=nfC_w zYb!@0AB!-1J`+}(cT64$DN%dN`&InAo|GC*W3v^kluvdQrm~)2You9opYy|>mET?% zh!)9c4k7(CDaBY?(Mz%dX(Pq5p=fE;bgd}Ho(H%IzF)GY%m5=K(>$D97dVs zb|DLFFMP8}!_vinv!k_`3&=C#fXsk_<^4-P(NAM$|9erX4v4J|T?2qnHRyvvmcR-< zMh}r%4(#_#vZA9y$PHY*SH%)H9~7sP$Bp}-?qGtls`R;;>*6FHUdhrL8HExh)Cx+2^BWy~Is6fNb(p|r!S?9_IB&T714=9I zS+FVAjqU^E(zm{n@5O!8%K}}@2mW*X|ItMpg^q>o9g^q3f0UAp9?ycEH;g(Ko|?l@ zs)|JI_^h+(*5L7X7Q>ZjaEG%U7V?S*En7FzT!C*IF&AQm(Q$u$w!-B11+OyxGG z<7uGtnKEldCL3LOw3A@cJ;s5IOU|?qfuMlEXd@|*r)e|cG|-)9BJFHyZqSHU1NscW zB+r=@Vc$#T5J>D`NtJ)x^Y=h$dK-n^Jbjwi9`2x^m6u``SwLr!yo0$VWG_b4Qt@$i zA2Dr$Y@*_n+|GTX5@bERsks$Fea>m%hCJnzbLPEWeB~EBx-Sx6pFEA|(;~k<#2sS` z9VA09-0+d(Fe-YKhd@A(KUT&_!dN@t zRXXVbRXfBu?i9gvPG}r@7d@IAVMutu3>wq<33HoNSCHU-XXSHarEwu^A172L%128V zdY>>a>c`bCAa`}sP_B`5A&sv)x`=)Do|;vhJe*gOHm3EesvjcfJkW3~m925aioL4> zU7^Wz-Xr$w@r;CrxjBCmKgVHsp?2*Tq&NHn9IH3RmRGl#$YMK`To z$fg-U_R^Hgf_oe5T)#3+SQMwHX98^kY;?l1&ep#SD0@|t&JMUYHxq4?yl{6(`j5>| zK7D-|SI0>MWUz|PJRbTfWDTHb9<=xvu1DW0zXEVC)%be(>Z=2Kj!8VWfzg{56UWPB#W;w84zI43;%I5E$V3MEXfEi>@VBbgg{?*_$P^}!e zOu?U}yNIt_Is{J`UI8cZoCg)6FIAjfSMMiZMp)D)IdG^_ipl9Ys@%8U%GA3jkoRpj zs@`u$(G9epx|M5>73nSOtQ#(gT{Y&|6b)alHTC9V8%igRmTAVo^)~AlJgmx9&lGf` z>#x0Am$p4+a9GN}y<$^l%43V?orch`H_Pngrk=aD=;~;iBk9N-1kG@phyo%LlT6<+ z$5Ki|yzCl(e370#Gcx7-$$r@`FJ(;(NYE35l;{zG29>sZUKa4*4XD|*KiGL1*Eck> z9;vR686}O;eS7E*w4%J3du#HhdydgZ6-n37v%O28!N-CzKk1m!j^dZ?!2p_Sfv*Hq zXru(S)1H5ML&MtQ9dhxq!XoxvkfhqpTTu#G92BB7k~Ni%V?E$Pq8tBNiYY_f+DZ>Y zYUEyj{r%pTs`>5QfNYoeZveY)lM=?0$A*l%q^Ha#MThrAHxU&ISLDA2&5&IfoIW^b zTQJUM7viB=+3eHf+OlUuvXyuhtQn-_$9!9oP^R*t*sYkiQMk9Nc<`Im#lDic($&`* zIo93~5=x>b3rYV>izF};Bivo%rPbJAQ?(o&o9< zMK7?d%1zLZ7PyCK03jg-KmPhR)D+WSz5&YT(FW<1gYb2-n?>0=|u{ zP1Rk^HJLMGYRw!PcdTr-on6#I<;5pG(qE(0j!!#z#ztli7hBzPZXWETqOBL)Z(q`_ z@rfX?Y%ZSsQBL)rtLsMn_^akCDH;oU9dGz~{BHRtOs$`&p%s~OpySaDQ~f%^sHs0XCmKG84J&L!-XbWx_oA_#Fp?9zI~>MArWjBqt&D;a`)KVC>ny@HmY3| z2h15~pWY}wK1b>5J2Er+BO-)X%}W)7Im%M0>F-(X%jUDap+HZ5#A!z%fA(@Jnt^)oIMl4bnJnw8JV*Ay8p5V9S zagE0y#}TZS`f!{^R+`APlwGkyRfGGC$$0UztWr@If7;FkEOgKVCaKz&C^Sj@jJyJ2 ztdf$F0SyDM1>$L)_S>W;M6Z0YD)zQVz4&>NOKJ7Qn5w>JBwhQ&9*2F;Q^slHmA%19E+m-3l8CfvDG>XnjnId#0EhdTMW$S;ji zTN%Pdkv3@gOm@#8g;6cii_MQby%GB8w+p(Qx>vEf_2({jNN58{gGyX9$|@0fzj)(8 zjx)yeV!g0xF`s)fWQ+MDXv`>l$*~O65dEt5d0qh>3u>=`Z?yg=O)Q_s^{dK5Wfn$N zUje4yN`YyJ;$11co6E$HEXglpF5W~YuYjaurbiL*uis-eT)pfy^36j|dRDbja1OvH zG}ZeBm;AruCF*R4(NMSifB6NAG04>>>SG!VoVXtpYD=CF1hLNsyutYBPG^Oi<{0UI9$kZHCMT zn;=DIiPVgnr?~mE1euy#?yr*QTy&qePXnVe3cZMaY5nAtf{E7^!k(74_!>fk&Td-E z8{6*+*KM@^ZuD+L_ol*C_Fz#VNtD4o*^zA!+o7I3k?PCkt&yK+!DfP;n=G=(s%FC4 znssTIlMDW%u?EI>tYG-~@Vt*|6mttjSXv(^inR?67h31PYK)b|6V~-Pn$t27nb3X~ z$1zAW(0#twd&Z!1<}Tf z4nsfd*O4f1{?jT;t#R5_SJ}(U$&wwO-%7sSv3m|de}OxiOzR`5W1epM5of2$TonUy z@b2QC0c~$e9zxZHGjXldF7x2#C})y)VrHF{FQ&)Bt*JsQqwNIJMGg#V(Q$|bfyC3K z!newty$(aAEZOFG)vuk&y!xEHD!$t9VnAHq)0NeW^ISkfSh~b%`*E)T-C6NZH`g>f zi2*5AbiK?3~r_OQJwtE>{+pA71yhbbZ4MRmHOJ??Z<}oA_{kp zeM;!j0YV!vBoWn`J2`hlWiU8O;zW~WUuDb*ciW2l;P|{nY$sD}BfZNabI!_oRxgWF6r} z4b=N9o)Y<^TJo*2RRU{hoSy z@Voc{D2!_)bxjVOzACF^RI^yA-6Q4tg~Sl$2~1e?GLoG-)CM``-$}uBbv4e~8Qflm zixP5ItIX|+L?&R&fr`KW0rw+4q^9#@g2iD{!msB(A2+F; zoM7@9om|NJ&=K0BM2b&axE%ji*LMkSSm2Q+_gNx0ie>Fd6W zH>VVJET&+-BIw0X0P@UqTSiGJP;4LC)Hu%EEnOKU3tTg@acz9f_<+CGX!@VM1s5sCw z&4OAeu4MyZ_>!I!Vq#b(+A;xfv!7X05;5CiN^{HmrvSY1;ni(~oT`m>Fgdz;3_Kq% zhV3P3PWLVIr26ct_wX)P30&nBRT~25vG+$cs+0I7K-yAFuIl_$1bSD%SXq~MPWL{u zRA}hkYsXY>5BE|aDsRYlMuS4OFFq-CXNEdY7TX-!;oZC+o1sdg z3O6M#j~R`l$85QgHU~a~G6@2#2@gL+E6?r$2HX$>3x@D8=Os0ku2+d~#uVf-+dt+h zowYBNR@`cxS96sr?<3N;ZPHFy5jdyi*=My%qZVs>CMj5ICX4W2B&$YUZ%!6#ix!Jr zYHJUftLbrmAexN-; zYf@~+bNC(uTKmB$b&nd_H;7?nNBUtTmIc>390~6xmN<;OmX z%ZQNH#wIoYGS-6erytsPtnf(AbeJG4bG9PJU%Ne(r*TpytSBBZK|&5=Uv}5|00Y)= zs^Qi5j5olUN_HvpIbch}97T+_?1Wt7)Vhoc&4N!TVE9&ErLno z-fBqaB#a!T?8Nq{VVb~b&8so;oHJ0M6cyetnTLaLe+0Kk(uGPKsv9eL+zx0pC9Qa| z@276*rn$bw178^ zfD21tTGTQEwIPzLKu}-_lrobVqSEk#bK1fd8d}Avr0cF^avP(6M{AO-+>%m0u$n^d zaQ@Kuok@X)&a#BM_ZrjsUdcVD*t+oL)ON+#exk7bz`6?hgZD-g(VLURtxwS>XYR*w zvd7FFo;K(^HeN4~NGFXs)PrJU=RI#w60Q0gSBU9`c7;g`9% z(`Lwq)sN~FwaMB^HzZx{EnmbKJBu&7Mb>iO*VP9Ut$<&W;)?zPp@*EmW~jTOwX8qp zh1FoMtK8~Fy0DXI5)oG*L>-T@Hl?yqrTv||quAfc&V_&Jk7}nnNJor#N2fBfSL5zi1DrrP`GT!KQ zZY6h9g*4;IBD+bV6M>#gy>A+tJ3&n?E$E2VSj{%{pF6lX5m2!| zPvZo8NkHpGpJk**j@BQ>NBD{$rj?b6AyL$sX?r0+9Wk-f`JARHc70Z9e4K9vDynG7 z40Ba`QdpWn`>%Sy< znd95dA4r6(VK;{u6SnhdUIeLUJnV`CP%tM>#i*qPGWcZHTk*9R3|nb{PF-| zvd-LCzLK^4jp_T$E`x0tx%m1BH@izQjBRm^Lv?C@B<|@O-LXl=5&w6Lr@JD1DgmhK zIbPUwLD^-&2ANzAe3z?|My=(cXP!G$rF*_FLzrjRO)HbyPE+z|xT&|wJjti+-LAr%guT3cUXeUXBr8+=5@QwT zz-lm3aJX=6!#R&sH(*Z*0ZA6qf90VmwGgJD_pUc>djUFGtv1R=3UBP)0};KulD77a zWa1~|>U&d%HY{VN{ZkoPM4##6a*X#WH)&t^xdPe8RR-`>kEnSBIaDByIMxUfz2cSH zYiCWHXO}hSGT-bqn?MdAML~@X=V#k`Cz5Cs*>X;VSL;UVJR+X!9y7}qQ+?Z+mmm;% zHy|o-8GiZ2g@Te}NfkQMLena4!B+v%Q%0V#GY6mHke4F%BDgfBj9HQ$ZK~#QIz*16 z8(U{T&EJvHE+Zuc=$ZBzI@WIY?YQ!xXwMQm(V~vdj+(s(a>%wz(tSi$X)cfV8|W1d|2rfZy1oPNkS>`rK{j# zm(E@Sm2f8U4Y(B>tmv+7ihA8NGZoO|iqqfde%lI)g1em_5oD}cIlXRmZ}IVf8SP=< z(NhtIqH9{9khVwY>wl6cvZlHrKa5@4&^f}6HPmk6qB2l!(GZb*ti%ePVbNp>5xU+T z3^T}|%IG-MQx6mTb`u=;;*}q=z^l;`Sz#D48bP49ooIT`jlPj5epT381_ zzlddOpz#xVp@@xHf33%H5j$kpTUaBQ%2MDhUgR5{EPq>-t6N?F5BkC`ZoNx~mm|n+ zFc9C;vNT<~dP$KK2s-w@epp?tgP@${b97P><+J{NI3cVgB(an^1f8hCPC~T$3sfag z^ONv4ZEq<%;Ykw- z9Ao#R+=>scZjfsdyFh88J7lB?!gEfSXmB)Duo2~4WdXXk*-Be2ES>QlsZcCQ)mz-_ zC6nSvD5ZFnYOg)lSWruAM6cao+)wL?5Q2QHgOUVJ6=X``9=YMDeZ>FWHg)NA z)L_)NlfTN^e{S^tv6fmgtkPaT!WW;&NG>>*%aN>vP~Zz?7S@LGTu4-*Uqxc3D*Kpf zpT+;PHn+PyqP2|%3$mOHY3>0@9cpjlgVL<7lI{j9Z&_A(w^$@Y7CsqQOfAV#Mm6+{ z!MsAEM}a6|O1Mo*CHekYPXD6$3EU2%(^gT)TG=8BaM88+ed?%o?|4ud3WFN!paq>C z3TcqdXyW0g&@@+a8z--0!2SlS=x-)D6m~YH_R?G*Jo7rye3~mT zjoppmliqOxv&@Nrd_P8C*Na_W@v;%V2xQ6*M|LvRHQ`%-#&tSS9;RBV)z z#BwKJeZU$ol9S)tk<>L~(;o@@xbWXpU$^KDkha?RMEhrZvt6u~fcAvapIE0g$`ha~IIL}*kTE6#pHt3(jp3BxAoG_iPO--1X)DxHt^|IC zR{*N~BdA2ZD6yd-mFrB2=i3VRvqY2>S3`L$bz#5v(ZQ9s>n|A2A_m~b=cOo zYCpdE(9Cp6kZ3k5uX7}wwZO}m?-w5%eD{XZpjUFUbZ(OfUnGiwRuJb6|B9wX;7IJ2 zKr$v#5mN-$x`#9|$rTw0(u??W43QJ7PdEC$PI>nHQ#iD{>SKD2zI+Am5ovxnp03zp__r7OzLKp<_kZ^d5&0lVI50PG+tgs3Ji6)UKF zLV1yvGS!cYUGe=J4jGea%lCnJu%P<1J;HWfc+RdTL(R#%XWiZ(e+uAlTR<C6EBNW6pKOd?2A>|If2>3q>8kpMoX*Sfj7;VR;|&C{HyQR6 zAFoLl^6?GD+9(7o=-|?lHFaczE!-vRaZm~)LXs)ZQ(&}VNo@@g_1AqGnb2|V$4x|5 z$cByI1ume&R(o#`C)g@_b>pQjFQPYhg@tFJUz+v@yNjUrgjA*5UG_EOURt}*uI+Io zqW0D|u<;}F{bcx+NP|oThLKZyvQc0{6J+u}bK+HmLdkg=2}i`m+2_=v2^K4p$4>`m z{F6J=wx9f*;O=GPB8i*4*i@eUal zB_-#NO}TnYZptU>BI;&=Pq(cZ=BW~h#?-$OTX*LgpxJFw_o^0ht`7Rt970RYluSpjr#Tr*SEUrs(HN=<^f8n9fO zY{Of17&=c zdapb_;YarVHuhqfa=S~@~bF+tT!c_I{qq8fgc$O4OFU|spyi~e0PNv9n{hu zSOm5-u2Zs>tZJAH!tv0IzThb;-!e0}zi8~vA-LYzU$j8~F= zf^yWkq|fw+`>s%dHurg6w0!tu?ArpfLT_nBr)I+ce&>Un4GT3##67c< ze6;nBU*k6b>Ujde8=<3{6*a!K>jsUVQ0h2WejF`P{Eg?9*^h_$$Ih;qO_%lZPDS;E zR))qXwu;I+qr%U}xAY9n+n?~hT=`j#Sz;OkdcM{li0M;@QD^5v9wmwI@~mfcvquuf zf#2D(0&_K2M9_Um=-+u?bf0!ux%*K^zUiSGoJ;DQkU1vjvE>piu)MuB(UjKmK%9qG z;5Ht~k8wqeV{DLbl0TdiH`YRx+iV}~Wyy8uPg$AgXQ5fo|{ZG63@@?5T^eX^t% z06_8z2~)%7ttImK7eWAMxo?+Bo)H4?x0%?{ZZE;S@kX6fYkuIZNx>8A0Ob8ff1-*J zs}0JYX;5~xVB9hZR(urUV3d0c%GD9P-b>0K5E=uft%Ti}lfCR6x5<4dzm&ahjWKxo zF6R@l-N~=8%+)RDVr<40CT(#-qiE@)YO)#c<=>KsUfkxxl$R~+^4w!X&OZ#{2q z+rRPU0`0fTj*YI?Ak53a>9h6uKk$co%O!HHZPkx=HP%eKw-DXqK^bFj99^w&qzzKe zP`9hA%1dE|S=6a91TG~iJ=gKg1 ztX?%KF>wL^bg;x#+j%k+95y$}xeYvcjc=iaxW+uXedL?9zWj}JO1Hi?^|A;Zr1TXe zZwQQB=78%>@ZpG2krK_{4yr!h9G*dW{KmL7l1VV6Q(c+|`!Khi za(e0qO+I2_-bt{!8b~pwvp++EDl1K?C{pQXI#)MvMjXOx6sb z5>XyPZebKf-ttEzh+ArKp0d^5{Geu!XI1p_aN$AbUsyt_FPZC53|ZXV*1-3xSttix zNx{x-`DvCtRM4rZ+~>IIMevS+J4$cSOK!z)hc9#)d*I5mm zZ(y>_Z4i4gt-&Jxcvn1%(2G1=2{l#95GqRJ#7vFwWd=Xr0=#5%A|s0NSo}E5mS4zbtk3xJ#54`<6100htdM>ED0V3Jr3gMB0MYrgn>rj%kv(4m^Z5%4NAh>mv#BeEG|?u>+wtppRpDy`WpH1Au7J0m zPP>2o(PUna9v_IHRSnfmUfB13N|IPF?Nv|4$95{gEb3-XydX6MlaMNZpn1KBK%}(6 zOXjVIXQ$$JTHjLC9-L_Tj2r8;X-pL-=bUftZ4sR)R}=^TyhMh4Ayk|P{*^O`Ykx`r z+nVg}mYeM_7;#jp(0os(i*sG#trsb&(p;g=`(s?@mRUv2uVqUX7}1oGWr3I+j) zCoeTVG@x;-*wD?AtiswaB^PftWhAkwcHWP%IOBf*{&M|5%5UI#)h@m#gZFX3Jn)R?#V@+$2skpoM@k`+?`b@m4UGir2&sg^$}aXEeFBmDAM`o# z|Ij0yOO}pzk?fkPV~G&f#tU<7X%+YHJ2vUHj@Vgg^*h&WY4h2K2Gi)L&oeD4a3sSA zS85cJV#*l*vRN@%5qoNW%QYZCk}_*oH(u~4*@nmQKkxuFysT{t3n9qcWkG4$cylvB zcgs!LcdsBSmnADS2@Y$qHZ!RLk!IVGu$R_R`%lQk=qsdBn|Zwgn_-m>Uduj=HACYU zh2IWKEUeCjIKql9Z*ZsSxcUJHgx~7{9{m|B=SePs!BHHFEibKB{BSsfc$pNm_t?P0 zB8ld_XU2ix)xXA3mcCW-M*yj=%{O@`U&>OS&BhNz?t1(bpngJW;(LBJ zqUUZla}qM}#Vlagt;WONyjDA)$KD=lVegj`JT!kj=y4@ zZF6#!(^)^p*S-j?+bo3nAsnZ}La4Nb5GyUS_;1u=5XUTD`mJj96k)A_dy7_+>hiFrthUB`{LX2(Y*hS#qwFJ>r=+x3DmP=Pc$sK`|co`oH^;OYN8S&W?T#p=nomtLFf6}5Ng%&%u!;yl54YRY?Nui7vdm)%3NLSdPYLox& z&^v~=UF@MatrE!3520b&)yQy}ESIxXhlnt9JN=X1k2tkY2t%kix+(~xIyeK24EsbC8ss*1 zk88Ii!a$+ygRbrs%5B=C``FEzc%;8d8gWW3xad0}0wIUx*5?9K2PF(Ay`Y9|Nz2lZ z)Gxf>UvL(G4&2Q=A(Oh$%q5jJgPv2Ko>&AKJyWdi`N-4?s(kjadAZNk@4wX3rYG*) zcELnj2@DnGVdj z`&q*)agosN+yuCN-R^ZO;vK%aTFcAN9#-I+MSKQw90QwAUZ#_&PXrZj*Tp(fs6F3gTf%Y z-TU_N)#Kw9wR>60;`e$d`t=&B+IJqQ-y5;MS;j_VRt%K~L&-_riHWw4Dyq;plNJ05 z9zSOln18QKEFjYO*2Cg`o3!B-Voq)x@$iSXkn%lVBO%ugJwO!Clonzspw`7ito)s1Nu+AE81b6Ae}^&$jY`e3`U(*NgY zg}-*gxf256KCQm%Sb5bT<8j}LMN8VGSZhTo>&u^8T*aLbvI_7I=J7tLrwgKN3o-DK zsiJXn{>;?m13SkIGm>|PXw7Rcb+Ehfsg)30=8_f&e5cz|wId&%Pgg;%Gp0e~NFzyO zj4CU_P@iu_kByo=eetlB5V(^e?ry(v!s$S)LRs&0&^u$Faeql2ZE2!<20SW@KI*h= z#!FEQq@^bG*!WnT=uxJteT_;O-?)vk=Z)XZ>NfSZMu3OK=cZ|r8w zVMcsrGc7H=y28ox#ykG=1`I#rS!z+MCvSQ)mGtAlJi&E1u6Eab#$Zm$9EX*?6XR27 zl2>`rv5g3?65(~_{}np;UjruY3}!m9LE=SIRiN*I z)=JOxh>Y5wHNBgLn>b3gs$ZyN?U| zab}Dh7T&lyGMAY;%U(RmVI%Gk#1 z4P5{u5v8tg);zQ>=&NyUWRPc_@1tC!m7MHpI!J0IzeNedWz1m5bI76Z1L4-HAVE$F z@oYiF3xNgyG|bOKeK3TZh0QdoLFiFw`+<){pM`hwLXMB|r5_=S-Ev~Gn>gW+MY%h* zvZSZEHXG#d*2?^aqEhzLrQ+Uka~~gcM>li^XM&ePn^j79)Z9eXeS5(v%4S~iaJHpTS^+TUWdh*9(}EI98|r&sq)s1x z6q!2%_Pdp39(0S_On?NvKwMFuGjWFBO5GxZ#@-J0>b5I)S+<%xH@83k>Q99|y%%M1 z<9qNb#bYZ$v%}5pHcbxuR%#s(P6E=Pt5mnoPV4+LiK%)c0VJ6B zV3tW2TxDJbfi#_j3PyfT@4CmB#ZLnATjg$)L#0+vAv+jl^uj8`@};WRdRD^+&QHRi+n{*wmk?Zc$+*D(^oljB77MSysy@7YO_vxqsan zRMQ`Zaz`-f2Wm1>DJ_JFbl%fAH@2*o<-Mn_4U%h~@np!wc9vduD|RLt>!?PR-%M<0IY@r|0oD8^ubmSXI!8}yqLwUS4)K1yJl$f z|BF@5pQE95QIQ6I!}?FOX`@rNjzVLpgD2&yT;94fytqSh2$lIxz9^lF8AV0+^ww#2 z3-A9@FovfLg~8+6rcwV#P1F2XKSngt){ma+zF@flk{1N_avDc)RRq#_b1p++K{#Ygs&|i#G0Ckh!_Mx|C`&4i z5gZehV+ZVuv}%4L5jD^~sOcdb{!M75?S{aLts^}sMzSEkD^s6>v@fgNXgAriU>OgY zGlj>W>&1`7e0&D2a_f7Od0t-+XysICC>)(>8AJIm3mp#St{lCB-Y5K2fzseDh(m^u z$7wc+IdeJLi`CyDk1F#97=E6`OVPn`js#|lA^4?>$#EO|k5OJ`jw_XPjsAvr)dJK{ zN!j;2WT3bo8~lm{r1-xHq5S#}WXbpNJYJDUpB#*QH;Kc{g6I`s$w?J{DMD~*m2>92 z>J5!kC4HxuAhwz`kb{2eXTq-PE`fz{d2qS&bGH%8ozL9Rvb2t`#<3-s11)<_J#r<$ zf4^Y}Mf2b2?=yMt@+R%68bc0C(ZWrsg3(U`Eg-I>Z$CJUlmyCZ1vKqinLNq>ry>tAD-;nrNMB3 zSSMj>%L_%#G9cov%7g82F;ukh(@@DAruZ4UCU~xZ`Wdv6YlT~Hs&(npj53SQ%*bM@ zb^AN*_qruzTC8H$dQ2Zo-fL9BBx?!}?fC~mcWd_$G*wv8=l5b8@l7s^s>-2mU`>K*XmxBj zc2TVA;#+unEQKD?;yCtS)6j{Jjf$V%c!$#$@T97~Oei{%v)B$B z?O5MZ=PRcvCfhDfqfmIv;h7nwW0M0$ X~KOkpA9j^h@ZRv%bb)KbGc>;}jN3!J* z^oCowCHv+cew*7iQ>)2&j1QdwIOH=omX# z$(2ZgNtb~hPPH2L?ud;u{&INW{6;q(vo2@UvLPv~q5KB;9*?AU!rLk{(bO}t`Eslj z?`m*ka*0g&oN}JI4C-lBpIOP8lVLWiVXV5S*Z2gO%cA=i7W=0PqP~J*YmBc%z0QRy>gsI#uSX3k!*A_*1~k?IV7AlJ;Ey_ znPQz5F5CE9OL5oLfwZ52?fkjsosNiy0{5o<&$g7%0cyPzV9w`EO;65-#@Kks5WiCT z8o>o#Dm_0Yd-EufN}h?#TF05y93e2)$aeWSBSx4_+U}#Zb7PkZfIDHA!9By>lGs!m z65;?*tIGN#GZMHyEr9_xod;`gV%qI>dE+QpwxZi#&$8ZNa}F48zoN}#L*RqwE!QR+ zK0&LUOXyKO!d>{z>BjN6BF3KEj&^hb%S*!57-Ea3FH<|?CH~ma(#Ba$chVT8P_&U= zE;Rz1$t-dD)W)STf>ZJI$H$fh7|!}*J(2#OuE)*yVQV_^#Gc`TxeS3xGVvg+ z?6d`QbhmwOUP?{yu>d7|rJ991HuCste2(B5^+GW5M6JK!P@t#_1tcBj8smU1Pv+j> zWP}-PYzyTw5M4IoBu+3fC5~RH3&tASghmpmUe%(kXd-Ye+OEH1Z4<_}h1k)%EVBUEm8a zeydLBakqGO^Y>=auef4OJcqVkUekj1wW6{_vN{YGS@qrR+bFO*D9{ zMUGlL%<0C8PUhfEIHbO&PX>NFkmN_ZT066cprKZg?_?I$d>;ATaod2D)Z+yio6rG> z+m$Ff7!su8q(WOtz8~kfu!Qrid#aT`Udl%p#R0R5;|@rv9KQ)ty&;qoQeO{0gEsFb=Sm<+rg&mVzUp?+@O*Y!ILqwt zEcw70;LU3-dntg3DRCC^R9M=Y74LIJe}JQmM=d2E&+RSn@_mLPepkLz}qP)JE{`Vi6PF|DfaXo}XdtjFtbYH5|~!pVBp~cVRnGOTg{H|I(w5Uwbz` zpw9GmLb_|2&6xAX6_Q(}BtDIkgIYoUaxCWt%~x}6w@OZ⁡E@8H6uGug6W^bUO!6 zIj7d*)JE@$f0IYUi`EaUR0S5q`P!i+OvFsxoT)q|oVa}0aSc4cKr~T0{U=Yy#gYf^IQ(pECZ-^hXp>q0BH?wp%e#XxwN_)8T4ccjDu z%T`l?-!T(pI}Kzhr2=id2VIh1Y5mG*F`W(>2|AjxHW&q3{CqKxB>x}-cZ)@@w7B=@ zF3Dnt-(@;@BaD7@BCz7HScj%lg@b@OapsHcS68b`N9NiZmc`pXcKOIdleJcpY)I|K3 zm>Y%)Xr=q+bxrqQrHnS3FqKF>)t&gUTn3P#OnKbmdhb+@bUw=h(4h&$&&C3Q_5C8P zhSqot05or^)9zitv>*8F4PfaL((rreu2`4lUvj$WTYgDWU-D>QKO2V<{Pb} z%_|SBuZ{-$qg*&k+*h6!)9EKx?N_@e^vF!#!l)x!7_@5U96-lY_E z$Y2(J=w^AE89-ytSlIqPmyJS$c#=!&FxJ|vReStry4@iZ=m`wbFzT68!96lm#@tEQ zt(v@6Vc*z1OZccP-(+X#20@%=vzXV~_>1?s^OjN%>caWF!WSI%m<=R}(~^*;tKSJm zisA=r{q#?8vAZ(mfA1~f5;0HkckPI15ujUjdGYQlzR>)e#xV5!j7*;u$J0D9`jnn~ zyULpzQA=5yPhbx>2>XgsR=|imX_R5iYxWOieQS}=Tc18^dWmz4%)oOG3vFRf{iplnxn^M>idL zEfcLl5Z!OG49h>2Cp;-YYJ@nL6qLQjy?#ClL#93_BwBpBn;4%l_5iChoCIjN&&T<- zv+&jQBGcAN)aaAK;o8>X-ToNl2T)4=ghHYon}gmw$m2bkN_fF3%v~iso;aidsSl3v zQCq#;xn$5`fY&EiHvKMnMSCKp7|8^7-m@wXh7>LMPNkqMXFK)q1MdzUTwLl=$B@k(>6q6neW>NeTVL}9x!)}7Jb+M1PMvW| zwJdy^$^T=K1tdLGGU|VWS^hZzTwGroO68^cu~i75mOENSF}kV4ZqPSEwig!5C&5b! z5LkQt)(2uUEi^}2t1)qXDAOY%J1$F#=Kvo`94WhLZ~7l!r1!;Z=xDY$B^nslF5s%+vgSz2 zVDxDIr@#3TpONC)zC?>V0b>%0tX(v%O3r;ga+nKG)kU?qHHeN0j&JcRmaXf7Qyk;1 zg80{ddRhJ;sWc8#2>somC8e{f;js<2G)@OMx{8hE0(kAzY5b~(GL`9R)PQ^RuRnd{ z%o;cTp|EQWmC3-)gg8c0$>6vDq2(c6xu^jmLw8E~3w8Dt))%4^j5fC}N1p>)r5P_JGifN@_mhWPTRwX!#1-Kt(e&1~2fv7<-?d(oWIwYzftN|+40;%6@A(t|k zLbpO2gD{%q(y^lC;IFZ`O<377-&x5}zqP5CucxVI{Ct6!idgZ^8>UO)If|v84bNc) zj263C?6k(jTYbr;%ip|d1-<+dnvGgYAkjAXfms$Q+iLC}FAIQVyWhY~cgwVxR=&-p zZ?@Bd)GdKi>fiZhTE~sAJ{j4YoK^N5Vd6oHkw_b)6dPO|bFEr;ey-lpTm+=f`e592Ra4+P%&FqZ<<(%7xk z7g96q#?_a9dC5CcS4qIq8ak5&%z5W>w2iE?lON8as0K3s%3v%&72D&dM!`2@`!p!9 zSft0COi7dJ-U9Sy%<1Z^jC=1Y=Wo~4oaIWK`fO9H*F=3ErhrEEeVvUeSnY3~v{Xt- zvnUp=a}1|-m`p9L@wgA{L$#*XmrK$&S2wa|ldwBZDgIaYNyP;X9wxQX8^x;fW|N0$ z5*`PltQ240J1doi`heF{dmnz4GgUbPMzByqo~S7Fh9#U(!ds#*s%ma#?gMKMys%xE z=GYqDGvbk0y0^t@I>|Rf9VjlTJoitrV_RHj)jt636DFNqns&DDK+`JSBN%kn-n4{L}!L7 zczm;F8%IOm(nZ`8+F;;XI2KshKmgjjN7%COc`jT6cxL%-LKib2mt+kWDPzu_zd2I9 zWI|QKY^iwos%{u5_?Y$ZVwk-9^%^o`qo9_z-bjB%-3*P}{=yOqAFGlXYxaLGgntU5 z{&!3K-+%e%R_}3~`QN=vD&4FwvBPIgM!>v*15-#Pdi-?%mNazS(aJ|k{@ zg-6^7*$;J^|Ho}i)j4IF`pBypInjt>Dm&-1zkck4p;iAqc8!!2%=NC;RbqW)ryOBy zkosz~5&7B)T3t{uZk~*lts}Y3K>73Vvwb<^*0xZ_z*YPvho5Dfl`yvx566p`W!9UH zC_5W1om^Mzr&*!6XpX_io2p|d{C^Uf>kD7!Oe|>~da$=GCINP(40iZoj3Kwbj&7*n zxHy(z&B!dupXlapC&}$K|06xU@YPOLylzQ`q=bU3KwY0G=iB?qmO}ACa==i3A&BvI zq&2kulhiIizuU>L82+(o0vWhP)04dWjk{1ycmaQ z-PIV5bkfz>2)>Bd$#6w3mb`jTgIr^uqMQuIo7WB5~EPWZ-Q+ zJW(5d7uU6kJx)t{%_*Z_D_-Mcu>5D-yMmH1*LW$I?xm`kiskY_Wf?d|LQY&v0B6=v zg?T*Ef)aL=4ZMtod7RDxs=M*!87Mpgq+oc3PkzRt3<5{Ve?5hdBY$(bKx^uf`3lpg zx`e#7u%KBLO8Ng@354)%JIqBq&;x!|$J?eu!(HCdFEDSqzM&poPnTD?D$M1UQ^(Gb z(##y$*`B!$k0_;(?oH#+Sb`5W&tpr#Q6i^4iw;)v;x^-A3Qg9P@_!T}7@~sd;KTnO zbpQPx|5eo|xEbTnG%x>`k)40mmM*-u04qpR;yl=xw5c#<2xYQe*NjqVylOhrnGwMB zswzI>Z{fv%aP*`?94F#hV*!cX4$kA+X&S7h_<$5X*Z{?Rar3uq&w8L&`@dm`jI=YCP< zn)O?%Ok%%=rV}euGj&i7an4+}s>@rutD6XDv_1xmCOeN@nSfXeI;6N}L-H>=kqM`; z&=oBP^Z_H40G`Hr{@zvp7L`2HvT^OcZ`z&X0m7vm25vN+uPi@#GfZK*IczY7Hs}MO z12_i0oNApMoYd?whB4!|Z`nI{Up)B_I_&8E+dHZ>_$CE^3ffhx9odzjY7|q%BgG%r zl`1hWUp`7SLf^*tr}wV(p5(EUpWBN4-xDPfc1P99W+1-{Ha2K4@>t)9xU) z&YUVLk)$pGz46^WejI>?G1Yo+M$PV?%ukVxcUfu7>koHu8jnRi49~@{CwL{1iK-ui z3VB)^yI?9b4=OO*S|(M3bs%CmmG)&`a#2o6VwdJZ!>^g1h=k8A8F74n=2xcLNF?vF zIrC|F^U8WH4%ljVgAN`4;oQugEW=^xWSmophRb1z{`yb*?HXXqsdxW)ZlPQy<{V~KhW#=^F{CyDuwqO5x&1>5wD$k|}Hbp&Q3$KX}9pIKuYC0OoU zd_F3|CEqRd|IvNl`Pb>{MD&6t2q4Dm{3;jYEUWP={fXhP6KWCLLNqbCI8CH}Up~}- z9OA*&+uMuOzVFdj)JQwauDoQ{J~RC%Ct|}WF2ZAv_jg)S*+3M-@;7s*=$A3pf#2>~ zN`IeRz)X~l({A2^!#z0yiZUqZ8K!|`S8QVo7;m|69`aDfWPnviD*B%fjd_0c-|Aue z1m+C;{{p*t;{9&z+I#5wXme9K6O=-v4wpk#gA>d_x1KwFaF=`?W&@>glfzypsgiss z?CCNnSZI)t<1ImAi-wM>LZZ{V3VE^wFK3qURPKfF9#4VjU?YOAc+pF zo4&j8q;S+UUZiYqjD{M|5q>u5tYlm0LZ&EaYH5^QMTLz8W@E&Vv|*f^NLiUaF*612{?Uy5Jy66* zR(}5(^S~rns>-c-uCue(*IeB(4HSpa%1V%Rfy4kBSoV*=ZqqI}Gs{!eprUwJM}8S7 zQMefZDoXX;z5qy0RI<$Be^hP=uzXeXe7XKLTYr)#4fn&2SPO$LLjb-KyS>`*iA}^S z>!|hCb1JNOowF~wEMkqJISa4$m4SkAnMGS%W25+%c7~ZQcCEXDIK1$L#LdH-PxTFT zlQhTp1Es0L5jDzOP+{{sJ9+B;A#xwi&eb*v+PC0jSzi`k=M!FM)2^Uyw-|*4iU?Fz zH?#rC5VFP|7Q*(tGbPQ<8ufZJ=eI@Xx|3T#cVryhpw5Uk`%YzM!G#eMY1Ph&bcfDn ze&EE3@r1L0mUae99R$?(M_=1+;^9iU#oL16RiVE%nzv;0e$phoiXd9Ydc`KSpg2WQ zIX}<~Q;}+UIba9O_v5X_VTv<-=_$ujRGYzuyKFpBjgZ(JsCeiS;3>L^l6qk1m<*H< z-I`ferIxv_&vdU=afgIK5@LiFoAuR1WKYf3x4mGu0f@T6;J@FqD+g&OzPuji&2H{m z5NWUnN=Bkv>Rmy?``j!(2>cDNs>mC~)07h_q%`UA)}rZWJhN%L6>Q)_R5B;=v(=C- zaSx=4HROR=XwF^jt<^z2T~W4_$1Ig6k~+@iM`+{c11WxX*xrVs8=BNR-7N9ax!Dht5+I{qywIJGwwzj*#^HE(8q3-2F-uGl+ zRzbj<7vrs}q}y%1-Lv;#K_Rr@R~&^V->Gkt&Lh{C<5qq?8Iwm*J*#IuX?;~JE%8ec z?9W^?_fICiXPK;Ex3jQ&+Kpc5lm6u%>fxAKn)|3Mq=i2Z)D%NY3Y5h!gA; zNc81;|0Nr%@CW*JRB%4O&a!X#yw%1()$Qu{Qq()!W@nd?I26%YHg+z|`noBaB;t)9OAV^c&Sl6;)om6c;{xQB}iO7}k>!X!$tBlgn$NS6przIC(Um=jtM{oLuo>}H-B&lRX z3`o~7UF=Dz|MZ8}zv*HoFRtwx8m`dsvuit8-bZ%k&m8dyvw4>5^3P0<@f`rLex~4cSet^716Se?RTG7udx&IO>fTmESZabnWl$^*2LDoYA_6gkX^K`|eAxiYHsSTEG$8vg_ko%}f7?5!6D9Cq3a=-?I;)0G^v zXQ*kd+(mZ$GWxf;W_+;zg%v~gcfFZ=K9TBIUDXY{H$CZ` zbb#d`|5t5+d@E|w}ZD{0GA0q65&!71fX4C6Y+cC*hkpc_rT=lS4$so#-%iAXgbKq zkmx%R>ls}$&wO0Z>>a{DZp}1SY&?P_jItT})XH2g`E-bk@V}GK|F`h|M`nBNcm6NA z6duK)A(T5~QLe{4A&5qJNomsasLOhC+%WkcVzsA(~Sx&AXmX{1*|6j_p;g|fYA6c^Q>{$xEX7cRdOhW z<_!2V`yL{sPNsJY>Qa@w!wci()JTna#}QjIJmQ-q2UxjnI7|T!Qcb>C9pw?Mr&n~$ z55gu^pWSMsIBt#*E<8NN3XwNc#lMDk#}jnpzoCT?&<4R}eZib{fe=3|6HP3#fhe@r z(!%^r0*Sj`A>&hg!O0frg;q1~E22+JKnvM5txF(*Nl zC35qir>afT$H!EoSO{&!!Q>LikZg?4TVKHF3RzJY`$?e@)7up0<{M>I%eh!Wu;Gr# ziM2b(+2?U`$f|p)Kz&N?jcey%r{hS_k-x&wJo#73OAtH2*5@5@8*x9TcAjo>3pa& zDTD6zSYxULr99|y?c&<<(c<7s@0YJS@;!WIyRx?pPI+PK)GK8KA5N;Z&4p=u4vpRd zw6?6RHzu5Wl4Ur7ojUm(sGrqw=?tM2U3$E|iJ$p@PHHaBso}c#IFp_bJkZ_!5O`l8vosjmo@`s9lqW7f>*jaH9~nfOO6V%^ zJ^>uY6xxui+Nvsk+n6qFz)!C!{GwP4xNNbei^i8{{ZmR#Y z=T%hEy4*wgygNAc^A3q(IP_K-I5^vpcknrVTG~ssdYNkIdLxGRgGjNB4Zn7ih~cP^ zm{7{8ds8%2OXBx-2RiX~@N0}B@~hl|+R4f7hNP3?cB?F^^&pe4I{G$V>a5PCtTY( z(-J!^DcFaBoO-;tUAd_J&#Q095JPK13`dyKVjT=u4l23bo2WXKNY3D(wZxq1nO3(tQFNsjaxB#+)LzsX!j*n zoarkkN|<-sG}Qa+aK`fRLn@(GGzHP(I%)_2e4S98{nhv-`_S&^X^w%v^_#Aet9_#Z zQUz;;F4bTOjpK_)nmw&r7rMxML~W<| zgM$u;2ZzR^CWq_Gbo^y?64-QPxgZc?U-BrHQx7j*40fWDkjKE8z0Dlqm)O4H+W{`9 zOByT`x58pUoBrgoMY!Q4SLR~ZYuH$$gc_m>b059+wvpkk5S{1DxNwU*x6)=v)H-zCizLGJdf0H;^M$5;qVox;<>h3BQexMAm?T%%GR=rb&XbpbW_ zY|KT_n<~z#36a9*NkDkSf;cuW4a2d#1}TO#+H9A@2!ySC;hfbpI#If=qG#U7}@ z!(D_Yw446!!znYdEYz9!F-PsdE`XGx5kD=F?dF)T~)S zHJlbool_3Qe}OkMJ`-A2VE26r{(YQc%!(V52N+W zlC0S>{+gVoM!d8LR?2njhZ55ZK4Z1WpwYM@&QJSXrPvsaJcD+*9Dbtp*ss+rz#F7@ z&uzWQy09v?Z?hlhY?9$NP#W>vt*KY>Srw%R(PdLczR>qZNJ&n8%(=1B>0aDHGp4-N zQV*e;!1DMgmA1TI@`uf0=Plbq&`k{ru_ZrSci-)4GBi{R#VK?fJn|lXzXVX)3wLfp zdobwa5*K95!ImV)OpEK>Z5ibEbFS~~(Uf#gCjaVfUq+6RYrjC zLqXDUl8EwP#_U$t)S^zSTJ6MTm&~1Y@~e6+_BF(hI-@qmS(`K)`D3;|C}WVV_0}g4 zUe^`%)Am}t*Uu_{juy%}99w=X1-oXRKP;~_V4#pe{Bv}&%%{!F)-ieE>vn@ixa$jK z%~ipi$V_PJry)--25g;Ta^={@&1QX*=gfSG zw7_Hdug0y^BA#hywC>2%s(Z@Y*(6msQfcE`LxBwpR5A}G)V*JX{vd0nuH@BL3Rk%_ zx{@Go@C+|20~$Y0t>ojrxs-t+qu`^_4VK5gIHhX^K+nZm{?4(bV4^IRkw)goj`0xh z-}B;nnUS2^gRs>LHnU?+Bf)^d@d%6f;6p|cimo_h0lgOFw z4YHejCx4WuvFtYJeaz`zaFF?orM99JM1dpi@g{&P9O}C{6af7>7m3JPqtZs?TyI$n z`5RcKweQYT*-Tz$is2^;M7L+W@=YTzL0Go)K()KWSJAgSTttgq57yhZHM(a4nQw`G zFV3J1{)ak3N&>)zdfkb;~u;lZxRL`8`zuOYRzQOkC8X(or; z-=DXAuKJj7VX}1y&?TQ;P(0zurG&HeZ|V^l@X38;ow=5wr}Hy z`mLW*(qXq^V$y_4%>rzO+~%Pq&8umbkg{a{nQuMKLP}QL2n%w4ZN@?vh`&<=Z&TYZ z;cd)a##&)d>9lZdg|tvivOpWvRM|=aalwqB?dHMB&k-Rl)p2i~7+@s# zKNx$-CcyRXuZGqrW+}&DSij|f= zC(mAc@AK|=t#!`%kTLF&WQ>f+o%_1xf6m_=I1rCJDfr=kGnn{n?ZM5xofD5+}DEgG~YhE`}_R(XZU{3h{>aob&7{*27r|y%EkKc10 z*B|{$IF-R`z=MsP9Lia9ZT~GZE{v8F864anF1Zio5rN(WZ#$letVHsd7vJw%1PL*q z^6GokWVT0Ifed18Kb$MzX!;Q1PK6tpu<0bV(7(`994gm0Gem!~bXZcQ;XjY7MLK7e zkjoTQ4^~db52vfr*9LqSx@EGwo>tlWkxDcnR;qLqtj$n-O%w7%qT+^VJ;cE#qv(n1#ZVl8HJ@H}Tq>kJ&o;%I> zo=Q#4J5o*&Uhk(QWMYe0vOEkBbX$msq8e^gszVN|03dq<`7ulE6m98qQ545K7zXR; z5ZC0;Np}Q|7FA`>y zD%Kd^7$kqv7c#cVt5B|7E;|7ar->ArbJ5VOm$+Z@K1EeONEO0p?Z@HKb=QoCDHSrU zRm3djU!CcPy`X%xDP6GET#dcdC#JOutaI~Wto`MD@)@mC{Lr$Fl#T9Ui5N#V5O3AR`JuKPs=#as=D$1C&S@YbAb55o)z{~%or3a1E zBS$FlVnt1?4M!Tjg?K&XpQEr(6YWMS<{lG$X2n~lM`=ilWhcX{0gc`EYBxQ!r0R~T+HnfJf<49l>y zR-IUk;!GgYXnYy3^J=hK;?S^x=h1Eg#MBV}NyN8VGBj$~&2l)9g3FJs6B-;Fs*ffVKT!jRM&2Fe*IZ>pY$?`2bFVv(9T86;Qv6DhgwAKo7*DnYO)ahYXHF^!8;CZjU%-k_s? zlNLqgy#|Fr>|ra+_+eH*^48;HP(N>$a4aVY_a)7YGmnxxfhGdmN%lpp{Y~Zh%=GE= zkG;)Z4^x@66f4rM?41#jpV%}KXHU*tUm9blEB|1~qExK}Tk+*s#>ql(j&7c77zV+I z-7a_@>!gM2Po}_=OzOK}#>jV2ZkvOssZdPOG?4m?`WFKg^Q6z{DV?J0hI>OVZmD^_ zZgRXSXk8$DSSjkMse>lP4+*V|-A}jga<6}i>5y2OIl9@t7si|J$RZz3IwIvbD!fA) z;nh22-M&Pl(eh?6>`?*K3@SwHh3>d-B}8v7A5Da{-?mA>G#Elqe9?UdB}IQwyKDbE zdUDYdN{c&8+@AscCT(*EAM}GY?0uTO)Jt7HyeBo{&6Fz`Lz=vCTm?FHP~7Q8-fZVA z@8&MYD~sx=8urI~x|fnKy-BS{VJ7OUNBj`|uYP+@JzKbHLLS$ApWi;JsL;F}*5^Lxd1;r+S(uE5UA-EhwprKJRn5$W-Zrm zbz1W;9w}**nI$eFz*d#2>9gOEGf{sQ9u+04B?mv&xLZ#E6+!pt(Q+2;UG421H+wm| zX;2@~_sa|$JX(Dn-YcV&Cp)qpI+am(0S^PsO~CGNN1Knq)1}uN(+l=44KR1V4X{rM zfmldxRYAX8-a(>J2Yy)HNeh26=9N;@5St%C$fX^u?R81Zua4Qpw4HMkhJ`?e9!P|{ z9M`;~1&>!leJ^*3Mbs1@@49nR)(B-y!VW~nwLb@H_hvTqqmvS`_)pOZoQ;>EN)ofD z2bM93-`r&F-RMGFp_=73ib@5Xd0z15KRkwRolEbPu5MTL;+T9D0?mrmr}J}Gi;G!6 zCp;$-hpDpS%tAUZ-Q*X@Y40R!731^sq}dqwz+lhXric!if0ygiCuMorZs> zQ_N|Bk^3yS@inK7w%6!~wo$nc1>ih$8;i{qm6xt-TO9@Y;nCdJko-W4Y z;ZWfj+WFjU;XdQqZn7w7i^tj2OXXu(Gdy_a5&!n_N<~>Uad-FY_VFh0c@t_CxYF}0 zr9q80^F23+g&}SSmp{J}PO9rfsxaDDT+(^zx3 zP^L0<*?9q{ia*8O3Vo*HJ(S2Y>)}#ps{ZbkN4xD+qlu++pnV0B$KsV6L$WuQ>oV76 z0ZEw?MB46yuAJtY8VF#d^I47-J6de@??+&6jB|pTN9~k6*~X9M#=A$bpT?#@ zHmMTuXBl4tvOuEJu#!|B=Q(P_)^NQF9XFpvP2^T*oTF-typH)k|4y18cv5jAAMJCN z{;{Cz3a?Mko=EJ@tT$`U($kjP?XVUKP3E-;+ia|)H$a!j$thk<)&ySqK1ukKhrCzv zs-lN0!BCeKih-;>M~nHc+}U2tMT@i9u{&FR$_d{TKve&wwpkME+kOu9<6Di};iz!H+FGrXkWXE5?UvK_~vShw7zOm`37Ph1ZC9T%$9K3>x|P$B{)lJD@k%IHrA1M zqhx*vEMNm!vY(Hed%ozDFd@~D$u?)t_e^L`M(;Tr`7p*N)2|aXPl!;jHKA5Z@VR{? zeSp)REK9KPV{(LX7JJ*$Q=CX+%L>V+@v1(R$1=9+PqR^Bp3w(+YP&aZwF*#@S4kj2 zq!jw|>*>Qz48#!OwwJkANoU%wK@e!pCGrLox1e6j{xTi2uNd@h_i^|+@IG+W58h1V z&`%KsQ8A#tvqQr;9ooKFWw|qDa(QUhp4oghZGNN!Ws6uYb;?oAb~YeqDp93rI{l;H ze=cBUs}UHCJ^qeTsnKGDa&2IGeos{d#>e1Tf%?VBEmhgWoJ$6syF1##o5KE>6KPIB zY8ifm=Df8#L?1!*3w)<`7|xCp>;@yw>mS1wUo(KZALi)(RGjdaChZJzw3|&AfQ#4O z{Q?IP4?$Z!(Y^d@k)ECoFH49#5IG#V_~g@!W>(nT6iij`J04RsR!Drh^1qGH|Kw-E z?V006_1s&IJkvb=!eeL_{hS5e(6z$s9!*a%Qn1=~`po}Dq$HGzX6L!^z|nXUZeodz z6_dzC*1qP{9THNu*b+oj(+=Y{*1+SH8!zSclu@Pv43sRMEFLqPWs;Wo+#Y2egX&~O z&FOQo_GoY_3)wO@2}-WYYZ*c;Lqj%?pR)0qq{aIwMTPkBRv$s>#PqpT@apc5H@U2i zD6CKr;y|tVIDP}-<^^%rk_cLmWwhOQwj;bFn29nh5W7^#Z3V6lDdZiubcR5%(q5tU zb>1v|Fl=a?vB6ha(U7U-O8?bSnj~Qi=3+`%l~8ICts|Iw(bksfD|W435dwGoJ=uI19t^qK!|T#3b$O@3odaO4Ss$;`K4~}h*ANT+cSMTI25=I#DvwLM z)qHDGo>0M|z@R!{@eMGDE7c*_q!LJOx`P>7xrncqDJHqFBl#qH;ia^+!j&IxX3fmx z*P)%Iycjf7cOpvX{nat8yk997)i!Fr-I$tFBcSsmP%XoOyR@}xJXswsQB&^CeGoU2)w@{z=Q!TB6@IsIVSxlTp-hG{=X8= z{}1iaN=Jh;KOxX!^H7md;jkGo?hzVjc}$+e&qjzOOUwc=a-E7R#lQd??LkNzbq3i5 zG&H?L&RGB?)Ci(ZmX{D9E$%(R;W+t5Z<7t`n%|g7WB5^cVStM~*3tt(lgE zodi%X*{o;*9^Tf{CTZZ2(2xP;us1go!`=gdbJPq`{4|3Ku&GM6;=(g=Bt)5;LlMZR z7VUe{S%1R2r(ync?3KO%xuI$C>F?r>C&#y~sJ`RebuG>KPJQeUhpNU2K-qxT@W7x1 z!Uc^kO!9Zqp~ZS_d71!!RQH)v+ID#2r}d=Ck104~y7xZ*JbF4#!bTrdiuPpOTPhH* zP{{+bq%&?Ps7*5~ibo{uE7H1pw~g~ye92xC;iM;d7_Vbh(cIYAkCOCx*$p5q2>xAzUGr2Z0}$9KE;{d^D; zc}S_e6Tv0sAcD?&_UOmjpj4^Ymg4gFqFzcplG~UQW1*s=bJdVR$r$lCS7qu zOIs`+Qi`Qd8*ZfZO^3GoPIawycXl>5`T#PJ=c)VN(fCyrb~s!9OFJPBo91h}9LaOv zBp)VbfAg{0RTShVR&=18jeq<9J>C#qJTs}5aw4|wkLJgg!BZXJZN=^B>5c=0+RSHx zGQ!sKa@2k?#<0IcjD?1g){6=$MI6$jn}%szG-AQIPF`+tq#X>Yx6ibEFO9tH8z3y& zrS;lS=Ae~v>je+{IXV)t>wil}!<2}-9P`m6L&UL!_lGbuUP5qsBS85e8LDOAer5$3 z4%STXXXBlt(Z7wO_WG(@Z&J-q&vRI)uWC|kHD@)v=wNQ@3?*^-IiE(BLM7c^2UZA1 z4(TPV>hO?V4HuTWMwZ7U)Y@$J19g7b^X6t;JzGg&%}{V6WDLf4#N2lH)MSpNUIo0E zbG$a4vp>GLVaRO=$#RCQp=(3LCo-+NAxaN{Z7o?rb271rS>=Z3(rk~s3dpP$hORq= zHvhuT+>;oR6pEJp)?odF>flyMDngG;(|{BnonJCRSuEa$0n$?rl?4tw znO2@ncqPGl&#;rHc;NLDQ5VM&O{;mS?&cuYqB2)@3w-m{@&Srow(MWEhKB;7gl1Xl z#fhakaU6*l4FuH7T|1R^Pq32NDA_LTCR=Vzz=%VP4yuK-gV!3%N;N3{Da)Hf?$YOB zQF9Dx$8=2=+CQp5YnX$^OyEFl-BY91u=glWb=>O12h-#Q(8!nIbj_^tM=l|4$kO|Z z(#!0%23(&}%?9=kcEIOB`XW*qCqnKp&q=~?{7QW=Dv?GYSz)N9Z-}TI8`!#erl9M- zm10I<5;Zlu=8*k=ld1mxQ>sE9CJzcIqBQlte`fzZPXF%%%t~fRQR8FIQcKB4HAX@f zRDDMZX)7$~cN;}RjxjBU46G5jW%Gfoehk&;tAFSSO+$jY zaPY=mxt=nyFc%8!MyN!$T3k)y15pJW!lVl^3`Tte_s~#NIV>T9vSbCG=&>h`)7=X*@7j)=NkUFi$hrEk3* zcP~!T;_x ztSYvQBXXdfT0(UoN1{o*6sO{j8B9J#zcr!iEk}+zYZvodgto0XxY*0lBf66#o~5`p zj4Z?#k;IorHyH~t59fC+%%yPE!JQI<#H?USc5)FF1>wj6>o3Q$@D385?QT^-*^739 zN$24xhEI)q&7|DyZ0b(}B7YuK7V+fo2B%RcQ^Pt;?jyVkDSs4dD>52jpzsvc_ahGe z+qT-S=joZM!iAwi0=Pntc2#>7<_Xb}<=UK90HoN)0?s=J0&@RC^IBMTeZ83e!1deD z#=QGVO}4unf2YE9cSN&QioI4vwZE6g8`^exfz=3VZaf+vEZwQ;4h=}oAFnDaJNlPL``EYDc-R^0wC z21`vhWVx|Py^&r003P1Vj3yzaKbk&}uIiq~^LeX##H9ls0RBT=`1 zf9~pXZ*>sarE=gQX-aTPNUGd6|E{#c>^UJ64EJ@DsDN-rD5dHBra>A22e8*%u9v2J zR1&l;J`m&cXx^VDSSu~He9nTj5jdr0L{}SM0yk66WCy7TD{DdBJ*g0mjt+IBxq3h% z8%cM^-P-96%=k=$f@{Sb&sf1c`x*_Z%i-)Rz{mO#Z#pj3ihVYPh^L1qstY;Z)tW(- zrF%(_Fsm!sK{pP~VJgh@O4^_iUq5F{tfkBdmx6P5)PJUip8?R@_ClAcT*iS~LWLNm zzla2;_|F7dhR^ve>ZN7i;tcv9eXP5wvYAfYDMtJq&c}|0N(G~_u#JYbghW?eE>9z( zdj>)vRTe3=&pj_kdI;1jEE&qp@u=WXf~`AI92IfE&=rKoT(kL zy>8HT8n19=ct@rAc1WflV6~~^EX8G{q%BHw?$(kfJfHPOMLlBoF z{F%FD9<{IpYx4_?e6)T-9!OJb(!8F4j;q;?<9zn7^j>g%^baeJz7_R~(JO5XT+FoS z{oxzg7^3_Q$@t=TEVaf^H-jDVg#z1 zlaQGYw?W(!|6S-b}efJSmN7YuPiShF6qWievXWRnhxCg{BJP z2K6o`^&?BWdcDz-#B=i^#K+)|J|o(L&$WR9@UT^vg-R>Hp3W~Z&Rz)}>*iReS&vW) zM6B@4d!nb83iDF3+D*1;O}1*7XzoVaX)gR_f-NSJXw08?-1JQ}x{3#+?%Q`sR8c9G zwc*73LPrDcm~I^@Zv44`y`aS*tPwiRM20tMlHk!0vH*4rV(_%rPJ}W#aZrQf*Bvnj z+ggpaf{v;ml@=kFtJOc!)Pg=6SO9?TzXE=4#qK9LeWS#+NFC8pF`l}5Vi#)7V39sZqX8(u6}<)yxkl|(w?C*ZfO5H{#uv2IRInNgf3fDBG9$3^ zVyT?kT`CA(wWmEMgg7S@v5aqM z0Vz+h9rXpDUD)bzCuB#ri~4L*S6~34qKES#i{FtZ{3QS_KR>}tHq#v`Zm}JV-(Yaa zR;(DIbUICpf`#j&lXA1q>JB)N(f6RKtt0A-Po&wHA9(fL#)`r==y<{{Qi^?my5Am09sE3%yJX~?VBqnG`z)KOgTgJAlSCM|_! zg50z5BMi->v)#J1Qd8jBFUIJ$uPCK6Vw-Zs=T=%b3-2VWu9PANrie!*qkBFJv1@OM zmSzwuxDI3hP;~?n^97b1ZJnt(qu?>NDJm8cwK9o8&P=CRqj(86+Wh?ZMj&ST0-_Gw zbZ*q9#nF-EZ18jeM-;ny7T#{tOT)HcYXT5+VO6otK(Omf;L&{o*cDh2vg zm6iKL>jA&!SfpnelI&ftk#?tt?2W@`; z*nnsPw}Re)>IM+W^0B>>pCv`UJg7&S0b==|p+oAxz)RHwRMexJ-OZ*bPSgU75%@C! z!kmY(?5hY8R{x#{mW0p>wiT9jCBCp1G^^D-9-pbUrC=3U6y=G{e8!2%u$;3U__kNJATK%*AaiXB zqaUG-!Vz%r4d~AeyD5$p$*ngn?BEhW7SfD4AJva=Q16BEVL;Dm_?zWS5B7cEJ4S5ftpHqZFbrMJ2vOUoejl= z?U23B%^(64IYa0iuxBMvfstu+@uO~cBYdZ_%@aJ$8f39!*%{Ry=qs9pUbxH1#z6LG z7-2;Zd@Q}v0ti>jFmHs1O~4?V7V*cnMw|23k2ZPO^-LXYYS-0-ADiV$7n`ef*X-TZ zx?RI4Ok4O{%)J7^GU<(3)=BcgFb~59KdfsW!ijDPzqB!s;Af zaO25$s-g+nUR7><(n|uD0Z&p6k2W%zyVOR;Fv45GDo#beNo0m?&h*7CU&0KQs6n%5 zif@?2QiCKk-{_^*ab|sQn&9v_o=y2lB3W(1&|Bs`KHmeXl#@{v$bge838=!f`Md%8t(Hbn-f1)HXGaPc%2 z?X@xu!IG&iv4k$~HEO|b3!mzN1~;V-SFBJW(Pvfq#yx@cq2XW5kTJm2GGh$Y<$}E2 zm%Epyj+~h+iDl_0^)Y+*XhQeP>>B!|Z_;wTt~P=Ctv!}$(@mlx{HKJMdw^UXChVB| z%tJTtT0T=BLMyEkc7R?_9=3`%5q5$mbtaGQb^XoQwb8=OUufRRq{XdBeQMsjfK$Q( z9zRJqn>Z`rx7y*>68Q;Mb4a_NX!T7>1w*v1U_HN;F;@jw$o8xXJ*+A@{K~>hx#N$N zt?Apy!BGa*Jt^-`N#HkHtB2k*^Y-Ke5e3^HUPsNTe2$b5-SiY3aBfX9H*s%znk17l zQ@sV#M*}c6np{X*W$$IHDt#Eb;U1 z;`1Wa%({iLmv48DHKf!BU(`GPg3$-X&3q^K{@XDF2D%6fzNP>c<7Y;9-%Xtrde_@_ zvjoHYl<*M8bFqG+rK-ecsdlB^T|!mHBXP;9G-E0N2r46@Pm+IiX=-Oz&#|ih3&g_f zIM7fnfAQ-=*AoJMB=<>_K=_^rfcB*+jH^tF9Cl~Ds^63(y*88S4l0IW`MZFqMQ0InD$Z?1>e&Z{Lr9xchT8dj>FT{7m*>vmz>kQeVQp(QM%nu zcwvh+t(A{8fFHtZNDMC4evwwU0Rkg$UzjJv6INqTx4vFd5VWE*9u zm2}g*0ZsmGnR{_2in!GDR_As!?OBX?mNJrz%5e*=5^3u48PnL!F>1AM0#qu(?r9=d z_U9~nNsMshU@K+lOTREBD-nPU&~+)g4=aWG{r$|;hr9h1L}ViS#lW{<3byHRGow?JjJii5V^H8bQor$ND(E21Fz!1s(LFs~ zUPa7bK4DZ9`Cf){927K=*h0H;iQ`l4jyiu+h-m~Q$K70`aL={p6|NOZ*NsEfo0FOb z(hHS=Rp*gH5W1#%w#ExFFQNkcH0znckHO`cZOVljTEswl4IDtGqJk*ALPPC9u=ko85 zNo>bj1Ibq^n1auXCMJt^|AypdFtgjN2BH=5@YCq5m`b@{4V;r8UJdid= z@Fte;(rY&|0?XJ=JThgnrh9zGG!BSmtk3LDM6J&yUGQcf#q%O5b8kig4cCY(5=&i{ z-S~peuN~TjG{E&`?9U((9NdOnDsn9SJwERb10{TIbVQ3XKJ`_+*G>eyGD_VGFp-sk z8UGT;NZYw&vsL17Nv%klP{BkF*{nA}!6*12Z?W6SVb%m;6!%`&j7e+iq(cBLUj|d` zvzu(7mJ9+LhZt~`OPoO|e>WM$gn zzaOZ&PXVCNL0d}?cWLV3J;xs7_OqbWmsmnmEW>?kbAMdTVfL7_cK0<_v@pnaUkLasqv1D9`#(ij?l=N<>{wu7nO@uVzoLqmphVh1 zlI-9ALZkhUKeG$~S0R9T5yi|o@#q>%ICHJS2i;;aCS-x~iF}PKi&!Xllx;S7AxdBH zqY*H*PDgIs25FWD01+^A$}56kZPTppa@4CV)nGjZQ!_bEO`rf=FS=%zrS5u4*NST} zqNc1p-4Ym3HHlgJ9p4a4&~d1TploYOnrc!&i_XA^DZQfitq)1+AQ$}@&*ki)VWD9~ zt}3HO7Qv3$z%$_e18F2!qyPb+>63aErWWy50UFoB(VuMM*IrL3iM125*JH{c=2IH? zEbj<@<^Cq_#S?#L&mO5390YChvU$~y>+lNKy9B6x6>eaN20YdVyMEI#egHKC`42ud zD^#GGx_v8G$=V;;y#s2!(S@Q=^^z8_gPo!vkxQb1H1lq5IHI%RaCS zoNi+da*;IDfHJ8BOV*&^*p3O6GO=YI?N(xar$$=2kGokLho?4@`%zQWO3l$kgL0Z> zi*G;cC~P{yi%$+-=Be|8^pknr*x4F<$})t|V}|Oj_~r%9YyE457pR#{KT_tDT>tF6 zrkrCiW4b|TQzMMo_2SP5%FZx%KvF;AaQEZIxYywcwav~ad^KVXEes+xiPU|8)q z&IllRw_A@o>QnT-cCe6tH<)rM*p=oVxn#lCRd}!bju?U&dKfA2BKBP1w3XSyjH698 zDHT{!(ruU-rn%XQagBh%%jnedPCq@1Pjudpa)g_2s3ymzvZH9aboD>AOUiFnNnT8t zESf}W)M`AAClXc6ae(yc93|&eome+?97WC0asuv03Zs5#Er&X-eQO1->_YNgnUlrLo2j{;a|{ zI`uL(b_P=VI48=qMu4XA6*$cLFoM5((c82AohQSW=T6Xx&PYgZ#X0?NC)lnrLZ@pX z`%tDTeY8E0+E?o(X(3;oWZ^ZkS%gEMKtf*s$K~k||M}>_%Tak+KPYFoYjF#L9;7z z6^S$po246gfeN=q(QzefI@PPzHaPMn14YnaxYffxXlMEi;+X1Qc)io|q+$KJ79Fx` zr87P}%vTMDSHO*CVnd;d45-FgO8kt}Z}1Q&^=Cs0QEbpG;H1$iseZ-Fk}Tb$NK!+7 zPH|O>9c%o-myng^6$&n!K=!oE#?Ft!T1S)6*Kmx9Rs}dWF_(gs7==~RW{i0$z+*Cm zyc?y0wOxXliAtA=?j`*WJPGYrkWvBq;Y;1HdhD8Wj;`j0HX}M2-EnQtv1b3T=-v}kfx>wrYIwzn#bx>XxTCV#0uBh%52GpYrYR`ElV5t7@}K^4$em2Y zX=Q8)B!YM$EF;lybEAVcIO|Wkh9M}L6UTW@VdU)>)I@e;=XvDrop27|(QJL_FdQ64 z29_-7X)yai1)upsu+Aekqs+^pES%8^Qb2y*kyR??)4jL#-gm1hoY`vb#=SPu+|i0n zsO3(RhzJH|$u}kIKH{MNg@$Pz>sdsX_F?+cTm^dWJwE8E&RUEENpU-Ts}R^hd2t>sK>L9PJlleh3ou<_EB`# zCZ?raLT!d~rnI~EYc2Np)f$qTgj2jggEKwd7itU0^Ax8cgj|iU)b9PzlKp5oX;<5_ zFsL|)oq_iCn6;j}6UPRm?@-xqyUG_a7r_T*yZMO?RgwJh3$Q=iDp=qxrsC~~(15A) ziV;ek<&>&XsM=j;FM2l*8fxsW^azd;3nGi_Qhtb*T0WX1+_S`V8G6}<&YygX3hdRN zJNGJXPdA7S36Ka0mWMbPf; zY4!(O%O8dALK5@i!B!*4H4!$h=f0J?p5&Nx0<1=>1fqYT@eneqA7O80bjQKi#X5xJ zOt9O$RaFDH5-3{MZh)IuM_qi#{ofY(8HdP*X5+Ebx{kiC^|VB_WaWQ0wjt8C zLeCy*ZxUw*8x*{BTE5fA$2VT!hE72$s6&q<2S1exSMwp2FRsJYIQ5Kj^weS1SL8wr z9t}_MhtfttSw8C#j>2XtATOZvHsWH7%2uB=Ip$mP7^dUblsZq_+l z>80i=Y0Vd+$lY6RrILDWhzyhK6zx672{cql;>*Ze9Mu#tV-)gw=(`+EvqzVbQRe7; zWK%6oGp@4WPNDH{0?R#~@M|v&FYv>TABfl+=8c7cXLsE}6P({G&Y+RmhL{NiVf^06-6*8u=!ap!u|_>X z9v(?YlZKNdM}ZAt6EtnT6hHc?5ZZk~m|IHVzZ2tjN9D#sS#QNBR!c0y6!G zvYM~XFhFw+^rG^~o2ST|RA$y+s`By4HqyH%t&eg+r;fQnyC1t^XhZ3)MM|FXg+Mwa z$T!{+KDl~BpLbZhvX(c(nGY)93}#Dn)g}VGHPDOAooTrbz2Gg-p5H5&d_5zC(@52u zXdhrU(c(q#qh~BIXq%~CH+Kj}kO!j@6I?FM+kKXc4UW>Hwg7LC*Wo;Ux^J@c>bFQ{ z+v(!OgRC>rBvCgDRgeIdJ$;7*7sM=FeaYV7YO=hDE$ND#$Rf{OJ&}A#=EwR|WBHZZ zA-a36Rm}CD!nbFA(o`Q~`SRblQ9YmansI^GOAK}5<5_p*KQ@z!ev&ZeD_y|GPo+N( zT6eiYq>E7EIp=4M-2yj3wZPphDPSj8OiL}X`WNQy35a(|mu0rOk%6^JCp(T^TV#Jk zQJLm%TN#Mp+i?rK_ULmcOQiXZTOV&h@q?>+ASn`D{Yy2^KB`^(VzqUx39Jz7T;|4HYKXU=C9ky*SH@Mvn91;#yeH_Ye)%wZk;!%*>TN$)ppG>bh&_-B8O3T( zQqMG=DT~XA6J>ncOYadtT=o4f_XU(a?FgSONeN88tggzwTmdtgx!SQ-taXed?lyQM z^LxU?WbIjHU*g4?9_yUl8q56kkoZbynuS~mQJ}n8H=@L3CryHrQbyrjX0*a;y(e?A z#aCxUEY!8eDfd~N9xK3C{VM~?Ws*`u-S5?ggjkx)q{4glyBb7UM#Cee{gF_PR6eJI zWvsIb8&SRiDU3p2g6sO>ZKne38|Pr`--i?NFf-5CwZ&=+5wA0!bwCw%tt+>Y&YvS9 z2-j@uSdZ?Q*2mV?#H11mtI2}SQnKOhPT%V=@e`_eBb(3frG~qoV*g1lTs>SkyL+ZX zw?PxDCSIj?X18Y;PC!xueFpXUrqL9$AmtphwjBTV+l{YDEJhUp7-G`xp}4kFXC0{N zQC+Q9GYD$Xzmv&E3x^jxyAS*#zL?b>`_+SOv|^1pZruzmsNsm1R5>c--8+Hv=X0|3 zvAZ!3S}#-ewL-Fb-_b0+X1xw%Sq!m{d52iDw6=ApcE(yfr>AjnIHW_;#HooJ^Xh>0 z$hTL4%9}rnM^_dN3g*fNaJ_`K}f^wDC(60otj z2rz!L#?yK2z^wk=cJ)8xr~jHt326Vz-YD*#g}UPT*D7Y_k5IF1_>u2SY{w99IdFSK z-GzZM7WCq--;>a3dG42weYIScM*{RFM407eJ|bmNEn7lwLssFIo)4p ztkYR;XKD^QUsSFF=x8^chy4et(m-qv13olCfG@(V>@B%rG&G$0p~Fb0d6j7#fIrRpi{*G z6BGUbX4&7m_q5ma=m=}Kw#N9Ndd!DtcRg;o*|V_4R}k-PZ>NSv_>SPXT)P`(?B=Yy z4vaw>0>Xm)VQp0jq@kJ}_xoBIkAF(VwQ;aBDU}9w>gft;<#N=-u?_naMrU()n;XUB z9TcNJzo5{a6DIi;?2R86 z579Ol@T&7d6qqv^CdqQMByXd7F8-{BK2~<}zdKlNd8CqPQN5gxq_f&NXPxJj7%W(6!{)ZZx?X(10;i@k#5E(}NrCUj`H~70> ziRy)S*_z|X%wP^df? zelq_D87$nm3C$6K;KAc9xX_Fj?azFANd?>j7TQgGYWnD}PJL@((o}BlPT;Ss&V0j* zai~5ed2!9#Q|ZI20f*K{cCbw9oFzHLdCQE-T?{aLl3S2jbg*;Blps#g)${H9z4JkY zjS+sQX^|NIAv|3(8S{x%ugjeel>9?^Mmb~EzdLb`kZ0D z-Vv5LbNHhnR`VtbxSxZjytE-Ut7b9B%GLprn=>!{d|72eHL>^mPhoX)$J%;|i?ui3 zpQoV#YfH&BzAPAXlxSp>#x;`&CnEqlgxbk!PtoG?^judk2}jsJ=o~|CXyflLR~Zqm zZFE+P)Ku{-Stmsu!5nFZ2Vz@q?`r0XPusw$M^A5SUM%zPz_o(CZaiK-OA?`{-H~vE zUjDYK9HBYC_q`v##%q-&o(XYVufSrb>KC3|IJ!1r<2&j@K!7DJ=6UkeUIRdnN+ z?{xX3tC!40Ke`U1w=p4*ij9)PGS#K4Rd~;i9Nn@d3l#ROK2-~gT>!fBZ__8K zDr&*2qZjfESql*EUw2L4j;kX3KCHJ>gj~watJ=z1D6mql=n$nVwTC4n;-x5@P>4e) z3OrY*sY8=nwLw?CsZT16{mrqy7&zHA=6yI{;ix6+yi2*odwrn;k^YaabvJW0`iIzT< zaZ>1ab!iLdMp_M-6%v4~#rq0tqa z4>02S#`iL$G8Ih04Afn$2wukA?rhU%G``T_H3ZsxhoedMo(23i)=_5_Sz_p!P!PkCeGccZ|}!O9Y3wr zF7~6HQ=8x+@LTFHFmn`{patsq+n z{?zg}KIfQg5c@PdL$s^zp&v=2`;qWr+&~zS+3J@Z+&;P)Nm%6sUu#kb_eVFwnhHZO~yH&Ccc)AoSCmW9%f@sR*SXr^-FnH$WS{bFAs5D+^xALFkbS@|F*6$o1 zw(iFB5Q!fE;_n)LuBOM-REv1iC4w)5oO4n#Q*Owwu!B)$JdrO#p^Fx+9;;6N(Qay- z5~kS7^K|%}Mw(OS7CX3ORHbRqy1tfCkJb`W zrD3c&k+EMMSBe+miHAm;Kn3%kz5V)0PnsfM#&pPkzZ|sZRG^#-AU^hCz+EBw{H9ez z?5r#_(9yrlntgfW!4JeKh}LFc`8GA1`kSeKxZ&Fh>D|Js%;;wP!h#*?GN{r8&7+0S zHN5@oUd*)88I*slFW5J$+1hC7dMbqkzUT7>u#PCz=wJDGjJzdn30%A1sTltscBp?g zNd412)zpQk=w0FeH@fq`6?v?Wa}F&9gaO#4@2Akz`nofvK0pn*9(-)noLtZSa|CFu zYJAn4(YFRDi3+;U#Mw`uFyBg6vrWWVS`EF3-X)T3R3#}>=V@FHN5UY4%X{tN8f1op z>N5$hTxS(wxr|La-H{$Swe0R=P_j`jS6R)>&9X2C-Z{CJMc69seTnuHLx>*DuF@~B z9>$jkGYL!zyF&;8f;$}=P4I@Mad!(4f+e^UG$asQ5`tvkmA%h%-uJoBKIc96 zez@cI7(K=s-K$rxs+v_bSJiL+XCRPr5{fH$U*~NUHfa4%knDa+u;#`5$Kl9fn)FGk zTV;5==T;kPMN@%#EV0t*C3ZuaGNX$Q4D|;ZA?`0XP_(IFY|osB{sF{~ne50WnWT3! zh6;#kid(f%bc=pH*Md)V1O)Qo^<2DbzU)vYXm~|mBd5$%R%#fV91p+aVEs>)ini$aE~h9YemiR_ zG1|)Tqqo^rydKS4 z&!e%?CJ4{)x2iHob5*e{`3ispR>8-G(YEe8q;*h%$#7hZ^!36TXWq$W>O8$h4B+wY z1g1@LiU$aXlH{S8?F*S}VlvUO7L%@$1|&7aY>2MTZoIcQ*(OBOuD4H^9< zX;0{jTv`?@7tTmah?_E5efdiP+l}{?dA?y_OT<=dt5qXJaB9a_i+>PaZJe$b0?0GX zyV+0@sGDP@A$PDhM8t+UcM50ey=Oq4qHd5HCbOs(8zmU0{goz1cNkc&XAxE7rcT+d z&y=R9v`TS-d1{DUJv_B(Lyg#7%<_XO!87H{R=vaY5jC`iPIoG}G%nNiQg{g*f1t(N zkhmJonBQ5lI&4wAztQE8cwqK}0%e_tAJa?<7bB4-88uKiR4^9Uevg_(R_OMo5MFNb z^ojH6HDQ+(`Y<2;<}ZThnaGoUnA78`NuY5^X}K?2QU#%u9y3iO&7)D-NI`IJ`0Of1 z0_uNDruq-9^8fJ(G;z}Q^!NL3cG;{b4wR7%t&wF?9&RQn2Y?#YPN2=sYasQ9qUnHF z14L$w(^))%#wMZ2b@gaCtc@Mm_)|CY&x8i9V)~U|-@e#=eV;BFtp)Z;f1eWPZj(${ z4%6!DbUQ|(9?HQSl*ZhU3&hWE6cV8u4*3F%OE{lZuUTrfF{Wcs5{sG|p6dv`m8*Jg z5bW0%*CS3jQd1~|?leXVe9!r7M@CxeUx zA?`N@r>n1bDNS7Z~&_A*t!S3Vb%9_+hSX{wUAq#A!Z z6EDPwFd_t%<9=P=J$i6ll2^t)&d@I0wZIb~I zfX?Uam_U^#Il)UIny$2RCs!3u=YZx%4wEJNvXs`|$3vrq(5{gG&JB>i{Ao|&Lqwm5 z>E-=ugG*Y0`lW$K0u);fXtehg<=^#)lmT3sBBb2x391!sY`~t|xvq%bF;xM5OjCAR zGJ7W8%0*trSf}-Av(}xL3J|tPEneJwT@vED0~8h?jSqhoAP!|>(~3m@%%!o?HNXNTNP<) zdrV+!tEV7nK>)mpner_hre?5^P%lk1jg9}-OycD?ee>0dmP;n3<`j8VtHE;z>gh6( zLUBj;XP$l^(qNz7fYlg?At1c~CKM3k`V&~TvdDYb?mUf4wPXl^Ly{>@2~=&KSwTE^ zJe8Kich&N3Vto{_fE3yui>Sw}hDTCbIYPB;C~`(A8qk&hyQ5IQZ#IF_`2v(M}IWXpZAhTfiC zjxxuU;GsQ;2s#(3w#W^)sd(qc+tSn39_dWQ_vHFT2lZX^(tUp!5G>H+dvea+hX)Yf7CFI3mpVf+~|#N0L@9Jwmus&YwnCZ zHQ8W^TYWc&Nj!Ew)F5T;8a>ty|k*n|U)i zmU2W?CAw-Z`bEH`z98zx-PX~Q0&!>9W*z9|@)F6 zJ#*e^GumOxNJx8{YP8RJ8de3Bnuz{E{ApNNg)(00hB3ZeSC{=fRHRJu-Ls!8T)`B{ zmQ{cpNhok_X()A8)c3|Unc0B)aXdxtT_0^(+w^UE=C$C2B=I4OWJjfPQT+F(rnv@J z1Ob>`7r9OtwW3Blm4oS~{@59qGyryozDT)L>P&`eQ{5WO7bLkEqUj{8a{wO@id=X- zF4Hric%Y<8ErWgv=8W{N8KY`SUNqQ3D$kKZ3~{X9?6CM?i^_%nnh`ps5F=?x8Ybqu z+rIUo>m~X2!;hi`xQewu>#7fg2@_wq9zhrk7Jzz|WwUImyW{<>_SP4&#Y-`;Wt_@ueB`Jq7@;By~l7l~JGtFH^)V|+B zR;h2685{Qx&)zF}qkg!65HQEDQ030_!Lf77<{~!0ut=G;@`eW4UD`l!%0&pZvxhhE zO?Fc@j7L#WVh+1%a7o{d6~Hgm(fC-L$WvTObVa-YQps#fhv>Vw=ju#fyFQi`_E3;j zsKUWGI1&I-5)zQ^s^Bt$^8~<7A^OQGzpmbIbQtE0fB4W>*0lu zGN;B_zVOqNNyjRL2?(7G_1rhvZT+I!c{I^s63n#%6`_1KW>*F$q&DG z#9v%Q}{g z*NdpvY0BK1_^A;+lhj5b--kn-R7ndHyvtqa77rFtbIBwM;Aq`RbUDt9$+riT=_VOx zm=QW5M!n;G-d>#!X%7wJY@LXlDIz-FM(uJhl5bk)}c9OGi?<2 zVkNg)4J%fm&%eCK$)l(Z=2XJc+!?onWJ)rS{UjyI^H((@g?4{ZCeNq_kUTJ;t%>q0vM$ce(zYlfYrfeMh@_IPm8qr&O_~I-~ z2K*kqF;w~_p>yi@c&7k}wA}5}{iNZ^(K5?{Po?aIMRE)3h2M34?{BND!<}k6TisFd z)zhwEZmakM%_QYP-@>CQMTQ9U+yD^qa686OCkGInQzd#L$B75VxGl~uV|1n28~Fkz z$dHA3RGzU{oDTiv)_J2P(Aaq^PXk*Ji@PmAN}RVSSx-$ekE~BzriBkfY_0W$X?C zA~%316tfCXQm6SfvSA&2o>fxv@C6tDAzhO?+QovoFO)t^Nli}8CGTB0W>0?fW$C*3 zgz%ecfR)fLSs1W=%pdI-L!H8Bz9f_lM$Ark;%z$wq_F$xGjp&oEY{OTd$qVqb;h|5 z_BEQkX9qEy+q0)!9uS4jCsw@Wb?|d^%@S0mZj;SAK(*X)ps#?;K7Xt1MDkj02r%ti zbuH3yj&16yU+l$P;j1@@k{@~)cT=bP-YADVJU)T`Zd9x!SMCKPJ+#$wF4|`}v53|g zb4tO^w|fu00`!0t?u_*MYyNv*cM!c21sN>udcl0il{0!rFIV*>C=D;8AcZ1y7zz@u zO_sFDex%(Do0lLrBsfz)Bd7gIl>}rd!fWn?KT~ZsX312^WPxr3y_ztlv-7@ojcHeg zR_K~iC0uP)h?F*(EV(=+P4#1g8JWTgr{sQYp$)hOQyDX-_Yv$c*iG^-e)GSgg+#dnj?+aZA7=8dEk_Rky$O%k}U4y>RsFZm?cCG)V9+>mPQe@ zrfL=Y3{tf`Ln`+yL=LKp69(e#fTReWv!dh5;#(~(dZwD(MNwrNG3j}m49P8pQZ~r( zcQ1YONZV9lytuP)q|8Fvjx4+eT$zV%>iq6~tdXFAv>m%kA&t(9`tonTo0xTNTiNP| z7n-_G+8r7J#!GE<^GDI95gM*$H^H(KqwP^d%g#m-%0E6|pBjv+ZRZQoplE4y;nDIG zIK$7%=MG0YTBw_NUj)7U#TBqGlXu)-k3j=wkt$A6x*_~^b0XZH`=0f7|rAQ_RqIYdnyh+S}3HCy@q;qdA!x zosqKtHp(h6;=*Pm;lSGlq%)3#}7?jopQ zCfu}$Se0U7FuyaPjd)uOu>%ZPmYNzc0eG31GC+zn7^7J$Vg3%)7Sg zjbXZTfiD@+ZLq?OTS&k4nGVQ|z2B9}wvX6$kiLJElYzR}k3AmJ53)DeguFUBBC2TnS@Xas zB?uJ@<41TKpm%o&;Mbj^q_9#Ru;!qg!2KOFVcGUk*P(g}mH;G#1cG+RSn*&mLLy_}i^D zFLqNG&W4O0n6?h-Wy;+$7v;bC_>;c&^UFRo9k=`P*=T4Ozro)>HMma%wq&$8cS*cg}K&9+u#c#a?Gyp^olnDOYK+*rU4q6}bFPB3cCNeDK zix>id6|H1J6)X)j$=Un?ZsI;-mj@e3(5|J%XTQTxIXYr+)OG?f+RMP7{sUC`zpI?t z+NCq8WE$ec;R^{AqIp2X543haQMb`8Z(^pai+9jP*&rF{jl9P37J2Y0$b<^W>EBCB zZN{PDJpjUtb^9VYGMG5f&^P{_+`|70d#SQ~NuLC~|8IU}gTR;0rNfI4`1`{|9Qh{2 zv@f1h#U(y~SFjJ4`@%xq(pAByaL__E#XYWzEmXh{!yoe9xS(+*7E~!|67=cIh^e+V z;UDkUbKMLHEywgDv0$1i5>3u4Geo~G_&8W#g|{42Y0vXm!Kh9SjL+HOA>W6LMRRN& za%GFkKdrDo<{k*PCYUas9Of5fzNe~>lhXT*ruy-CU}lH<5;gLZ@rN7&B0P3pF##^g zQ1^c4!KqKZkP-OZVSbjgXi>SssS8br6cz% zw-I?Dr#FEMp3JDGD+NYHHEXR!^z)M!*_UiH%^aT|wQ9U9Uu$CXLMLc6MPA)-`L4UT z>(_|~20wGRrh<5>UD7C1A-O*s>Vcpxkj34G?xxvl((9=^W4rr_IxkOPRd{un#PXOV z35ezAmxsI2-rghI9oiPe5a@iYOio!F8zLDZl;WB>ejmd>K()}{_1p>RXghCZ95Z*5<2jVrRG=NI@}KpF;?hestD1f%{h%h%nkm866Ra0gVRbdG z(mtdXu>*TEsUa7Zgn>_CT)N!zBqP2K%W-egw_EXg!Y?S3YFv6s$UX7g7g(|c7F8N7 zElSnv-+ii@#=5e_c;(}8S3raAT>0~vPP>KZYUM|CQf?xQ@-pWM)1249*%@}H;x1ARPNOTVc|JYBvXFX1 zQ>0i7m*(RIm|k)5UaqLugdqLPls;x35sL;_Z+G`VdW1iz7M$>{@`GktLaMf0=MFyy zwv>4?(Mw`bvTE6bFVXi0E^MkCG<~66GoDGkMm2dKxaKZC%Q>b5=pe`V!31j6zecn} zZ2myoGW$MXK9kYMlQ`k-DTZB`D_-nxLit95&W9Lk_(oQ8)-J(SN+Y{8W{cu;iVc;4 zA3=>WhcSubcNMk{%j{Qo&O8hz{g~>^I+wbGp$0X5Gawt$Pqy8y(-+C6mnFR!ds&Zs zxiwgPd^C(}?j&((DdVj5j8^r_2;0xu8ZqAvX_mIqmAx^Uqo2OGybt4L2#GpZq~~is zy(db^pvkVDpp+{mQ|ok>XMN+p>5c~4I6 zt_q4ll>PZBSbLW`P6@WmIu%sBC}ldrqM97+O}J;&&0k>IHG7=PL%OSmBNp;vo{nRO zL<2Mfxha-0J(%?D9mLs#t!QZAKl2792`GE~fkvzbg%a^z$YEclewBGNW872Zx>php zm7%zb#fb9~ze54>Wg7mjmDPN@Q^GeAHjzVj){mLg~%;Q9W)FNWpwS87j0{7>fF3UG8ar+vj7yx#&!uGgHzzQ zh|MWsV@kW$y5{(-Eb%BlXS7R5sh&6NMuRtcFV5&An(ds^)fpl-XqRCidOMPhWoa3@2;ChcA%6(x8j+#8HbtC#EGKcA_;vSwmZS$(3pSdn^|8zB8wqn8o zVUIUx_{O;#vviM2Ln6JZdaNOYH3_0mPe+4WzO>ye%@1~xHFCB~kdf>gqo;?GTCu_tBJ{-a`E$8HSZF4y%&zbG#zZoGH=%=tle4Pg6wiORlMGFL`j&=Ik$*iSjJ*C zg#^y=*t7-{A>8-gA?->8Hfhm54?z}fs(jpiZj9Py94?eIyj%k2XB5nHx*8$3DE==5CE2X-6?+;qU?=;5cs}Z9w%-U_qe3jZ55tbo$p5ArEcV>$# zN->PauSmV=;WjKu^(1)2BJiZhK{*`?@3X=oh!SkM>jzO(l4}dDS-23Dd>ST6@T@Xz zstbuQG`2AeQSVoT=42q(0#f1>%UFXXrXS0eA(;4YDNJ!jnO==0 z@KK>ZC4i!r{fzmcGlys)N4Rb0Z!OF-R2a1|`0Qv>$WVn7A|)4G^2Q%U?!HhF|5fYx zoGu%h7*fqrNlBXEMkYMgENQUNLZe!4tmx&j)e_H3;VlH_@ZrFcK(|bgJ*2m}sjDF~9@iC#O4r*7&G>;RqGG;Jf`7M1Dy;|Dx_dXsAxV^YRP z#WPh~S+kio4G{f3rb$McQhO`#vxhwt&dX<`3sd`=SdGRXS`N0JhBqp~CWRwqqepMj z&(Vess&>*p2iZEaT(q|Xq$}aRqW&*Ms@jORhZ>{ThQ(uy$yRAkJZQI5*e+>GhD^u} z(#W#b~sU&s|6sV4I5IT5+Q<5y%R5|_%|phY*WX;?Fu{zgio9LjE6mrhbF#Lk9gNwHKbE@C zr-8$6Wv4}?^7cG=jyBco8)3q-c{yb9Oput*`riBcrxScx!jyA*W;nEZ%pNEm9i>4b zRjt<$kT_~(kBUF{gj-ZYK-<)TiGNT}{HKu4GXiL`rAtWDcTrfqykG88t8#*)ob4n1 zl?V>J-up*;lk@rFjGhMP=HOv&rLA+SHnq4=xpJ&@h>kT_qB-%HjTRxYhb&e!__+fQWpz&7r4cBnULW{ud!gIU{Z*Qx5d1p^Y zf1hfBOSnfOSE05VAIB2Wq32;NZn3k#&{tJgDhBW=`2{Guhh)OYIdGQS_&eQ(?=KFP_K(EZYu_*yLiWfCMp#4A$!1lE&U2Kn}= zB`Gfx!YaI$FEm2GSg}g79;*I=&nXLBDf0RWF*riqo!VFZ6cN<24J1hOb=dn?+sgmk zO@=16QQZDcX81P`u#1YQ#eJBo;qJW2FGOg5^2c&!WJHnuYqch8Z74~J@R4f#z`!{;yG}F#=*Q@WC$IYZvg|sAGPy>+4#&1|cuz zWoVgMK2#DU5svZ7+P7BHp|v$!n;=w0f11cbXCCv+wOdc3q)nf7X1rEPZB)1KV$gn! zccAv+f!7aFa9?xf^N?e$1?IMA!}-RS6nfJXY(b^b>CtKN8P|aJB13&8_6nlOG`R&4 zbnP@NTP-q_TFX+uMtEh4WqYe?UU9;7-$k$)xDXqk>=3wjYb{Am zBp^a|T1lR(F~WH)x05f@uzBl4^x!vW4KF$5jKffyqS0*K{#7cu@QED(RVP?nE=UO; zwSXgI=+r~bf9*Dkcl5l$EDvNGQguDNw}}Vg>CPSU`2LYps0x;o_l@J$Hl#q)08M?8 zbghN8W6r9K|Hh)_#UgmUd`3#9xw>>J)pNKy`9Uyd;G_v9a8Y>L@cYE9X? z#_oZO^V^Z!>4;GW>Jf=CC7ycU>k&#?ti*{moc{w&{o2>^!|3vB!~EDnROBZOkwEX8 znrG%B=se9FuHEv4wr2HbHF==YR)_E6_Lt-Jd_PXjxT<>x@L|tQI36V%SKeE3R4Q|W zrUd)yXsVjcdZd9adE6ibRRzQkGYdU0W7ng#gTCj&hs&9V_J2kwy_`|SW^0PapPL#D zf3M2;IfC_FtPZt)eg9mW zPo2Y<%sRzOkT(3NFIDo+?#wB>p;-4Lc;?Qc!CM|KpHNrPHBm8Kqfo&eGgKbQ9%&q& zHIq9t|7EY#?M1gg%}!!WWI`cD0Dz)3vbUv}E-H{gk^f zNyC^NvBHTb(1=yn>*c-r3D7~jbmoahuyOHYgO1>0)s_vLU#c+FoE0(EvEI$y3zHP4 z%)qk17>zk=we4J8>fx`~PupN(UbQE~%3p3*?6zKtV1tLHmp^;@3APeC=^X`|+Tjg> z+>Q)dk3kES(W`-PIi=UCk<+}(hDy(#OI%WPGk|ipR8kIKZ3KEg!FYeKi$hGL%#Q{| z0FAY<{8_WSu6MDUZ!}{b1>cIpEol#0VxeJ_0<=y>6FUQB_^IsQ!APDm=R@N@jv^GM`*%REYiIr?_$A2ZdhYYD zg4$JWSC$#bwZQV*J}|{@n>IAzF6Bi-bBR?g-@cJi;Ivs{=Bztbm5|5`6CdtsThL=a zr0nR+!CQ@WK=OFP zXvChI{KwY?5*O0tVgGl$e57VMvB(P!xUX`tfQ$FN&iEm07XoO!Q|{n$N~dk0$Y7+@ zp`cjGA_K|wZRzze9pppe9?|lV6iL$gd=c1mUsQiJk%N3x!hJTXdZx2u6rT3*rY^Bz z@)jy(_x2?(P(0#&OPg7L>J>BBm1jP5TU<^7&LmJpGwr==_KgsO`m_qd<_BUI-4~Nz zuiuQvu=Mmsk~MdvFib_@mku9r-4}e>CL`(Q{0fht;{j0l1>+0XF|Sbamv5&b4!qS# zYLRwN^`JSHB1R;qa?OSg)|Q27=+X0?Jk6Ig&ga#e-UU0N_Mgp^Qhd(SV4044J&5monVAmJDd^1l5t^aDH&ivzntjk@ zmN%cI3CIwwt#MnuX`;K=qWhJco;_ z%nzCI05)zpUs^|?ya!yJhcO%ids5frNiFW6WrY`w2*6DL-nli#B%{FZ!IrFON{^8M zEN@bssgjbArWPdZXiAlw0Xx^9y@5AimV0ZvtsL?3D>q z!#u*>5<`d|XuF(~)tdV^f9_uAlW#xScamfF9)a8|v29xc8U0?qjp&#wYMy1NgTdQC zpPx2B7+p9g)3v(Q`WGQUTxQ!9qgyIQOosoVYE8e!T-8&FSgl7OHJs@3H>$j>JqB-mwBMK44$2CRdT2EUhXglq-M!4r0DIFH!2IK zsaJo!XMWtw)$5WPb;M5&=bqgAo+yU(5Suk-kd#VK8-Q}$^U%%qW$Rz)vBm3^3X$lc z5n9TisM^4|1e2wRAaXRg)a2EF>GeKhy;(+#eS#T+-)CT?8^V;5$sUv?aBiFHtEL#t z6ba={a0qF9O6C*h}nxaH95_np`8sd6{C zOqVk;MS^Ig9;L^BzQ6=j0@Txx&V=ZUDuYLw_n(9@dnu|EdKzgJd?PRe1u#pez~m~Y zA$YB0FI&Hvo1t4Y&)PqYtx5zpoG=>S3!02!pl_aULvhU~Jz=Ol#>>M0rN&@%EPjjD zKwo=jvq^w4L!v|z32~@2ino$|e;nz4q&%Q@4{p4Ow4JK>FV*A!P<*d)(zgEh`=5U9 z|2nWTn_*F>Tb&PNWL9B+N&8{Du52gyd%tn?Tz$I^xk}WL1VTdR65*Ry`Q)ym|hG^xZ3! zDM&{fxR1&$%=jb9%*$W{M}4}v<_|R2u(Ix3Zv%-N-)Y4H633zzu&60k530oDEu&wL0gWaoI zd)Ombm5n78QEC6&icFIsrf6pjMW0tzKuL+ojIr zic-(rIg_flMp#mCx<8kg+9+13zkU)PU@?;#E!Iz24^8Jzh*Do&c}4838PBRZDLM=Y z+aMN5p4dH8GPLV}v+!w0GowFOW?zrJ73HIiWZhYaZWr!H)02HKCx7$Ps%jBM_vw=w zC$T;8uq7HE?KQ?(KV_p062h3VGD1~tg7`ces%|du2U_%skaJ!0n8lelBbfqDsa-fl z*_v5gwHH8`Jjmo{3UR_wKSR85{aHC*-os&o?Vs0=_k4$b6HqnR5pX82gXuI=fZyX{ z3J!O0t`sk{&Lj*w#jvD6YfJHJ?&7vW=(aI;hYX^d7=!9Q_kvq?3PSz7ul;qxs9^V_ z1OMbdMr#np26Tl0W~#$!?a6w+riK`ow@u6wLX+bjM`sCJ6Zk&QG_^XY;S06Ynq!XT zWkztI_Xh*IEu;9rZU<)X9`{NG&j})6OC#UlcyjxI+om};5T|Gjo`{O*B{6+w1w6a` z9vBMk>R<1327e<@68m9LPBM_Hr+w&IM|Vj^H_L>F?9Cu&eioQ)U%P_0!jS%Q)uUrGMx%Za9z>_uL@KJhtnF z2dMDo^Db&E!Qn9@MI9*|{bo*jNc7?})^@1s^Ixgu_kniokw&hpEsg z#HRW$LVXUylP-ISC52+y#F&X;XZ&3_`syoSf{niB+3T3$DYZF!Z)@pckdR(4B1~I1 z@EdESdUoYrLyp^nHkE@JdvMG0KvrZOq_o@j%7tH%MQzU8i;JiXKT}4lFMxUh6uiWq zA`429TkoprkEP?fn7vy>wE+8(hJemkQ~PfFOm%r%QKs75>j-&0u@%y}qa$|)9)hr9 zX&)Z>67JWo^cEEh=!@4aKwiI(tE!%^v`r+WxU8#uY}>l;uWf-T$8Q{o$PPz=A&Y2& z{g?(G56E2>G-R`aX&Xad982t!!2?LrB#jRBzeH}dz{KZR;iX$>%WBxXDRNm~VEB=Z-cNjK>XdIH(0YylYD1%_}>@QmC@`T18A4i82G_HW2FlS20 z3)ERv=>X9K`a`jkDpGiEe5CV(Ir5jEOzeZuX|m?v%dugLE`)Nj;sEJp^GLr5i%?F5 z2jFJ0*h&Cy{@mK4tjL#!*K^2}W3~}pJBjaI`5uVUxxzx3u+#hlvaK!rGG$JN3%M(8Yl(*R3Z* z`f~DUFLeSj?Y9iaEir94bz5dv>dW2h&7n(Bw8=LgpYS&2Untr1?1Y~^wal;@EO61m zsQ>=1Sp9rRrk@wtWCUe7Gi2=fc<#Oe(iE}|MEG*+b-h#a!b@Q*z~v6Wa5-hhHfy5G z9Y)8}K|}lWvIU@BL|OgCTUv5IM=((=E8N#3BmYGKgg}62YCQRr>vAi3x~yv^@LqB~ zkmfwAe7;zVc;VskMUNGxPGMLYjxME}qpCP*gG_X$gVY4m$4J~`I6)^#-5SQUa&@wg zB-W%dsvMQPcc4M#e>&Lo%^{)`=5l>DGg~OU_+~!@*y5p$8%NE^Q5bMNq8sF-KW*WO zINA(`2feDl3P-5tmxMx1N)5miM_&?dziOWhTj|~}uCHg`^a{ExvL3hse7L`1C;kUb zQM1%=Zc}LlbmZ*6U8_po`H0miEk}uKp!L-8Rh{x@tvNR{N^Xd-gBZy0WbrCez<_Yv zNZvN;{Y<^5p?t%a`zaTQgdSo z2L}YMi{}sY2=|O%S=}}q1OXd#@A4~tiKFr$U`4FvM#_2BP2nim`((?@L4;f>_p8LPae+$9cC6nsGp1SLiGlFu*r8s&gs-9yMPU?J4x!N;2IjFF`TFHd z=+$YB`5gslLCZPVBivBZ~_n))fKMoe@j?AK=33Cz}jD-$2I8u!- zo%_V=30EWcDoPfsxZ> z0d7QlC)npx9%AEMViHTLW!Gulc0HcVKz5>d@{8hc69@i31#zH%`u8(`E3QrTwSiF; zWJtz5NCQ}*mUwZC0<$G^fGqp!tK?SYX9h;-@C;I-o~u$MYjO!o_`X5o^GB#`d-$y_6*{pz?ph{O7^y%cJ?~f zKJLE%<|n=kLcf3O@9yEtASxipr{iO9=WOfe>BAr>E6b9Q~Xa1Vn`dgoODtt^NG$%>;P)8UFFM;M1~px92nF)7P~2b!89{ z`SZ5){cZe$z3llQ?$(a>d}~z{0B!-e9B>!1vi~SMo?84t7Q~56n>u!7 zY1qwUgVcNA{bL*z?;pe#4yI-Svwn<&I-dVC%jdE~v^+rqdPWPs?YVDPmR*^QD8&F7{>; z6B5qO&U}1)CMocuUu%6S%S&Uq~lIVg{D@K%S2{4Tr8OmbMHXQP}S8ZVHV= zLtP#5vqAFNg9iL1D$^6Sm^R@Z_It&H@fFic$$qaAn3HG5mt&(7w0_ z>e@EOcjZ@HOl418{Caoxp+Le-NCOhpp>I5fB%D0+EY_uOHW

      ~#PdeGjD zYGU^L>&OKE)XO$$-BKUPnAWByxfIgjZw_qnysHM5N=#1})r6pa12J1{1gQ{shvBI>frshNh#(f%VCXZ#eo}g_I z&DrSV7rz+NZ-3q0Z1lgx$HQCoXr0+Jn3`@JZ^BTvapmaj=s0;aSayA6iNna^+U~bE zje=HM5jJuqyTR08t}k`&Maa3jx@u^Q0X0{o;YLZqJzamW)cL&bO;4Mf0?vpJoouN1 zi(j|MU_=^Wpl6p!DP``ch0$#M58e z0uGlGKwLD|4Xf}Xeq6g;V%C`3yPHP?Yu0-3n!m2o;a^!*MX)93!pT$50+Y8u3D$R! zmar(ib>?J@N{blZnJl^^^xq9d&l(G`AlQM`I#MSUI-4OD8zMH zp%176B3j8E0$UbGB+$82nH zplE}#+rz0ZZocy<;XYT|fsJ(P4b{)^X#Ns>HlwySkHZ*6fEhzX|Lb&HwcsN=YMOPL z&mw+^VYrkFmoaLQot^!D&G^TUsxA^p>Tbm|Q%Eb#}W||Gqw3SnrFq4u92Dxig4I>??({!fj6|C5 z<0zc#W4_F{uPRIIpKF>*L>KEC8yhPs_I@0%4-E|kIK&4+f%2-E2X%j%o}R8Wszr4P zvepQjO|Mdb+8Qb=E32z{`1rJs>HVwj>VBX3whum2rde5A8yKT2N;8}MNrKX7S&Yh$ z^UceCtJFrF4B({cW1oHeYzMs%R_vVy7~7h68^iPSh7>egDWIGLz^bP6f~4~!BO~9vQ!&Wky1bp@ zW^*;l)t_pEjml9FM0A$KAUJ?4UI^;2R9*bKdq$xjuh&{+65#B^szgbE&8TjWW?)(y zL9BqYC$gcQ;rXeHlbf4NgY956NJxj41YtnHgFyVYA3K`X6+%i8VPUdIkILuarw$pq z7|X3ZjDYR44Z?x``bOqi0GUr?O-)lB3%?oscUeo~xVXUJ6#B<>MwXOg@O~?u-+vHw;lJu3_Qc52 zGHidA6NfjG%l|G%hNDJF5?7Z=;&9^fA#l>3in)oQVZg83;H)vwraIKLO;5%~1?a$~ zPnl|7O9dWHqT*70u?aRjk_6_wr=Q5r6>e+~; zHK&8GUr$21Re~l2F%eVUoHB7*{1i&Udz8&)48(HrC5lV4v$M;~xmj6aHiL1;>%Cug zcZ*40U5CnkyHt&WOO~ZL8SuE^hY%~?U{n;4#Fl)lyoY-D>cKSfS3?K~RE)1L)bQH7 zA|dQx8mY3U|MgpZ^90f?F^KHjN2+hDKpTO#M$?&9dxFnZZaLm1dD#yls%w6@z31>= z3h?)TBksL5Riav=n)<2EdY~)#{NjP}e(lp<7vSaU`dI^w2N-REru;B6!U+byRSCPj zst2rnDDjah=6Yu!Uk}ryHPAE9zkGZgbg}{T6kwP@RaVxTxBDEeO0@ax&sN<0IHm`l z%Yb_*90Q!N93e+wWn>o^$r8zV-iDMt$su(;^?@w_f9khK>agD8o<}1a;0OE=7|FQJ z+lYN>Wkatnzb)9lOFE5-NGI{V`F^;M2~5scpU1L*F?EWR=T&l}U1PvXir`>k3f3X#7VfY*q%2j$cY4uj*#%ZHJj2L^3px{3_W_ zAN%|^t1nl?H4HGBKYrZ-18rtzCaU}P=lK_)yc}6PX5V*49#TfnZE+24pKd%^UReQr zkR%*q*ufnzB_OSMlN6qW8d$k1#t`(Yp3W-KO5D#YNHWaoY z@9J2@+W#8UkuhJ(alP6ZNOUt~F3iTrLf&TPrA$CCOC#o(T4V4tg`}sj;fqIqa_kBy zP~7cu{g1`kj}(=OA}QN>&(=9enRu$IGBEF{lVFvKIjg4@8q4*mCCA0ZfT0mlY(o?% zIpU{i_tII@+QOS~qDXT&)Ipd8G32Id<9BuiK|T#$?G7YatFME-1s#9s=Lb9N{*>)y z&&PphU6nq`6Lr7bpS#M=&!;PbG9&$uKXu!WW$s5xXFE7J;LVN*-vU$V(QL&GP_bV7yql7YpC`Y+PiF=i zKf%E6$I+UxNsF6_;ZIi|4o6G3L%=Nb%bxta+D^6Q{#0a_BWV9Fm7YG<|7f*ccM0J% zRSZ~Dfru;l&BRQjqjtPfDxJ(d$!nnoz`Ywzq5Zbj*%~^aS$6@nnd67oxb$Kkt7%q? zWzFWGoW8fw_>ZqPFh=G8KT!7Opb_vkqPRtIRKx3jiaKaJ&-M#rm^j znH=2Ey|K&-FD(5 zKEn#L)+3_Fw}p+#ir)car>TFV((;P$X%AqkTG{;Q8OJ^vf4t|tef@vY^pycswoSKm zgLEU^T?z=&Dc#)-N{MuLHv)omH>iZt9U=lMEm8s^B_Jrm8Q$l7{82VL?wD(4&01@& zt)z9ZMOdLyvs}r5HN+X)mc6_)qac)Up2}DKB2ZGLNn7ec;DtLJ15}{=4%<7x!(>EfR|{{>)<1oA}b{NY%fa85%7uE&aiUBjJC} zezZA$?6>ef|B%B!;M$UhMZ&?C^Un%7bJjwnfv|G8Ozp)zwS18@iF=PWt>e%2>*4!G zzs0QGH5t&%;T!7?`WuZy!B7y3nf8c5t5Th2g_O(C^2}pn_#3gZqnTzjt9gN#HwX1> zvHkV&2rWUX%>I|gLS;==RQ`dx!{mQYXEl+)$zx{YMsl5iR{xMoQNoWFAUqK>+z zq{TW^NKH4z6Kjb|RhMkI&rJN#X?d zE?*k{olNk?6qvL2@`-G27kRXR zQ7QJcrssxJY}qykKN@@Rmaj5izEm&oJ|3nz$qz@xmMME8ZiyzOd;jx*Mn00N&RbPG z+gJG#0i;%#dS_!9tg|(yDC>1%&-Tg1$heJ#4k9G>ypGr9D->*eLkm7XUV2mC)AR4# zB#l9yAuB$hA$o3+mT!y>vjH57@-qm72N*$^I7S;PW0exg4%exnI> zwubMQS_9rQND@{=?H4G?oGsY4_?6KvD4M&G!$*m7#9ytnR!SLh3jO!k-S9&dlBsjk z(yTm(mkf$!qVD=_roFiDrXA%Jl0KpPr`Hq;kro$pq3r{N=^5zmg)IT+3l4tUx3?r5 zy&z6RN+?_M`(!R;!w>G&Kqf55nrRk^nliCcJPd4iErTK$$2i{;(u0Gz^~u6-D@!4X z(&*pY!)_`;dsSoY6Z`F0?tA@$0LI>Qx-`=K%Z;yr1_?iTZE4fgtjqsQ>5;2=xtPwD zG@Is*u-}V=pKxm#1AHV|)$`dnN!MQm?A~4Z^+B@m%kVWV=|{Rz1{s!CfnuHvcE5o6 z6b&uU=K+dR-OsrraZ7?m3tzc%=VoPX_2(F^{k!~L=oBO9FomxYsodlV{WC-5{9Q*` zZU6E539H2E_-Hnr*Uq1eTJ5zo2&!Z|OMby3QWB)ZQta*jgc}mR5{iht_qqNBe#gz@ z7k^}>$^$(GgZ_m#e%Pz6Bi?J;5}8vxT0QhK?JTFRbak$55hsn7_~Q<{N52o%tE$a$LcbU2P(0Y~KA)S5N}T)HB>|;4 zgGCLCl#5O4G$Q=WT#$#O$+M^X_A!%AtnY+piozbT{WX7oGHuM8DHVQjw zn=%W4%I5WS-9FWj1nX64(vy-Hgq^&<|8-MHnj{^T5xxX{g?s{O*}+DNA&gMibrVI?ku~dl8aEqe|0Z`NVzDdW zz6&GnQTu)atZ4gR6KjT)){Ac*V^?nrNfPH-Jg~OLWe{|Qb*RKj)P%A+hEj&o)D963 zXmrA|IEh(AuSg1!mw0MCai@M?>AwuIbV6STau5Usqw zMe??@KY@%N@IJ^(0oHJng4q2qROIn7=EsKp9#CXjX)8@^&S%vzmu@clY8fZ`LxDZC z`y1Ns_sf0;r$!}Jh=>lq~9 zYu6bz557X;oeKW@vkjkd*tz&cYLq*tP6bZ1F|ne6fPhHM^Z=QdJl_|ur8kdrb91*@ zPaP=+nJNxOReV;7Lhl6<7pn1SB6m^GydwX8O_aF#B6mQ1QPUb3pX#2g6ho~D0S*JX z9vU9?D4%^RdJi4|B`l&4eZIedJbTT67k_NNHJ$~vqRa&D&yp?KfLh5C5Mfq3&n<%cgqJhp7K$jC?iecQ zBBkn)GZL*)cc8Bg@BVNyW3{W4{;+B7lDrRB^PI3QQ(dGKdKzfNBsn<~jx*%vMRE20!k2WOV@usqXh?0N?SNzXJp~0-ch-k3cVEfFY{1<9<7HssM}l9ov+XZ{mG+455V*0s0uY zath$2J)|ksM|$3&pXn45A7xABX&@)rBuKIsXU|dei}rlt0ZYQ;g!Ny$O0 zKdCN;e)Rma5!>y_T(9$m*5Bp;M9f|+DlOFM)sj9{K&=o>Z<~`KXX58iTc1?L!!QC` zRKUmpBUDr~{q<|%X2k{D$Y@lZ>YMZP^J&C$oqK-FXYh6Rl+^k*cEN0)=BK9ADP zZ6JoLKiN7oB4VIKK7no;a-OfRuhg^UJJcfhpKrOwgYcqb@-9|I$JKWo_Ur6SD03d1>a?CFC#5M?jU_l)-m7*MFoYDT#Dbv$4>K2^u;f~43kP}q6_KJhjW%UX7Xq| zzoj6-k{{Rm^WOFFuMgT}-e*@SrFeN;;np_>3Y%Hij)4$toUL~6htDE@aFR=YWR5gU zUznnOJ2AcFWE7H(9`>Ith^39hSoE45Lg{SU;Y0-1*MU+!c6vlAN5Ji{0LT zh=5r5^5v9TV4!$#b|9DeyY}3|B${$MMS+TIbuhzx19c)bSq@8;~0BsA$}MAFeYIi*L5OJ9{#?7>*?u+fLk&*`3a5 z>U8h@ycU-3Hpix-RHkWZX(<#Cm8#M^H(Lf$)(`J9e$DaW*dQi8!Iw$UO`M-MREbGS z!rgbuPwgnZO2O=Ktqk9i`tr*7dagm{c@OdMaKkT++_RwAzIaX&c#)XF@X$~ehu(N1 zoA4(s4%;YTbj!-h1nkB)6&ogfQmJ+QDvMHMiqguKJKEbLqoRyVOk7w9I8mn)8N93V zxi{(fW@cwGBP^WX6T{C5?+$Z8K|w@BM6F(}f=@MjgRbW7&jsu9@-lFeHTv}&Dfs2* z8reek@Zy%??OVDvJ2$$MduPvwJ^fCp_{}o8&~^SBA>M2e5w#OX@QEGAk()! z4kvVU(cpmxa+8G;Det}Y-NGsWG z*lgXB?8;=It!Hgw8FtK7a|Ut_@MwoK-;A#lfmP+KY(b3W0P>Fh$*^ypWRk5`bGCs=Uh)UoijG30%d#J3T z(Gz$na3Djq)(pA80Q%fJ6cMu!jkk>A6Fxdo(S^lD%8_+*A0MCQy%7#dm#yI{Z3x(D zZ!s#By|GWDS$XmthBUU)fq_>5AkcBh`5;rl;<>oITv%GlAc$ScVAYt)7uA`-&oFv} ze4;}3vy)UfUYml9q$Y)Gg`tsaK?_S16|)Q#n^aCw5gKbFZF_*3_*+1bpYrh~6iz0P zTPQyz=ye}~)AyA_Or{Xr297WSC`*286fY2v0s{k6Ly{zuLpC54<=+?EHOl z5}r;D?5C=$t81fqmm__W-|6wj2qCiy@Xeh7E%D1SkUf;9>{Hv1Atgdp3pw96f*ue$ z%^?viRuK_$1Gt>;tcT(y=ZR$`1J3I*GKgr6D@3$LX?nB#5p2h@kRBcID5Kk+uMZ^v zYky1I$;RLjTtVkrG9uTVo+4;JIjzbM^7b{={U@m()$)WOZ0^*J7Xzk|7XwD11Na>f z_J--b_vUt&+ISZq3JJZEiNbbS{@U&9OY29jQeHr6v)<(~ZI{}5PVk;M-yXIZbkd8@u{8Y!v~Fa1 zPmg3)u4TmiZiJcJo#>mp2(3%1-DGf!uv#HGt-fah%c~)k-eC`SqP&#-hwt7!f;f z8P3?uTOT(E2L}bvTb}_Hy3pzna(PnzWTkT;<_>VcSI}(H(9rxn`*C~40muLfcm6(A zz{A5c7smW3`|3+1a9F()vy~c^0+z@x()|CCRy{8K#Z!y|v!Z@7-9nwr+-?tHx(A-o4 zO!*sT!RGVcFk~i5eUBqp>gm@05o0FbbS_DeK@ghkcKyQ|ypYMR(?2jk#$!54x~_aL zO3Y&$VtVX}lk1kE5+d=hqfbzUhm&b0*f$-#6NtWe)F&yy6Q)Tkfr6Yj?$T}rTkc;uQFIw1nE)evGtfeyog2u?IGuZNZ~&eD00O1S za93BClYNgvWhQEZcWHl5%xN?%LDoGcAM$F8o`-1>-PX1sKtm@eD^k1w-3B^3P_2a8 zf4|-=G|p;r*K*^n@h%6Hj^+FglVm1>eOpP^Nx znpUXV=8}G7d@@|z$=S}BX+1Mm0WZ!t?X>tH#mD2G+aZ5f)~dSac}&drg%5W>n+MdN z-P|0$y(3<|G{~rO4rC*CG26q}o5VKj56gsLM1h>B7u*2NOI zp^6Opo3-C#X{({o7;E8fY=0&R-vIq7DlQQVf)eBiJ{n$PQv_;kAna zV#v{&v~~RP-T>U^-9Zpr3Q0I0hs9P9Th`NHV`C#?omKU`1lU@})QH-6O;TYL2wGR!WApF-MTA+yMn{k_7FYrhzI zU%KkuTUbY#lKasA)bYbFkI4A*-)|zb*a;ZYZ;TAt(GwC9;<|VGNC=b&usL4{Imw)& z{?2RMXALS*({@xbBRe0#vpxQH}y(!LNxHuENx=aT)08XGv*;PSb?GN21^LEvl-*FwvJyrMNg~+6m(? z3_QU+PzyVG?29m9)M6VK@NU0lB3-~P5a7Tk3dFVGiN~+&978$_#Qn6B71L6r)F_TM z`c&*|(b}6uQpBU|7%a}*g%SyJ$p+-g|3px%j}fA<)Odz|=&;3-1nL$D{(*5wlYNSh zw6JJ{FNztW-69^9D@!-k)!pGHj4@5IF`Z)f^qV;E?5?|=(YFB_V{cs_a zn~mY5^%!#^W5*nPLh=YSTn6piBBj@L)Q?>fYpzpRKF_;Aik|WToi-4k;_Z)yx2HR8 zbnKgEQfU4)n{x~Zz(404{b~bFNb>3^f|5ss-jn5rhDS1raZJPD&W@s^i_6YfG*oV= z@e4|O>1#9swxeCYS6xV@Y^mxJXTwq;!6W|wswLhJQ?J8wt5qMN>SMJI>i~5O(VHhL zUq3da_cc;Apczch)f)I zs#-Ycxd~>!T6AeN3p)E$v9?NxVj#rT)B+i@X~xgvP!k1`{qIauukA@EXs5YPZC*MP zRIUI8PMRs;tWIuOy~&@Nhu^1z+UmrYfsmm3xvS%K33a%V@87!h^^|)q_9~^ErUU^| zKhnKC|Nfd&JXkxu|K-MS_NMdwXGCq09Q^oow+A`CBQ!pVRQK@^0rW9>Nc*FpCRNgD z8B6{$&vpRj>^frnwEuALO|Q{n@RwVnz!2`T9%z9t0}Ser9pJEX4OG#3QC- z_V-Y(tePMr_}%>b?IhJgaK%oSPq&tY(mq~9()48P?9Y$JUjxElOiORo?GF;asdF*! zr_f3!yJ-}N=~X-uBf()8M!Sf%N=y8vAiN1OR;J<`g)bltTD?u+?Ka$t`W05Kac-LS z7?jRmPECl}C+TA~DQqIU&(?FYla>=XzL)Vo1W#b_meo^t93m3*&0It=wK=yR7bJV3 zdSNNUgFLy~)0kA@7DGH%A9`BeKf4*bM^^mx(YzFqou@nZHv@6pX`)A4{dSA|WF{LD zzni`hB`~FqQ@J;gV|=i*7^D#xcFQiWVNuINkyu&dZd+!Ex3s%$Evj#T4>p7L4p?-o ziBYxolr{`H2dxM*mey(Ykt*$fRl%H$D(F@eHdNaf4*6oO9dQlH3z9# z-U&bqEB3o8j^wXE`fi2e{ruX~gVf^wtzW5@Q8C%@tF(Tjxf$e&H;t z?SpHdj7#cQ>{VK`4aNJ-eS6oVb+3!|!807c2EE#B$}D#7o))ydK2yvol6YBa9mLa# zyfA6}!CBr2EzL#5!LmR3C?5}Z3slv&Bp*BE-941NzSw}kHfwug_O~TzA@L(`+CS@> zRuo^+mgjuJyVa`M%l?vji_{}>{{qXWUNC=M37#`yltAvb>HHw2;f0*T<%qh`_3Ip5 z4oK-wJy9L`(v$hp{9b~$MX2`?%Y+Hn6P-dU7LcJ{>WQcuuc8yi#{;>4M z_xXBfxsdmtq{Z5Dl2^>~e8Vk7HbRhy*(gd+n%gUnI6;itKDBI zTYQVbG`XsK!^JATuaSYPmnl$%@+G+|nGZ15(hcz$;1DrmON67)y%UH~RxbtK1t%5nt+ z#*^E62}U$9CwyN8@_V7m>-*HXyj!~+Xpn&qY=&_n2+WoThLru@Q9j9o?ONrMwDTA! zuswGx5-2#|fu=gDZGN1%`JS72>>YfSa-j(=L%NQddQXY``lfe94Pl#R*y8sl=DNfW zrlLmI%_m4t*cHcD`)QqfvfrpWp_MzBN877-iIUBF3G%-m&y0^1dbnkOu>4Lc9?{Q} zw{1)P!{+EDaX!C9#sHgVhqUA5;GdbMCYdR14@nDxk?pM5fL|6J^UzF+-x#Chs1r~{9he+^T) znKoO?!+Ysn)HZZtO^Ho`HAhvb8;bUDWZ#2l`$w)bWn)gV9`KZTq~~aps9{&kOW~;^ z#I@lQ$C!bq4XiS3u__osF*Q&u!x3yWtEJ{GpCo?;+mfYAkB_k35>S1lyyp9Pt~6=8 zLk!TB?|o^cl_0P6!2WX#n$-@4kRyJ-lzq6;D-^Em%uG5bP*W9JbLE1Kb&l)w>nXPf zI7roBis#OTIvu@w7cgi7uBG*-JVSC}-}M@WLuVkgE+Zvk zyza`OLe8H^*Z~jHLMpwi=WJ8Szaa%Y6o-i`QY?)h->~Ygc;RbaiH1H8ep~9LE zxIZ5-$3|d6%vfcJ*qorX&)h86MHxYc8Xzq{m~1&BGdKU15IcUDFyL|k&pP4|lU4ov zfbRL7cP+htulREdM1Q^fJ$W!C*i#oG)0E#2`Kd z>oF7UCzs*{H)Yun@ga-$1>f1)Nqd9ev#y~Fh3ejp75yRq6fr0e4Nl_IVOu&64?BhF z;GelGv6j2|)Z!8njEszzRQ4*!?VeCri;IiJjRVg1wl+2fCcG-1GGJumG)!i&rufGR z1h9U5p=HXB(SuEbYi(@}wA7F7ZH1zVLHqUfbzi(AlpO2&lZH(t`6bG4CSo~JrST)FW81ayQKa#;zZ*2nCCtz@5W_E? zOnIERH@d~ES%22pF~aFEL=kliTK?&I5^G_>Zwo0vAHJIB=5Cmqx;|%tw?UyNQZD7( zSYNNJuh;P?XHvO+=qrd9_4+5arOpr|9x!o|9vcw1q!A7Uo>8Au>S$~ z?cSX?EVrLXDs5^?-5^v3CeqH#Pj>(X&U4Wjx zZ+Mucm5Km`zVZlMY(R$927%xEXS;bpxFx+39L2XgHhU^BB`Z4T@W#EA;e1EO*bJNr zv;`R(51ge)J?*TmOH`=I3xm3T&puatRSULiPar^OC4)0L4W>SS&fZWZprUedb30sH zD=OsK;6u$A9vK00sT&+waQG{&RlK?@*>xvTaD5Ch#AE8~>(vT-?eEOgt&fA{ulv@k zclKj+=;Oy`=T9~7kaO^qRJL!t)vN`;Vh|f2F9u{;93eCQ7F>?%je~=0@cE67j>5}u zsYRw;JHH~CO-{7B*a(pg0IJlvq;o-xFyAxUC7t7QKdSGe3bqp^3 z?}LZShO*Em)Snw#o@|am1Dt#Bab8BoEF{Z&PnHcE%_TxYZW1%)V|6QTX++Skdw}f* zvdNe^_b;CFFZy~*>Y3Wrp0NL&Gx#*e{tSoZE0Tlq>-H8n zH1IoW+06YePeM9BU$JL+23}uXf&=jM{5<$*4e|I0 zh|xq^=vfkQv9SlHAYAQBVBTc*9*M72yVrL-JHIF(*O^`>B`0rRKX^{nIjzBr)3$8bQ%@zO@5=0dr8K=Ni<~~>kZvoW>i1<36$HwB` z2zm~{1>z!|HLcFodL&z6f*tu#OBT4B`CEZe;~I2Ppzv3RhU|djLB%2-wY=r#fAREP zLz#p7W%oy+m`_a)nuEK-&Y7j9jOH7_%+fYfkpfqby#Cf>1MQ$R90XQ~c$3%8Lq?gA z$<5;4GBPrs8!ar}K6@-FDM>{|l`RzoAVy1)fx#Lmw|9g%ltMee(9Gk0^HjF9v;>(I z4~(jJ?WAU|kB4-DN1DgZjBZo4vpZWnNt&D?V5$_{@_oy2l5 zly|T(FsgJalj%iYThTH-s-P10<@=pFmz|o*2mZ=rK7{i0>(s?pPO}GJds5bp@X}>| zFNf^mi+|)KJ6LEP`TCW%t%QT6M4+ae0!L}u<_Nq1pdhNk7bAj)e9)&W;I}>LJ5_OU z-y^yVPx^nr5j7}hu$abb18P-fj|ciQhoS1$@eZ7;1Zd$A&$*0b)bgxc92{Z{jp&9q z^&(r}k+_@WB)>Fz1R4o29OWU;Z&UGI5H_O}^Q&=NL6j5k0tqik!3J0mMMS zi{2$A&9)|2Wz6hXYmcUBu>#opUWNVf&($s}FOWJIKg0MN-3TZFwG$phq%OeT8*gF+ zd1C$r6u!l!cCgfzqIpa62FfK57)8o4IX+uzmegl3SU2Us_kQ5L7g;k+(Xffp8W|m3 zV;c7iV*JBNN0Vx<04zDhOpr%5ZQR}Yc3%Tq(N3sVItK?#1I9TMb+Gr&&tN_@gZ??4 z`MUr%b`Ma2&!3Yy@S3*w&JnSyzw_Ku2}44~cmooE!_R$AH>eM`k}aK_&3cfu#SAwgP zEIW>wwZi^@@2hatj}(Zht$^i*b)GzV0+caJ8;?cz^6+r9>DX&~qT4|TFpiT?FD<>m zz8u$W*d#O^3oR-tf{R062iCKX_uQ~IM}TLi=j9rE2PuA@q8=R$jWD3Y9UAwlRuJF_ z2nd`>(KNHG$5IBh7a#bYFrB5bpo0h?_GDQk9w@B%pCAdcsOGpIu1Zu`c9C%CS|+`D z^Je$$r`uYte$RaimLcTO6&PBfmyLFp^V)(G!!O@yrtII3A=d%R_;ZyO@`RU1AJU@i5K^P`!F#05*dl&$voiBj9e9(2$?0GlT|Gb zk{ok7B|3!#IJGJ)%|Jrp(khAk=*VOM6fUJ!`aZdA!&46rs|gjbe@>+7)#^t@MF~Gy z&Z+YKwXL?uqCV3L{BN4@{TKwO^%^v*w9~YEa%uDL`}z>WTJT@ndNRAf09*x#QRNsN zjs;d+tT5Pyx4Q=?m#8=b;>tTnJ36;R6;R&>&Bd;0EUM`+!iUnz&8qL7h}VMT`E6$> zw$d=6rzgbLmPzAp&-EYLzjk+ZfBhal{`>cvNp@P$en|_-FgYdhFd;$3XdV}1BC|{8 zzOGQV&}cU4Ut0>IxP24;(Qe*ieEw|8;XeWIB{tN18lHF@UflCr4GG+C&Ht7EUA)li z=wVHhR-=I~Bc56Z~7%Bpt^(VU$`=gcRWlQ``)KlPb(F=+Sjl^LR0U$*x-munE zxLK8i>pY*BjIw>D${cWsV4*)@myqa!#tBM&N_>2HqUrnh@4+3AijR+vaCSuP0zree z01*egq=&b6)LK3pd3XuoQ4)ngRk*&3|ffV&-AY|6HyCuHvQrmwL2psWC2vM1?~eh`uC5Ui!1Ry z9@%Pl5Vjpe3|1NF)^ylULtUnc5^Hv(nU~vv+yFG9t*y;r&~UZ$k#P<6VU_ZSf(Pgd zh`5m@u4VfL;K{dRJeR&JOxGLq`+!CYl6ozy94K{G8I6r@P=41I;nrV{w*$mlU0pp5 zPyhDq8`w60(0q6c7A>E5z^ouKtCb6oLIwHxzQ|b8g7{@ds;ZM9s~+LDRr4SQLE(W8 z6%B_RK?s_I+*?=6y^Qp9De==+&COvEG{C1orM@342^vD^6v=%N5+5Bnl(J8hWd z7)Cc`B8E4Jr}fvd+4`W^RdLD>*nfGu(YaioKAa#VeTe00thaFMzQFZ?4TseX1_>*crugIYz}=m#S-pHQMX;Pk&zKdA-5yG&}E-Qt^jOfWMF_nK-ywL@&ZtJlYp;5@`ftj z^9^$%-wKg3GW}qM{tL6^AYxLd4Wg@cr!as=&=T=WmDYf}V1+^^M(ptj;j#|mSFm5h z{=fwVG!5H=bK~fXAs0vAKryDyI5}Nbst$Tw)8P^nM2EbG|_ zzmk~1s^!BW?adg{k9!|*eiyn5#JxW>b_%}Q0u-1xSf^yM|7SVal-`E<#X1OnfHiz! zc*)(}{bfS@sGNd=%p?G#>6`;17S$%OmmD4O2?*5u8MyfO_cs|#W!T1zqb0`0g>BDo zuFlSS0SM~pQ$b~K0G%1qo7+N*UDEM*sC)Xd$bY2;#QyI`f)La$50$&1T?23j<|B%i zb@8hH{=j>EN;)>p{c~~5=ui(1x|cBK0Ugmz-Daq6i5%wV8NlR0fq|65&V%s+Glk1? z+jAcs!2XGcho`QtKJ4bu-wwV8$YmgfXGi2#<9q!+Fq`tlr4+Kx9p}pB;O9Svvx1b$txEB>C{EFyFYK0GJG?ZS7>(?1-eKPv`s^1sZZ<9tNAVP%Ca0QOD{N+Sb*c*WNyoHpY z$$SbaGyHXSruQuK2zMmYh)^pz?w6igHrj>q3sP?5LGXF;TA05!IAiJ3B?u$_@u}?T zh_QF0O9f?>#-6#iZeeO$n-9EOenElv^%02!9<_)jd?ZwnnsdsZ&U1bfR6{Ih=_Tou z@B8~@-m8C)ctR}9+W<=fTATv#-YS^9s=;sx=JNie?bFz~)1S_0o&Q=&yy#uf-#5^V z`&VNrd`d8?y4(}v_zO{f@7}#S{8e|#J{e2PBIjzCiWinoCbT>1dmQv!y`^CyiLX{Z zD;P5Skj8Xf>380rPt3@L7nw&+L}3086j!(gn)AEYg?m5{G9f-A`VB~bGX-#v#Lf5GtJqKg6Va{rIhP|bNVlfH z4v)i4i;0Pe=m~7`gqs0MpmjA-d2DPfbUw(80t$|fY$llNr|MhDKwDtI2&?_w%VMZ6-#q@%(hJp5NIyL6kjvpDuKS9G`RWYC6YWMFp#? zN*IIdy~vLF+h@2hHqm8Jj=@P}T4%^Vt#AeAC~vUa057NBFQyUe48|-AkBFSvoJ&Gw zJVJea{b||sP<0~H4m4hh)0+b9(#;<-(H4uf#j2sSX26M|Y2mLV z_P)CoGxHq$1_XijNkRE#2%EfBD`|`Yt&vw(S4SBKR~YIK0U-`@jaF=K`dYwvo&eLc zr!I-r$1gYf;Kp1$I1PURlO~prkK)d2D1yy>w%>HyTTc z#s-5D-$TW3fH%(|Q4;o{+ z2y5uWQOr+q@$l@=fZ!Dk=toh8R-q|t(H+=k-6AG*1uIUgFfISnoxX4QooQWtY)4T( zbWVVh!Sgg7rUCltm%isbOcZ&jC@59*P}AqH!S!SN2tT3?EI%mETn*hPo8Q2UoY)*; z5`_Iat1SheWiL=GRz!7!%%Q@-Z_SAOicd*#(6%Iy6zy9_E}rl3VnwBkBD7H}5X*XQ z8;sV^wNvRR7JSwI{J8-@o|JrA2r0A;&`+AuZ*sD;Nl8i3e2(zx{#;z(&wwLt4ac>gvxelr?^5#o2W{De zcrtRkj}D5ATwZM2=&q(Fy(bB=;j7Jc+j)J_E$vNf!cHM3^<7_FT;&q{JQdlSY^2s5 z{BS~Pr)J7Q*U{|KfaAcOiP?=Y4@LL2OPrI7tL~78Azu%FSC*8l!@2-VRO>uxOPFIC zc9{1GG-j&iGq~=9)W=#XaGO#)04Ty!te7Uu=$~MK8~23}2RC;)3W}m@WkrQ=46_{; zFY>U|b!?m}%(uJ0Yi`#1mzbD{aRwAX9CaT(rr3iAm&{MW;AA7kF?5IaAx1yAFwYOa z@)DnhnvH%*2q%_$r(wV5-&!UEG~Hl0koj{<=6j zul9r-nu%$fMJ)vKj!C`TbT80W%mf>tPCh#eb8hgoK2WL9;}bm7mdi6$Q^&aFutamj z4pR2hRKA_0@d%s~S_%xk+uE}0VtnF!2wiy1Iy?n>+IW5Dx4Kuwq&j}A`(i`SM6={{ z8-hkL6F%gNZt!5|e6t`ZO^EG8s*8Hepo$_^h~Qp2lVy!aMnpQ}J;iD{^-{uR;&7of zJ2G6N<`1MRe`#gIj6)w~E%}*xHI&CzR?>zSqaO8}C{xgH>AH<~*Rp?uVTebx=&z;h z?3kOsJLknvL^4>sdtkcITHM{edJbhXjqOOT`X_dcLvQC(P41o89n z6-jGG*o5sB%f=vN+Ry1wA|~316we$=g`ukwgmza8~Z@QzOtzIut7>+N8Sp zX(6k_tp352nQD2b=L9jv?AfuSzdxlxXPTcU)(j@HC0p4u4|FF52fsG0_$)a+y{zB2 z+yQogQ_6E*3s1#m+d=I69z^;oX=yZaQjTZ8e-qt#MHD}h^+ZdnySA{ePkJw$P&4u= z-g8XMY(50HmamisYp9{Brq!~m%CE$33pN=^?OMi*yMB=$_Do+-RB-B|Dy+4uZlOcC z_wZ!79ImsU;pvKtqpm#}%fLV`(@PsIGO=A&DNhbxS!c7WdqR>})V%EU4&TZo6)8TA zW^hwpy;|{*Avzk8-&jA?91+E8!^A=Fsz($GC8PE&kty+EuN&~SAJ=}#>o4EWg+ zdX>r^FqDsPW@@T??$`!&K96lubxVcEQ^!@cT)jK0|Cj?%bPy*fzf~fY%km$sd`k2w zaE(W9(V667C=qJ0Q%t6oPUy^fmzI2a=|^i7&MPog+R`FGCaNF&k11tRDc=9rC4CBy zp+>N)QiB}lzl8ypp}MIqcdy6zr)ix*u+_$5LXFM`1bwo7lh{PzTQW-0N33?5l)-=;-W z&eJ4CHrwlqNTNNJ9Iiep^Tmc*vvea=>LQ^uqY|HdAY6z01NMBmSLw=W9hEe7c3Cba z2Op{zc_Z#OWYyRuqxBV$?3yUe7-SZ*qNE{rwhPaGpdWGdZM~+cYm1gaCBPDnZbd=a z7j*UXB;-Pt+U}!B>zmugAX0>_wxz3{^1Tp2XD5E0)bufQBR<`Y1n9^+Rc|90&OO!Nrxou zB|`U_>^I^wJA_k|5y~dFogxP93R4c97IvC;J$tRzn$#x*Yu!lr=$yxl9x~+kPJ2YJ zTKfDI*;zmRs05Olkm|aI=u;FW2H!cSQcUFgC%O&V)pWQb-E4$k*iWDr=SU29$t2&_ zdj%lF1NHaiR)R=|MwQ~o7KKW@9x?6vP$0@b3v5f5rCQekBgwZ|mxdF=3L%Sx zFxl(KH2Hg7VK_+ulX2rtf)m}r2R#GI) zWer^07#j3({5lU3vI4b2L3HVx$gGhvs#~Lw4G>B7xo14Kt@N)`r2X>hmxDw@qKI3Q zqYHm4@?(wi4b;_LfnUk$atu*JzG~RW3SAZk24tJ^sz~@stBZ?Re24;4MKJ_PM7?DD zpVWFcVJ=z4?BDl}nc1bKM?%BPm8hX;Z0-d1A9Id$9EO(5D0U5-Xh$R1Sy))wi{AeF z9Im$V-B1mE+#PpSh(6DwO6~ol5g7zWgiKf13&PEHFzb&NYv=7~(Y+Q^!%+J9r%2Rm zlpLmphI|5{J`&f^8=_&OX3lQNAw_qB(w2h~u{1$rPc-AM-3z!4CzdY_71$Am4T~=x z6pu-qC&Lb+&~m1%P3iEuv5EiOo4(vJWO_uh_Oz8XUz#}-JIjPUS_&Eaf^E$bMZ3B0 z0wE8dsP!98PtG@~GEBEF47YYVfl=&QEaAz?7Y+%?Ns`u6gdt%}WOA0SuBr$H5vKER zvN`o8K*&I$F3UiSFRQFnwEtLW#$S{3fDIolmDGum_aaIQ+@Pjvdhb9S*e z-abA=ti3&5T`OdL-&+vYjk4(8#2Yc!)z$H7Z?U=QRldqEO^^6JTi(JY!p+V7uqAf} z;SfniDm(BFo&syuhIU)d$5HOnexx;Eh~Pi^GlAZ`g(Z>Vx$?~F7;*cO&^Vo?{%fX5b0FxB`}Qgs+*Sww#J#t0uAX=PrK+H ze_i@~u<+c9&SyJA%K!Kv-hw_iNSAjP?oohs{JdJ=H(vmp?znamzqop#R)dpp;HZeJ2En|U_*{b9C*x`u19jQ zD5_}?AolfBAS*{8ikJ>>}h2=u1`A`d~~UgklE{UI8Z6h!AQj5!} zMM&8-XuRzNVsZB#Xmt$Pihn~<>Oj!yz+Zmv8Hh#BektSQo;ue?!~J<~F30P51ptqh zXv7fWk1_VfHn3PZGTi%R&}%nd{)CL}Mx{a47E$SBNW}|rRb#0<;+bbc&%53!oYJi_ z)y^?i&rvevG>fp7^b%Q~|UbY~&A1kxw}k(%QzT;kg7O)umBV`IAyVv6baZrTW1Xncpf<0FQE?4(+SBAw8!P)-ul+F} z?70rCOjE3we-Bk6k?S+bNY;6Oeu|h+mHQ?G<5XCES^3(9lcajiscHP)+uT<5 zhSCVkHIwABy9BvB>uYm!nReGF$?xCwzQ9stAPy}wP126aOQFrPIgK8BVyh?%) z`K8ZMBpL1A-k&dx;P0QQU(}*se2pN;;r)}&sKuUnK&0VG)YE6rvNwl!>B1kZ^^XO% z5f~ol@l)LyxLI=O>hRofBGfC3dL-~=o%v;9w?x#LF|UU5OBB51_%ri5dg~0sGv`(ArMrJ4J2$wBB2VGDRQ?S$*QEZxTw>dCshHt;ud3j~!5^Ft_B@}NqyX+e1YCdMl zg1ZDvK~G($!o{0%5R)(o7(Wi^VjN5-eY{h|7foJ%cM~bdA54ZDMF^FAA=2`&i;Cuu zt=#?Ssbi9&P1Dyj&L9zm^>87ZVBV@Db$9am*n6?+374%9XYpq_O~|bbF_RG#giKUR z3W**Y61^K8AIHjZ2GXy5r%VF4-$@M-QYFwOF1uIfMOM{Z&?nO9<~v+&_vg80(|7p zmUpF6fq$MhG&Yvu!@$>xdJixX_Wgw*f3WM{twU}96nXeKsAiwZzwxNG?)RZsJZcw*CLbSR# z<(II`Wx7Lfq0>Cmh9}`RmtbugpThp8f`YKG5uZe>VYe!ePxfcP8y2d|!FQNVi!yurI52=ich`{8jnV?r-Q5kM(gM=ml9JM0k_w1)g9->rt&&Qq z2ndLv@6GT1Z?C=9mEk#ao^!tOx#^$f<|3uhXO0ry8yFbe_wW!57eg_$6F6gxM1INU zGQgHO=b*v}$bK=_J337I_Qx5XT(pCT;tC@?;n6fdqd5-O$VyRzrT-%`3nWL@-<%?>pA?q8RD3Oz zm|*@~#lIzG^6dB+5%zmh+zo(O&{TXQ*g6xPt;7>1Y+N_^cOf=+>x|SbTeR5be!QBd zJukTnsJxIqQcNf9c=5vD%WJ(f;B4=+d}ws`2qS05j|tE9La~jxzCPqWW%u8Lv}lYG zT>_NE%Nn;xv47R~E(R*(EO5K0*f_Xq#+-+mwd&sjseUelg5lblG%&goNw zCU#z-O&~Zk#}I*lKR02*nqQsuRr2YUWhC>tdGIBO_<)zf zbq{A@?y`RxNfDTuoD9j2Teok&qgsO!6FoWkJft_E?954E?w?9ZN(vOS{y!iqctBXh z=DvMt;vrZ7;QT>!!vv+HGz1IM|6oxMz!v;g-QrSG`%gx1m4yITFN{v{enLtL{A0}X z=RXAc?!ndtu~CW*m|?LtfGGP9q(ETad|fS5rZWQ#DOmtKFdl`|5facOn5!27ujNqA z$>m-4ok~+}u*vuc`*CP2zQ&cS1V1h9`ITDrUkBojPGS?~(6Cm?iV^g_R$h$!yaVO2&sNv={?NR5_bd zPhm;m{^Zb*1GwYx2*7mcgj`7PCz3=k3fkQl)bYR1mXEL!ejXI1I&XGYiP-R6gVhx}F|D>=Se_q9y| zp>oipf$V}QS1jtL54BqM+ko_feKs~adcMx+-eR*IoM?-HM@rA}1a%iBhTx!W?0S#} zaind#>Z(nANXJ}({R7Vp&&#fM6dYT935b@?9Vz+zE@U6VdF2tLm*(dU z%k=6DYgrDcIrK7kjNN~;*DtCz-7QAm-Wg6H%VKI%hG;)B{_l%9$43CIz7 zKZA=lm|G&gJ2N2q#m2?CI5`Prc_o?kL4v|PcOtS5cvSbmqT0PKZDK#M1sUd1)zR#< zp~Aaawe7wCk;^9FH$=ESQ@qH@;FvHeQ2$STO{z`au z;r}ML{{otAn?JyO12-GGxZbjM2rCi?aqaLTgXT66_%EG|6)1Z5Ydi9}#M52qvjmTF zZk!$^B-p~G`h=7D6gjYEW;zU+BYAfI4v#FI#I%~^ozJdI?GZIc`#*jNcwoj{Zm&b2 z01{uXpzGT|4;m5J6>hPA%UuNQ`|wf1>eFKJx(v%%MPF<5l!9|yoD%fMk6}mbr%go9 z4gIx8!DrsfZ5@59BpUgC!YRo%B`4=2v@(BbYRV>{FP85rGm5EQO`(DWPL%53F4Sjd zxpmvAEXC^5`R#ug(emXtZ+C@#z#BKF9Viq7>Q}>TvuNA$%G|imvM7_d%)M5}ZLfwe z%Ij}B*Q*gHq^1IS;v@W!=V0H{xm#eAN!t@}#-c-->Cy?~8K`U^fU#>CQeieg0tTXa z>x_CslY$g>e)6Va&_aM*GEIwp-43Wt(4oFC+;eNpl2Jb0eING~s`TGwb2N7K?iQOm zW$}h+27GFFBYR}GHJ+ZRTA%U0w~y+GR8|)tqp+}BlXZDbn^Byc@%VE(f78BS-JW{V zd_+XUcT8-`Go%N(36$y`9DIDkm)RNw8`GfGgD3X^d!4`}TQ%~Y;4v^(Tkv|quOg%5 z*sQ!h^#soQKxLMiGdKM7`+s=3-tU>CA)8=%_W}D4sIyi>4hDR`AgtUGv8`T_nAvC$ zh^EhvAyc@_E3Q#|!(Cof+wKZTOwHfmi{R-d&$N4oIu<<{EmzT`x_W&c+_X~k&g+!b z1*3B0EZhP>mV0Dx&vKthPUSxE4Z;}-QxXzNeKr^xZQ=WULY#YNHC#MAVK`CQ4q_(5 zosDwLca1@E1=}zqGt&*DEJD`f-aRR&$t-w5!0Ie!Jq!Yec-m>k;T)Ssf-q9+U9EXX zov(HwOHsSLBtk{xf`sYBhf;feWWLq_hnM6F8CS`31;ND_o5cw_uvAP;Ofsk`D6sZB z!~V&(-E{7^fGU@oU>8l?382vk!Nrn zu^^UdpEYt4&ihFA?WYT zDX%MX$2~cZ8Txiwnw#bBMBNNz`w_hXPa+qWcvIM|GQhN7n4Vc&P)ENk*||X(le%a-S)uBh5Sp&iw52^ zxnKQ5=kK@Tm;1H(nGG1CUx*SOc0q^(6U}#Ra0LPZ3kycnuANZ|hk>@XavJ)By8i`Z ze&@8aM5Kq;(R_$dWTm)IMe6lRga$2Nly-S;w;%VYUz46>oa4`^@>UG%>b~R28`6Gz zIUm%a3;vhEkEvJ{m=ZhTY3KLg<`y`;)+t8*16F#{NLe=ZD&IU?VU-N_t7;;c+C8ge4D5;EPme^^aX`hbFFvA4Z_izQc}OM5di0K>gOMe+C8`k>OMMJ3hdr=~}l+xkO5)3==4d@J-< z*PigJz#~&7>>1k^hg52TF@2+>qnteQ28j^xPIU41&e+z&w)+b2l`bv@(&`|RGDX$6 z$Stl!a!UQ^){D#EZ5$bI6iRKS@Rk}3nz7Hk_`OTVax2)j{!^OU;&k&P`Ti7xB11!! zd8NpmF3gPUXueiNM_aqO@l_4SrN$qLr!)#)e@^eyP^EqPWPQPASiCGZJn(17`g9>G zWmk!}f^$Av>4(HsqN z2;wK5zzatNsKf;6-gLL48eqz0{p&0fzop-=;8xBiLPC#*6us$zS=31_MYfK{y%u9Q zipBhdW`fij)tW1$*Q_`0i=BAimv>P`O?LfO37Rpp)3XwSC0jP%EHffU8oS_^3mZurkzSfuX^rp%FBZ}RfO3)tdS|9j!!=7t1CouEHtgP+lv)s0mtT}}ko0l&5 z#gH1@C@5H-AKKU88|y#K#p~+)Sfb9HMhP-yL0+C6qC+mW)FHw4-H(Y(>xdmJ z0~d*u`}`XiT)7zxbcXRBb#fnfdF|x}K!B_$*q+bnmwdzgH*3sS>UK^}j@zC4{8-UX zU(MH%ZE2i&Val$!;w?X+znL%pYd3x`{0BSv*H$Sc@bg2CxxA{QceqIaNUYvL7Z}+;0eU zef*C&cY__}SH_PvzdZBk_2;>{GOD#^V?ShnG!AC9NeSZ$oQUSBUf$KKt@!QdiWYMh ztv9K;SzXXC(pV0i|Ab*hm#wd13(K`5HofWiNiQ7`e!s@z-MLEm&t5i$I((%12Xi(} z?7k4W!x|qq+vcwIhe)r6Eh&sL$r49RY}a0M4}&Mr}~9AP#a7KwkFNl zmL-TSx?PlXIJXnV=ff&9InfgSqDZB;%u_M(GK9%|UxdlOc(!kA`pCPu+{_!O%a!N# zWWY@mUIIJ|vj{TQwDBsB z&u+y`NfwS|g>Q{w=20|rU#%ONdlF|T^36@u(Mh+G=8Wb(xcp$T3SgKcWSHOT^<9$< zU%o){Dm)U#{lYP&Rs|=qeQ}lF2GU@iJIbh8 z@$s)DVSClX^#p#jwtn6J%)44!Ba`KL80z;E+}&5NJ0BH@cB3OWC}Mq3&nUvJJbXi_ z%b?Z%;>BdXh8Us8tX2t;;4+4UU(Jw%zaX;nfv>OO<{z@N^f%26mMGrbO=1O^obUvB z1S_oIHR;tMCq;1^O{QiB#eQN30qvLR&q~6nG+VJ{&v8`K)9<{FDHDv4Ic0IujnzfP zjzC7wQ?`acMdY0#4tl!;qJ*Uvty%C5Z7v6)Ab~i7n1AJ7N+tbPP#5ih59>7ktCUQDRa*yFv2}BL{W4KIjD5s7|~Mdl|08}77;kUf1yBnzoIwW zEbGg>@qwAJ-)V=KQ||~jPo3X?`~!~lm*=i)>H)u0j+ztSo_$zHVwG$k2i7WT&d{xR zbC1hxtH+NCd>5hXo)oAy-I#;>Qr;0p*=$^5qQ2-)a0CX_ZVHk*wY_26ZntmYoHv)c z@95-=v`<*;H{D9ozk2AK@yPJrt90G;wN|j2x7jvZQCuF)yh%7&PmZnJm%yGNa8*|o zODyf2Ws6Z@9w+%&A3U;VeY&U`J!3VWAC3E%Q|K{{NTq_?`JGsS?5a<_*fl34)_;Ws zadms!R###MPCGI-&IqExhv zJq2FjI})rf#NU!jx3p;jD7wD9viA%<+?rVBG5W`v^i9P;4dLMC;}?1@)2OHjjj z?-Ua9`ZdUEmDBeP^Bi-V>!YKh5Ik2nWG7YbFO>;^qrdZ+X}Iyya{V`l$rsXY%{yUl zZm17gIK~~N(c0EFG-!TS-Y&rGu(&*-At=(=IMq3-vG`i?ETcCiVFGbh@~FS$r5r2X z2(|j{ydt^w1T~!rD*g8d9zz-8B#EOD;#UU;_`j>VlJ-00B!(=+@nd`|d1}l;?I^FX zM(tQP?FNBMb^DiWDW1OvTY`|3nf89Z5X`+BWntSOdo*<0wYjhFhotT%rG=}rc7&P9 zn&M$3=kARaw}%98S&`WI1gKjV(fB3PuX_-sFXC7SkzuGPay0(b&I{PYk+fz~=;pNf zXbjUg5e-6~=ro!HpAYPBwfZ9?olC>R)zd4ETkiY$b#URUbS~%B6jzsw^37!TP_08t zMNzFeFf`N}4Qt@t@v)B}7AZ|QN|)}VYS71@^Q!FRwv-QrA46*7Rs^3vqV(0PSL52f zg_M>P_bhB*{VOOaK!1)wO!F9PCT}O<8GmJ1Gqqj>URqL^+;<3Ed}EHS8&?9map{9` zeY|FsoRBF8qQ_4GDVRU@FZIZP##7!fuT(Yo^yCDo8k99dgLeOpw6x+Cc*M#v`}_OL zik%e}{Uc9Z2h7A(g#fBfg-qW5EkG<$?% zES~>Q?UaQ3$#Dvk*gxBq_izNOe^00=#lM|*cW_|cwx!Nu9r-azej=Ez0CGk4ugDUC zhV_`-3X~jct)tp-HiXwo{Ien+|8we_j`Fr%5&v80z(Za}oZ_c!&!YDMyOcMo!C|7L zCB|b&_vxUc%Yl9C2yqJUQUbN|vZw+KEM@25JN?yDeAYE8(-&A2v|ZSfxB2Mm=k(QT z-{YNQ|Tpf{$ zG11M`WTr%~HkJB~#L>k%@w5($dV+rad0Ah~|3#nJnD*rRQ4W=L+5mC}+rcbN?LH4P zOL2e{#?rEmdDEYdx6=dV15YQF{j%h`FhaiZcbUs6a>Pj2^cAw&koXDEa6YtLAkH*a z*nKV@8%%M$t*j@4)ykKg{dPY{n9F4SZr|`=;VolD2ybu zXI!z1Jo#<0$_eP=$g`3;3>m}6572$Sz9~>qa-xd!!6Hw}F2v^*9*QVLe3oOH_kZ;0 zhFwQqzx`<$kqY|2P6E!nqbk({bb?ueFHf_xVsPO(fG)U2{T`m@=Hlj(kw7;ibot z0`~@)v>Yi2cAIiGHa7HF7OdsE*~iRH;k<(C@uix&;=$KcF;uRuf_I5~?(UZ_*pB#L|)`I4YlbGDsWfaSNuXdvNc4w>efN|4BXvp{&P z!uwNuMwv7dd>vWl;J|(ylYCXgGMo{cBZv1a>LEQ4&IJXVJB{8ejj3Dt{j|?V1WNAE5~MMX9IgI zCPvBYUd2?{|Nj12r5qcTzrwf_rlG&|FO$YW<@_rOADM_aqo^npdQ!lIjGATs_jLut z$H8xQc6PAmLs|;r>nP=#p8#32)`j+pDQNkmG&B=8A3l8OGkE+i=2eM4_$5G43c9-J zsII;q+5w`Hl;@fpxMs5|udD-dc22F*BW;^*k~pCJjCDDw#UL6DxFxSm@uAhZ#SF73(KHADX5o zId;%;W*;qRHKd{Ag^Ic#4C-y5zn!R5NL zw-aaXWIOQ! zRv9&Ed7z@%1wic;n23;w9|E22@0}nkl0-D7K9J0ytqUn-UU^WPsT5lvhWNWXa)gLc z+7zO_kif-}!K_WAnh4)Vh0gSW%uVI1)Pk3sbweM@Hp11Ne!o)`$0nI5eo}8`UclTC zny8;4LX^IO)KVlLW`08Y+Qg2<=o$L?NN!#IMHRdVXO7SUlO>{;AGo=h)#|fnD#wnj zkx)(C#D)rU9#p)c3dSzyy$d}@@QNb%Bnl;`e*oce>-tl>adig@L}A1}Tv)^u`pt8O z`;(IXI--5b2Hb0T?GAndvmj3P#zSnVcL%y7&3-M zu%|{U!s?A#d<3*c7+eDPIU7@gRwFEO2-YDa*^GvQ0aH8iXeS=>WJfQSRQF+tv zBacz#8>H~j#}?K~c;7p7Gk2lJi_0NeSu+4I*l5&}8!ik{!#_Zk9M%6{d3c&K0yXw&RO7FWROu;DNE z_Zi-~4ymw#l4Su~cm06M4nK{?8+u7!&W?2NcJP~Ylk@MsR2_h5wbnwBQum5i zAaQMmT{!W6t>w5xJn9WHNOt8mu=WoU!}%gE+P=P`uG%eSq}Nv5!%rYItWQeT(JvI}WXWUw#CDJv z!88(TpHLIPxhh$M7hMQ6QGj&G@tO@BB9cG{X{pi}ikob9;VA#FuvqxG7n1_vW4 zDOP4P`yAt;ijB@52I&g4kUCNAQU0uV6BF|6U*vu z<1tW-PlgMDh%Emw0E-@}GZf*f6iI@rLHV~74XHJ@w~M}IV^{UtP|eu<4cpo}C1n~l zCP@v8J~lxlRHJ_CkGu5ZcCTAB7x|Lz%*(3D3PB6kju90x^etEOMOxD;Ryri`Y2H26 zCVNDJ!TEGKNmf@^+!QL}P>UvXQPt9l>Gh737VxESWuR;U$x+3yhSX?7?xj+j4 z%XGTWUNI?+k2sH5T9Uyb`DUL^X*I6I$L5|{lGI$I=uo3YBTp>PsXU`#Wy*%l=X0~W zrA$fhJ~np-iZnW2_@03xDluAK2ywjGbN+SHv>?y_*+b^BAAf8K>WWUAnh$(V2y z-YGY8_HJB;Pl>)B#VWH1rMBG2*DzV7rpqP7cDxQZL*FW_2{_xTQF3cPBJ_oM-T`EbEzJhqc|Kll$BQnhoj@8>gwvKu_a9@ma<%jqr_mA!G&E6h*E5<`r5;Wsh%*?=nboK}-X zio%9=Q+Satb|65pw!D1E#`;E|idpNVP3Hi^d>R&d(!jy_xj3$ETZQ<*V^WMFB%TmT z_OM6vUvz)J7ANEGT8V0ngG9%pAJ$y`25_SJ`Oz)Brm|9rJKeBV<YaT z%^6%D?Ib5B{o@eIqp$8gctDuLY<7U(l&%fK*h~?-Z_$qiIsfw>^S)=w=^HtLH-ff! zH5$Gb_cVO2!Tb3cEFk}M#JZr3qBW(b{fiifrs1d>tuljtic&GsiU&)vJTQ`=e;Jae z+*SuKz(uA?h^@EsI#?7M4*K^u1g%MZJBtd+)$j;Dx4AqyLTwr1Q5kmX?4@mb^YJ2g zfLr$9qe_}IzHRofo!!918y^GH0*i13q09?rJo4eS>Ms6m`V^6x=I(CVxr=(ACAo(Vi|}%teWy(HhVEtOTN~^hRt}P( z^_U3_qDb97yYeJ7S?uVQ7jl9pac2&=2;ChWq77cvnEZ9@nKtp;IxK0#;pfBnwqi0e z1WY|!439CiQw$FWgiWJ)zA4nIMI4$8vk-b6Y;9HeT=q{P$qk0$c=4KXcbkb{z|<6s z&471kUHx8yH^${MJkq5IipEiwkFv(8DWRn=5{!dno$XGMT_=eU{$Bao6^{z-(|CEf z0oOF)W5{c;sx(lzJFZv$nwe(iq_aR5iX7%M7Dl6vJy>Vx%+&o*N4BF*wUqikCY2Gb zn!{i$XhJX>yYN2q*ZJIUgg7zAGqVG-B`Xs2)4ezEkT>ga_R~s3$SlbhDo*IHZmSk= z^$U<^rKh#U-_2)~4p`%HhQN&%#_=T&72E-g3#IkZ+!0S^D6V<3p6ih$Mw}(D)is8{ zdfrqi*$`^t#<4!0qK(*ap7#{CAP|Y#IyQP9sODG0GpXB>P_)s`+oDh2!@`EIVCYK8 zS3aevS(}M&dFxbC_iF~H2O-x!y}90wZpDWe|9u1HhqChl1i^(eImu)0W^F(-H6Vp$ zmuJ>sI(!4LzwVmsQWEtseq0q1n%#*L05{n?;TYg%2{TE=yO zBh3(L+06{Po&v0(!V_w;^GdXzve@S6GL6Tl@3z(GCA>U`AWP&bIrOpCpjuRn;U1+y zG>mslWb#E5{STdTjqWKkasb(YmQAZ@D<2&ydgMwLg+_l@l%1U&yo?LZs+(`(pPXc| zn0(s%+;X9`--RXVR4}DSD0GzeJQnrRR`fnzXsxd4mj8tal6LC-bh`R~j(BM|j3rY$ zD9`UX>LRpJbytTA>-Y$~fH6zANiMbF4*6KmMImCQ)b!jO5$y2je%~l zm{5R8a{)Bv#M%v<+n7sAqY;p^bm+!dCB{{q!avkjK=H

      QUk=hNh`)ObE_=bLVDR zh<(jZiuqD1&nAsbtIarlJl~cZ=Osefr}!5V>!mU$ei30h2JTog7jlr_mC&UwW9Y3j zyGptyzMP8!o30_HhM)!~lf4|@(sz1Ih7LAexmP9SQCt=J@iRg3qI%v{Ld1kg;lgdC zmu23TI8W7DbCt8rLPBI{JFvybG}PzyR*Bw>iqX-$t0mS;ja-q$@_jWz6dDuL832=q zy8^LI_V)4;*W5Vy5hcVE*Nn{x3an)H3RynS=R&&AN=T;+dv%(gDz-=3sWJGudfnRf z7mEFJVi6el8>+hE3VF7p<5D_)oEnCy9vj2M*}-FfIOmuZs@byQ=I`x6+6ym>ZddNx z3!pnDY-T-R8LjYx#DcASjI9w`K+*riN0Z0ZXV`miVwY=$iX@^lXto6*I?vBbN)HkFG@66a!SB5OnB$Vkz>D67X` z>Djo}KtDrNR8$V9?$dr!*#o#}u1TOM=#u6zsY&Bx1kx5lm95RFRAdg(C#NYbI}68z=5ntA;4rv)Ff?Zz8BRmip0?z|KX81LOeR?`B>=>MDw7}#?Qlp zC>p)78gWESb7|LD@yD>4sw9DQ@y3@jM<-%ew%Li$w!Bbc$2-YHO}2uWa!ejs$Z(>1 zE&`vW;@@M)C|+J?k$DQ8We>20PBiktN-6&KF?PR#&CEck{^QRQM0T+aa;h^+`XFkDKC)4i;*UOQvqmOXdvpkO`v^kgU7V8Ma zzlSRvTFpoD&NqIL-!${B+Ik1a@}K zC9H=;tDZXwH-U*H@UL5ll>zFBuf`^(o{7&~BDvl>21 z9WW&r{FTh(YYfQ*MsuNZ^5PEJ32WiZ(-v~~z$m9h>;<3(_CWAZSIQY(QO9?;HC%jO zjVl$+$a<}Ic2+NcK(EKP$L_n{$j7i(?~dFdlq7IN(*dF>fCuD;P;FNmg+8v8t@JH1Cvn{1rg6^c|Ac z1Sx)$n}3II-zB634_rtCUNYP+HC*zIiB`vzrkXZXB~&r}`+czm5r`w^-7eQq_`|d= zit$*vvy7BJW;eMoR{=9#hfP(6_TfmJp(pJ^#F#^dR!UTzD&DR0=t(OtP%GfT*s42| zML^JR(2X_aP{!F7wj}Ulk#^;FYVnzoo*1qC{nE0G7sf{S?SY3@w7_X3z+I=>px>sHOs#ZaHX+cb6EyN{#V07$UFY-5fTlazMLu^vzHa&x+Vt+% zwr3Y}Kr5*+5U6D4CU1;0 zY|7a+WzE2mxwM_bUUT3^OqjktDFreoqAwYdl}DIQhQ2OEvPqvua{E#OgWFwQ*1$ya zLv%KG-2U^wrp8~w4A!QOk^|V2-`}BR82DGkb@1h!KfM8hc@qv07Og&2e*Gmb(u{(e zl5b7F-?Z1Om{+BnBPzWN4k6qmD7RxCvGBsp&v_iL1L`{u`!vaPybLO*;9a0chALQX zibqZLztOI#TuWC{S23$A{q!F14p*q5%#c~yC>L6VUV^}a#)9`nPu=&7XLT>}Q$<*E zCMW;DimK`vlddl$lvi>*8`sdHm$-z7tbl;$$?&4ymX(xJ)GR5ek zdE1l9Lfa_vTb8!BYKYz*z^~T%hjhRF)3H_>dbu`j?n+P=gvGHawh6Y07sxB)pFbC< zBeNIIudco+hAmWz7ehQZ2i5PtVuE}(oRhNqcsR2wS|7YLHNra``^^;=mt0$Kh2SB0 z&ii>^o!#3=+xYE;Z_pnihSs)6GDQDoYzQ74I!e`;2onXy7RI_>yn9$B$>sOVFxqH( zqPRwNo@Xifg2{4k;G>S#h{}`jRJsMFWtto7QH9JVpgLH7?74&AfnRTf9fJF--g-A@ zEF+JfID3s$E3VzJDAry6n;}uUu#`z^Z|gIV%~@^jI6cgJgS%Aq{xf^h!^oNaW?uKh zW5c_(sQPmYs=Oc%f>$#dcvqOeP^P^LH$P-InkSUz{32)xwy_$=UD#OAc9Ii|ujOI5 zXV!Z32&;00pQkPG)d}7A#T8fE!e2cX)%V}1@7v2tRXvoaOsm|T8163TGe9_hRpwGU zt~Al)AvVxS8ff{y}*Qq zxtv)QTf4j0W7S#}-QD*fr4CaU0X%2WY&%dGGIErHk~D6z>c1Y?egbxY(TU_=ki z+$+9cj#gHt?S&pZ1A8fTuf&rI+QsSlv3*pl^sy3zLzc`&$Ml?QmU!<>P6xGrYnb$` zT%bI#^kZlUeEHdC>L6M{;L$eOt;}!F?KybvFI~@BNu~x;m(cxXQBVWT!!=;a6=0U+ zH2HlnK2O2-9zwzNfKdfq*u3N`B%EPX(e{rYM9m(4h7DOBZd#(ha%|QZp#?=jvHksf zlkys#lM1x7KpDj&An^0|2e6J0OsVN9f*3w%u-WDl`Yn4FGiuDA|3cIcU=DvkaE0^@ z_`id$Q!f>vt8)&b0uWwggU_46rh)&YK*S}rzP=t1M>Troo{(c@?SXi4zJw1){p7#f zGsYBlhb@je7ZQ#_{-_$`43(q_0-oc(faz`AUv+mEqK|Madaa%WGoruOG+q{FA!B6J z_Jpa`C_cEn6M-S(jjitc{-DYMTL5_4P3ys73_!LHo9W*(UeXA=g0nCp(r z&$gYb!!URfo&?A44W&Qlcz%!iJ-rh=IGVg-%}_u=MU&3T1;byD+cg~X^56RScJ(XA z$BY$8J^G6qT@VL{5oz(fMGp4%;qiaJ#TVGIqy>S3v1I{UHndvKAfX4c95kS=dmy02 zAOHMm7rd(=)d!}dG9NItEk7m%SAcB;+*s_tms)CS5WjW@x|!4cL4$k3>NE{Uja$k; zvz}oL1BnBCr{b@0o)7(fRX7ec7Lepi+q_}iJ0l|_Y%eM-b) z{2`Wdo#IPbtip8?PsI+jk^2p6)rdm@qkgf6v*5vj`i#;mZv?_r&ZgdN9KiJET&|5+UN~r3b@YtS`UhO zNBSoHCa0s?97l=Qqd27k4sF4Kl2`?ZrN90KOi8A_{lF4{eb>XiBxho!@xEX_!ysoT zrAc%_j)?T6{S3tVv8Dkt^&p2opVkYem}5I&w<@cvugB_L)f5vxWX3}%Y}M4%z^auS zy7s~AYULFLhA+Gha(96AHo}V11biVmX;@tEg69O$>z5Tg0@2mflf`Fuu^nu zIP6GZwJSJ2t*Zi{?f@W#O_{~evJ~f9y;c9K(PIT)+>2Ehx(((~?T-Rl>`i87J2*`r32z zjzl#Q-|Hz|#dAX_V7WCe+(yc1*Db-Viv3iq1u&9~aM3w@Zf4^S6F(1;X*;c-k8HvUY zfXS}{glvKBF5qqY;V2j7u=cORwx$pP9JUh5U#)DivW#gladAWH7)2Qw!m!QjYN&XQ zq5y-GNRB@~FAkH?F?Xq`sTUh9ZX;9Yh6AA)WxEXzOS+lye5K7rXH>C!F6PFlq01xz zxQA09Ek1V6cX#XuD~@@`6eq|Bc6Ij-IE6%4^lS_^bA_5+FDf(XZhig&MZ~ZO`5x&y zj-=CeLPEm7%VVOsj7s1cp-SH{;+Qj-Ofl%;=d@PX$9V!-96 zGDVs zyID%^C0IpreXAphg9Qy^3)9hQ@=gICY1!?IqsB>oy>-H8S&*M$z>QK6rII{@7uz|? z%}y6SO9bKhwdwHR?)Z=MpPQw8Jwv77xnG3Xx(gCG>g6PkB;yR)vbPn(+Xqlk!ovDC zjpla_GN1N|mdDhgr9<7ssKtH+yiaN?@Wp3lbm!Tvz(gOcgWp`7CD!|Sq7(B@PdjgK zZx4?K-Y2-xy|7Ee)^(}0vT+QTZ#Y1B<0>Uy7GDWpHSX?jod1>?HMUrNTGnp#Ot;a{ z!hPrY7okX`mKvKv{Nas&^(XyF9I65Gx{=Y;`uX~I>D-$rl`I-xNK#uU$OOv1v)X+- z@ok|<>g3bDZ<7naT_muwL~A$psIG`pSvJFcc1NXm~bOjz$w6* zKo9m#B3^+#9DXLiCBeH7(FdlD#Mhqp?uQN1EchUhqlKjhyORHtkdU}lJhLL_p2q4R zF2v2f2N6%q1WEW)?$Gnm)MT?2wSq7U90R`M{pkNy$C}{>2vxvJk?IOD6B83XJ-!K`;Y)AR6gau%yHy2_Xf_=zp?QYJ@JvuF!V78} zw&|mImK7lXsj9|Xx6-`)&PQ;MK{^1Wc#78RK}HuE$dNBRLchj;E=jvvmFe_F|J7Vq z57goaB>1cJ9==i46&0&}VN6HnUEY;7R-00!uepHLs;FR8KW_RZFha=UOUM$(=H+Fu zefiy*`g$o?R1l|#p8Pc{neTGFszpB%;FOS$-Lb0ji)egVF7oDsI92D}XE`56boZK1 zqFGMnc|QLnoNO;E!!U_og(;ll%gj%G%dbxx@D0ZYoVO0Ob;5wihu3CD4kD(BRe4|9 zoQJY6xt|^7tlDpW!Mlno;>j+YxBQ~snB>#ZbU#t>q=#$o?4hgEBjC|eCdEiUeqAGN z%VCm#T3z5-sYS5=^Mk09g8rvB$wfQ_`Cj2iF$CTJ1(Q{R>;$#Lmw<$X_uk{zWzxjq zg^~Y^a&AmhnftyM&E#PavMC|8-&y}2PyhZ21FmWBuj=xfR@c;1n2U>x>wU5!JIJZ# zt)-;}c{;rdJ#pH-Fb~WA6(q-z7c}b8slOAh(x(>snWWGJa|*5nqVs}2w?5lSjl{1{YHKanx|^768w-2Tg`iWdk}ySxxd^FGXY;_ zr9DD7Foy}{7lAxzPGNLj0a!7AwT~ZLEmfOO94j=mwHdT|SI#AqMosVF%p>%Ei}RB( z?sCH@6P{AGiEJ<1*_#Hk^T}2zMfD1<+i)8JCShWHyzM9-`6diKXlf$F!D%t&{e&x* z_vB;6iWc|#V&WAStD8V7*=My>GmI93Ufw@l%*x722zi*o;I@~DpS==~ z7?KUFAN{+idfVPB@~T^3B;iO$5Nj&Gy1lUox%LcBIuF4Z?hi+AYIv)abL69XLL}sOp{YH+{cpUE1t6e-D-9Qc2Y1AYOk#Mi z^BKTZg;5N$<_d{hPvqEcd$Wr`P|3CmURalPd#yhoR_tl|{CD78sg_l>Bo06c+T_510SD@hX=l1TR@JE;epYbIDOFV4TGcM zgLU<41dqV=K}6JdiRx_&oSE7?I+T=@esw%>YJ~sF00)d;)`x5!a3rqq7h>4o)buVub0WDJC~98U8`iw z{%|Yt7WVVm9gdqfMU-1%BJ$RkFWqH4kSDuFv$Em9L=XF0x!KveO?!L0p^?$7=G=i-R=W|j0>8_=`keRC zYxMRvc>A{V_=}Wxi$6b%)S(HA=GA)#>j>;)zq@x4;V{=ua`!~qS=qf)Xa5pzGOnWY zxEh8gCOKJITU%S58^lL34YkPRdS<94Md z8886~cDSvM)>fEr8TQg$NesxNDh6l!*Iq%38%FDrQ9oI;)74Eok6@QqZ6>jc&nP3Z z)0`L?9xk~X7-1bV9`pRw%g#YwdV-?eyGSBQ$~S`_-0$6!x9uj0U#v}D7BX(AsX-lp z7nJc0;FZv6^buI)4C@SmAO-shL~H29JxgA#cDw2`ejikpnVt-fjq|RQLFG-ubu6}s z4Itdlh2n76{X6H-{?z}P%+6nOcBM7B9;AH8%1+M2^bg`#kRX~*Lp6_OAa<5wR2u8s zwnfqPBYl5#<5Hpx0r`GFRvO^az2H4SYyZC?!3|yUcun($ST=bnUg#Nv5AXl-i(>y^ zcKh~lG8yA~kUjK)JM=9kC0xVyKk%X9F5n2kJy@7g#2FuhAmm2QfNQYE-*sN+<>lq@ zR@l~WvPAQg-nk^kMjH>9t5D-bXCP)qZ#Gs@8H4jjU{_UDEZy?zY9TNz5DKls{Z+2! zj#fQf-Z$AU`!~TFgt$!B>;A4*%+ToX&u(3HHA|Xj5Z+{A*#L_-`dLB2{-{O-&)W^y zxyiA2TX#KsoD}YZ)}XGf?XR@Iq?J{12Ab(SA4Lr&-nPnuR-UkuPxBVNWU6v~OQPHx zo7Br7k-_Y$*%|~!INgHA5PbcwV8pSm28tS!JNLs!j?1z!+%9<(j>E> z>H(*IlAjwjDwWyTfl(~tkVZCG+#xr${!MpDUV4h>c3|;CyBdfjj*qJ{;^E=~R)JYx z^fs zk+^*{^^=p8RiyKpI!0_Go4Lw!oRxK-%Vz#5623szmzX$OnZ!+O8lF|e>;rAY57k>* zDE|%SmPz6Owt59ZkNt>=Xxvgg4mw)eakPT%kW(xe5`8<>N{~^=K3cuiha)6)V-kD? zNJ11W!XJSwG7JpgOZ0g))uLjKyzOrEQEM`HalHDyc8$(VRMd-~nk}^1xIr0o*bIelwu zZFMsfr*Nx&FGnLroPuT6aQN~9XCq;Lpc(Wns}_5#;$|$2*c%df=UHJ1ndoV6y{}O} z#_!KW-ny|6VtobL#7qNPWE0zUY>>Sf^n_N$GcqrJ4g11Pn9)%~U_xHF()fqKZ(jT- z+>LdWvLZg=6m_9IB!Fk_SQq%|Yka8&w+n=-uyaZjIDa%W@J1~;_`M||{rW-bwOAh< zVp8agF#8Abz!b?$W{zoXYg@-_-2YD9puB?<&+!{ARgjgP;FzVON~f4GJn6P7<`(9v zDd8#)7uWTD?SS`RmSAyOP>N!qCzo!jZX<7Xzzc}5h;G6`!cGW9 zHLg%ZjONe_B$_R!@7`u+G$y%!2rJ$zoT$G~jOiLjrRk#dQUyLB=<+)w|6XOw>F^91va@Mx8{QQK@%*P&um2L=RY}h()YPf1{x-;6_ zNWy5Wej#h;qAT1V;-x$ZTcGnC3QV}@Nz!wuvATUdSLH=ly{yPmX-tw_!eS!r@B8;R ziR_chCGcVoI_lc+5a(YEYEbGFE2 zTk0dF!K&1@K4B6hFNJD1(q$Ekv&CIOgrJyzIu^|7MQyMu&ShhK%RFC&Jmc4tj{E#} zhWH~Q%`$aZ0x9C$U!Kc~S|_*{@z>iY>V`VG!|!Y9bG>S7#q{x!ZIDenNwM$8g@x@C zgJS*bAW`~7;m&Y=LBTivMl3A0|6}Q@qO$CQHQh+3fOJbqcb6a`-7O&Sy?ge|Gf!aG#|NiJG5xccex+749Rlm*M@7=J>`^ztQOW#3fX?&7anMOb~30m%rvm+&(!H-qRQrYkjW^4Ft=p4;Nr3EuD%WQz7` znTG%?zI%K{S2L>Km-;KzUu(0}kdx;>BHk9^_g&x2u-u9>BJ_DA-luHEvNQx_WUB69 z3Gt+}G(E{b)yrK8l~yaSrR`~Ii;~tR)Z%%jiLCvIDp9$&`J%TTChnp>|5p7asvD02!32vpHuVktg;NnZhJl_jBT zP1aEzKYVIAn;qxa|5Mq+7d54o+3zXdN*&hlHoGldO0Sa%xNl#z_Udw*%s9>XvSLN} zv7YQg8&IDKSb-y;f1DNWi2KpvW&Ws!UDw*=Wboj0&Q#p=Y8%3Qx|yJ(MHOdpKiIez7P-sS^Qrb_+mF%g~dO)fit+isJWUZGD;0xu|FJ zAV&AuIEr(Oe23d>fT!$`4hKP}9w^U|XtYxryHOI5+e2?|gj0DH)AnPmU^cKmb52sV ziwZ654Iy*IPS5RCjlhr4H)pfJ$a|Ywt6;YF>Yv1`V+Ns3doVSAv^z*)t@t)8IM_tP zqFm^-GJ?m2Rw*523s^nS*#Uh&z~n9?2KjONHb6^x#p2a-agQvu&M|Y~XhZDUNp}9U z@_p_&LRSJMTDmQCnV2kw(mbtyFx3tti@!N-{81;j-|&+BG>%z;h8?Xmclaqi&f z;9uc2^+>y3>_q-od+Ntrb$#ac9K~Nx1@Y*Op+9zGBF~ci%>!vQ#vcPBN`rA5wM16F zOp!v9-Wq|*AaDp29?~p6F~Vd&qIPBUlTk^MU^7qch-#%xxjzKSIaJZ5mAbs8+Ok5` z99DAS1gcL0S=CWeGgF?n$y7L4T6sgOZ?ajpx$rJ_Qcl$ZD7AF2TUb=8&@gBUAV-Kv z-~>vZ3c<@wy6EG6XiS0fzRvN%-Yj|0c#7eB9e)0C2n&0`eUb^K1!?5IEj9I!s~5&@ zwtr3D7w}_0+SW>CH#A7MrA2TYqpZNTRN*M#KYuCuPGXtB9SJ%K5j# zQoOW^?`p#iXvdh<(DV?fs0O*H-X$uqf2oTViNGQbFAaZ7h`aZK<&F+1{wr%8f$0bL z*ARchD&cRly5}cI(Z~d{S%H)sqW8H*3-ljI%Z_{2vY1?I7!MMReqR0YtGcTSpSVgB zlg73dVK!zNuH8Og5t3JnrT=vj70h`Y%!brB;>p*M{>KFJ5L&4;r658}chm8;ke#-%%p`TLu*+Cs~PypR~s2vA(1X@BZ?+~((zj4K6$ zSstl8BwtJ&PtQ{bl3;!2F@-H%SXDLR1fvWLgfDvKvtHtobWB;L$m?K4(;~OgVmK@q z7;&x+PKGXqu zCU&nmPeC^h^E(oTw6qA@N=~snuXfTXO^L%22A^+khKHqkVBPHsxk$!~b2ftA&z}qJ zTI+tTAS6ha)}ln}F@MXrxifG1yKhQmGV&l7dt3Uo3o4u6r}q~e7+MVu6wP`Xi^L&l zx)Gh9NB0@YQIh0>k2@cilnIn8*1x3L)Z_N=n@jXTS5N%-nqMvgPj`aclOmnyz4+}G z{}>^fOYh1vlXEA2hknZXwZK1l!b)^1dODm2KDx=}Qo&NCHZG1vJ#aT$emvJqQXP}? zEF;vd5p@SwFUB?4(CCb5NZpjymA=sjQK7-R=M>XgEy|hGPkV=?otJ|0N3HGn#UIlu zY^?OWD#-lEEkb}$mE!EEh=PF-UO7XpMD~V0Z(`Ds4WsaTJ1(Mj-l-l6|2N1#O_dE( zR#yM)Xux57H%xw|$p0dn4(L#%hLH1DMpYFp;{i{C_4Y2>?8ZqN(Fpy}5e@2RdacSb zh$C3_hvPa%Ug5O%KBh^L=~M$l^6XDX1Ox@=Da%-uf5+hJS_dQwedD$-q435|A10pKf)~i7c>a2{y zy}Lc$05+Zect+oZpK4eD>uZ1W5dx3dPF4#LTwM=vFH7?ZOfhLtA-X?BouUo0()i{) z;cbDjCd*FSO^)gQVERQ#ahuIqTssNg=IBW`(H1PHw6JN=ei0z!kHm;K<&f2q{tBT3 zKG=(rhPpITL;|S1$jly==7{`Hu*&aq$&l#B-39C{chIri4(hqtK4azsOrPPhnUEKA z5HQ{hrUXiE{O39*by}(=_~jo1MOQX2o}8vu$#bjMf6DMmT}#O$M}Di}i%B0>;NbqV zw8vxK*GTZ8E^k%Y2Jb(L4=n>3hKm7LB<@U**~LCIce~6?#}+0g8bC+lcxCwXs58k5 zavM=jE&a74^PPyULz!(5UCr9uz=oYB<0T7;ffve0jF(S84)u^Dip}N-Z$;~!)w;eV z^etKeo5$Tn@dB~vax~7_h*cppxbc<(c04Ib-iVdR=$g96%OVJ4qI>}&3TO?|jNGsW z)E`<){K;+i`|Y^Z-}T#)EMcQ_yP9^>F8+5eyHA8v^qlDYp9X(?B~y8~D^F+r>>Psn z*x)k}{6Ng|;$gwL8WWNX7lDAXSHIVxg@$`=AkO;U?S^D*wkuD`lO(?*~+ zz^>=4{g<5|`0utWf3Eb1&5Sect>wRqZ%MFUvTz~<-SKHR z9y%BH@AJ6@B`opZs}KG?ZAN(A^0J?59K&K$9Imdh5?+<#LWBp?by-+7Yh=tnNQ+dMiY^%TH8LIwy#*|0>);0tpRP})z z2o^f+^Q5e`QD`aE|K(;wQr-k?u~V~?qP~w#igaz-Ig_5sPIa2MsuXXA6T*$AW;-u2 zip(utUKvGW)Rz%x3zIK7j|Bq0&)WRFpx3S@WwT!|w)=&zx;X5lMXd&++0&y)LCDSI z1Z`~juss$A_s$&maL6ib$zrkTJCenFF=MM;^J_%>o3H4S2ZsHvIQUHE(Zp3wH0zSE9yYs z{XuOJW@9e1&MzR(cZ&G{5oLf)1GwKa{`!4mf46qn7Z8BO|DBzH4hVFw4R z!>amvuESId;|cI~`UzUR4zD1?sod6CRr=C0EXHZIGj$y5B5Cz0!}soIl#);8 z)eZm^XrU;Mu*RmzAL9lZxPrcjjr&*qs`kj)XXUI4xK!+D=T;{lp`Sb*`qV_%{?-Di z%WVUx{%(nUW6)CzTdDW?Hn0(aJ+0qyAG*I$NoxAmEA7qEzX}t%B2NtsMc^yX*DH-; zQtbaM`4{IuiigdQb##5Z(NOf0FGyWhhod+YPw@y4Q}}H9(Z0@~^Cet6e<>#V zK8&JmhP^1m9m}SjPW|1-rStQ1(0q;OOMK|)=ootu#_{U<*MBD`CrS?j`SaZzfvW=F zTuoiwVD>q`kPz&(++Ya`Bv^aJODVUGcW@?U6#niHC7 z9(1+W`+k(KvRvot!siBMR~73*rmgteP0dlO{DUu3Qv~X=uJ`79bUj*hI}VnbiU%?V zGgw1h^bQ~;%yO6^NnD$=&aa~MjD)hfp}`!w_CDZX=b;YowS)X#p$p-7y#ZmP**H7% zlT!C5B}k8xZD9Ru?_kv*bNkyllUV8JE%b&sfZsILJjoR79E1Zq=0yV`M8FRllpfiaUkyt9R9ye5C+m&xPXz(lN-gd$oU~h2^2}gRt|Gw3iZ|Y-*k_hX@7mhlQL;_ z)U}M+kAXIqAsr&4vdYkyY8PO0Vl(N9d9VM)Q4{$`i{54@NEb!uhIl~Qqubl#k9Zx_ z1XPj%Z3TyYrLa@U7JI?vW8rOV{HDjgpEXwP75t^}fOnQCMK0iP?zo24N30*vkfT@6Kak&K_2AFh!2&n;N=LeR(B(GpKj5{-le%_$`jn`C z>vaIP2xJAZ6a<`1i2Xcn=PW)3=F%Q`IqY+#Rk!v3=qDqxQYFax9^d(U-uN=~7|O7d zlapcIw-c!PeZ@j+0gpyDQoT|M_0MZzkbipHb9275vNyDG3@z{&Fd}M}BvQ%orqBZt zDfV5&G8)a(h%=H4Ufo`DG;|WqP{=5j7d??)fHZ9o)Bq*r`+){ozs3uf#b(ruU|XSZ zq{S=7zha-_7de7&0RBbmh1wtiUvBU&R1?JrMdXy?M%-H~?N_`dZz|MYhZY^{tE+#4 zn+{63VeEr{6UyUtU)ed#U)}t+PLjx6z`#HH3QM)jU-I7G0xS4g)7Q}b%8jBZ8m!N>ad%Y;;CyD`fBh0+gdc(YksgR|^%GP9 ztqW#jV+B|nfW7Y`yJV}S5ah^Zd6mS-AgoO-a~87vs!Y;cvLe>frUU@s27saQBw-B1 zkQc1Zg>nbBudzJjYosjuQ4aUad;IPxid63MAa$3=zvcC_L6&^}{uR_Lk)d!gqaCeT zi%Js+-vTMy{jMkIJ@l$0-%Ljf9Zt#Ye}^wnZ~4^wpdd3dGcN4Uz=S}QWw67m73Wmt z=;&DrCgg8MMjk?fdSTIX#69|cQ#M>BUfIG=7vJBwvJ!P@WxR*OSeXWlZig45a{&>m z=7GO6)*~Oy6kMH*aeJG$c=Nn}*B30v@!;PH`9Ey+6DJQ7J!!mlXFM`^-C;=G^N}ym zm@G?_ZD$fNNEM5vj3HK~9BU@jCpFgTVpEI)2xUC<*A{>Ws*>Fd1~1~ZPzVCp@D)<{ z65Zd}1c%7+X=kU>A^tv5<+V}^Baxn{H%X3*?`^|FUI1nZwN~}M{H%4szr|6tBYFm-Q) zc^0c1d*>(6ip0mU8qu0fqBS@5zmvz+il2@@LPNm}Miob?8kkzk_DlUP^_SuKfXSs@ zT$uP<5c5^U$5K;lD4LZ8589+74AaXlwLNe;a718kmAKiA^AM0S zCKC{;lIGu-jwzdJ61ERR$P@R~POyK!yzURs3SdEcO68^;vTVGm0g2BEW-zX9rqlkV z(Mv_pB57@o`ZMwo?aNNU9T(~}gTn`0ng?hU@~6^@E^ExuqoqYfeebf&{MhU=`6*Yy zavBPAj%QxG%A^vaDjH?LuR$`n1><}l&cB@*F@Essns-_6E&2X-mbuN56g^VzVyE%IO z3Y;r|ZxCI=`INa3FH|PKmsA)>LotzxVjfnwsF<53nnU>eA>4Vv8NnY4NoXU@BDj?T z7jZ7bzMhO`1`j|h@i#J@SzeWX_t>mc*;9NlAe@jog(Q}jwC+^=A}@u2o%m zQ}JxQHv24}$P1qR%u$5k|-sh4EsNA+YY#V`r%H4S^Tanmrw;Fw}Xyt@t zI}CR}D`ysd*BcTH-NCr8(2pix<`PZlSHM+>evguWxF?j!hEO^%fm&?dxhU8h_x>Np z`xa7tQN0L#gT(eT+xVj7l?diirXLGFwrd5DCkLsG4?}qkqk(t~ zdfQ+h9O}OKsU1ybN%4wJt5}s&lV#U=O@>k2WF(D;?%jTo_Njki)a!L>XS*#uHzrkq(4FoyLI&YAyeM_u5pOLi0t^DnmF!1sjJ-* zSc%@Zv-I}&{|oTMWUhC-;nSzzq7?}EpEJw6N7C)piI+Ot@mxoXUMF#jli-!gTv2_q z^k1x4^?#2l|6A-Fo!mxv`eGo>9wV0z(Y-{FNU1+V4+hvVGcgAKmnOsH2lp*6EuIv< zmk=IS?k^_45l0NM&BIL32jW4o;?l94OT_DPA}43(h%cQi-P(zG+_vEdwHUFpWjq2W zvD_SP@{JGksz#A#SK)!c&1T&hizHJ8(!kADU^ha`Q1Oa>X^vp>7}@chDrxVaIO8OZ zGw}9u=Oau0ytLl|$Z;FGuN)WaLU;u|qdUH-aHz`J+awZ7r+47I8xZZibK9Qe)?j}Ti@_; zoV*W{O_k=t%6$HC%iw5DWhaIoZFF*d=p1vYJg{VO0 zFzJ3z!OE6~4!!64K6EZI=m9o@Jj)F~JM`O1cqelRTIC(0Ew_!=#Ef`&{4XKxnDC z9E0pxb)IoJk>4NL!(Zi?uN1EaKC|b)dE$UIOf*`p!*N-nM^KO9fbiL~4M_@B3hBNU z?j=S{(gsCrs{q9fOV4K_O>f_x#&LJMQN5Swn68-)bRMo6&g2Fw?l4MOSMzk&08 zML}SUS@cG2?O^^CmM@w9P|K>-llfGZv4@zck?Cw6laeM=hIE_NPX@vf;;B`I!Wv~v zig$iv(f)#I30ZDd;e5&z&7-=l78kRurp~NO^aVO!UlWk*@wruHgg1$eR06A=3WX23 z2L6Pg(=;wY{#m&288qvOq^6v{u&s zW|cY}r1c?F&u;ptxwjY0Y{R5!1f+)Wg?9N^saJ#kIy**B^CIx+H-;2gd4LpRkjy;X z0IU>~4O0~6g%w6wW%97Mh6vJk-oE{soq7@*Jo=w9{|HB(7Q_ORE3oZ9TCA?VWKUBU z)mNO5neve8m<2E&Uo|%DzLr<|ysxB9y?%biqn(aSFX<*-5&u+&LwUV&PZyEIOL6c0 z^l0CiueRn?DB@-n$8@R&7*xqDt@4^)Pv<@2a*LV6x-Y-qZ$m{OSKRA%I;)Kxns?zb zSt+|f>otp|*|wu_FGT|Uhv*Bu)*THxo6_Kat}U)(^d(#43^-Z=?QU4|zvPYoz^M1E zKDKS9;N@lvMv5?%RFH{}@=o?=6>6rei>l{i3^pmeYi+SsFi&^r<7JJYJveRCL7CLp zyjau4_VI|V!2EL&j9;6;mv22{9we&Jx4gDyj;geBFVoSMOP6%oE?%As;TpDZ-sukl z&j?ifj@oy4q%f0ztDeE2F*6FPiIC#rd-e%(3@fEpfbaa=+Y9ko=k(Kbz*~G)5cu5_ zDBN^;`zpWNcb?{H3nAGES)uIYFbh-*ZL7={Z&RhHG2~=3zHh3Y4doDK`?Vs(_4vbO zm@y@Rezq#3fVzML6AdM1$z-nz_19L)&wLA3e_?kj$7$8`XVw3=jEv+hlHD#YN#z9Z z()4Jj3&B0x0T}QKi)PGhn=x3jz7vVLGZO)IE7@?$&`T+?#xd23VGo5#GQtDvNpz2i zp1=pFw4TX|y9`;xXhDv@2ITp@eDze!N>luEonQU^A%uQ&efs&H0)yUbhYTH4kQ9sX z-IF{e9Xc3zHcPnQWmD=_t~$ilPw(mZpkssZ9Vt9F?Xc}YJmf}lp-Po-HNS8{I?~HA zJ_XKz{vUwGGFANyMH>Ne*~zateREvQk_^}GOJ*7j+-B#?4ctkfSc>qo&U*NJNGCci zZfY_!{YXk=eQ6R zbFyQ$ZSH!t_SBR!O>G9Fy3&_ouWmb0wEpPjF#9As-7R>j8~avXtUYY~9hsg(1B52R zJIfU&>dlPW6n*rm|8}2whqiof;}l%u{~9H#He8e5|Lhbdq!(|Dj}+bdJp-+%2-?lB zNXwpzAt`XNFf%`&o1aHZ;L+I3K-os$(Q7R>@_kcjQ;s0sZbZROLCTOUhc6~7TDaTs zD@8tM@{WSJ2JnFw7A;v7C6P-3tx!t{BB>}C?%V+gEv30KVYmuU&cxURtKTXw8TII7 zXB8)%B}z^UJFiImS(f`<>~r%iNlHy~O|PY>+F0WSk$C}Ltg|yG+MVB>c4t}H_RzrF ziHCEeC#};M8*w?u9lv-l0mQYC;^S)uh%`@DdwwW$WOR+wG3lz;v7ufO5ni(Ck2T06;AzR~f=(H=)$c^=Xd4jaYt9}U z6L{!$erVWPA^3R6v&3{ZYIc91G?E?|k(W|8XK9W~34zEhcVXBXl9#1^wdLq#nMRHo zM%5YZVUH>^nwC?ASt&GHo3#$18G^{oy&pg34kRwt!{p!2a|?)wsAPf9=Zvak>+Jp~ z7vnm$hpp4)(v;-n5Cld3;K5I@By(}8-*b;`f${|YyQ{%yf~~XKHM81xKU(YqG#RkJ zPm;QQ31<<6cmkiI|23B<`~aRdsOR7Q%;eX|?SB3ZK2BAc-mGj7@F;;JjOA%F^qKw> zn0|D1bxo+g<^IfN-pwgV{|J~4Z+<-f{T+*~Rj}T)!>fu%Xa-&VVXK3Yg1UV4$(Ju* zZvL#9vs97Yex~hO;z`@iWG9WhG;@uRFKY;Z=@;-j;HWLk*35zdI=9)i`Md}E)4NZ) zXMq3VGv9sfRDNDw_h<8tD<3nhi`0ScdJS~**93yuIXNDm%FD}_S8&YU8;_GL#7X1%7+CA+;uzIWS?!8I`#!y-cSR-@@kZ$A$iQ^I?FtW zf`-Nn%{7*_K2_8fwOvxmo>htJ&+F*jcWrA_%yX?bh3MYdML%!&-} z)au`M)8afLc^3xtjo0g8cxL`TT0b0hIN3>b@-p9Z`L$sFiY|(neSuF4EI|6B9t2&? z8@qnWmk{$Lk-{bBY8c-!{os?3nCJptbjgD=SuO~VU4`LQ1|s8nfsm^iVJv9TfYzPm z#t9x5`=4AheYXLWsWWJzub)|7K5T!yEV}`QH%${0Pxho3%IwnlUq8o9o3C$u=j32( zI_E01a(nZ~yp$KXE%4d`X3M;%$uBSath+~TEYIQ&ZWHr4e7O-p2I>dCz=qP8n{Pjg z4>eYg0M7zQpO`c?`%#8`V)C6IAH+eqx8B|cv8@?gmpAr&OBD0?n`4wMZK)7=$Cn_g zyFU8xQ?J1+&msBhLHN*r|3QO`tpJ!04Ti1~Micu5m4{c#)hKQ5zvgpzm!!@n<(OG} z0emJDXX(-|+ZmEA05djcSJyvfYS&|i1u1WBX|4bh)BXql<*R0Xt4ofR23b7*1O^Vg zFKFoK0@VO^KTrKj5Td3hUGYlZF@`On)bqqGMo-X$$>eF;80rDPw4(O25{cZ69lBe1=W5qo1Zdlb)LBJ=tSG z-g{0b!~h`2O?hfn#sx*N(YW*P(FfLI(K_N-ShyH)QA_^2_8go86z?6p9l#)#PGr^M zud;cjjoPIZsPLgQzUTDc;le@ECw(&XM2zLpx7t%_Z5Y7Tfu&A%|DKAadq=!MM#7z8f1 zb+5;KlHh24)NNH~JgNUAPgFqg65tVFU>slW6r65yv)3#~(x0jx47sfy@8@&(7lr_R`Xed0whn9OCpKNWk8_!CDiWq-J#v-J>= z$Kta-^aq-$X3&Fi1jAy6lE)%=CN3##|I``&0ejcJeU`<}4$s>Nnw7IPYP)va+kU&Q;`r+*rV2gLc#wKIejQt540$KvB z7E2ooY~~2r?d|P4@xgb1W#6xCsIHdns}uTQ80NH*MU!xCkE;*sZ^T<}umROLep8x3 z|3_c71IJt;okteV@TYI;lfbRn0?*8r@r!E)15P9o9dD3$K8&y5|0J|F-Z_nFC2TXC zZ2vs%&FkFjUw=VPe8rOO4lHCpi3byJgt+aJ`(X-ZmDWjpvTz?lM7<8?aZNtZcB9Me z5T?0Z(h`9ZW;X)>x zQ3r}IE|qXHy(;@ujC;k#^G#K}`Vl@QbnD{h5_Z==wT3Xe z@<0+DPTKZ9tO-5-Vq{?SP3}SqJkMEm-H~z@@TEj?og~p`5(*|JKkJvF=lOn7n;MJl zp3i)JY>cKBTVM8~n3N!b2;#BD3RLrOA)!XpN2KK;UaVImECq#O+3^VMh_uKbksktO z(wU;z;fQ)l`L10665)Co*L6SdkI1#V*rx(1DVY~s49|?HrwfN);@7|?=A&Z zdHw~pU5q*L*UwV_;1Z|k{7#g)o;cgo!Tp@|5v+Zay2IN0C%}oB_b1e|XE6fPt*`#w z0@miqTGq$zzmLyrXW~vH8B1$#JvKUuhDVdDjf4$^PO#+s$P8@@&P}g}H+$Up(u}!F ztZpZdFC@lM*QdvA_E!Y`((33o=?ZDYSRWl#rR0<{J&98$2UArWqiiy^Ji&M^9wtsw zU$%#l<3v749}@sZi5kN1vJzxVuuA}t`%$I9U|FlmqnHXx?jVSc&_O%|VX8fRHm=eF zh?(<16F_CM_e9^7Lw93-E|*?NC@%P}vE5{ZdUg%z$i9Zo1w|zK0HzM<*wTpSY>~aA zsEC&fmn23=v}yRT3EEb+Y0GO>SPT05&=I;%Ef9^4U!Tor;4iI+6t|Z%U(bFNbpqd3 zvy}3HNuBR5tawzL*zfp+VKHY zVOj2xz(?6Sw~Z7lOLw!BiNOb-I=3dGXLJOgFaAIe>|>H#^#S4bw^9VS zhWR=@Aswf#QVc{&SdMP<`sRVQo<-f>2bo@T$wqgygN9?N6@hZ>9BW;Z<%7+2&h}Ut zSnc+IBBom8V0M&2WoVIQMK)PR`$v6%?IJNVg(hZ?SLnY%2NMg$;QhZ!gFftUk{SUM|>x#39%D0ci#Dkp-)n$c7 zGE@u%IWBzk*6$&C{VIwT^F1j&(NN3N;aJ>j08vSQ2z|ST#MLzn5YLy=Es`RUg2~cx z^<)`yD9{w25p)kAKYMZb1(9j_UUOUzZRB?(D|zNOrP>hiHEQc5`V76)BW8WZ9q$#br(i0QBmlVpR7ifiwQg4WGhk}y&Jh1)lf|*iMrDQK4Jdh+Pb`y@*R$=?du zQ{UHkrxOzIEmHFDM1NQ(LYEP;tlZxmoc?Q8Fvqrs%lyG6wLEvP> zoekjZ51Prl#60vXxSUnKX5d?t3YL3b+{6rV7TYOr%M#d>!A;Kt< zalO*PmPg&9?wcq$@(-MiouqMGzO;9Cioa^^)3%&4!N|+d^aE8*6|cMyeltiZXTgnl z1m~D;Lg6Lc=~JB9#FyMX*B%@F5&UXrVneXd8^Aq}Rr%6up3Ry6wPyaJW-9ri0mD1g z1thSMg(mB#HU`2|^YW)NSG@_vh8aJ@zHz4kYLS=SkZSFJcA3UMxfn^lQ9nZ@n=CFgbXdi?O-RIiOvsX0Usspm z{e@>SmrEj9T25cC~67REqsaC-&hoOJcl{`J{8$ zzXG8yOSaP@mC|)N^JL2E8Oicn{*(B-`bUfTE0Vj|&RQEywWpWW5UX-7g|Os3A~AxN zc@sICrXT4{B@h6lKQs^xv70v87sm3BvuI+_GqnhXNi>Pn-sAl#BW6+F(P2bgr6)fL zHW8Tg6rMAC3(qq?8O4Xgq%NW6bRwXtP7x^V9@CW6N}%1d*ck-(0i?-d z^l_UFB*cUVQZ$kOy*tjO;X(Ed;F_HZ>PQDF4e$;Ka|YuN!X8a7%?XPN;>_|jka@oO z&%v(QcF*=d5e;od_Rgi~Ug#mAq^pez>ElED|=erXN#7ly7O84X5 zz_n?dWn!BJ%1?GOff-I35>9Zv$oDrE3=_ zQx6jly(VhT=t3US5qOLo(hBRv>k8_dcuAtEW!X>T*y#1&>MHFpX)-I(4sImePCh=bVi)feupFFD=Zi3L6Ex`BnNt+Duf$iJiYyK0ov?}g*X@B)2I)6|9ZPj}1Y%ME&4s89ie|yhmV&z#u z*MgaU-R~PN#Wv=E2nj2+g|pim|K-QWnyz%s2;xIHZ_#xDVer;eKjRpw36`fA6{!uBa7vEMt?;No6bb|D^lL3K>Z*2aXw{= zIRT>w>7J+v0TB%tLQ5 zQ-&{d-PwNBc=AV1Zm@_@Ef76PDduc07io>Ri&7fLBL~P z`KC0a619sjvkiW-SkjXQn@s@}q|TgadtfU(t)wf<;?=8mhH%dEn%2S%=|I!0x~AsR zSW^=}*lbYW*47sMo|;j)w0~pyL~I|R>C5sgk& zSM(zDV76P?HW|?>?n&O+?a$EaEM?<^U;a$6KxO8qp#HA zxVQ{k%Hf`*9_YF%G8W;(&}p*!hIB@0q#S|a0o}8|YHr%Gx)&O!4Tvg9Y0kf8Jj*Nv zB^e2NS~Bs~?d+I&*%A=C#zRrD1JBHU~YNB<+yVAz!-wey! zM>i+uXKiZZ z3(B_M=J0yZDroPtBGJ|9s50t^#}~O2{=p9lsgvfugj_87uW-~YMu7h4#elavGC!|( zk~a_~=R5hD5FwnSY+hxHJcmPl9k=-o@j)>Lobbt$#AIxN9cV~F~K<%=##3T2| zHVmEzZYp-l(*q3aSq9UM7Ka%m;}D{*SN~|L%Q%&fSS4r=9?=^x#frG;BWYuwY9b5BO@vr8d3Ol4Llb>jR$-H zj`CD16JJsLG^YHYP1a8tA2FcBjFX3$?EN63c;8L!W%xQC&%Kc7K2oCGyGk%Xs;PlJ zjJd3AsIz+3*x-6P+tb`HwY+DI?%Tsf2t7!v%umb26mw=%#B>!s^UpcNb9gb>~FahvYi`K2Wo>`#GMym+OaFpT)ZM)zqBN0+)FXG~!;gI{1- z`?OGifqhLqpE`+|E_s*`?aO+cLUYehgtlph0I|h}Z%a=ciQccy|B2(63ot(7prCEc z8)mL#lm#j(vME@BZ13!_fY={s%IP^d&@IYGb=7@h-#HaP8UmjQO+JQXjxhP`>f}hJ z@M_^Gym?tl#=a_4WMg)t*oyy<(d;_^YSXk&ceH5>IF`Fc)w~aTa(^~xk)R&vYX|%L zsu~*qA2UA7Hg;8pFH7P|8P-3P5h*1kFkQG`bVcnFr-(&w{`yN!dNL>Z7wsv+*OuF= zNvltB3tJ_KDFo9^*zAt~!m$AK0O*A53=Gy_vjqt%d@`Q4HvM@VxGSc9AsDjaKx{40 zLMC@9;pdN}OyM@|?3;IGAJRG8<0+|ofaaiWZvNo$)W$v40ZMq%_31nIYT<4r@81Kp z@m*C_jKz0f;Iy>2w|66p8Oe7?4q=46Pe04z*rvNUe20~^OG3whC|EyBU8barla-nI zeP;(;PRPrpL8+R{Ypn<`$bZ+Vvmd))s`PxpR^X)XWN&XTkIniW(iy719v~eNXc`08 z85D0b)6?m%uCA_3xb*e(GXK+{9i5n%0RAaZPakx&bUE^A>FAVp)q&{*!DZoX5+B_w z0ewG|!*kfkLI%V->n}V|CQG>O0vIOY7mo=VsJi<4Rp`zEe|g^EvepeZ-vQuLlVyI- z9}9r#E{FnK=|5?+o( z!5*NoT~->!8!Jn80`jefva-cNC6^KvEC5(?tzh`j3dF|^@i%wypF{v2#+}yvtz80T z%J=@`Emp0;Yaqsxl98Qmz&uz-w99|F-x>o%U7mKM7*AWg`|kL@M~_mnvxQN}ew1#Z z>19SWBc^n9eE5(ALlxi%>FMcoOQLEofomNQ5a8qU?!WgR=e!Av;aGqJpcxpy>PXuB z?I_SU5CbcpM%2q|c(_zi^!Oh2jJ~=nnaeTstrTVW^(`4U|6Y^peW1sdxAXS?4L>x8 z5krf&8W3SmR$p6J2XwBo9}g*X%+3Fu?r4}rl+Y?~{=4{90?s0Uc9Vzo!3(`C&;Taq zi+*r0bEEr`f4ZR7TPv;IJnmiBBPt#=H&Nx(z2xWDg@42jSmWBUd_W&uKmW>UQJ5Rzt(=XB0`Gdhf_GzuhzMO9y z*NR4jH(&DzL%t6rULAMi>Y*D+;7iwjb&)YmW<|#otkKBU)YFTs0Y6}{aC!N0lgJe} zUBGH(N$$arfj(RS?(HVf+3P(nvb%F*0j1=)o3c-Bk}JqWAASaCeF?IeiuoBA*p;kr z;CirH>M?PpVwgA&$8Vp@i{>Y$Av2FGzeZho{R&uHXaKTg=HUa*4fUQy~Wql^s zL2yu1Qt}NBI3roD7XbS9yikz^1m<{7e*xUc{{}kby`!V<7eDiruQVgxf3j1isLIXA zU^*D%7UUNcgr$#Mdg@fQwe|uvVf}ytVB;kh>xgafoLsD|7$W*s>|}SYae%gB>l^vM z?`_kb$~?)w-j)Zf(Y)Da1T0ky^l}nm#TAnePqpTHQzOaM`R_f$p(3+nUSQQ5eeiL% zv@Ei$`goCcteIkw9U?U=(j2ESrXHVRD~ za1oL|_EGj+is09@%RL1>j6 zgfnK2xoP2lpx6iqLxTXi3a^|#kQxQ&yk86Q2gwLBX_ISMRZjg;Q*XxW^Xq|_tut`Q z%73|ui5diewJ?JVyAv#hg|)oxXLv&S1u-5&jI!m#ok9|~9!HPwslK+B7NTd+#RfWg z8M|C%l+~}*kHIgv^R1Eae6dGL3KB+uKYLNr(LqU?KqbPb$%>BfSDJTm4NXh5FqV|` zw-a|ig1#cQ&*L5c4<)^;b1ot#i_fOcSSlSqJ*};a$$u6@DaRH| ziYSmd%VXC0Qj76{{~_=5%6fnyi_WAEV1Mzzr0S@}=#CU1Im}lc-oE@iWS7UgwgLO;gzSEHAX-a3r+;72 zrYb(Wm8=kuh2!p49(GV=hsnme(@pSrL1Ye2rmdjdDkRN{^{6M zb)aH0Y?RF2^)4es=hJ6q#v}O-Gl8;;=Ii)0&%$r;%g0;f!W|Ulr=$I*f(vzi%fbqH zu(;Sk_ES|KY$+Kg8JkMbTSEDddV)O>ju6XWn`7-9b!Xo9ykdN=5NQ_K?uAMq&$Fg` z@p+I0b!PthO)ufk8+Ykjbd0T(P@*Vg!WfEaduZh9zeMlC-XiP}Gk1Jh+&Xmb*CquY zn>m-Q3!&3FZ<@NP`*gFdr;;Gqe>3BNZq0c32{~~3b&$+3_JSQ?F1E z)M#D5k)#Yu4pJdD9j;d^$iu)y}3T;H&v>ztC} zd`jto)*IMfd~~tzS9>zFxxymtQ71x5cd`t&zRu1MTPMGMz1oO+(0ww>q4y+bek(qO z5V*Ce0dPr=io7E=kkuL)Q@r=I2jU(jVpQ-F@TC4-KdO3aYAON#q=g&BNz`IP4`h(V z-rc*IpPzr{FjEe#-v^hkpw#=_i4u9j&BfJiTZ@%xjaq-W8fryc@<+LmXJ0=E2|t3$ zyYx6jV>XUv)Euofw_gkhJ&<=tFORWqn!0w&+1k1}w^MDkT|0mgd=XdBJIWg}2g~!B zVT;F8$n;Om%z~Cu(e3u-S@GM_m0Yl}>t}lmmQCff5Ky&7E~KYyD3=A*!!O?k{`JW~ zouu{c7N?UfCDKL4^G!W;Lg{N4sM;PW10l!CQLyOonl}TrLC$itj!92Y7pi`(0l|X$ zs6ps&9$$a z1#BS*K_B+B)gOx96H&P08T{1NM1N-UT3?N4xN|+H*K7NkrXksso}ZP8QLo0RREn~B z3xdeQXf9M1l=z<7!gGaeO5eS*EJn2)18@FuR!VISk*b38P0TNJj5L8~TD)FG;Z2k~ zHtOmLxo1U{SXEAeJ9#f?wGmhSZSlKHR5=@MtYSm^btL>>+1=re* zDYYZuk}twK)OwTcP)?5;2#RkU#BbO{1yWGfr6pJAi1SD9JwI3Tb>b7*y6AiNlD(&u zd7`?v4~SDUKtq9EIX1HQyM5!jUdt}(d-|(mkt@kUu&za8i(L^{gUq8WVyzv7 zUraF<{uQ}n;#kS;QhW7S|94NIEJ!!^JJLQR_27R5WA zn#=<|83UQtfeiN$uI`%ZYWhX+#0;15GH|5OI$C=FIX63Ca{zPQ)x-d#nx~*#8MW+B zD)7_j!qorP;cOW?^V;DCHYrnDMtCv2prZYGlRl^NHuH3KZ(K7F(`?W`=!T#M_On!` zRwGweeiOU>G=95uTd5KcN6k@fzsk@qW7MZdK`Af`fL{0bVl0qOZ&26J@b&agLC{rI zadCfwjXzj#n#O|xs zlm?J4o*~Kc-y!ICK$ZDPZg$YGC-39* zHkVv`NJM`a+}n(Jw+6JE^K+nFJP>fyp-~V+LvaCcu6|^NPMD|C`!|23Wk@)*I2(+0 ze4y6bH9t$rPOtgrBBUCV+ncfKYj4YzaG01*N6CTe?d?T2Q*X5m5A!0tx~Oii+?iZ;bormg3p#tUc$KZW4vPWo6+5reL3B znBb7_gFdCM?V{ol6#8`TrqaqvrM<}ij<{c_`%$QyS;K~&i@@o50IQGGV6h8Xw@|~u zN9}O#Q~$^l^JW+f*>bV{kCrfr+3epNph_+E`Z@;sx4(x=Ta5~gNYdq|f(3=_LDktSF=%?$-U-;*Wp-5RfDGYNBT6oQNDb(%~kyy*SbI184w zg7mAb_wbrO`BY67pRdX_Wqq)b?#~aVv~B3SOTnVvwjckPEz|>Rc!ML00~N{&EGY=} z2z$rMNnp!D7gJr^Wt}a%0w0aTSO0NcDh@+^OG`_L5Om!529g00ks~o5lp%RZTK?cM2O&cp zE6E;w-yu8U;wfSL-H9rh&ll13tCgqRu_}M}XZR%IGLy9HyXc3L1C7}USPm{NqFR_v ze4jnZ;{UHQ{KcEOK5sK&HgH(7-$bCjFIndulkRZLYlog5)})76&rqBK76ok8d*yDo zQ)$;ABN+llL9DXpjPUmPuaD0T>pDBha=j}6Iq$ci#M%QT0gE;qMw(3ObRBPR@lTFu zPh;~wjRb?j39K&W(*PVkngIjfC*B>V+AfGO(?|uJ)J#ubU!P&>d3pD^+cl5Zev#{~ z%WJLICfC3Idp;aH5i3&@P8u-*;Z^s52kk<5qVnjzu<#aP~( zr4dsK4VXeFcIDYFjscpIRtDT{&py!~42~9uq>P`OXXIYqdaXO1bd+2kcdP}5ex)ZM zu<>wOs;wq06bAtY`i z;TUB4Ar130>*(lcQ1P%L{@{38?JTTS@!@w}ZLL2vEr2CRj^a5jo+|W7!9+jP(B4MJ zbMm>LR%Q`MzH$G+i1`y(Uao+?c`(n*Y>wh{qFLW9>e?#{R)wYRqw9S zqO-?P#2Ny(i_xYu0xH3&4IQsSLPBC<{-x@H>?X$bk6oba6Cm9UP+6pnJmbc1s63X1 z=^ij9JJHpT0<%*fS(O_rEoB(Q>i_uhV_#q2XLT=!DqHi|oTsD~eo&H2Se?=M21Lye zr2Klac2dA#eU3Yr&-gw2T3QtCLR0SCHGFlWV`5x2YopgAp})M92f3G@=X*r<6?Tst z04*9CSRdTi_5Y^+X_N&T5$c#XARLT5-91P9b%Wt+0LfZ%XjY)$JL|`HyFgXb5L$!< z0B=Cz4yI%~vHK~3FEpm3O z-_AB+LE?zt&_`aI0LdSXwi0yy-ZE=c?h)BpJk#$N8rmmTOS?bmpDZoG%ma#Z5*j?! z;NYIGk;7Rvg3KN-Hxe>B6W%tR(uZGm2KdK$ImN*J}W ztiIs5eew3RdP+Lt60|#fsl8ue+&(+mBXK~~M6+8V$mg!L-gVBK*gt|A* z4M)OO-__lHlu5f-%8ZYHIOg?^Bn;L=Qvi8^WY@&qXrE(z(3qA|l+$=BS~w+gW0^{z zyLD+u``)~(n;Q==?_CDzCnYj4ei_j(!);kk`sE+0hla}etI)?BNF(m>80MK z0tzPw2ZA~bV){-lNLH{jOGpGl5VsY|@qN}G-j<|tKbQ@#KrzQGB_$;!WYG8~z9G~p z8xJp*`TqT90K`JZZO$YO{X;*LhL;~6KRSL;^iFMRNF!u{supM^a6`z_L*PHuQEys7 zJS8=?<|88`(xA*l2uFYM3F2^}H1)dZ)hkaQpVsY4cEjwqV81Y3gmBQ(&zG-lM&R*) z>YE3?E>l^YBk469c5x- zqVRe?%=RI^`>*-L4-W6uRbA352LP{-;XwT**~Qvs=d}NJZfa`CXs{X< zt6^0)=EEqGm}Q~6(QKUld6Y4@Y~fL?-!U4XjKq%}-CMRYHN67bdux4ZDI(Go*7q&a z47@ROK=y}ujvJf5!!U5w2XN>XY8U1E;oX%3fcN~zJAQNQ8>1XlO}v@5BP}U#yn6DouFke}WyNqP;uJzcG6n$V z2VfTxWl$8ieXMVq-n{t(ej;5yaq$O!b^;dh}c9!c?Yv4xFfM@dK>KH|;GAk-tNTD6k<^|9md9eH!Ck ztdUUD{{;-&2>zy}rKM2cazLxvR>GI6N`-Q(B9zV642DuHJE8>afxEo*_wUW~M4o-K zpn}+q(P&c>&Cj<_G`e;COwe|6_)V5R^U+>~K$(HQe#Wa;uZA2RJz}mw;v}G9NOxC=2uTc-U7^?S{DOpl-#vYhqJt~;;2s`j_OG$&Fd3}fx#Is^F zDWK6_LNq_WgbZvR%z;CgYX8N1>wr5dEe#8^3&O;s@8;mvFggo0SCHMsBGim8Cen(?$6JLQ}wBr$zE<^H9 zxF`icQiNyWV11sNo`w(UEC~S30ldd9c`|RhR)F)sNPLN!B_kulh5H-zDG1_FpM1x# zBCYQW{g?lBWJGD7oA9Fz>%a2?&|2n-!E>?6_eSK-$<$+m)TP1P!knCU&N+@%50lZ1 z^Cc?=yEHGwHb;;nCg5n@$y@m08xF-IILoRvsp5*frS%ES0!H7LkW8U$sHN6c2a~`^ z*n(?q(+ClqNC4ND6c$=oTjP&(5A^DsvDQ>oiR54Y{^68BLB6727i6`zx5)FP=>8u` zoQsPKuc!e60iiCgyZi11S-k|FbJ`EZGq}gXVy>?I3(8Qenu=z}hz~fN=(;{rO8CxA zPea53HXdFI6r(33>=07zhpwUl3x7^RMc)hd4 z-a%hU8-5381b?B%BNo&@`wFyz=qyX0Ie*hW3DV9fFH2oECw@R?oU(RrfR69py?<~Q zd&|KDU;(M}v4W@~hXH``z>f>!{6WgsA~!sDNBAKynr z>|coj_7B9zvn8_Dbg(5VhK9;KsS3{AR*FH;R8ITz3Xg7y>2(%;x6eM->UW5sUz$Di zb6PT^{b*G2hX3X(FQ!^8AR?4=Oi!VL2A%_?2Kfuf3Le6R1j#z-`T6yqln3Xe-n4hU z3wW(%@`HhR^b+C;&NDzm-7baq3WUlq$j?;#%H}_X_IN1GnT0k2{L|668GU%=Sunq6 zn3jB%R#X%Mo{VxZ(cQp?CTctW5|Y$oqNBY-?kdayG!}mnlPW?Jl*|HwMG$U8m2NVTG?*xiUm49?(d(Hf02CgmK&(a8Q%>!;?jZ2I_Rl^v%&)ChHKL{e$AB{rJ4=4g7T9JirU_L8N(oO9;0?3&Iyk-MTUAYi~{#M0C=v`?t zIFc9;kaD+6A?Y3lsasFZ@4rFP8R0D-os0U!VYB4$*wbhKE*%DLby&U+9;(YiPBkas zct0>bJ%t|%=K#*oo-QA2!K@BQBp$Rudi$Kx<9~_M$)XzZI%?{#To1rT_X zfW|-oJE5g3;yW-6{kT)555)BXzT*O)0R&r!0f19KBN zDOh$?QXr}O{kxr1nLldJ9h{sB><2j=JwLv=gy=CY;|2^jMLuW6bwQf}1iYTBokT5L zS2`F@jVwS7$F>4iJ-r_gi}XkvPX6TFVGgqUU?GqJsP0gri80&?v&RGO5Kg1|EX;^# zcr)c|o7S3la7{oT9kRr*?)D)>pF)}HSAc}Ux(}cDOQl|jUK;rU-%9JiBi7+uCHWON zy69c}X!^7Wh5PH>OYyCLz}B6HBCG`yFRbEei@;PcC=B}~!*v&(bvIn&%*^@*z+ zWuo3B?(<$H_rT`*zT7WY2VqU$?q5rR>IB9oWv(jo_zr@UNQF+?gCBtPF}aPU(tEz3 z-s?0=eR-^^VN|KZV#pKc!9{_yGa@KE9B9px8GE}YJ@w%i0~&_-CI6!_9M6dKvto8* zD`>%3+2-@?`Bl`hrP$7D823w%K4Yr}@eE}CcQq-I26mRa?WOIGk#B<6CE`oP2#p4A{-kdvK_+1qn4Hb{G?;; zn$#Wt;}`3`-%KSpSikYnm20AGD)jEtW7ea$*~124tER^D`e3$zyd2vM%V|Gy^Uy(f zNa;6@M-+<6_;0+rJ4z=lD%e&g1ncYXSTBc7Mbx)W^K?lu@>pax;oL2&Li19{$&6^# zZMo^7iUby#zFw1Lfm*_s!wOQx2yo=1yAWKyg!GKX(P5t87ed}wm)nLQLlQS3)_$t} z#sh6_k;h>kr{{cCwVP! zJ^PbcZw*4;peYU7YL^s>D0A@Nlh*{RR#%>$Ae8xCTGXf-F@e!oFoDC#CPo>wn|$95 z@jFoEke|bh)LIHADyei1uVifhJMC;7OkIq~=B8U9qOe(5{~8C{GGIhw;b;$MxAy6{E)fJikTs8izmg;;@apf5l#TCh&&N)8FhTWS3rgEaO6rkzTYuoB%(~Yb zA!t*dkT3H1=i%b;119+l2LxJjZeyO!tXzwI{b(%G%J<1}Ux8B^{U~^3Md90Rmu?%F zB!kI8>yaRn{vhq8;RJGESjg)~Y<3#^Vrx-}uJDKEZ3!lhwt+G2>9@_g+N2zktd$Tj zz;TT*(#YitG4PgCRJmFkZ^{=vy2+yi|jM zs{sF8mFQ-NNDq1zV^8wiYyLp!b}`VR7r03n>%B`NCrX9zv&16eO;;B z{nmGT6GW8gD-Lc1k5=Wdn^n6eD~vmWBlAW08~ZG$;*}_d0(GQeSOu>%l^&er$x&U+gVrHz5~AVnd;{f zpZ#6`+FxM@+Xuvx+1rarck#4CHrl)7x;pZmoYQyhlC^rn)HdbsN&AkLd}OrP9GbeAqWyQ4?MNU@)y9CQhFevh8*GB zjK<~H)E8HE1p#j@k)I>#(TjsSO?I7CP5_bV^-`(!s!0@x zlwO(4x>D1>m+)-L5LdU~Y9(O1kM1WcO9}LKqcWUs5+EIvNt-^>JvRQs$(y^wu$=je zLfhE`1#x4PQcI(Joi_^XYi7FJd?>RK2785phz@c~ge@1g0<5ngl*7A z9s)MB374G9h(FH?FI##enX1TFGM&1L<9z-?;wWOuxezbxkpzv zlUgAIp=c68B#w>`!cN5~N-YY~!TLG&Z>(&Qgr*d$MlwPti=( zpNQNkCU{JyMA;{6`T|ll)O2)yT0yS^td}%pI1xcDA$w!l^gqv+0$rnGQ3~EF+OBIe zq&%W;OH@8ljt$&IZL`^!)kq&;?3WAc!BVPddf0I`Zv8HiydMR7E6ZCN@76N>x$P0i zTUSNDofT`_*A$y2HkwB7>5AibOd0*rW`KJ#xsmlC@U-jr*p1VV_A`}VlUY|8Esl~H zhq3rXB+^UWGNcZ+Rh)X2{k`4*r+kN&;b7LjlNnB@kY3{ zV7K3tHztfVoR}`Wk*#L zZ{Z#O>(=Gnf8Wjver*+1KSP`EySltCb~=ST#GuC0UvF6&A3piZJFT@ERa&H0&THB{ zfH+wO8F%7hA*{c|%to?NhCz}f;yV{tpp|y3|FQRp7G1&&NFsIbJ?6|M_%maND?B`k($UwhTbAi0h-R}k-TMU(A^=?`UZ>V$GB{^)Ig#fG|arR*e! zZ|sjIsB?h$MuLhaxep9`6ho@w=W>&;whAm%tcP=UoFKUi+#JpPLFCWbo$}yU8 zV!c%lO-D3Dbw8%mA&&+o4Gh2u*!UQPV(Tc^J`pR#xjevtAMcKvk0~LB8}Vujuk?t- zhCvpUMj@d)6127SFYlatH! zmSxDYw8kGWWYhgbxsjS$(CmmPt;LbKl#y*GIe5cm#w1^A(>4_-xc0rFed%@4Y&$#> zr72Hb9>v{gl;JGkkn$f)PbE?TOTx|;Mn(>jV6vH`W%onnbq2aee#0&hugw5a_?gSR1~mzDX1_!u11VG%sWT^ak38^U6z>TOJ77HqRoHBIvqRU4%c zyI2-LKJD`n#Vkd0Ca1!e06mJ@S?i0prfG!68Zmo&otJTp+*4o_Lt?F(j4#!D{aIHy zBlw4U;jEtEwVv71`U&^_;JpmnWID& z$95poW^_ViG+n7~P*9MX$fagf5{>wh%GY;|Pvr1He5C&#ZfMzvgx^;tyU(^XI4{n& z73JqGENSN>I9xspBiQw~WSYj(bh; z8Fau`Sq@?iaWm)z$Y?lWu>_`d5v^`(1FS@MbzTEXtH>PajK-H@#&y=tTX#Xj^2CL) zET%Zz8+c7S8`0U4V1+=VI*J(k`+11@ES02B8QLqo2jv^y&yA));;H-$0KS(DKkLbFT>b;op0pX*i z>25tWK5oS;L)3nvz+c6L7G_Fh{S+oQoy_Kp9cZQ!|GDrxmhHYVK)OD6Myyd69f=fbTM?9>=D#)5HT=Ulk*fDS)Nxi^=>0FA(}2!t_?`y3_VYa zR+`yH#wKIJ(?DnoisW;q?inVgexXIX4T;sGvr->;XdmVQ`^MruDQfb{)_#grg1maHZ3%N#UwcDpe32>DS1HUf4S6Rr zuQI{Q*4{Pzy1AoZ=;k61qXgOx5bAiOOZ$%#lbS0;-_~UPjQQkc9id{Mf$q=G!c9~o zdSYc_5i$n5{heyn8?!{~7D~(=z!if!09DUQ9Y3`w3y3F+~Cg#)^iB;N6fJlSO5` zsOS|3`(CViZOHj^sn}yYL?HZAy|6T?en?WJ=U?1u!>GnD?&j!Ek->nM=zh+p1uef3 z3YZ_-2DQf3@iz$PNbU)jI$)_C=Y1Z3H|fJOuaPTeS(}x{t-P2h9$F+_M_yv*n9$g9 z6q2AHbw4MThHHwZzcBUJw$=JfYrrwZ6MfU37ELkhE34E|v!UKSMUC#g2f@j?w*0dX zJSuVGjojXt^}GmvH9UQgC2F0NC85LbAp^UOiH@34z|U-W9%ZM z9XX8`#B>>PRzFWD7};8ioj^YP>swJSXf$jSyyqBnk%&&fB5RTP7GiSX<}8RGm;TG* z=OX%Z7C^r$CoJ)pXTLahrg|!7RQc!^j-W(@O3_jd{&zj}wS7YVmktzC{`|AD0BC+| zEldse-CY>V$pvhyucxEKh`bxpg4HwGF53198vebl(WWaf*ts2a83L-2hO z8(r@iKn=ik{5t|*O*NUSs_Mk0CNweqiG$4d^wi*M3uY3_l-1k)iSE|N%=4?|Wowzr z&x5INYyD=)d;9YX-$;o9a9XInNKa`idi<>H*WN>OtHYH?)lH%gdAw=*rFp*(A9STK zz1}^=A7e?`=nYG25_#M<5jry|pb$Wzt$ic}G=!1F6zF1;nS_qtdq^GLEi`-nE`UcSXu^^`&tiFa*o zYYY2adg^WJmc|;Pw)|Xn^l5g$7oMdW3NR$pH8$P@pWkMR8=wAnMvO)+8Od*z*9|8KYd+T)t zJ184Sg)Y#V0KWJEwn^g#({0?|@a0}lumMN{Z2@9{tL12cfQdB5osG@S9(W!A2n()S z=Gi2Ih!+@f$XoxiP^Jh-FhuNoq@P2~gT5{R;?;n-Cci(b>(eLe{`K7NCq}6K^zHhq zQ{AFnX}qnPzp3{mQ__!{{KQpgg}!=u%}me{5;D!ns{GW#pxkJE{Uoi|Brb^w4wqks zH;LcdSH+&8(zN$KdVK4Be)f0wC?ItHS@7q-|8C$@+lAe>^Uk^gqc~`7uG6`pi{U#= z!LTs-=&8;W+)qtV)7FM%@gIQ1K-Fx&0?!i=I8cIOSZ{cAU~+J{EIa=y1j!`k6jAhc z#H^z~;D<^X$j)Z-bRo6czxM8Pb9DR+!anc?n0LBu06)j==^%Rs8V38_5?v6B?-B<0fgH6Ds;3}$V|M_{VXo39ViT(P_$Ppy81M3^lszkLU=Z&5ej9zVjhPn! z9+BVWWKnlo_gYyc7dV-Hup9of{+1m952U)LCNW;|is=$;9JkR=s+i~@>jU@`=+_xz zDG`4+u?wPi7)Sjt*JK&=Xm=rpw%mRY=j4R)TcpNl2oLlrQ&^?y+QX&IevPR7#>vD zH3FZsz-c;K41>BHKT0_7y+cTBO1B2i^I|p^q?3o60HJi_Imib6Orm4M$Ke4r2@T-n zlsNm>(>V93X5&y|+wLhyy@ulvrRsGBhp|B%tlIDBi}ZX(ydj~7S#WDRBpwP-$e*n|oA8u}tDb<~2hOCdW@!rs2Jj(esOg>< z0VXpY@HkL}5VT7yYjmcoS7vF3vuHxE{a#gna}4JzxLEwYtY9W8QWOoF&(-r<88(_< zp0>ogGKGUCf;G_Yu>zsA8q`-=K{Ab)owiN5npu3t@92NWS{fQ$dgUmeE{aF&^nu=q zh`Hl>qnAtNkx{qUC)tnp$fV{0FHdHi>zu$-`P?OvQO@5}6Hu!mphvBtK+Ks+qq|Fn zR)Mc*miExKnAvV_(7EN8Ys{{~RE$D2);@5CHv}af!7$dsOFJ@^#?U|i{S*VNR8eQq zMZTp%qh`HFJVki~!-^|M!l=wt@@4;+e@2~dFTq7xze*+IYRV^)@$#xj4*zi#$Fs%V z8IZ0vEAf43`n>-bcmgR>*2=mX9)otso05BLb;J7eif9I}SWpphB3I)bVZTt|?XTiE zZsMJ*^ZO;dtBfQOq!1p3Gz8xego1Ny@Wm!q&V-d&BOsL{=3%xhATp_8Cxes08?2v} zIF=7PT&v=Lp8n^V8xFgx^1dSV6uo0PKFPm~ZZ=Vy^F=Jq~>&>5PDe^tdB4e*diD119Ey3PGZGoKCNeJkAE)34Il zc3w=w$cRT9&c3o7RGL)oiVy+^pzuke4Hu&hz(0dMY`QUBTZz{iZ{B8==dhzy8h!h+ z_UcvnP`K9zOB|a#n{sw*LpCR~Ph3B}>|qWFhN-_(QE8^v%Svk@L332YhOmXm?`?!h z)lT*GO5<=h&%{ba@C5q@e;?^^k)95`trucawy0Y{ z#*4HTdxS{Bw053Csay0_cZ&GiYU4u_{EP^5Ica8NVrv9fuljnpU0xj}MFr9zymuy8 zHlAC_Q(-YVe8s?A#?ch~=Yo@0EzTP^|4b$GjbW-{C^AOd*YRSEf2LnK zb7z(x_fhb_2;cHTwDLl7YZ-gcIrtn6p%zjp%54tA5l2y^TZ~l;_!`19!}lXQj9U#- zg+4H13T!2yW91HM6$egg2PY6>U`{aP*XV=|zO4A1R3(AwzzZ~i zZZZi@ya*aT5ln?a5YrbFUi z>Q^O{od3haT_K7@W?OJPdx6_v8u7AFQlNb(hr+vy&Q5ih1OjTwd1D3mL%R3;D+ z2q!G-QG9pk#;JE7QXJLbP9GCxpH3NC=>8+j$*G=_m0(|{!}o&ah-=X9d3-7l_N!%G zdl+h!<-Ax3$(IpE9uECl9F73pQArY=Z$~vTE1`ksRs@}pd8_V+7$tBAD<5LeHE=Pv zli}#~%B+^f8>t+l^5G;x`zcIuK3@BtGI}wwQjsPS6FsF#wyo7@#)u~&==~ZbLyzC^ zhlHiT(vIeUF?q>=u=XASg?C%SA=UZtX=&q1$fCvjWc}HRiHTgklI*NzzDK|pph3ND8sfL5zj8#%>$k%AU{9X@lR8*XZV4Ay; z@k4q`dQt_8jjLRdHgB+-e-KX#i~LWMV8)Su0L^xvj5) z3Ib!7)oce#YnE#r2kIZnc!Tq_E`sQolAp2+C`aC_pvkil z`HxfZ)P>ko3>Ssf5M)-4?Doei))_*E?x!uWS8c7WU6`@~$(z}+dJ2B=q=hV1XybH* zUTiq_TnfVIFP=qkV6nGFO21oz! zlwD<{F~X-TRWm)e?0+xG?fg1M5wE?L<=hi^#;Vcz>66q62}w!mNp43j#$$=-i8L24m!*qIwt+Fiz$$|8bf3!@9Hoj&6j zBv%PJ$u%>MT|~q$ITQlH(fpl!6v{n{Hf`S-3}g?2P{?VVVSDdyG7{P4}=+e`9l!#wtHc#6{SS{$CGvrbj}` zsJy*G3&-4E`~u{fKSiuRj$%t!a)xvlp1;?6n)Y&=Yd=u=lWZ# z-;?HjpZ-{Vv~;*ZXz>D}W~&#s=Dujl*NCV1Ydo@&0yDA4pCOG%mei}=>65)GdB-%xdm=B8>0K? zWdGSdIHlDHs!thi{On!Tzs}xVCUINVOF0{T0@X-M=J^+C@lQ&(|CKXZOL+wm^Cuv% z;wWxL>mcYBdgsC>o5q@BHlJcVH2h5XT*_^opOWwgc+9leCukJWZ-!`T7>K}-T!>NU z72bbFD=k;9nathAHvJBI(K1nUMSh=N+i*#ThZ(m-9F*g>dvm{Ejr989cm1+0EgvZD zFu?{!q#FlS3d-^3rF_?;-d~?~(VY16dv>)S^2=c7J%be_osEC`L0vje5<%TvrpkEb zdbjD4AStR|ruSSe*7YceYS3Q^D}7F94zc6=Z>4!m;|nHZ?vO>#r8uD8>+{T+D*84`psH`>h;epN@WnO$9 z|MA@8?u~HNEa7?7K@B9W27b10x?C>g3FlI?FAF&udF(BF{1>T}>=g*veY9S1ve;I( zHq&LW-s`c(#C@SrVJ2dSwk7B9a3_*iA)1>tQGxcNto2qcVw)}bRvsMpI6WCs&!Cv~stzP8ii z);$$0zNk`|H6^gjt4TPDvi#*L&=+^GWiW1Q(&NG1>nqBbdYbnd^wM5tsRj)zjv#K+ zc|0H%r&xFPZr6^hCBxwlp3{*Rr;%6^A{-!%bQ$O!8bIM;pt|u|HA_;&6crB(;i)Fx z!ZZ-Ww(zf^LT4(8Smh9>(s+V@g)C71kuawPEy{DV3vn}w_e@qfRaW8GUGDP8J>cx* zaM3nkuR_L`VnCYP7f)kpvnB7WudN-(zMaMYR(3B7cQ6dOgc6ajCxRMcPsnzW{tL(a z6L!5*F}YvE9Q;BmK#=#YCdOf74|-;7^j3PPmD!_DOX;Turn3-UDe0GvBnN%dam2u* z9KL~B-koRR37`VC7L^Sy?TluY(fl&-R#% z7=fQ2c`7buu51UP{5O6R={>`>SxnBcvi*hFOAC=J8GoQJ5=pX#fQ)mh}jii^s*u?#gf&=fof4VKk+B_t5R_bVg#njNwZLcwG(Hav_~A zmt=5@-3(>q5QYnv?J!b}TJ)<=tLM1xrCNR-RZ^*K1wEt9^W1DIPJYEILlcuH4+A6@ z10R?!!H)bznM9GA6hn)o%!DD8cgJ~Y?nBG8NN?^T_jnTJu=>nf|8qMZ<%Io3-bJbyr&|2IT+ z;quy=e%%ZFb85107_-mDs681{`c2Wcy_(|Y&tJ6#>l1qRUXoS+EE_u5KSX({@z5r~+qj%%aQU&@CKQPABufAy>RW?__&uZhj^y!9BspOqPkV zwMND5&FfvxFRW1*PSH-Lz?j_d>`h56eea)K^X6!W1g39^odYsow9;MX@u^yuO)dLF zi?DXGBc1yJAR&H)vvzRkJtpG4U zO9~5Dr|kP|8e)k}1V16I9SRtB9)IY1fte+M$pEu0!ve_jY@N=s1UUpq-X zX1Ryg?FVwne5XJZ!6h{-7fyTrV=RudX+R! zq=A9hW&-Mv>eHi<2G31Lb~Bw@!Ngy0KTnCxIr;BkKVD4uQ!JSAw&>LvJN4uhkD9j2 z#WBa$RNgW3MLOML$p@=2#$HGNn)-6=?oZe%P<5ZqtlF+~*J2A=vs)bjhE5D~zUufq zL5Bpqs@F^f#X2>Stl;taI89>Waxn-=v_vM3s%pzD7C~Pz1WMjoetGUhSFwSKzH@Z> zPPgVp_ycjaipyq21>X~gHRS5iN53FS?nc`A#Vp9jL?W(VU8~{j>&l*%sW4NpU-uJx z)R3Tj`Sis912?LXOO^^f4QmsR=mG$=uK`Jn!UH|DmD>hA(lAJVv$C@{e4x+|P{6wa zP{>EcOArVESmd}HZ8TMU~~Yi6MBqRo)>b9KY`|m zy@%w;6On&F`%f$7e+HrZw-xB}e{i^4C0<#PhqO>~zA_1T4H^9xoK@T(6hYyh0<_c~waIfqPtbhXd4TPB9 z_CZP4Gg3B;Q?OFqg>mE4N(kq^T1T=yOU3cD1x-5Wy370lrCc{4%+w{vF?Du#4*@Z^ zi`(xvPm(sDsr)iBu7Q{7&w`U|X5j#(fuNOd@bGzaQ&Saa#k@*QC|g>IiX%thn94x0 zbtojBvM5&VO^-8{DjakA*VUvQzi@tfFbIPv1iB(gIb=qoyYT(@|zJH=sa2yXdcx$ z?n)22d07H;5Eu0pnHI@3G@E=;!J2FZcj?3^8DIu? zdtWe3K6aPuVv&*e?Gh470QMZ`)bnxKnu2$9AE>||NS!N{dQVxB>?M$L>k@fNjz*=p z>$I%YJa1Fhchl^QT6#1?=jsCqZs6=G5qX>=0*+z8#3sI-AR)9Jkcp-B8vb+=_z#Q6 zbG>;R(8QJWs3m@vkT(i7>|{z6yJ^u-_oorz6EFgO60*U%Cg*Q%=R=F453hdNB9weW z)=Ji*)OecdZcolSZ9S2nJ4k>RlO|m0=J4MyRzf05%^c?_^`FN$F0Gm>0?gAK=tACq zZZEFCd<&)TDH!&qmy(|Ucb#(@Xu0<5Kf~#g16i5=`D{)j|2Hf(0O~vimI6G)b1?f(uGo%;5^4t8`(5r0W%9Tv!et^C0Hm2+;48p7i7f{$fvSt0jx>%>(7$7 zroDlF(kV>148U^$9-QiM7wMnImG($aZxOzY?lZHqxNaUuq$nJ=GIoj@5u7Mr0Nv{i zy!;NCOX3%hYFqalMl)MJY9R3MdBCY|iTR6IJ8WQX{ss~-(off3m6T1o)Y`(SN%DlZ zIhevU?AUrCSNO+JDM_rsaQ^Tb6Z*9;D%7f3`6MMH-lgZiKv10m8#{YJ$lnVRfIV`tDtB?Fppwdy4jtBm~OpZF7Z z)7MRL*ew?LXN9(lN@1y-6W=RC@GY@=w~}s~u7bsGsJ(e3TWsx8Tq4uIGgZ>+L>j;k zLZ)RbZ0zpT?yWW*NKkGs;m{w6^9n}a237#q1wNvF@I?TXW!>d9s50OKRz$dTm1k>v zSoh(p2<)_qBIA~r-PS-jkgP|~TXt>;kQv&K7;3Shd z6Y5^YrvlgF2c1!GfNhb96lp2uq|hPW zWiA4^m%k$x++-griLh5i&5c#T}fON<_im zMsPce-ss*t9@*kh--P|~iFHl|gryeTe-NC1-?It9l*52ymH#_XZlD}0$mS>ncGTzH z3!;(1t0YAm0#QSBA&RjKIAMPwV~&W%ecfL4RlM{c+@OR#kPeSt!!3^00Wm@6uCo4T zr9M7!ze=sbF(uXcSsm-I|~HfZET>FK|~$ z<(o^hG0lbB)H&(+dfcHhCmcPrB@HXjMJIzC!Y8v~$59?C`37U{!yD_8{|=_OB=us@hopf0 ziTLdy#j?1FP9f0Bc_}Agu2SK`)Yupayk>*E@CqmnPFjiLSw!1*VhXTXGkdd z9D(Xe#2G=D8Ix)3@7PO7QI#}!g~+Yl=w9R!BriV*r#!;~Bi}*}Y4bNybD)NkVcI`w}y{Lr62MI%?t^-Dl`LZ9P3b zo6RpuN}faQ&2i*z@F1r*Y51}w7HKz6Y6Gbv`sn_#+TC*&Fr^InF>1&3H2P0h1G#&VNP?ZmrkgX@}fOb@U)LPR7<^|FBzE zivE|}SjqopyfC)q>8>hiqNF+G5MM|>YZ5~rtTuOhmXg9i9W_d|Ve+A8m#;H}&3>E$ zI&q5P`asVzii28GR7C49idEYDBmKL)wAu>+H(h=Syi~~rYP=@!z?}QX;%%p7q|uU= z@1aah&W#%ons9|d8kA!N{}`mlL|gNWcQ&jxCuN~JeicEpQK?a<_gQI+O32X@GS{!& zU5azxv5~Hc(?3uo3NZX>PUq)(M-d&pg}j%qX8JkNvPBPWrPNa!eqZxFx{T$19xSIM z=V#>JY7i@7DNX%A?&TMw!V7+Wbfkesu%$3WbF9XsP1T52N-Y{(o4V#S3%ep(`K(#> zRuEgF?6l(yL?x#Y3z{N)Gu^5A&4iZ?EaZ>~Ri z>Abs_KLktOM;Po4oSh6ad}~Ymeid_!n9jxBraZSpsxZleJPpcpVt289AGM>&)7! z5#AT%=VRfZj=24gq_beFs_nKg(%s!H-7VeSEz%$%DJUo^-QC?tcZW1cry^j{^@0K- zQsS9>=LdM<-g~Vl#vJ1wk#aXw#}h}k@Cr|GSm%|SG4mW+K9ysf=K0&5%f3LQ(8PJVvL0Bm)ufhB(qJ=nE zk?OJ7q~n_bBl7?ByO9;8m?@Zu*YflUF_GS$;K(td=T1su54y58;-h0dVl(GajX>55 zgjv3ROE8xhDH{USNxe@DDy5O3O=hvt81~YsVG)*3^ob4enzRQ}&u_?t&XHovotligoU^SKj-7FASOY;!;G@;~0a{P^pE z#ePyA$4uIsGu(?PtHA4VF{sm8j*jt2HF!{$;RNrSFr~NNZX{|)5jS61=iy+i8v9(| z6^#L#W3)Mvi)R;EIeE>Oik!2VrC|j}B(|})Z#FI1t=59w%uz$T#_q<> zhv#-yBdjQ__|aiW41YgyA~DOGbug$LsR;S{Q8c{}{V~6Se-v6Ck}8vm&nsE$XTdK} z7l#^99-l~Ya>g8@nbG4u&p{rjFVvf4mOvcbXGEZatJ08#b5Mc1ie^o;?KYzx+~*pI zWvMEXQ&KiP!-FUrVhN@i2yOWNoIlmkJT5shN7!6b$9zwAj6R%cA7`VuHBzu0sjvCP z9Y?pd5aOT8s7vPTX^|gO@3rKy(_34#yh5ANr9@Xr3Nmbn7fWI%vE{`d5-SdMOW|Pf zZ0Wm**Cm#XqZHPy;@3(|jLb|C!rel*oB=|Jgj~lVV)F#j8<0@Fx>p77V{)}6`@~!8 zE6GQdG0#2xMk0H|X3}8nM-$A+y~g@EAZR?EkmAfmvA7qq*Bbl}Ky4UN)zZ>Z zSSb7C9K9|`_31ow=y0?){j5II(++qdj4EQ|njPXpkxAxuY-1TS1h%|eN-M>bCA6z{ zU#~pSoFa{U?>BH!wHjTIXiCcJ_#oeZhXQT3t0yY@;k6UvTe1cLR@Yc^zh{(5bQxm^ zA9sRIx9JwLTuJsT8eU~VsWsMq#&;BPkvC!&jGQ8Y~h8)k9|EpH*Qr9eBCP5eqml7K55HauYc?qBtTMFrK-Ty`L9NPq_8opDX7@p`WaY2)u&euaE)> zl7#03u6HkBs{5z!pA@(4MMx{>n$K8kMWG#OOQmojwyrI{W#jr?bRA@ZW94d;yQPLN zSX4eKj!LML1iUMdj1lHzRT4FUet?AELVD4V(7U0hyRiOg z$}P+82{tj2nvzmj?Q_Chm!Dd*LbhcK&Rc}+BP;3mYysQAsNGcM z0ED%s>hh)BmA9Hq2f}}ZFYm0m6FI^cwC^XZgS?T`spdF{MV7g%be8jE>dl{S@u@|~ z{|Y6xi5AUH>&BLP_q>xnBmAd!XFe)|m~7$YHD&H_)Vf*I>!7AGBm|ajEj|l*JnWxC zTs8>LW$8BXg619ep4ZTte&TF-4}zUMC-Gm*C|iRcpde z1J)5FzN*X2hMtuH;u$RaR$snWi_u&KT_q6<*g_bc4kJGKzl!=H#>BPT`7(AVWx z$LU(J{k=t+&cMt@9UBr74U7Zov>=B}k{wjaC&+~v=xiUh2oMzIc~C>BBHx^DsqNu4 z&|_7N3*KXUt{ZiIexAKx!5;nOtgEARvdL>{In)8Q#SA=^5_YZ(xn;nX@j{0k|&s0V~IGNjNGTE zqh?=WuIV?&XH;8XZ^9V{?dvWz9v8>!7Harmg+?|k0rj=DVYLUS(@FSmz7BvuF7gpp ztv7U>g6tNSBVk;Y*`4P75A|{*M+W?tv`6?YyE4~#hUrrlf8#fO@D)-1mjw>qnUGc} zIA@ipy&rl`bu)}aM6K+hB^akM%)a`Xe3K!{c-=!FY>m(QO1N2DJK;FbC}@wbCg;Xy zI!_%HUrsV0nwh~dj~f5+NY7wqrpIExt>L(f&~tM{G!4`gP059XW9fZ{xl(dXE^mQT za^+(wTN+na8a`ezRuw{R5)vnjqmwJ@88-5kLyR+e5m6eu6Z0ysJmd*h@Ld) z5SGXFq)9#NpUe~B*}ekA=;Y+&x-T4Na*XK}$v69U)Np@e#PTC=vY4VN1Y&!+fd4ez zMX=wmaH(n@(O*ysf5dZsjXoTIG(u-N7)@*0&lCGfs?f&FhAJfb!^e-~Y{VeL!wXkDCE>c+kcf*$>sz!^ZnW}!S5bz9daaD{VBDcdZ8j={CbL*_@* zucimpbH1fUl*(T6wyLIWerFp_ET*S0uZk#5U)9P~h#Ubz%>|goL5X5SQY%gOwuI&t zBO~D#XHL=&@n?p)tY<(dqqDcu@Yg=VU9}pVkh#4W8snpyJ|YM2@hdRf%-8%q{U*;4i*JMd;07q7S3qW^flAdrdh$6PfaO2+eRGMN1Vn;U zNS(a{ve6z~Cjq(W;Sgs4U-yR}Jr4Iad~3vOroIdv5I(!B{R5>8BAF4q(Z2v&0o4sq zCteN<0(_tF6C5s<&w_KAO^#8o^;36+@*L{+rrA1R!OCNPi8WUYLC|^^3wX zN)O@?uBkW>8l5iS-|7Hi2aHlMg5Z~eS%xw_`l~$wT@)Qb69@W+YZ!L}cV7yj5=`)h z#>U>zOHl)}Sw*uyFspxeGD-z+6oMNH3JNQj_FZ5Fgs17{$p~3Hd_8~(g%JW>F@=J+ zIpyfcK4jg89{lVv(AP)g0S7wQ%v}`#WchAnFCp?9rwA}*9W@QwJ@ubT8mgGs@d{JW zSUEQd&8uL>4&@xGQ!BW8eLnnPz0NVEAl{aWNrQ24u+y3c$kUMcfDgimrzVKM0(J>;-0gAP&fQpyE&>a{{I3V&!qcK$GrP zL-7DUjyDM@DMz;`Y`d(gIOw#h^4_Okfzh)Tgyv+bD*F27g751WGD|zV~1j4CD9Q0yp0rnwV)4YmpuOL$cRP zRFZQbKwgQW4-P>_iNfQ-*E16eO|0+;A4dB#j24H-%EQbfr!{<}WNE0IipR$g8Hi;q z#Mm7h`D8-^d#LdCzCqD~mFU!&Cf*SJD_RLD;g9X^MqgjfN{KCia40M)y1Top@Wd9` z_INmo2#&2#{EZn_+|)#v0$~>#a`G`JHtYgs78bcmC1qt>WW$`4lx8@F@*Tn&vdn3_ z0}pyrb2Gr}sA*_ys8a?2)4BB$#M z0SxRZgm>V_=UxW!D*4ET7@X|1M!akrJO>BFkYw`)R!q`_yMP;aWJi#Iu z8H4aG0-;Ity;55s%bTK}p^>yfc~W}xa9fJR+Z zH#E$RjG(-To42@UihYLJ*={=$4TbP?26}n~w}|yY_A8vWtdRmRvqSp$#?z2p4_1By*si0`qIh_C-d--Plw0UDfMns9kiblW$fUohsOYi41!Xrn zI=ZT=YGh<20!gqa*r$QCNkd0x1qBv40ADV=hLxMpph1Vt^zOslzKGnKpqNZXrmqA~ z(;);qzyl7$C3X7mQB2qxL8K9~S4Grh#&k~u0=%wD> z{Y>KC$hJpd!v~5fycvkIZ7nTueft&=AKEy%Auzk>=606y7_ zwUyCPWv;&vPT@NE@gqKlDc0iAqgPO;JoXW0*+DLlgYgEJW(`(d=nP5@M15papq7O& z_l`#sfQTvWxrV?-s9eZ%BCc8Hl9->*vz2OXAO1cnv=3v@^=)VtMil2I!Uz~KWj%v7 z%^yB28lfMi-=_a_99o0)KB(&0*24pjLAeRL7<=(pTzPMQfcV1Q+8W`-;=}}|APFYQ zSZV{al>gMgZlOGs!l0p{Ma~Tj$UT1ic=_IE+uni#y0@*a_*7IezBbXGEb09%K=x7i zh>D5|XhlN7b(z<;BdMvxu-wC$0KW^uRzkd^fQWVwSOIw&c*pB^i6==ZsexB;;;{H7OB5%|jaFiZe(d?WrKC`H%Vic-J6finaAjGmdTLwZAa^3dkm}}WKPi) zk@6KZh|ib$#9IzW;6=$bk+#-+MfVEnNzu7rIy}NR*oqf(TzRl@7*D~Q8HXN{gFI7< z!OsXJ8+5zHz*l2JEz1!K#Y!%}nD?-xO}ypze#Tcg>)D@et2;iiDmC^bkH96Y3mp_L ze4!~~qW`-5_UT?iv+$KWWu4FyjQE1l4fR{@r?a0x8qzgz!1{BL0;iDy{)~yZ8^2&2NQ`g}=JOgnX%)0t_5g z6+W;$i_zdqsz%&Yd5Mx(NERLup|{6oB9LP7cnWi8G;I}&_}X%LHBqME5h;1?{%GWy zdY90)`i%Dt>TAYF;yfnaJ}mD)DDvGi!DM%kU2F!1JG!MDYCipQs<&V(@o74FrkQ%N8akqI(vZ^7IZCZus?{vgzkU zZmIVYorrv3RTd!$G-iWop=VWELkoh)f zIE_#&b2Z&}Rd~v?1A22=Q;Oau5xS+G-E)AXksaKPadB~nDLa}BBH>z#iXoWHRQ|C{eM8Pgfsc=n zwFJM5pJ;U2zdcg3RK??hbYd+tgIXA%EcOj;TAk9uQXIu@x}Vu z+n@XSEiWz_sAfaIyswW>X=y2+omOjT6rX?q^coRRQet)~Hi1(5{5g!Srh*&YD)+L1<9b&Ak zj$rk0GI)QO|5TUw<)rR^jIm}h~Kw042(Zl!U(Wi7BPpS(AHEU)Qx7)X4a+jEsbGT#_*dqZL2 zY-blj)d?e6dwY9Z+hW!9;k1E4Sb*U$KF~wn1HmX|NT056Z4KZ2={+;YDgcTtkWm#? zR3IXS#{|bns9J(Y59qd~>jUlB8DkiBxc&^<0yQaQbl4pN7b)rK;eXx;;d?BZlK*Lm zBkxx)BP>n}uO{Hu;KQ8bGBY=ir%E9-aY1t#SzEJqaM%V2j-8#IZ$8P6U@^D}OTjM$ z98dn1*mP&+Ph&4%y^?a_k{)>U>s>Kf+;j9YP@=LlNeKvw7K!xd6x~&N2oTSe(dW>D z-7PFESlMIO{e68~o12^a`ebHmp|<`*R%&XC^#CG2XE3kzGhpq(<}M$&z67_F=(xbJ z`ToRa#?Y|sh9wBXo(ab{n|FG%Of*^WzzJ2_RDgluUZdRCaIZu3YEv__q$J2b!Of!9 ztQmFECfmGr^q}w&^!!;_S;fM3Y2BOoE+Ia?_vIhlckfTPCjk*+b60VgTaB-cA>BNy z70WKfm!F?cOG`Ut%36F+Fg%A48@c=uLsv3IeR$5()NJfA6mNmj(v+o)vzxt9I!V8^ z-CZ=ApwgZHC`H)(^;`#M)0zGzD#C>r&I=3j{PyAj!S`=qfpL|UMYvSUr=A=Z6Zs6! zD^w?dB_FoN6R9mf#>AaH@2!U%e*1ljwTT5c@xgz^zoUQl&(%~=7=p3=T!CFFAg$qD z5f)B+7V<()!$aXb-k`RkA~Gs!z#9x=fZ3Mg3)G6-kvFGEmu{%hWrN!j@{3@amoKjq z6BFT36Pi_0!nDq-Yh++xU}i>C)L_}2h0m-Ble(mt3FP)ZNb=8U^dY=9@KdL{5dRwK0ZQL z%uO;35?HzM&s}l$qC-(s)&6}a&uk1;LYWyKm(!VK;L85=fr!CEP0D7J@c<7C(A@uS z3;s&@$GLnSM6mohtw{H5z?BaZlOveiw^+|ELW+Nx;Bch#Um|X<82U29uqD5XF0)9| zaJoIdp|0Lsg-)J@pNvb=w7-#>S$gNs-j|h9Y}!Z7vv<>l^FOsePaS-a8k>6^6k@W3 z1|!FVf`S_D-m|`;r{a49cBFWk2as~MMO`gKG6XlFfgH;NU0O#eexk_iNzp8y0?G!k z6`_@c4L@wMSDSiJNcdaVRx$tjG~}19p@&JGg;~2hO$dSXu?!eJ9(l4DnL56guPL&2 zmXjbPS80IsV1D(MVTyqBO5d-Nva%6dBW78K$%YYAY*+dwm@b2YZ|XeoY_exChvaG5 zq%R!&-O39ATRWx}oM8ej1W5}{hm*5gKQHgXp*#hz@?611UTixW2)>8LQlr+x3@lF#(%qKBv0f zlA-)+G#Yg`lyduV;iyLy)g;7F#}v5-eZ%ODp`ZngLb(Sn&6=U)lT8KoD5@LMpOt14 zjU6)_j)t3mTN^JRaPS%wKY#vgo=Lqt&x{prP%7X> zzQP(*tn*}HoWWtjYaUwqa%|I9(r`zDV3O&vEf`Mme**#k6L{-|7z#R;d2Uw;_V!Cs z(R%ZRU5(}HUirVTW96MMe~i!^Vr0SA~7by)RSY8rr1}ss}p*xk@PKpDAEoH-Dr7`}NtdE$e)H`ERaXMv~( zZ5r9|L11DwrM38(^U2bPH6i=-3m!W~x@$@Xq3P5<^hbnG_`$>q(9$w2^2e!vC1ai> zc@{u9$S@K=bkRR-^#bSCYfQmZ%7Zt+NWoP}DCKTkrhGI3`0K4K8Fa(XLruh&6Hj$? z5-20vC``OHrBX{cH9X7K>9_c}BcY^3^y2M8mD7z3t%J8iR{Kv68U3)w4yieaHIeFP z>pvka(UOOMXMAQk=tPc7zbIW>`5mDR4WSb_8wokMXmi5=C0HwWMR|xAX0hco_DBKk zXu*ahCEF#_n%~oNo7;0`It8!Gq2JWR@XT|Zp{I!j<(yA9r^StDj zE?+DrzA&~loF&hiL7!|#C$?)wGPj}%VeEi8KUH>~hk!1%o4^rCk-+gOk&OPs{nh(^ z6S{$yXB2BGf3{Rzm;3y0mSz;a$687a79Z!uGvJJjVK9DTHOUY+WAcr-HrpTSCj>tF zTC1tu^*!_*?gf;NNE#ffW-ksWn4=4m+7j(bghh9Hcc7Rpdoi}vA)XdUhi^?(6?5@h zC?FL3d}TL#kwJ&fBC($Il@o!^w%;ulAsU0_5H<7&x7xY7w^tf#Y7PZ5Fa05*Mqh*j z(7xF))di%|H4v;N+QkOqRya|}%JR2$`~PCaL>T<>7G(o5VIrhw6=a^Okq7QPm;2nx zfm9U(0&7D}k884X>3%#@(Z$DRX;hvDpELro>#CXK1hecWi9W(4R}9VDEDZFxn~3bE z)X=1>n}lEn{Sx(x+-&YD)q$&fbI3(Q7}U&+5!f48Q&<=PBMOwkjKtf<)bT>nZi;>A zMkc_~vA~Y7mBo}XA$74dNaHZSOzpGg`%0wA{fwD@Q+pYDRWBrZzf*-7}}M_3vZK{{6+xx*49FVmt7gE%TL9HN|mJI+tPjwXK<_lTUu< zKpp+LgL-Y1kkn)G@mZq}947DoeMGP05*y|)!4)NzoD+lphK5EA7D|V=f3&lc6TPK! zz=Kajh)_+@mHeZdl8d(n?9KRp90So|z!rt+J0;#4R>6&{<# z4Qw5S8Wn6>41D}gAjLYfwd_5enxvPM3u8+rz@jhbD|LB?mmMP+=-v){rK^Hp~Ze8vGcO|JK4S6^ld>q8DWcQ;KBw`-Kn5JKTE!Dm^s!d z(O||gb4OIE(gY!+jC*JbNy#wlIFgB;veU!#AP$jn%%CsU?G&?965Yq0Yno3(OlmeB zj-o3Q(PT6Tw*0f%VS2|#{;9kWp_fRLk{g+37J~R+2XtQPZm9_nTDwtZbz@_}@k?y-@iD$NzE zw$abTuO>hGggv}6jROBp#&MY3e(*HovFbfsh4Q>bL2{Gxvw1kl|BH;}$Hn8Psj{VO zx{Rsnkw;s5S6Rtkio+a{g--k=Ilah>UdC{jTgx727;BDiuEL}keLaLi4SU@>7YvvW zV?)N&-ZWO#klZbCCB3!R1nr+)NwIeGuwPjP6yx` zt=Ez4`@$g`M`0zChMFiryQuR`8`)1eGhfgD+DRl2_rn9n$yz& z(jQEpFY;uJIwrSWE8o5Qy04OSQ(S35P(rav{?{h=P&F=kWg_C{@ZcaDnq7sonf4$> z&t5WRTjA|+iG&D$)E7LdAo3{K=ts0c5nl`)yFkD_9)t&om~tP!e$~1<0#4^cqqY)- z7WTRi122B;?a4A$CMZ45#W=f7rR%?;3mHPBjJwY&C-pnRIN6gvwdFsjc|kp8^16rZ z+U>E3;Q1#Vh4a<-xjAcABPFkLw?)|IpW>03U`tcWzWG9gs}@NCr#4Ex(pwpbVYQ$N zZw>@&83fYa+!DXa=nx1>tSQ4bER(~2TrTb9(Bjf(t8TS><>a>zo9n7^rVZy}rko=y zacQ!D;P;m;j81=(phsciXvH#C8&3|GK!6gSfvx%E6EL?Rbc7=*{1Mdue>QznFN*!T z_@sYY-7`~G)FnkBPSbKgW584{sffaga<%O_FY#MPn|o+i%&*Q&`J9iwaI9F7V8u{` z1d$`!7FqL~RfVZ@_v6+4tbCim*F35^dXN~ZG}sl#qpWRcz+WF_+6YonRz5udW)c+i zM&K3&O0Hyh6O)jja5ChFBfsp zmNzGu#;5JBS8{56Vq&9SV}QEDkdo+s z&|@`#3nyHqR+jts1$p*D?#l=WAZjpn?6ph%lvx+(a?Q++w$Wur$A(9&+5W2?1#Dq5Wl9G~b%bvXPaWyt&;Vd~H7UIOzRK@M`Do>`C z5_jbEFutF|!^owM$FY9!hN-sq!JM1-5ev`!FDCh)n#$lr24^Ta|V=J7Nw0`{*fD{AkRWOi&s*<|xSefR+3T2^UkOJ-TndWzG|_(pnP zl2cKYDD>Z(r=sULdiD~!VA6_zq0$~qm}zR8FnF6*NY=X>T3XIDYpJPSdZ2oLp&+A2 zB~ZT@eK;gq%7*tnuHRd>CdwnkLd`+p_{U1KN@7Q65<#WXysXKBq?2#8OH*e3sa&Lb zG`DtiCgi{mz|ji%6N9i%!7|p?)`2|y+}v?5iOJNPLn}13wMDAwhPW0^VaNm2CfU{` z>}4no$H2hIQnG~sjAgrf-kLh&+_!J}85z4FE_MTt`NqAB*FK5v#f+_%@|Z`FYD^DD*lKDiej`4eYnxgq!E2Du(DIVoIm4YaA}VuRn|+k-dE zhHn2#hsoQ@L3_jA%8G8{Y;7PUpbutePEKr4paWRAHt~;D)A#pEHy~Nic>=S+@#=un zEsP^8C^53OE{s~yFcuOK+1c8fb5T|T@a*Gu%#&0|A0j_rJWH<2%`liPmLb)Qh_I+M z$|glNV6!Wx(YuZD(hC@lY_>ii_d+_nfSdym*+6~m{>l@etCukF4taWoxRjmrv>7~U zU0fU-Pz21+h*cvbzdg_h;43Dh3tAeQ?GSlp3CvAe%G@XJiH~Vet=g#^-L#7pKRt)+ z38+(0vUi$teXzF&gsrFc_NATDi6kK*A>`%I=eJ)oeug9Q-~on)xA*Dt@-j?*yq`XO z{4VL&!V#~j-(cD=eZ84lWFlg_8>0yhmCB&8bS|^xv^16K$+rN4(uxYRyLJ!Ybg8L>D#-ox4jWLqQN% z_*G0?T-v)hLAe9ZT)A5b4fzwRD6@K{vryo=LB$o+GKH{>8@2zPZ(|gYp7^rFW2med z@X&lzR5zV0hVw5GPZFh||9mmhzvJ~Gh@il*J$xf2Ve)C+@M~FF1Ue|ifj+4cZAW|i zhOaUTRUb-m9bydYZG+=I)D0#W1taP{a(M<6R8p;Qon#ztoL`PjPKK~4sW0C;-h2GL zt?%dRO6|BfVRQ8+Xf$xZ1&s{)KA9L9W4C$)=hhpHh5T$4SFWQ7B1Y3}QZ4om6x!BM zQ@6K4dj2;pD{f=yUDi4GGfv8CgQN2I`FS1KZ+(1PV4eouwkv-*>OW_h(ToygBSu>Q z^$sW|zP`dFggl_Uk>-|3rV75YK~|S5I@SFzU&DSKFTkY^@9IxkiLNBFO$K`@6L#KF zUBO2VrOMEyLaIjv)%Z5V$Y^%S=RZ)4KQrw8%DbI6d>3j|{R-8GB`Vei`Fz3Hl}ie> zW*H*px)#n?mJ4r>e!iZ4$L$k9G)f~7<`N}xa@NjAh;O5NL(&~%)byu;JwM@~ycdtd zCB^=QXlN-s+{kRY+HiD19%SToDpB7HCpvo+ux94kEFR&MeS3m`w!sjv@pT zY`nIEgPX2>m-ZyCKgn<>#KjpI8v}Pv2()M(V^T(OKXAgTk0FI;r= z;~~k6C(`2L<7l%ff&X2w7jGSfR17DXp{8YU63HItJ!85w_ zo%xs(Kd!^Y!KpQE9Mr&x{nM{>_U8{83JMqnToYK+QuTjy>SdU|gzPRXIlEh17iwmk zP9VhZ^nRI?S^^V}ilQP=d?)GRn?0@fCr}U_@VHXPVDj_7VyS_N7iA?6wa~QNrq{sz zN?X5EyG6Au<#|3Ex*8c|Nk4n96!^%2RP@)k9XyKpnXevHWMZ{ z+qwDqk&k5O<^7#qxM!5r(Jd_|fHMW6*nAJn?w)X9egcv}(QkO%9#zI8Qzuui4x z51IX5Fp+^c{$loN@UM##J0}(afd!onK`E)P^Ye`_e!Kj^)#ik8pD#e((y4Sb7H**} z9HuwW1$iat?**t%Q{{F-sTg!-r)CHCM4QGAZ{xygO+Ajz!Z)n7iP00{5*imKke~;H zjds2y1r5znbN4f~68=kYa7iBB%^Nclt8|Z>>+2KT8DO_m*2Aspa+g<6y}&9%ML~%Y zzX^S8roFh`uypX&YS=;^Otz6VvaF4>={qK+p#W==tMgM&Y; z%+cwx-NUIwHk~kzkdn$vyi(I*3WJ@%`E_te2u|18=6k#%r@b$5toZ!-Ggu==BIT-B z&;f!8uPT`D1lDP^huXnmmwW_gMdqQu%(kx)VL?WdKdn&ipw~C?mE%a}4gh~K@ zc~w1s8ylMsE#OmF4*+fgN5aHYh*ynHr*SOz0aiu?k5)3W`U2*XSm&pxyxll|_L7Z` zrG2HDnL`_}FhS38lb1(aQrtq>vw8dW?NqVI2TtmwtSkyz+8>?52K_eU#SqrSxDssI zg4^dAiJaix&!6p|k6>QBRqC`Jd#Gv%>xQ6!z}a(qGE79n_`^rN0i8v^xX5pAE>kw> z^Lx-sI%mHJW8$`^krS`#QoNa%ge<3>t*v6~2cDL{?5Cjl-L(OOlVYn7m(%7PP^ED0 zh5Xvu`75)~%70f5R-x2#hGY36)BpKTZb7}OiWA_F(N!%AA_AGke_$iP$g`a}JMX!sKg9G*@SO>tbsG+Wo{s9DdI_ZEhWf1rV`4^Q~ zRHVU02zxRNAjHX(XeVTe)UKYj&7I%(fAXW(Dji%qc-YumJ3E8CsmAgQ-XUX=oFRk2 z3Gagga5nO1x`i9)y*p>z&I-HNlPTw6p{s|XP6%TXd`;Jsim0}3Ez>|ca#3J zr;@Xk7MB4K>E9TM0HVR(r~2=Z`Mk4_zDw&JH}f8{qKV7>ci21&o<@AvcX)WI+BqBb zq%hd}0}z3#y1KT9*}v*#E#w@+eob=7rYj-^$L?#ez0LF_wQ(ErY$!V>TnID!Ea$`01Sl4%aQaox!M;jNd3fBGi#^xFxa2I-yXBG<}hUAzxP*?>6nBN(+ zxO~nZQ4vtk_FVL-^_^W>s#Bk?;>Ws@SHAMjvnj-w+R&QqLWmF3So<3AR7eqH+$udL z79MZ_Mn^LRN<9CO8^bhVp%x$6TGaurT3~0u_w>4vaOat%Q*{*4{U*8aK;uulI*(9! z7PIrDUv)J$0>^j+-*O41HH|wive#YJz|6oPgnylH_Vcva7e8Qb29bV&EbG*-4jla^>-#$K31xl;qCxDQbsNi}m}wdBmx^~tw#9Xc|+EXvb*ADSpu zJIKDW)VqJ{QFHBN|G6T!#2{c*@_L`8Q@yd{_4(WvL8Bh^H>A(m zW~7V3eNEmx*G-w6MP1)8t>IVc;KnXJ2TFyj9Jb$he%d2KvZ!tg=x~dRrFmd{S(-5( zYfMDn-7}0bITKZ-!}M}Rj8bV32a%i$NmNRck8YyFv1CSc23Bb{OYS~0o> zPm~-s_2X0U+yyhgI|R9A$NokYr0kK^G}WMZPEdl-K>B!#3p?pVkt=m=ov$8ZEy2Z$qrAqsj5 zFjGJ4eEn*{X%27g&URWG%8BFrgviA1J|?M_9yz~lD26lxz~_5CdM|fE(D0`Ih%P}S z+pNLIru5NjvzYipqwrXj>45F5?qUy2ympQUla`@*H6uIl@rLRDjU@mC+2&1pxt{}; zcJlz(>1dpRJ2tj@6v2D@AM<^k{u(m{$=QwxubKT>-g95t@h*Q6xx zsB4#KIFwsvF{_PsDi}=Epedb0#1{nM+Ao@(E%mV(m&oDu*wtI9&-gex-)>?2O@DRS z)g2I|hhZ`SK=g{YTqZl_|Jl45OMtC|crWWP@JZaM43F&mqGB)i2hKIP){Qz&q#MU8uX4eS@#qGK<%ioVTV-SLIfmn%Biln(5(?l_ZaPfq4FOaH` zYGS};&IgdzlG=iMis?L$IP8kLc3~Q>@S#cixl;qV{~S1;7yiPmmru~=K^(z`*)LlG zbNldmYy37MydQ&&HNuY}ztMp8c01afN;Z1pCCtqSHQeHyOkpjlC?g>d^{waHc2K~7 zJRme7^Ma`02NZU?nSbye7+la3yeF2TldDOX8S7uN7`kOm@uHk(Jh^-}T>M_MgGa=5 zs4qbM*~Pxa} zY^Sa{6>J4QE(cDC`1#ZfFS(72gkGIGVK$E51g4s*83Vm?mGsMOCb!ai+Nu4d(H{y< zLs+6U0_O4m6#raaswFUkJ#ge}u0?OfWi)fjOTfwld!&_xAO@B(H6^)(NaE|2{;#Kk zuUZq;TGWM-&+u{_q-Bo#v==-1vsS1#_JHZ$qH)a2U)*8&)M3ES*XPo^Q=lKSQY%}C zUFg|~nExrWp@+M>F(ORav7IR^>r{^lbBieG5skNgKosF)p1^nLOst2=YV-%B#;PtO zd}IAh$PG+72$Xx*2?b)r|M$6_m$5D6g<(%31L;B|Kyu*tqk!CR%*hYAl8TDQE5Q9W z)vcXNo__Igl%6$mz)y0vY2xljkjH^AXW+wi_PWo5! zMUa(M=b~oL4(5sIod1YCVl^5%x@fq-=e78yd8#Iq6V7FklR~y~dpiJCqFa>^2q_2| z;aHy#`(zv$t5YNYP{2Us$7-v_d}lT%q$Vb!^s|qtfHx7QZ}JSKMIA3|$XSG-!!L^@ z#fHJd+K4bIB1ypH7!+E%;ZH^1F3c0p8QT5u-qnHHhe3WGQ$s)Da&1cP%`(ETly0QG zMVdKhInY(VIA1d}{;F z=q#PtM&Zk7gG5uElF5bPduug}R*eY9?WA0snB=VhKT51wW#NuGjX=Gs5&h;@VwCfA zdtuxd>{Fn57MrA%i(cUV*N9`z$WD)dVCGaXH$E0t`Jx!sK;DOKn(s=?m(ky77f9m- z2LyXO>jkwF++}Y2F2vYjqwzFU0`)D`G&G5{3lhFz0|W!5^Ut^Pi{8VPk0dOnG@o%T zj6(7Wr$__xFVqc+pnpG1+h#f1=8Cc>AfKTtEMlLAu=0gnJGLZldBt7?i?KLrdjqTZ z5fNds5k_c1b!bVYnhLSb*p7=2r{s8n!%tVyo$+rlsn620E?Vs z@Yw`f^&Z88)Y{5((IzeRsFQ5Ye@rD@zu80|F<1{c(IXo4ld7Vd63R+JM=XYK|%{(Hhw&E4w>1eOFE@-@=*zF#vB;GX5_#XL3xWoeB>lSEs$ z#e~Vy!sy21M@_PBZ^I{}Xo1hW#?T?~r$z`9k)T2&`dR{NM7T`eK9v)FX>HO*gCBFY zR-o$!TuC zut;6LA2PS`&Lm$a3B5EC3%O6DId@OhJ|@%I=TB{IZ4iClP(Nh-H$IXvm?oEjsY@@Z zpe+Y9-0f4MktL;*TV$S}qAlo=fq{&1>+JM$cE|j>Xa}-d%riFzxtC~Sb45|{*!Tl% z!HAfQEo}HG{w4Gk=+jg^f3Cx5{#!ZBW8a$?fVY8LlT z6)z2}9GkOtz6ZTEL`dn!4hst#4tHS+Fyt{;!)cOGzkrcxrbp?5pbpy!3b!=t|xD+j^vv4Sx5wj3RqS;)3zzK2l)O9{*WMUdW zFfTD$syI`9)*G+f%=645wyLM@M~rcfdJ{v!p~aeuO?7!wd3}TW?`-K$OG~KLbGG}3 z?^tV8IFJ0jA{1PVy{OM)BYufb?GdwL*($Pj4E;Sm_H;r%?*?P7#9&@{IBEywKU28D ze6=?9_5BTYyfsflh?Akq0gJeZt>F>z8eC@3k-X%t{jkF1V@_z!jtBW72@pA^@297b z=BZwkecDcnL|hmpw;x%ry-&{e!Cs)~#U4#kOM83Cb4YlWgvKe`d3e+d$Vl;NC}WwT z)UQdT1w^AH@??BucWbl5?(e$bIav$2NIx2oFE7n=yV|sVEO*3ILtQ7EOz)pE;4-dD zmE}8Hc-uvo@a%Q3cEo5Wi_)`v(vdb(?!}LD#uZZUokwU^5X2hNnq*(YRPLfIXg

  • )&fejJT7pg;Z-)140Z@Y!us{M{}*BOaFD|eH@N@nP@x3Vej8wK&4OE9%$hNA$~m<5W?w4#1oy z-oRW>H}MXtN&5U}43|SqWiQrdIv0&`oc+GVc+hV5+d8{1Y%bUriGS0va}~C0d-J9_ z>Og>#p+V%OvZ??0K-=)Lj7ysErw8xG8hqbURTxh#-5h@LxJUfZ^TW2zHZ5&ivq8T2 zrw6tsujt@Q7 zV+j2YHy-ux)sQPQ4)(*ss^j4Xii@yxew{5d1r~bs|{pN*WGL;XekjY#&!6Z8=-Kbx5#VV#*<_*q$gy z3pveyFuhIHIZi@D*c2_C`6^ezCx&I#mpy@Wz}75}nplBLNk(QPGFR*Q0)mx=?bU$C z8Afoe@+g9#aFrk$%M$h|ZRG5CMFA-%@`GS&BUL2Two&VZ^#J8yn!IRsLL?pYN_VqO zoKnuy&4aTweq{Yi`|uo&V;OGSV~4b`t4E`A*cC&H50^h+J&X6%)GGUQw0x{AlYl&0 zVRcWf2P-X}nIMzDaz5pz`W#hrA;AG)tBWGjfYHh=*YU5((WlzJ$#my@r@!v1SP>ku+w$mouqbOv+Gekp| zf8AJ0DK+0zOhe}=RUS^~pR!rnE`x@Mj+Gj!SH9T(&QAwzQA)e~xq&+|5fL5Du%&@i zZu%rL5fTL+3x2q@9aBl&PvJkG#QzlVehHX3$@E?OBg#wpMk9Y`8)1zH>_#Z$yy^hMpZji&X=nz*?XuhmNo{OOlO+YSj{*F z?~A>2x#j2io3S)c2%B(G5Qg-y>4QJt_}`yyt`#JgnUGb`OlaDxmBu5}v2+ke4uPv;PoBws4P%J6<4t>#p-QBE~w_qI4Q}rtZ~;uWoLr`4?{xc@?sE zWEZg_Tlf+7F`HzsvpKr1s+$A#SVx{4Hd2z+j3CJF&e-JJ|EukIPKk+?X<3b>=NCMh z#2046gH+8|dG})s`a;p4d%k^loo7po5E0XVcsjC8ew6ar6~n-cM47%LYfpP%j<(_C z^FfIN?XHE+eF4mtvWUqK0s4HBa(^Xd9h%H-9Joe%?kRJb{JEKwjHDiLYhKzB2s%F@ zw__?0Nb0@h(sz+K^`$CQ4m-BLYd}=_KCd~A6OG3_YLic#Q=bI^OVqj_t^COo<;TmN zfBCSVEF^vX_0bl>p>ZC@pJliuIrs&($8vtAunxBHj8sWya%#?V@8R(Yrajb(L5Y0Z zXrQ{h+RMUQEFIXp86Zu&csKgaKZ?Wv6}AdrxBYG09`=S9rw#h_z#<`r1G}YY z9N9no_L!~o(IL-Ki?NFt9;YrK^!8?2Vir#x24P=zD~BVD596Lz{I&jpC69&h92qf? z+l^5P(~YW!g_V_+Wivh9O^(=xxHOXj=VfI@T}eqrNy+0rS|oBjSICENs3T|j81tPwY8p^MOIppJY5Wfdx@D_-P7Y( zA4Q(ghIrPjfEghn$Ao5oh28ZG_kIHL-Nf3Djsq{h zI$dR!?-+i6x5jW_pU@h5@7cGgaaz_Huimp&tIHL_)oZ7FFJB9=*LwddebMQEtwjCK ze{r6M`)}WSPn$DW1)k%;pfjJ@k41$361?4=C3d5u<7xN)HDC(p0}ILEasg0iOhyrzJ5}N>k3}tC!MCdg7`Zuk7j2{C?*KSBJ7>(@^5Q94kG~)PJWe?Ksdt z5MY{$M=V-vyL{FbdGXovlA>PoXI}F#k+&aMs>FC6ytCfAip-NE^(vOWK*m(H&eY`G zECE<7Y*(Lq93t1TQg7_8xaI2%{TAB;RY4ntoM(Wx$J?+t@@7 zU)`m{IIs0d6V0m5xk8|=Or)AJ&t?TPcjv$xrlj34n0mX^5_##P@4{HWtDKt~31NOy z#lO&AQ$~6bYH8xkVVZ)-;&=+r{IG8imA=;eDfK1=m^fPZzF0Zg%i6MC;u`yzz_*c( z^=;qwZX%Yq4~-k2zVAzwq2k~2GnO_y)@)Sg@OJ&Lg?Q4H*F?tF;hNASZ7vG3onrtOOT zWCB1Aw7BS>H<+X9)Uvb$cBoz;$xQQ!x|I|k#a<~XySexoBEONQpyltui68u*PZQ)i zQ8Jq*8q&AQcM&Hgb=wm4i!4)haE{{Gri=WDmEHOVyKAMWSK2x5F*JgnpF2CDAiQRpCKl zJdI^4sd=AQCV%_fQmo!EKWF(UB+irG2*G@=f_Xg+i}bM8*c1OMdL;Ho5VC3g)z*02 zC|ef13jBB0lSz?ixA~1%S~DLQ;)%V#&a|`R+BoSW)SM|A;lD*vZ!7TH{}%ecx}fRp zhwhO^e(Lh~{xkN)zSFq5N?g?2W1fqppg>+?L3I6y&db&Q{d9xV*7sX!Q)SaNZ;&dA%!#J{+nuIPe%^no+jl$9Hf=g+BSg9p^XUt9I| zMPz_2*8^)>Uo%NlZHW^|<7*+Z-q=rjeeDHdaUhlyA?sCfrRDDa)n5xG-p!Jm!9g6p z!G?+gU>$DF8`a7l?UljWiVVb_kcMSKkAcYz1N2 zedyqjM2F#Yj`}>_dG7vCq&^E^0XTS%c7uB3qt(!U{OHwtvb4X%bENg8o=u&he3&JL zK8eAzlGWNhG;g!7AbKVdTOoyp(4+1`-B*hXcJ)g+@ZfgsiG1a)zPAmOeN+z3j?9gd zaPPBGqA$!*m$kOu{2yeF0WRfJD@tdpx%tA8f9>7&`P!fD`}Ze26wr4VF$eTZ^xH#BkNbEW z`Oy|jzZZHWSIn|jxY(w)6rZ$p5Zcmn`QqMiJ4L9~u4DqPuWU8-JUMB0rQ-V!{&#?Z z&F@|NroWOWc@)_$7e8&gLG)U3LqBtMQ*O!vB8Z8DSi361qi(J!%@ z8$5Yu@|dZ0M+>%8=BX}h;aQ*#t__%tXsj6CTB(Nb3M@TU-$V9Q)mTfyoNrAVcT0B* zv?Z&&Tzn+#v8AJxMgb3usI^!pho62Ghly~zmSOI@qYl-#@TSG@hbSMqwD&l4^_C`i zj+V_$ubGx|o}~C~+h!ya-{bG*U*bO{AZE&JY(0Ic{q?khAYuZJ`>O-FasTL1p~Z-98$H3%+Wc@3a-K zh!QIxaBbgwIDFo{MbF6E1Dpm}es(1NBQfQfy>@8FEU8!ewa&_&f0&Qnz0^ua?3xt?P58y?NP;1v8jcu~{)q4H^>5Sv?1<_=_B#~-bv#)@KhaJYF{dV+(_Z5>~U?JsyJ zL3%K&a0u9a8Fc$NiAkEvV=|&NcYyL^gG@?oSHGNq=r|oeRQmMrCEQY}6m|Kdu6t7Vmn{>m9Pg#M0(i9u6+S5M-L6&pV)LecMX` z^xy{szzYL%36Kl~h$h26d@?X0#ly~u0WkH721P^EFdJhB{@Vrt`1e2>C7a?!9{85u zKgdV}R?r0?YYDh8NHo(93JX&AV>D)4kemI-?!x$UmjeQjk8M4H)H0q3a0j&K)rZwM zApV-q*@j8M?D@kLle=zqA_*vDjM-`O#wN?>85B-rq{&(H1Mi-OjM`2Wm@H_({~9&~ zfY!1Dh7EgsA^ieDa_T`x?hDl!9~GUy3Ygx{Iq`aZ(3WWe7Mi=DPxHZ@yj}4otbaWf z7INSx@L!hRrpe9J#Kfjy=?;jW{1ulfI2$ELNHWy5PlqcL(@)3RjZ+BF2R-EZao(otEeQ7s##91o)rJ)QZE_-ktrXvd(dJ9~#BJyX_S z%@CeWduHD7@C9?xi%)bUSw^a7b4Z=Q%@NiDlTy=x<15zZzm2}N0{{VvZ3eOa&!M07 z|12C1U5j`@2>6HyRB)PaP!T~;Y=R2>-`sU;3op``7=M%RVeN&ddHE-s;k{Mo%c#7vIXAXv(x1Lg3{=0b(;Vy21--3Bj4+XU{bLX|&Ctc$CeY6S(pPPiosu9iX>!wBJ({0pR+{hAnx`-lGPJty; zat`T+lVx+c^PEW_TzM0&xWEp^IDl{o`do6m0vmB(hnMhD#)uOBl0UcfAH+cREC0}D zF@|OM-$r3y;0AS2r>dH&zNVt4rlR5)wWujxOf8VIexX9@M+>m5s!EfHO2ZShzD1=w z1;##uXK~ckbGqIi@y$lYM#n}+M@GiR#s?_AopfY;eDq#J`g_9zPA?WVLOw!1Acb_q znPI-%49~eLy4UbEvf%R@auL@CZH%S{?vKwjx*_OU<9fzuaNQWP0rbtwX_9pwsb0RX zq4P-`ym@{?*3CP=oo?re=Berxn!5j6=)QbK1dwK@v8O?1?yt-L`=FTYc(1zz7ajDHd z-p1}38mY)upFkWN+ViwE&vyGXVARuf+)6kQ9n1O)v%jvlNCZ*pSr0>j^%p?*tX=bF z=WN}sjoK>N_0ZV08fJ)t+=5)Lv>WI=(Xl$4~5ONdntuv=V8WM#ju<9paj6E(M}INho`ckU{y#@waV ztx9#MvPyEYx;BC0fF^6NgWHO&fr_&7I>pnB{Y)YgW%B>$eeM@VEFPhV;Z_2J8h#)O z6|SI43)^2xF0O=wDfoK@<&_-VV@kv;pu7Y;YcIHo#>{bXU7WwWBZPG58tlTJizeR3 zjkzMgiuMFP`+CKE5?SecMf3slWqk(TLVr2b=za3StOZ|KVhKVH$XoKnt|kKHTO2>L z#1@r41JV|XrU*g@ez0J(hWy(U4#bFJB@mmZ2q8+4C#g$}z%ShXT%3ib&GwtPLd5lj z?S-;h?ly}l=cGxaHQ3%TGeF*kvVyi15DT^dlP%NX8gbgdYlELK_TF?$3x(qk<4Uq1 z!!09Lkr7piQiZV*QIFMRbyx0oU!z`lypG&D3dH!yDsVpupWyCF6~DsBdeiX=t~KM< zq}vXSaclHxi_a@Hj5se)ugrTf!K8_%9d%_)kjz(RYx0Tnlj*KVs5Qsl6c13__hEzm zVgvBzz+i65eGJgqlK*G{Z<}t|@AdU;-w{p}21z6P!0QPwj$(Xdz{KD86Xan#sxoQc+ zD>G4f;M_I)+625F62#rKA&d<+LpeQzw_)!}0zbZD`?zMk{s}hkhAvQL3^i+{qk;14 zyx)t%-5dUFzWrQ@DUf7|)zkn%82cQcigGoE*}XQ5K)K8%pf$_Td-!U}=G>6!?JKUh zr?A=;(=V(BrcBi%oZ~VCXEP*kGs1V)V2U23fgdmVi9<8KTWf6PQnQA36(=lns}nC+ zHnt$);#InPgSdnPxhU^DK?!N$g69{okD83s)PSuqvPN*^?Z`Kn0wc7e`N84tgU-Au z+|}r8L7)F}%bvW7nF{J-Yv~g!5>FgZuCRi6H6y9xAM#~UV|QUqEi*LB7r@UCq61C7 zDuCP=HSt2+DHZ_nBGC;9258?OcZAHri+wwWTlrzunAXKWx1KtnN5@SwpMQq)us0u&N zaBp}1pDQLoC3IgTLODqCTh3ZH*h`tAE-z@Sf>2a3l&D%&=upU3C{@3$5h3cbmEblE zG)v1s#oL4;a(zfvFq3c#bXJ|G>A0@H6o+kVs)?ww6{2MHdStbXY;)PA^tgB?RZ|p+ zo+U$zH2zxApmu006!%0bL}h(L!Po3A99z97ozGoxZA!THt>8=?|9VU(k8Cl!8ym|? z&Q7P%W^TH9f4}AF-^0A!Y8S7>-11tpf$A?n4PFBn}b?oCx?w==!u z8eaEe{kyf7SO*eSCJLb4CXmo7q44EUdN!|K{TnCm)rn|pY3?APX?tUPmtuB?Aasju@=Tip1C$BNG+iT>Geq;|L4$IrFHv7n&nGd3FUaac#dxJ}9W%MOUs z!|8A8v$m99%U9anGmgj3Yh@|zK8l%6kDm!`*sjMAzM9!fYla$>!94jkG}Lu!^+$bs zM#CznNejjFY~{kLx4Jyf;nL4$qF;4er%QunNbX9VS^7s0JAWnhrVcRkcxPG1>eSXy zZlz=T6bPR&}9@v)eV>ZS`~%n+-*u zx99zdx~2MxCSty(4ie188Im&@Ilj|(Q@&IG2-DmH&y)JgwZc78EaQIp8_9{Kq-75W`s)wWH z!g!16Cdm!(LVdb5KRF;nTTz>H zpL|o2jbLS=>`(+E-Yj4`^a_LN^lELA1@EnVn1PUI06ml6r9Sl=ahYfedeVzOw5L); zJz#enTI`TE$v|^RpyNkrd2T%Ua_74o>=5;k#0&@1=g!ch{yr%&PXBDPLE38Oln$)x z<>{;j8+xmnBK?}Xd@+l+rV2kg4J{LmykfLYm(qa?bTSx-NA0*F9x>8qEmQ&xEaTEP zbTI&Q`w{Gr_ZD8}4pF$%pc+fWsbXTVb?{jWbt1KcE?=UE{6;mUsbNl6iq^wi`|mf_ z+NV%c_HHx0Gnt``cU-SAw;!RS{wd*yMN^Rhs=Q|kSzU92e=?82hx{x7s=f zVU_$-(u?j|lb%nMz}P?PkJZTIbDnRJ+iRMvlY3uibg6CDv~dU`lY!P~ww7Eb6ZC;R z%^@?by^+=-y@?HoMyI@&LUdsC)pKg<>RL#ThSwxp=q!r3~8&g|neHYlo zfiBpr0;imm&h+XPR5(uaaHtS~D>2dgs{kYnK0D*;8025o(>k$q@RW7^jRbRs{F^+E zA|IceSXSo#o=x!3pBXPNC;7_g%hmv^IX%H2|EAP{bK{=fp02vj;U?FFYyk_EEY@`o4r&w_EaPBgitK;4iAb~~XA7G4 z;|>j~Aqv{348lNq@VWjtv(UzgNq!G*|q~{CPS94>>rpl2!v!*St`T z2MqV|cI~yf%S{)c?Ao0Ted1UoJt(_gIo-JSQ>?J5ZE-_`m+U32gl8u>=-swhu&!yW zJzk2^>Q=4Gs;l+8Z9Ouv86mkfp$-QMxcV=8snyl|LJ(*pg0k) zH&n1--J$5Ma8`*xu1}TupQn)YYjHdV4NhV+>#4Vi-mU~UQtJnf#@a@l;fnj z$QVMkkGb_{h?0cn{EMZGqB;mQ{D`JL0%1|b`b$+9LXb^7H_liaQO=g(XzbCe&mio$ z8lz_?Eesm80dwqv2iA8F=9~IJUyg^RW6HuwbkxG`_<7Xj!i0|IRkGyfX+h2sua_sk zluz%(a%;D$k3-3E-s=v#p@nTu4MkMSvG5Gb~IumWvx<4b#H`qwK}n9qQ0oBc_OL;m~hgYs*hHPgZ}&zBJhj9ujgvR9pLt zQ3Ee`%Ug4~Uv8|%>7RHFZSLgo2vcdBNWw>VH)%A0UUH>jw|9pc+P^Smb zfw5D1FqUvd8>PbP6EcB=fwt-xtX}YS9{LYxdcp64Rx$@v7mg?f30W5|FZmkdRP-Oq zyS7F$5{If2yoqQJlmN4r%5w}`!;{7^f2NUm#GnHwBJ9V`#Qc9m`x%iY7=tBd%+G?A z>OZvgalyy=kV#67Q5(990Z}WJ#t|0XSgYPesUmz*Dd|_HcnS?<+ldyjueZMDR@LL@D9J4ee z;FpraBbkZSLM4l!TVPy&SF>%xH z1)ma(EacD-gz>g8#|Q-|?#vTFF3MS*c16crf?Jm24dJ1Q`Z+kvQjQY zZXPNF=IHyw-q{PwK@$vov zioutN@pNTcErZNL8Fsr-Q`*wgb~jr=*M^c)x)3pu5u)$yXzE4S7=9whC)70@W;|;D zSjqA<;TG=6O87Ad3HOUVo{KmE!Ns1sblkoQ}!KA-;ncb^sVv zPm-$r@Dg_@L;8evgp)UEM)8H7{_=q_}GR^g?@M&}iW8b0SStxj5) zzKG^$yWlhRlj}4fS|xlJzzrd-qqZ$=zgy3x7NkIr?h8T(0Zx~SO91NMp~w!{3?Iz3 z;UcJ}^RN-Vfd2`%HMkxYBq@g-URiqgnKE-Q9i%7lR#PQ%24rQA%*V1YfG(`R?>l3K zfqG<{`L=w`{&UnTl~*)X*8v@uk)=^$Ekmk)B*agaI`N+vS24@!_z&5E5EB#tEky*^ zG|>mi5>-fP6D-ga1u<3JGz21ws39WAu5oLp+5NfgJ?qQ)5=fJJG&~jF@4M@9p6|S? z=~s@tH5QgcL=9;h2_b3gt{Tenw>hq%B5I49BR?4pe}%~2n*+ec+MU2N2o+?{q>S`$ z6^5(l%B&)fHs9KqT#Q6k&c914a58Y*Y}s{oUHh$dnYO27RhxKNo?>$n;_Y-G7Fi8U ztAw5p#dQjZ8|mp&s-%M&5fcce1~gKVbigYmbk`UX{!EtgQAe0Mh@2;nzgR=t zffdM__AzTe!2uD9)pM8b$@botBLi{zrF~zSO3)Ds##e~&8#tssm_&8VUvOzKB-DKx z{|XRoWwa6P3bN(&_pBqm7IW?2rosGNIWIB)LC_qObb<2r$kfcy)^wp{35hbOdSuzk zxaM03kP@SlgGmFNr{5Bp+0USR;!83P&&<(Z}=er8zVFg*_mV}3J52NH_)2s&LAyO zA_e{+vIBRIv-NO&0Q+}>=4wG~$q3pWcjMEUPhIi(Kt>7Lsb;!pz3!mi7X8`ZcYSsv zV)89GfvEh0^Jg(f!@VO$+ z(q_8z#&x1~e&38T-G6?tx`1GoFT2NmI(X(tKBE@jg7?wn*E0Gl(FY@3#ht8uL!T&^ zT-vg582Pfu2>yn811;NPG{}+h-$X`^oqG%EiFfMai-u15O(fv{QR3gMg`ftRvKbrW zWQ?H&i?J>dPV}gqm}ZIwAaEvRVjj?@8&k;N&`&z$%iqV_+0;Afr*x_X7$2Ry-AI## zt;{h5y2V2;PuvwA!WB)Q?iew?BR_%CFb!I?27|Yu;j+fQLxvsJf3E+fCpLdCp}eG8 z!$OryLe~v9ztTs_z##+DEaw6x4>^1I`3mo#ShD{j9Rb za9y3r<6s|_A4^Ilnt|#%N)J6})CVBMFae)Fc{Kku{jPSWu_)zyBgu=swI~)w_i4`;#Wmk>5tN2UY)F1lA6;-GU$T__TRmrBe|SA-ejU|?4V9MrX+n~}Qc~+op#Q}$ zD;gf)&H-KN!?O@-VC-kGcS6+jhw7{-{2>!AV4aZUWS(*CX5)CYu zeft4V*;#L8#D_0Z?Z!|B!&5WR|Ev4}2nvjn0_H+UTx$pMOP4p{6p-n z9aes}ED@>ZMZ{suz(Q{>O9+Z|kBB^kFUln57RB8teptyz5T1qf1^J-^KvQ)ghDaPd zW{mlXgCZgO1RMUMS_4W@0KmRyDu#r3MJmBXz%u0|i*Fn@S`p>zp{PRPCPWMjzn{JP zr%4xt2v{#7I6w&>p)?x00nGCU_sYTe`-4SarS6O7jK{!{z)x;J7pfMd{;s&;N$+M8 z!+dS|o|*&!Swt{kzlN0P)-Kps88K4$l&0v4ocMN10*Sa69Y(oI2V zm@9lk`vO3fp`cE(Lva>=G^w-#(3`%4x0jK=;y}RxGn<-^#5g9YC!xWctuAhyGI>_W zNm~Vb>Qm2C)bL+npu+!F6<1T9&rEG$mHQ!)8Ay#!PJ(5|ETsnJY^H=wRcBo0CjoJ1 zSkEGCi8>o!ZpP|Mx|po{2&+;iKU77s7=FujQ%vup-2^wdbf`yDxo#6h>v4srK<+;$ zy{(H^{*2^nW)Rs{@uU~6P@Fuv<(@O%i$XT@yoJ2t2Z#h~=P-i?*Gom&!%0M6A*jr1 zDzt@!Ug~lIvxA)#)pgLx7P^6D5=`#RP|eRMJtc}N0Q*X71}DuL%egi#Huu@*vn?yK zzeT$PpO(IOXxAI}puN zzc!H7B44o`bG{9??BQm;@F<&5BXdFvlK#2h23?pVH5iwN~}@1eWqA|nh3 z>p2M%`?DKx+kq}UnWN5PZ?krJrBoD1QX{H?;&}+ zT!xEO@6Pbu=|kl+XQSUnpv!Dcex~>DQE4#o1JXM0p584ynTHn^o6zGAW?!a9#V@MXLE6pgSFy#10LD#Rry3ft8^o?3{Jo;LT4(0fJwX%p$-qilCaWd=Xlf`(&9PYUFoCjL$WX(1sCo6Ln#;;UNKJ=rHa-3y(^PayJ zk4SR*;4>+~ugXFRfy`6+@3T^PzDP6fRz(8KW~(Ho_A^s-`BS-~_h8Qwu22?2CwW zH3JeL9`shb|Ad5c<+--w=`SZfua|IZ*gcie6l$FJ?I^XOkKfz>h!?6Qzs2OJDt==! z*~7qwDlHB$;K7K%fVy3C)*~!>XiQ>@0h!nG6@yHZP-BO(AWUMnB$o=k@X7>q63LPL z=@Aq6>UnYlUM}}in0kQjMDe*&`zBKSCj#lnpm`qCp5DyyUZNj0toB&z*U$}zE~>_R znYQesOdLiiXBJ({wn!diM@Ra*ZOgCXoIG>bD!+Rc{GQBxwnOJ_=^?E*QQh463CoQj zvA$e=+$uMlF3w;nbv%}fjFs7+kmhQ;%($bYR}kLi8jOt%@3PW!t4u zI`r>Bq*Lfo{5;P$@$uS$OyB8GSMEey+CF>Igdy9{+VkE%)_lBvBB!8smSZ&buAza~ z<9E1da`roh7d4NSUL5la&6=bv!RM82dR*0V0v!CH11s`_cJm{GJ-C6LSMX!SgS@SX zO|M1~1||M#x6*RcEkkG&dG{Sutje1~mg5hF>x0P=f3Poc8~ylgjfWKk6#^AYO+Jx` zIn-h>RHaN-V1B^u@0ZyAQvAD(&XY&LYj7Zg3lyrxq=tU!MgiK@oy?$Q8ZJSe}H+ zdPu7;B^78`88h%H`r=RfVDmK*%-@I)|EWB|o(&r*+YZO+L$M`(? z#VgPAXbh*l&T;k6aEs9JUFYPzxaD-CFu(fZgD%a^R#jH$wzZ88kpQ;kHh~?%?cnGE zG?$s(6$3!%><*W4jb*luH$w&a{Dmphjy5U15Rc(O|K#pLgK{yU&0mep$JpNXoL(vJ~ zF9>iuAQ({O;}?j>?rwN+;4xi=3<__HJL{3e9<=BT&I<+Og0wMA?-Wjfj+k<=EZ90j z#1Y!Wk6*Ixp7t7<;{*ge^ftZ!p@Kj#F7q9_j9>6XzJYj#V+X(xh%G}v)G-*)mSd5> z5x_0ygqnYZ4mpH!0OyE>R|r+)f#`%6H+2tuKL&QB>cTlk$GI280NlfGs@*^w0YwK- zJ)kzIqrF2kBY-rdNZtgd9v%w&3IH#wgJ#J2@6ag3_g|>NEmY&n>T>2Q;Z)pve7J3~ z#?Bp(Fs>E@NrWTloc>0(mJUI^Tl68T~k?E z8;h1Lx>vRSZS7+z{#Rr5^)I&WYMYjxD1sf1wcoYR*H5%lReh@uWwE&T^m)$YWq#>O z*W}zm)kHhL1>)Z#<~Pv4X?#alIH1b76(P9`&Rdn=93`RLo+$3k*6F_F5(qdv&$tem z)5ww~03f^4|aiy!-BbkPVLGDBI^?+{`%BppIcHHWC|=eEAX^ z+RL2@p49sue&c;>!x55!B-aa?B5s?UOg)noty( z;eSRUt5U<`V~bi>TOs(|?X6^a+xJ@`U2DnSkm1?i%}pFimppxaV|Qg{8YqWiCjJD< z{Q#Oi2p>$H(*AhV4l-|O^9Q~8H4Pd@%N>z?WwFZ|OE#q;np|6Yi?_oryWSXoGGefG zb<*5`^=fiRNLrn^1#5Y?>=#IfCa%`#4tWgN;8}KQ8S5z1pQ|<${Vkk`m;K@e!-6kd zu=(DhVvRL3SU%*w)kcct3}~YT1IL28$|=pe zy|qvIMWsT;N8iTVgmvRP(&ri@IZ^iCKSw;oG505VYBQY%YnyvOabA3J9iF5$SnUc@ zFv_)cw~Plw`Tmw4M*;}@ zW%NU83q}<++I5aYoL2MY(B@O?O!jMX*B+SU%6UUPSt}4%bAPcIC+=TJywro&Mq@_) ztZujefeC)`p=k@2-+hDOtIZ-N9}eDPxPGYXyXyFAT-T7?{Foc>16O50 zgX5>fpU zEgemo-^V909*mvcOtf{9fz3?n{JW=%Yv@#fC!vELv@8qi-oZOedc&BkKBx)^{ve?D zGjY;WY~|~1#-g~lv5){wT9l|Pf=kNc=%1t~a1OS9v?coYDYD?=73^s*x*OBut;2L$1S_ic^i+H>44XHN4j zR1cE(T#awQ?3!To*<`mNB2{F_|25P%TUas7F_f8 z{yK!eAve7>^qSd&4{F6BAHkO+W3|C?5)&Z#A@K>xTtQ#N;+!cz<%#4_dWU{po#~*U zi06+C?S*hsJEwVfD9anQg&ok_o7fp1EZ-=jTGI8@YYTjO6++OWoTFV;9~wV#z%Ql z{a7V!6Ek|t+(ie>!8BBBX2dx2FlV)Y2*e)a=@_P@;c6wP6iiwM98h5;eV zT-+O;QSyo;|FPihbn#f%Z+K_{+u+B^L4R+nD@((b{^u`8(Z^h?VuiRC$U%)7!JE>T4N{JG{D>y#MR{J2LXNZ z=5^;YC}9|}iR$(XTNy!WYCPOM{6Fm6dIu40o%9Bzia{o7DnXB&w!$)Z!XE-RmZBDe zxShWelF*UWMK$EwF@}3cu7L@j)$(DhwD=D0O+hp1JcY;>$x}Bf6uWsqI)JGWbi72v z!I-d3cbNOoQVI`Pp=Z<-wSynXzBss~i4yOrtC*1i!dA5SVBg?BIdW*PHZn%Yf}xHr z0j=hJTb6w=LVF}tl|X*vRbEuG{QYA*cg1C2z`uDNA{o_p{km$Jib@*TcBm7Vc4oer zXC9Z;8E17))h7nkC${>hLyE1SfF%l+h>h8pg@7Ug?xqR?qM&PUq$UD_XrV?3AVCD7 zjdTDrL0~W>38#6kKSBo8Oh{1prr3*hvv%QI4&6n?&CI&ohLU$X z6@;|o3Aou9j1Aa$pT|27YMeCka(@ZiX=puG{d!?tbZRD4g~pIN;|CHmEF&g)^ApQBanVrw+PpRZo+$*b`GZK0oWqgDw)bs zkItnJ)ARY|MYm6_p7z&$o}+6ltYu$_C%)^hOHVrKuS?hVW6tJJ`1QJW=%~b*lXe&7 zD6l!TE%Ww}XJ7dLuDf?HeqW=?@sp$t=Vay8^`;#wi*O~aoYiWXJJ!+Yk%2#MV$`i4 zCBzU490?E%@iq4}n(?ZrvV~b<=EyUnukU|R z-_xUNqlLyy9K9*7aHzn9*Pat;PY9=f>@?j#6;95Y+|pTg*XFiGkhGRbq^(ID@>v%F zlDZt!R%Ar^ho9BTWt(gy-?Keqln+9P!Mm7s=BBu=C%Qnf&5vX%4f0QRLq=BgKh@zd~l?4}Lq(6OgV+@+xSj><53O ze*p)3?=Uj@0R;TmHHu!f#ar#JtZurWW&Ph8p-UaO{HHb97Q93g!Nn^du^8NkawN7J%BlT=Q{oe?x^uf>#@f) z0%qDkWZ?2&Sk&kzt=i44#uF6Rh{0xlVB=O=;*jMF9pt^O+sIIhm9mB2Tn=G_r>|te z%B8N(4)?absj5yhr5*_=udhMt+;7JrxjMHCudVJ1n_cp8Xl?7-uddZ`sQOlbUE7?T zz*n1`c22#y9BHamo-`=s-~xL=;tT5Z1af*={JR5rK|x3BStSPO7r5dvg7Lrx#S#q& z_mK^hRb=sj^#Vpkd5I6|9t8glrFUd>>Lyx~eOJfZ1G#JzM*!gfRGZRyCLtz(kO#D% z7!DUK)_79Dhr6GSc)YG+5o zi^RxC?*JaOH_$+`f=r;g>_l}V5HLIg335GskO`UVM{~+pL4$%t>iAoA3PmFdq$RSB z$pPR7Q7pth3`jCq05Fjy0UX8$0ls47MM+O#DCjJRO(GupRTShZBw`qNaJ?mc*{1xN z=*6r}ziBkgo03hqulT^brIn^oF2k1r|xQtpmEG+#AA=djSj0b`R+ zj8=5W6?%0u8Da0E_=&k~ zdQ$tki*HuqYdScLa4frrmRj5Vg?AS?-k?lum~{dj?~Z?(6xL$9{6<_C(CMqP0KU7- zc|m{BuwCZe$^hLIWK>E1ak;h=tI2(of48cUE88!_5AU+5&Fk$bHBrFlU`RZ%>jrUPFKqSHrc{SiUzzbz^H}pIs5&a&8%ws-396Mo zH-wTij-rSUTud6gRO%-OL?&s2PUQwI~u{>SxeU+2?;NS2?8^c09Ayi?@d|yh( ziwK~Jz{`rpMj9`ah0*(~q^t@=NSAaUwJhEVQJ=3n$3e8<&lkm{rd`!8A7*+zn z4FC!{oIVc{Xy#4sUPwOxa`)PcX7Z$q0j2Yu@|Kf>=^hqy&|Wy=O{Ei_n|JN~eI_$3 z9}6`6m|gyYAP8=}Y5DvNG&TynZ5~GPfJwxzx3~lz#F?{6wn1HCd-Y5{W}i61CY8c! z@{_-Yx!>29$T*>Sy_=ppb(5Z0LZ(&f$Elu1EC4S9f_{q3bKO62FWNge9u%!Dq8@>N z@W=w0{{?ZM?iUg~cgHJVn?l4Cb*aTSIGOhzC1Gx+?PD#4QVf1p-u}xfs284m)bS`a z#@EBd**_*g7&a*|1Ed~775~BV)x>Qbwkl$zw(ZUnzA$Nbfo6T;+lT zj+ju3DjFiF1Bi-)R%nT8;%uoxgP;i#Vh08oYKE_7D!%D{9%hytcH8&NyFKeqhr#+k z06aj$zcW>N$W&L|?tA;(|NQ6t|M?cBnuwRHnRACg^4jS6Vk#V7#v!fjk-UbpO?b&Z zVA$XSW&ehR=Zj*+L$a`cRqtygrg=dBTbBj2fT{vf<0(vxYgOThjN>a$C`nJj#B{oa zYhJv7pCa2knL(R;|M zctK0fh>qhk#xS*cmL%*Pg1<3x&%blfRcj3mFb)M4-&R>rL}-lOCxvwQJ&vv=wO)5{ zNbm~i`0CRY7yngFbo;BhdCK#;Q5_j!E%ttn3j$NF@ER<6g~VTbn|y3$GdwOSY~C6Y z8=H+Xk0g$qk6Fd=LQ8Z$`O&}K6rRb*KUU6`q3ep35!Y78R#c=VHSeo5`X_Bod*4!J zL9n@y^sO=XS2!vpFS=oTUm;GuoDp?=&M`Z+Ijp`;VR^TJuK;aDY}*oGnHY(NSpYvY zYO)CeBVSA}VvH88SX>aH?09iVA49NN*aD-0(YR4uTi;q-wIDp$zX>43h;6uE6#8e) zNbG+j5Mu70v0*f1F^|uh;iwKbEg@zYFqr3OVYFGlB#bPZ*2Y1GQ8d#f&Kc&7bFW0v z(lpJv-`L-~HSxkoNq5Z}nHtj*)H<{=u;gfJ)f&iZFWp{%1O)IU=P^ze+ww*J00?8Y z2ZRS>yJd`KjxvGB*v!=!W}nCpB(toG;C_1mkHh}NLy&j(yjz&8WOy7(cbHS+q62>J zq9U`G?;*0R4)(zH#`_*u%KW%<8@uz#{6Btu6zG3O-5Jmd>DK@9gUp}Zy^HY_c$$$J znS4KpRxH`mRTE*eTpfJ$Pl@Ef)&oKj7jyEa$onR-J@O8ICT|aPC$$B>isOnH# zT6RJ|{Wub-3^yGQh1;gmMiw> z9S#(4cvm_R92`cqu1}Ya2dakAeWg(Efy0G_Y8gOW6N;XISJy4W1{+K$#5+xaMOI46ks8J<#&2%EA$)Bfd@xJ z;`Zg>#=r~d?pb20YiO`n@X}ci6-MPJ&s=snXl&UVmP8;D=z;?QN-b4_HitR zw**XWHj7Z;+0?zlNTWx|i~-uGcSc$^v4uCY&`*Y!qJGvw7wbQ_P+RZl=E#s~xNX2n zQ{RUw0Ch|5c-4c{A(e_63Tm0k-Uf~_9DJ@mcTqcju=#oapc8+D10jMOwU(CZ;AQ&a zSqTB59{ckV+_~@(2tl`gG~(Ag#J?6ua4DbkOAj*P=-M-}gR)Kd9=SEh1lj)a9@Y;8q06Nr(8&S#^DB}*~_&XVS;6k|bL)@b| zNZZzsVtW~`7_~>+uHY+f2>1)!R3HE>9y2uu)D0tFZyQs9GRn;&;iw0LrW*){!c#g< zYP-32+zqosDSl7x-jGwE92l`|QuzFk0GKn`gNj$5iB?W!f1u=|23EsOD)%|eszjJ$ zE29o@%e!BuMgn9eIR?F$_FvCXLV9)_XYJu4Z66x4r`Hp*`kGhyVT)dO3~|59-{jCd z4#ZuiKRN$Ro)H6(oo zx7=2#lNui^Or_ToO<_ZHDNKTLi<@z0uh{aWcQWs00Vc!h_@|(vdLA1#v}MHdRC#xT z4yhkBQZk&9;9ml1Ej;Sd-W(#Wn(n9dcv1796ZbtSx0M!jW_O7Ab#9Swm4vEtcNdwM z^k=$}mAA&>CiixGQ3s)@E~AGMQ(eI*dDUR7s>B`7Hz2ov(&ZZMTe{_vF~Yac@bVR= z(G`r&R8NV7=$re^?Z;c^2d2c=6BM`fh|=1`>Pi!6U!i-zhM?`T%=0IxvBbEt$r}ba znkf|~S9weRo#Ejwcj#wf8Tvo8+tTL;&ADlUI#b&!W@$|XSuxj*%g}QhyxSme20@@D zNt70LABz$zh$AotAt)IUd65w>j{~(q9muxyffm^fZMRb^P5B$ww-|k|6k;;@@T*#! zbBUa^~)jt5ExCTiW=%PcM#M8j9!p<=0L$(Ih|BrY;>nH#p__dg6$F2o+{;iapz}KYMsHn#TH%NO z>Ce7xLYJ?N`aJJ->(2c!WJZ8P7Xr@OWL>iS@4inHm6x(o1cjuSw9qiLR2S zwz4Z+S!9vQu!yU?NTsssUgrn6yhcow)0UMf87zqRtlRyG7h)Dv07|kp&gPDzm z!OSyl1Q;`j8Eiu^*dVY#AoTR!J@>wstFClqE2&iHoNv5ca1b>kZszu4Cc=#Qf%Uy+ z|MZyW*4T!ci0va;v?j8OY(>0??&5?$5dPB>DuTv)FF~Dyr&7WWmJ*xd8-U*NB)L%) zz>#H1Y1F}@G@;2HKuCLhlE{YJ6Ow|=!BL9g*hFlLD~c{>#zXZAzhSBxWXLo;)}G>` zMlzdK5^Xtzp)RW^ZPVVS*I&{q^-GDs zk%OkdaRSlfU^G$$93cjiK?15C&?~w+{Z=Gx)J4v{PBBPF?;z4CV#($Yr=t=U$M@0M zSH1SnymyGF1sk4`<8a`lKT-9v;=z4Uh_l&5UF$+Ig5|X~mI$}K&A2;-82x7f4D!8$ zm@0#oV7KhPsVe1BqzSy%5E_!Qd|f=w%|zM-(w+ga`Iy8GF&?uQ;e9EH7hKn90;W8O9>gU>Fyeou zn1i$P#eci7rT(kn5<^b=z~y~2sdhTHj*ySSt@_NyJ_l+nEXpH@Odi{H``6$NC+Z*S%a5M{sH zI@MA|6}SSnptzp@q`(lnKt+73Jh{#sHKugoippX6B)MvlHPVl7hpj@FioUt@^8M1( zj~{j}bPa?gx$&y06Zp6W@ZYB8DjAc80(c{ORCtP67R6598Q!LYfVr?hqDpSXcRd^^qH|EwTH7(4cMX_USLWJGbw# zPl#-duIxKXK6o*^KDylG0#Gku^8;=yC?_GhqbZxp2y{cd@Hz<;Bf!Th;m1il6+!># z&YN%|l&MgDJ#m_w#qH2!AUG{dr}fxryjOPa?vACpt+MpZ>KT$AQlymaE{6cmcuJp2 z11L%Bey*=Lvzw4E?y^7Qs@>H@vXmb%bBV zpfNdM*%Uq5VYGu9GZ#F?s2cbk89)dX*R5@TrK>!k2R;RxVbwE&mEp4-->SnI1p>&&F8vqrZ{V6P zRapjIk-YF%Tv!EI`+WN0Id%53B6ip7%5mRHYVyf+B>fqPOED;?uxOetb?mWQR23BuKPhlFHlF|TU`U6-(=A%r_mpv>Zg-yH?fnR!dJ#8sFoxr?nH z>jXVG7I@CTi!6CDM?MVgNJO(q-b%SqHMJntq;ab{cZ?T0QX%yj;8Y`dG=#@wl&N>j zN-P+axUdC8Er(fMxVVInoEZ)?!0pDx-%$2V$XcfRD-v0v(9<}BWeE+uNBykp2LBH& zG8LB1IV-~qYr#dfSn&~6`eKAEePl&a2)W~);Je&6~;5eUUjN~CS38T zF-qG*Pu~>Q6!GMeax8Jgdl(_0xnl=)zP*Ke84$b|L?8~yr~cxzmQY=NEb z9MdSx!~H0(n(IuQ?tKb{8Oz3{!+YHm$DVtL^aOs`7tfK5W@au0$~vH;y+_8 zP60p7M2=Z@Rzf>)tbud9`^67U!e4mIvh;lc9EUi>VsO_^7j3m1u$YHq9)63Fonygy z#sYiwEfz31k2#Fk6V}E7o&KfXfjUw#_sPLrBaY#iiyO+PKjL#2B?(8!*&05!awnTd z9L+E1`kC`9VwNpO2-vkrgz(Y2^YbyqtgL*<0&w`zO2dy?u`qPR%R~B@Szom?mUm9e z20?44sC9R9ch0O_yrt~I+nfC@A2HYmTHbT^{(-CU)!CVM){$3eXyA;l4{vI^KcUUn z1Jq9N=09#hQv{8F{`uFc42NFyrzFV$rl6!nn>a1q&~lI&(HRq?}C zxt}+mclT>*t2SHNY%pO_1OW#KD2ITGAcqJ>M3i-aa0mp#DVBnwTw(yZ1cDqR$Rz@z z!VCk$40AB^|9AK6-q+)1tF~&6|IzPt_q+Q2YVy_jxTukp*yCBFwwQAl9>`c=*BiJ# z0rS|F8F~6g^-AO#gZY@q3sZ#ujGGqWRg+(05TjrI`0Mp zm+&Bnj~<-b5DlfLBp-M<+ZtS$oaOIMC7oDy>faiQ3AmS;e`sxE1vS91u+qe+qH(VHauJ;+J#8x&lh~eUC zo?NDw$~e``OFAl_OPs`8RbgiLL=qo8k<^G;=!IMyot1hdE>62^*e@k%y|dIFT(tX^ zS;J6nuT655hkWfRSqo1%$+*b9?mt9K&iBet5&J+6qPTCtKLVph_m0rqqqvmg{1?Dy zzNJ!)5FgX(vhu3a?i~y4?xdq^S^12(SM0Wgdru4A28Y-yHMp0yhdc0V7w-cbyDzbm zwtH`Y#Vzz}?&{t~?e?r3_eMD>JTHmRDm+#QI=)xCY1ZoB?f3xlEi$i)41)Z_7(o!l zG6BRNw*k&DPCWo|1`R-o@_T%XBbXe4AC)jp%IoC=A`|mH3^PPnF5ltp9}rjZ0**|h zc|cYc6r{RKM2aFcJw&sjPxcEEwn6o6@^Hd=rh;+HjFgp9il#&f&X@-XFI>&;XYSOK z+y6*TCGAROh%qz^I+tU#OIP8K6Rr3jdwhe^2MnBFtb-AittYPHIFFhX8Ezg!IMF_? zjxcT$p7iV#-w|GF&}&}wWct6|2QA5h$#a`*>`GDO!nJ30(92HC^*VFgTm?Q2UD>yuA`PWI_J zcTPUF@R##0oepjBk2i}Z;c#%%#+%i3x^{Tkp!lx8+>|lLVQa!F!+_E96I$hV0SDc=W!?=S77kjBoQZwF~nJsrgk3d9kvBVH~GCl%UC{t z(sB$7ADxJv&Nw~T5tNeAG;?s5{BUD5ArG}LoGej$LtM7#M?D2&>1Fgl^Tl4xG!c-i zh39_69(%hnp8c56uW46rr+24DaPb${m4M1dTS7xyk`0r&G{I<$$j}|KL)yP9lAUQ< zr7MtG5-ajE2n`zLckaE`L~RfKZI~_ok9u3;>AH`Rm1^z~SMd4b+yDc%)+|u^QHca- zJ_YPf0(KBpkqlxPt;lCUgS1syzA9Pn`)ZzDZU$3SRcmq<)=frdi{qL7IAdoYpnQK^ zV^dBEjhQnCHa@(NycjEoJiwNI@DQF}z47dR4wJDW-W;4|!(mEEeA`g`gf3Wpa-7n< zT8a(9O<1v2jRrD8@(MR-VB7GajnCs|M^>nj5rFT@vK^(#^Cy|@sMCZF^*;?|o zZiG9bJX>~9l~>i=;HNv`JEk2{QV0i%3dzD227Ku?PJ>{@dzsFdkM)zgVQW6C^jS2B zKaGU~sk_9;)dtF8IfN-O8zjnZ_FW}9T9`+z;l$Rb7>_gc%Tc)9L#uM=d^)`N*&X{^ z5}EbuHOeN=k1Lyg+W*U&Gh`-8u6K1^LaKo_(FF^8sKgMg}xJ5 zy<3k%?P<*Ak5|4n!$34EJTp4pv(+7}bOtk)SBVAv1Gb)(ntle%EEj)nD!APrH zQyNrmgYWX$P6%Ufx{5;?IXVS(6R_lMu6xE`V6DQ;7&@^tb1E4pC1s99uL_0*;5R9yy)&4PMb6QLTC zfoJq%$(%i6WOj$*H)r=V5|_ykZUP(JI>qR4JQdKAM#eN0>{z@v!>w#Aj@HKl+1(im zVgF&e%)XjVvN-NY+kNbL@SJ&>b9&}s-hK2xn5WU{v28^b5kVMQKoArZJFH<-7D0B9 zO%Y|^K?s2aqasV#0>~1CgoK?WBq8}NRrUMLtskB~^Fa6|^{ZRA?yb7_`F|GpHT^_%Y(P$vcH3$Ew2ZE&vv)g`Mg=2FN{xsjp>Hf(HWZjRO zj3T%(p6V~>^;cDjh=_e$Q_sFl!(N!_@L7Uvl$8?p7OY{6d!WDg1#|q^b%uQOqK$nf zoS?J{9wjx>_Mch$`&Z0f2C**C+`|Xnc;BPm*yg3wh#O zXZCrPUe6nE#zpt@BRA5Y`c6X|K*6z(+%9)v1M_MgnOZ%q?%3kzK^d;zM6j6`(iC^owdFVNiYaC< zD1uuP{l0>4$?>g8F&xyXYf}ne%O|hyYNhk4hTt8a!m&d0#AUTMkNF&KLa8G(8N@FK zjo<1+{Ob(F-PS5s|NVtc>V=hC!&YjqPe47&f7q-ZMT?hMLUcZi+jD3wR8GYw$?@CS z^^s#DQy8K%Ij;gI8#oIQuZv_`FXE52SaZjnSjuj+*=}^ZGH=jkzT|B-wccac(D(G) zC$Dr6ke>WTEw>ztYvNozclh#je%6n}zpUbFwI~cnypp;&#R!#n9&iNYBu2J<5N(Xb z4wc+y!!C|G<1j!~-!@{2Rgl4W9*Zsp(E_myh5ukxaIHhLI}&)yyj4;tYrEXG#s1aB z7^twjBItB>Y+n2-kR|OFNYgo$Lm;cOctyJ_3iA^?h##7#aJo7>EzIeT1jj({0n)zT zB2Lw$Nxh>efu!>9G>*}gu=IZesq8;2oElHcHvgYQrT z1v+6c@sV9vlAMx@&6GP~GeA>k(i!=(Qo17AM;0=h@68#7FLxivak-+-E zGJ1(=%+v;r8vrc0LVYlZof5|iUrv+&HTE6ZXxXLa2o!EGhb@{u@bUcz4E9dX^>Nf5 zq@0i~aDy;bxO*Ph#G`qbE?H@(uu8tiCrl*>XQk~EdIGR;hJ1_QX=&^f!0A~5@3{#{ znW2&U6FmukAxF*==`Tuui@m0I>y6r@+ws zp>@$i8FWM}Fil@cEqe$vm!_$&&(p!zLAug}L~7^Y8rtz1BWxHb^{(s)!cVMzA85j| zW+Uc909%2ugmZu--huRpKf+0!BP4g)#ZqXrLCgHBfL~OyG~q{x=267fJ?RzzdV-4j z98bxSgW#VcHt}3XnhOSplSEMw2`nqP;c9@+xBPtU7Cpp%g|H!dM1?j>&L1ivpWqC?LnpZzt!< zb|EnQK&reMTd%SB!;_*)D;iIGa_4Vrp#jN?lB&kXYu3VN*?Rmjbs`~;L0e_=Jcbj` zVD@313<=^@XZf?WgZxg{yPTwb)Yh!8*1m3Iv7xe3%X7chm%O&|qXh`9G!&R%OZ&|W zirPLN9o9DvBg5MfVrk`dN)5JlHyL>KmH$Q%C{%q!_Mvdw< zY#jW!MbLP^6LL%NSZC{miPw*eI~ncn_TV8#?9}W5x4q(+(IMv3)G@d5%a952i}QBm zGTU7Xu>QfW4f9Uqwz?6!Y=OJ6r)QB(I$WY~UL9cGjD3f@56in5t|7QLbu*!e8w*2@pPw!Uyyu=Z zZQVbH;&cX2cIkZWkRhDm&+%6e>a*Mxm00VW`ApsCh0Q*PFYof`YSzsCG_0yX8@E19 zMnjk3a{U{seD&Oek*(XE?(kmJ>c6>nb^I`JWFXM32~JJ;0E#L*vhsf{S6Ne3Nfz#j zS$iJFi7;Ybdcv4_aULcnqW{1=+pR)73W6ewpok?XvQx^w?^TE(7Er88u>@O*EYcvN zvPi2yv5O#R0U}jURn)ziC-ct9vL7nq-Wyq&C(rktbG~mN1YTZwrVZa-^?AJ$*}z6l zXQ(>n{D*Q29fdgq0ZwcO9R=e)>B~#k$3xp_rC&~}N|rR*Ue(8s!3h^r%|Wd>F+_7( zW3VSDzYN*2Cq+eGuqe>yRsrg4nD;PMCKhx(l^CFp~msbBaCC;w1vo?x=mf$9l23ZE%j$^I;AvjlG+Db{JbyP6O~H z1Cl|SFkTqt9Y*Jwn+@sFD`(cY^3U#QN(%cGr7VTq7{$z&4%@C_4w*KSv&VT*T8{1E z=zUal-7#G8?S12s+n5-LC8YQ5Y6)sz@Uymf_H_iOwMG#Iz5{(fSDJ5gWy9|Uo%Q~- zdvc54?k1(-uYigY(hlzg83jP&$2YgMI1K2pj?W&WAP=IK13nPI;pD9H+}+u)W4U1) zt6>vJ(~45cLu%iKaiu$u=<7*Th;g}$7%$k?d{*B092`g(u5VZ)T_G_=iq(7Qz+(nd z42sE%nD-OQn04oV$YX-@`QId1=SLzdKf8u5B})?$(d&eOFY zB;FjvKz|QvL%<{kcF@4CkMF_z+tSbb5Z~G3 z=~py4K;LDmY;y@5yheD%UBu|zFEW$A#|O*tkDRAip;kk6HL^o;;-tvvX0eiLrW`fK;;f10 zJoMFDx6!HbX>9oUw?=0c&FfxZ2%nsOv0RmafBictd%~6WXs*2fX`ZbgpWgFaW^s*F zGMvkyqKFnRH0MO*AVz%eszEmo?{B55HQe+g4#~$?h@&ATIhc_j)|5BLZIAA@&_R?i#yqoeyY%!0^VXDX(a(PJMm-GkTQ;^uC zESzDC2DfvNn|)KWZa+ti3VZgi^%MV_S?X{{OBL9U*`N7nV%3c_)JB0Um#bBD{WRfs z(i!Wx&FYdU6?!YLxTnK^s-_?8gB2kLD85*|OMk^kNTesqe;9un1^YfG+L#FCH>^^p z?cBy*oR-#6$Juvtk@C3z0IM#+IMe#6GTd>MiRL> zi_mMmpWL5Px`iX9Bk+Lk$_wuFaiEn-8_j+a-9G~Ly_B|uGsWUQOy*9Rtv_u-*mIbY zS5JMi+g;kjy{TT|Ek8PuQ>^~lB?6%jiLscxc1MN#GK993IeUDF)9)31>MeJdLsBAT z1bYOORRTn|_C*7KtRfpHQ+p=;Qb5+EaQSyIB45opj1_7{$fnHGcLDfceLKy z(3h4!mdL&Gk;*!%FW6BObAD;BMW>VsywIDa8!m)lsC){Yf9%1-1-O;5KCGVP};w%W1IWXc` zit7Eum1LZ{%f$h{l8cRdY(^5!Q07zWvXRl;w4KGOn_9AB)yWh*;@#!GwN{3ukTK0D|1xc?%i z(U~7j*MsxgiX;R|6Zh8OWw9qWj$MAvSjJT+T&-v9gSY0P#!=_BCzRWYzsF>gztnSa zv@+brZlqOuRzSB(=B)QxU&ZKFU`<#42J$v8x4M23I)dWlD-pmI+*eP&so!JmT)u2G-E+^yC z!033KsQ)lMfV@G3g~f1bccGb4J^l-YGmiO|VZl@EBS?_1Pbl|Y&Io%ZmEz2J=ASsV z$Q%a)ZgGf81jGu8j#t_xc)(%K>^3AZ0ht|GP)D%cU3Ns_+fGJg87ppo#mZ6p*s1*^ zl~-pdvsrPcZ@KgHEU=Xit0;I+umy(#)@Q4ZdCTSo_OACPGfYm}=HAPux7~|GHjVGn z%}0F)!jM(xKQvnKlqanp@v;lciZcHh$+gwl_yxv>W{8l^lZWdJJF+}g-?0zuL+$)T zm-SieG>89ARE|(?(YLM%-JM-lQ{g|oRi)86rRE2Fz4~E!A-iCVE>-n_vR9*7EFG15 zGT*{PM%FN~mfYD!0C@i#I39jcNLQTxNv%CKy|@p4ZE7```hCpwfy>A-mpgOiUAP%8 zT$ME>!z7gMWC?hjCh^W5BEpZ{DiGJk|2tGPN%Hg*HcqGi% zg-6Bq*i-a%vN)T9*wVGVAPEzvQCA4aGWL6LeGm(A1C*wm{SBEyxCjC}(}M4T)8REk zktePo@W??6Ze&e|xWfDESmWFsfgIm~O9@I(a#?KFi@6i;n9c zUQNnd1=kuWtJ)Ku7RDz_!T@AfSRx48rWt-1lhqv{y!5N=eef1sM-NLt)WLl%T(~oH zuUmz6+Vrz%DWQLygGLOrYOatrxf5gmeewgYOd@C)J0wgEhIP?ug!6lE6DF$cAqXn)Fj&zU zn<*ED11T~7E1|m|xO9UWp_x;&!hKW(k}c3EqGZ{1UCe>YMTV0G4fq92e^?wOf=$E< z<-b89cEJg@aKg-Frzx$2I<8M`!Ifzgl_rL~!i$;8q-{KYD=s!3g2WUZkl27KH0l@7 zFrjCf`e?aQOEzz7lA6}zl82>--84tNx|EZaZ~2s2mXJ(2P7O`Czk2G$g%U)~&sA!@ z2(^!S36Ig|lZ#}lG_D?cx8mgNsqo;0SD87jss^b}mGzOm%L4brn8rI44nAwl@>eIaFS5vEy%7Vg*W zR&SBtyhzh?@wCrW?HRNodrZqpa8k7tQ7>Iry-9faCm_!v_J2v&e*0X%zRp|wzRs z;ge@oS7gkH`y`?`JB5-r=b=^bdO@YwqHWh+Qg#Itrt%6)%mbpyrH!G4hPRQzcxtCG z6q!2y2Sy9>aqlIH*Sjv(&A2x%PcCiVqYk z2Y_)aHBDnr7iY2h9;=C@B(k3tB|u19?6fAJHD^a3 zMen?hpaZ|4&KoAbIoq-2^3mH=K$r6-m;jZ$AhQ2AT06E0rj|h#Ai6Xw{V* zoZ~l4mle%;d77mBMET!nO#;DMpAF{ULqqRUG=ey5@iO4$wWZ@5TW6Zd%EGLylg^>y zWQuCf0m{jqVykcS`iUV@5(`Q*<@0eUxapbr!9~X62c@EDs#~zwXJ8FKIu{Ur-?zW- zd|LDr=??X~I!mfO6YsS}hD8*pUc#8VEKSzc)dRvX}+dA<8>iajVXeX*Jh zk`-Van^r9#NU?R|Gm_RuAr=-#C?a@%4u1Qlh*@tW9IXt_5&C7#Xr7weA$09*-)zmf zS*dq&dt!A(yJ-0^te;rh)3yq76KXlz`|Lj8Daz?V0459&{5}FR@C2Yd;QKBEgX(tx zNGylS3qvPP_P7}oV&+V3#{j_o*7ini2Xj%@#ThP)wuWu89)Bx0i~q0>(Num2w><9S zB_Qrho+M`9o5L#(%R*gV1ZH*;e8Fx_`Ss&4DEtp^|A(|{U&=OCLq+5E6Dd$wEn-Fw z_sQFz<&I+iT?GMw&QR9Cl1xz5@7Ruw&>$PXa+EyG(BNQK$0Ej1m#2Hb?0{8`=9eavqraEl;+#< z#69?2P=n%ZORJkKGQ@uq4_`Vl%DSwc0jT~==YZ>FxUu!v2{L@_5v_C2`0TF4&KfUuTEHdhctT}J z0Rn0<77!0?G1Ys>bW)tqKj|7P0^dVH`#efmjcdVzXFPSzkbkfkmmKc_EoP11T_ErH zqxW_AReNX+o`L9R`N)>sOSjgEWNu{QbSb(idpjF)89Nuto6x5L_RSeMFZ=!$?0%P( z%eXN)qqQgJ#@s{YQ{0vtlG?7l9x*&7530PHZ+RV~T6Q)S`bFIyC3a_I@?SAJC@;l` zi@Z~Rv+|2P$BOKuCj$cOeO<%9PXg`54wH^~vlsUQ4OQ@56&>3nE?DtA2G25{855z$oux6z79sfDCCLn0Cv2l^ZumPaqJGRIVm|4HrL0|{{*Nz&X!j-u< z^KaaJFcHv61?m6z22vjJBkz_4($=b|$Z-5)KC^PCrR4Xb%k5r)cdEZr$wVGwP9Ht9 z^(m996TrnSlpEkbh^>*@f@a9pFqzBR;RNskbhqNb&Nq??*5^Rh1-cWy)h1b$Quyn(YbdS*x(_Gvx(L+9+=blx2x)AE#9xs?K8`+Q&{)H4_a(5``U1fCLBxNZ2u8gV`Jd zW}C1WFncl~5V92rOIQ;2#SUQ$#4teEG1%Dn`|dsW`+7c;_QCtT*Jr!u{D1vw$!^H& zV^So8MkK>QuSCPy>N}AQ$enXhQ7Wup?A?Z#c!c1=o1Hi)kqtX@fTI+2$rx=6DcXb{ z0G;}$*^ZmQ>4V6=Y*4vRCd)I)0se(GB?GsgM5)k+k}xW{!uFS)PC!!{_t}YWS-*vN z4bT@f_4)E5asv6dhR-6H>~vEC zOKw{tk$^F!V~@vo+zF+usK<`mDUS`7Cr*;&xtbibla&@yI#Yy1b0!X`jeztuC8!b5 zO^V~3lYoT*;XtBCLSf@bKnd^_oYCgl+P~uWbUK_!rvr~70|l1!K$gLWM6)njPRPRu zJQjNfU#D zQwlH%ZA}4=;|DF=K9OJxH)1?=+jt;SsKmJRS*{@dPSC5-4>&uHot2j$3?|`+KTxSo z(PBD2DVdFHrm{da_o?oH*aajyCe@@;xTtIFN3h*aoOrHM}#;F?=^{9|e zQ}3waLyD3^mPn(rJ#f<;rRB^0)Gle>yO_Lrf1~(5{F(eZfzj}Ke2vLU`gi_7zYi<1SWz&A-9r+a?JEvnIWGr zo~PNF@pC(|8TQ1i&9KHuf1QK9RwUFqI^?w>6)!U8j467R;?_i2bTt*%)!GW%Vpc~^ z%p9q?9IIupa<9&@k#3$VZsEG`B^nrCk*nEbaH5SV=oQl!&PAJO>8W~4VZWj2xk;vZY-k%DtlOjGH7_{Y|9tu35C!|Ih7L(ITDl&;f%AJ^ zThlEz+V$)gNtChWo?f24_8R}B)y;6HQ++5ePsRr}EN)Fpr(o*X#56BXYtses&qBk! zqj4);UEJeVR(TXAj`;;%7)ixs?W|zI&_k1z71jtRU-KvXoW+hJ;q+Llo3Gia0~l8M zu?3?f@-81d4nC((5dOksqgZ!wO{}CCevYzC`+mYKE3{0Tc7`^vh zAi*e6j$+!9(8|^$>Av>_uPZx#%%6CnK>?$8kGMD$P3d)%CxfPxYYF9TSLUHncGT%- zKe}jy+61X5SEUMUB7A#3Xa%yHXjYD`&Vj<@j(clK$%^1$dhup4aIyZ*}T z)7t)sUVTfIidjXA?48ML1~Lb@b60<( zEdGNob4{V93s*Gy03$8R8jiPNH@Y?0<7Ya55*3;oxLMgS5^TU4XwM%}R@!sCYbTOY z8h7KGpQoH`CO&zYHwq@p8DnDg~h{n3&zy z5WL1bW@*k-TrJdlzZ~>x+4+9^!PV{#d1GY^avlVA18uINaN^w|7%nX>xo*%qtu#4o z6+5ETY7c|P&O@S}&@In}S*1#1IDn>j=!qsw|1)U_{J7@vq9~mb2Y+>%Sv^d9C3ly7 zPT`@Pi5GNvlted?s3t!3Bf9%2pYkEEx}PE+s4)8K@?}6 zM^m>}`GyQQ@IB0vfox~J)`2XDTeuFrxqlQ^k8I;93F;!$am2CT(gGImHyS7BU z4YVYe&IE%CUOBwSLiYPr?>D^FkL#6f3-sJ%(xK&|L&{wyuP}H-^g=kxcOUpZ5$;dsj?G{ zcv~qGUx(4-@3#2Nta{&hh<}3KL1EZX_xR4?zjrFaheqC*vaU1$__0d2}JC zN)+4W7>cPvQ0Fox{+bb^HeLmsC(o2^Ec%OCamQ=pe~DxE8?C4fgNB%{gp7Lk%oXqy zC2TF5^RQCi{sq^m_JC1VngwH5!9_@OcFZUPi7q(K457P$W!ACL=1^&KV>XcycwEdUqDtn45JL3q5?bJ*j7k++YPekYZ^MMjGkO4HyTBsY6z0B4Q(CUZ}GQK*{%*$7{-y!gsW@d zvSWkzt-slLdXHXsPS;SMA9VTUn|t3B6Y84#|prq&(sR+k_ z%~J1!x{Ch<-#KlEM4b#qv@{hwmtV+fXg$@PD4nAGPX)zTLHLzFuDd8vgsX!DVp2V$ zy#5{l-GOX$PbEO(SEMRs_o)imPa+!GLnFN>`OZH#KD+KWq^A-z)>gJk&uTYuUveIx z``?n>YHM@e_`4@fuDVM@6>3XvnXw{!AxW3nf(h4WzQ*sPBRV4Im`)W_WZH_3Xf7Xw zo0gN4;;SXBzZIzZu%45PN+V{c;+xG$cXsk(x|F`_$t7WXnDd3JA>9R$me;Z6_R9~Q zp>g*rftQfoEB?WQvq3Yfm#&yIgL0xv2#P-ya(}(wx1Z40zP*bVBQ4)#_^FXu0$J}&FHN z9P6cNm$Ctro1z|-hZ~1}T(Aa2Kg-bU9LuN;ajC9VY6~AiPUc^qxz&!wf^_>ATCG2- zi!LaXzq{F$eeTt_&TCIG$1&*xS>2FySE~kpic#v$nNfZ{(w(W8Ot!r~r5pe5|#k?lmD$fWMZXivo%y%32azx&}saJHcFJVc$2OU zP#+%3!X0OI+g*gyl*bm;EwXhQ;kf50%_m!W8nn+@?PvEf0kQ>9Mgo}w1Qv7#CK>*M z05B&=5vbc+;CJ#Dfsv`G{8WL!fvo~g3v7oQS8~HsRInbvZ># zkYG<5-R_g?Qj=$ty22SWod7jJ%D)ypD9Zy$ch~S@Ov+Sd$`(e&4=qw{Xp{kS`Zg@3 zJ$19^u2z4q)Ukc|Tx4ThE2|OSOXeP|4EUlYRSooZ8>Xlgrkc5f6XwAwTLMz3`53i2 z$^|j`|1->@oulFmXK;ir!oQ9Wfvm8IWjYFM*W*)wB*RZD*eYug%S^a$ls^_rDT3?3 zP6#&m@)7Qb2^)ML;>->L9G^bdf$1;-F)+vxM_{COSo7c#Y!|XW0EdMM#J${v>3<@8 zV52zT!S>zy!B)BoUxrT#WWWZ&sutX8_@MrhB@1GNAN{551DsR(+K7W6Q8sooJ3!iG zc-))jE#~50)~0Qt9PmvcQRatT|FNk^C32P9)pA|LnLlPSSpLn~U!J1_jcZDUH*s_>jmvw6b-b>8ks{q4&l-4kJ_Y#i$tPp`$ z_k8C97cfsjS%nw5TV1gNw?H=$uA=J`!eN9TA@j*6I@`s|AWkwL!gjBNgc&R>eYo*K z(Z>C_LmfndXhX0;Df}6{BLcz&L6T)5N|?_A zwFlZ$Qz%wqA3?2>q3p@0T?hqELMZ|hd`)O#hjoj;|~V9>MbPzHri)qH~w` zBKh?)7y&q<_sw~*(igNVSTI4@%8ybJFi;!a#vs)AcjzQOVvd3i+(Qf^$i-eSD1IRI zE08+ymXWv501HD(fS;U!i#l~K2Ge?ur3h=%l3{najYrwFk)yMR)`-kK(F-Dcy8E7x z&SWsAH~TnFM3g&|v{V9D84PTjdsV6@27Waxqr$M;H?OM#v$CVZB}Z68egsGUFVg&q zmrkUnoEbw~{^fV_UEu*KWd(jtXK~6OihtN*Wa9XRwu&G`TJIG^ILUbpow=PC9fe&v zMRD~C_ao0@Y?k0!Y)Q)uFGtm9;}UR4Rz&zm5hojQsj=%M28c|WDt4Zj(;r-Ih`$(| z(3031lsFJi*zVn&I5TIvXK$pxOxBaNu&8n;PF$ttlHaG^2%)4SN;NI2L_?ZNOW!=2 z{kcMBQfbD6lQzcvyPr;GS6Qoy-eaXRz2H5?-MIy|T{WHB{7yn8bu>*JY`=Xl4c!25P6No|tncc=%I=P|xP}$&8f6Ct1g_VKZZ|*YU`6U3 ziP#KILToZRFe3*eqHjS=Qu)73m)TQOSsurGwyN%jewdlZsj|wNM`!+osp*;O>2juR z2p|avfgm7)3K&@vkU-d?2n5;pfD5R|uB?JeAP_WT%2O7 z%AleIZvJCelMmorI35&v&copoI`NP(@WBVzyw_1k8xr+~{YEeY_R8g}caB2MvIc=KE}i1K*i z+d%CGJsVltGk9?kBwCo*22Y$FD4NcB8X|z@U;D4y=s4@ej7AQipIRUGoT(~fdWDpZ z#m<0KtynUkiey_=%Qdm=)9BNC!RBFc`H1f)u>DKJaY#&;X*&}!hQF_lhe{9@ad ztQ6U#CQULsoIy#ydpTZ*mFnpm^yrXGO^bNfmYUE#7*sHHYc^I_RsiNw-X^s?46Yx- z+(FLGdhPr0q}X(h8%!BWT%#MTzOE@*4vxEae=edct`$xBtfJDawt$_()WTB1deUv> z2mRH?s3CUbk}{-HAu!q_REQ(aWL4IEuzn@BhBDjJwCt#l*!6!R#f}g|Avped7cA8z zc{{g**!jRc_`?ybtVRJz3T4!MnF11X0INwr=cxrylL*%$lL&SDW#))0vB)s<^D)xj zWe*c>yoaAf(kS5Cl_o6iASaP;Ss^V9sS#y2Qggt5B~`g0Y}_D>yra4AcNWl(2r>no z;g7*9bb-Mr2Z3P0{-2(wIjP|8#+KjgIXsXI?fy0UfNvAP-64fA)D5yL zz;!b=1$YSe-Hz`xN`DHCK9I12_mMEO7`^hMS>qJN54wV19`uL8pP&|nl;3&k*G0zObvJA6acg|XUQ^N!W?G6k_dR(&8t((hHrLo|S%jUs$=lI^|5 z9Esj6%~?WhO!Piod6UL-a%&Jo&G3uwIRNsuuOe~ef^>o`lwlxRu_kVATw;-=BykLZ zf4Wg&3-<4)zze8aoWUPGPR8HRAu0LJ+(FnotIU8ZLDmwo>a zqKqmvDI#PrzCZD*cuS1=e>(A^koj448PZs=Glg~VBwj;r;!)p?B%Hfoe9cpm4?;!36T$ch) zr8zk1A-0O_2LUYcTv>psT3(@$X~5W!d;rCl1Gol)8(6n{?lOb618vk3L&2`dj86#n z2V6ag&jfRaK?ff807`9kfi44g%kcUdQ=3W0smlY8QxS+jD7^(rC*eder6%s!?*mS4 zMn)g@#tYBun_%j0Z7%~yf+3U-Zu&1!lw`s>FzheIielOV=o=eBpFmCt$aqe(728z- zi_;;@8-c8+@6r(_dm&S20kg3D0d!t=qwmu@F@(p_4oVrcL<#XlZ`vVh&w}=!oLhoz zO0!g@NePWpVbg?r9k<<82=OoW<}^O$W#v->K~G-672id)BwE}H+TuG}=A$jXQ7d%_ z-LAti^ORXYZsolECHg88TFR+$mne=0WPMI~M!Ra%A<32oHZ7$O?Pn?XT)9c|X1JWC zY-yA^VO=8EaGuI;lvRUH*(T_&c&M`LG7PXgSyfu(ewRO>8Z+iN5hpyTRQ46AY+za0 zRMUe{d2WsNzV1lT%s1B;sSnEAT{%7Ma$2ss2~H;$C@ro;MWb2r4#K6BRrKhNJfE7z zr_5(~HS!gFDr;7bIig0{ikOT#*$rD~>}+-`$FZ%~o+%=%tKJ)~Yx%C;*tQgrnQqbi zm7(Ln63`%7Nzdv{4|C+pDqFf-4U$7^>`PdYWbA4Hsyq6X%0e(4qZ=CVaGcKDagtx; zG005X8u+M)9S?dt5I(#wo-yB|sbC>Y*DBC6d3kVM=)l6~Sw>SQ$}OJKF09@#EK*+{ z$(!D2lCmqpT{gX5r!&zxm_-vtHi*iUr=C|TA$w(eCUkUp+|rk5G>@Rx+T}&*qqDBq z`4=F~K@7v+{w*ee zzw_FTMeshX+sX`ZHPp5|%(fq9uK=V35 zg9suJWHGEpKo;4QunGtQ0)hbr6dI6CSq&hv$`X>0|*I%@B zVN+Z7Ad*_za)zf$fN!?7+BXF&%7qO+og4L3Os$i1 z-}DLYWZyKxnRkR*d;x`9;yd;-qadph&iM`Zj&O?u0;Pl_@Ue19t&T{LI|@heDG*)U z!Ic8y&|w6*itMSH`B#qpy^K@&oHT~x8K(n3-$BWz6vEE|vjSEcMTImYoJTDt#7U_N zVb&$a0lkz1x+!UOdY8<6TUH4F!9eiX3Ge`;2H-CEHHaT1z6l54alQl;bsWYQz5!xdHpQ?t9c|p@ zY+1R6Fz#L2_MHGHbg9qV*)xMMFpBQstLRt2MFKq{rRCQe{somd@-ihDW8m zqc?iz;RQ#Fdu_sL3Sd*0g2i{rC?Uv$Kv4hMM#-pGeDYOoVqh7zhgH^GS)MrGhzqWK zxLiebu8~1LW;EpeAjp4!Q0v3+tb{<*_UV1vcOx(O6VXTB_w0{3uc=S>D*rKWCm}5| z)AZi&L6oZ=BA#}HmUu<)_xj$!DZz7$c0?70y0()t{|4{ds7xK3ZLC!5l#+ynq;jS- z#wUCB+H>k~ePWsV9-WjhLrYPb(1oe*^sDOl5U^OcTam@!@DKg;(he2G^-g+ z<)po&?Qt0GRAzLLwpWR~(z=OvJM{{bCUJ@>dYYL`W~UoMmii22_rn^e6a4@}!f7CXz0X9P5uWQe zk=+HGVcM#!9g_J)L=^kPDn?dhU$ird))!>q!d|b}b}sDyBWNQa1*VaB5A0{dU zX>7AWMkCuHM8IEJ^5CHvY8S;eN^z!+(CRosuq3QW59mj3CMXl^IKlY;q=)`9gYzFL z`m1Cp6)VxDcE3T~REg57=-jy(PcM&R2Ae_X=(Sd%$}{C)>YlK*rMv@ z-8$&gY+iPcjd&5G=KyKR$7>#Cdl7F)oEG1{58X;hRr-9lSxmMmv=G9cWsJF70;X_e zm91>CI?nX&-c;cGW%n6fGV1i^N8Jzy%$)$vp;N^p#AKPiAeN~wv?T{mHT5E847I(d%PbJ9IFZ>C@wqK57L|m z#ohAE#rt>4{M*@jLW)nxLR5+GQ*NU*nVj8{C-O8g?xg`Z{3aG zTK0B}8fXlN_H6;L9jaY!-%&1?dTV#-L1}u#%vZNHiNBNo9`d>d^1+|f7ZX~PhP4Se zbeqOL74zPRc(&276ni*SXqM-ZemB88@8kKUp`XGuA=h8KY{S)h6=5TnVGhb^<@{DW z_3mN%C`YaZV60V>$6DJ}gDl^!9~pI9nRnU8IH-h@qD*wN1jWtJ;`>A$!<35ythES# z{%M`Yc2iY>a=TPkV`6MMYa!QHi7rWo9wJVbn^PaI7`bqcZGl2rc5P(Hr=%$Y4V<2s z4av3sbChF((MSRvzhtM=E;g*rr!_(J#aTLhX$6i|7eY2%W?8L^ZSab+ZA>j@<{e!C zT6G<#iuhAu9JGttV5{OjL{lG<)I`g;%(LEmbkS||+Ce|wKC?j^^Z`PL*XkS z-v^u)-zj)j2EF{2z44a@?u=oiR87`{`m;eerxy&Io;4Ue44B3?P@1MD4L^5lFv-iJ z>U7Sp4YOwjc-DE7$Mli9(3a~9&>t*u54D%9G@wy7Z3*w(rmIbg0eKyh@xP3i!frz;=+!I5L7@#lubq1 z7nL0v1f&~i=%Q;4bH8`bch3F3OP+ZlV~-C5m-qR$!a#a*ZDY%L z{c+OjS5kX>Q1Mx!Y^_wE9*5or%dFqeg0*G1@i>|adH-X!5M1>-(tmiJ4F# zSw$$$Nz686O(1b-{fg%$K-g*{AwgsK^ff#g9@-15dEUK7-iEBkD5i45;RzPiOK`~T zVLvw=JYqSl&C|x=(kv_mC{ku{{-zKLhllBW`0IF${+wn$p@D$9TYaL_(wR^PJNA-Z zkFIv36A@QRe3oHr^j(YuJZRKmR28adD><*urz61*$XjoK!jM0q$@Tc4vA*cYxCi-| zH(~=u7PQMxB9xght0{Jv;@~hVXBqYQ)ju|*z;-3G>Sfm&NSF5gJxc19aF z+B;qUDPFiCSH-#(IupPn+(>j-HACcNJ86potw?Wa?AFLflw61~Q~oXSd9Dl{$8)}0 zR4F-yTq$i7g@!M2T2!pm#o1^5he;D`jlYD>JdsnLI~*7)qoG`W80exYbEGtf3hU<% zbj8h@5{KMo`FK87R%*iBc-i{jY%=Dv>~?Iq|2j=+c7yUX8;u9p(by4%rq|J$bUYFN zC;s$%=ex|K}LVsvv7<&L2)# z&-yAl=ers+a8fY^E#Lz~#QpE?=5U~FgnfTI0uf$fAnt>pQ5=_(M29^1ioFe-jV*(O zk)wCuv;35!CKXNiyOi&`30k{+)DeFJW1H}3#hsiUdC+8_q#+%r-sZeAi_aVtdFwes zxjh8)wA*A~2a#p=Q@#C>j9u@wmN$~>E7RzazMu~=QVo?ZUCYDwuJ!cf7Ry;lxhKNx zjO=RBrF~N;-^qAPOy?3SoUAYLhe5iK9@qb4_5i4^Glr}#^djRX%?a&?LVRRMiK|2k zc~A)a`#X~YQw%41SZVA-iZ@eJGm7BYF32H#E8(PdA};BIufdU?C>sKwn4`3^ao_ho ziEEsjLep~gH<}KWZO6y1fEzn>DezQcEjk}<&?`@a^{Fi@(J_YOri>U9(Q8hJFAe_d zA!C^_mr~;1ZwBg&b)iePWIfJJwzmcuwKvx(R|+yQJykIt+d?{y$%K^oH)RYAhh1&R zT#GCMs{9t`#)F8iF;d&n5t34hQ@YoE--`;&$FIT`V+K#ZF7RJK2dqZE8}b%bEg3H;715TyYLpkd-SkXXyj74*-uR7m?SCmHZB6)Z zmql;eYlKNpJry1a41_qMz&R3G)%(z8K<&6|ra{Jj>+*jqiM9^2 z;0dQ&eGqPd=!GGPN`i@40*{EH^_Z1e|2J@St+|lRwdz86+X^V@`|&`x(?;>cD2S@X z{$)y~(JAbnT#&i)d{n_RBeR@KJ$;sb8=h~r^tG>;yW6*VA1&NJ_wreS9&<~3(>jvx z-5tTCt$7Jn@2Z*P{9SFUm2~t1vfttHdpD=B(pYEeD!MaMRWCK`vp^J3M@@~hwYK>W zo4NV(mG?=&d2Pi!YY#H$Zn>!As`mP##dy`yUC^_bsVnSf{BKI`*$ahhigYC{XMvb6 z>aM%`w7SNWDO{R#C9M)=oKEXt7UR*(A>k^^lFn%#BB?AX>8i|HHA$VZ$tW-KF{DKb zkGgm(a%eIp!}UDkSm=Wt!I8(kH-9K>PrpP}&$L@LwyMMWP&<+{b2Smp`SA}9NCMX#o2|cfg7N;IrCDN zA>=RMMt_g6fooln>DBr!1h3gghhnDCFBzYaD2rCB7_<6O5gxp zL!t2qhx!!^A()Sucv1DWKpTnoAbS~jI`Scu>ev7vJmw86$rdO6sQWzF5*R=C%*ZB2 zd>m{VzW>lp!1}$o-A1RmH>1-f#=9GMlMirj^7_19S17Zm9P_>Je2Rp=s}G-`?D9^y zS_o%`wFDdpX9I5w+laXbwTatIY$^9*Tx=Dr>%kDr0CmuVmqc5VFsC;vapY_ z>-cVDm)RUd^}w*J@Kd48$#;WEC5Z3Ysa>(Zt1t$sdI!HecozJ9eBKsYNF_kA4l%r* zX-24uX!l6W2$Q%sWgU5j@oB)Y$DUIzROk2!GsI$}I_C<++SOc&x4D-{Y)9>e1#Un# zXZRlH*b?MjEWHi%+O@s{5mdjcn6a1z3?7616xZ1uC=}kjk$;LyjEuSYE_Q2CAo@9q z7!`c#dQH&xuLL4IeazZ*rV$dmht*va>_RCffry4%m*FKx5|NF6#)y?*SKt6$=evpi z9zgn;lzV{-BGP=@HuprteM3WcKs`7c+PN;kJq|&D3Qxw4{y(Z_c#S{F!;^?q7%-8a z^@|!9>^E;7y1!&ykT%8`u?)^J>TuGz71*M^oLJzx4SF@FMe=L!rQ)s%7bhve9fokuyef1h5W_nSf_a)+DC&t~bQg^L1|o^XD?tl3Nu8p` z5Hoig7ypvcD0OMI$NZ1zGV5w$%i{RMedu1jx*z%*^ji+OE7Q)k$}z5n~a ziDTir%n<$$aJ{LhGS_SA6Msh>yBJHS$+Z~%{ugE3-WI>o{eC0&T0T@?WBnodP4w)ioc$bDY;aZ6i~SVG1n$@xAXusf|h z?|u)Z(-Zzc?T{OEK7Bk_ocbiyEeIE>5t-8=FUdhp;e$!kU<7ZChWTlQ2>)y?h_T{j zZE3uM{iri!d+7a+i*jSKxrp*G#U4ABmz%PJtmZQH;E6%2(vEYMhJ-D+s?Ih@=$rm> zY|2VoBnt(q_A8nrZN8>Fa=SOT@C<|9P`|v53pNf{q}j9R<_Lk zwTbB6?hVTHPy6rJMOJ%~zBP1W{{ZCJ>7H8y^z-C4A?~RYnlXRlL%g3BX_&q9>xeCA zUUjdZV(uHQ7%u4K`DY$$`!Eik^PGzq(HV$oUfGENI8m{&N0cc9 z{CBPGp!*j+!yf5LRRMXW^sY;swNJ>&Hop52AkGX^J3(L3tk1!8;4zB)Oo<)Ma7{{t zLmhm20oa}+ucTXaCox?B;Z>;o5grb9bJ`9;;D+N7(KX|Y0@4@@)^d2N11@Tf603#P zupRs~&uKmjo%km0q!^l$$k!&E@Y4IZ0#&WCX_aV5I#V~A+r}jp;MNi}@Bmw@$wVln zo06A<8pfCWcfYCYY5Z4$7f-x5QrA*iU@Flyod_fH%H)Mc#f42J_T_|Tx4i#QN;8P~ z_pFA{p_XUw7*ezMWlpPt?O?tror{v4%g8QLt2-_6Z5%o9_jHgFl_H$U32DLu z(JvpiZbobLwKC<^o9L}0^>gpzY@^oe&a}i7U7AADlo4B09_$f8NqbSrNwQS}bq^mm zP+|x2d#b!}HL^drI#gz{wXvy>PbkUn$o|O3r#-89aZynMg(;;CPq&k-Je^p=hXp>> zMtFye1NPROBT^8UIf@KkmnKJHeEWkyy>o68fjGM;f$>AY$wqPiBT^D-)~jC9dk?CB zPj2S!t7G6IcIBPA!$)l zLttuT^;WD@nKhCfd8aTNz)@sFfu#$Ok%#%VbgGiy{5}&BFi+YVNbLQpqMO^J!CveQ zOnqH?6H{bN9ZC+Ly>=w*`I_IZ*kWWC2r8o{IwI_?{*#ED1Z;t#AGJQ>hhm5T(la6J z8Gap)dt~fF=nh?PFW`moV00;4y1Ms6^H!Of7gUG0H#lVzzP#IolwZ8;NYpvzIG;BM zl}f6YeE1dazq6g%>+T74>nk~U5r=dMWgN3vt>92xYi2rocB_9xcEZJWVj8@pb`Ax1 z;w}^P1+k~0G$n9#J)pcCU>^2+6|S0Cjw?2h{~`Ma(G`k5skIQEGJsjkSZGONsgnn$ zn~-tE0qh2CkHrHRr|A8erbkx;v4F#u`20dtT2C9-)O8E%1upCh>d=q^EyqzeBaqrS z3``f2wR6-0T5=$<1w+(VQB=aVk8W;4Za)FLAI%-m;#$&9ib9=5ll5T!3iVg)Sc*z*)Fj*05enJtP1}$RrA1Aieg0f<9;}dd7dBGc4 zHUD*yiWKPE$wjNAinc;jQPL2!OJhU=FL=n09~&At=DNd;-ednWi0;5m8899J0{EQ@ zmP+Wo&mJe$lpDpD%oP)1#-BjI{HE-OC*`(b3Ju-bfC$>%Lc6fqMW8*3<@uE;rnIU> zY^FY!{3pLe@6=i$G7MosG`Z zW9tn-9yURy4!K&9)d+cN*J>bzh6nGlZ-3e#*`oxn1q>tSI)!FrxbsmYKjfd8K(p#e zDn_qT5YOlLyI25IJ>X6hZR6_wIEDtj;T-8+Hz%G$zL`1(*PV|X_Wv2RcZ0@&@Cte- z6$H1U3cw}0U0sWJ5*^)K6<|)rad$Vx5mHVYge8Lxj(C~fmrw2f+jSE27TUGM5l=sd zu|ifAey8SEG8)HNu{7tcL>P}2h@aEt|3fcrER@MF5NW~Cf?+#(*3(9M%bs#9iorev>k zp09aDomy;Od-tQ~^Ekzfp)CQ!uMXtz*j`kzxnEy*$j{^y91s}DZ1IqpEc@sB@(aT6 zm~*Pn_}Zey<%%BaU6@^U)=2i!q-o}`$a2mWXAWo8i4%l9F{guh<1ICArcG^HL zO{u$|wFb`_6BFm$NVl;6WxmSZn!M7u8mXP7GZ($`nTvLwxtWX3A23g!XXbLQtnD~O zS!%_wsvwICT54FtP!UjBDikn879kKQ5eWzaf(6+T6cR|-34|mhB*gDK%Xj8IUmQEj zKQKT(IEVLp*WY>1``b>As<^2G54~67^eJ6i359T_w}m9T7(^Qq38 z%Cy|1m8??>glLY2h9-KJqY`7f@jys{>eNpvn6*-G=wcV$sX4`Gpxa6Ka(wQyaP6C` z@gCFPveR?KqVNSOJPOUbegn|pNhsPl(%yP*kCBzIiky%sfS4oLN~QJFcOG1Jt4fDM zmT|QD_DLPe%R8dC&oM# z=9+U>r`F!{86s&0&NUNj);z~w;OE77=pU~{BiNMmrD&VvM>?FxE>O}Q=|<^=mNL5( zC|eUS4nC&-UM9MLAqggQ&SS;5ycZLZQ#45uVT1-!00RvDGv=c)r?fz~IOFBKRc4p` z2e!B;oSwqCE(-i#e4D^!1G?S=d(ejk7~f&wMxqGV{3C)Uia-j+B#QRn1LBa1@FlVn z(@lg`0gO4Ff&jPJw@k3j`C;;1UEYSWQ0$u%Tyt*Gz9VAipo!oWlLM^H^z$Rk?Bg@! zRsVp82R8rAHfDmux%Au&eQ>_MYlqBr{+DpN zz9ppyGPtYzaihI{e!yVFu8)mH<02%e)zCxnx_`q_@k!lM4rNRsWJ$iy>*BOm7(bP}+)|+Ik*kqk*?% zl>iLx89Zes1%!wR(r;)$bAZEe?+$R9BON9zAQ^Cl1|G5`uV|3ORl-Wacd&GbN#E2V zQd$lalfKi(C|5?<2NGpJ2L)aqlx^_M-_o~yigDNFSA&>LuOt#gxjz8?_c@i4Vc#W*(3d3ekCNYU0MhLm!igLA6`%p{$o-HU0`Nc%06Ef!yhnlvZ-uZU0|#FH z3m0G{t(vbnwzwXmBLPk5+9>a=9CYO671xORRRDX^4K1`4>=%$83#Nq?gr`$R zF+YU#4^mw|w?f~VLi2lpgBAEN8RY^*v<5*|wh_t14h+Xop7WrdFEFjIb#kN=#dhi- zbu)#iy-zJHh?x7K!EZ5*d~TcBFD05_q|c^J##f;IBjW0Bb#Ug=kkLCkF>34BqU#;K zUSV|D-UCy{?neW|%PSKL;^L%(dM3vOVb12Bvk1#czw-b@>G1-gyJ#2lZNaz)@OWu!p^HpYLu%Kf9#|KD*`%c0zEFllm5fZ)*_L zNP+x32?r(7N2On}It}k8L~bke*Z$9~n70=axVR4TOhZ-x4lo@%{!AH>FIZ}_a&kkrT9W4;W)wNYQpo=R8IdrKYx;NxPc6w`K}5EEXHON2WrzGCSOrX z?T{g)AbL!j-J$FiA0AWR3lVVQ=?0D36ns~hJGHtL*K)HQmqw}Lbj6o+k@L>@2jAuL z!aa@E$6CmxCgO-UBpL8bV)gMyrAl>S%jX5rRh^-;bn$FO)DwxV$A+i(f4xkX;xuR1 zNmc_9lS*=quR*wn=~_}`)L8D-B;|8TUni-I-bBr=%N|4pQ}f*|+r^N6qV> zJaB&IrgyPz!au)6(UL{r)DbPr0KGz+vu=Qj0AqvTB`ch51yLmIh{P`!jK~F}v7Kc2 zoKK7!hHU#yX!8soTl#ZFIvM79=~&wp>Z|a;7k(kmYdv~;OtgxnYC7CN@BDzA5qL0a z)3%<}i27XGyT}>33W<&FCB6Byz(6bY;?o#0WeCk!m#$!B4jZseicw}M-io_sp$+7g z5?}lZiL4Rz-=j=DscptHpTYdX4iiCb#5n(ot1OMULWVub9nb)pONGv_RH(L^JU!v< z3-KA^J(gnIku@(0Eg8MFrrh1Trlq6GskU$%M6iAIwk0@rIX@YXgfDtx8rPM>WayG` zu~JAcUJbKNT;$ll`UF=7*K5OkfHOnkPGvRUynnK(<)mpk(%ce;U7?rnCd|ZazZ^d$ z&Bx8CB!zTEtQ4IpjK70%WnSZ#Zrj)K(HSVO;D-!5ob4`kO^6A%XO=~Xl&!@#k?ND_ zF$pf130?mryGom)%&xFAGL?y=l7V4W1R7*hQ1-o1 zK)_~E5LsJc22?V!HY|Ow%8pKf=mtobq;@atGV&id+!|v1`W<)_PP8XW%A-rL zCno097kDY(RF%=_nEG0uwe!_@@}|oUg`f#a2V*FE5JzXzzEa35^4&a& z5|h*x3l;@{+MoO}YJ_e%J(+T*kX=o}I+zU&jjT~nenkbd68qXheZ~Mn8`xuoV2Z!; zZRfSUi0?L9idkj6)alJ$yKmb=I_Slg{byrd2PTgm?3EL5iL!}B&f3~hVlveovh8cM z`C=FP{9QflxijlWxEKv-W78J^6cY%SCSpe)BDhG0y-gQHWpe4pK8Er9ETi#L6#lt! z`zk;1YmNdE(kxuUqX@(nwjKm-s(+xU^<}PiLM2aVS_carJve|JFAL_t5J%bSiMJ>% zUGzo|Z1-RB!g59uO`D$6lJt%xKac`u8F4pr2U@vpSa$ zCleNFg^CV(vR>!>g5XAa?kN_~Sye`Ozo65RvhaG^=~Hxo>ucY0Ll={b+6Qu^g7-`Ly=lp)su#+S8;}-#%%65nol5 zfw5O9J^X=|1xbg!ay%l&vM%dz08Yl z!rf%p4h5(UwH^<93f9v@lb%4sA5y0tq!k2s>^$Y^s;<~|v&R2jwFzLk?c9MZL!KJeuVO_EAzs>$ z7qh3}BVNCwx`AQqMDLn@p#4ym4_h^xoikkik~OF|yX$pK(&yFdEBCtZPApZn8tasq zH&-az%_UqW9jW;%(5Rl{miFxIUP78vuRli=z*G>YHcgh4F|#_c$UxTeLRyTxF1fG% zMy)IlC8GpM@vkOS-pI)?PN(+3#!deu{bXhlnB&jZhBsMH?IUx(4o&Qg%7nbg8A%(d z$TuQh8-X59TBZ3~q;)UDH=s${jPOlZr5XNLrp^{n*VeAu=$D>HU zyH?XM&E?~uQ$ID)g@M^!jfN0ityaS3@hG@DcahpV)sx-N*mgzNd~GA?s$Fjm#v}g$ zgKN~@NWfTAVrr-wC0n`4PxwqtJATws))g&=!3UCRMk)X5OgJWosK-Ad@-HZNcq-u|W&Bs> zzZULF7B7U##|wxOo}h*lZcB9HU!pG%9*(|uOuu!^t11S^6YUi^937yE!)@U+J5c#J zS~=!$w1^Xx82UTh>2Va=Lx>3Yh!g=%mO+s@PNFc%f`!Z~LKk=IUi6a#b2g&IXOvPsy90*IvnfQ5>0hKte5?Sn%1s~+#&W_bN z@-Zw%BnX3J50UiGmr8CgZsEF5O{#mMkmm|?j$9vQvuRJcFitzgdX9yT>qf<5zKv&z zuiAS_Ht>N+EqplOJ`Qc+Avz;vC50eBJ;sf0*1?Q&1Qr7+NN4h|-~w7f&J3HB$374{ zk-}c9xK*o^jo}eTnOgl{(#!m*sVs}*+KxIpQ{7Y5zjas5&-24{)%*cdUGtMwJ<}sY zyRz7TfS@9aC_71jNH8p-2?8yP7!gck5J46<1Z);T76C!h5M)On#1NAA?mFi_Y`d+R z-=;#sd-vUY-o4*@?m3@B*b3k7)H>j%|KJ!H-H8!(#OXe~s+NDsHV9qa;BLEck>yRs zzLe}xC_+u?5N@@(ff!C{a=2kD!CyY#L~z{eQV^D9vEMMcn|YM|Nshh^YrtwVB-sW? zzn~*i6xc->!iJ~NbC2Sbc){BR`@a{)ip0!?$HMP+Z~^vv(Ss_DY@65)p%>i-jXPeA z18p-QEmuy!ZegD@$wb&EROtB!;me}r-9ILd$DgT?O*o=xrHVZ>oeoTBRh!6~PNxnvf)8us zPqoEX5_f)Dgq4)P7Y%dIp-&XI~bhG2e&Be|ZVr`mzVj|MR^1648Q&L+i zCi{LS>phlXX{~R%w;pje_R`(>6j40Y)XQ*={`Jg_%*l2qwZ2z{303<1XXGdgs!Bma zE1ulT_;RUij6#Evjy0b?yuVW})1tJ;h!mEQ+#i^FstIP&9OXjBYMgrkTh36^MN*;J z+z4renW0=0Ch1x3d&$Il@a@6@Kton(knWt4%kJRH1V?|kT$UkqS^B)j-_axSkF+?# zhE*!udAPr4|0HPWJfMGdHgWpKDQP0qx|no(C7=rToOTu&WU}Bsq<{2-dBn_?G$gw@9r&)w_@4K`nzhE%MUo zd^!La;$m`i-YdnoXh^s|>d=C3EjYC;V4gAG4nl_f81D;Sf0;}0K~VxC-`6&0(M2md36*X^xpW`QBDz> z{sK3|%7wM=s~OTM%*EbqH0n15^N}u4z<97QaF1UjY-N)lz3N$fKa6- zG1mz`^GM``)Ov!`>+y(+m|_s3B1grxLg+z1m}!iO*r^=;BSZpg0Ia}!l(7LXN_&qu zyH!LE>K4#&bdsbtvYr5Z1+ezPaWrwn8Yz#QY@Qw)l9z7;YySc+f#YgOWgMg54nb&` z$h>+*3v$Ze*dZG&gD7XK88aW28Ts4QE7aySC;j6Ud8D}d<49P_tscSV?p_?k`8%!T$a87-v{WQvAYVGrpz4$+7m=fe+z`2WrdLq_eejL_?d8 zPLZc}a2kVAaz7v?btEZHb`PT1bobhVEo2&D|3Sj%10Cd+p1#my954cEt_9A}%sSp4 z=DHh$h#`-VlfjML>35Hyndx5K8T7Ria(A4CRONB*(+ANr!z}+)AV?#q1AE-o2+o76 zIDZ!4!0&Ko5$gZODeapW|EGQa*eJ;?hS2;4_F1RT{p{Lt5`T&0Oy$h-Lq!RT~$2mjG1zU4OR>skObM``4MlBggNieSBrU=7WTA@6q ziB}h|G48pX@Mc<_FWWT7)tzhE>XoU8V?~M8BAwKR7@tIB$>q^+apCu&73;8oQU9pe zmg$IWynH4ksu5cQV>E9_T$r}+$PLIf)iDK06WHjt(i(6X0%QGuEcO%G^0lxbDe+R3 zc9tP?l#5f7|HTW{U14oH{nv1QoIY1@UgW0jNFB(Z8&jMR>w&;+K4wmO)e-1$ov2{k zaU#Qz|MrNeD=-i`S|4?Ia(LLcgX$Dzx?QP=9ib<}jav*CI)?fv(P)vJ#w z`Uoibpbs!1BcF&m3J&w9;QH?462hv-0@ol%{}IRwd=kSKKHFe&p96zYg|&$IQ>YD6 zxOns#@Eg#ZlH9ShDiSm}s|20*iC&X3Y_rP_NG2_9AVeUI%j-551Af9tc41CrV6+V= zckP6GriLX5?C+*v44xgeG57O-!ZSPj#LYU%vu`-S*w&)JQXN>KFfUXb;Q_xbpZr7H1 zF0K?rho9YB94%(KU0}&)3jK;b1T+%n#qkO92)q^mFWvzlEA~(Ust*E`^PL30>aoeo z(9#NcH>R1Q-M>67RXB4AZl7?VBPb-^KS<*MVnCh0Tc7{qrh{)IPv1B2-#q;2n*Q%= z@MUpvf$xA??6)mC;B@@_eH;I!i74Fmu@NgoRoV&q)(R8^O~(1Azgm-3V0SnA1Od8N(qnf9u6ZJTZZrCe~GTH zpeVB}Y_`VQ-KU-18f&YjYTmbYU-x-lW@}1kC5q&XAc}|z656Iow$Lb`2oi@NC_#cW zA~=YE1nDLSjnIISyP;{CPXGVkwC6S(o~Q!u{qH$nIOlWikgh8+)5CuZ{^uQok6vN^ zj+6YoV`hP!!fzfHF0H|}-^{0tz~!V{xldh7D_hUl!VY$dN}J`K64~Iavp1LQz{TX# zO9Ow|NwnAc0a6n?L%+1@fIxV9h;s_qV27ZxFlt(WQqd+b81F)|<9rf$Rzwoy#^V^0 zmJ#T91TR6Y0%!Iy&^=}quIHX2mM{%E%ssr6zqn{iTrwf_uz80GlatS-GnZ!mj7hhV zkSA00@QVz;&e-p*@4>ER8|Ada^RV4}flu*TGZjNM_;Bs!Y4oK2>UJk6%cVoEiBnub zeBF0_?^|NKHl{XEHfBXeFCAA3=Re2wv_7+Y;6@w2=$P|*EeH;;MZ=NPBzKJ*h77_5 zYw{ikFMtq1T>-+CCy0v$7@Ey3kbmijD-s+57Vwn!4MpXl5`DhN=>yE6yLSt$9CJj4 z!-TP)RSCU3PCBcJ1CTN{iN1;^#)_Y@Y_#Q+nOKOzf6l@>T{zGarbhS{_CVb$hvkC0e147 zRr3nuuYHXXONkwXSf};gn^240@BJ?J8#S%K7o_DasOmdXcT2)Z+_Ga4QkfmhdRK%J zki(UJz7w4=2d2F3Ffd5Sh$wn%VJtw89L{g~57wZ7LpGP;A(GO-i#i$!M`27$+ziep2k;*OU7j9*6}{s#_d~AB zms!wbj?{5nKZK#(c&G*7xDV|$Bt=CcKR?jx{?3)n|=;o z#&08kEsEg%9!UCB-UMGp^-)Ecap@HSTjGt%55W#1zdz`6ZzoX}UK;-dODb7;wDFmH zR`n;J8R?z8C8&q7uU8Tttp_*bv774TwkQBX2g}WU^Nls=^3!h zFlV}Fin%o;;QL=yEks*I zM;{Dtlx04)j2Dz1sH;aTWR3zwUfmmUf&-h@ILrnapTM;uOIL zdoa^-o;wjmZK)Q~;EsTjpgM94cvJgd_zXddc%lmJggXE}#~vD}aHX4y+|Qbk=7en<86{IzY?#4*!>q#xEjrIU(bC^XzWW{aKG4}L2kamMR|BJ z$Ox1cBPWp*)`BZ?QDdBF^3wp%n-pj?z#`Viq9&j950fEkw5%OSk@P;`!9v6+8o%Wj z55ZU>C}K(?!R10;D(Z{0@18w35A{Ay7fF-`7b;!y7YFVl-<=L<=GP`L=h03I7 zjVZW39uciOYRoxRck za?UOz%Sgv)v)!8+4bDCW*&9Tu@MLGzpNPhAuf^$~Y&2AmaUj zhL13N;5x0#M`Q5ujao*NR~}reqc#ssw1BOTFT5t~Z}Jkx9%hzBm)F;IN}khjF3i9z zUYg9f{Gxn)Lnhk4sMUH=))y^mcHjH2IsZi`RdnCWy|@2+&Ue0Z{_jhpIuF>|j+3Yt^d+pk>oozi zxK|4DyMXNY)9#SWjKDf@N5p%kv;}8hj7|ug8NSWb$(%pTn04C#vbXh5iu zyec~M!!|nG{`N#?gXh%d(W;7yRY&kYACP(V#ol%lR*!Qdw@QvdKYvHOpH9C!|C-hWk%xhcYt;r2GBwxHsK znf*#J?TZl-1^-vpcgo%W1{+%Ii`(4^`Ei`BxQ8u|MWhkrF>Jh8Nl4-4G8xy%&)q>| zd~>silF*7)Pb=EqcKE!3+%H?`g3n5BnJimzMK-n`nVL9jWHqsboEortA8H2L_FTf2 z3$JKyfqbqBYobX*I7nyyE%Xf={N9S!y=Gw@Z9XP>8hPgo?l|dywio91c2V#LQdBO3 zuzHbQw4tLrhZ_Rv8rjSZHrUsX{Y&l_3MqMX59XuucLoEq_8I4%g}JGNa}nz zN7nBr^%F9j*QzV(z}C{lc94nsJ0<3&!dA(6H(Ikasm?);!o=RB=c13FMwRuX-Lt2~ z%-Sn1$2Nf?vuJ*rwb#YPXPM3E5%Zi+T|bj)lM2p-JOdUJT~gfDRg&x1D9YF25m9rw z#-_ToVvKUTcsR?(>D%}~!+?hdFZcz8>SoTSNnIDc5 zG^o$LSbNQ`{YhH!?sA02=lTSh)=#yPM}G=zQcYM+<|hU=+STbhK7|hg(owkzSmz_F zqif93cZ^x7urR3&ZqOI1@wz8+gcQHb7#GH?;tUjj_-cQbTGFKw{R#btTjMx9cA?lX z?k=Mn9fJ~y_Q#@N69GFYQ=`U3ACCYCVd-?HH7$By&B&K{MI5>%W!kfWM zV4fr9te7O_HKJdfg{T%*R$Tr<$SUE3IHB^lA}A2&OjfR#MK8kt+o02s*l0nMp|y3z z@osJ~Ow99}6nrS57RC;uN!h;SKudWTGgIH&U6_*T*@Htu0giPoF~gfVSS#R{+Fp3U z#^auCIyttzIy#E&%`dh`$5uwh89OwjoxpUpack(8t?m}-U3HJ4%39kn2eJH_?L2E^ zjwkue7Ll%_reU%2fo-UCf*7^Q)4;&L+V4VSY#{#bG^*1W$ZPfOZp>Ei$JOIUh5cme zMgb5*;^YA9YKWS_0(-(;5{d-6P+1TS{3{l`Nkk=yB2Ji6C?Xt>f+@uQd$ErZ z;eP1eA7*49#^6ZB5T-J$br7yo;e)7Rld!T+ijsZ>g9vs>1eK75se*!FaT_B{=TXua z=7+#+351{u@I@rF_XNhS7$M9)CI=<9zLOxHcs>C^+W3Cjp{f;W>;qctXV&OQGuh=| zOocvDNU+B=;dwdRBiBBKcbti%6F5#dMapyg;7A2=6)ro8%i?#gZ0~{##QbqZ0f#G# zjVYk$*QFWzoU@Olc82c~h&LXh>;`R5ug+BnLA-N0Emjj?c4=2Bn~(r&S0)FI~Pqs_97%oHtSrp zQVl!znSZYhH;_OFLv~>q6^tH(UkxDR45?W3Ewv&AP$QFf_U<0 zhWAsURDpOd3=u5&Mfu+xXJ;A$<(RwM?hBAR)~CXxr^*q_s=yB+e#UM$QgI6q z1gz>LB6v=h`2n)ohe-W3V&l8~k71*@e&MvVF>)ldnfA<{r4 z(4Yy+oRk9^f{1uAT%ZB&uu-5P2R;KdoN+a11!pPfHNbISYaa6N0XUd^Nhi8^>^S}v zj=$r&WL>aM_B7Fs%>FAn@+`XLTwAJd@mTeVv}^a@U2VPRuh(CUEbz;RIe>WteU$_! z)(erbXE$WcEwbkKAgls{esXvPT~Ch>lPOL<)lO6oaP^7NxU1oA*~pSwaQ)hD=J89n zZ9p1ze3)t_GfNdqT0`bnqsqxdM2hE_JukvHSDueZ@#`VfbpB{uQl)?1$y+knj!BA| zgX(ui{p)eU&*t2FQB4>%hpB&@vc+W(b4haY|A?-Vue7o}d`|Ckx@y<`7xbdGz3J1t z?yi&5NyRBDDh@ayF-Fm-h!aYwan?8w(K3nzjfxr^6EH(L5Cn}H6fqc40i&QO!+Upl zuP^CEt>1a)-uwH0-}DLT_+&ufW$%b&$HNcf&FKl zff|7Qn&xglT8QXB#@Na&AN6p@l(HL)E(Utdh(-3%ot04&gw83&F*sOqs8!}W&nG@9 zUFa5VnoytGa)>@^=XMFdV=+vbq1Mfw6>~tF0W=!Dl=IND^);Z_5W9CA0M{%6=rh@A z0BOq^ZFyjHxt+jnzi|*UQRWN6AW*3A_$~lZ;&URxc?N_4ZQ!FnF!~zpfGP`` z!4~Ot>^8J`l_H4skyo~}`Z@{;+i>X%u$26NjL@otXp=wE;N#81%^KX7eQn(!MDyOW zuW=4WXpBK>F#w2Db;1JVByPY%5s1gdJZ7IRL;tmD_A z-tBR^K?Jw60vukyuh0b*>~XvBK5yF)v$~t!Xrx36tP^?VaW)WBwHix0)jv>2*-4?4 zS`C`M#9%AFSL4l1nM)gluGF`yiCz}bEnyRlL7O+}*48AyJH4PH@l8m>n2V=`x3uDI zNylj}LqBTM#$VGc7YioPY(hmP_mWKDh(DQA3H5P_?e{f-E~F8wvJJ3s93P2>b0^_( zi9D{mJUORno+C}Kp9w#vcg6BV1B;LO9O+`1k$LyHA=8Yabm*|KsUQ;n0nxjdhML|N zbcF45RC#l0vw`m*3o%}R*zH6@j)x-{J{6;~8La2P07U;JFDB<7hPhbbJhN7bkMf1{ zM6$6j%zjmxI$|gLbItEt9uMCW>99z_d<+J_tQ-HubbR-mA-Y;Z#`Je|U|8f^VfY~{ zt48wFu`M7;nUbf>&G6ellTEAKxD;R{=U^(a<7cbHF>)2%$7SDiN#qY7(Y|e&n z@9r3L7YU0PlsJXg?z@m+kId@If~V5~j9Uk_4P<5fsj8ddIxLyQwQ4k$ zBDRUoneQDES60TVJO=Ac#K?- z;+!D*wB#|N7#z*+qQo6#h{;zl1`d4t=*kmfJq~pR?6Ina_^U=@-{+dYMcJ9I3W!bz zqt*)QY3N7PNmm>ZWAr));fV(TMyWR<*AeuR$$_+BHDq6BEhzF)RRzQ3Y4J)VJ)gVW z!bh8F41`qiABvBIcRhknKDAh;LMl!hlEX%7mw1QGIpe2X8K+h z;u)Mfk99nN#2e&a|J*=U3Zl|Bz>_wzYUZfI=B^P`G=tNGO*OGk|J>S)CDUZgiBix8GW@t?fXjr`NQ4ke#gxSaY zfLcI!h8?_0+>`W{g?Tdci3_?#?rEOxGVIflpJh4(-@Z-t5mk#maR$A27S%wh)n73C zJoU=2IvH}&`Env{N&$5)7a@=~@8u0crxvpiMh3r!uw<5=uA#dH?#pBYdY?p9tbpb$ zw8IZjX*(6b+zHfGjh^K|Ae_QE{QwFFK*3Ao3tojm7TjJ(HpL&KqL(-~wh$X;|NLkM z(NS8g8iv0mQQ(q%{)_xKhRNtxb^rtCiV^RUt>Nh)NPB~Rj9UUUwUdoTgWQ1RS2~cz z{>|X{1!gS)VyTI2t0IS5;zAg|$yD`_`5y?@iP2#33{KHwM8SvS7y=9L22w#^5bOD` z<>dYb3MA^kN~bXn-(8BZ1%iHvh7O%$)*>kq|4C~Js2)qOLKm~cEA+~%W#pR}S|xey zX{Uvu2YauSg9eh1=bO8Y@QYlDrUnitmjhUNp7)Ys_NvdY+xVOs?QyCrOFFMe3Yu(L z`CM1m^xZ~L|2u4vUb0Sc6{RRrZ;8aOD#vkCMnA#I(-0;4tjo+8E1E#6=(-M(yIfRL zdE=`|$&laFrkB)R5v~huV_jxF(g^a>wFC)WLP#ym45bU&6866&C)dQa`^pk` z7NQI4!mWMbM8c5jXTw%}3+4+h-0`(fA3H%`tVGYr_phbQS9ijr=r`V?OcKYDO!zTr z3ctPcInb-BGO9m?PQhOrk&Rn1Ch-ukdNX!45jM4OvNFWtDbkSlJgRJW@#Xl(LBWu8 zR`-~`cv!UZ^pGqGQ8ymrj~zrGlFn(Nfe^bZO<$ON?0d5b zLJv!`NYgY;H@&=m_ug}F&V4x5UDdDeJ@?%6&ieZ~OjYDa4~y54xKln`x(XkHrOl~D zVb!RoST?v`Zf^Nl?j2`-r+ zXMh5NA#Vct!JuH6*wzm+f0q)tic3svJV{;hFvtasvdMWb56egSPt(c4PYQycwjucf zr+;QL#**l5usBgvflN!%5R4;UAr)h!iBz!_kS8)9+Ve-$K&j-1Os0(7M*UQRR=k;M zY{E*#r> z^g}=Mh>X6 zNnHI#a?D7+xam%z1q+P2@d|fUC$|a=C!ZGnmKhlyCyIWoFm0hjT71FTcLoXHB;OBJk9j-%@ zj42XuQkfgr7i6mc6^9LmVD5kilYvC`Gl=e#IfeBhL6=~y1=Po7ACk_3&-sU}m)Xr> zZd}{ggf7}fWz%|?j$zz^;#3wC$O7OS)%2O>Y=BNP9tW+<@n5qItxPKpijQ1;ipO3? z0j=-Q$_6kYfN#f+=zat+f5pnRmiPsel_#Wy8?~l=r8Y({J-~G^8UYfEP=IYtZuA4L zDc>Y*LXDjNPTD2QMk1+=V&xk$LRu-dX*Fzt$i-$>S(K5EsyLOAL=8p_WJEGv-eI9H_uB4;Tca~*Cbf_ zt^Fg*jI0e9p}R*lNPvZ0bh>z zK!yjw5hUvYavsyFL}rQdsR;!LL}LoLZ!hEe%g}znzBpTckB#rQ-fG|uQ;K`fgn+~b zi0PsWd*4}u-a*nme6zJMqbN#%v2aCJNq86M|JBpt2ejsdI&sj3>C=%%CxVu|XOdZ2 z;AD~cL^<@leSOSlKeCLQBp%E=TLLRV9bc*^sw+c~3Q$8rQ|Q8-?B_?D-AC`R=lj5Rxb#{&tq6M> zI^Z~|*G1vfvz;|$+`?kmX*iye7;L2XQu2f5*AtUM_pTeVv*SE0>uf|&DX6(=85s)8 z98=OSQhGln`pVDI(NzK5Y+MVzPlLK6w_K8-sMe9lT6RB~Hh<&Oy8OyPT`8emzcQe<2p4e%nZ6U#Jbo!H~)! zvjh`{#*{IddXsdfaPn>MmzG_<>IjatssBu?bL-WQZ;%fy~0 z!&r)Ex%%hmWLE&W(F|?z%os_C29pjoG1%p0_iwXq$*wNFq{Kr`4Pht$${DgCAgWyn zp5#jK|M{+xucp#0u4wC`dee(uxTsa{>YP5k=|7?Sba$1f5NE*>D3D1&1OXWXA&dqv zC}Gk_P(l#|1PRa}qYMg202P^oKmZvMLP+x7H}-v^7N@84a$fQc_vXF({qDWLU)SOf zE^@aRD&-4zfxSAv`|*McB8&otDD~^7ZI5trG2YvT2%hM>Pbz{jt%-K&!Wmus@h!01 ztaR(nNAUk$T@Dd?GJ>X|iu@AY5Y$8-WMSJCL%{s^>IcG7>fKx)iggL~&w#JWZifs5 z%89QDWtNhOcnR_m&nbz>w);+yDjAN8ZFph;Pjh|~SD&%G5~%hUWDhFK#?DJ5 zX;49k(Mym=5ZZbQXJ=5$$vG?~As*JK&h*fr5z-z=;`2CHYap{(w2qPFDmEU==;fZj zV2x+y9OAU|r(Mbgiyk=~gHsMA&FlhDk(qEexaT z?~%1z(S9FLjPH zV?>*e=G`q&Hu1HmhH{SV4<|D=?S+fe2(9AF z8d~d2cto=wGSlB7_ul*G8c*&3#PK&{H!>it`+U3K1;G3NaXFL_y$_0cWR9+*6^)$l z+^jTR?xoSy7+-0*ZNM}ym&m5MUO_8rh$`85Mf9NyWR` zC#(IU3TK2a?cKVTqQaax6Z~wVI;JdO-I5eOM`-&wS?H?sMwTj;0C`FY!l6YiR~F&z z;^YP11&)NPJG}qgDyx7fc7>Ego?T`*u@4y#%5Ad}T+(0(eTf_9DQgfggD`Si;_p#62QJHBmV6bcGl56rG@5RV+ zF*g!fPE9X+Z*krkKHqq%j|8^jfe_q#Zv3T>Mp96U?D_4a5@L+P*mwBq8#Q@%$-(&t zzvo-+LtfT}pmLNK=dAn@cXXg8*_L~g!}R)P1AY|*vR9*W_W1#!7Sa|1q+!m8hgd(C=Xq zG#7Hgm=F;Ddty|!L zV!_E6vYSBt?bw`PxoHG+p#`HT3AJf6*?H4#lXRo~xp{5EJUO|??URgKKSGelhOEXJ zPK$>)+a8oX?UP8y(%{SOfmUaK_afvqnyhNsCabkQL|-$DM{0F*(7mur|8Pz_YHFxm z)0JB|w$&-Lo5XZ4cL<~6yXHpi7=D$NY(TCe)p|?W(6omgYHCTs1wemZ-i8* zs%wfxc-4iQ*>954UHYu40Y%wWlcFfUUiyQnI7Nw26f3V$h^w(Fl}R&$NmcSu)SsLz zfBP=3qM!*-J)4q~m%1XI&DrYuv=t#uU0D3URanWmGbS%9y9t+P)obYJ#%ppVHZ+@*I8?-zv+8!>yIHB)Zj4X8ABbvKvXLogXG__{%nQw_*<(QVl;M zI)wdAGeH*C{%KvhhB+TUY^Db%7>LaFPZ)3`nC$Vx=2uS8TOtO{xWDHUKG5KTMEseX zBv{z*cxTzZZ2a`0D;;p;ha|QO%aX2egW1f_)(!kmjBH&m=vwI6=+%qjK=Tsa7%)*X z+iW5fjrWh()X{H0pzXfb4q~0yn;ls^HnS$otcx`3po@{vyv7g85cSXY;0Apl7NDUS zqFWPcY4wfK8;=r$wauH?+qJ%HJ7ICLXX}rhY82B_ZC_nT-QiXbhjK+0kx3NKEa3a4 zj*Anx!`B*MB+CoBbW9qek?5nr%0^e8oRB#4A)@)1_#W0J1MxvxM-9WPZZM@j8A`?H5Sej>JAq_r)WEnJ>(xUZ8!&C-P_ zk>K%jn~ePSaUMY>@dRa*QRN8ZN7v8h_Ci8t|M~zlt=PCy*g~n%d#>DT5kJ(SWaaLR z))uH0+TJ&YZJAnp_I7>887MNwkJDIxL^kp^4tO9tO_al+K2WvewanLMK&?Tfq5t}()_yHCZ%8IQ@`SG|9gzPxi~X? z9goA)tk9+d>zpSM5TmI*-T7DeZ3X`r)?gp`N@@*I|^F!<-q=N&# zH(~7Jt8mwR#_~}J6~qc3MUG9vwqcA#3VXKsVN6%}5hf0S5Y3JgTPCYfT! zCZt@2yX5XE|Au5H7bV8VYbMT4K~aVZCUFXWjCB2rDtJh@3#$7@%OIViF8E-?!NwVhi@G}V%&@oe@D%D9x3vduBX7=jYnOv3|^_dVj!Et1D!>%J;SqktCRs9A8 zI}%zWm%MQ4A(vFh`3PmdXyG%05n!+*b{G`#(Ws9N_V8EBMP|8-K3 zn{Y?7f=Bv>n@S3c^9ssFb8f%^9(m+5vxt8tQ#Z%>+6ZF@dDlCqP~vcZW6J#TW!Z0h z(PPD_BSAy@9?sn@1O0fhuQ*Kf8G-X}*CGYWh;7Uu+Qv5}xWvCP%dBH#iP>jn7!3QH zEYyn7IA(SwD82)SaSIpi9Y`ITSuI@3Mc}yg06#EyvkUVt;V2#MBCAVb+)Zlaf04XY zxRee76CY~iQdxhCAk)T|;7XLMvfU(6#}rCw!@rZ_QMt3n<*o%^vpE&z<_H&`!!Kc*P|LRnNV8_pmk zu6wE_ib#97mQ(NPZCB}@-tk&Rx?YKH4by@t^m)@g)Gaoo?o+m)h?P`3r-7EH=l=*ZQEqz=3)=oQU=&qku}D>?;@B1aywi#%nD z{Mdk2!I~GB(9gtwf4ZI^e><3-6SgQe+@{W&_{iviTOW3l5=C7IJuE8-ucJ@op^0Yw zo#;9Wzox2`?P!PC`+~%5+ezAWJN6mgz}k_KP{+kfygGOM?hxrIOD-p(=^>ENZWk8FY61aOn_7)qj9vbw!{~CI}9)XLs%iKm@@$gDM~2N$mve=ZwT| zLwdpqB1xRXXY4pPvu80k5Uizjbu2w`ebaLdD?VJeR1ra$HEsTAp^;7O zw0wlw90Jk(ObjvyXUbV3>jiDV2IeMCD_9Qq)}cI}tav$ye+L(Tgexy##CtU>&Gym% z5cwFs!p8UKH%M{=Z;Rm%=M9!U$o zID`u?)rZ0RTj;f6rGXCp7cVXvJhfeujcP$3VX021rY>5QL=A~fwti-A(a%61#FEZ) z#+mO?!N4xFJB?@iNlGJDh*hcIr_oWfF_~=cifQ=l2Il{6P)D3GV{yuBax=Bk7AF#CRldv2Iyc3H< z58*?kPTqz^GA`GvYIouX>^c6~(UCcie|&9E@lVYN>1WD5TA5BdJk>8+ZZk*5y<(N^ zFzV4GzgNe(S(RgFhYMq@v5ChdJ}T9G7Db!vVWs9NWnKAbeyV%;KqzHNQ!wza)=#*X z|Cq>}%>{}u=h%6>C`K($ot@*x^V4|ai$;V?7|OYvNz504#I#~=Smc0c^3eN*re!AX zF`1*& zkDA;F)=G_#5kr}e^x=cd1|;G}Y3}*4vSbeS(ZU!u8V}#||#Y zDAR-qtm3MqD$xs!D?4a;604GbG|04AS(+>g;3PYt{ZROtu~Ie28$}*li`!*p5W%O7 zB%XREon=0_zCnQ+XpNX=Y(UXk?$eEp>3d!uh1&AY*J1V;C*ckB*%i*A_VV)99whaW zMlb7_{~V1kgs0JjrfbNxHa3t#w*#l0W3j9+*uHUQuu%a{&;D(fJrnt9lh0=y-(+*p zpn;5H0GwMz5-^K?9%y_&2Po|$uY)P5milwmvk5qV{bb^h|48TyrX&8Sd$)F%{Xeit z?{(ynd=9P3gS$dQ5j9~yMbm~``0DtYY(1iiNb@3Fl1UTe?YzU3cJ@3lO453HKlj;&~%H;%U0Q)d;EDCKvgcp zbaHJL6+9=&U^*)bOiBqIEJ@|eSGRra-(lpu9;n&dz@F6#9X`7E$ta{$ld7vP1IHyC zGKI`;IuI(*gt7V@b$K;qw$S&C#^;$-5p>$`{pex%8pPz;>QYf+cxth&X-M^CIWhx2 zhZCn)yX24LEoA5>Exf+ES@nOetE?%iBnvAz5k1pO%=F7dIByg4Jo7m754t;SyLH?^ z6p=+10g**4u_#Lx5dj4OX%{vbKx9Wjww8Tg1Vk1KWDyFnD5;`~dvE5+ymRtaj}H^I zWmKI!`PEtSe4k)}K5eAdbgcLN$#T|skrs!{Y*!J#dVBm;=nSMecWHJYm3+sf-V;-F zcD3Gn&JkOI_44kVZ1!q1m^(>XFxGfVA!#~>bcy$4Pg8?Y!7IM_2BfqqIT0|FNSOJD zt=6MvsP~5_F#tac&PTqJaFY#kZiBH`XvUx#{jhYlmjSHzk>qdyD@@odaheN z>Sa;sAS=Tc%GkBnYFQ+k_*qip%i(c6<@tFeq>Xi^a>-|k4d3CJS7gL-Gf`!pgTG}5 zSanS;u>RUkrJ>f&Mk)%NqBf+u+b^BaP=-jX4=R<7lR#LG@=rf+aJRC)zuL@p-;4=)Csdl1^ko}5f`RC#!&?Z~?0@d=ku0YTh( zW0cV_;$Ltf(v}iXnzfp17MIi)39%z6R<>Kuw8v2Puhvx{#rx zmEoqk7-X8PI$*Uncvmv+FTn7SiNKBdMjx`{sbKjw>+JKoG#YjvhYrh&CXBV}=!a9& zkQ8n1D97xiO>G*A!8l1PPb*H>B?pn&jsjCqAxsGEVY)$ew&j) zBaCfnLq|v}Y!=Lj3hp#=Q}A3W*b(P$%=zFinTvu#3Ux|>U>k#YAwuN!$U+78WAH8N z2nw=L7OK#x6u72P1@pw4k}-U$^c$Sx3T`7rA;O-MKg&c$bF45$!ZTH63&jEmDWdEp z&VP|@vqLl_TQe&=iiir45v4Tvjyi1Hiahc`vPx`r0oF~Qm}6{Ukt#Dwn{Nl!nEFri zGY6Gh+gCN#y4n-i{ZGM}jrqQO<7MEI>AZFcZ zxG)v&Z^o#Q^8XZ8KWbO%ictc}l?9IrhZL6g3e*FfE#&5{lC6^5*{1vku;pGZvSK7F z;!|?B=QAsJ@1?BPCv>dE-*6WCT)z3hITn>qvXZx+MwHU5lx?LjDyUKUXgFOQk)sfi ziUL%V#H9k4(vfVS#?pxX9_{@ru8B|nKN{|?P43Tn0&wllv}AsvS-I?lAk)^u<}2pX z5}MF(Ei_fJPh<7J(_|*@N7bpxl5bqrOsEp=6Q6tVwNDkQN2GqQkefnvGX4cH&5Nc| z_#a)aUD^gK$939Xv2Ty~Uj4mxFmCkT7ArSVFIa=(yFUqd+L7!xZ@6$nTbX~YLTRR= z!FL@cV1BKc3p^l@TGTE4twGHeLYJayG~xqA?7Y5Lb+_xItz&4gS3-*#jO@B5jSwRK z5tX~4gG9|-tokskD4oSVeW&3W~UAPu(w{4 zj95M0R;H{(C=@({)+7jLK)m}IhLJ08SAds1VINd?C42_#xP9m+$}Q-uA5+5Sk8Xpd`NccDY}nL6@6l!U=J^EB z*}1KzQA`f3bWb>7bzn~6Emu%ZER3$nW|=H(aOO8o!7@Kb9DW6h+p9KWlVt2aRoPhH z5!VC<%Ni5%uQ`!Wg_@lNuMwhtNw;Sh61-hZ8SJ>g@;0?l#7C`D|H0YfzpE#w15Mq2 zADz0W+*oHwNK44I`*~rC{Y)pVx(f>)HWD$AA4KuSDL?LAKbD&?5}F`41SZ9lBI1gR zU7=-lmpa1ksV@v5CuQ6U`xI6{GJ-jH41bDEF7p1^awH+SH=f22Wxf$B zh&Vm@_N5&}e0h)!dEPbzHeC&AL&R`Lr&yxXeH!fdmv^*m6=DzU5hISDeFZ5u8HCod zm`*0cl_xasI@mn`JX+asGA#L1_(&#>enPLNAAJ=Pyh4|bExrl(ur?1|InfHM@67LM zQw&tb(HG%_j+2K)ygiJ=k#X7%#HWk+j!~M{$9hh#+rQre-$oi%f=ytKBKGh$9C(om z=bn93e_hJgGp*ad+u>QYbn>2@kEq)Jo-6(c#FUx3X%P+ zH;b4~1L;ZC9TDB#d(cWyQXS3fY ztRSDJ|A&`_PP6!IDu-5(8_U?~;T^0jlWvA6aCSs)EQ1LzX*AKk;6<>Pr~Upwod;#u z`e9)%7~}9Qyg9xCRMF?{JddO0@koD>z5X?`oOJ0pJN$aqXTWx<4^DRiq_;!+B`O_R zWEDX-9wMf{HK$5gud3PGqB3$^p*PFei>st7RxgHPe+;9hd#5}2XSi z?7ob&5Zw}9av{Icds(pN4{$McJUj>99Nw(?Wi9oP1MBD2F%`bhwbQDz(CdwG{Wx6A zxAhG8cG|8-kt#h5d%Rh0B=;^mW23lwYO*Lst9%kSW``A$nz9d0^fcORU@Cr9U< zkcO%8hz*a-v&uMLh7ZD{6yu6;6d#$`09NQPqS{52tXS2Xz3qkUfG37V5FT&SEs@3E z7YMHm4Z3=}9aG&Fw9?Q%+O#&(JZG(}9%&ecaPFvicakksH$E_v?&>ih1MI}C>Q;qq zG&QfYWW2m$mGmd)Ore*Bnf0kNgV|Lp%1EuMRqVZ-KapA`XzuomC)GRs6Osahc}i=N zD@x7i1oW%8J=QQEo#HM{Hiq>JHaI~+h)JEGNEw?58u2z*4e6FUI02f%Q$PM8q!6fF z;Dtyk1+WA)2eJ&Ih|?27w{bp0z*b%pK=u2e$Th&3DYTgs0UzP&Sl}g!;vXZv0ouSu zU>`D;{!!CMXtaRJ*P;%#v>YX(+fJeJui&j*e! zBkCqZ9X!>c*)NJwygJmkjEM;Of5r`-1y%EPq3DfD@!yZ8;0(p<^C|`${?)wDy{83ND+zUbeV+HZ$a*d~ z{9-tzh7DCE+eQ(D2w4LR;9X+K12UIPQDi#J&N71^gS>mc6L`mVoO+lb|5<Y^ot_G0gT5)3E+6HxVX>FxeG~q>@gt&?o(D0YdJn) z;Q;6q9FAe9+zg#=(eEcXscnsiDDYd}moAq#2@Y5&D!`lS+v(hI8LaDi+PpfjU9WJ5lqt$(CC{)r3s*=ejgdZ&nA8`qkTd;>j7$AHNIfx&h)>Uxo z>Wee;;S7E>Dv8`UPwW8tCkN9{t-)=Bh5J6IP{1AkK;>c(w3OVc~u|n=tnbPo3x~ZPBWkGOwY~S zfkm?3N64fWf=Gm(_alsbYrV^m*7+~=X=F!c2bTa$K(oIlY@N5$U2J_yUx~t1(#PqZ z4`j3Nx}QBAotv35JvS{I=Z(vV*#pnUUX19Vz+HbT*pOr1W}yNW*K7h3L}YflFcL+$ zgmwT!4kQZLB|w6PMQ9@-L~K0$6Hx}{v?*FQKV-_u$oxzZid93y%HN17A23ACq&b*p9JM$Wj9!^N(ep|cQN$h`JkwPs0-op zps2WumqKF#!{Z{t;~_E)86Jne&ipLVXF~$dYoSwxGh5-^d55GJ#GI~U7ZwDBAd=sM zS_4c6iidziUOOIL^SE^q+Xl4_DiGl>gO%;loyvHdL)_Gt-zl_Q(k+wzH1hg8UhgGF zp5@vVUK_h9e!G3E6~Ub?}jA`HaL_L%qgo6g*!tS@w&hn_wiw87DqJWeFz9tlU;B3i(A z-p8s~#te00u22Qt~ba&(7dMq`N z?@TRp#)wNX$I3|2FoAo1kmTk2Z_)Wfr8@tz{6xxuRpI=yg@!9gT=>hWWx;+xRrTwv z+Au7X7K;EZd|E})5;!l}NpxvK%tKT-qB=!BlOn;VGRK3Q#dc`_U@W>|jn@LO54#&m z*mst~%t*MJcj=h5Z-2M;uT!@&Fs{nx2ERBwKu#9&>)1Jcd=*7n#TfkZ@XRgg1U`kO zcr%#ZCOEBB_^iQsa1oGyz{;cH&9HI~3H>LKx9yiM%SQ$X z9wH`|3A0B9_ccnBK52vYNk(wQQ{s*7I=+lU9Nm|+5_T0(Ok9-G){`;dZx;jVK6xab zcy2nl*HYI1p$qJmQ51mbCiYJ9ERH%Ar0dc% zXKxQ=$}RK*TWQoZZu|4e^T8#kR-Tb%J1tCyAk&9UkZ%&F3ENv7p3-(S&YjsZ_D~UU zE8~@yrR3^P^Z}7^{ca z_Z6M-*h`$EntB0C;zXy0Zx0Fl9c6aq=XNfRKA%7>o}dNBK=5s#B3scNy*EDr>t}ha zeGP=E3Bs_`Yvu!qX>;BHZ`Jt^S_wcS-Nb9U1!~Y&$?i(wS&%T{HK%mqE5Dj=MqeDQ zL2#+OXH@k@aKCI+%(jZqC3#H=72gQ*zc=cH_-*`Jzxd7Q|6x?da~AYdn{#kr=f70R z1!DE(lRT&i#<9&UM*ma8@*spw8?#El8UCm8oYKoAYR{`8kR$p?TH8VgnFjvP!`~v~ zgonXzo+QJ_RxB|)yClk}z_9eYv@vH;Jl9(e-sJkg?=-6cRRX^Z+7=0pyn=go!DKQ{ zj*pEFKN)!3MLTx2wKVISb-MbIm1WDC)#||Z?>Ss{rwfX?$T@%rgX(^$qn+I$iT4{oh%y_TZ?_Dt^8M3uI&o zukefoiaNE0QcI~y3$>syMQt7bQAEei=-3XUc62(eozad8ww6{N4)T5l2oDP+;Vpzb z_PzJs-MiUGb~o?c>?S0HguM27@AdcH4X^}ss^k3jyZb%PIo~~e_? zNp`#I+%8EHoldvg9E)==k&IVcXI3>|9`#dhMTo>@W{T{V$mB;P#2I@nh zV4WvW?+*lh^`6GMI*-%i@q64JU!cJ+dwqVN-|zEz>jNRbFHj$>uMgCr1bn_gFyIT; zH>knlrclV&;BN{ALZQZnKq$}{3gQ+8SvIw}->AXh*E`Mi-W-`{vD_&fdPB-kzRYthY;3=j1W^!0H@l@O&1z=o(+GK0gn2RfqR z*5>A*Y_nNwu3f%z@#5K2Wv5FI?LVOIU$p1IzTNwF?B28M=%FLWOHY=US6ujKWmUD& zWU<*q$th!@ogykONfZzes-Q{*sH5c&T%x4P2DdCbWzi`~F4^T2ovJ*>B{?OR>eQq{ zhhRtah)&rh@xZa$Ra>FME&x`W)h4*y2mrStJ|fs`7K`1k*z!S(U>Wb`;pCK^0%p|g zSp@v7*alwpuKTb%xz)6+{8b*Z_ftwOw%7V4LD9taE$4zIs2lu8fd&$!=B7cX4B6 z&7J4*%6T%90bvZxvY1sZ&KGQMY78~Dw6-+2hQkp=DqsFK1iKZYy zN?>xRxv8b~MjsEYR9_?zOlaCzP0tVYBM<)xZK={7wAEH$xm;0k?(F%~CypLFy!UTA zckSG>_u!!;$4-@yEM41{OT z=Qs{q#!pdx?h>M(aN*=<70~zy?~Q2&bwp71r}gt=9#t+g!Oz_h?mYeI*RTipK1k~{ z10!>1N7JYcY03zHM$ZEXG6|~iIr9`v=Sbb9$X*~^LVs2>Mavqb>fM??!0!{%mEaRJ z=~n?UT1r!B0)3VWQ0~D%g)|j~V-C%t`Sd6~Nl(yo^fg)ro`v){&83;>U4YT4kTFTe zL>&|U4GJK4GN`8mv#A)|^YL9o&qCfp`Z6u1d5}7fK1W|bdph)Q;0(XtaoaML(r- zy24JgGIky~$12zp2UyzYMI_ zziV}`d=+}nzmMa78Jzna`aRpnK4InT3^Y2!F0k|T4f+ZsuA^U2Kbyriv+ZmPz8?eI z$V)q*<+tgZbcQO~Ay&eU0^GihYy;NqNvz@1h>=rt4k)LKbb-o1yA|s_=dRv&{tKZ) z5eo1561bPaij}mAUIJDDvoJah;43v#kF#l@oQ62c>OVz~oJ(Y8m8^uo-&PET`9K1IuGYz!dfOy*hUMH1J#0nh2N}Rwto@VRW zYQ*v~MA~2IW31glc0k8IUSRiJ$mIKaIXu0RR>0FMbbl|W89;%)>+kFW!+rbV8Th7# zdJqfyfIVzKBpyQRJBYGHkh_MyhZR2q&C2L3N;y?vzR!<}yh*UE;8TP9wHQ7s2A+pi zE3q~!@claeUqYD+s*N1tKjM7v+_CG<+(Yk5CmFSC?>x!?-PY}F)O zA{q5E@(T~YY?O0a>&Shi@Vx9MDxI7J|9{d%kX*Wxgr##cvW)tlbFc&8%&9B?ZCzD2 z=Cm}0?rW=PZ$dqVxj!7$cZWt%((2}%b^_zMZJ3b6YqlLC1dSz;#oaeHsI(*RR0Is? zju2kQS|+93)RK5H$6=*^6orP@b(R8;2vESOS96EccyvRRKK@{VnFjuW^E2sGGSMH+ zT+5|Rr7}sSkH01$bE2xmx{wd&z)Y&ad)=BSCm!CqU*&aH3%{H+g;d~(@R7wt==p_SQHuhK!QDJb=SmVkz4d^mnfdmrZg}_Jy5V=d2-_vujRb_a4h$YbKk?968)T=n zMixtzvREmQk9+Y1I3%&4Q4pXHbL|%oWeYykDk9vt^IKWtedM|FvC8u1i^<%`VZ*bm(SY49}o0vlp{Jhz*SJuR&53wl7ml`lrH9y{dAWW_A(lZ4aw24Nsvo#qT6V3ss&HO!o zAK#9V=I~Zc(0m_L1#WAG2aXmmhHZkuRV?9n^yzI!x;3G1gWk=3C-p#i03~H+f*<}; z##>-*UJO3YIl=?%^~r_J=(cZFw%qD1ZeK>PwlZie>t0$U7#_WfD)M3gyyZrWNYSbu zZ1U)rO|N%@jHx+RY*%^!bp4LGjr&1Yli9_0EEQl%kCy8x>sEehM84ux4$|5xN&G8D zn_Iw;qeiQ{J$514*6+l1le6uP`8PRZFwPY6`q&nKki?^(yQhEWISEvYUCT3 zpaH`ImTa}$;KhiSV9IHb*2=zENohZ9xcHD9pA;J|hR;__R;3C982_AQ1g*kdf{r6M z8D60Hq>PBH!8F-|0|GnFngAFI#u(GCS?#|Zf6s!6=4Zc?LJ8kGjCL?SaRnRS=_SwSoj!Za%h?b*wEzW+co(n!^T9yz9&v>q|6N(ZoU z)wmcHe$u$pBfSqw;}n2qt{5S5UdnjQBt?s9;+5eOc926J4TQ=teAq;lhvV#z(g(9h z9rmR%JHHs+*}^`pt77SK!qe3BjzA+M{x|d4nQ4JOtQUgX5Vef{^Hd)J^YMXIRlAve zbQWurk=Ejt&*oRMfRJ5ls=kKO2n-w`p1Gu^xmlE6F2T6(hWkMy6w$!F6Vt#92S$Xd zR{kw<36n{K*2cIwV-dlR`*V9+hi-xOt}A3EA>!@2;u9}?gxmx|qSA!I&TCPjsIWWc zdLp4y2TbdM=KLGzthb{(SSp;mo4-uE<_1Th*W>G}Xqn#qaLOp3Zz3;~2)UudFxo>* z=8M(tmGhtVhfH8OH%gUk`UV>9A`Pas7>CYT5u}ASFI~z1?(8_+a6G@}oQ7uo$NKKf z0*>e8Xdn$amygWAnq$^J$~+W)V{6MRMb!BnNfs{wKlmCVI`iGEClEnqL3{$nqX$Pjag6bJIH!a^o=Y=<5=#c=Yn*o@|9QHEnM{u8ca+Q+wkc4Z}$m1s$-^#n41= z#_0PIqppNwVN-ahh`p94eEFY|RD``a9;*qvHUdy|H@cazR$hl)d9=-;^t~=mXkJ#_ z9MC<^x&yi+b~(7Jy@`|uxgWkD9c?slUQSB{ZD4!1y6`#C9oz5jJUuyi=q1FYll*Y^ z`-}3&fAyLEF)7Ct3C9*RL zag^YY8fsChk9#`RckG2$oftD(a1(M*rzKo{MW=R(B&A~((2plwpgn3c-U9yTytA(o4wrKlTMcw1 zOeQz0XxBqXxtf`AY6JsQugsc`C8ha_)mFqM{bR?$U`Ku^q~CV9h^_v*w)89^6LEj< zqJMM3vutQOi$xw>VRhK{$@*yGI?}__^2qsA*SJ~!^%7k6WiHl7Of2z&~oNWbaZb5R3Cn&F~?tP>)jKB#!f1DvFM7xNIX|GWE-~>yKmoSk{ z2m0yj%X0U9H06D?OpFqAVzk)w3C3>Mz~Ftz36Y6`peZ<%B};$5vvJ)FM_K`{B2sqD zob)vEm&lpdp&3ar%Y~2Y?({-x#M8T}w#wi+&TY5uC8g~rr4O98P&GVHA(N3Y3As@F zV0q#HoLA{rRLK=rK^@P;kdrZsIr)$e`H-BP`ILVke?Xk$g2Eso>SRO(XHaRuAd74Y z$gZM9ntc~r1O-unX3KyGqHLlxt1OM(Ee+lMs_Itd)@#<2+goO zvmcJ9BV1vnQM%ZEWMD4uA@<1;S)DyT~%pvWz1(VORep7wVrAMW{c(m$5CE zkd!-NsB=er=G=5*1fkXxSGmUPcB*73*E)}LzD+m}wrrSiULj5|`&2Df=ARziTU)Kn zMfVWGF#3@)n*{W-`{IvPs!y4lT@IKCbqFr#5@D&UhqlqUq=wUFSjvTYtKdaJz~!N( z;3BvD2&({NN>CS@^~q@n8eKc|yM8Y#yz0Y7B)bhm)6&F3%I0un!5a`gD+-aefM+qp zP4VqvrjWo|!` zVFlkahj$B$t$>Db8BEoF7B}0$Q5sam$XP@GJ>Z3v>*REJXGUH9#BvV@r7bAQey8M>w+8Y{GPtBNO@=p|u%94&%*kGE*Q+vsStqa%&MQpNW`K_Vp`RTgicO zKpi31^9)JgA<09S7GeXlf>f$zAfLn6{`F%UsxEf`p082|oJor*xO!~;=2otv>IciD z6y&lB*=rZ^?cN6J|N62Y_a;jVT2TUQYy#`ZJD7PKH8gb?VFTHI%oic{(2>%Oz0-2=mWOPJQZlDl7mJdeUPmP+wk4yTHW(mk@sJKub`wf`Y=4}{zk z`GS93<+?9+fW<#W>Lbmk`kw5W$WlH^j z{{68se#-q7YBU2M5o69+maUD+9N`izz7r$(+ywGDg}d{3onhT){V~OQHU6ms5gM8wEebeyIfH{<4(Mmi2VfNN36 zx!NIV$A!RDWPW)>0pqg!egQ0Se8ig$N7D0MjH!Zmt1&N|Hbnq}fQl;;IuTIV7X*1Y zqpBi=OD+Xn^9NAj5xZG}r|6?-h1U2XIASn9B4rccVLgkQ-4AX zH7)NW=ywUQsCqYo5COImgV^t=L}IdUFw|GI7Jz~RSl=l-nt)(0LE3hCqY!cVjO~`A zF7lzGc%^)k5)pVv-~0w1=OGx8@Jbd0obrIERa}bQ&I@m2kCWry&rng5=98TBfWh{{ zX|X&Px=3E>M``EH*s(Fru&3cyDl#O9iU2=fOhnq92GyoA5(iE?hEtn}*qogtMVw)L z#R*>mUtq)E5US8Kr3nd39O|y8_TdGFR9(X5O8y|87-RbAzmnS`8}pMIc7;Zuxe8OF z-gA;47E#Y;Qe!d7#7WSn$F#z9!1?YtvfiLNIfZt1A?c6{`tgq05x63tUL z$`{JAC)1jAmoQUDZ-jQUXWD^`Dt&=rD)&uA%vjg8Mk?szuxe#Er>!K*!mIw4T*AOu zoIhpDv)jVUAKCj-)8B%qi_Pd2oMas0`?ZbFhfEF4V5_N`MMLuH?1mCE=eDNePMEKI2974h+|ee@`ljqTg;E`G^OI&f zhq>AYQ;Sz)$8@i$wbtV{ppsxO-2ibhuMHrXHm8Q$K-GT z#*cM$j$2emm5V>m?7?7ResNRbCG>d!tvHP*S#-ce%eV6*2NqaNJM{Z%bDG*uXv1ft zwJhZV={&qtd4=k0%qMKW-N_NU$Lv+ zZCB1%9-p2)uXCKsdh0&rIIfA0xOKoneIMI2+ScF+%)tjoa|6F)EFpR9qShXqL0d0$ zS^TTe5HG&(j=anM!*qE)wY6PgJoh1)xvzOn?%eyD$-j}A%yq$F(-B29fkH7x6a&V> z!ZZQFh+-_j6p7x&#dOh(O_OP+2qA-MGF>{7&e?nIbFzskgBMPYUA0bn${Sm(nnqKHEfbB#EvJn5W%gI7JUd^ zAO|sxi6+oi^M}!OdB568Sx$8ZklX)t={i8{l6)SrYq2`!P2rsbijk%LG(8XPdoXIRa&=q&f*(7zLPEWA-8{I7;~@2(CngWGe1@{RW*D(ip=DMu8R3(vgvq;$xt zCk@ZQ5o)9VFPQ&n$y60Nvt<_?ciiWXy5v2#6io4~7eXa!OtfXROK-CXR;nRI3zvcO zGqM>Mp1w0Soz#k?gD&@#@2ou?k3L-4Na~F+cBO+=ZyHt2VfP)C@H?FUZY5%Gcjg8mY7{4I12UEAr|+wKeBOZ{jn_C+4A>mA68AH=as?4!Mhsc=tYu3hCo1m(OQ>_KluM2Ofgv zaH8Hd7>l*9piqNQgq!mmM|=O*rQ0C-v{?EHXXx=$>VbAD=s2?zP}YRm9}8v6WZi?V z*XKv@3o%Et4@L+{nMUXJkLC=%mM`WTEI_7O;57h#|f1b6s6){GIOKZb0p#dG%4+83YqrgPPGtjOnQm;(yQJE0vb+=+@n^p5C}N25|h?vynu6PXs#-R^k#wgHzJcX z?y@J$Fga+&;fqwsvPwFaNq2b9P%pJ$(ojbheB7H+0J{&Z`#yW|MtT1Ltsdga``ddR zosE#3*3qhCqyxP0quJjf*gdxBd4J5j-0<6{?)GOiqkb0p8D737gOQveisy^;yzqCv zN-G?P07;p|X$K7mI zSuWOB;vx63+@>8RH!c^usZg`GqQ=*R}r9YYT9+2C~{8t2%^ zArNp(K87P=eY)Yn;L?2H{HFAGuF%nq{r)oW#Q#069K;*`h-B=#0^eb{=Ca12O$C>~ zZisd+Xv0R)qsQ5cT;>}z=L-v$?t*e!|9crmxhe#uWwhk>Sd8*(P(~epeSgJr;|_0{ zym!tb7Zhl4M>Dc7wyu4?I;#V*d%^4(w&#D)5Uu7eIn!)2IlNWNQ zU9!TJ>FPhx$(u(rav};C#?ujqM-fA(9@`)a58qJ1Lxjm0{2nj|W#uTg3s?!wPK-|Z zdz&ccihY9Wux=j4f~t4p9c+@; zt2%H^O3UL(P92h;G)wz*BP**&u^)$2(!mcn3|02!1fMSlk6*`RUU?Ufcv-3BZ3g8k zn^vQ`juLX5g?F0UpF5bxX=;US&bz?{%ih(u@g+zT@b!yigpBxT6+OqE)y|TnD>g}4 zCthdYmtnJ0B?#BZDip!iXC)t=zN42s3)AQ=v18-GpG0E{X&VbWgcrG{m(NgH>8fnS z^;FRuz4y&)*ewVbQo3}`jC^DI0o@r*Etv?kbBdzf+#0~uUdNz%P0#rWy5a}BUZCn$ zJQqFGp2@YyW@_fn9=7$Lcr77d5<)-YWaVh-l|Vkorwbz1P-X=?D7!toH_;VYBc{OQ zX4p!?C}Y5qu<}-JM6#y7!85F!!N0}dZU&6*Yd6hav&N%PBb!jX)v-b$rIu=dj|r*L zt`~KriwCEq@QO*5O-nH8OhnJvlpj#~DKQ_gj|e?ivgm0PK|E2zF_> zqb1H-=x^+OBQ^>k+{h>_4S(dFquL!B(9c$YeA%Gq{KS)YT7$zipvPog+vVWFR67QE z{ms-t&m<4K@$GZGv!i8+Rs^%JtV4#Y<~H)KYZ10J!&9|1qh zxkG?xiZtQ~+cv$W65(LOCm)6g-7O|MEb1_*{lGm+8|Wi#kMI=-mvUJ_1)m45mOG_S zVf>iwsiC#3LvqRo14!)0zxh+?00rf837`KNokKVx=N-U6!-O!nw1^0UqucUf9dZEo zI4n}cxbOu+8KEt5HYTA8tLTfI$EgbbfN0z(ukw@={OCb0fUjWw8DGE=>8Nn?_=dJs zdaecGlwpvBIMoMcaO?Qu#xb;q4xz}h*o52|@Mckj;r=_c7>(H6$AnZYeT{%qzR$uG7deA#Mp*-J)o)u&bXRj_T0 zd~7Es;iGh|OX3iH73{!`ZsU(TsgH5WVVa*pK&~TGh$TISO65t(VSEQyam3iy#BoVQ zu%YGIMw(18$x>ei&dOhy>p&?G@Ugyogy)nJuXIjFk$ADacpPD}%d>HW9v!>MM2`gh zhx;ptiys>LEH^)xg}oz=Laml!#V}i7&?2ZqRPET2$VpKef$S;1C=T_6BOwkk&7#E4 zbm>fDuSq~6V=7-ezhR$m7R(q&Bz9=XVr$|U>sb=qlCNwbwNzfa@U>eBm?E7LI0%%u z>Ds;*Tkh=W^0}LL42q?uyc67SUl*EMFF!B!TC22$OLU;FDe*pDB6t3rexZ7F)ZdtE zB5b3hLAS|8WOqnQLWu!8`{^U{kK&Wy~NO5`&l z&x8IbfbM?`>;D7JT)nNC~Gg&P9G7Xl_y<5ippi%1$ulAaa)<}EXIofo`Wys^= zM8h5Tzh6Or5VXYED)J%n-Ddnt&i*uUJ#S$1X@N5h#a^5&OZXDnU6i>Q-@z*r=y32< zlgguBg2$;;7YD=P(-lvYI=`~_j>`>Q!GBxeu#}ll@v-*Df&za9uYn(Lk7FNuLVqnu zwhPf8s}RGb7rDXrO0RTa^PF;N)JdU}$g@}9P%`oAIkQDpnqzmdULOO=dZ?D_ zpBN+NC(n`j@Td&63AQ3$J-?u*u$3KE*xDC(=f)j3wcIWbnK`Hz7xnn(N$Q$-UCS*G zg?LoQwC5}JeoZ;qQs-}UvVQ+JWy!&{YRdIVQry3L8^OeQfD@u;z5aKN8P`xAB4XAB zOVc1LU~|IHMQ<5*&Xm_Yxbo$^7rmiA9$4ZV&f|*Ub}803<}oBKA}4=|23i~q+D2q3 z4K1`(`fW87l9Y(v&dZZ`3vpS;KX(QEXPB{8m4|E9UUMN^IKAa-Q&;cdeF=|^m#IJk z|7nu7Vt938z}s7$K9PK+R!p<05DxB379rBB1@8&+?4R#vraUGkOYllH`Re+#Pt!Fl)*^Vb4$3k)*I+6@ zQDJHf@VK6gdp#ix;I#* zp1crjGbN?b-$Pu}krOB(_n^#Rx4U`!VTrb<}+VaFGSB7-Mn&7e4o@qk(E zloRagr-NBp_rNG&#IFkvb}}664`Fe>=+y&wW&o)QRfW7$=x6 zhC`5JI4I#^kpXWi>2WD} (YzRJ}0ys0r%_inF4`a=WpHoH`4Qc8Uh%*XiE>Ldd zpoC^1ZEaTpQuNRfkY*+8Hz~W@z&@lw>&5M%Yk0y!_iGUCYH*xhUOpTBU#_e4si`cB zw~E!9Gk%!qsj04-`P@}KRr6s!&tK5fDz=CqBHC=q=s;Q!7xqO2m56|{?~p(s2sDru z3J?$sf=$>75Wp;8fItGtdv~34L(NRpRPx~EzH`s|d-t4QVfdZ@)r{dw@1z1XYKS8^ zp^0d&@1s?z_@-Mn0qMhrbCc46p$8aE-Xl@7lYPOI41{AGw@7^JB-uuJ)J-EH$z>F2 z6Y*xi9!>4o4_rX#DJvnN>cn;@Wq z6i3(Mh}fTTWhS0Ji>eJzV6keI{m$|A2C-_Cbd`#31|FrV z3HqSCY+H*aG`WLKCsWUlNhwQWIM(Gu8w#W7l-YW20!uQ339p6!1!vq*KFTtuh0knV zx$E}C+{nuCY=5wus!IgD2BVu4T?Ao)NadtQ?PflJ+Y0n8>wno;V?(=0CjZm@t zjHH$5+xuwXyUMhS??`M1u8k~-?LdXsDOd3Hl`WlnHGm`kt+$8~jA zn8}l+1UHC2sQh6O$<3C>E*2N3Af0b@&Y<&LPN6-u1=IbA(!NN8T%7IE2hMypmOYdE zbmd})s2IselH{mlEu5{i&uu7nnAX0U;l2{8QP6tx-kPar@}T7*q_0E*Y-1lE)tF8KdJep-D|-_8w`E*H79+ zlG>7GTiZ1vowCpiFX;RmQL$$J4W6^R9kOXp##_*1+$J*^Juq0|cGk)9;v`H5(v)j^ z2^i!_W}d~X%RBa!WzH=lHkhgZYM9MI#_g>cO>9)>H_@8Y9T_&>JY!N`*)DyZeMd?;U%T}9VxS?VcD)_qveVAVoco9sEu@}{^f{zOu{vu< zjd@*D@wRe?ysCT422`pcV0QeZtG;$oRlPo2JA%xrsusx1-{?qH{V@4>74CU|)!Jm^ zsNCM@2$>&rak)ji#;K;VX}H(%zM{gYYIYrHYubB(3x3`CqNPdaQg!Qk$W+Y-S6heY zO^dxdwz>AI7VK=~Du$mBHLl5I6DUP625}C90%s;rGdW{)Kgqo@K&z? z{0Ca+6=T5LD9|VZJmgCXY>J}caOe$GP}DyN?gn4@34g@JNPO8XiSRGHyb07}uOJ9; z0<4sI=t)LE5S{|wkeA_N@!(UT0DNHL$UGr-lS8kB8z%%W1*S$04RLUZd?HRsv5g{% z4i^R2IR;IH3f;%C@JPhKe8e3Heg(slP)mSRQSYs=0|5#gjAeR=1h$B*F>(Uz5JZJ;hyzN3K?9IAkpv7M2nN;_Jruuq!GPw1HcE~N`$q-o zgo?lb$5*+J-0!4xlOJcaR<*~5c?!2c!f(v=@Z+jGC7Lv|{lBuug!&B-<-&_`h#7&n z71lW-ATMLf2Bt#(2w`HwCu{^R8|Z^PgJ{ZOYlNp2Ko><}1nCvgTBcpzI(ZBZ2lv5~ z>rgD%2F({Z29reO{OG|N+6Uw?n+%13BFheszzA~xpXyK9D&(@O6LfR_8&+9fHqNQj zL-F%UvI`tECl&*nrO3l5xK1H^M;MjBT;((Zc~CB4GU_`GVT0+f7Sf+&RGPdlu-AUS z!c-(FBZx3r2GO;``cdL7JNsG`ky3na9g|J7KpGV_MTbZLDf)Xt&F5Vb6f~m|V|BF* z_z|!U_kvAq=)EOC4NHJtSV&i6bO;wHFCYgWz9AGF>|Wi}3y?rWaL_oSSV#x}GL~E^ zp;jvxhy9Y@48Q_)M1hP+Niw;}J&G(ip72{5XhRotGtKZIR{d8tNu zG^IZ`-6~EgM|ply@C0cON_|DRA^cWmZ%aviY(HV<@^m%A(8`9g9}MD_c!K9spY_UQ zG3kE!;zdQlfU>bJOWIXEe7uIWrHeIH5|D<4a+9N`c`$Ph<|ot_R8);lkK{Bm^ry+3 zA`75v`$Am(%c33ZRF$?lcP~xJ`x@orE9f|RlV7sR9(cV69>cyJ3Dp{Zc)I&Io7AOl zS*%d>}Yrr5%&#}2-mmt$&8|7@3hr$}|qMsf)8`Bkx+S(^DD zs5bL&-^394%sj10W1)?lEAr`S6QeI)%YprzT$muYx>3;+C^n8V5x0+@ZsUxd@xQYN zt&B7^{+snG3ySJW!zw75%7m#@rfM>elbVOAO3iCt=6R+xh9CkWh@yy6iW`d~C}7wW zkj(`YEEZWrmSzdEHJivHh^(@MvUNkVg@#_}d(MB(o&Q`g>LgY3FsZJ(-S_sn|M|~3 z|Nkv8>bW-SS~(CAj0KtG+t=yUS8$$``V9`ckf2S&Lb=rS5U=ybU52TN@+^-id`!M`&KxsW~p()IoPcLwRW%2 z?O)>Z6$q|iQ2Yp{|F!(usj2BjC+=CmwaV(^mC7^l$X8WTIs7n26g@f-dM6QRo68ud zhX$wY7idbEV1<9bkPE^kdSDUDUpk3E=iDoYWk}wU_j1aX5ZQy(AlVI-IX!w%*kN+$ z*L~Lwb*I3FW_Uyzv1MX@UIW85^te*)Iti*69+3>vm0E7!VTRmxcBzP&4=qu@HlC@h z;X*TAv_3teb--i)76S7m>FGn5-@l^q(1Csq(f{@pGnpqf-sIU?3cA&rKmrr=>SG2e z2^93_T4CLFUE{t1w;OR{7Ski=T?Xc~!r0#&jZ}YZSPoOs8}axm!UGE`X6)c->wzgE znIyMilY2EQJ}=o!OzQ%Y4Kon4-2{K53OZ|M7QODPwdwThwwV>W#E6h`_YjkaJkg3S6ispMKToq@q=;{}FZZhi{fIl#`q8%cG8Mn62cV6xXt^Qs))7 zIpuacDg%Sf`lW1+JHMnMez~Dd6Z@Xf_$z54CuVK35?cZq8{CcW7Vssatwb%GW?UvE zl6D5ckBsRpW;2J+rxqwB3nnVfOL**bVOVn=sKLC6MuUBh8D1YX`K3xfvX7&@7rqm-MR>D8m?;ekILn z=XA3#CCS)4CAeSL-@7?ktz*z#w+e5^H9*>i*9R7D^lc?tSm|Y33y_fjz7RYn$YM*r zC?5o2%6Fmg;C!co(cDHM5Cxls8l!x-@<28yx(M&L28cNPFCqlIyBF2M6(u9$Ft*K{ zvJf5ka|e^SwQ`S<6?L!+uhH*oJVN2e?c1>JPx}Ay>!U#bGwSw$HcYqi*B_++;_h9H zLgZ-<(+c^15UohIW-EH&GeRAF^iQ$8hp(OXCqm3Ao1*NS%y%g}_^GlzSe?wIHSWNj z+=0}*gT=ppUnSdeP#tp^7m5jloa69kDp4UxiC|_yx|9h@XYEc^wn)4{1T!OCA+siZ z80l*!UApU1%r;^J3;ca6&6&4K5-t=FZAE5Me77YoSQY8p)p9>2qT6uE^{Q=BLsWv{ zZd3zlPs)nvXCFu6b(dcqxW?#X`)th-_x^UL2gU&BnwqovdbgV_$0fNtB->+V-0m#B zc~C7&zrS#v7TFig9E>xSG;QaUu7n8*&D-lZ%`y)5LGaP$I_Kx~zFoGou8wvHhbMNW zxLm0}_mH;~?N(_E)F*(II2JCR@QxZG|CNx|qaw@glp2y9Mp%eveS=#wf3QEN-Z3i6 zGmvGtKjnPz^hMQPHz~@o#goeNpCA`yR>7ezx36 z4H3>=9v&MtXJSa?#S$vT9_ktX?uaGLUTtfZP9B$%j}?#9L%x&h!=w-k*-OuJi<|!6 z9v(xeU5*_`0TzwWVxI|G>aq9dPhXcCSy=QDs4~2Q1KJFTxceEhr z&#>f^LKQl5*@7TuZ zuzsX{z{C>YhssBF3wK=`QR+aYdmTfy%oJ~fZH$dC)aMRnB^q1w`v;X+h7BR195t1e zs_|u3{bMnpP!Id%2;p4B2tu%0KN|7dHSuo+5<<$y{n~?cY+Y+Ebuhkx-=nvOxLL7( zqDHLPoO*m-h<;S>)1B)~Hp*7|0Uet{I{=oqYmCZP=DAfqD1X8g^(>qs4zfniB{tRu zpAz8-HxN&NFUwW{J3z$0*tPuCyK3IUp~`)pa|6N(@p%qr{9hcem>Q(e$Mf>_iq5vu7s8C}aAkJL_L9WxY%MpKwUbK<|6TnCnlOpEF1kju*9#s0_N693p>`x3Xt8g{K zqza$IO%a3&Y~^eZ-iqp1s1cCNWScY9Q(kLn5tyEpz*%d&$XiVVyLt~}R$qxze%Pu} zA1A`^iZ=x`PatuZM+nLj#t5tx(&YSe#U_z(6(~Wt=8Zz3pDH{p`jCkl*)7(jkb~fD ze6WR>Q-RGfEBXz@2;38CW<)B%?AJ0X44n0Gy}?uNT>LPb=wZ9*6uiVaKA znd6engOV}n^R)F&RC3(2)cLn5ji7qc6k3Xtkes3x+SMzyKJI;!dn=#9NOEK$s;Hhv z+VzrhFcwDKn`Fbusm~aUB*b_XV_Nf>uS#wWLz}9*u#qmPQoCs1;|fb@epgn9L|^9= zc+|+GCTC}Xp38q_>lwML0&a5dyeQ}ZMjFz380Z`F$KYj?uBMW9RIOuf|6ogXB|ouE zhqO_#ecH~Kl!ZR!Y`XTX1fXf@H@rB}HaGBAdOgW#YmX$aPOdCBqxLm-4_FA6U4~)q zB-0h^mN!Jf5E}zy<~RQ#y1Ihe%FgiYLo$;|CNG}xLnf1_^>ZfA9zSK1+1XtiV+%|X zO`r-AO(20NqDicZ^ zz}SWlzI`(5H&0{P&r!RqHV;k5Fc01w1TR5`V?Eb9FVQsa%D~MQ2bv zNuz zB~9#h+^E=65L(x37iPvicEs0L%Qp^`vHIvrvMzrT+sX2OCfvIyDuRZaPeGT5$J4}n z3(1X%^+4zNF||P(!jeU4NzC4yBB{|HLP%R;is%%#C8dPf!(-Hg@yYl!p(wV@{XEj7 z4jQDYLFR08fZ+%iHIS*C;@Fivl}Ocdkz1HC1H;;+Bvy z8EY4RM;&A*`x7We9)O z&yKs&h($OBU{-DK#Z{UO1bb!ob!7>MqOBl!h0uV4;c63cel{}9lC~^}FTf;z!0j`2 zChJQ>9PjyzY$}Qet~6oDC|n6V`(n;=9iz>gJD303M@6~pP&j2PS;JWnft+mowp~BKUSn5l+yxn>C99rvZ)=X`wZRaM^b83jNhyy zNPPY}Eei$OU@v0dyD80R;f@oF|AW%>p7>2X7l?NSPA0BnU-{Wn=X@{*xGNp1v)HrH zR*>a0mME`QYyq!NMKx?uE7!Qem|Iwr2|;Tf8Vvgq`tGur)_C#V7}h4D!(`{M9=a9o zxj?&RrOL=!axwS+pf;m(UYax*;%vlHK&SB0=e5`QQ#;v|4Cd1Xs3@bki*Fr-h~}=* z5ETPtGiZA<3W&z$wN9NvT?w9$b$C$6y;Ea|pQR$cQkGh4j~UT;aCya`YK&YqD;wzN ztKwzo)Y3PXNwr&&{&r{c%veuIiWjfyTAoX&2jK<{SE-oP-zS^5UT6q;TmZTzo>TU0 z`L#`cH@!&Z^}$qaR(K~+SC2_cYHz^clime~p(OwN_vo9Cq&$PX6e8*_;g30-Z^a_I z-1#kGX?^1`*7iWGp{};^IAoFI|FZW_7mxnEjd6S#Ax&n`wexd%jHm3j?!b%Jy2SfH zs5dlp`P+(aOz-;a5~6%XTMis1I|BEXzcD}cKIj&({SG@4mX{RU-k3{e1jYf5f0hF3 zA>iUQ5Ily*<@BQKFJy!-)uMtr;<7hM+Mv-)aE91u@Y!s*S$g8ljwQzR(#*B0Ns<{+ zq)~1yMgZsbRXkLLP?FaE5?^t47a-qC01;GNS2lziPgzJeyw@OS%;?1o zj0x$OuZGRw(tPs50|^Z+Ni24_GIZo~Vm}4zem#$)>=3v@xTgYywT}qa$fj7X#fY=+ z^Pn0z7tY~7z-QW2MJaSfbNt_NVI^S0^jSt6{Em8|WRh-;uOcZ}e_i$k{_>lBLUIh4Gd6&+lV8vi!k#2iX0iOA4#H^7 z+)Av}Q90Iab(776k4Ce>crYM88H}D%fEiwIIf-_o_O7gyY-OA^j2H zbPKsRfJc;+sn_iq%v&_Luo*7m$6;VO_#m+H~7?@KyCWpS_ckmp+xJj7F& z=pGc*YC{@v`Mri1LpL3LqqtEXbxyfh88I~xwC##4=*{b`kPT$t+1(0SWU{iMO@2y$ z_ej>Ci_mFkhj)+ZHTFRpN~mHxk|%l}LSfdTWnuqj*XW_|HX_}jJG+u;lGWs%PJ_~R zC~xalGIY69efeI{n>^9A*y`VRgXXF-H2RAV7iT;2Zo575%Cn(|Mk(kZg<2mO7GeY+Bp-qqv8zqvb2yr>35f* z^$1!tci|t+%=&lm_+d73PBBwbnt|iZtaJW1KeY0H<1oX}_XV&lViAME8#_HT)v~}~ z4h}i^BSsf21FmBRn9FOJ$KX0-@qei<)1aubD*)Rf$)sjXCNovzk5rl8ncu1Woj*w` znHrrT%%BK}GUBj^hzNp;qN1{lP0z3h2(l;`WmA@>6%ho)V(W%xRcJ)$g@&dZdU^fc zU2|@mNmZ)4`}KS8o^#JV=iGD8hh&?)sbH|aCEtS{WD#Y>Be{_xDU#C*`Sc0d@I#U) zl&%|z*{;}TRuwqEd{gT_2a@!Ys|d@+UWCZ%l+R*@m=%@iCNX|zvcusg873t#(e(~s zW@=(fnjG^@PE%xTJuxLZcVEB3IRe>5=4LwUO$2Xg>lc)*PVIKj#LNCM`_sorr(K8T zph%+VU=WxV0TA^*1{nuY0` z*)48;jcA^Cld?*kXx#p7L5^}6V&=Sk{%0$!8r$=;x=VYAE$>XdSD&ZF<#`5tKPjb4 z!nK*1)8x&myoLO9`^J@wv=?~b^d0%;Su@0}{ZQ8RJN}u(YLp$LuGJ`WC*xl&B^}Qh zb|;>__*moux!J(1sj!dT*>NdPl^bzpLgy0WE>0r$3vRl2aP1|xx4fwj*bU{^AiB(F z_zv2_`+?!;lM4Yb@N*Rcd{i;)1~e3r5`3WY2Kvl^61iP{yVDO!usyTL^Z!a3Pe^W% zfToUZ^Btg!v-fg3xEqCQKM#g>dt;jo!Q*leWNee`0XbZJr!{EjL=C;$n_vj=8yH4| zEPXaCu$4>?K)M7u^(G8k8K#<53xWu@xoQbP;Ct2UPPO&@iuVHF z0`n@sAizI_AOKM)6BHeUWl$-GVHE|O0S90t{{h~@2qH$nM?r+4ihJS#5*zbFNHaiK zCf>pA9|2e44?SQ6_fSz;KoA?QA|VRY)CF#ZnC#&wW(`|A#Nh<TBseAS<;qa zoT@fcq?_s`OtgzBuLyJVAbe($ZSi0w@*OK4H2$~yz@<4S~&;G&Xb+ver`b1XeqL@b>s4 zEdxX?S!DVM%DoS3PM3%s^$}ZZYH>mI=h{0l4d!nvTf*#&|A{%ZTARp0($zU6Q%7H? zd2!sLAE8*^XJt&%kGR;voZnyoU;K0Bje~o=%(1qzY{BO5Og1^xval|4j?sAae66u)DN`4*l#^9DvS_K3d7H#ga4Sl zJqleqLnyF80{i~=kW?b`xR{7ik;jaEfWnq&>6i#Cn}<+9*UtJ+U}w0^9XTfV;EVNW zJXub!CR@?KXiSd5cq(EOWfwz+O~sj&&zo(x6V}>I*9TEq9w{+<_bsC9l@w<*`KzF; zbF&WV&Lc;Z-g%^(@h_x!y{zsbCk*&jAHG^FUwluut~w}p ze6=8tCeZ0ac5C?JM2PH(9hI}oz~tR{D1YPTIqE*Bo{!Yg;O+u46}rlJdYi`Ac|q`L z>fNP-%4m$Ot-v3hdB4DYpvQ4w({yxlB-}R|oBRAI99Ps9vW{YZK=vb2<#|PSxOd1M zky+{1+geN^ejb@eO zy{(sfqm78u0yUiqL!P7ujmhL`>Wk=32p*mW`EO_CV$7+U&)Z{hUnO(u_WiO3bcvVVpQ#mJ?} z9WRr|4N=PAaf}P=Fa(4uvQ(2m{f7p?^(Z*=0g?XhfPnZhehvX)=xiqRGndOm(fj@t z!OdaTjSFq1iH_B*iRlm-Ul|kmm^}M7;Y-)>6I`E$S5Fe+KQyAGw2D)DOY!c9A>>** zsy~Jdp=Q^{V(9kTF^N`O7adepo>CAsvUP0Bv4u*D=-%QYG`|4}UzX2sBwgBP!qd*f zFHm!gIb<16BvAh6(W4aIy-HAC17_58gvg0&DBj}?T}B36REW2aA$Ol_KTeddhUtSI zT%C*Ovgqqy!m+0a9>Phv znsFuOg>!wySA1r#4>gLIlc{20&5t=yx?c!gJnkT(c z{h4<9Ad{{8AZqj9pmA@&7y3b?{%IP_)SfXHYdWo zht%;XFX|5c$5LS8JKmeJb7e7z(9*zy9lcLhL9VLv1eFIvVJ|us!-%?^(6oCXG)Tmp zwt!OLoqMP6J8Ax1VhmwTGLAb zHSyUG7(WdcU|uKOk`N}^W0Yp;;2=M&U5IsSRF@EWq~g)Qmg7!z^$i58JKSOWbpfu; z&c$1KR!RRKiP5D1X(XDG`b4h3Tqhouw?#y3lge80aXRrO!VCXd$VN#q70<#RD+yN& zKYk<<8ayG;_r83vk6)xXy%gb;dOrR$i~m?8;?E#fbScH8uoA7G#nWLun?9KM=t*S< zrAhU7$=rT2_EaG^Pgbw_-^r*&E2k4;T2Rlaj9VwiU<}~%aaTRLX%9kq^ToFV)aqNF z%uBm6n-0rVb=XqUGcG?Oosp`I?lTV}M`7cZh(gtQQ+vpgDY$^wK;h+z)aBWLPW1BP z%b0HVKy^RCGIgqSpgMY6rsd%lXLMni2HMo1zh12M-B}9Ct-QM0=wtQ772XZL;ciL> zo4FxR5>C6<1BTqOh2r71^Nq;?i{P6&u`wl9fYs=0xsbGnX&pFWByO|Wxg_PWHiNAkXk^o4qoi^b(Z?ZHyAcuwMSD-!}sUqz_uIlIG$_WrF)nD7u${CITe#%L1v;%B(Bmp)$oe zMs&;H1CD^4B-pkMqD`M7hp2%(i^9C^ojelo>xtCzr z*%`7-Srvt1+>|yfjzza%;==A2)9W2%ZDx_tS=~BF)5&fpqYD#cUbiW;sbMolol_i6 z7beEoq~6Y)txY>v*Sk(#-6N}7b6XK46}|0q4$RMWtyqU&iHB*&bL*=?*vr%Le51(- z)zMi}w@J`&QJP0C^9yMU;4EpdWgiU;+#9B_iwrXnaF3!jjW5nM;*3rO8DK z=Xk+J{CwLSpy1gJ&+PwziYWxeH8g3uc%!HgGljpH_dcc3Kff-s1F|50O_kMsHsrDK z;^gs}!!Rew&u}QgXJ~?qztEn1)xl;Jr_$sG&Yf@=peeQ@zXCVxeY@nNvI?!69$;qp z21IL?|AG3DA#6Y-us^VjL1CITZiB}S02W-~KA7Z}3dgdK`$~Wt`+_b%-Q?ydG;T0Q zEPc)3WA8fx_Pi#WC2kK=PU$+hK?N(+o;O)VcnV%utUTwiO1~oeOvTti<@l7}0K&ec zpCjm{tQ`P2J;=zGhtkw>9=X5poA5VkckN4mS^1%FtBJ^CPwh(lc--vrA#>E5>(B%t zyUo8_AtwN0(>^XH@ciK=*}EgyPA%}7p^RJhX5&Z3xUY9Jz}I%Z)38EnhoB4{#3-<3 z6Q|yJGh^S1hHan;i_u2cb^&Y|6{+L|Noy}alfS#bDJ|uE-lpy#As7*ffBHay(T`98M76~lNJWv{-^DY0~^T^(EOB-93 zy`#e#6z6w4AfK`q3D9%j2l6QQ-HR0OjqI}xzVDYAA61g-+lfELRU{VRXQ@@e1L$6A z`7x;_nT!ODizETjF<3Sth+p0|n3~Ife)+2^bq#ap*W`M+skzh9?#sKo`jrDX7Bc02f+k3_ATX$7=-`n>)=X}3Upg)ZJ8x9kPKqG}}1-I{iG;@l(Wa#b( z^aib`WAI$S>IBRCgW_fANzTFo%LxX+vH`xd0{>Rb9fU9(LOIQt=A~N)47zK(Xo^?2 zW9duK<)f$(JiFT~0T`8HYt%4~EyBNz{ zhA$Si*LrXB@e{{^eKxTccZ&{BUFS^!6C(k(sbE?9G$X3QXw_IaybGIF#-8o_d@v=n zkr~%Kv1Y@6qOjCjDjy55vvHs)S@6l-*?zJR)r;%=_;!MGOew|G`#s^G!=$|P(v$94A<^dA+4|Zz-M>G$7bW$c16)0co!v?371|IHup7< zss+6#GG1p^5zE=4560f33@9S>C{IZW$2m;|9?2uS_bgvycuvxQ<3F6QU+B59NBH0; zj&=nTXsCwfaL_vpJ9zBeM`YVe=iXdHT9?&h#x{U1{xFmqjTU1GdbkXoQWDx^WzL?{ zu&a;*{*o^?Z)8yLoT0TZm`2|3dBXq5E-vmJQ!2fLW(8I?@m9{xoFcEE(&9c=X&Ln^ zAxorr#(4jY{lNUm?TiZl(xd^%2C1MZgxDFjqt%oymBWJyD}eSCkcvhke6LMmUXw&= z)Y3<%xz&YFY~U9^om<;79(jT~cKOrWo%#&+>UXH>H5K}jsId3*CONwI>B?h=q;_CV z?JdWSCff4tlE=%LM)WE|t=fdWr!t9x>hCg>91cU)HfeS!K|dV`EBDNUFGzfB&94nc zR{E7{fZV$7JR;1y;IWXcqLTbp9eU=eD#-h?>czBW=eQFsPFO=B69RqQVDnmq%ueC6 z8zDHfj{@H%k`<)SGL1?{t|N8GKdwL$YwfNF%N@(Kk0M3VfuqbA&`ym+jE`IqEzc!H zlTKQ)Fm~`((en|F|7w#CEaSD|YIq*lc#i+Ckpq!l3;!i_G7+wQ^tdAvYGN+AezUjX zDpiSFu=U}WjRbzde~dI%uzlv}FgJdOv5VDXp2NxCpsoNlD-hmhu?1&!Vn}B??WAFY zXpMIC7@v;37GQoNYyT>0<=EBSG#KvpIuh|LJ7 zssl*qd6fioSd0u0WFyOdQs5O*%KsTwov?!(0K4<508ZRSQ1A%;Wd%|iiQbj{lDG%+ zs4pC`l*;bbLsPqu{n0i6587rpb+Swqur&~fuK?!44yQ$U+vO56b9t<;;FLuSv~Dd( zvd%Kff-RQ#w!_3Wf)|uw*N%B-6aIu9LQ!~C`T3+`oU3m!{;tg^U*LP6X?m&+4V5*+ z9ICFFscXRvB_=^I7FRZJID|q&x!qqf2CNmOrt|t7M#Wiw~mvc>IDNd5ov2_{xpDg!QpiU)hxg1^u46aoyabaHxZIsME zeS)r>CMQ?#uW^z&u35pr?iQq#VV$@Ww!K$2gI=0S?5A!9hfqxnQ0YyQxnW?IcX-$V%)I1gP9pU{)d4xv-$2RN1d`c!V2V%D~9_w$%xHN%%vLHnt!GEf~U+F z*eCvhIRuU;FiX7LIbsXkqQqimMT~$awhP7)>lnj;Jr^iTLrkB-nVXEoEX^b+S40hdD*Ki_6ypVX&lTlhB!>(Vmx<_f>jE ze(1^jfZ0ZVm5K9i?ft@BU;Xlv%*PIA#WU;c{5D}so8E;do-`8CT9`ThQ>W0Fsv|uq znl@y~&RT&4u%;1WD>aMgWpsXX(RPyh-W&3{s1-u!HzCq?Nyt%2ok?-$YKC!D#RD&i z*sg0E{L*vIPo$I)o&zc=K0+>KRDets-58g(Tnvd{^B-geDBzFmu@(qgj0F;jdd=8p2AcGO^)e+bd3?ZAKS6m_apad}^Et8v@a>_d z?H+U-t6-D3+2OH%+d@cD8iV^eEgE8IhA1cux9vn6=0H)tp2_0e?NT0=Ujl(D! z0k1aIo!lD@lvVB;Px9cC1s(vhV=NE^vS~_m!(@3I2rvC?`w+4P$1%erAnK657Llhj zV^^)hbK3NpOG?m>CJ|p>EWEi68 zitSY7fdeZ({yU*NA2@Wq8lkCE(>#5Y14#lJMU*VMukkrZIltkgUITf7(7W-CIM_H= zsQ4Siu?tC%;DniNkEgT-`nWl@1y^V(DoME5i03j?iCcK|PHapZfW#IRkWi1xHR?JL zOz3A#ZInW#BbK|G#HO{_B)#yYi)O2r7qYdF9Ag=!@kvy~sUh(XmrvDQDn``)JXvk# zQ2X>Cz6i~qoFkhhv9+Mx3X`%7;lc5Z8QHDL^+HW@<|prhv(Wt`W{>}THBO)8PCepj#iJU1$pFHR4R8l;nu82jy3K+ejZ93 zS1xt=CzCxcgEFK?3m?&LCEgC!enj&=PYP3`CVXeuU=+X0-FHQnP)O}Jv!L9JDeOd{ zlbL)w8NRNc^yzF$yFnu6Og>F5my^l0O3W)nbr_~29%ky-h$AxFi#Bcq2rClJM1DU`gu08+ubjtVgaTkbui^eQ+^73GfT$3&Au8$t*TZzFkebdST( zWNO4eGMf7c_gtoUtuw4<%Cli{VzJ$84fUh}CXcigVtVxvp~>aovq2$Xg-$-I{7A8? z9~igFl31TjyMo>g=#4a~LgH5Cv4o8Pi@Dx}6i-KVy^yNxnErvj@fq3X=($#%ZuGr; z8*1kLTbR~HLS;Mkj-Z4r)Js*XJo0fqehcOm6AQVJVLC* zH_Ft>^V7jRF*0Tdj4gZkkCsla3^eQ)6V?RSSif;P{yM>8%9PLCQP>Aq>{_MxEk z<}}4PV?PHK#bycZJ{5LN=sMJs>lZ>pN>Gz5Nf~HZ3@LSJ6)OqlJ1*z#_)DEgZ~`fH z^0LnaUio1JwMjfgoeqW%ZVN2WCE%@)b||*2Ho!< zkXR8qFAQBovdhh&5i?gRZ36}Nx6&^vZ7lM(&i6RNXltm2b^AL-JAcPsh^C5%aZ6FJ zSPbT_xOXB28moiP znBhDRzRZgI&HlFwyac*JTZ2e4PE`-EZHdqziC^uvbYo~>ptF4rW9ZA1JuBM~mBB7( zq|kHqFPirof5ph1fY8iS8Y`u)4Bx%d%9|ti>nk2W93cl7LHjj%hQl!B%hD?G&(Hl* zkXHH1JY%03whq0Wa0u(jFw6O~aY{hl4GxCfwq}q>e6G;L6mP8wsbAJV7yrr{JaUlM zul=cK@cE#6<=K{24|(K8e+$-MN(hO4ck0>B8^WJ_&=IkyNPJ3hHi9}n9tYpqFnz+6SY#;S4VA{RM z_`b?BqOQZqrhKk5CgjLFon8T`_Dn~=`xQ8`^VkWZKbB8xJk#erRoGSIt=0xyru%oO zxR{H8T8sq50b5M<8MK|`JM>Ms$8g}wl(bh?%&OgUXT9R6Yr5j2!@98l93U~P&)oy^ zjz9U_g#T)pZrv*oy;cluD!h%W9Z2p$#!r`^+wynQ7q4K~LPZlA>u3M52Y!(Ca1&O4 z$jo7)H7UKdJNuUD-;7sTP*m9&o-ku3lbWYgr7Fo|DwT&+=Fx}bF^Q>iriyVXMUYKE z7C}MT_hzSUkX1n%XcSP#7Q`(q0tzVmD*IxCg6uT(dhb2wKlkQ8jWeU>B@egz-gD3Y z-~T`V_I;Hpw`k|pbD3RZiI>Kw-Tn2EWkO3#+S)H|6+TgUlkkC#E6M?xjk?!RqVT#) z|Kv@(d$CA9%${6KtnLR-{&x{!Fa2ooPv1 zOkJp*^Xp+8^iMs*k|)ZqUaav>+mOb1h0|+gvZ#E%n%d1-Zr?iIvz-FH%+e!B}bU=)zua)mw5BpbeegL}V1b|P#5-4b9M8#GQN z-md|S*kLg9jl3hlmLu|v)x0+w^7T?!OJ^L3e~Iklb7-kTv#IhGluTh+&{ZGccEfWu zw;OWW89zzi9&R}3RA@L`e5J6Cc*k5!E|wSY?2mLYWfzHuWOUF$&TQDe10toMjlCWwzNpN=-H}nW@vlHop8VScpue)tNJ* z%Sm$seqZ_<4l#cyTyB{*dH(BLfdAm>PY zVo-2E0miAV!CTn7trxclCtE0p=b>Fgg~&oV$E6RmW#xCWPK|!RzB;y_Ub5U7iw}RG zJWtVL+CRw6#yvwBz;~dua)3FQ8JGDC(T~$ipz(e14&VlIwo`^bslszS?=w+doqQ7! zl0ETaT2w$mT)-@;Q8oCi7(?@%ztOV_HTARRyO?(d@UUJYy<4B9q)T(z<^eSqM!J zc!%d{&rFY+T#rb##bm4m)m-q@3hY^Obd}H;Ulnluaq8q)f-Wuj+(1cK1y$av^R8QG zG8(hOCrRbeh&%=hmv0EmDaOe{z4-KU%qWwtXKOYYSn|TJG_?lzXAdyCR-gNXE~`}6 ztOyc}H_{i#`eCbLYAt_BVXM0Kk-~9qmi~@q(~;U)I~W>QFw8T&TNVcixL78VQN~EdlE5N>kF7LbjM(3`IWNeYss=DnrsLX?0Y{&LcDKZ;59c?J-i9Zn&v| zF}E!zh#uoCCwbTuUB}*Dpj&POlD1^;o@8-FgS>k$?TV3UG@(r>jRQ@ws1KB^$EKjh zYq!b6wtILCs-k&ME>D!%K=9g>?*e4j(u^$Y4Ff{&D_W@c6<$V7U)-X(s_n5;9UFe8 z%`+{=({&AZ>G79Tl{}uT_j+Y;9f9-?F|LZHCK!hB>OW29paw(0#I|4ktZKlw zuxUegwj^p!o4%B+rqjnXI`1)BkkK7w#cp)2v(>|J&=MM$?Xyx=-QzckIna>Xqbjpy zxm69sCe&<1-g=Z^S&4aYC#B_RUfJ4>+)kfvxSHP-lqM_xmdhh@G9x$ZUGAA;Lr~vR zQh8OP?RgjzZY5WR8wFiL>A7x?u=oct5xLH-SMrHjovcw~)+}ji0`G&~`&M+wBHR2T zwkX7z6CmQlp)?Q`l5w*GHYZ&$X3V8SJ9-Mtb=S#A^hM+o)4Y*29EVhsL z&7{HA??>3qY5KxDDI>d_OcrN-hqUL91DPP-^%72`2%evf4g@3_|wMtnzC@@dEomL=&f=J7Pm%u^t;(v z=Vf}aj>ZKoVn^hycE`8xAjIehT|G5Du1ez^4xly)TEhs_{XnXHUN5;kE=Zw7kd6;C zvx{M~=+gXYJKTw9${}qIC1JHBv{p)djqcvfrBXmkb07@(?+76cP2K{`5tR;Tbu4{r z?N^iAp`vjLOgO5rfapPqC9cI&oHqcC+#lD2Z^;RE1@gv9%Kd z3wybFVwSj#(xPlS;s;Jxa#+W5=ES1g3(4#uwt20|^uS>3j_I(#W0wxBBEooRl>!0H zLud_>;J5(_W7z0vbD!%QR)=2vtx`j2Um@%s9hKv%0e0@4UO{Z*GlX-J(X3N<2$VKb z$^Uvo<%Z_;EQ8qcPQBL=HrX6g?5pYvoei1N^l9%{;b5uZIGPMy=` zMN-m}=w-nZuPR>G=mboiRO88=Xe5L6&J3 z8kAi?_FZI^X5R!9MC@V{L1fRg^ z=N2yRLu?CtNbs!1h)7k1_s+ch62ck)CcjrT)b^s}UCp{15CtP%pyYM11i$T}~5AX~oUaM8^MeKRPWVbGp-)R(ZxIW%t(m$#{gc za?YEhFcg!ykbZ|Teu|OTIk%EPa+O(pBMWrY@Lji!Uw~ugD=OrM{~2OsKN0n%?zh=8 zMG9NR-d;SS?)`ITC!4+0EI$RtFMz!gYwMT+(8aj>SH-7VC(!8r{vQ zBuAan@Y6wOEzM{o2mhWOy}ARl%gP0eoB8}3B}N5tvoQdk<7Rga>@C5aPKswA_a}lk z&;Yl=BR5|vr`(lGqv_D0jy8%Bj?xP<`Z#GHTYQR5!pPm-{N6l zl2PR?E0l&d16S4J$IcAUR~`pC*FEO-Gg~FSE_ll?2JRWpk9|q6wJR`uSyHIPI0@>K z9wxF;PX@)$pfZ>uH%m)FcV!PX-*z=(p^p0!R+fgy6%=t6@R(`Ol}#}I*TNDi6Z*`9 z)?cwQLLd4F#+3Mo@yE$Xbo+Bja-txOr=U7@_dy~to+m7{i-kIl^X+ffKSB3f=&C}G zXR2DQkLosPZ$dt@``4@-LV+)3_RzNxAswM_ z6m4Q;v3@fmq`6`MzqFVT7yZymm%_Xg->u!tBV{4e6Vc5Faq-*vk)3kyjfB#mJ<9pq zkA5!-Lk&H*D~#8&%mGo!Rj5l~_qvDgz_icQ%GK)!nLhU-N`XXQ^h;UmbM6Dy)e zCDiamhR0ghorWWkN8 zuy!))quuvvJ^W5p>?Je)I{n^)M{|A)Q$h-YHFR@;h zH7j}GS0j!W9DPT(x{z9BITHeCsg`kACV~p2=6MTvw*@7q& z!OW2Y3ps;>3jGX_m;;do>vk0U9sVvjG83Jj$(T5}RM2U`&8dwyD;8>#14wxZl_cct zM5dV2|HKPGrkHCIKCwtp2vEEfs0H~Gp|S}OQ#6fINJ1BIuy9O&h=z&ffC5?oknlmw zz^#9ia32uUDq1qgaCB$^-I|PLPb@|Y7%ha!BTMF)oevX(7L3wavOFg(&KlO|cdS!G z^6U~Z_pJ)vxY0LEteS~^a`5!&K9QH(I`wSl$%JKOz|27!ZkUirU*F==z>sxF_4EV5 za%ier?|$+1Qb#Ll$o<;NMFGh~X3Ju&zN%q*tFqAoodwmqjE?5lnB>W_7R$=LytX5v z&QPh#H}KT$_4kSwu)u1b*x-}u(-NlS`l2Z^nI179N&Rt2t8_jxbs{r$lai7wgS9Ro ze1~%ODk!x*ZKEq`W+}PMv~}D)^hs2!QY+9);C4zm>P17E3gzt<4zWWVYUU;miXCUl z0*XS-`|yn+D zEs^ou9*YFk9d~4y*7#8e)O-v-fwMBfrhANmo;zU9v*$R6`TNOHJwIkuh7l7-+i?`d z9t%g|zZa^~7DVOaFx%GvEPb=fMYuRWsj$aoy~XZYG50x_y{EAd>Fa2*$I4Gg@z;y9 zf6$;9Jz)f9_MArcg}#V$MLt6d!ZugzZB^=sCS!L+Bo(n_{%(Cvm>SOu2f-^y!=2>T zAlvOFfc)eT;HkS#TMz=pUPxAfBDc9KX7DR`n+T}bnpyw``~=J5$WSk?i8=5L>=n@D`p$P1#;0(h>l1I3qBW3CiHESJCK2fsb8b^#yZTuVB2%% zg$1G?wSZz-nnJmCxHP+}({IVs?=gVZ)lC9Tw{^s1umauwlU7CmX<(;xxM~IEXb+pw zl~+KlhPiMNJ_Gh1yq=l@sC+vcdzFN3Pja;o;ysS72t)7(V6h$Id<2av*mky^CDHJJ zN<;esq|e38UC~XXo<$4-YDCAtS&Y(WtkYL0L0rmDGLbOY8*RY=ruzzS5+^an&Dv-iAKl}9nO_M@pHnyhrlmTqI=#+lHO>0_%P zaeLAT0@K~M0M8RJn2yT(F%Vg9j+{j57MDLv3h+wNJ zsG%T)6OYDpmy(5ZX{m0bWYeP}zQ7XfnOa`xVm6ng{;}l3rUL4-UTu{=1X_~|L(Fhl z!=`TKM}*V=FSqnH@)b^xoCfYYq@%P+Mm$XbGlB?veg3tgfI^RBA`JT0!bJ` z0zv?RFoq#OKxEK}3?ieTf`%am2xFK+2!Svd=H%P^-QU-p_QL*vZ-0Bg&+|URwNfSN zU^qW$6P=&NzQCu7qC_=%9w^Dc@g+%#$8MfjBzfW;5YZx|kcpSUQIH?knI0XR(Vf|I zFLOK{*aNvz;^5eWKtVxo_6C@rq^hrQ<~DKE-pCWg6L^;@)4NroQz2U<)5UY;4KCJM zSD5d8&T=6`EmNhMGmUBqGXn)xO9T&wxzM>uLDm zrXrh-gKJb#p7)%?NH&3^Znb!v!26eTZl=SGc7fo6Co_8<&C3tb-ozBOr|n7oh0$w- zZW8Gb8tnbT6FqeUysM`ni(}u%t!y3GoU3NcESd>>vX3bA>u$GOUbtjcTALHj_pboX zUFgJtE?IE<7Ud*yQGJU0O0|{piIVNx|8VN!{>nne3pAeSJo4Cq6>JP}8N!j7XLH?} zW@;+2v<&b3e5lDscp;Ju^IbRb=q0^)=mc5-K0v|0_CglVZ3xu@f6x^)!F-XhQ{lGb zuT*0FNPBEvOx~qaQh^qHY}k|fcXZR0w3ChmM|LqS5-il>8adORj0=>wcV;^3ifl!; zEYzYHm+P?>)tl*V$R@AxtyPq=;uJKx60Atte8bfkg;xG~{7y^H*)DZzBnbN`XChuY zYbu>@{b)K4vHOcAL&Ap?(M*S8y-vWi#ayLFruAGghtHWk%+CvU4qU7G;prVmSa{^su5n4$5 zAZ#xWZWtllN$$gj$xo3&K?cVSr;Vg+(E%$TXv)@u6Ydu-MD-+ez_iyURLHdc2j4`+ z6})ZX6Z!JYy{4EEX6%kUR3+sZtWgT!SbM5MR*1F(1$8vDwWa68>=VcTfg~7X^~LDo z_90rU6MEYBf|$jCBmC1jR@H*PP%4jEtdwHb=+9`9;U<*;DiV>CFwcixpX}Ta72)f@ z-oAjDOy*m1{3rZhkTg=f71&Hd-msU^9~eJMj6?(EG*NLNK4mpeLz#qO9G#>o^ttvQ z1QzCluE~Dz27O@c*{1giax<7zeZ+{jWc_zvTdoLYnsMsAxxXKxZQ z4m(3R)#!nd%=^1o?hgmvvyjn-4PKaKc%Pzib}96G(5`U>kB1$>uTKWUaOxXC{jHEK zXIUq`&>rsqSC^ss<^!9@s!mEYVvHLG$-PSFzPrt?TsirAXsiIImlYl&)L zoMPVIcb@a#uPv;ETAZ=R^ySSO*X5&O6!X>n_`VY)(S8SsV}DHi!Y)-3#NRNb?3nK` z5MGut0q7rRP~1*@2Wj9%6fI8g3$3Z-cl3xGEQ!*Qc@OA&KsT5ne$!t=&dE|f&AI~* zI^1#Q?`(An#ziUTA$=UV--9Vi5V-=fPC69)o7uj(hQbCRq+`#t!uZWlPZ{$Ab~|L3 z4ke12z30vkS2r{;qHd1uE`zLQ`ja26zZ~Pr z7L*rP^h~w!p&TR%1SLawE;eq=y+%8^1)gi9N==x*S=b*^!j;1GjoT-bAzKlYtKRI3 zTEg}uz|p@>cYHII(i$2QW_i@R66QG$nbc1*!S&02M?gtwQekR?n|RG{h}mbGtaz?2 z@@X3+4@dPm?uI4$1US1MA`OK5JubsBuc-|bPN7Qa)I^oz*~@aq+N zrh=R-$MpbIq+XuQKEOH;$Df%|dT|`_iCywx=DijfqZN2_HjgRPEy2?UW~9;HbpYH? zM4g7N5_5^LoS6956Mu$v1ukJly&Iv>S>&{UWC$KtA-six8=14Sg}YAJ3$Rd43`2)} zBe`U`Katuga?M-#7IflbPH>{d%F|_$UNPC;a@J?lbJTgLRRkysAfp{8PT?=XG&OM- zKFdVZ0tPQ8{*~+9Lo}UP|JI4ef-#m1@Axj!DCvxNL-1e)k(N>mpkJ7SPEl?d%6dt= z71L9VOEWOe8^eri;LbT=k3y%f{pWDiGi<+m20vtU6O1onZ8T+2in6RXyzj!$CBxQV z?Yq1^nr10VQ{l8uMa;6?yM(=-VoZLswxqjjo-Cgx5O~p#H@sJ2jlX&nwCi@X?B}~~ zqn7Ico~TLOBF!x5scKR38ot8>Yq@o2Wzvfw@qk^D)ukA>h36y&G_Pfh9LwZKj;BIN z3tpGW+ndC8tWMz?Z&KI|;#$-#-a)<9xe`Tr1IW=~CLSsYgsTdSw$rKie=sd<{Jd6{{de_&pw%6aH%?WRR&L{>p?WJeT1 z2nfg`7y(%fK_$u}AP5MEEDFIOJCP+K1d*MP5JHmQU4L_K(3uC4aDVsS-~FC*?m6e9 zeLyq?Xwc`)tDtU^@0k7yP{DM7uJ+8ZGb@W2J=d7$v$XNaW}12Ty>@!x^5`7o<=(83 zrN=SoljjynR_k<=a0dOkcjL$h+?1vKke*J^Z>wW|ee;8}9r5G(URtY~pNr8rUPRco zeYPP?);zNzT2AnqO3C6oPW{HgO>_RXji}~t=?*HeXkdXEpoN8;q|zbOrXU1}i}T~6 zM-_MgzyHWw9sEJRDY{VjK43M`((@zYf#^i>_z0N{fFRF^Z{giT%0^#|cmp$7s-&Fl2+HKq`=HsVoqKo)F#y5*1?T z_mC8zSHJ>IVC3(x7>n5g-^3%Mx8!;X`ywJf2}}@sV?nnImMA9|`XGTI=tl&+9^=#r z*u?&)Pv-8k1G*}0%rS0soXWmoV? z5MA8Gl`_Pk%Lrl?*@@N>be3^OhALt#cZk3yc1 zj|o)>vrc&&&`a8->w;GGCNlGNS}FVw27+Zr!2^sg0C&Ong8aR}H`&E^oG$`J9f9_R zuff>>wuI@809%k(_XJ)svAvM8CLd<}1MDrs?JJRwY^+eQ7QCXb)DBxa8awfVuqlSE z=}3c#Govh?BjY-qgKwwRwJ}5&-;>=0QG$%G$rz-vlcID8*c6N^KI@wWQHUn(lPzw1HxdvL@cjK!sN@N|(V~@&Ajm=AZQ4$HkbGZFA1`9}8N+!>P4mKD!0Sygz zTg@C7S^WsJC?8_DAP~OY#nkyt(_grColGy&r7<7|Iy<$;cRyLlie-Px&h~fEM+ewx zZ(IT=xUr476Ie$7G=Z;8AnYWamvC1clDV1L9WpaJT^9ygH`$%`rIF7dlyj5Fj35#d zVN3V8VTyLROXQmbF~D3*CPXg$y3g!wHi*_^Op^c=l?#u>7A&0E zUk*!!yu(*}4e)})<-HEseF|VxlY!;$q!B{Uc>+QGt&Eb93pa0FRHj~1V`o%Vb&zr5 zYy&O{n)Z7_HJ-6y0eeX2e?Kf_fKdB`=sPKwtedCIwC`$B_-E1+d(XH3`q}KdoC}pd z7j36x#pYQ*1mBPM?16}Sgk<-D;?+JY zIfL+Azm=FiIu`VHX=R@n<`I#c6U!Lck#pY3C|dm}5*NPkcEyCD=~=ZysU;iRkhwO@ zV0`GP5L{!218y{O>_Y_nncdRv??LXO*g+}I(-8VJi4ZIZYw|qQBQGnY33h~F{D0Cz zKhEIdM^ev4qRYfmLWMI}iyNy@&J#NK>kRU4Bf+IOH4hQ`CU_U6geq4~ZII|DoR)3% zeuZDHb%jy#-g{#Hb@gqu7to5L3USkA1YT=BXS9V?I%DccZ7yUL4VXGrYD-9pr)nZiCy0mMYcA?(v*(dgWu})KbeWbuls5? z`FwFDJNP}4H*N*@?3R>_MwH>#{&|;L212x{McbjRDr#Ruf%hebi%fOn744C4!Rj z3xnaB^RT2FzJ=JFt`2Eqt0@@)s*mxiz~`v=ylu!+OJByNhuimZG7|ft$n$#{iRX$5 zuDo&k=7!PVD}JCMG$F7Vytc3KNKTjhD*Tlux?7PGGjrg!M)_~#-}}6_o=k_3x^hCx zvam7*M{d%@=d!^c5#LrCmEnwr49$wp=iE;5FZy(LQTIz!cEpvp9-A;)7f0BzAM`;5 zEu7!DN&R25o_N8Lg%v9U>e|awRr>L?kjx!petf`usRAn-iACml% zs{8}&`{Hu#zEW?-YQwMdI62Ijg+wU$hIn`u%93T&5}r894h^YE^{tPm znlF=fuhROa5!rp6vh6ZmsuE2HOKix?gw++e^)i|Z+4?0z2(D%g8S>p_Bf(o^DR2Np z))0!b;xqKx86+;P-|*ZxFk5RNBybX6yNzeVLkD2CQx9&F>5$E6d9_mSJHsvw5FFAp z=H;Lx0VZE{u3Cx9wAk(^+tY*d_k>XJ9iz+PZ(|j@OvQ3s3juYv`Anmx3!xTv@ii@v zs&$~mh+C!ZA0RZkUPk<$v}!P_36<5=oY&^l@n8$&ZNN`v$cNCRW_;ezTpTdvLO$n> z96?1E7^P|M+P4H_GWXuY0#ax){&)TYqSKHFsvm8fExs z?6Li)WaW-j6JuNHi33Ks6K~m9jFKxx(sc>6B5hEZ_ai$g$%)vZ{72&cQXajGmpl)s zTzVDRlDjAh4PWQ9xI}JLniqY>$bATnj~)H|OiF%fv0&I4EtOJ-zl|m@k+Li*(9hv- zQ!cK?k2-dw%lTN|s0(x85BvYiAd~JN9F_yeU*{>!Xpx_1pea8ynhcO>Y9p;n#WS(b zrX_JRmTBmRb91OG5DzCn#uRsDgtDV0WXFdRsEzL!zoUgnR^?OkKPQQ{ifp4LAGl#p zHP_H3&&}xJEAndK3O+YV9RKcX3x|@8FrPId5aFeI;y4c)#d0%2oRH_=uxbCrmVua$iqLODaxj;=EeR7lK6I`U5C8 zhhVO1A|BmDlGvC1_GdC#KCoZeN@{P-qfTAHAY!BzcDns`E`E5szdyS~(k5glhM5^T z@mQn!p;5Y*_LQt<##dR{VEj)bbR|_e^h?GtsIH&&+FtZ3?Jms<9fFP6sZUl`BbhuY zg!=nCv->CO6Z=_NOb5k#DJf~iaBUZ45q=PNWq(GQkmIShq{d5n|7Saw)RMvDf_wZn z=c}Qrth24F-W7+jF&jW*-g*94dm)pz z!}%g~farxLJGF~S#CBjr3`ft7yy)`|uC8qxIs(P_4q5f?+B91D(I?zZ<+p)oa&I+^LD6KtJ?_3Puj0Hrypm5NLO6*6{$I>!)K zijqq6WKeIeAHAoDII!vOoP;Kr(@7=*O+UdNCiEMI#v%vs3#D054RnCk=FHVO4IzI4 z8vQaFdYoM7wDQS-a0co^w23@pib0Q~gf@b6TfikGfayE9oiL`(q40~vw9Y#DN>s>i zMG;})6cN~YTv#BRzX4edgOJ~-12AhuAsjmmCnQWF^erJ@$>7KLOn8JagSrxafUco% z@CZWv9-0u0$4o5Lxh&8|Vjbjb224jjnQ{^vI0&z~!Az3Lia+Z<7q$-I=U5ou!-!7- zrr}2&W&-HW=GeAnZVg6|**O#YY`c-4 zL}rOCfmIg_QH4jDGAlm`kV+6geY|%?d^e#DQuQ95T(}lKpWi= zs;Mju*J-;>+f`kQ-t?(OEqd40eNLa#`(E^>cXe#b62eS?AQ(WVhzt?}fkc@hLQok+ zkcbF^ATkFK2qL49Qi@3?nF54B^4`7weXsu)?P2wj_wN1gfB$c||NVx9%}RV4oCo4F zE@ea)!w(0w%?Rvog~$04yGY`ilo7jfxQUybi6?gPya0zl&-~u7eeoRRv|&nLId5l+ z5)oOE{aE~xfU7E)eM+h`Q(@khlIsZ}m=%2&HT(Zrwc|Fv=ceBgsLiFoy_%3TFgdYn zlRaNQTy-AI39vW0EHK9@Ti(JFeJ#QsK95fM<6|V&-&VG+SP(-R-$6;>Jijf0C~+Kl z@+<}~i5!}q4RL;4BrxJSQLi%b*An3+P)tzMMjzSF@*H`lR*eyu5~antQ6R<@XdD^Ndle^T(vvhL)k)Mo9 z{DZ)h?xo!x!z{C(ZH5WofIFzHhgZ`ND9EugE4&U3X?7*uq*h>i)}Gu+*hfM9$9i&Qd?_1| zr4)F~P)B-2{?$%Ir!(YQf<>WIdvptYN!qP6hbY?9LbF~6JYzdKhHGP_UJtGZNt&OQ znE3am;s_&spIjCj$<3*C*-p&w;7)EtHXm9M9J$R6=jWy_5o2L_LZ3~StV$l?i|XUn z;jAWGC&N8`e~@=OeV)x0tD4V{BTqf^^4X7FxrQSOW}U&tKdHA=u26GM#f~7Je_OQ# z+vSFOY!Cjq+f_6tdHZPRUP(XQtZVzoNbdvF@lXdh`SJ*AlBh}6JvKH$c852u{Z8Q4 zhkMM^NGnrT&&sHBt78o@{o}_ss}fe*vhEdPGtU4!usWtzfc!GH!I)#*hK%`(5a4<{ zk7agEuM)1faoMqYNcmG#vK?T5n^2ML918qC1v}n6|0K}lZc6>9oW~N3elx&KC@Y!oyF#er;)EQ{2E@o}fu2q?}_7<~k(93fGF@-R`>9Ad8Su45s_UCF_v7lZbYJkZMwKgAVvR_~aH*NX( zz1OI*hK&Xxx~cg&q<&<rF`+jqO9k%s!Q`W);IZrTlV;IzmUXwQZgUW7m3> zvyxMUXmSD?Xs`0w^`;NXByFuc`s{^reLvy8>t?n-+2zP8inw!<7mywux{mf>4)sgi z4o^vxFEe;}{boHPwxhVB$`45(=4)rW(YLwUsI;3lMDjCazZYWD?^QmwSC)bywXFW` zMxs%`8%xN5D5RN~V3G5{U7WIniK1o-A%o{-DdCj*BgUlpnjh2Kp3QV(ukR3GCD6OQhkC9jYg*lN`m||j=WD{4{ z!DyhowJF}fo+MyHkoSnw8fmnuFiEzlXcZ@Yc!aFqw`>+N^QrJO16}ge>u1J%rrFba z7In4y&V`L3e;0N6radpaKoK&{Ly{6Q>F!9l;}x$h>4=fr2~>rTwuG9SyvGQ$`K&`^ z4{5p~^hYoe0*}Po_vrIj+9~H|gEn!zxmXZK{K<)Y;q1z}#`W?9K~(MjxW-2}(38vU zB>J6;8w@|DJn!*hrz#r#QV2PtJ(o7px*VNB4s8_=k7I~BuAJ9=sEOoBOjA|{cXY95 zP;TR+S}7JUv6(0St+YK4y8XDrAfyDXsRNRq1DfkSuE@OyQ9NIwWB-NhuS{)_`lKcU z+|>Z(sHO-dNdv6{XgU}hiQIuLzm4Ho0R1@TuW7h()*A&hWI-q}kg_^FxW?T_SQqfY z??_7$D^BKl>}Et(8$&_UPUOuzwtz)B5dVZi_@ZPg!5jM*K0s~{1G5*h2OASH;wiQz zG{Q=67gA%9wJe)Ux_qmr7w6HWK-*o=(@@sBtEFnOFNk=Vd8{01E1*+@^iN;OallSxwrzs-H-QsmF=%*6Y1IB~O=gl3PMx!DA+_PB)pss}x#o!a!(Xh9QI)T?gU6O(}7|r4@uD~vC#0Soq^@jT2hg5Mnm*>0ooMgf1n9N{-dL%q)ZR* ze=xsEcMf~L=```G>epx2as9n3wfsXZ8I2+|WlR)^raXH!E(Und1py^sN?I`~UZGHE z?BnBY*%-9PLznOP(a~R2jbwFE*(!|$!@fs|8{V`ELZ;U^NfO5mC21-pxwt)jOM_cAqpJ@Q|V%bI4Hx% zWqMgB7DzBMdIsuL9x0BK6wI^ACSYo@IeO!z5;IQ8!{lKCCO>gL^Vvu&s$Dp3y&WGnmX@XSdHfomn* z)J4v^lQeguq1rM0_1UcFAyvEIob_1#lAfxO3qxk8^dvav#!WzjC$4biP)k$n4kru8 z$}~Zv05NBvjk4v_x2wN)tBVJN=JA<~{Np;5lZNI)>vi^HYx3n>(sLz<&^TH+)r)Q<6TY>g=wUC$UdwlaQ{o*KZ~T%2`j zbR-|$OCFsfcOo{>$wZ7EA076TP1VNQTvd*azax@j5Lz?7cFA*O0QcU-{a?P3O|T}@ z7o&BO8|HK!zCcM!m>Z=QSW6ttpSFjfI0Q}ojUsdbLkt+Y(6RDc-HVAVBpPEfP-qYZ zKw#(}u%O05(t_L)idX1XMO}(t7!sZcc?xu0mc%15OrY6-tpl(g)L{weI}mOp%Ye<_ zAt<5ZqciL@xeVlI~?K^MEiCHtfgnD65JI;4f-?MZ24(k(kS zW$fy+5WHY>z#r+INk7clT5aKH&4lA^=wbO zqq*IQ43+ak#!;ufQ|@k>7!B7yPAr57Zt1>TX=#}5F_`eiC#J#?83NQ~=%BbcvwoS5 z)bvB_%sB-MXuTw>38>DIs*-D^US!WnEnY-c^}RV_)l+)^8EBQ-l#3?hE~%6{R^*ZA|F>T>!;Y@P${nHIY5~DaSn&{a7BhddxsSWOu@=D z#P%rihVu{ETG;4XZ@8WM-%?BhFob7tRg@G6A}+CCQom)th7sQF6EcT=M7V#Z-xcb= zC^JPy1DG%gcPcT0*+I@O*CSF~3KEmPv&X40M)(Je@}D*ZUhh}d5QD#>Z}k)xt}Cww za7A7*5DktOzsi?QM@B`s1o^W{4PHTkn8RrkmVg-!~<-a zocu?4i+4ekhLmKyo#_AkpWV3NMl$~Q2>p){C+x!bKNdLOD^mmCugKF$KE+i+hdLoh zvKRybD;mUJ0UVXkrf^c(Uc%f03akaYu~}PEu;by}*{RLv+M%30-|5Dysk;d6m2|l<~%oJ$ADS z$_jRcEK&YGgvW|$K^YO@R8TAqA^k0@&lRiCw@abv9sj}df4PEk33jvun=CgHX5sq= zBdCaZK*txDHq^NU(urz4sgJt3O0KG)Rvtj6x}m_YajkN0AMu|t8fT)`_}A+Y)ha?gIUwUfU)(N=x&0uowFI);iR) zY(41NrR_i$Yz|`5@EGBIErJ}WkWU0*Ka;m9`#G=IifTfXvO<61``m^_c_IGBwO>RU zq5^OLcI;HDnTm`oVhbP=1^J_64I!kX+r{5wMEio`3lE6E2`A%P4_Y8*^ zNMH1=N+4LAPsI1srNExH3lr=54MBNlhO5$BLp$aBhcoU4NjUy=qc+15ct@H%xi}Z~ zII|QNhpVG>cQ5I}rd?;NZ)J(ZJ&V*wTFIq{#Cg_`V8CPXHAkKlhh`K!{ygtYWn1tB zosB6A|DN&X$dJ_T6Z3Q~N*l9G(i(}JP^3As1l#?HE+vG84`+Ro5ZX)Wc)S|8J*D=v zq#MI(T31O>rj);%{=42kx${k=x(gExJ8v#Dqt_=m^ zxn%q=rpxT9jqD2JNvcwn%1a(nnW_07ru>qpWZsg>R1%MEGGI0VMu?pOJnXwLiv<=4 zo5ifcz<_NQvF`#5#zq!kut0!~G5aoCLTKy0=iKgGxiV9EZI!C~-0!>J_d8@$@?!f9 zAGRsPZo|X|iveXV+GF=Iw2kksCVAcXxCe~a8NY~MA*UDxP^Fveve4`|Z%r6u0nk&+ zjR(rf<5ryVwaxh12V$)ss!pyQ+KB(d#gaqWr6Z?>F3Jo;0Viw%(~bKdyd(Ei39t~b zV~yxKlFj3*6fU`u%dI+)oGd51y`Q0lM(_3(iJkdupu*DF>VEhrNYfkiZZ&kXR|01L z)bcoE#Idq~T0Qf-{9E8_U4pSD@oX&+xV&Z@(-6yYq~P$w6JWhnzoXJ1uH zEf^vZlHX$6w;ojoR4cPqtUy3{p(=??<}gszdKGU#MMQCK(5fhW@QzazrqhC6nw*j& z4_FE@GlV@#0(x@ojEa}ncF%(dGu4+u$sXM6B|cq@DJvDXl7{&Wq*{CK-M6Ct;n?S~)16yTFo~^|c;UJ0E>|R7_3qy3eE^u) zj2HO!s%Zayok59(A4mne3_u-9zD}CM6OR`LPlV!D5;sI$Y@rc{WhmTHf{~}++A(+m zAVx!<%iK-zjd1F@Z%+9Bu&9u9@V{!kbP*G1wrsddwh37A6_ESF0NQtji_^ejxv>=wMaVQP?gVy(s zO-!w*;q8qzx%IJ{$jjE(R~^wBc8QL>b|?v15rj55(heCc)>6CICYxi|#{%&);;4)$ z3J46}7RIG#vG7Lvq<3V1=wiYa-In}e4BLt*_#Lu&Pm2{lK6JxmUmZeLqpew~__xRf zy%VXc|88D7*lr^%c#=Q(>>>^CfAb#{6iwvnE0$4TOr}z?tQgkSRsSRypr;tIi1X3x zm%j>%&XJC&<&3x3pu}l^s`V@@kLt!-FPVV?m4)$>?mC^Ti|@pd;3k{fD`yoUPboZ)Xdo{_?2gdqtSY7r1 zx{yn0Q_zGcXyUZ~B{*-)Ec*k-ccI5Ps}&~jLO2Qq%F)yVtKSKc%pr!(qCO7X zP$>RoG$!?;QdxrVPzkdVGI{-yvTGbQjo1+a1c2E)deZ zL#}wRgY>+V2qGEEE!%-^^_pNGEH2g((wlqlHB$jBGi2+i7BR#bsCJ+M8#$9esNHRn-G=17tPREev+ zE>TuyVtO4$_<88$*1L&LbD=b>hd)k`X6#{M=p92~If`6WN^!ytmiU_|uRmfZ(DAq7 z%kVuBCb&RHLjOjJuzjAP6 zt;bhe?e`H2?v3w748W8OJ7e8?IXp|qJMY&7>+<1wu*)9SHm5e&eFrFPg!LTMGZzbC zdYw-zuONFK4t9h^z4Sbl(x7Kducj=n!{cYYRG)Vo#+vl=+H)ZO8W@5zL}o0B>qRWs zenp((ZwP#5S88_&?){b6-C4=G>D5I+{5>`8yLp}nXc5Fe2^_kp%OS#U$kYgPpD3h31@Ex0jdJRcq=MBlFCS$I5)YAt<>+=zO4>=iw27+r7gCZp{Ky;1Cy ze~0OPm(V zTZA0_>wdfY>8IcKc|HN<$DRsAMpmH)`!QfTl{w)%g=6xGdUz8%|AH`|rxHGr!&lCB z33tUsgHZW!0YSne(2&AyiA?+@_yXbK$d+UJ+SjkX0{cF}USXf3!(iedEZ#0*!v6wR zj`|!eoD-2L_&bQya|-OC&+H*F&z9-KDEX~0UJzwB#Da1d)BCi}+3; zBNPamFNOg9^Qp=Uua{xmXX}NHg2)qP{XVRB(DA${Oc=rWy_wHd3ac{3{#}R*+HK5@BggA`;Ty z^N3sZj?e*^Vh63QCCtvZxin7rF|>aYf_{z>b*5@RP1VA8u?<2$Y;cc5P-JzJv2P^@ z7)9`uPC={94a9KPZKns068Q4XCW7nUnuV||i}QxXT`8gLYdPsE>;bFHP-NSo`~r^5 zhrn+rLs7uL*PaIpmF=F*PynU zfR_7iz)lgLGs#HUXH?+%rQou#yn83b_4p$dun8iHR_Y50UwUs*d`St7Q@YS{X;u?l2sYkMi(M396ouiDoycI)(3egzAA2T^ms&im&!=iv|3e+0XVElJJy}j zKs=>6@m5+>K%{f0(-WFu&YqB@g!$Z3UCb1byVWH(MGkY9lw^)m{XMi{%2$q4xjg@L zSLvbj>>*`)ZXTM`6;yA?jkPU`t8j)6!W~A;eO!mAb z>;0B7X>HIp(1tjheCg?Ugeac5J-~30?#(a~oFDndnA_CR}_5TTW2pSyHdw+=%Xg zm7!uICbCT}zxh_w7Y8mu@{gDQy-PhpwS*%pz zzJo*kd#3?I*FN2=lNq+l$E2wk>$2jiJ=}!*kGm=ja)ojwV&qLsFcf$xzZsc>ubD%^ zCy@4BkG?`stU2$!wrV<#x=v>3LZno~)R9g_4I15N$H8Odl(EBqRZ5RhM@pP6>{rx8 z7U4p}cx2OJ*3pZPo8t_rYWxWm3;*+2C`GDq)|N)RHwxp`*qrYztYj~hR04>U_F?}5l?*am5(mSUq&1l5Yic)2Yqh3W$)exe*3CqHnW=6A2WITsf`fIhpy&xD; zlZ&(g_Nqo29j8k?uoTh)q@E35WGtkYkkL@a2cy_UmC^;N2mNfO$wuO!a@;k@1lDlaLBIrK!~T>G1iGFni5&S% zh=!nPlHI}j!*LnN+PjC*RG>9M9zWV?n;ex_FGp$q1eCz3&7>if(H}-3HB9ASDANF( z^7js?MymkI$tK3k2W3Y7dZCQY`Y%X-e?{)A&qoZ?stS?uIE`5+3jq^-*`*0OR+S4j zDTP@BHX$#~@OqJnKeEMN;pq=UomrB7NSU7TJFS+YMhzkcoT6Cu6Tsz;+k}_g^sIfXV46J z4U*?Bsc9vORM|6vQgS_OOS927gu_M%UyN{)Mjd^j!#I2#&|Hg{qxr48C)Rx<84-O6 zAxEP+xGVG~L36eN+!wjq1+_cXLQEx`2MHJ?f)B{V|H>DcYO7AKCoinqY@dbH7L*~Mzr+F=8I4j-o0pE_-Pv%s}lj<~8)f(g8 z^Xczws#1AYeOT4ER;aSi#2>26XcFb5CED;XzCga1^d49I6jQ$r8<+@7Ou1u=FT|@S zq7yr?H6mI4j-H+(6RTU}wA6UKul-UI9r%~s>OaVQ_y|$*2_Mje zjC>}16kO(AKz+|)31Q^}A=jWre+9}5IEmpO{`_EZ-+%_AKCMN>%ct6)go{VN2mJ=> z%~#y9^g$G8AgctO_lRE8G90tp0g_Bw*+7Uu8JE{*-3;^-MzR}oB7;WT0K4lT+&eQS zL1O$f?{7G)>c2RlR(#Hea>w&P42Q z8${F9RrT_{%=|L*`(Sm}x}uxI=oz%a7;d29e=vRm7+FNm6s{T}T= z&j<{cua0)@b-qS!aRU4*3wsV=_~Fo0iOJkl|GBZ=*zvq~w|F1Xlk5shy+W-xJ>f)w zvE$Cva&1w%og)Ak5(ehZ=>XxxPI*arOQy$|!WF1O9*()bIj`k(g~~@c%jK(%@J50W z_vE2s3fuNn$OShgA1BH>P;60m&d(V0z=p0c5~ff~zMY55yv(l@ijMz0T|Anf@(`yb ze^S^l&mmGHZl0GHdx;KyeOjdO z%q{%+Rz`M&LgLGVWZCuifBg6$yFvGt8}e@+{_dLo?`y;|zetzeQH%ZdPA2knGW6x1 z{Ph+nyzTc!=CP~NevEGer-B%hS=r8MJboP9nurPK2~#27R7`@rfN%7EIY;k2{VX?ylQQ%I}4mbM8F*@H`b4F&`dO!RR~AsXx`ROYm%Idqk5AcA2Rl^w^Ez_lWgP&c{*Dy?mVqZ=%u zuL4K*VXS+QipOCRxpRJh1!B@hM(mW@4}oT(q03(W47jwpy{Wlse=!;lV42(|u*XZ>a63 zA&rsALsqhV*1#);B7^dRHTeuPq$bbnv_G$CSBpV2zR-AknlpT`7B*YslqbC;a8VqQl5wXfR- zDYk`D>%@Z32Kr+6|F8@GTGKM_AT4d8SKrdg8xjz4(+(o4GCMZwT@hU%4n_TZD>`uw zjQiMeV9=mJQS{N{Sil%LoZs*-xjGdW*_4JyXhJo2>QERi#W5}MW+?xS0nQ7Vc=z*# zu7*i*yzmaGbT~$oG#*0uAqsJP09A@gh9kV`Vfx*$EK`4)R zPux^dE$&RJ!VA))Q;N@TidRbp0v$B@POtATJF%*er!kK~Qmcw0wx4@vluh|gO7D~F z13G2-^W|#~)&lEb=(;BUEsfRC?f8aN|2d3zd0yZnM~8P2C%3(^y)PF0^MLFY{| zKg8)$7r>^@Oj?KAjbP2mjt@q&p1tXmb|%KDnS562%v5zVxbWdubv@OWGVQ(o^}_Ur zmf^go2b!`$OHoWYI%=zUUz7hD=x#xBJ)NwcsVLDun}1Tc!{})BvrTx_Gg76+wx%h+ zca!LARvA+bm$$8V>*%1y3e8!Bj5f51&OY5%%d{-pBOmlxXpd&ni8&$ZY2yc#$lA!SjGw!m(&JB?m{4F$O{AFu#HK)%0? zkQT$nh;*?YigQR!v}p3zA_nC~t0Aqyl=}T)+os_JW`Y#D_P3zvgrN)GG^?PZyLq3=TdL5@?YR`#L z@qM{bNfkm>`~QSgwjG{TYV$;aGMHA>b9Gk zwD)qyHGR!#u{$#DR+Ue_Qx&yIs68$%TlM+V#lU2&`Vhb5!tGNTVJaszABlPtvq;L7 zF>;(P{5TJNMbvuXfM-vWn*Nm2rm`1w+?$ZdVOTFo@mmz4Tg^YsL#C>fwqA#tlX=-U z8iaotDE)EH_WcZk0hg$sP!?M=7Z8<|nLwhNXmB$X{ZQG^y?=gW_J9S@+#ngzId^?E z7`2)NsEQ#}?@j8mfJ)zCmZkf#k26nAQhDM#8%Tamy+6`kM*Or?I5`W|X@bhXvhc*^ zYAol>LP{@9J44kK*;k~zm!^~5%o2^+3#6x+&F_~D-jbLgb)KORK1mbGED-^lwS|%( zm~J+Z=15XnMejs!h`fpAz9cOEY5Upb>BM{~v=8>An=7#BHB^*sHJqP*nJOJzm^66r z(ZOqy6r~eFRGpGw)%r6rY?2igNZS_3PlbU%v)Llc()9*1e{PJ-1+ODD%&jD(I9c5C zg-I`?l+=P{qgN55ztEf~8c(kb$J4fpz>4dIpSxjxZ!jDndY?gPJGtM76S41>2zQ@J zSrvSSzKW5^iqEF~v;iI+c|*$nO>~t7MU|alS)7?rYaWtR z%?xo+L{v}~K~Px-RAgxt24odkTcH8j7X?LR5o8xxnoY2geYc^3Ua9=PAZqbQY&Em;gWn5(_E4`C#sQ14srM-9`d5eAUIm_}|gL_1t`H ziq~DoD)qK33sPHki{ykeK71BGxCxWwm<~3`DB9eXKtc7oSz*f9hR=e;`yKP?=kGmM zS!o)M&YN7YTZWr|QfD%Lc|ruCPICHrVImv39JKkM7(sxO*rFx)Qv#h&@GmlzKZDRa4tRzUL)1C->4iYcN+u1SaKF02A)^U0o7o?KcXMr;DxXhL-Y9MMP zyOIw6xQpCd-=1i1aGTitp|ZSu#TNWcA$j7B7QAbWnCs`Eegq+DcTnGpusq* z!Wxvh(A|o{pWv)(TSZP#&;KA^^^>b-r)YH$DGgj$tI`9Jss0IRUEd+~4N{o^p%1Pk zU2i($Y=$zBZHALisrH)G?*jyk|JL`Bam#51mnD=J-|rky_d5}WZ8_%GqCyli7|HrtBxV$RKMBl@H0r;EEi~Q8QlmoQ8cgIhbUtWz!klcG3oAFU0Mw{NVQ_zf1;V z^)dmcg)@>LyY}NeqhIx$BlIK?>~|hDEl>%xHih8)2$c9l5U+aJUw0ZKU<0Qe$E;?V zeGDJzYnhPyy5#Z3UdSp#W#d-M7N=5u`_7B1sg1^GxV5mSt#>yhuR7UN-*7o!YA>B7 z>-Xb(2^q?6?#pk(=Hj?kpouegigp(BnkB>CDD~oaY9_Mf#dXKO5OrK1S<;ns&zclH zZ7mOoX#_@QRR26}t&3Hq@9ZRBo#TAsr!#35Dc2+9F=R36i;umuLb80Hitx3$UabzO zwuJgE8zP<0f0u6I^sOpT-|wo%^S(i0eLD9fspGuo4Yx_?9i2xzJI>}r-+|fq+9M{_ z=~aWzBTN$`iRC|U2nq}d4NI~RovVdNt{RO$Kz=0dVoQm?-gYf8Gp2Xcxe7ANEoUfR zje1-PG?%TKpQUB54qKQi%R6X${Zuol`693}bj)}%Cob@*H8t7fomc3ejLJeG>%8UE zsOp`lJBIYzura9(ZkWkS#p`a!7Ea1{%IzF%l0#tsi^#xPxZx;6NGtFuX3t?JTOnrjs_#n^{ehqqB^ynOr_rH#BAk$>=Rs**Gnd@ zWA+CVMY#M42o1VVJgF3hu}UHI*2MV2`h6_g!D^jL@*^0L_!v#3Ic+~V~jAJL-8Y+ z9|o}{5P~Sc7m?8Z3XB~wLYRGU4nk~RmB1bq9|I#T{2*-$trcz@fV4Qs%u&~N$R7WE zBCJM9g8fVrnwPWved{F-E?t8?R1dP=;^;-tksMWLFW>5bfeC$zmEG-`3Na@Hqw z;odqxiMbH`U>xY=OVbSO=s-5NY2yENDg+SZgwGpc5Qj|wK|KC| z;e%8#RY*Jsh6on0 z1?XicS?jj_ur$4d=sKi;{B{lIKDSx`J==yPA}b^CI}rxmAQ3QS69FH`+nPZ?}T2TaSJpjCpUii2mCq(k)h1r zV8}9)i!C7$s3zY_g}A1O6aJ3^twGtvlci66E#Ic zAR^w83uw^oa7;jhO&p4D3Q(*aD;i}74^h41U_cTX>L*W7M;E>`-eeQr?b8_ zdmN*Qj7q=N%e)HWY%ebUK#UR!5PH?xtL!~)tUL!;%q=#PZO^2}U#k`Ychxo8&`R5< zr;WlI0B&7%vztu$J>LVciSzqh;(krnC6JT0Rx9C&y>Ct5w~4W1xMvS-%^Yb*tv|L8 ze$Y6{Ep~HIdvKUS{n0S7PW2rOIBJYpw7T?G!J84bSgshyj%($M;Mf?>*NzaBOe1`~ zX=f2;x4*L6F&5{!1KI7DM^sFV^@J)2W%anOPY`wDV`{?bCPENvl91nL^d;~Jzsh9- zoLDr2Yg8A(t9biLBge4he|Gq_yo@19b&&fK%|!k-BQmd~-sJW-U58ELQEA?TP1 zT7);=SE~bTg&eOY3L0L#-(&R1+z>axr?6F1(ENIArG=6AfKh&>4mm_YMf1UQr}`IZ z$lK3SG4mcHr+`*MTXk1yQ4`V*?2LXpAAZFXw#H|$(qs8D)>a$gK99{T2>;ouqTd;& z!M6;GRb|6L8pp=h8A2~uUJSB9GX9{TP<%=e*p&>W6yl|j@cR2YVHeUVMw3lAYXElT z-DyL3FGn5HoFAD|H7QcXmXG=FvFi$TxQT~7iAXi=W8vPVRwP(SfRXHERb~3a?<0B_ zR8i9UlJz_M7?59`TWyjYQ9=x45`HzDisNA~;GYyEZw!`1SQyd2>5b|CcYK_D(j>P~ z2)h|clhm@|+Q)vD8{KQC{JD@kn;Y=mkQ+hX!~N=skkvSFcXRK~F-Lthhr;wvvSpf< z*s$*o-&IW1(fun(88xhqni!MRf22%+)8xC($fz=g)3PHzCd#x$M9%|wO<6!@%Yggy7g!l z&aKvD{Pxb8C2g9jh$G>{uyEf=WE&K#vuzlOML1*;l~z#7xT8leyURd11f^QiAK^^v z#D;xq=mpP+HD8U6A2*qh2{Lm)ZQ2jHS(iAR7FCJYxwWX5e|<0 z&2{(Nk>4uKIqSV0n#!Z)z!_pG?(!xAMYSky9Ok2hiXu3jKAYlk;(fwBoC5O`j$v)7 z{q%s0XrHhLIjK})xG%YhQ8eTcE~AGtiSXO_Gnbcb&)X@)V^IywSDn)SNo@TVVCR|& zFgfT5Sja4Av70daO(E2b$(s}cgE0sPXwCkM1Yc3)kknI)`8SDEJsG5^faB5)p!a7d z)8=XSr>DA3tEH`eet)zp{Hfb`+$xp zV~FEK@44Ovtc)9+)_tWv>gxt5Ex2wftqVEg(pPAw^fPjh@CyF)V43#CT`ATC_df61 zyjd1PIY^rXV;CX|GyT>*(UurR7^xXOsiRc024qz?^^)u{kS0|%)gJ^;&|KT`IONa0 z%@|n!wYAXAn;OfhI)L+9)!unju4sl}9ia)o6u?q%66VCwb@U=FcdkzJHE0tml2+8i zkf@k@5rY~B0sEZx> z*aw~=t&Hjnj=~C|CE_iQ)4RwAF>02dkAxXdeLn2Ed9FeB?c4A(>S}@e4v$$!b_rJ5 z+?nI;(P!?_{Z1#Fp{CZRkuk?=IYH9NtFUhDFaVFSzvnE*Ipgd|3EM0?KaDhz*$AdU zkE#>NnnaM&YBa)WgQTgLJWatUX&6$TBb?NRGGCEv&w1>z4fSP|Dejk7y0r+d$J1GnlksjntA9O5t_M5k zXrw9 zkVQZS7eodSkwv;e1ve1EMnFJzM7B{tX?AE@c7dU>*@UKPy6N@3d(XW&_hG8Ls$buC z?z!il-`Rfj(Q7bV+vZ#G8J^07j`6toru16474-swSb1KKIMIA7@L6 zQ>EKos?$;Bc6CHjmKCwu2#qbi=C?c?olQH#VQdKfj+d33EKrXk(O;7I7i`a?lXHq?TjP zdCaL2d;m-7Q>)yhP*1^)-24+km_VVH3_cNqp_tuq4CUS)K?O0bf5QY}#GxJ;gW!fl zP$2C6T&5o(4`eP63V9)a^ucha>rU_xa9D`!A#NKXvvx_ATpk>i!6m!47cIoNfxKdB z0cAboZs$7_kj-8(Q;!?%`cWG?fK2{0PUTshL3nqw#qf4;TGDsh=<4%UGaC215>;uV zMe?-0+*wl|^8tZ=6zvz}fchpskN?pzKWbJ9OP9D?>$`Am()y4E#^PBm`R;=+m zrRDQw!y{$drQB*W+F;4LUg#KmP$Jn%)tYVDnxEDp)9U1*UUe-YO?TSqXy#?C#ITri z*V(InMkjx~khRj5@I+qt;YxE_&)k1ymr}GeT#V%#d@nGo!bCayg+fae2UEdXk&=2- z#odA|eX;vaAi)F^WE4<l~XvLGMLSB9aijZO-1_wcn-pVHYe-IRV@hgkhd+~=JzzLYr`dhH;#uT2y z3%NJA%St?8=5}n`8uWvXI(ZSVLJDQ)`-II~-1s4i@p8x=_e!h-H*&U5oUCkQ8bxBa zr&RO(;Kr*ukse`>gDt*0KHbqLaaX1+9xtm!c%3*zcEk!?is#pVl2)-l0|1CMaj_cIemIGKTauP+LCY$*D%!gz6& zt>Duhifk1yofJEtbH#Kw?iK>Z53TS34304^!bZpPbo%X<2hjpJW_!$W$%NTMcj7tJe4bZY(g1=zgD}1C+(xFF_mb` zViJyp=w9tI8e_~E01y9Yv2>Fou1o0t2L2_ZKNQ<(q1I*-@wR0VWdP&Aw&m*r>O#L# z$;GIHf|t$84%tu6QR)^0ClRrMbwPysU$EIA1WQMq7z}cxjzV<5h$+kuF?4aNEhHW$ z>X2|2e8E0My@+lGOEb!gJ?NqXL=>$jsR-jC6el8~KqLU$&8E*3X9M&baXTngj{TbM zYNbkY5PW3(Q{4743P?+zk~V+=0qh`FL`ONm@(mMHO5&GPWF8k5?&g~E71}7tc#P|y z*8?P$q5$1{rOgYNqI{3A2{khITVa<-8!<`kCM(;O;lfIO5LZOgRcr_LnQ~nulsT13 z!2tG4PSsA^clr^%g@*D1 z8+)v>J*_o+Y7O>^23t>0^|aJp^3GD#n1gklNjI@UZW4`5UE+2M zW1TpDvZNJeU%|`C9uV;0a0FL00NFL9K9R0Rd8GJ497JOZnddNNnoQ_DYFT|(RYYfw znDSbgbw1hQGs_{d6=DX+%Hg*r|F@7-gg4s`)AQ1Jm=1S~ED0ZA?39L-JtmE3q**^R zhEHEEne~6~x_E^?^_?pGjCB%?Tm~wej-QzvrZ5Ned}zdElgJ{O|&H zkb+C@oNy)|(?VfHe%!0O*XevJ<%^Wt^zjw`~D`KX{ZZ8DnN?kUxcg_WVHu(If4sl z`?p{Yth}8{s>7azj9SlX)KS>=%yGqOd6*1e6^AA#9@mqiVGIu@Felld69j0AywO<7sCJm!aq zcr`jt6+3x(0i*oyJH7@^0$o#J{--=zbsT7E0BJ}dWW#roQu#)3@$H~V#{XQE0?k2rc0o`i(?nzwee^%3 ztL&+%ERB!L*bg%=^DqxS%+tJe)l^qa^`9_PGu_&asDJ_rH2W%sP1ZmNAwXDy5;l!2 z0umY!G(Z!P#Q?HM01;Ue1OmvCg^=Xlv(C96Mg!29<>Q9s`shU>Bk z&TnCWf$^;fW>V71d z{bAod$$)AZ0ed1=`nz?{Ls*&&^~dh09@HptK6O6Za(gVo%sOu2rzLGR;3KG5s2ZLCjj118Le6~rqbO>K|A$2vH5Ymm?!HfEbs38*Kwj_6R z9KjnuFEDp2&$HS-vHIV36e4a|7O~7&Y z{HUpR)>|-1<5GkSew-v8;l3-dK!z=s*Pt+ja7wMbHjE>tkuDsil~Afuv&kk&%>-q& zkhv6s{fGYr)xP;_fZ|uTjxpsd+WeRrP*h76yeLS$*5Vqxm6#u&$fsTHV>E)e{cc69 zU{rTwA!z*(SclXheWbaQ;J>*H4?Sj(tQpy__Q+ZwROF!CdD5K$pFd@K^`$#RS#)Sp z^~0e!%-zs)eXQe1A$JaYx=>XGn!LkP+MH%P?&Ru~C#$c&=daEjp_oCK(FvD5_f1!= zxJDx=$F*5hUkcVeEQ~f`^fQ2cXNj(obc8}M!cOqw;1fLOVMYZHKxYmmT&xzlEcNj` zGPAM&wk-o`ZG2ucrJTy zCBrvPFtx_CyV4tR!DC|jFPps&A;pHvHU@F{r`fwQHrD!}q4#0z{r|BQgODZ=BsZFq zI&ecbrMAQ-lm7@#YK8E2Z;=+_l42xYrWz@3XhY`H-k{}_+*wHtY821Gv4r>tzZHgOaJXaYKrNs`Jf995$3`Cc$#wx*zM3QV^0PD9zW|)~*84(pGY=H{D zeu2DO1Le9KN+^rjJh>O0t%Q`g(u3{1D!Ddn&ypFphOo{{9JAxPD_5o&gHhF@>sy2-Xb2vP7QfAT#<<2FIq4E9c)f%jDS03A zp*707=RJfTq;o^wO#|^pRw+CBb$BrE2y9 zcu^f+ECQA*%Uc15l)j2v@4li(;eBu{3XXWqy$Mtc2})Y9ew0~_3<(ehO@+Qwq4zhP zlzt3;d8nK8vl=7nKuM~r>1Q}F0A7d>Jzh9XZ{Kvmi3k>Z)k>E>m>EjC&p=wH+zvno zzB*Lb%VgNsvEo0Al79tTo*#S4A&hANnX~Y@47?Kayzz8${>YpvhRpU~K&M#=3rPh0 zm0e_+3%J>Dgm|WykOv5#V}XJZ1I6F)g2x3M!^j2p{E%}1g3fYoHV3|pyWueh9X1GE z)vF;BQy-r^z4jHhcp;{%Kv z1>;Z73W0_Eg}$mijg6nbczb}g{11ZLWw(V~ah6@p|FXM_en-&Zo$^8B@cxK~=f`?B z@&1?zqtzZ0!eDN6+OA4k_y~^lZ=J|Gf3iBgababbTiN5W{Oc0aF(us}6;Y~R9Fbj` zaL6%1(bL{^wA*jQ>Van(VZ2%L` zUo*moHO?FJa3IJUWt-g!Qt2jncszS=H&Nl<-11O7^l!gCuo zJX!XYXXR#0-sE_M)TIDQOCicr!Qu%Pq`s+ACnX3}ry(G##foV{&+lC?9{C^NRn`<$l7$8AW}-EEdLrh*d6>6} zm{}}uU4McD2xtiCSNuxxmr#eik=bJ zc$D8sm4@6&+L2Sx1xtmMSk$?T>X($vX+HfT!If`yqsRsLW7JdGGD-$uzsckm*-Ron zfPuKrjYQ7kmmToaZVmP=nmd~d!iAr4JzLK&{%RfrjGSL|U198}`IMjexAi+9T|tDcqol1-X@S zJ|uk=pHf_n*aer8@)OR-l?-|6F(_jMlQo6-99~7C5xF7&Z()~iDO|c&Q9l1Md2|Iu znKCsf-_4PaNx^w}yKr00A9fz(#y4s@sQBEeouCE*+->36Dqr57V%&rhU8xE0BPH*2 z&H{JYI^JDU1exL3z`+h?!sl)&Xe(S`AaO`4AvRKh-4HZ9qtbV0fd6}rEvpM=9jUSu zu#3jO0)iO{OCx7^;c}A8DC8)_uzz!M7Qyh-*$_Jviuh>brBd)B7&9sk-&t_l4emdr zTlmo{S@^*n%PK5*)RRWx;sA&E4X1?B^%FG+ygS20N1L?Vj5nFwlNDY7M4J|UB{dxj zCDwL^bTK*~M(<}_J~jX=!5;vH(!58NSUSJsDXY(h5_-j~`yexW#&sTf(a_h~;a*oRoCy zTwMCiFdJ?~hy2Un;k588y1=T$%QVG5BWGA;pnaz+66;V^=vF^EavYtyr>S;@X(_+ov;es<$0!nIRuV#RclP9~&0getuvrF+p?&(aoZqQ)ToA zRd9l-`}@c;3NKUR!)vh|Vn602T(Rz^jTfTtq6U__^tduEj`Mq2Lzj9;bHT-VxSdUH zk25a6w-*HDy?It-rZXj(j~wRv^O!0ryw{*D z254zGI_vNGWD{r-S@Xx%(_{=QJH9!+iLL6N!9HhDsDmkrovhm&>k1G>v5aAqkFBRR z0=5HsVzVMW!JWtuXZIQ0w$1o{v<(Ed(y}s^mawqoIgcKHs&l#|lroF|9FWW>v@;wa zW(*09Y+`#=eavcCNasI^&cn`G_&D)+0j++EXq%W;#k{$`0L8Jy;AJPibzJO&lTV<} zd+zc@>pR~~&G*viR3p_SQeA?BEqpui z@raJziYE03^kZLR1OuCg&7t4lMp7!#LoDIl8#FRvJSu}toSf?2zlip~6i^qVPyaaL zHN2EsI%U6+N*~7C-umg0%dICTA9_!(o!gT=jMP{<@a{#BthBFPXS^ds*L1uAi1-Fw zyF3xyvE4f%FL)CM!a7wo=p;j`?)V3*vF)}@-z$+}nYZ`7wx#%{rU$jL@D^H{M(RA1 zpHy97_VlZH@z%|V!onlZw{0`0!psgw2U+Dq9+gm7pq&-M>XBQjy+c{!bu51FHS_jh z$`VJQ{jb%Z@GRd!!5oir)FF<+LpC8IW=8f;aQ&fC)cBYl;Zk}sPh=3&F(6UZXd4#R zE~XB49|^vgk+9BS=Aev0@I3$M11LTZ$;Ig7)U%(JCW`^J9af%SJWbirA#(3vcADze zooJv{kGMp(uiU3OnVb!5m5GoMU6GG`8StyY?@RC-wkeJ5z_4Y(6YXquLMSHs#<=!*ZSV=$Vv1lktA?Wk0P!?SJ0 zS)K{LcgklL+c%F1sL(=s9su^Og7}SNJr6XtjRO?4kk^3};-}lPlE>q)|N8qBhwFt( zOCas@#khBVZN_(i4SO#jk5m&_s@%GyRNSOfm`|~2!y^uN@_CPiPz{m&BAfP*9pi=U z&6Ha9I6{fNiEhlidRTc9?>$O-)VdCDYCJy7v;iiCkfIO*tj6XE`cnUA}_U}rZRkMRVV0R}{% z1w;-JkZ#)s1mqT57UYxx1mqUvT0!nxL14B>94a6g7q&H2B$Jaov zmZe{5?i^mnNmgb=U0Qo5!?%wn^#ZH9MJ_ZcN^C0TMq5D1wGv4BG83cE7Jeeo&DqiB zt4OX!LYQ3aV;98fpM`1I*(U?3F$!z?u8t#%KNxqmCjt6nB3K@L1c!b!hkJ?8;p+Xk=Xo| z;6yNMh;*S*@FTCMWF&%Shpv7s5iHQVlhm8e_kXxl$y%<{Qq9cPQ{vmWqrC+^{`A3p zn&VHMJ`>LVi_`R-xzTfWFRBXbW$}t+@#xf9dPqee)_77eX+4j0i4WqPraHZhExzfwio%M-k;Lv} zb?*S#s z4^Sk0w}i5F_cgm)qa-RFBzg2&1-t!5sR(0Jr<{tm5*}+QFU%#HPS%sco!--IG?Qn= zNQfgjUSaOTpR)t3wyqx7V119=RKLT%%E?Q^wiztk%yU%wiE(_zo@3G9U$55M%VWkcZTg5Q<=paJ&eQtIAQH}}+C zDf)uea03+(#9q~h>vdz7i>`@~RC(M=cf;AkGOmm>zTl-#D6nXPx2uEhMg6pFKc3#u za$;~lT;CepN7Di}XFO)b$pP6pdpsP{lX|D>vH04P^^A+ zWuD!nOj|vl9!+aPObwC9G+C{mxjt~;sXtbP;UQE0*0~mMvg0)tT5S$ zXDae0iUkl-L_SO${~%kIJ#it~szu(FMO27{D4oNLbZ>i0mc~9h?N0V?9@b2s*xtm@ z0+nZ$*541UGUe}<<~=HPbeUDwy4<=vIoWG}*=S{^rVa_4gT1|TQ-Pkcwe~LhzOd6) z*Rn0wmzLX@AZER(xG)tTYs09J%HN7>3%cZnQj~yFP0{1x5t-$_0_8Yo^Tu2=*(@`@ zYb|VoZR5=nJ4Uifn`GRY%c|Lbm}G7=bgydfI*Pq-Cg(dQ!V5`u;%0SdIn7Sml8eIw zTI3DgFQuUmWFk^ggldu;sKBK(Bpax)RHA=KegB%P;*UR0IB|9s&3K-*yD9GrGo>^mgBSH4sa#*Lm^V&x+01#3`z_ZI)T=i>Sm*PXZs`ve*s zcA`ZcMs`h=MhFrAh{9daLA+`%Rs$Gghh3h)#2n^$QCt|ZOjMkNGN*C~T(GX=RqyKW zb;=R8oDyD&7PQQF8!eVxGJ{YM9pTRGVhpP*pV7@R)iY-<+-|ob!k!VjgCArIHdI%l zVIBcPn`0aOu=gHL39-7ntW4X9P$+l?tuqK`Ks*N-hLOwfSAds2VILJ&Ib;TQaQnzf z%5CUu5L4NSF6))=xb;$IH%ymQTi|W8wd&bygSoER`Kn?b%>7o}KmYCI?n}r}n@+G%NG=7?cz95Ee?WhgeYIptr>;{Zy!?zy9Z!-r&289qckYr zbGC4%_VrtTQ?KuaBRbp|<omoh!H zvA&AZ7E<98x`K$)5;Jb>BI29FY{Wf7=ihou(}{>7Gg`JqqM>HzDzw6^oFP4H=3u(Yg-fGi?Q)K)I7j0a4bLRfMLYo9_PZt$V-J z{nVzN*W@8jH1}5hzN)&l{HlYso&osE0G`$0)rR&q`NYJXxXIxHJ`s4^NK!u32N7 z^3buZbp5Y(SpLiSOJ9t`E*SQB4OCKJGvAM-r5dEa$XhA?W|H^ItJCgh?`zo|{KVZO@qo=Y+#9uiF~VGpB7Yq(kr#m-Ph$FxVAxx-u+ zbP>(99`9oH=d4XZOGGt=P0p{8YQKls;{bt4eE}IT{LNxj)@;((7R;ai{W5G(HPAcW z(C&%m9^(+0zpC%@X<3a4CU?}(ePGz2Bie}d@L(<<87PRi>kst6=>n@sT?-8X7Q4qd zoP05F#Wu_hhs-cMFIUBhG3{|jxu>VilF|%-Lek>IIep3ARzb4R!Tkpo#hl5Yq z$0z@r5B>lAY7%S*-?hte(kQ$3#TsGbURaXdG6qj5r$uu(bvb1q22+dBmJVlYhc8+7ZjtmaG z5(L|I>LSNnamQRn^2_j7Ns~hPI-PVsXV7z`nUU+EK|Uig^$75PCK!=RK_jYe;Wq95 z>*?6_Z0P(O73cc*s#Hg#Y_MgJc$C}b)CG~V;9_or9X9;kcIJd zD~&aIjhO@h^+V@muxgCB=@$QeOpw~Pc&q~Vr9BxMO@p+K2gQZ3p}v{V{q0e*j&sET zcBU1_11-FV5u`NjI_mT4e6U~;%D-LNQ-gy_@t`_|Z9us5a@DX+;=+QREK-l%xF1p$`3PvYYL0VXd^HJOZ;;JcE^@+@hj~PvY}*Jt76@l^U?hTR9tz zZ>A)>SZN+lHO>ee=P7%SASe|ur3H#!q-+LR1I#M=Cg6^T0;vBy(V-tLBirPqoqSSu z>CSdUCKnIcyFJ29Ss|E0=*2!F%RhOyWhm$3FYakyfivXdis{k>$S>+@z4mw>FAB`OhWwAz3Y zfr zd=8bdvaGKqkG^g+{$Y(A9bjULZ^Hads>Ow2vogXdSJG}5&^;CsaFFuRRB-^hZ0>AZ zo+yg>+UfQO%ay&%B!3~_i{SDC7Wr2#l7D>Tsnyp{$NTGTZ9R-;-be2?v+iyfssm+# z{L#chR}5K<@hoS>Lk#2mFxe^hKjZTU${Kyj3lg~iu2hL&OZDd|Svc;uBw6-XR)3lE zAOfVaTLgin@2XjPg5V|FSYx^r(?pAgEB)97r4n4K@*T)I@)q4c48@^q@j3){kxRmu z{IkUfBb6@RIP1CAx3^pOuZgQ!0M&WI;Ms!%>|~J$$F@nY6&kfhV≪sjG?yE=6Uq zQA}GIq?bt->a8Ac5c!w#?Pz>6(9Th*-39vXQ2eU9Ddi8U&5tos3%`}f(jY2_%6Q6xt?L|7j_$8mW~Up{kLps#X7}RF#M} zX__<@O&}a5+y>t^=CF8I;gdwwe7a-`bzI#Rt_ z75<$_S2cd&(U2GDeKduo07F2$zx12ku-;WuZ)hn!@1CSJ9G>YX2Y=*dA#c?xF;qdW z;n||IQ*N@mzbhV(HaCWXeouqsP;GN8Mnk=!uI^HxuXo`3;9xQ}yev67JTi*Ie4O6_ z#&OW!7#kT$jwF+#$sr~Am7&3*>jOyFdi(m+e(l<-zMif`yg3*OxZMtO-NlO)m1R}u zii%F1EiSC6EIN0#tfah3Ey*gYsG3=Kw(LTANo9GJa{j5RvYMKz>gr3CmoHtuR9jbP zu-Dfb3`V2LP+wPHTW2-Zn@kq7$taku7K_PXbO;tva0sGRlvLMxr`_%lY!0{Ra7a#B zl0;E*dt|p;ayVs=r@`ZPIwhCO?DV>vQb6{5-9EV?6z~MR zYQt8q$L|XTBav`}Hxvwn!v3JQsiDE^@_GYakJle+49Grzz#j`OT4tzcJ7p2}L4JjiE@WDH6sPii9Jfa3K6R=*C!6OKVFc+7^#R zqlrYUJ)UTfwYA5i9qqA1b5kr9Ziz>mqVXnJG!$uWjj7S;@faG__{@&3j%c*AGtr?W z)cCpt?B1T}?C9)nk9Tx+b$55PceKS@W9_k6qN6j>b+sEV>gnz6>*^oq>+kEk#`?RJ zt82S^x_br&2TV# z+uj(?i_`-XcyH)W#)%X!DdRVIsN7JL^dmu2mY^B+DNd{WrZ_f|92^=L-~&}cl&;1w zM75F{9=Sf$*%51NX$i}MU^CQQxOo12NnvTx$$~?N)kA9!96q@J;J*C_-aB4!?9|CK zWo6}6muj!no6J^0ken_Vj&?~XxSf)SfKWx%nT;|ihv=4^s+{AIWtS|uoKCmwc1bQ( zp6+(KoNm>nIddJN9nmAXWVe$Cj@_;bxemJs*aVv(x;+R0k0Q+w1;J{y+ZACN`XX3n zd3ZRvWS58;HTz7P!(p>KL{V5^G8*dYjYgZzYPJ}RCZh=z2GvAn)iTX&F&WkR9D~_x zGMO!Aqsd|t1WY;0YD1OTVzXKm+hV)TCQ2fN5de{gwOw=w&`ojYHh6qKe=vZhDR;pa zd0-nXB)bDEMwDQw27kDvxhc}r+Sc0A7K_CZsfbmS5?yLJ(C71d8dQ(wp5^00Vt&D@+U|o^k_0sr2VwE9c4ECs5;Sm1Ff~3XYqQ#5 zb(`7d0x3GdB{VP6(%jm1b%2M~_&_`q9@Dh@H2r<3Z+Xbav<*s6STNRKyii_VQBqlS z`uK^X@BioB_uf75{*i)XCkjg|tFKsW4oUU~u$JP9tNlYGqjG^#0evF=>O|%2}5xqp;*Rca*Rzjv{=vjJ;{z?C$*Xa$~3+$mkK!+U6{RFU$ zwr60QE>RBUL7sg4^T9t)?|Tc2Cc&jy1-Ty5u_D7(*;8zn#!K`^ww=Ak&ajifF?JfI zQ*;y(t)<`5uc(YJvLaT>DuD`C&I;K(u<$zQ@iTgrYN(D3R8M9k1MmT?nkiMdddxmVsc;&vW<^q=T2>>xYG%2+WZDrQxzlD=o_>PTKFiz&a-NG;ew8RY%jft zmS+(^|79hxN(E4*_o-rkhVSnl+w%af#jol2Y#v*Vab*}?2oIOChuLC1YBtf!w3}tI zJYYV15WSYOMU26kOENg+PDT*tIbYZK?^MEevR8Heu0X>p(De*8!>ViO75WXSYz{nd z44ya*KNhiFY#U;EBO>h|^d@|FgdNs#kSFN996b5D-ULf;q0O-LX5HSKXfcqjulk#- zAm_IA@HlK^pgzRHLEr#81dauueuyYr3%=Xw$MASDBrBy7q%tbUd|#Uqd2^vz_9q6n zYd&n04?GR6w!k-=@qZ5a^GJ(e)mLaYV)jYc@oBXE9Fe<|egZG2jYk(7D??+Y(KY?KPEZSp))_`9qZg)ZI&`QJ1NU8-+B!X`3bWGVII-(ZI^ zGNY_~+On$d$)GfaZlhJuuc17SxnG}Bce9W3Kens&E2<-j%PVT!RXj=doSe<){gVG< z^J$OKL-efc12t;aY}`nqB8noQAp%ic6_oe;sgZy<2n>%wUIW4aA~VBdkO3W@1M|A~ zc31aSUtqYXU*=4A{i<$Pb#>LRfUrc(T0*&YjV{Q@X6M{(elYlyD6+IXMeDU# zMWHe{1)D&dI~e$U3h`MD1u1E_n`G9Yfd4m>4cAF0; z1`6_$YqmZuCHniQw4!pu$UI?4T|xkdkPoW*;4>;O%=l!l^rqoK(v|P7r03O{7i5Z= zh%NvI=>u9ajxeE0PeXR>&AS&)Kd5Q1SjMH9m5H^d! zc@OA?&5Cz%@{P-L)HbXI<=-R>fkdQU@!Q z@^K9P9Tje;P3m}|HFl1+F~D~xb`FKBrco9N#Pa45>gjmdX5f?f#{uD+4gjRB0o zwe_W84#xZUR8Y2hD%b8>N*Lc4#jm2YLrwB9&bSgEiM?KX7JbX8?V-dWzb?WwC9Hs#)m zm2kTbpIOJMsEu!9eCUbQRNVUP?3Ak0hUc;Pg>v!BhKIv8eT-WbwyVjyA|6BFEZ;_6 zlr%LjQ|puHHAnzZvlg*b`EUlnHPUn03+t!a#KuMDEFoqG-XtA)(nQGgizP$yBECJw zgkWj|I*<_{>QE8NK%RWPWXo=HcU0IM4Ji&W^8gw{i|a~eHE%KYq9ufqwZ_(C-1{@4x0weqrkaQ)+C2G%jQPN}5RZr9GUgCHMtPVl=d_H4z>QU32 zD1`dT*`B7Cgej%f;8>ZA?0$`5bpsVb*kVj|WbgfbtMZ9!?Pa6D(yt2G*qk1bAl& z4{J#ZHfg5I_XAK&UM#*`kbG*Q;4e$;}vvK0jB?35(_F{AArV9wLysr&rr zLb2WT-X^;k6V&6Ld+ zKXYjV)GUC`f_8cJEj>gcVS0ss4Va$6bD26HYuDIq;lad~q4PcG>ztq!!vgkPz0#@y z;wD)0TBX%zU#6yX5Efj#NRC&E1sB5?C_1b93PTuwlVgDv6flqdzMwr7(RPfSz(J95YkN@U{D1qDX-TB&+*oc&p{gk3-;kS8Qz7gW$d3v1_?|Y99l88gSp3M@QpIkS=RAp zqDT=GvUk+G4yC8dG44Cym+(=FY~cE#X<+7Eqry}t|D5>5kx6Td zi}8u9MI=A+8)H|uVSx>-8D!;=;_iBrQcgBPelj63_l3cpGcgy?U|-zX6hfzVS=R#1 z`KQp+H)i8rP_ zRNDEyWTlc=}>E7FVu<+UOW}5SF$CG0V*q-mj5+&`> za(p6z_=_<7P5+9m?GEwiIkVasx4%Lf!~>-kzn?ojb&so?t6bg1=Gr=?qdD*QImUOo zs;h~wqWS3~Jz3W495uDiR%``Y3>bv%v|VA`BTwPQGo_xc*s9>00joYxs^Bf-xv^=W zDYf_Erb>5^22)r)mh2OWIb)+p%oGno1DDraTx+7+EyjlGocx+0QD^N_Y)xv!B+?-w z6h^YU9WLkVQa$=lEen2qi|7$v9tdK(Xhz^t?f`}xtTj4(m5vTy|Em96CHrfUR8HsO zI2RqkjgP9jn)!GjF^%i61ngwfe+-Hg_f`!*qOe?NWqxJX<=vgY-QOOb80RziHA(Vf zbv{4%tAf=k(0O!97zk2KgBY)^FfvGL2L{Ux#I&maCEVPfzF%OobISb`XbCg+=}R6E!-22lo}-hKdom#|gA`trpPo`0|21g+ z$E1=_DjZ)7ZQikSu%P~nb~9J&~=Uydzg7S?5eLk5!xc;nQ$+3Vk^NWHQb@T zKJKqnU$XQTeM;O|@p;HUdO!KcB0AlfdV=cr-FZ#P-<@z5ErcT@zLu09`}OBTrpurl z?&B$i^oNMFOJVk>N5Heo0(UYn3uxnEAGGXuSuO$pqTt)2oZX;OPlw^J>?Vzd=;$!P4}9pNdw0RQK_N}r<2uDA;7SQA5P#w@1tAsNj{(*d(R91CV3@YL>BkltR6vakllig-fK*QFo3Wx|QqOvm%4uVUw*lJ4yvb1yq zP50|}?>+bC+}Es?G+I1yFeA+=OVj^ewC%X8zeQy*v$4mnsZH-l$OnmwFR)AbEt{o?AWAbN?5i# zIDh*ku+w!?lhou1^RSzJi~UjXHNXZRgU!Tn7H;mJr9)$1KcIQ1pmLUm z<&r;{loN^29*i}#Fds$P^gKwoM2?Lgh*f{a2+mXjNm%!AM`kNgfUN^Yhze9IjVp=D=^s=a>^Q;pB?AxJ7zPu? zQ5P3T1DH6CcnnmW^4xL&RDsP9CbQW~mWj4G9I*ns`X^jye;yQ}{Q#fCwp>C|?t!76 z9r2N8(}NL&R#Uv?8n0Wgk>N(3=Q!tUgy&$}vI*xI;`Hm&wPJq$>A}6l)%;vki4ca- zNy=Oj(97)r`h`PlXk1F;;pb{g8-}K(NyU^+;K+hEAbM6+B5eT=V~CF$(8FwD zchTRIwG2v%7RCI=db9@J$NEyDstIk4(&j1IBcS0m0C8y~+(4-=nw(azLpe8&wDi0fOgzQ;r*O1hKo&$?%XV{9$N*3k(?m+=z=jvVtjF7&`rkytS5~8a)iM_;%zGm)S zZ7j9|8Y5&d)do)axVF8cAvKH~H}_ToFRof5r*l_U)WvC5urnlWMokSo+@dxd40{@U z%;^YCkI~QCc7@vG{fszPIrT|C8Ks2v2bQK(!xP_Zz0S5M#|JIuLdP=Vz%EK=U7UJ5 z9fTtsS#7sry2+6V{fyAsjv{SMgEeCw96 zu&bwT`u(#9Oq>OLk~eNT|y?G?0i$8EYhlok0_vjsNUiY4Pj$luDB$LZqibwxtY_Kk$8iO8tNS{k}4O z$o&;sGy{Jt20gJXTN{%(!X;XKE#BgD1<2g z6m$X+x?-E{!@`NZmLM1fs!$2Oy|6?eX7s{#!K~V~RXAxLkFM}73=OvJXceB`DKxO{ z@f-*@mpQv;zG-Sd*u}L>Ue8S#cPfzL23~tw!}EFnLcBnvArPOh67t7;zI$tDyf{62 zUDdj`wJh0`*)CIe8T3Zd$c) zp(@s>83jxO2kSK|c=mv0pWhwY-$A7n2Cv~as0qwK^?~<_Kdjryr zGeLS}e!5!)>zw<30xZb#b{928(vw|`X@WOuF)y1oMF4_;imMVj5m4Eu1bH~4nj(Zt zE)`w#YtY~kyIh8+=$&Yl)&(LsVqkeIXH6*u6K?~P#UErdM|O&LV2{RAzeNl+D(@rc zcL}hlb~l0$0j~Z1*zc%BVzO^A)K{|>fQkZ`@sNThAlOTgwpQLKM4W-KjdIjQK2#L1 zly6cZ0uSk%pTpfk1S1k&$%24W9uTdHOR;NtaW?iiIsW|!6}5#<%Q+7itSufDb914W z* zx%v!d>buPFZuT&*FQcZV$UIW;vLa@%E53;edRJGgn({l!u1@iqKc<#3u$CG|T!o4& z;>I1ts84?dqCPg`x!~mL-jZh8otO1gh8!O%&wI^zOi@AZ7^B_gRc27{74}1Kh2`eG zrbh#|##V6E)r_Mdd2McEnVoZ2bLkWKQ2!9z&8oe#Lz?yF^+y!StAX3^w<;Va?ls!l z{F*vPpWE8+nSa&c=G@e9pUUfAw+=DetM|sXDYRHqV{|4Lf1i0}Gq)>KjlJlSuBSs> zxVk#~hiyZ2s26W_8lN-h*!IpcJ&OLE?dg#|`VZ4p)|A$kMxVN?`n8{LcisEgxB72% zRo6|7aTXOta6pMeh&V(PF{r4BF^+M-sF64)acC1qL=B0?c@}X-B_b*u;G8|2)0@8C zRs93b+27u4eQWse%yE53=y7{QTBlyeVfx&hLipo4{=we;2dG}|Z&!YVEJ$2pRdm6r z6xf$czC@~&v$+KOVUQCQneeut_05b))T*$lTG7i4uo&qcD1^q5ThTW<=QDYqJ>mIr z@RC>Aa6wRim+Ekh`3(+6Qb4PN@)o*m4Rfd`-!V}Nnx42{?ckRYBgXLct7xM={KOMn z(A`7_EiuKS#X>>Dg2aicwVoG4KpsDxrG|5UGutF>7fa!Av=J*B2R_NJ^-o||wyV93 zL(c9;tB31RmfZjo;kk`x+6Y-g>ZmV;lDpAl+p`a}v}r%sN((c~3hIOIpkUOK**c$n zMt1OHOxx2mgvu*VvRb{_HE=#->F&uOd5G`nE6Nts-GjFT###+pi~HPMq2uYg&L7B& zWIxjQ6zb2K%`lNYD{1eJxN&4Av?SF7roL-VNZu2>vy!w01urTiPC)VdfyhgcRilqC zKgp8SCv>y)^O~+CsxDMhdloy57m_E_-(k+H5|)1zEZ~!*_Vg9h+`yhD>Pmid;;O=i zT!iochth3?4<(5SDO#W=sj2M238|5lgCsqV9{N*kwFxeY0LClPi~?WEpp( zD=ctWtkX-{2}MfP7!;R5t=^}Fy?HD;ShR@|14Tml>UKWF}@MXoA$E5vq& zv3}%%e#!fLQcU4oAOKno#LZO%r8jvPDm5sx8QnyhX2r7}XnZhXly(8(h{x*)n{(#C z@u1~RX)hs-z8MThfm1OB=VBZ!N>Gxbxs;LVv9ja4{t-3Uft5w;BjFcmI!xJjAG=vs z+*kS-{FG$y=NpDHorn;H2}nUnSe=f@P8=X zN0Fz6!c~~7htG)zI*Fh|c^?9KQ)V9Is+RDEKUuHsVDt+%C(@6{FwQiB>(=1;;V{dw z`3`bOuHo1k8PdEZ0{i%5Hph)-at{AH*qDb|gDlKO$SdrzY@H%@D2lj3X9LFKPVKXW z4fCa&x5aT@kqOpJU;_^##gQdoZgu?_DhE(s26jC>BZ~S*oZP8e5E-P!@F1uDO(X)J zrSS*EDi$IUOs|8uE1%_HAqma(Whmz@$MOtdMVNB)K6ZF|6yi zV!^mghZjPrwEzGh+j-^GG6C;L|^&m2#Y3jqU_?(;3sL`{uV# zyRC%kIwcDe`%zgR<|29(2oEITQ$HJeT?Qr@I(`&!Fi8#3IX-&6=}*B*HDbbN^bZ{1 z{LcAk39*>>1=fwgO&-9x`<}>85Zy9)lc-yTZhqVJ**Vu7I}U=MDi#@e6POP}3pd`< zYBK*9F$6^_fGVrV$UVsrs2f49j=g=fY`OD_I;Q=uY2abvzY`M~O-+S(BF5vhcMf+A z;l0ORTOfoh(G(-f8*qnZdwrgym;`_Z@7j>M##e3AJ4v9}2>^%=v5+E>#=kfU{R(~Q zcqQC@<7Y+{uh3W`Gt9?qUaK$n)wQ#ixh#A(ZI`&6{AH%9vvrj)&je;A*e75R8sh*9 z;zlq1cacwc*tS|0#jUubzaYq5mkRKQr%u= z$WlAWt#CnDdx?UfRg&E7Dp1QeaO_%m;V-QzdvHbAs_KP}neU!XGnyE+bdKP3C$6f^ zbXsHT2=OCM1W^>qrNE50Xh#Y`?vN#I`HjQ?#2p_;uAp)j z{wwu{1+%l z%Ga-?=Xgn+MgY@)aH#c}JAr#~N1q{q0-Hi$j;9V_95 zd4q<&^<($;F{G{z$v)wmL-y81Q5QDo+GDOaw<+KF$g{METqpPF((G<7TQm8p&AJhw z`&&E79JUj9v%y@NZPdScF0-emvn-AyirVusUDY+OUGq3q&iorwHBNO`mkUfcij9KE z)}peABFfq-;DQKD=Z~SKDN;iM4gQh_kEvAlNy3 zwY?rfR#xO@$X&hOf^lF#zlj&2xdVyA%dp0+>)HbV5xTmuxpRzqyCn1~mwv-Rzy|T16=-GFq zZ*1ewbl5LVlQ_1DCH}*TRKv@b?c&l$W^%+naZY6wK&b`I_!y|l7%PV09vI6?$OQWW z2m6C(oI40s963&4PFVB=$0iPA3`TJO!Hz$OBplm-KZp<9_6_{fcIcyR5tRLfr#C#U z{J8))0awFF432xLA5TX0*q(eV~`1wvzvArJ*ablc@^`~~s)}Rr0|2F+<1bkwHb$H)P zm*A$67~pn@5D3~~$j-ek4ca*Czcv4AB)|V75%?E=OakmQl0LMh?L88E0zdXHKo_EEJVTyWyY*@S!vJIV?GeDsn{3 z_u*FvE10K@n{Ql(a`ZFe)zGckUQ)&*2oZe3~mdnWgsdP z#k-wcxmcYi;vx%OW1&L{5D=lHa*b;z%6!7LH)KK}!&ScXeARAiV?>)Sa_zYJDcNCX z$j~~Yh6-UHLMtZVVqq?;h;>OGE*vu`ar2sy(tTf1O5O79duqYZP}hfjo$n;Nj>y+F z0jpdlSx2Ld`Uj7oiFE!s|FU9oGD2IX6Ukn0v(iCX(%`kK+70EXMCIx0_+Ui4?H0T* zRmhxVPxh|HbT>w76xD5-PP(NsS2voJCOo8eLs(i>N?pK_cDDh_jo8p8-^49-NHpl= ziwO1VbjF&WD%H07Ib|JQR`$2}MQu-;%7VhES)=TsB9x+v`(!#iPvNHlY5kEX+dx{i zXI!Qp!@d^X$5G1uip(Dx575|ciU&W+ri9%ld5=IT+P+b&+4eQpHF^m&a^orA@#R+U{GjB1{u9=(2((!b%i=>zkcJ64qya(to5#3P^j zyG9N~@NxD4nYDarT|3^byc6(7ouH@)4? zJlc&6pi~9Q8xV6V#XAOf#Yoc~f1oMDy&CmJ$V%?1*!pD{_kDo0*oruI-&FbJ^`L~b zl?n}Us7H(yqt=+onqQB@wxfOHueh_&n>@UJ zv3mo~1E6M1Py|}F)+ATgMWnyyRllX|yXJeo-^#J+8g5UwODk|vw!_<1f;rsIi(d1xG%p&zcKWRS^QTfuHZrKpy*Jhd*Y!7&D~_qWb63vgn63S9>9O&U-84vtsA6Uv>Oq z9J%)R<81kBVo$1XO*;gCeU1`$V`WHHtWC7dT@-Bz$p!H`yq{S9`mze){i0+^$4Jz@ zTlaj(aJTOIV$ffdHNltXkazZ-h8mtQ_NJR&2_ISk+^h@w;yvfDl72ZvJw{e|($jTNA{8$LAUcic&A;hVWxV=>` zh#>*VVx~lKE*7KKI3L7EZZ9)kwzK(5I}{yX8>L<-Rsn^A)E1D2N(9er{1$%olGGRC zfD2E?qm>_=M3(Flo@6PZlxou$`*a86aHr$nqheDDygJPZ*!Q!6v3v!iL)ZMrmrO+W zmhh6rXnnl6>0LNR`IRKiz-XHi*A`M*30HxI7`PfWe%>U`1pLA)_X86zk;+1t2)rZO+{oiN*AV~F~qr8P^^BF5_!Ic?XyPL<)OQ1%ht45;zabkVh zULA+2tO&AXND9632H5q>dEw{h7rJz+B^LE%O6 zLWII~^uJtJ=~Gi#7H_w*7iav?(^FIZVLtbVshSV-XN>K%4lXFoCbDR&NJ|6-SpqbR zEr@^!vTq6dCWaOo5D*B05;g(ZLjnX05Fqc}d+xn+Zm626no1tL+;{F-fA602Q*RW~ zpBlJO>%AreFif6<%%dQfl$2l^=&kbM&LO2LAN*pwhXDPJ@1sq63mJsSbGjP$sRRMorRS;m@K6SDm?xZwuf zGx)^XevhIsaB&+E68uVZdT?PsHN#=ldj=7q(gEwTz^kh~KfhHE9IX-{Ii3Gw2l_omY*MN}MJpGi_W5-!;Me{QyqS@)r$k z_r)OAEdMcObg^0+Q~;WK!CvI3fse3-#v^Rky#Zn>q1{6}PF8PG7S_n#X~A%D(|83> zSa|&mL|YK-e80T>LvWUV`2T9g>5p%fOg*X40FA7I>TA1XLCLwfug)Xsqb9czWzW=x zj3)h|tl7y9PX=B7lxn8oOqrrunYey)1|T|*k-7(T&3&82Ht$}VB4mBteNJ6-7KRcM z5=S?#bkn;Pi1BsL>rHYdDDk8$F^%YTazG7hB+d<}D4lg}`4BBBCUL!plftzFR|XbA(9yc_Ey612e|qeLuc3-_HtN361X5 zPEl6zkPEB(INWYx0j-q1DuD+{056}*ZiXJk>VYh$d07{Ofkij-v1sPJ5*71N4#%w- z*oLk$a@uTh8>WiNal)$=f1~l?X%7?4TL1A4pL_ex+cy&9otu7s|n`OlyK1xxqN7v!m$~w+X)6@%l zH1U3`_QFnH=5o|CoO89>YX2l>&22|yttFv&-?QDW(aC{4Ebg~CP3C_3FZj-};F!UC zi#|oK{Hka{D6PLd*pflQOFMnEyyCi=5o}DpMb|FqjQyT1GfyMNFp~x!<4BbTxVu9M zN?dq7fEq{6O-?*^KwJ-^vCEy%e~pXsq6OcY+yTmR@q8LRzwqutCH*;X)mo_oy=Ir( z7{rQEzmKM%did38`C-QH1uUuxChkL1m~q4^lhhckS{s8vIlaOzX0s1(WW{R4cXZOW zZ&&BHRl0#aW`Ev{M)yn>yq(w)bb17*17*~)`4Ji9Np7B?3$veWbF)IM^jUGH{=04X z)Ar<~!eH_(`8Y>|JD3>nuz?``J-fgs`>6QT_L_lhcnqm6No}Lzi`}l*+rlw4xQBrK zZmQm>?DQKIw$j+6GXAl~#MJpJtEFccbF=eXjSUZoUS(`>^!Ro|sgZ5AnnC>4+VyfC zW@}a?5Z8>rrbZdtsHoj&H1$>#^kW6To~v$sTenzUH#t;RY@lqa`gsQ?_6s&!-l8s* zl^NuixKXX2VLjyyefmXx!8&%Mp|I*S%ZD*M%@O1t-mZii57>lOv8F0ATpx4$bW zn9+mc;d)#}h0TH9c>WZBW!?0i#eGlbTZ`qrVH)s)oU8l7b#{~cR= zn()keP$|KWAicz|BreC0Il5@zA0_pa7nQu#C4m2t*15zu@-~Jv3Xq3<#gI)g((8}C zfk}$`XUX00i$C#?yf}pA-BCb%>EcbOp1K54Kmf8*?qnx9pdda)yb%|}rSidXsQ`W8 z^2j_Pcf)~K(v1_6mm*Vx149B`g3shBDYr4g$ibrII!CaHFsb_(l^)3$_)&R>g5Th< zB-H|vD(1SCb}&F`=LErZ?($5AF20g-6pGWO1{K}^awgA+k>D1YH4Z1x4iF}FV;oo# ziW-ot$s|zxU@*8I(#B|ZHbeNm&#l&)ZU2=$BGs>=sE}R^Vax=@Ex0ZSpu9>~RwG|5JUOFJLZTwxDhy{=f_K^M(Z5aWeX}5Vnwmri4;tvy3=7L)RH*?+|AS znkyV5D38h&3jJrsFl;pa%~af@_`-RY3;gxD_c#?PX#pTj=3#X8xPBO1W#`|@A~HtZ zmME;5CDNFzDLFs_O0hoyGoN=TSkU-NO7+Dm;zz>T-vu_gq5X~oH7+4~aUo7m$pKuj zyoeln@P;sIvbl6K7eFo%pdLenQ7It-$a!?3Lh3DO9QP~d#t|085J-+94meM6`Ht<5 zRHV0r7)F(6EDboJfo^CvX?j2Fo&Q`g>LgY3FsZJ(-RJf> z|JnZkTeQzJhCn~zCUtQs_G{0%!|`AAImKqku7!{zH}4j|CAQl?-m_VEyhe`7g1lXL zEp0n@(a2B9s|O#$*SBk`M+44S^RnrU)OqvPc6Z320~a&_d%C)V5z!==lS@Gh@`57N zcp}U)7%^bu(%a-~bFN#l`Vys^#WyY;u7nfpR~p9Eo(B1%$XS9+kqD8vSdf_K8huZsfN9?dp1 zg_xnXlWXu|prJ)MJeyNOeLG#dUXZrkbZzgRKH`#3UtYh&tEKfF;IM**SQ+f#0q2>i zY?FbIqUL$u7DoMAXoQXx=L+ZGJ5Py1U2EAi%cXdlRLf}PHER6V-0Q%mruG+bW^u>r z>MQ5#_R(w6+N!$2i&-M+!HJL`PE*nvJj}_q{xQF4QdA>Y;Yhnwo{Gqp8AyNh9ROWW zkCbv5g`Yfky=E4WJxNEA??6r9wF`GToc?;tw_UVh5A`OOLr*%OWU_wV1A{$uD+yP= zq1r5-R!C9&BktGXqGfIDPz7^snE|8F?@i;DIGpGPc#wvSkb-CsGYM)%C103VDwjEpdhRahkPK1b^rB zyry#?pvoD$*D@Gh@k6=;C&r#IZO^A2yRRiT(njT35)(NGI{wlA`-lJei0U>y66UE) znfWLw(OIE-KyHQS9~E~nql`J3@is5aXiG@Vjhl4Fq@-NMmv&?u4xN}MFrX#*2CdPw zTN5sE`t{s_yZDrP&JfTFt3~R9+~*tXESg;RnCeXWWe7GAQ{)~AdP$DQlqENfZoEzM z;!BS2n()4Q`gz=w$7;vB4SWe`i-^bVf^8Cv%;Nxlc-ZQ3xj6lNY?=@}?IdUl!L^g= zLDLCJ>@GJL4T484XkpPkJ@3F|KyL#O;?y&wM=t%i9V30ei&A@+(L?Z{!#+B0hf*DC zp26JQXSPp{LvOoj#$}kbE{uW-}Hx9EG^Z|W_Kb~P-}pGHg+ zw+=4#&3Ic|tITx1hb?bF0s{C#@R%TrW%(k10E7u&1Hyyz)iOqNZ<#=3Y!+&a@U`*_ z$u8?6XfJmVarj?F2>PxqvW3e^M#N!kg*hc5I^gFjhPXm*Lu6SUtbu3d`y5Y``EjM0 zvhum~fBgC=(Ep6O(xDZW`{dVOT>3@pU5q=x)0`S*^8FxMg`{BfR?5ePI{4_HN@*Qm z+#8F9n3E4hJ~xT4kx%eb`FJ2ZnbYi81t+-*sCgC3dp}+)`EaV;=|3VA6BTlf(?1hL zge1j+nFZ+*CMcb?1wQZr;-y$HGr$!vYr%(+)-!bIY;YyBWha!!M%THn`4K=Zn(1?1z*`eF`3@=iASwKgMkZSF`l&<4C;W@T)Dy7`f?JYTB;W zw*_8s#05Qk7-4NxonqI63%ib&hK`T;MvzlmbrSmhfhbbpS24ad*ICuHvZhONnB&Pe zHUt>i<*mImX-9KI&@*!0w-hbuGW}EOZQp9xF4C863rCr%Iv+|R<5*R|ota(X=|lLx z7Gw^sy{g)yqlNxM?D+1+$Es$2Vbk@-fb^@o6WC?-ea`#$9@K77q4a>~K8yrM67BX1 z+!?O&Z~O3&K!cF71V+zqOm`Lgbt9GE#N9w0O$+J_4YfVomxWIrtRg6TTle6%+dU{Iv_Su898$x zIGy0yJyG%gTP!Ub_WA4`NYU&KQ>Nb7QJ%PMh<_Z56Ss>nkH_J<71G=_$LZ7HN~0Ol zr^hJGTKQD}IOLQ01u~60*z}Xn9L&=*Y%>g6huZp_?DYFkw?N&}v&ttRb!eTsfq`0P zvbTXUhQb%>a~1Ovg)Qp+gG{V}fMk7|iPLRZG>lIT|lzeka`WAb?M zl5#H3PD?dN%+40`()Jzmh}lg&V)i#lE%fKvKjAbfrJjOK5EfE^m4w%UTRYew?89dm zlslqiVY3ZDhxrI2%ESg`+<`UzK}H^UP~rTr@M!C#WoyWYLWV2O6nNPcd?^fp7$8gq z2EY(7Z=1lgW==*!fDX8pEj2_m)ZiGn{K8HKgFcH|w**a*7?3byL0+~tP`|8IuizR8W zJTHN>3V2A%MMKy0gutr461RM@#iR?v!taWa0-8sGxbLP3$`i(jDrC~+{BzkR;Z!Y^ zgK*QoWeWZDKSWnqP*YhNE+2ZPrfRBRtny)M9_{C;dA9m#dZxO%TX6{r5=6oh2qb_6 z61D(_5DX*;2m%HS`%VN*3x-_?U|2;~SsH`NA_xSMd(VH)y>qVJQ}cT2)V=@zf6M=! zuX|e1ArUz8jnLEA8|?fVfstvJKUn*` zKSZ;yXX*`uDD5iUt`M@*y0d>G5C;9(O^9dxvp~sza=W_bBI%1-8+;IrXHi9jX&?>~r)y%+o8~tW0Fv8$bH31Ck}Bk0pHx za^go(xJTUmUQ9zQzwb9cC0fTKC+Hio>&Mm!-$@$FUWIP3Y8@JjW*)wC1eUWQ*3<~v#{YezZST?A7T?kW(n=B3wZz8Pp2*22^@SEFmM)7ifvg?kwF}h zlQUO3@e{*`h_nXEJf~!(AemwXPeMyNe;Gom?3I9DXGC-5k<6@LTI(%kRaln5n1$fJ zj*u^tKUcI-bFd~l;^%Q>3v5OYhu5&HvHfA@+&h(>4sm*H?QWcLZif^d9!w3}oJy>Yw*Z~vr{pSiAWNpDh0&W%SwgiVkdVgsB*_78 zOh^iH+>KWD#3kZ`d-*ZNp1u%+@^%kZ4Km(0`epCn{3Joxyi*_)`?3WN}mM~=D%8p&i;P@_D`>beV&v%(zo5RMZWIF;_*(<7E zCj7;QB>1exN?q$v`4TIh9595x;OoF`sl+TE1u!aBH)BhU*#rx+09Qb$zq?pk$e}1J zh~6O7En~Qfc${+|WlxaCOo+?HB(B@zGkO@&m5MmtdxC5ViU%$=V9=Q6{0~o!nP+=w z`SRNFzqe3+7W?upWh-Q9F(aQ~BD*PfnVU0UeE=~pa6vb`6dxUgxB=(cCTGnvQf?=a7m=~;6Y=Kdel##7wK1{H=_8!_k7 zDSYyID>#303!9{2J|BUCGMYR3ahDK@^E(=%qJb>mUL6hvqOu9rnIcn`f;Vsx9#(Si zl^EhCsEE%OCs#P4dsSXs^0-GaK#uF=RrL5m*etZD>6^=-*eFa}Ut2!ZTL?)K@G7t1 zxqB86FVS$7jEN5mK8ADK$JN?^y9|9R6u+n#${=q1-4FCQxa?q&~URucx(h zYB#$u=jRXThfkzLLtcv!b(g!f9L}*~30>~|inz#9ZO7^kh{>+3sNM^l=J>yD{_BiK z|5?R2u9%P-BcwF(P95VdzMA3^@LCKP9tf7~s z)kcCfVft*J<*Lg?`$Bds)GrpLFO&_F^x%Azd}TTqIL|fNBUvCNX~oz0ito1(G9+;m zrJZ|RM$z(w=rA)3v34-a0FR@LRM=TK^j#!aHg}QZCqypX5sP{ifaQa9WLq(AYRv52 zL66$PEz1FdskqKBiB;a>z-RD5h1}8oN8>OcrenSkG>(gM$cPv2Rn;f3c=t?`LQdje zP_XhWJPvh${~Y1kMF^{(60C|CWx0Ai&dlRM(fdX0#D9Sk+SKDBXo=$Ze_&H7;OyF= z8~fDRi}INj(XspLE-B9?Ls9e^gco8^4Pwa;ZP=Ui>L#U%$L=$X1fb5T${xGnkgrg?G!wcu(;kXpzCNEcWbinDNcs{DZh~ z7gf45Ql9>DMrwk6b-20(Ez6V--eGNsc|w%`9pa%-`b0gC(tWp<0!yeBZu$j<#5!=X zA|+hmw%+(S>#wIho`+~FJMXsx#{pS+^0K9fPECyfS7C%PT;_?;JAx;7Wm=QYwHj!6 z6lSDwujvHk1)b7up0B^>C068Nfv(OF5HDGF8b#s?1X! zGJil`QmJ`KQpr>_Log_t2qO%u45A1EvWO@$v=|myWpPm1_f2Hq!qzRj!=^|>)6g5e z+`jj$`A(ZjRjL}g?>*=H&bOU&zF*(@iiCg~Qgop@DytPjUlURje#H#6SR6Dl;=Atn zGN=7+`{S_QjDKu@=c|^}Gw_RWBMi5Nt_}nv`W9 z@0@KK)OxNX+IneoJ9LVsKb5AEaef^xdeIs!!{rY9%hLjyoRJlz#k=DV&{q|rLDxC_ zC_{hu3&|N?YPkYyMQjmdc6Y|7Y&;!TjDz>@r z&%+jeh7nl?zQBrt6eJTY+D<2QwF;IA!&-(<6J$|j>^PLMeEb{233g}|f@Ga+R4`cI z{J@6lQi$^2CRvdpDU!(!_4IRc3`kNh>>?~L4k1K# zmmGUq$XR}2?*hgFPcncs(&Xr+?XodbMGGZe@u$Ydqv~+VhstS8Qu$V!wJtg6ma)~<$6ZAXV@PFo{y-fk1MKysh4{W#di*0iwLm&&~`Eum|X zVYe3$`yMyV+@m_xYA>U)J8wSZ! zOi;}tXfB1{WUz(`-R@K~bZi7efZxC{>b^Iu!vb5$@)(qhyGgx;VJpK@%NuxFycakL zkBUr8u7w0Xx&x^p6W`~;IJ_eC2wYrronb!|r1c?EC%|aeBRLKRxsz7GRc>O~U9cA1 zaDs7xdtG0En2enirNU29F$sg;oP9#|ftnA5=9#?MT?99%6wI(21)PBZ zU?l$vMqvgKGvK2j!cghA;sp{L^E8whAS@GO@c3)MRroRVRvabDMyLPBCSQFe`V**B6+Ddno=p ztYCcczugBe%B1R>hh+9%d?mJ5iWz_(Q(%{F# z_)dYG^-8W;e4Z)csf(S%s{`?P-*3-w$3VH^ZyWM#1YP#k@B3`N_LOZQvvOK7nEWxG zd~lR|i&`(L-uU-YkNzC8-y9-@%1kp8k%o}~0%8k)5FMKpSU2az%VWxV|o9DH~_Vlg##tlK{^ zwQ>2J13h^>9rqBlzlkbRhAum;5q$%XW>ZS=nU?gSz(vGqj*2dMBU^M`LkxKtHxk&T z)TO+-6~g%MocDYx8mw{8I^(UdnTzA}`jAx3c^ggoraVDPQpx>(#C)SXFBM_`X;$C7 z6Burs_~Rs5{~z_X$KX9rJt+>XN6vuc!W6`>f@k;s0<@Cn&9$0 zLb1Q9GSf>zTf=`}BX?V#P-h%Jun%Ea8fR>)+qTolte5i_p|P{u z7J~&9<FC0Q7EpqH>GCY+duHliOo=Di=C`2%L2y6x7+1_~5eM3F@{1uQLO zlVwtY>`ctV&4lbD7M}b4l zO7c}5-XITz;#x2o%V^473Td~|Xwb;H?h*jxo!h4?tWaD?%|VoYXfHiOrBf47`yQ5# z8EePcJZcr*jJKiYiGZ!GX0m<3ezk~58k$fm&7J1$$`U5gfnz3`RfdY!5p0B%X|YI+ z&tW5yb7jn*ECeplj5^{BY!RJ$Jex&za3kOA&c)e_ zR2L-rK*h5`44zi$auX)2E8Jo_v4F>BCnCGRC~E#KGFb5whhu;~OyvH{=6(NeYh>g$ zt*R4#O{WU#eCj)k)wop#LIAF@ro6QH!weOr0dFV#uHcP*ECNV+xkQp5^7fxqc6FHw z$I+~eB$rWjm9!o}rowtQy$JQv(5iNTYYz+Q+QQ zWS<CT3fPyWs|FjQUOy%G7|b zMyONltOVs(UH;hMWpu==3xhN5%}F?Ce#j%`Y5Th0pgm449BDn|WD|nM zG2=B+LcPRXRR-c$oy|8DU;>~>4NB6NI+9`zf@=tFS8E7EAq}6J1E}m8? z?MRx1a~dqDC zWF4*PM3}iO%{yeIcO7h9!ymi#t)*C0=~bV# ze}1lW%{cU2I0EgB#^(dLmZQCKqj?E$N5`%DO)3qQ_KBLuEhyE7+UkCw8g=O;G(PM$ z*Z&5*AdkjD%CS+RuKECNsa-91+7@nAqEi&h^7^VDV&rXJnQ_OuU+1>Vr1eG{8BrDY zWGwQ1kCszXF+pKEKBqfjMe!h4c^B1HHYJ8PUh7|sD^BkNZE|q3mQMIws=2a^J%tv< zb_#{pGg@5*wTHX`HW%Ercs}=9KQms8eBeK|6cksgeAOGG-cY7faC*%BQIKN!mJ8EJ z-L6Ic%w@~=_D!^m7{(_&2n_c98iw%&w{yUO?n}b)fO6|C%ijR+$M_G?_k}3Myc9Vh zaE!p;3=U8p*Pr)WHsdd$?cZMmAO24GfWWUgcmIq4QUwm7b>Ogp_8xnSAo9wf9y+Wz z1##k+sB;fN<10!eB3dmI`QX}9nq2DQ95-Bu?{Av}6h7PWnf)J7F&9B`4^5jRGE3Ej zx%i8@?^7E5@pYLUke%|E;2Pa$L!KKqP9C2)jBt|t1cxGiMiFHEg|?*27B=e&DouXO zxf3^oG{x5B=NN{$Zm$o7x|l}C=iqrmfW=UF z3|je_i(}c$z7yb+eFm$)ZSv^=g&U`%hQ5~=WA7V^^SMpD6#0Bua)5OV1Dr;@d+zk3 zL?-cd*DQ@3R^bb}&s2;ZbZsB_383tA_>@66*VqAs(}Rp|IRH|}c;^1ZPr~28Y}>c~ zvg-$4)lh-w9?Y)%@w}PkL;C2Z>nMU)-IwQ$SQ7-XDK8sy^7@e#*}Xm33uV?HVVR0L2!mwll-7bPH0|7)UT4Ftx zNB#;=>IA@zQMsGcZyT^n*b_KuNj`ft?sGo+%-d_Mbb~jqKH@wd_ zq{1gFA^KLTqJw;huS_fLbTfu=;g=aj75D za^eCfsF<4*)rj#<#$Ji7j>${#nQkh$mSi!OK87__TIwQMxR!giGuA(^$Wd@5`NrNx z_u8@6UuN{v*F zI2mZHq@O}Z+jiYTV+Vu# zD%ApE?=)33o|E@VfUOp#kzVPvZEaB9OTg09Is*G|#<_3pWMy~)t=*b^GB$tMu}#4; z(Y{H{z@jK*YDF|z$}WpNl6OrH)F`z!5zcC7khkrn|-R=4B2$${$#1{cCjs? zdimGXGIr(>T-|tK2ztjBX%3&+sW|-S=Oz#5HqMp4npEM$mYEv7H_oR zVwO=T2gQen;b|dqb7)6iB2joMH1>>)50MtTG(IliT)?55wJ3Rko8E>xsm5m&%jMc@ z=q4m^ox-nEG+y5Qi0w&yVpMw3!&!E^F(D5c0~##2CPRF-!o5+_O9W?@N&J7K^J2Sc z;(6+xEqPpJQbqo~2`Wi>&B#kNv>BLreZUN_)4RN$HD@L4dL8h>zxxt^6b}nRm5e-{ zp_Q+kusx>%K?U8z+2fAE}I4KyZ(ca>5d-cLSQcete>&W&jf^e*Jeq zc8u-M9kEF)1v?2>i;+`x?7hl4*DUK`4xx*8iI(cm`h&=IS@$hnuwj9y`i)^T^r*+b6% zXDHtp&Bt)$-XgZixbW8w>g<{7T}2+kmmINeBaKI&DZaLXGV=S#a_n#P;r#j`&&w{b zK>@1Qtb=h;r^xQ+`NA&RX=(M#VGCTtl=;t5*MV)->y#J%rAtAS_ws@wA7iHIiB^)d zDz^vamm}Yi%ay<4gkSVY)N2xWK5F69&6$#g8oV`^Ti&9wC^HHcYt?b)0#dmBc=J{J__G!2s%KC0a8FDt&3 zEv@5Dv^Z{!gpCXQL$%X)1=HJvEiaCP@Gc%%tw^4mI!zfB4_rMSCPB|~B{7cndbIy; zpY&HGNm?Pw21s^lBw{dn622^p<8-N9qZGiMw+c!JbU`bxhtWP(8>zw4kXKgtKO=WU zdMo^gRad(!1 z#51hRB@GG!+jMOKX&YcF<+PImCea$-+6@oefZ4eW>fy`|O+3PI7GYz$F>IX95_rcN zdFsikM})2G;L2Owv!stBtTvaxOpuM+=8Id$7(I=UT=%yTS=2Y+$xZu2F8v2V@g?F+ z#Mem?Y~Q}X^eh%M<&3g`2CaY2Nu;M~C82hEZ1dOnW)9|*5m#=#a|(Y0Hz*#5Dz}cy z$C&y?^EZ83*&N&XLf27kQdidWGo-p^s;&{#MHWFY7gjcGxIvM=toAQyJ&y8Xi?u#e z`G$rZZauBWpeVBouA-u@oY&mzKHMzMDVgGC6N**ru{3?`q9|Wh>o7i5xwp|2HO24` zu&87u8CG+A@;L=%eh@n;6YtGOWH3Dm2?cLyS(wu3luCO|h~A-kmMs1JEhjp&?q?Vm zWo}5qHaQ%Rs+SL=KDcvVB(VhNS0r6N$)uosc|%Ylhc5!_-TTIwS36=xN~z?zt?Ey@ zcq#9jd!rPRdmAqAm+uo>U4;qoU(TyED5~rVs~C{V;#66Ql}uGCzmi}1m%sBrRa4_6 zihu+LLB$0{1{Xja_Dz(<0mltw9RUFm6hwiDIE-wqG>dG_*6d5u-O$~y-@W(Tn{yvh zLRIo7^$Pmk`_8-fymP*L&i73RU9Zk`VxqDl^yOY=TWnd!i8g?w(+WFX0$}vcD$TMN zds!uO8~69nJ@R)p1hnUcuEY6+yu-Py{*21uMexhq_Qk-$r#EI0w-IRtB|26cqN~m! zk8ZM&e;Cb2>-uxLohRpj7hLIx3L)07Ucc`Bvfp{7-C2}{#BLvp%%qKH9E^#9rzoOj=M>yv|jE8|>p?TSpKRrh>zaJOWl%;g5nZ zDL_;ePu$wLg(LT|QQIt4C;KU^TW}?Jt}K6GFm9Yg!uur*+Xb_{nY0g?7iO?_O$^L4 zoo;<_LLJc8j}UdBbCoXCy>v)HR&b;AnHhI!s+z@*9X1Ftw2a_dtSvLKj+TBRsk3fh zarug>_LkJFF)$Vlbv?Dbsp{kGi>|z%C^zR!zi;tD)_uiU@zDArzf~Ph zP4A$i4;q-T7G{n7(5^Nl>seP)N-MGCWG`U?c;g_mmzo558j;^rWQ$My{w4cZ)Cw{5 zYZz&VCgeao;yi&eQdWpYVvc?lAbyHU*rL>c^oX%o^A7eH#t;dh7> z!le^fnTGuwiruT9B2F|X@DJcOOp|W7s{|Dg^hJUVqz`*F|4}hg`SoZFoBbnB7{ty2 z(;Q;@O_lmql%e#Q4^2@f#028i9(N=6N153pdIZZAf_G zqwQVH7JiNiA0bi4^fe2a&Wug9iqE0(g_M-2AE!`=p;t}isztca`VxmcXHwO5qWP8= zx>B%`?X-`r38QcWQ$M9+hs+kSn~i#nNs))|?Bdkg_316aYs4?L_{fk*8pe0aP-9@- z^(iv>U73u_F1s5+g&D>ux>5%S8920(66v?Av) zHdc$|=El2H3_C%TBt{&R+{l|@TgUMuZKX|Ejs3Jc=8P~dlf-xF^#QK!)n#<5?-a^fvX6% zn2ZMsdJnZhRg{vGfi5o}*4s}s%pI6eBeG3Fl{7Th9;~}_X~Np-mzVLdEKzCk7@zaH zI2@iVU5>dn?QzR`^)`Kcjw#=s?Kqaewz!PS5cU_|gHAtcJC*v5%=$biOb#FQH}c+a zd6qjf1&=8N$9LISZiamw%vbL@<=@Wf<-ReW_Qtd;ENo`Vr?L5b0=ra6Wre5?p)lxS zf`A4Zmep45C#QUVYQKDa?(6Ac@5=Uz5&efp3DE2$V6RT2R5Jrs*38@2DAZoW%69NIBQe>;djQH~xcDtRIGGwUNfU4L z>WjcG>YyMRA+2ojnxWT%@6Qjny$pl*|0Zv**#m2c#jxW4oE2P0CqC;-CQ5m%Y6;Mx zVNZ~Q{-Gj{TrJ?MM<<~2LJrLd?1Oo~COSXHlAeP20;;1K)%%0OL)dWBGU)vf&ad{U z1>rC;t!zDk)nfnD@zA>gy6)4d;ReHcZyj{czZrZnFX&L0I8MP;jPJ{69XbE{ZSE}uRZTtXT>RNtkT@(q{sHv9!AQJqLiowDq6RaSl+VQmt-z^QP$)21@v^8S?F`ner@l;V)J zj!0EWB*C#wQ>46-6?+1+FFEb2suRmNwJ$1Y2-G<;OVs57#KKHJ5Jrtt_`lo0940Fh zWT9t@!P2tTVVJTpSU%c4S$%R+?HXMlSzOT1DDV1ABg>oKR^r*jUd}hKjUW7#?Q|Cw zCW}X=^L=rYuMb4P;d+vOi72D1Jw+pfax?)?yNODP4cW|3VXo$wIwp+S! z($mx4HbW`)<*}|M8%CwK0~;y!+`cDG+l}{dcH{WDtb-|509Q^kzipAtQTnw<29Sn% zA&jv7P8|-#VbZ5ptHhrk2PBbHzvm{S!#H5=e>JM8tHdxZ`SZlMN;>NmPTbawL@=NK zFkWRrQKeUS!i-ENHBYHZRVI(AR30)jkG|wFNu|meqoP6svdO+FpzLcyH%r?fi=aq1 zGzf@e3xZ0JRTf!fM`ULjl%0l#rs?i`|K;ACzj30Nmpt6=d;j~NbI&>dS-vlVenGKm zhtK#RUnhPi{QF`N%DUWJ?HCx~-{|hu-g!|H8SJxd_K{0Wu|wMa(j|XG;f&n96+5~v)_C+-Je;_}8vc?CUOFo^r#n@x zUXCU9O@6(zp5;Q;$8LOE>v-*1KPTv1qXmI4k_>RpzUYZZ|Ja2H@R&P&mQ0@3&<4kx zHOEwJpXnmc@(rWMHE4s?2%yD`Zz7<@4A<9Y2c}_U;X)isd?$B0>{KZ{zMx)lPNeoZ zZlhM?`f)#iVm|gR0Pv2dU6bHf?lfU=_Cw8XZw}mCmh}Bda*@nmszORh*K%+Kwy$t& zMRQ}qCpvKPt-A*x{W7me5RGX$or8snw`HmKad%O0M$bgjwaFPbe{EEWwIx=zVQ((= zj?SGTAL+O$o)GA`TNOqkt2_B8Z#vuxIrMS%{<--;Z0YCCk4aJ{+>HWhS(6A3z&+$bV(DnaM*)c;h zjxX3zJV+Rn?2u97qH4M-jh!)({|FXFTHWS!rwxMxW!yo{y;WJ@X z{FOx*VG;x+=zk?10~FR4DN7Uus(Igj%0U103n+Oc{`%zx>$LSU$|@Y+E)h8K^Yyeo z#&Tb6!ad#1*9xqTu}C!!Z9HXRYaXz;m5K)V2C)&T10X{-!epuG0S#~pz;2ns{ujI% z-oJ&tUjaL@ZV{}vk{xK!Fp*flCd2?81~T8kIug;_PM*@L_hyqkEg#;}9gh-vfqi^V zTFSv}EPh4qOhZ}Vb#KD#CY=gqH_7gxERsI`%y6QSg5h-OwMe@XY;!TCP*{Z6pX;IG z9uN=SV55VK+0Y{gIE;xZ9-<8)1)IPFf=B*gFoO`W`5@9SD`if@@dbAS@16Lbb{dgO7k-A5o-WJ+Pe4B}!>>qm=9%F`JP8w&n&oyN}oC#x^-)07J%tM3ak&Q|6 zTv;aANelBZ9?J(ta|90XAtG!UBftpYCWdj&F~UL#;s|4p2$PjP0U*F{$PwE-+WQ@> z?ZLSD2FR?9eW^My z`zAi3QS4TrUlN-v8ybvdo@5+}O$BnB^&0j0cCA*|29Mov3^6M7JpQP8bJswj|QJHcN5RxS+LKYp6A0IG>s-*SatA?;#zSv!1m+ZO)hd1pp zA-)NDl5iQ3fslLB6;7#^G79U}7kw=<^bMI0Py~((g~}_Ab$p+LPJcBb;k=5XVQIc| zF_`_%*(0{JD=OJd$#43%qs1_Jz#7EUk|B?t+Kfyy$EL3aRbBN^S?PfG)K84C0B6BHOyis9YNi|FrXt~xKvE!7#o2A^Q z#FTse=JU3Y!K@*QH|la4@rqP>`w&2ap+dfhHcuUj#x`{?Ci=?ir#esNqw%_d?uuygsTu#LZ9MGEhbr+S+;g!ewwRS2f02Mmhjq zng+X8jOVK7EJW9|3dcM1*Dk=Zt0m36_19H(yhWl~Bm?eIrCk7^` z)NKt;IVBg(y1hdl?YQ57C4Jv0K#+X|A?kd*14)Llx`;T~&3mD`z zaBYu^lHtU5YjHeL7INA^{_y-Xsq)-=?rz>YH9^W_SWi|b33MoAW7=ntWK`qy%)<&D zK<}F>Qs-msjh>0n;~eSEgmc%HuW|cwi{Vmj{X=}A7fVwnQ?#D1buME>-o?e2Wg)QTB=;SW2XGJ57J9y6t2%r;c?$42QxtgSyi(&ef%DV*q7R`P1$Vc( z>rR@&0<*kVODg+)#~}ymbNZzv=1kY}p}54Vt*HA?6HTkJ4G&UV9CAxGDssBL`$$pV z^B|cZ{!>s#W@kig*GV23<3d5-aJ2#cyi&6E z!#?qA#0z(_JV!{Sj1IZ*b~Nr4>zm2L>u1O4?j`)vD>*$&jiw4Se+1g|$Ds@&JoL0W z%5tLPh^CV?yO6zev$R@DM^CN2K6^lGVP5=|mfaM^flPWRnWSkd@**&F0a_s+5FZ!i zXGXVubQqU5U_PXv$~QIEx72*b!V_|)k0z_h_amW*^XXWUz*LQA=ke4}>(55;k&rH}~CzR2LT48-e|WD;jKz;5B5Yh$;IcJqggnhUK> z2~{Q6f#(sQR)X)VF)_I|3FAM`&7E1n5w$ozXbCzZYqh&RuTGL!4Z`crGm}yo<8Xvj zN0YX2L^VI5O7EYSCC~CxF|z)L=_(6~YP+HesClW%tIAJ4@|ol>_5SiwmG6`l^Ikci zQ3gSfD2SkdfWiZ01`!ZMlzA3x(Uu04K_;0&1RH6Y8bJmbA5GKaz31$6PxfhjNvf-E z-#Wv-d+)XPIcv$M#+k`&Ve8&C{aG8RVi-SMl0`{qEeWZW<33`z_1RPoc-3|ZM*Vl} z!J1ZIJIs-U3ZOO7blLJIgFFh63{&Xp+M-;O1V4N2$f*r9)1{Rx`0e}`JK4Jz@9L02 zR$2fB5e}KkS$Z*BKW%5B16!wOiKmv{yG7q!04HoY>|-TOx9Hg~o4ln?pLK;EcpJU5 z_fNaPE(KUwgyHZS1p=8(&=DxZsRhW3V%oE&5sxLN#wh+)o=NFQ9_+emm7i(=cAlPH zMQ-CahW8|+>Fz25g)LO}FVaLBsa<9#u%(q_6H0hBjTg|IYt@}tu-Hv3qlY$MA#Vez zfKGe3HLXA9);nqHaz#!gB|~vOX3Y4re8#&2sqyb?a!P8o*A!fDz~~@1u&@2i#?FzA zqM*K^{)L4$a;XWv+DZV zE|k2VvTujPz<@6(c`Yn4s3O03E+$_br{{+FqDOUELER`ysb^7)|GNA(r%A=M?CM|= zP|jhLB#$xh4ivF_sG%w;1E!GBS~KJsBi-nI$}9p)Qkr z!(-(a;F$HI8oA-W`&h|6GVIy$;f_p^!d9{mZYJvWdivOy#&?+Ir^3i7a8hnMPRtN3 z3B6-X380&P1*VbVx=W_cAMs@V!`M}sL{`(}s+Gk@klhCD!LWN~0;&=~>u%Zd&{)Fa zMAH>T$s2v?0LQ1<&4>2FP2xI??&g#eQ=8QPyw_DvGoO*&e@zYgufx=WatiZiJ^5aV zQ$zez9DvV=)oT*A=HXTw#n?xJiQo-1#G}{b5lH3K+j4O%?c0-FUt*iMXfg{p{34R*!BsdK;N!R-cy@N+UGD)wTGsqdoMk_wJ_q7V~||K9R07 zc+1a)ZkbOGeNO|L73e=FDO6&dgtbc#lh~jSgTj|kevKkGOHW02W$$6W=5EGD9SJ0? zBps2vU%*+&W2Qe|GRpX$9u!fT(3jp+b^GAEzMEeVt2Ek_2h|7OK)V zYLbZgBw-QlEW%}kubo)_3f*s^y%IgvRW{il)veI3#C&A;zk|Godz$>AiRuQM%D=Z< zZOkj(EYF>e*Jm|S;PY9X^g~p5OT>FcpA=naSd9wTl=a}3<`Uy$AKK}B+66+R}y43C34Xo3(W9DLn@w-g#rS@|zcL=#Oa}e*+rCYEr`3hNGUF4WZMj}A4_kw4D5uf4 zU+28Srn_9#b0Jz*dF_(>kBQ!+d?eA->82jkkl^g0g&Pkh8`OIj)!JZeY0e4)47wjS zIfTU_|Kxvd4jNvlT4@TA7tYr&*6SzF^ez|68L89HjpGQHgYS&&~Jr+56PbcL=saL*;VEtHbjxO{gKaYs=>ZB%@i4bG3%bdhO@( zXEtcNU$w#LV1Bhl9xG|IE#A$0VIsqs>fzEAjJjEMw{R94ton%qK1r3HI4-LS#>rSl zRF5RRj!*tXXQI6Datn5>q2guD5GMb>M=|Q&GqHy&xP{H&zn=G^ zt+4PpHh^k(-{76kGN0ndI1)GNM2r>Ttm?&VQ_CWtBQ>~?=^fD&Y|8E7A1ZF z46k%ptY~k3&;T5qU{<$@lk0jTetZ+%5*5##ut`weaTkVVjURPJ&ByQ)I4cu8boVnb zaA&M}){1jjzh50S@cnkBA2D%pgrg`<*fJ-!6!y5J ztI$g?=6=KF^IB{~IuR@O*!dwT;Zot93zH~D51D~keYD8F&=(O`^h>lLY;(oQ(WNeE z^5%xfq#~Bg+*aj84r9EqduTFHA{ zapkd-pOBSK(&=TQ4F$*~6oWt`sDQ;#Krs}P3?fnp2nc9FqkxtOs89@oL4;z4Vg{jr zVkia~i+k@m``nv-&4YQl54CRXd(QWL``h2fb?b0(+G6{-E{yFWfSkojpdsEyP7XMr z8|M}TB#=fJ`9li_;?XvmQP2<&?qEhO!*_t*gX5_ooC@)I=v6%09`A8Vh`$M~2qE}A zu%s6Gegun)XgeEDyli+t`JNq_q%-p5uIM0q=RAUdJL1<7(}>cqnK4A(1o2hr8zu_| zz3~$mz-<4(N%AZCH-=}BzK|cX$mMsxLi59_zrm{ALm~`4!7Pj|fjrs$XBP|w6rug{ z{Vf?yR@U=LZhh+G$*A73Us!;bz9i2<=5%Wcpfv@-{94@Y16k$v5#{r2x6(Ps%v+xCiB(ylEjm^C-YPG4v)fB= z{h`#wDnh@5-^%Fj(l(2>Gmr?Dcw zo57o>W3tj=&@jPh&dtGfhpOr8Wc{59$J27}@Uhvc13QV;#f;is$LtN`G@xt47_ubs zP3X+h)&@6gp~9qviF=y_sb7$%-SotXSYp`V;AqnhaKw|neR3j#JhxDjj7NV89YJqJ zJ)zh>{*R{y>CYl0J|^8NZpUE-W~kYdAN3;^#Rh+VKqxJu+5)=rw{3kEp%VeD-JL&2 zJ5TW7KJUo16Ipd!1|I{s8+osHLZ3!7`EBfupvAhe+K|lP%o9#iNG4o1s3XqrphtFX zJwieQ8iZ;MjWN*DG@&+%=IChi;6R|AEd^9hl#yVbk1&vO3-(58?HOn4Gv z&+#^QDvP_E$DlNQHY3;Um+*f3Q3ZVP>>iE71HC_QSc@-&Rn@p&Ep#Sh(r;df=x1rV zp=;PWVv4?2xxE?})!got+i_zotiLFiOvJv8slDf2*}8q3dFrPl;ABY7NW= zNwlf6Q*V>y%V7^Nvpq>j58h<^|3^|-mpGh9jxTJJxd$TkQ8dKf{3aj#Rh>Ai>-3_1MZyhmgOv*Q0y zqL{M&`{k32IFe*pa~V6!+SJtQ`e2vHV}cyMP*Li8NYd|_r0I*8GWhx1(4S@kdh{f93E(0u|@9}kn*an4Tsr&Ez`$S zT4`iginvXAo1L+9?!)k~5I83*+|WHElb$yJL2+euQGu>1K~o(-doWq@Wz?sS-qE2Q zzCm_rSnsxZYo31|3xd=9peH9L=9EQHXoLE0VAoB;tDm?d_cwDBGd`pbWDR?Np0j9^qeG!9XgDL6 zy$hl&s%_EdUPWc45Z5S)jRlZgg&+CW`u#2~swSDCxpzty-`)dFHi5fsbSxyaOKzi; zj2y=~R$Re^zpRR9qWyF+35yr@P$5hHs8wh2aTybv!eQrM2P>{gI&CS&gdqjauJCb5 zBJ&kDlYswzv(EEwe&lU+r7XOv7tG?a%w`;CC*5%yWY;@~)8!2-t_NsJIRuO{>6c`_ zCD0&#?jj_-gZAs`j{91Zj#RrH%xnARtpGpR$(<5NPu@Rmg+leo;m}pu@38+zp%V{I z{d>eI7h&9KQZQRVF}C4gB8?h4Fe-FBv^8vj^c|~+C3aN?i@C?<-K~2bg2-Q$j$vJ!Pvwv%?z1I2yb=Kg|yrN~PKJ!8?*H9W)%c7Q{XTf<@%c&jocQ;Xe z?jz^@OxK{SeBpvPSu&C2|Z^ zMrG8>u5WZjFXXgH5^9NP%?w{Po>_N96gYaL+iwPH!9>fy4Y`8uV`b>a^z7dBFiU}~ zs`-UO8ERjR?jV)P^DmTGkud$Ssu&MPX@&*`Nz$CL92S%av$93?BcdunQ^BtXFAv*7 z=Cn6}3f_llTFy>;^Ye)*z`_EaWzR2m(Y$-_)bEYgXLXR5NAqXa8{*N&fL)Ycr_n6J z9<+gP=20-XDZg}CE+^=>&AE$XhN+eQq*cqPGZFJUCw+qi=x9U$IB0;69`bdW zA77jSEgW!a!jkAdawxJNMQYsjy>{0wdIajmA~q56vtEMM2+ogpOENjw-i}k6Gl;s~ zl+MLzdET1d?wET+rIjhQC}Q;joz)=8-aQO?>Yw_zW|wx>L)SZp9dzccRs8t$)7mJT zZC2{}mKUCwHT~B1e$T|qF&02ybv`{1T|H07nK-Lj1HJfh(`JWqbFgawJ9~=Nh->L7 zdAn2te6v$pI#szY1X@IGS<*OVukI)|L{n;^-BO)fwI_Bz&=5vx@k_!TOm@BW|*Z&`f8-NcSP<_tu z<2Lm{*PppZxgH1{P9I=UIBA7fjj?# z$(WDk_{JZZf&|}FSQiogO<(|D8*{ofI%2&d*9Qp%K|jLb^@K>hfKBZG`XtfcyXAmA zTcs>%7Zh$w-?8Ds%De5b&#$<5M0EKekV`lMAGgS<)fWkTMadU@0z{YS<4OtQ&}Rfb zitHtJieEVP4?Ir!JZ=o%9RL0BOKQ%i6vEF3vl5JSNcG%|u%9exK{~-zA&8n*g>T zuO4u`Vtjcn#UdSL;xeo)!Rf1%j%}MMSPNb;R^^7JJskts$Zd*YX*$zx6PZck&yi`1 z>fq{i`WA-h5)ULlPLv?yYcd9@>@+VO95y+l^6$1TP87V!JmRw&Xd-`Ql9?BDe!BU& zq-?vNpL*gun9LV(K#~Jd{O!kCZ32eZ_}>_1BMP=I?MZ%Jv0qHhrD5r$2$VuT$5=qC z|9(=_6@hGldEBvinF&R*7nLy(JV*P6FjzpyFJ+Pebg-$!1!!nQzsrM`=BV z0|MbYTu!~;H2p(#ZjtvJbbStpfvzkai2EO%#OyfSb+f}gwCVvn9n1^h1V6T|JB20m zZyWg92EtBLgMeQpB1yC}w?|@jukXM>>n8crv25}Qgo>h#XGRc-3Ad$x;xt8jqEF=O z6n=yGn2d`w{&L9Ny)KB>6HJu?6;mJmpHNjm z!nLpiqzSFK7BNYv`%&E8jH}L_AMA82`9ahtGLmpVWa8GZiq<<9ls`YPX5=RnIhVsL zk^)8`;%Q$@&4m>E=p{MMjnXmNmsA}S&`atf+CtM&U6!oa(U_$YYBE-{l}u>Aof9(Z zEos56nRQwB5Va_>Z>B*R5_-$BIs{!&TV~=Kcl%;_P=196+iFT5+R=;JyPasMB!8Ip zreS1lEbJq1Y9^~+qS>mVb=q;RvE@axYyH_`bNvp*`s&sZ$kwbndccatp1sE2zPD@L zdb07Xdkfq8M+8Vs(rG4)(4ri&qHT*_8#5Byd$ULvCIEya|H<;rF()~Tux`RhY^xrl z)-9M1iQa&S;9c0j$c?-PFQaI4l_xHIVccxP(DZD&q12LXD`c*1I~X52Dg?*a6 zJckege`h)B!vn}&6niMeMJhs{rV)ZUVJ)7AdUVbSX@VUi82?Us=*JJZ{IM`{g=q4y zkW%XnSL2RGbms}x{qg|?^^))^oLPhjeI34!G9pXOKWvk@PMoc91`Xmt%d2aYybD?| z3^f&?gRmYHTZTKYBk)>JpviSj>5XqCErpO((78reZy*qBwgj$e7;S2jA8CeQ-grifA`@+Yy+Mnzs>*8>-f_%DSR)oJp(soYx z$bMzzY;-jq3N5-DeGP&mV_5c7KY`yp-aqJCj=Wa~;vdw8b{qBpLe|tP}7%*@+kMgom|-j6nXJ}t}L*eU}b8-?QK)&xunVV z$p7(NCP8gvXB?kQ%AU$)YEsFhY7R**smdkCxlg51HB(7y3^t1}VgRv&5Ez6J5+GR~ zFd)f*Y+Nh?n|+5d24fc4Y{u+}Wemn_GB%5_%_5;z_j}*#&THB6L4D|c-S5-;f6M=; zis+)Mo$39ue`dp~!p-mCq{@)G@B`AjW@Tgj8F-dc-A z$gIb;W+r-5Y~O(!1cK~qen$w!R{}0KaT%3d)(TYI!g@7fgP)S_a`gJrE@%cJt(48K z61y=z?(%VA#SX5&E~Xxb&$%*|o<|<@g0H5FHp;v5nMqk?XDavfhlSOo+wSjXd4v%+ zqXV1N1IvC4(%*rmco^`3DXE=?)slqw{8mY`A2S}wI*xBt5a-+aSZ*iK2CVRhvMf3- zniJgY|ow+L*$Q!DZ_ zY$#wg4T4ag<{Aic^TJniA=EqsKJi?xhoT~`FOB_-ul`hO7Z5ZL5nC*-E&?c3qw&jD z3lMFqun>HVWlvCdoH|E@)T%UsbQm^$_vZZ2iR>E0+Cg2cjs&QuuT8r4fl_MIiHZ9Bqz2)b^_iY)p0mRh%_zA!ft+oIUnF~1#(iCbG z*rLZwFvsY^i{FbzA;?CyqJK@28FFP?$sIu5-QHuZhO9@r_}EEOmC)cpX)$*yeBRKb zF^upK{HRllQGFz*sS|{TVzLnKqPk54b3Bp&NpHh`rna(><%y1^;UNVAoF9K)?g z9oZ9Y1cyf*34C@Np8EGYMr!4B^^+q9)Vf$Nj-7qm^K9*c<1E4S&N}S=seJn`Tc7CO z9!{o=a5vR;B%6n;Rv3tw=Z7p9fbQN#90-9)tsmOLV&pGWFeY}ixhJq|Xd7<0Rg zQ6Bu}=$9N=@_FNN9ee)yl8~GZ?nw?>4tAoY5RPQFkj6~Bn)G;u6(^%bOWs^sLj$3B zR!J3;-Qy6-m$Qh$CoFXvU-QCUJw3_VV&eSI66kB;0BuU>ggw_*Pd5GcNXZa1ZM;m)UDt<1T4#cs<*$x zQq{y!O(!(md5QWB=4r%31FdwXvJgM092?6oXZ6bbv?wPJpFh;9zinaLvj@SRn_7Fu zPp4j)BiosZnOixt)OB4q>POJC?0Y0Ha)uUSzfq;ALmWIRq51a%&q!6qv@zb2*hldD zjEw9uI=0PuARH%OJz7;L3;d0)%v9DWee8(WuqNNjKB)(SV2@PiUF@_6R-Ys#?ot{H zERtrWHlZ5{Mg#XG+>r5bH$iSpv1iNeV31vl-kJMvAJ6OLMJmPqd#Tpc61j7lZov8J z&fZXy=H6Q(aAqAQS+&cF4`C>l1*n$X&z`kKm3HV3;>u{M{2AvbQ4`&0BBx;spt4}q z=v)7Nu>ywi&cM&91-gxEs=Agcm41asCDs@-Cv2w zNE9H%5k<)nSg+rwU52_HPvc8!W50JxRv59Z(^d41GmrO0`hc2VdW#{9n2DI7jEHIL zac~=w=X7)(xY4P5&yDcO5si}UFH1dVrv$GqQd9M6<_#gt;u`k6*k%Q8e38TJ3mbyK zj7=ZToZ_vX!)fcTW7K*)(ZAiDJNY!(fQ3Wr{kMpH(6xYJpl65fKGOI?5MDR+9>LHA zjqERY`N6$4%yqWdN6OmQ>)V(fgPxiK;%aO>>uu`!+xz_Dt-5XqzM-kz;;o@ZZL^!W zN;Orl4o#(pqvo+!I&H}eFZ_$k|GA*#fMf2c^R~fpQ(NVp)@VCbYuKW^qpm~Q*VIG& zp(#u^FH&W-GFQ`wm};f6l;wM6%HhOxR2Vl%WnrS@Z#KuxzmR9U$75n6AAK+!g~Au_ zuasCbi-?z*e(MEWFJb-ugD#ZPywplWr6?8h{O82G2F??dUQxtR_jdkW;4+8}n|$LX zG?6*IWFn&JN7%zazT}ZDZUR45I7O4>y2<~TuCl16)+=0_Kg-xmGd<8vPZ>ix-kSR03M?vyo;Ir*!GX}u!2l}TxZ{6KjQ9aM`AM&)eS>d;Zmk-m%GD| zN)SJ?U%Mi|D{v2}T7)Y%ehvPAQ4rw%}|0Wl7~@gJcsMD8Q%5$52BDC@kLIX(p# zj_jnBi>`D0(i+5KquSkNh;^Xx9^U2$1+kq~mUValY<}WLcE=Wgcd_+0$m_tyGDL9A zyYd+TtJo^PAJQcjzl~f1B z9$}BNg}PA8XMu>G+gyS}jzl3FKg`G`!Fyis=mvKu8P5RH4~`q@TnLfo+P3-kh&T=Y zbRSf6a)5C|fNN7BK!qp6M*kmGBOK!wX?PNmicCzTHv^&u1_#!xisuWPa}LWGBkO}R zjM{hU%rd0tC@1UiyR|ECZ-cP@HoJVz1RUb1CX9S1b0`$ZsjDoVP&WQsP~=S15_kbTbwi>+jsgKllsg_f4Z{9e6c}g- z0>c%R0+t9-e{$6?b%PfV6Cp4piVyVLKjo@I*RJpngI{VCqhD=? zvLA^nsBjtAS~%hl)U=GT?_26J!{6>Z&?R=9Oe*{sc}?R<>S7zzwK(^TE;i^3O(JTc4+NHA8=)4^^fTXL+pdKhu=|y*4kj5Pys-id0Ku zi7Dw0z-PIY8JaE!7W=DLr0(p@glSZmb1(XpH6>0H*CXdvUR)r1W$7sjIMXkdtQ%J+ z=xCm%ZVxo_-@?S0qPNPAD@`S{*qBkg%J|`N!!%jBr>}(e;Gb(PxnsiH zdz;tuJMhwjXJ064FR$Ky-6RdZ+#+SMxLVQL*EfLHx|hry4k9gdw;6{)R@K+rW_v@H zn?3`lfBf=pPH?rNXq`n?;|QS^vwdimpig~^l-m2PpqRffALsZ4q}e$#BAk5L~CX+WXvBBi|Cx+u%G4>vEYzrFE77;QxG$2A`;n>(AYzh(f)obe^ z{;fOM;cG3;qtC*fa|&}s8nrIslVgNLu)<4$k899Pe|+!={zVhv8tqYuMKVKKR#NaWyIV61}7_%Gqx z+2))rzusNn2B4uPhE7%Ci%*?bN>J&nbk%@5dA@_)P4aMmeF26U^gK< z16B6C_gLPIegOHO_MWgh|D~Nxcue}E*55{vt^h;)=tH%wS|h&87i;VRZEL=uAnMUP z;{!u2lYULnrhieI3)ND+ZZh0Fp;+1pYNQp3n+2yIcCC6i9dW*fgu8e?@Rk1bOTsp9 zYG0VfeX>$7ZqfGm_}<7@z?jjqrKe5!DJ z$kR);^C7WG70U3v7a_KFpl{7TvHSmf0^C68<+1w@}vRC#+brjWtJqUz*K zTTPisDHG}VkSU0B-4IYlo)^UjV|-$SL+_kfMM;EFSYTuak(IA;+htndmy@J<3b2nxOYWZeK&j_2eNsuo&X?Xgw)ooH ziJfP)&x?*>piFlk#j6Hg9f`C(duCaDVw5&S48gtifyP>oK18ja3q;+9YA>^nP|At# z7Qb-^Kaa%CN@>(@3Dz6)81L~$JIeQa=iF-+?nN`MSv&Dr4zI#HCmT`tq*Lk&-o~cy%d9Q=~0_Hf&;i`o`@v!6Z5Ad^QCDDmPwSvOy%mQh6Q^=s1B@wP6dRSs*wki3{W z8F@G0#w^n6C2jhFByiaSg0eG+?oyjmyRI4Yqbp%UTmkT9{ zea(#Mnkem2uaaf2#qLN#Qu_hFuIln$dlTq`^a->jIMj@9cb+XBo|*uYB1v`BR;wt5Pa!HPsPtNf9MQ8jMs7xSceGpNCRM7_;;}_S>Ty*v z=?Ns9oY~~L2GVj~vc!}Zr;3vd4)wg&@bJOy;f(XJ4OW|ET;kyL}nBeEoP8e859FD&#_bn0V9G8GJ~iL z#XJ*=Dk$cA&)Mgk-shIl9{xa6)P;NQxqCi)f8Q*);dDDwOM}e}j2;T-lOBdUc~x?l z9^c|`oJ^;$CdDLdC1wy9KK{zTIHo^B4b(?Q1~oB*(ZzTy;d(tlNDFPg z1>c{$8tI9FhSFLFT}Nj_(z0F|NbFsJYCZXoG~Vj^@?|Eu6APxVTKdBG+D`PyXp_6r@a-(S*~;j&b2Ay4!KB3+R9h?2uk!39 z2$|Zul0mA&2)q^=PM3ubNSxS4ttGR3V2e0~zV_B0~q z$+J(19X&X1i;=I^F1{d4h3FE5-KWCp1|5@o8BP?+l;AvhQ2I})>{^vn;9tktdF)fE zknN*rHO~vG5vh468|yCL8>C^W6dw3f_!)uxk+!7g&aD&|t@7T4TR$;)7G1T+dgEJ0 zi*q&^UrbHN-{6JmZ%w)Nh+Paz!SOF{4tFN?uBNBil#J-+_#(+5S^^Rt8lLRmNtz}V zo`FUjAX`Z{mPSKk_BIS&z9X{{Y06rFdu~D%TDTqRX$*X}>XVKmz0Nrxc^l1s?c?D) z-s0J4_6@Nn=))5I=cCR{0_6YG#l>%P&fU+WiMBhZ8qT~lAl3?rt-3H{3yIJ4!fwau zl}m}Ou7&$oFKwFs784$?X1Go=rPd`mIu@&8(-uW%T>%wN=6?_ftC3vOuViu4shf6W(yrsfY6I%z#%!_%DQ*_)u^|0B7{a#fB=U5nM!CZDJ{}1 z$#^Ai)!3!{#U*Kpq^AhiRYg9M%YefMWqpMDun#K;-w|*VRmIx;1HmRra2LWPMt1Rw z+c6Zbv#{aO1j>Sf%B)sJ!6|lKC@W)ohZ>ip;Bw73Fy4Zg4*7; z$s;Vx18-rtt$kBEHqpA$Z^FYl+cA!PaH8Vb28=y@JjYxL}G z7PYNBt$~tzhQRCb`B%0J0xii{~UyUr`;50zi2yUMjf~miFZ1= zLirKFuayzV&OwUF-pdnA3Ip*8XX1lXX!T)Dhg|%Wz2j3tny$U-AT)Z#!GTG8u=GEc zR7&$1I7$>$y2KA@A`i&_7~PdTREvCs$P`Dg$$^v9-B_N5Lv=vJO-_iOZ9Kqtj7+~e_&t#9pEwUBj zidH!I>R;pr0b#}RUe=bB165#`L~iuS&MJ!zUWcyt#tqwRkH;2bTcK9hMJ9fM;hCZ= zJr`s+wJMf}ko}&QrARI8ohmZ1Yd=`_uh6PoL5~*E$@_J{P2y0G2a_>(Xg*3=MX6O* zI_TCyI+;!A)WSSAB^+S94IBKb$k)#8L-9+_d>UBm8&ktDO8)}Z+o~;+xl~59j1Km# zG_JCx#+GfRugBbsC}Zo3_MW-w6727MbGW7;M*_|>WWD0nxEV>t;F_ zSfD1XNaAdd&Xg-abDLFs%pt#z(V!nd)(Opt0~wzOIqcu#^CwPSYoOEXW&r{$Ax8b$ zOT*Boos7WJt{Ugm^ZkV}jrta~{8-#wXNCHmtIUrxIo?*r&MeG&K1#@;+3p6=;+|hHUYLT*55RJ%#=nNX^(%I&&DO`IKle8E$fQ8sfi*ZoH>mM*x4 zx1FA2v!3}EmmsPVRR64ar$u!4bGGR3=H8!p)nDJi*odD2u{~oeQ6bU&23A@Cq%t_N ziP5B}nCfgt?~raoQ)Cpp^pCx7fr2~#V!FJZ+Q_mn{xr|~uvIfP|ATAZcm1|iJGHwW z8)m@RAixNbF<_IkFu?)~gvlm|G=L2vizL#3u`QB`0t_Zcfj}T6g!-OyyZ5$hYieJ+ ztE=nY-*>+6I~6I-qK-OL`WHp}`NjN>~%tuq71#28vUV+n2@e{T`BeiwEPMmR9?+lyv(+UH3No1ZVs*Kjg# z|GG=b?v_Jb9m%GFtyjdjcEzOPV70+v#eH$x`i>IEC5QHJ!0;O|8Z?O0PiHP58(Od@~eziM-t=mq%pSf+WTtTN>Xh9{pkb>Udcyjc-m5iI~ z3(1AY0lV0sF&tCTd@ZeR=SBm$s7Yej-c10qA^EVq!1-_RVcRgg#%w@Yj<&FU^lRkW z%Sd`VHg$mE0qZZqkLXYg0H_ko70GCJpSDEmm;rQ@I|jYvq^SW%A6v)WZQ3x)R>{fz zLo4wpoy|RzUEieE(^=VKujdInfywFhmRr!CDiUTqcPxReN3v<0jCI6RJJL!HBq#GR zqV^MqpxUjuUSeZ9(-vJ;H;4~wyxTgx*O&b^IwfHCh${>?1Rg6hsl_Fu)uSHn=pzkp zqE1)5z>!`Dx`>&KOg5q#X;!_{v`x}I5a1Z_l)pQB7El$S62tK>c0Af3rBOI6-7oej z3M&Ap&TD;mb@C)E;04LcuY7UFW_wuC=)Mm9=@n9r3Ws5B*x;QO7;a{r(5%XpCn3ER zJ^6pY{CnxbYrr@W7&o1-2w>)hdO6R}OIfkBca_AJ!(tFZ%ol9@*}3F^4#_M8jfqW_d(QcqS%p1{26}S;lnU4Pch9^D z6V(rVZVe?lyBiOcIWega(*}w2=#Vg%5q{*Mc%1UDs^O0aqQC#9GUg5Q#H3tJp+tUO zSAj9Hnr5HocU00Jc66>Y=AoI$(3nK5JQHI+dRxzovni!>~TPbs)@2)jqeoXCu z;-VO$rAto%WOEExU*zd#h?qrF%-g1dP$17AGohXLkPsUsOp+ z(&e$o631QBly{uJfs)4-{u`~lF19rcPQ~);`v57(iR!amQ$PS20O>@qf3Yw7Y1ZRkx8KM89yjJ4TA;g+s=M1(TDoa zijsV)!^Uh1?uYEW#vH}-Qn5^SRUjl+TkDjH{|FB6b%EY?zf4a6>obHI7xI@!yGR4N z7k))vQA_SkGLQOxB#sLCIk2iO`4>UYDT;x!I32>?{GC^5`dfnM6Te`U630B~kV}4H za63Nv$OPo2%!(KhNMW^ND{n(arJYNmT8cXx`sry&MS9cbUXaC-$QM%jS12+Cy<&5_w zMCYBKPGIaPl>BaQ^ReBOv;Sjr(~T*k9C|XiJ?SvF`h`8JssPiFoNKMeiXiT0h`h|S z84Xw7izY`1%bvAp2T_*cY(62*N9@ddZWrJ?ilbq)I*KE2vXS`5Ht}ZH72r;`4P?ZX zWdxNCLtPQTFQ=juIvnL{R`#(`?LbLKOSa>q7k_(iQ{YPqpe6;3p#aUH_MgH(g57C+ z-UBeA6`coJtT4bc0mx@62jUJa?k7a@3DIu?r@}!jg~HzkLgTKAmAMF|N|=z4kq6h5 zjdAc8Vv8>j04DFm52myZfNkv)s~~_%4F~B=5#x-PK4ii00RH6lSDYH1u+I(cZ;tld z2*OQw-*NvkFMLni)WOgz*$sK~nu12nvU}S*E45 zK{zb%OWvGUlz=6{t2v^>{@{uw=TT@v1z(VEu)=?MZ|BzP3@Z6+ht#1~X zZEGL04s8LmtMi(lKy~eZEe#FNyc#A{>Nah)O-tQPHN%X5iA@DBH_7-j^V_B-giMv) zG9-_-b0ujLL~1S=c+^AJ@>|9#ji{w^vF;p9`7hkQKqMo=*3#U~nxa=|H7)K18!2ss zMNKBhcf&T=Gi7PlT}#o86cY?s)5SVl5~fG4Wy9{?UJtEL?j^4GP=W7segMjYbqhoW z*P#Y`Fkm{BIpK$dV{(gn_z^olOqknK2_MPfFK3?$cg016Q2B5HLBb=@kiu<=O#BJ> z0^#Avo@4sV-LEJIyPsgMu-nmLFmVtTACNHNUxJmRZbu8}L}Uv74kC420ek2+dq~W) zXZkP-pBBaoqI?ChpkhJ02nJBXg9=B7#ApVi#7ByRZ-GxTf=saI0)>U7>{nc_!}b}E z2kCmyks5DftK0^9R!a98A)8vj>)Pq!r>>i!U4*?mWKv>){1n3`4=H8lEg>m~gQ_2L9 zM>9=stPfIi;!7rs(|XP{1ERyYS7I<*gSo`2Y*T0n9&l3Q?B?bmO^!NNu|wUqw>hkzAi)UrZYRE3Cy46ROatL6#qg((iwf&#*6v1RDZZw9h_=4RynG${Jw&uG=^ir7{+(4K7Z=Jb(KQAig zC*?c2KO`@>Z|H)5bep=EZ0K}qMHX;a8+HD9L@9A*#D`4L{A42CxEdW=4Rdz*Tnb%G z$j~b$iTqrXUN3T(BRxIVObxAQr#wkzrgC=D)wYZuqvQHjjR}cpL7#kkM=mRR(_oqff7PwdWgMPfJEzO@?e6n!b@%=?%cVDV#;dhMwEKLWZJOrN&J_ zgYI_TD_QM&M5dY-pA{3S_0EH>rdjEE8zx^*lTDLxMB3=H^fn;Q#)q9v?TF&p=3a(V z^=}sLCCzkf)2UxkVFH!D(+hH#5tS>^kkyrT6W=V5v%=6|sC~n`4;n#h4@{JL_Y~)bY0~$3PmgQiD`; zUM{S`rP22OV7V|+>NfTro!FwMqMm4R$Q)LwaM#Ix(~%j#aQm2k?D93sz4OwfVrn&} z(&|@^O&7Lvv*aArn*ZP%g*Oy z%$od9OH4i*I%dV*BjieP)6sP)TA>M$I9oa%lOK?ZQ?kqf70b$VcV1KnXGLo82ULvw zZzH}Gsm-h*in!`hLNvH4$(54JhE-JZ8ITk?ck}c_-NBfl5c{AX8ZFhqu@>O8G^Wi%*QA9iBJrxr*(=eNw5 zPbVQmzKr(;ZVsmrd|X&SB4CCYh16JF!S2sx+Lc`H#`3ey!k>4*y90JAe_Rk#*) zFTsX<>BJ-0kdm|3OPDB2(6u@l5<*?{{fnpBQhSRicPZQIocJM5vpf-31E{V*p%lkMOVxm@7 zTX2~M$41!R__x9p_t)OpkS^C!vxc^K&60K-kj9WDIUke!2P7s^b`GM51n0)eT#yCf z(}RRB``byGp1#&&>}LivH~bf9(gWUc)=?LZh#{SjbAe5K+qa&e1xqjP3ixUpYImfO zl&5p<-3Qq-u}XfKEtEz;Cw4ifLO2gB=lq4A9dF^JT-5)~w)FMn#J9HPA4f@29;D_! zWA9D+%GaiyAW=6+dMafVYCh~GLnWqj0w1~{@8Kf~@)y*o>0ODdm-5wXomUKxuFtiE zBqw_HSEa0UC)SbyWpvg%+#F&UkI#|EHBsuk4aQwJqvtK^40%p-M%}fMqPEV4{Fn4{ ze~Kcz;y8*zX>GDUq_$FPr7BhVJ5u>2RjK3$H>+f2SwH~=6hsiz1?2r+gi#USARvlB zcnUItsE9lq9)mnbc_Sdq3@`)p>hAmKoO4GvyH)uuH8j)H-S_sr=X}pOpA&d1p&H9c z*<2n{edhbc^&_uV4z*ng?r?un$7X&-MW(jLtR^6mi2gFTfebYKM46QA_?WZc)sB5=MvbNpYt?Ta|qJx#o!<}0l&wwos zQ2&P|-8*#f#=u0`rlq-Isj0!({-|f;o)y%S?lwz1NPN1HuDU<}$B);l z2krWFLH)(eU!Al6eGXd2lWf%!da++#$pua)1D~#`pD$6tZNHvm2C^#a1N$~23W81E zsSd<=IGi|}3=T(!2@5C))*N~#518o#T!tMG+y-`1*kw7u=K|o7SP`CaXr};DY$aT% z9u-D%ZiHh_Fr=80stOLFZtv5-NK)#64B-iRF5+?Gt+9?t5@6 ze-N@|B1{-}8_(TgqWDCdiJ194Wlv3v-5TZYH>$Kf%i3AhK?Q7+yvMLS>hPV$D*nL2 z<>Pwl#%}CJ_s*VKZ-vMbafmVDg%O0fFW&bRvqukTja(hD5z`R^Mhfa5{pvlN{j@u- z87JE9I{N?ujxI;Q5N}qn%-l@|!+_oN9fVu}O#~MWgy<)jPyq#FV+zDKd5D(415|)r z-abxBk1M=(2IT|F;Tvg1HuO2+lDosO=9GagJy~l7bAqQ#^)hD`^$XX_iWVY*bNPxw z-8ybm_p{ZYG1ud{@kcYTsy~vsr!6+BvYo#9u~w_K4cbLn-@dAH&G?Ng)!UMtnWwIizDFm1`W_{F2Ea< z`8C+p*X-d1g%WwqL1pO59FVLxWY_|6itguY*#&iA)Ykz8gN3}2W#17f3t%Is>nr?H zt21GcT_ilhlB#i2yTV~8lxYQ%q53CIps{T>jP-ra!cE$=ZOVq7-mfQ`{pp0ui$g1KpL1GwW7n0q&!%5s3y7E?Cm z8vC~T8(x3IIYycJIi;q}2Vedi;Je$ESwgiM>S?O=@X`>5)%P#f0Cu@+!R{s6$nkPM^EJ5?oIQ&TB8eVDVaJ zy4aW*Fb(#u3{JWDG3<0ou$D>b8Cd``sw?BWBunYJviNaFbVBT5?NEG<-(#Aal&J+{ z@#)CIm?3gAFrrIlo&F(-hNBthLPiL!&eR+zgUxToexIPvoTYY6Zptc6YofM-{ENq7 zTJN50#yXM{G+aHRbmXRXaeD0aeN6)!Dd)N?eXAweH?{|h?(AqQ-fWk~R>DT@4_?(= zdq&wtae4zAubz5PHgb37c8Qs@;p)3<^hx(nl@8LHw(`o4WTa-9^VGr0w$&~@d!x0{ z$9aSdH@3;HUj2H@q^de1ulH`VZtb`Wd_uCbMt2^jPwJiEUPH$=_}4l4-fkS7=Ic}M zC>_28(P_|c!Cmvjykd3{DQfiN=B9<16_g0w*@BvuSL-62G$(J%Mjrx_gs5Y?K{pRR zyU!RjLx;)dvKTBmBr3Kqs4`ECddSmmc!o?9fjh?dNcbSEjZevpHuFdZ4Z;2aF0RAD4+RAIrTQeiTA9`4vUaPS@M z_eO@yPU`8kd|Fb-6PrnHp=@A*z&=v+cWR6<-ubsJ zq+UtaD1E1-gyvNrOsTPSAwU6nS-KxiM0?9Z+%eyEU3| z*?jk;WIj4Xw5iF4q(^=J#Bx~A?&Z5~W)GgMlS{(VA|6833DvYYuH+A=UIr=6CMT4S z7Drsp)lib3|MK`cQAtLUeIcaA5m#Msl^D{Pl%i?-agFtyZa+6t^Dnt8GApsl_nIp; zYK<^QLRNn2(&CBWbcp&;|MU{mp`7qk7qje%x*0o1Dn%LD&t`v^p}nQdc5DZ|r_Id1 zgVWf}f+QcSBQdWPnvmb2FLwC0#u@^X_%R5LsNn92Uo*|4pDyyuRfS*pE2a$*WD`)R>yHA%E8mavik@LXj3l*5lFY;IOb*ntvI4YiBzKd^ zYoGmnBj@PKL%iTIf#3OU05!~3VO*Xhe>g|9r*$a)DWr`i0qfkQC;76@X>~M~w)zuR z{y+-vAq)DUAVR_nj0CjdyaDKl12Hnmy@%3jL=Sxyf$-|tt&dK#q}ZVgSH+WGl5fs! zjdnFKi>nOqWvk>?m8jZHO>F5Dplj_@f&*NwFu(g48zNBE?r3 zf8&ksCqpN3nu7)MtG4$fP*4M|7U(k8H{Kxee$UPi@sD2XOqGk{OQ)CZR$=f@iUP(j zYoxQP@#ztg-ef$f;Z}djzajr*d^PvX3viwxDKX21;-E3!7}ES8`$f=uJaO?(sEQpp zjR#A_Ty(0P^5aRRoad#K1uJV+E$GY?yyvguM(6RAu-t;&#rhO%aM5U-8SlD;u;(kQ z*H^>foHrhvd5$tgCfTmY3CW~`F3{SXNbGAm3@ab_PC{7Rs|NaALW~z^Z$xf(=p#@^ z#BZ*;4d(~M-3*-@yTx+SI9FxQJ8pruhrpqMJDkk7Oz&9u1JoQJ*{>|f6t9yR6eMZM|6j8WPwI}kS0^_)POIX43t4?(FDK3oJsX7Vy z{5|n|JiYEcL)BqK6}r69r~@LSzJkVGJ|M+S(vSwwhc}SE+1?cEZY{{R-E+_Ac#Jf3 z9tar!UEo8*&dD`gn?;%-FjpbrF?T;4}1^-uG z=$3o`1v0exJnnQRIo?gsgbc-e(4Mx7jy;F4?F+&NpSQHIMD}XMia62| z4b+)`2YJIrPMPqg?>wwiQH)8ELNUA2C(apUxR zM*rULL+Cjm*dM%_Iv^8hb2h=sXq5g`5Ubv0vn+Lhkg=lnL1h;< zRi|_UOO@+$SE$m7ScHGP@)ESd51mb#FHR$ycX#qD{^ zqr{{;dVSXQCC;^1JaWxaiC4rEh+;CBns{lA6b3#M@O8OdSBI$0kwL4wv5o;h-Z69f zE-6$uUS=$xNNDoEv@?X zSfi2({loS)-P%dhSD~$ulZJD}DWT6SIax;k(#qg0R2vCV=P&2Psr7MryLU2RVbUDl zvQV0XH(il6qI@`eLI|%q4*-Ac(m+p+G?+ma&MtgRp1{!w@5^-)&N8~zH6oF?3s?X) z8Eixm52W;ZAt|~8jVp7`h+NQ+5{GKE-N{7TYX;&f%Bm0?Ha%g_fddP%!Pp-^(O#fA zO*dqu4G|L^_@R3GE4Aqo+q*V-`RP^&AZAlZ%=VSwVke#nZ3de_Jx9#mCX#I1hG5m#~RYC`GLgnv-Q9#a_Y#Y&wT!jDoz|)Xuw7|*G#->g2Zf`M6^h?_mbSR+) z#=b;TvSr1JR*EoYd;RYYph{-tkBkZisOec@y4gioEBHn8E7)M`LEk=|((JE|k7LX8 z*Zbp|)i)E29UHBf#B}Z1&ghGs-Zp8yu}{}vYHnEsTmHg~Pdb?OVexZ=IIdOQvRq$j z9<81vyA^5E5P^TQ+y%?nP}1FL^hlv2GdZ_7vt2;Gn&HpZ5BMjhW;E+29a;K7NS`pfdR9WZhp;n>0pw65j(INSPU&YUOs~=2xtz zC3X%A-xGfHrc!tpkOk7fzh>dvL?B6QIPB0}-ldq)DJ!UU`CE$42o0~ zVJgE~U&1&QI*8h261Me80qNIJh@eX%KtdLx3IM_4F-Dj!p;Qg#$3Sce4*?4BLnL%K z17in_5N4ka2N0XqC9o%nPlAzV{u%9xY!=5j0%7qPGsVT|$pQaD8`WeBg2PA?nwPV~ z;5uT9JI=(_4iqQcBHO$paHS$}ZLw@8hQ)gh>~P>H*!*cl;SL9u5MM&kFH1A_IcJ}O z+8%zZz}_UVvKRadBGn3pVhmK^0HPa#tG2ib%;l@V2-kQyOm5)zvYst+!hbEi3pE;x z#5gLvFATJUc;V zdi9U!?p6KTFTMJ$UR5XimX_nmwDTxxaul&p29@9cf{-shZu>pR$}-9ad+_(!Hz@xng7iJ9@4wJ{XT zMff~%tj9NAWP29K{kEqffw)ctFG&Xy@g;~LovRnT zUlL~Mp!1RBI08(jocoRqZ?Q>B!E<^b{=m56l0+j;p*-8YH6jW|)Q4m!&&TK=@b@C^ z3Wv~>ACU;!7+ogMWA!@=dfP_>a9XV$teZ#XSxGrqKYKMxJJa8_$R5YLD?WO?J5Ws@dwzuzRu(22k(J-zCT9;GB-umh-gTSNH^pX8n_+y zNNDhpU5Lg7+Jdvf1ukk4;dt`gstFrKI0Qa)TvD;lmHr=&A8ALjayoFe4$>P*fbNWc@K;wvrp! zCq=He?yN!)T+V+{{8M{oy|uhHxtEf@ghIFZ zlk@^+eVLQ_++%$eOgrwC%_I~)aseYOf3uJEi05-I-9o0+OT=BTmSRR_D?D+yUee& z4;pu3&>yGzmQdfmK!bX?X}x`1FL^Vei;Jh6Wy3!ARdQ?!#|vfxxdVirt(bU1`So3X zJ#5i>Y#}Doi5bPj=?_prB&o@Mc0kaH_tAvoXBZ>=jEsHb=&P5RzDeUet<+M-7kyYq1=aLM^Y*6^P&g!4)c|juK_!l4e&C~VXrYXlO;EU!(*A&K7jI4NAK!j zw0-O9WL5#+H-&lA5XSSJK3b#O0Dr%glqzs)BVIo#I_lrmk?tHe>AlZ+Ps7`rr}J%m zft=1qN*bQN)ueGsT=uDg)qwdK?}?@G!bMKr1RD8iqu&nk&Ytkao$6n#B7Hk4lbdkr zIs`K3UpsUf7t|M0N3Fpl6M?59<4auH3!P?9!VRT&9LM2_S%Lq#QP64)P|?d%ig{&) zF;3v`mreQGc+m$!+gb1JtcN~_h`^?-BjzF1`URHX8j^OQAw_re3{7f-P5G<14!V`v z=vSR_H>ODKkr|%fNR6Qa~; z*>L7!I!X&}HevtRWKYN1T$kk$Hpym}qcwQ?&L?mhT1RbU%xND|hIy0CcTA)yJ>+uAC>-nc(RAeM z!eZP2sz_jgoiKUJ%0ibBtD|-33MbTWn&cH=%Q%9&PhLF+We4O9verA+xOzIZt@pQy zoR4Z(WBGZ7^Xp^7MyxEO8JPQ$$zR7;7l6+PNUs#TT~I|*jH|>8x;qwu{mp)D&+Imj zIj6tAfvMb`55iP9;x4aZkX=gd^}Oh{-FW<2P~{UiGg!`4l!6pz^@n6E=h)2fet&(kDSWl?6V^PEh~ z=c$8n+f{yO#_VkjgZ3~&JqLB}(~O=XawNogkcw|3`S1wGRyK;)hyZ0pw+!RppiWnT7Z{oGINj0z|xlKi{6kd2us@s(hQDHLRR33;qJc zsX-G!m_mooI{IEj1~D!~M;?`7tLZ(HimRGgau0+=6;+iRefu!iHk@|E0#ifmvsdl|rpdf0lu@fQ{V=2}_ zKkf98$C*Ie!WNfh%l3O+j>)@cSvBWwHyqD{Xm(v>_j>rDTv9M#t7$?PGrO4Do|3^( z)ESrq9zxBX5s}6>uunduT7KLWpgDB;wCNCqiqO5i&Zp>VUfUL@QA=_z%``X?dtU}0 zIl8y&t$acwTAM1A+i#RJ5~4m0cttH!AX4h?JW6Tme_5{5ps2DdtSIA5%*@2GlA8QW z{!FDRmCE1z&r+3C%E1cCxGQdqAmW0^AQ})58b?4yS#4+#5oD9qsG#gyH?p>XG&Y+o zP18+p@7;UPy*c+`byxN4ch5cd+_QdPgZeB*%?@#{9XGMoU?riGq@QCWr(`J&pCt5B zCCf@?c^4>&sDTR)35_TqSIU|9`!2f60-33pDZc%6YDtmPzzC&k@Ku8G8NkskI z_-6ot=9WDR66gmstGgR{_g)3zKe86t^#sO>*%}^os-3kR%v)L1g?KIFfrYDvTt}6` zg!s5AJ$sB!l~l2sg6ZlG87p^TE)uiae3SWhp;DH!`YJK@fdf%c^_|Yq)YLR>jIxJs zz!JYER-==Y(wJ96QPH)D6_6J85M$;3`G=^{zVNW8F_o-tU+VoRXIxZDqRX3dBCN!v zI}@Agz*sGviY$oVH`^C}i#3Ntp6S6z^c@M%sl4b+$h{*IQ^${|9Ln_m_t?nueOFQg zXYvEFg|WK7n}!bGfm0zi=V4vO#Z{7j@VYVRvakC@Q}P39-S^TH6OM446-V?2*TCz4 zjY?jX6qY==yN2Gl%@z(MJiYG5VC9CHoA)fdil|Nuu()HI@jho0Gwr8JV22^3D88ZZ zqG}6`>CBkMB*E@>l=}`ESX=Ol8ezi1&N^-U>A1^t)I^eUBu9%(HkZAkQ5CE>ZlWh$ zNlTb5Zn5oZZd=}KWMchq7WG)lLiP%R$g8C|+(+yOa~zXZB)FGd){)5bitUC9pMs^$ zsd=%iQBTQ@eBuj9m_VbJ9KMjiP-1t4p~7F0R1nMh*IW`t1og-mBsZjz0^#fzgnfoQ zkb4yr@QRfc??56eJT zIwYnZvbqLLPILer`QH#D<3@}0?n;B@UC)?0(CTFKb&WPO?ps4jQH@GwPxx@T4k*lOJXx{hsHz&|Aj_NH3u`vT9K0aGtJ$SEPb=FCL_Tm z6XXm~KrrM@AU_xs3=`Y>N#-w70^i~*CN`d=F1Z=x3yreLc`rB1NBK|F$-z$wf}ge^ z`2weZU^2#%=xwk#QB;mhOVSXGBOW0YW2A{xu@#UfG6n7V9crLd@Ead4@x)Ou5mD?`&A*=eFL;DpjX8XAl*{z(sc%77Rb6~pU^ux&_%BY&@HkQQbB*!hTRw+Rn;5cHz;e>; ztP`5)KHMz@te-~VHs~4TU})l+CG>kDn$tj9Vsay3saz3XG8+EosRLll!+At6o<4bL z@Cn0AtT``Dfrlv|P1&4np2lsrFECQt?v%_gI7@D2Zz^)kCT z%$T)>P3WR+R5qcTG;?51n}+H5#1#Kvp+9$ttEcPWaSBI;YO`#U#X4Jq(XcT0|Nk8i%@`VzSiUi zTvNVD+JqW8|BbXumW@PG8^y{uWQ4R*Y{xfp=xVkD|4O?q63X;atziKFrC_>2-grui z2>uZxQiEInWI7pkqa*ubLU<{#ytw<3^H|#p2?e);$jYS*l5wQ;blUpejLTyel=ac#<`R7ES{g52WhJS$*c64~*2@$Y_&R z=SG*T8Po5TtoyPvt76AjYai>TNK0N`Bii85H^BTO!`&{7-c)r-j*}OrIG~l zE*poJ7+Et7MC#FlYIJ6gJE_1tMCru9ia&Uay(8$|-}A-3Zp!ESEU-GcNaxLnXy3m5 zDEQil6QSMYhyzt_Var1l#Gi4TO}WssHp@Dts^VGYVp$F{ox$gk#(EHb^4K}MC0dQ`G1@1fmgnT-nXIJ{dap*ylf#wgIP2b~VWH`W1 zE)S0fUib7rmE-E7mE8<|S05vDuq~R5{$oPj8#@)JBi)CVhjvfl1j)JVOAp~>ZyV&D z$%=Y?@1`p$m7dSFh5euDDtl@wOXFqR)AP{J{ounq&6`zIUDf5EFjF(#+9J|`0ty&* z0*#SHWJw4S5;h462_P6iKoSK6BM2gk0R)r;L6kKpgiXjowtLSy=jvEBb)Rx`?z#7T z-|zb^FSU}1#fdPyFMhb5)X!HWG*`v=@R#OX7#j|-dSha{GNf=f>DhD~BXl??l6CCn zUQ}nb{earGtsa|REM4g;e+T0RfW(H-xE9QOu1JgW~z6P zrBi6wF#N2Gljeq-VS`i~wt1AB7aMq_D=p3NB2`vW*aOU07AO>cRJ`afya{2WG`0L& zcS^c2t{y`}S!gbgc?9PaZK5>ZOkQbmkw~iwVaD^sfClNqF=~l~-8m5Mg)Sfj z%0;@WD+`34)E8jm6^&a6DE$6>axZGkhr<`RlFIDEBp>7*tuc_3y!a@Awoqy5y5OTo z`W{p_0&|)m_r*rcr!*agPw|Fys4TV21v65x2akb)Sc1f3RHxvbe9%+p<4}8upBb@X z8N~Cap)LWUmT07`Ex+#jrx{S~V_;Xpw*Gl7@BrS* zgr*~Z(o@tT_df7;Z~6lkVV;g#`2B-X2KdAtq*_5e`FK(4-Ru6=ol*k^cZRVk6Pc3% z_+pbT4I+HThZ<|ql#s59o0+1aF*OVD46V)8X7>`=9JALELCj z!V+VV2N{nOo}dOLbX_*at^HQhz0bK=@a4AOUvp1#j$i~M0q#+j>o&3!QPaCP6AzyI8X?9dzL*Aq_NyAlbJPoSwrSH&AA| z;8vNJJY#~!9E>Ah;Zha*s6Y!qU^|LY7@Wx`WGNhK3lZ)LhjkU$`>ziSER=q@yvfH5 zqO>tQl8LM2l&bDCTY=?zisc>DoJUan;?SrVjBVUrq~F-6Piju-SVb zQ*J)vWDtixTCNtcu{K4Iyo+P!|Hq~nA$=6cY_Vl@;^rPoo$0OCh%ube0paDoQX|9_ zFK}%VM7I__Nkf1oG~PQVw2F!y@q~&-G-P8dBoR z5xMx9%=)-pdtT})!h^w5@wV@(Qk{jEd6FeSv8M0x20LB0yehKFn-lA#1D$@z?jfM8}s)fc@OkX5;~-FH+Zf&Y4hr zKb%N{W5IK;q8fz+rBJOM=G7weH3*|;V&`knyNg~*KZ>3o3{HnT))RD~BHPz`77h)8 zC(?s}CtmBDSC8RT0*k$kYM)8O3?O$EQ^g zikm^61@;z!7gC;I|2jE;VNMl8X8V6YU$YVxk_h;T-DH^y_}OoSc&3<;2M8Z$fr1eO z#ed}mj|(`4kssLiL(UBd`i}FnIS6Ci4UahJc0%ZL9Iy>ALb>ql*?Oue9Ae{Z#E*82F-PMgk7p{rBT^ch+2lutvT zy>07hvcM^2z7hB}>fOHj>7_t7yZ`Sbb6|Yf8L5)Gnv!kx3tLF1=`t`~W z6N>s+t3q?DOL)PDY(*`n$&wos{C1YCHE($`uU$S1#`E*#3-7XxWyILRBIdj)vbj3GAop-Cs3#CYSKejS!1Wd<0_ir^_4r@Ic1t>LT?Ia3H=^k zufN5b`$))=;QBaPp)>UOkpy8kJ%-54w`JgVvxf*z; z4gdcQ!b0ZY7YuxdAo9>-wkaRWTRdc$@#~r|_yCjZg7GK+<-5w7qDr!`EG-kQ(bF9< z5B9^nO~gF(M9jR;518mMrdtt3K`9UsQJ_Ucc93Qf1VL0*5h=k!QDhYmM7sn*un;K$ z3y{5#eJiNtW}eKPlLc)Xvjs)f&E=e%`JL}_n2W-zd53t z*f~6F8=g~G>gOtSftj_F8K-lPZv@m-_){Auw8vph(Ut6e$eWPTm;iOd;!iDVpV_sb z$Z)r+o%?E)#Dw)vDr9zu&`3+Fkv zD=*L?(|$VuOU&;z<}@!eC!&M583&VL2-1r=D-xrnM~ zl+38df79T|x4Kc}0{k)Tv1}P71F+v@az!?ih!0>O?r|ca)3~w&ew9{Z-=e;~F)JMS zS;uqrJn6G}3@~zj&T)~kU*{7(@o($*t#Gso{`k|l4^Lxc^`ET^UjJX@{{3kX_dWU_ zqyI1YpHG#-1*;V<{}zQKVqp=>IGz?e_&mCU8GjdXY!x5zyLg++&IlD^MV*Ox5%@BW zslss2vT&fxD4ZmkCG81}D^ zP9qpcbr!@9l_EZxXn84k>W3K>hwnCV+6l@Y&@KGvnEQ0Xte=-~iEo){*g7}KEJH&KUVBcM=q5sA9a@%9d<|B^0&ZGa zlNp+Anz*!umws~%ADGj+9dl>cGKZ63C$VC2)tffv%b0}zdKLeL;{S|^tD;mIV zD7$An$e@lUlxD;K-D1n#S>Y}FhA-JjH09(Mldx|W4sw$~fiHYz1IIyp$?5eOpwYFm zG2~8LIb#PhMHZt?-9UQE>`j!NvfNI#+&wvKE5JT@tiiauf)0>SN?!z$`N$B&{A=D3 zuzoXm-KX`L57^1cq&RB6@&f(kPump370N=MvezkuL^Kaph7kD<`*!O7e$no_-z^=Q zLAss_t@78xgx{kF85p-%cYJGbB?hrPHJIY!Zk&%wxgKOeQFO?^^c_hKzN|Z58Jk8E zyi&6VR7Tnpct5rduL@lO4?XVmgkA}#S2O|XD&J+~DGRuI;b@hznH3S$#>C&p&qk?U zb|k0!kBR#isjVzBD6~EN?Q(34==7xoUTMJIQ^l`R962g zON;JE_21vEp!3y5Iz)ji9LcF%JM*xr+`?>YRq8n+_*_lD;ohXFrDA|8F*j;QYxTgU z?zOIAVdg@Ot({g-BKG7AAq4Y>Fk!tyoMzpZp)CSvNiaI=ANXi9sAE~nm^P3MVP(fR zCO5EE{WDl+j0&|eMX{0#q9~g~8091DsfB=LzkyiHNKbGfGQ?RA_ifu|cpusZ zj%#UoIZKY2op<|)9)G%XviJ;Tn_e?O(rajEFhIl*5*pdWzEkxuvsEFTKN6j*m9yYs z;`$V{N9WKs5n9Exu`&y{B8l;km3Y>1u@_F&K#%)OT9Wyl=LYiew2|poKg^N1`@A}g z=R{D;OY@N~ritLMyy!-!?Ul+#++M?=*P=DDR_nc>l-)zpLZekV))2pOe02e9Z7|-a z-T%ak3!R&`X`mur={jR7O{Nn~R2@roF*Y{)!^oJ2j^4OH>h~Ll{(%t;EUp%tVP6|b zs6Y?d4DMQ`p&`Rzschub#Or-?X#Y#zbrFV?vB5(F^NA%B)@zCMLA2%NQ3G;WdusH7 z`{eTZJy`=tjrslWp8Cp4`^r_uJN$LcCmMl>@6omI#iBd5yT|1EZNS^0PE|EJiC)ze zeRnCc-IDHkIW#D}aPKdc1kc12-!>N9N=uSSom+fObnMo_&JZ9%cvl+xiY# zgb0}$+&97v2jAn3eGCYf(w%-Xm8|;!39CZeu%LD^aiGh?FDW%-Ue7<@kvr3WykcS^gvd!>c;I0Kr0_|iEPik!!7aT+;Oc;gpBBl z4$FtPu4W)-&gEww>??}nVClUU#(E<`tnQsE_EuP@E7Tyd+_3H7iYsLre}xqX%BT`L z%6M=cy%o#Us&_h9EqazFjl#cpF88OXvLlWwn5x~%x|QUYq|Bd?s^rJyFNl@eU0qRm zhzkTnULqhM0y5+50HX2+M^@x1@)CIqico^X`=x*^0s{gQ7=&SDV1~K(oIdBK&&8w| zm{T)-`!s#}bbmh}5o@p!@_QL8(t>}z!mmHU?K0Ad?A=Um{;5*LVhXIS3&S4hh?rxn zKdh<5y9)=?NnRU+y=BdDCh9x^4gXSQo2dKr(?=@ktXItSuCMx)g-E! z_3P-i-<&jco%IABY@Qmd4+H6(aa)yV3jfQBw;A!xV-f1AA>9Cg+^Ud^3#jLTCK@?F zQ4i@2q>#L7%+@X>A%A_p!Xft;xhIfL_+sBn*je*^$7a1OSV#VgC{+q?%XI~G1?MS> zHr&Ezh;MjUA}WaBMYif8i1Aj=zOI!u#>j~Uc#WCoD67@*v7g9j*!Z9q-Muu+ssrpY zA&)``)Yb{cyH@wBUz?UVYA%*yb_Q=ee{sfz-pB9&Xi~0i(?pAtr1vRJx)?U5VchER z@u3f+?@zI+DByluqV0b#Luoi8)ggEf=?xR(sSQx1VcD14yGOQgl2sXyOB;XA3F@aA zMqu?fiD#RlBxmB;Xi6xFs(_5Ib20mD`3!+x&W^W7ptu^n%H;Aun-EU_EX~5s{x*y{ zPcPVhj7z(77jt6Oo_$Q|?GbpIKujL%?B`70mE$Jv6DoMoO#oL$!~xBAUH66&#D zK3{ z0Zt3eM^3u%Av@f^BSvn_3Srk8z;Ku4C16G3NMZ$;dDB(0AJ9dU2PJMuPAfG_oYfOH>7HH!|2T-D%gfii~BbsgbY}mY8B~j@h$zxG9 z?ACjw<{Fzi?NT(g@K{56X%PwUW_@?LD`19=&u*?He4+^ubt3VgOS*Z8|3O==4Q%=TJCEPK5{-#-9p)fK6B*WG^!RQeYd>(*0m zIBj`>VMb{14bHx{st+4m4!&G`Wsucf$aFmO_Q~9r5qtP59HEQVX~!>>MTwNu z``*m<#@WMiE>AGN?5|5Jv4lt3pI*6_aAwu^U3N>y4?_pBy3WXcniaY;=Q}TU4$Uug z1Qr?-7R3nD>FzFjJ(RWaWZJ8sGy%oBoPGb}k#km_RR)g|C`7lCP$PL$$gDm~U`(SgeAcYZ*2h6x)1l*x?WjXXpcP&g zJP`%l>9sAPbE!~AoVzh+@t^aSg@hDzN`c@t2Jwp#qOM03DzqPiKOjd?kOWyMf>SAQ zl~9H9#7@Z=z7+Z`&T$zZBSa>`o|8XHL_%|{FxiEBD)J7(0tgh5j}qrU$gag9E+kvG z$osO$3Xw2M*T_feu+0T7ps#A9tA{R@c3Yb|>~eEuwUr5BX3WHesr(?>JjB6q(6RmEl8YX&cxLH!5tH$$CwOVRs>~;ow1r zxmDl0uDR_j54drs*f|+nO7hcpo<>*G{ES_>JT|mL-q!w98GTH(Z5J{y!P+u1@a%^9119ovDZUm1=cpCxA>{3!87)Axo&Bakx;a;+U%H zf1_e1K9AI?V#&9M)=W@|`i`$7_qEA|$~oNa zsCe#(_+0r~-54MA+Z8J}Q7>47;MEsN`!e_H5c)K zh}5d=;CF3Gp#WWq)TqNBgxH0Y0mXeUCC)a921i|J(S(`ZP|*lO#D7HLZs;IYH5aQv z%(2rZPvXHG<#JI9u@ONi zxCd?03ui$5h8U)i%ZqEktLoS%#a+HS2YdMV=qbvr=xhj&vKw7CD}Uvi7jk=HrsAmu zX4^OGpU=0Lo7!FPYL>t}ut|ECsQKJ3SYN*Qh|Px0{NOjS%6@%51@y!GPUi$34y+lc z9AF-vmw8tb;>6O#x@3{a(k5p?Zz)(8=7}SyYp7 z5-L-RlVBSm%5UlJ97BP3fJX-Vhr#l0rCj7kX;J>h*|JCD^lXU97_{w7j5Q=U!^6A6 zZ#^uEl=uAm=(7S?^0t%c;nGlw9jDgQuXWO(AHSlP+CtLet1;sGm^W8yTCVp-K2Tn0 zK}yTM7x_7|jAVy#@E-e|kY3@p-E~%Bxa$E86Dm`jbtD_&Qb)zopX>EE7&1L$LoR+?`vtYB;~6P;?u+E z)n@keG{9~X_*8&zBjSDHuZjKsUmPyr6M>(NB<4c3f^eH%;58g&{W~v=qMoKd!OKqc zF?Bk%pC}>mCamci=y8Jd!@P;Yj{i`@YRdyNzZn(AiROveO;`Q9E|N89Rf+ajH> zZhlp}WNetUl;1a2_hC7=Jox#LJbk~W(#+cK_oEn){l?3#lrFzYyV+VaaHn*Eb*1DE z(|7q2J_bSYR@995XpZJtE9O5){SZPgHE6HL4NZ$BtEhlECB6ZH3ntN__{0e@asbu^ZsQSG#L;pCstS`&R-;;n8r_54tEGHZv^qNe(_o30K`H*=fzKwdg_JsVzrM#;J1y{T5-z$ump zTS6bGyGTeSn@r&}>Kf0vVa7bh^Y%Sf)E%23&6`pGadd$)NoirOE*kX--RJ`3tvsxb z5lNQwZ;>RgzZNjzz~n<54t(>-%r3joE-d|p6GA4&)1xS6(RXlBIG_P|IT@^KGfuh% z{~Q#ewlNN?VB_4bYif0^w2BJ_w_x3T6QBI5CP~k^0{}by6zPH9dVmq6G%XM9c||U) zU=T|7FYLO9MCG_aMG9MYv5}W3jW&r31lw7p0n68rOU3nhRjH7!?vSO!J8a~tB$j-J zt)SCq8tUSJl?G40t#>%s%1*Q}+MsA|N?XCHF3F4#KwHFwxmOi4{(Wp!0C*niw7)KU z*zVt|k`^3~z^tV&VIe;|Kfm&MT#mk7qyW8q53KSQ&IaP@Dak5uG>;c*R}UQdl)d*L zBo#163lzP`F&SibGpp#EfHNK*K>MBqr+u`HYLgeW@VByCTb462*|^Bo<_HhR2*DhJ zUd$u1{EM|I!?7;@;+)1dXSImaOkUINe5<_nFaPlH0*RLi=hQ~(7 z=1fzjIV!INo{9;NY~iR~|12%j)v4u0E&*9umZ(Ii*=hqy2nL}UozYcFB(O=?pm7n$ zNGy?M(f%3nKsZeqjq4v8%gxo@(B|Z2WG3IxWnV{~TYk5p#_$?H1i$=u^riEcBQ=*p zVosfpiHK0Cqtx-yJmL$*P0+R>^0N5g)3M=U;b#=8RLVkPfDu0f@P4 z4ajZCKuo+0Xqz1|^$=qYvvYS5QyjS*QD$A~?8A4w)WJ-m%Qa`XY;5B&A;kD##|lQL zr`HO0oD{Hbxmn(}I1Pd*1#6Z-OiwlkXX5O24MwY5RtV{i-ho1W3iV2|AWeRCv&9To}gWU(H6CsdVw?SszR1o;Ljt z!&fo^Dslwi3GZ%pEMJ7<)3?40G|ECW@XmYWisJ@u`NgnaOj{VF7fTnat)4UJ`FHZ2 zXnZr!PEx7MkFFkgs69{9bo6u=gT7#b4nJ@Dn{9Ew0gH!`gc51|kYrE%5BtRy8^={0 zKga{9i4a0T&@cK+g#aPMC*lW*N=W^J{*a(j>7Fb54wRVo)iYsXCiZ-5aC-HH=-^b*{87-d20!c* z+1Gw)U4KrC?fms(?|HWK+tw9kDMN9Z`TtN#Q4( zH-4A1!$0}yuU@=vt^9uGV)GaM+_YsryAJW@wH$Iz&i(pK__B3tV_Pp`UG}g zBEI$!6in;jhRg^y4uR=0{s8WZ`IlLLgfg;+Mo|=T-5$m8?GHrm`$2Qg*Z{hu5ftIU2O{~ugBbANhac&RA4C5S&`lDvpr3k-g8_H` z~*i|8--t;KJr1wg7Upf6Grw`boF6Cs`4SBOG;U6jmJ%{NIFk z+aU#y1K(Mf$3bJZTiLZ-RtNVT+x=D#aR-v;u;n04?l^pN&N56z@O7YVamAr`#eI6q zGz*yxJ*g=%p2hTM!U4a}@Aa-FYPU2LeIA&+A+FMuNUz zFdPa7m{24f4*CNu6XqC};UXN5#cv4FD9g~S#IYJ7j$Ml4fP;uIPi!g}IW96-Kp|H7GDWeKDzgmHFFI6_no7Iw8-rA~G%cXMO%oR(;Vx_!U+1jqc z747Wq*0%QRwf$OcZ*0Gcwx6!_^RC_(h7xtGd=r`P!(Xt7I27O{GeT0Thf`h&Q!$7wQj!C81>$Drq zdYw$f6jXfvE!?~_KR0{%4Sf0O3vXPSxpa2s z!uhvnuUwnEvADS8SzCYP3x*;L!waGe7cKGtNCMA+L0}FGp9B~%mXmk^%TtOhi!v_? zf+R~KFJgI85=245q9dGOxhPlXY@wlqQu;NI^<7AVtJ`=(8QP7I#K@G%G;Ji->;IBLn8VEcbHT*zXIzq## z(;->}loLRT{#hfN$>q1}#Iy!=Q&06A=cwcMhi=G&Z_oKA+DS11-|GFPrMnBu^Vi?L z`uB@}J9qxvg^O>_Ub%Yn&hpBmFwOF^ngCxiE8F|cP8Zr12*C&+aa@B1DHKNVTFwL^ z*dTlupSuuj$4C?3^(AA5kjpvQ}|HO@aHs0mRaFW-ZS5S=Ea{=6g5RrgyQ~v?G@Z?WpYDrZE$aHWo~pJI4?tQY;ST? zaA9L*FGOW_X=7zaa$$KdL}g=dWMxoca&2=wJTF3NbaPN;azk%zaBps9Zge0xFGFu^ zZ*p@WF)u@JY;|pJb09V`GA~eaWn^h%bZ>GXGCn>pMrmwxWpXb@Y+-a|L}g=dWMwZ% zWoc*ZePvu+L9*{)2~Hrv-Q7Jn!QBRj;KAM9g9Hx{G`J7$Zi7o;a1ELu!67(rlHI+# zckS)n`#!u6Tl1TqKCRVq`c(g`=Cq|N881HvtAe@xJ6B6G4jy(MRwZLQb5?CubvF}N zFGq7$Sv%u*=BygOyxPhp*5;goXduJY<>3!#R-%8V};`jkLv%%PZt@ z%t;w6)r3%ODHBY>n(8kU)*2PeGg1}(G~1-11yM%W3K>#N74`8sIYqK$IWP$1bP_#u z4D8Zl21i%K@8+o^b~?_-b(F;n$a%r z-LNi$MWR&B$0t7}Rwjcil8LQl-1mD1ynZM0pP#xP)BCC!=WGx6C$oJY*LhpNw&-=; zCNEExAEN5k)ZFYm54azQdGhr=E*3eR5^&&eS`$4C$0qbSkjA)oD&LuS+q#u~C+yxl zCwLeE4SqN+He7d(+}kYf^g8ZgfK+p8+8&awKlUWs&Ev89o+e;av7@$`f(H!mCOGwY zc@&PHjvgKpvzQrqu6BQBFI?%g@ZAsOAFugiyAMUh5I>yR1T6TsgiH$iS%n!d5Hs@d z+&|PDJ3LhjUXMYJ^^9@c2h*X+c5~mYFS#f5Rf*hYbB7zht5{rcyu2ySe)#6j$ntd4 zXVEbj8$W1V;K4LUs;#R#y}cOY}`ZjC{ce)8Vg`TVp!OXz2!ge!6b z^0700H#QQ(oJ`ztwSp0Fw@)a2E;!M5MxZ3TyESg5Z_jJ5)Kq%?JOHf91kT@;k$L|tBmW(-^-r=YH!nA<5*g=T z%AlDkUK;8iID-KW!`bo4)qSRDdV$r?;<=fSq7TU;#AU=0^*!2Q~{mGzFF5B@*bJSN}* zSrn%%%Z+gWK-~~wPIeru zpBcC6tCG(%vdg+9D^=RT8$C|AY<{wi-jGDc348V&<-t$l_|<-w{i9r(w}7%T$FBFY zQ`Yu|hs3v+bbw8rcAkUvCAmfbTPGG^G{eD;;y+29 z+{h|r0PX>G1u1YpbHr%IK(U({Jg!+?h5QF)#rqgzk*RzAtQdaGdQiVA#(6*3Z9fDi9+XM5%z z^6-@m?>TA6%deAP1+TI6;hMUsK0U+eLG?s76nh~NjQ0Y!HkgP^YY64+eZLCTD~v+X zG!N~^>JwZ*cMtJ1 zW+#H9?OQy-(ng!_R&=CoM<)rE-tapyzJ~WD>3pW#i?N{tPsSA*$44P9@j)h@s{lYR zc_G6%9fL}dKjgoS=Zw=5tUwVLk4uNSlZVG3(WgqE9>Va2pdR~&V3R3QqL#udfkMWLiho#ipTds(2c@4>t3o=B5G`Z~-7LTvwk5EF+9Uq? zu+PxvMAoF^gtw~Nue9XwsAKX9xYTaxOh1}_jQ(gf!pM-pkRzp1SGqIfzW>5a(&)#R#-zs3GYoiq#tPUB(%8oe$7puR&R?8UoMT4!I-AOB zJ8Lr9gt~on3*jE!t(83Fa>s5-YK1X0y{Kznl{7H@FG<2?Lg1w_UkrC)Rso*ah!RqucLtid}BWSWv#X4|Y837b4d-cXTlw4IvY%lVT&kv&1rWDd)c z{17%`5(D;+9>tktvSZ3;2Bxg0JZGxX>8$Uq*aR_D@My>At=33^gg~4X2cRaM&o%yL zeRW7pstc~mMD;CJD9heU7E3(K{zg7M?sF4sEK^GFn!raNS1Elu{p$T%9s(bVuP}(3 z(G$=K-ow0~BzlZZGiBGN<_XOjupqJ{E{v5LB#wO1MQA-eJ3HiOPV zL2Iu449jnp<`)y+eb`CZci8VtNCt1g`=%mMel$o)Oi4s>Z#J>ETDNF6`A_*z`%d4| z@==$(yrLPSdPdDdOOlFJFg%SmO~@gTCf=yWlk_UFo@vjOLx`Wzi|;1m)#NL`ks1v? zZhAM<{U2eKC=Dos5YcodJJY2sS21tJ+s_;k_`_v}zQ^!!>Fko$)VqJ0+Cu_24Vt$*Ho(y{%=aA`>0a2GHWOJ`K zr?;~AKptM6ASF}Jx})BCk5+Pw!fPtmMBK^nG<%bD+v-g9#x}BIyCV@lOrl2TR0SVI zq#~>$S#k^fDMu-HCx2W{IYT&$F_Jg(Y?Q=`D&2UzX=nQE$Ic|fG=p%(bqz<=nJ9Kk zS@V8LN}jZLpL&+ORuq)P#t+$HJ;X;i`ccl*IptIgAVKwKSO zwV&<6O^+&YZDPxgxl?scid!8;p+)Q5`QuT$NzAd#KbX}=O;UbXhUv=dDmU^sxiu=X zD(iQaXDt~{J*J{}#XiO!Yi)!0=B(yh+Ru+h`jdUy##%27cs0YSmO2RxKsrJ-G)Cho z+*NJKt8Xu^FHx`Vzm$J}FacTq__9PgpIn*o9pz}bF}vBY?eR9e1g-6M@j>yygSW_D zP%se96~niy)DqIt)7|qUqckHXgZBL+S|NvJa}k8YM^gWY_MxcXsCVo^>E7w-$>Ia&uHTq_gKR? z_jtnu&qU)S?_~2A{x7Xlf>WK-BGWw(3CO^V?9Aw_((Ke6aBg8!bYR%9GvG6D%qK?$i1G-xDqWELe&; zyNWw_>anq~k^TBY!Az(Ng+f`_44^2gy(<)tbs^(`rdMNq%;9%$C=4a<*X5*%1W22>KRfIyZ#{aMkD6;zt{$=On`dy!jmAR?8 zti6Q;6zmm)!p7z*mJY5CE|w0C(13rfJ{4yxcPP+H#{0Vk!cbyWGk0-tb2c^q1tI?# zW`9()6h9Ug{u2WJi=jW_-~U*)=i&ZKseT$mhKWJ7 zx@PL9+m)*-n@V+^i?h@24#PGFCl{Zvq0!ZALeNp5DGwg_KTn{ z5-K7hA}TsE5)v{xCK@_AIvVEhALuXoD;yl?8z~8hphQ4LLqkKw_+JErgoucYh>V7U zf`$dng!KyQK+|LXA{+u}J}4336aON7GD;|s(LwY6`u>rgx&fGoaCoq0a4-}ASWFl= zOqi#Bm^>(h&tZNM)bpF*5#V5-!2q5kA|a!|0AOL^{xTLC00)oo?04h~04xj~94tKS zv*&P72i64!77i00fIyDLE~fhIr7?w5&?}CF+~?Re;*>pVQyZK(CMQ(R!Kc)3xYQH# zYE4~wxg}_m^6PkTHOyT5rZ*93LXeR0@IyaJN)^;=LV$DxXItm}Gus#DZehuV4dB_G zOAGh#l%mFgx!o&XX{~o2?^BDL2Is&1#UKGOe^_cyaHB z;kBHuwRco{S?kEs{w*f7Jy0$Y5TI>i;{-Qks8e`XBQAPgs6h0-(bEW)l-20ys>UN-F-I?)%yz4OwqluS6mS;Wb9R zuk4Y}*AWcV(bTAVpt1^k5nY^y`Z*kF2DTbc3TW66?(NlP~9=&KU23b-Ir_0{~o&edh4{V0EKy)T1t;6MhVVN!n3A3HFj4A1% z^aa?(q|84QuE6RE0L$@!*OlPE5jP$My2yW&ybE_w64@bj7vN!Ng2dfOuV(yqV}C_& zJ*xh+xPU+d|KjpjplO{+xgXyX;G^GS$M2to!-cZ-U*$NC?+xDPAL0G+`fant?^1qc z@T5J9Yh#Uy4K&{c>uw5iH2=CL&cN3Donw4Y`ab$6s=F=Fp_mjJ!Ta0&9bNqE68?|X z{w{?V{^U2u^9U#S&8&f=<53M@-)GhssO<~o8YK87f*j{2AQexG%}zL09){WH;fA&g z<#iV0QEfc`qNnz+i`Ccawt&`C-{Lv@o&A4U*#D^J|JRAj`d6h#iP-s+>Ef?T_;SE{ z;~6{*hl_P4mH!)0P30cm_TeiHz9#mT+(dO$t+VtJu9mv1u=&m`yOR;(3yj|# z0PlNS9jMPhw>VWK8tXAWTEzcsv~w%;vNF-`r*iLRjDi9$l13Hk9q=ebyixJkHP8Rs zM8Rj|kT?p&0a85^6eII6A_)0D_*GGtuq}&ccWE>*+cTSPNs6INAA4J_oVZ*cXc1YW zShmNLo_PYQGZasX0FGs9N}}h~$o$M*x5X&5`CMr4MrgTpG5#^4x{e@{GKD&kzwvM| zSty*GB&&+Kq*1Cdh@vTW4smMR5%+MIl3iwhMZxKXCT z%MHcvwNDH)mQ6`QHlNwEL~QJ@h>YSs#!8=eyuK1hc)0YNOua&JYl;{c+hi55qLg_8 zV7yezv3Hz)9NE8;*?O6$GygyXhi{Q)DUG2b)2{LJT6wjRA=lK$uWY&DA+#D)a2j4? zMd5Bir6F^XApCOCUHBSfv~{kqQe2`lrei#M*sipnk_n-g03qVGjair>eJ+3fRo&U; zLntneX6h!R>^HBxNb=lZe!RB6m)>n~hV@HDAD5z^0Pm+6hmQ_f2u2ThPM6vp^PC>$ z$%#VZMX=r%k77HF^3Jzr$2`mRovKeI%JQS4>-E^RV1M9%8Af&6G?zKfC^|a*8H3ED4@t1b4Ce|~X|4LCm|azDb*hX3c6!A-g@qb( z8Jb{<`1)`|r*Tg~S!JdH@3O0Olo|YiV;tU{7wMJr(nxV+3cr4St;}FLNQTrRW8>q} zE6&9S)g#&`fH%(J7_xV`M7+XhTx3-pNuKZY5Zn4MIXa%`+;e9;#ri6luW_ z2t=c}SJL0}a;6w^8752XQ({qnAx<2!+Fkwn)4`R(s0*Y}3-x_Uef2z(fAzXP*$SMS zlXPCh_rBRZuxJtD16nb@pL;}mcDX)dTN}sF)Gc*<9f`=ZWs?duod#OS#s0X9n^!>j zO1Pfa8oK5w_h_i{niRGWpH|ma$h+|SMaf$hn~yUp51xART$N>0U=-PRj56cH2AOEL z&dWu_EI~zNjYx!XrOr70ip=UWCEg@%D>h8Jox+roraW3{< z#%W5&<0HSf$gfkGjp(E2%6hHG3t4)>Z2rz83`x?Ik#pD(!5_j;WpZ_Os@t1#!iu*E zqiU@P_|DLu3H(ryGJn;&Rtie$o$!gaOeyfj)VpVxQn}~gzrMkUcKXVO1}Z8pF*n9VbL2$*H&qZ zl;pE1+Dz({UVo~3VC@P6T|#%!*hML!NvVCI`=dVOu;Su7!N#}d*pao@QDjC(vfD#+ zk@z{=jMbIznv+ysyJd~!%QD4ya13;pf%2ab2KVM!#O4)uUfVg@Ie3ufyJ0EglYLBh z0}?CYvcBjyhI|dbJbr0n9J|KX4MQn2%KZX8d8cd0q{3f>?SMuliMzt-HZ^x!yTGwV z8&Es^us@eXLfr1Y7oINFVdsPJk(XnDn=k@PCnvUmDO0(mV^2y7@X{a_FIvyIIg$rG ze}kBcJTst{qImGddl|@&DzwXX!;fRpgs&`s3?Wf*3M7OWwm|$09$VmIodww7f9zoj zkx8MNQLVJORa{aV%2cqOq9R3NS%o)>^Yz(7oJ;ph9~nt^>D>(UH9^=cTdzXp{J%cS z1HW`K6ZFT1FTH#MAU2BtzFSdwb4SS)65Hi!YQ7>1RS|ps{BH`WVJvQreeR<@t@9B` znJ{MUZ(mAIdP0j098ZWrnK(VT!ezCyWxf>9!0OC$p_d!@DwD_*O_*2_qZ|6z>|j?R z-s;wH1fuQ;S*0_I;iEsbFRP;H8~PHr2v$d3An=n{YA}<}C^5Fe&ccz!Mq!9m7{QAQ zM3C(s-&JO1vSFY3A;c@F2|c4#_IcbAno`lHGV=_8;lUD523u2SdlZuAdoznwm2C3$ z8_hOnYg7X_6xxp0&ST+wCNJyB?!`Gg-xr5DX-L^Fmj7cxV5E{^*HBJlJ^)U6HZ{HF zw*=GqTRJLp5X5X9q>6}r0vPKA(r%**>1aPwL!`)w>3L2@VhXtoopp=8Qxu*Y<54eA zUFl&&Xlb~})wImB*aJF|6&>LFHpp^r5JHAzuP5cKhPow#bLB69xswKrF`Q~+$S`{ z=)^EeWy==|Uy{RTQ`R-#01}V}a5*KF8pN&`k=xDO?;7+y($eJ@L#O-VVxmItDeGNM;=GjwJ*MC z?KsE&&0OuAXt&+KcmvfIGn7X2@IFljeRpL?@COA!S)R1gJJ39W=Bvi&i zu(!!7USHHQTfcg_{Xj+{!EYdx+5V91>b0e*#zP)t{Q*dtfg;ksrU%`0HN-tofu8`} zJ5PW}!FKn@>VyF67`Zg$oI4x{(wG ztF|b~<(jMY!-_{~+&QFv9K)0+h(}O_q5TerEyHvVaq(|**4DffH3zl>5fM-r==M?jm>b0jyo348hNUYGy*Kp5ylqS-TuO%|neiuo;*716zwu+1n9j*Orx5cG&--95O7tH~* zs3&ex%`-S{79H9MJ_@31pQJXs^(bPP)bupe45HFZVZ+}-MWJ)3)$xvk*!p8xX>#h> zXmJh~Q<47wec3lGNt9j0jiv;>x)&K2dpl$0;ly2UywR9)m?R$msSoDOssF7^%4a2p zD(GOy?n@u;;Zi<$*}cD)@)&s?Ug_O$9bu99Ec;Muv#CRKY$Gp=eG-wUT?E0;UNArJx6uJ>c_= zN44)Ri_V7?f6Q&4rb(-(FSuQ&x6_RRV7}H2h=3CpxEEoFobl}d8SJfD*1cESqG@oB zvp!}bd!-?{4c3Xsmr@jZ^b&${6aAU~?Rb^7cfr->*}Q&36uq4yWVxP|0CCJ2&)st} zD*etZc4Fjl?v~B80Y`OF8erM?U^@He%8QqE)oD*%ccaJ_2t7Ip>-C}}QSA)+OBoYg zkLyH!<$D&`+rhMeo#4U8q{1gaEfd#xRAF{g8gvukc_?;zyIuSU#^n`Z&w4@=l3T!ee9FMj04H}~!J7K(?iy7W(gm~gyZu-dx(*!xFerqsun9fvzS z{ay_ApB=SNfCBn}!#dPDlTwG-`{5@5^PI><80$mI4xs}(No!ah^j0=|0-QE18)w@B znQl|srNN~G7*V=GPXMfh+VIbypR;it%z32qXq+ac#t?4JJKgq!Cjj0?6X_}6XF4l_ z_v)axT76+zBKt3YC2{y(etg?*_yp+Ic>*lbs7xI-eJg*<9k5Fru!(c!dgP`Hz%%qYuxZ$GxA5oWIz*REM%zB5&}TQC3JYee;c+n$>oEKzAEv@VNz8ZLz(r zVA9FO^>nCqEtyw}em6oMj6=O!Gn8|W{EYvCn0k#Ko+POUu^}?YBQ!!<#s-C2Mg1_V zx{rq;g*WAb$N34MA;FBL#}`{th3Z44#(<5UV<%NIXm#uQ#hM^I-+g3ywUvt8+EcH$ zK86?0-}W$Iu8(M;3`J$i6{MOdf2aK|kvTshj96?R8;s|74L*AePf65f4y$g=4B;Y4 zbd0ZhLjl+sF{$^uW~Wwn#Ht;#E~pj@{5qNe}(4_Qh!UEgy3#9y)zoHd6b*z#Vl|1M>`TyevF6r(9w_g?d0tP|mF*P1vphuK`4<5Pph*K7Ob( zFNuJ%m2nsnN3Eo{S=wleU<|S%$glTy+s0K26ky_Dj4#etRerM-;`Hy}FstW(Bmey` zA)>#@ZdBw2mv(RW$n9S5I%ssXpc4rq z4{&Yu+vliv-b|k&RxlZ59T_)8@$WpIX~Y26A1q*talrzrmh7}14dn97mFR-?g_zS50pp&aJyUaS0@PxL`@Yjfia*JTjP_=m<*!IDv+ zIsJ*M#+R;j$jdJQii6iPu?2ox z5=tqAG9@IXeN5dHJ}u8bs`H>L;BIdCV(>*I)x~@<&9=zMLDutsd)x5uZ8rWk*Xp^s z$9PoJ|9IQ-$C9MnCfN_Xfrl@^=5Trj>wQIfqfC_*<6MTtWk6HP2&2*YMuy=!W8$iG z+Z1z%n-{R2j2=TgM@LkEnWyL z*CD`4U8B4xIQ^y%Otcu9i2Nqt6GO6gplvR{sClGAULU0ch?@2Y+Sv@&MCOa_xHVp> zRrD+NzLhx5pClNz6Ua^BAox(B!GVSN6Rhf0OS}`ucCfUTvt)kIW8+qkYG6nfwX)K6 zB-uel8!76=PJ);G*s#mYJ4U~=oUzbiT|_f|^guVOLNB5ttI{B^ZdRAxw;zny0C@5+yOAoMIs+4^Y5m?DXW z6=o1@yRwiV7F8>_@KULRxA9a?!~YDg=+cxtF97J}zZbNEu@~CuH*e2nK;$RBiK2H9 zE*!GbD%EbRF8GndP7|pc0|&31dOQ@%t8@8+Cj+FrJnVs9&cr5F!vR~X~PZhe0x(nJ;car-gnO5Bc1(SG1%0pWEd?ubRHsA+ZN(l-df=}f)}J| zZ=XHOSI#*eW@tP|J5{mS+|*=KoMIkP_TD54m{qWWEKBKxG^KHUQ7J(+TR7uz?C>QC zdp(t^)svz*+4LLHBq82nvK%jVp(mVSKDIZFZKT!f)%#A1*xok;+Qd9_u9_ZJD2fxw zCAr?ktKqs6#brzTR|MvPjVS&}O{I=Rr#6mNN_3;T;b8UlMa25^iTrXsrbbo0#n)De z`-u-`TqV2o1x@S&z>T~)g7b9?LKC~)2en7(U{9mQns!-=xY>xYWE-58i=7n4kLHfE z+c5;Olopi?6Sq6hP#KEyi`Ew5&K{c_?FHLA8#+=x3x6!MQ{y!H7=zGjln`(8fSMv-Su{)ZC38{(9N?bQ*gu|(_$f$06XvREU-h2Y}&(fuh14v{xy z&VeV+sl;26AQ2)qG`M%}eVVKu|EvpRjW%8AWagq=NEBN{H<(`;4p?5o^n7TuWbEGt z@IfBq8J)Jk_J2}91yqgl51yKc_k%g>Hi_EY9ow3v#Rg#ia_Tk(U740Zq?dgs@sFfR zBo<)pqWtaAhc{}kKc*+*zFb-ruhna-V6_G|4|M4O5f2+EGP_2=xo4p@`dITlKe}WU zE2xBHi1cL)5)^_Jw+#LGW)kKy%u;z6`s}(`@zszoKi&+xr-K@12*Q5MoEeOwuIma1k0Ld3e-Kr} z)_^T;@DS!FACD@K9?4Tw8`a8C??~BFQYX?6tJah*E~&&>wVBAc5PsEPDVR{CzuW_# z${UswySYBk>5{zBDp(Y=Cg~kA-649M$h1&~Gpf`CnKEhEjUPnSJQdfjr4UCh#x}9E z^bq>a&NEHsr+!f<%l=7XZa;IfsN`PWNvZ!+&n+8NEk@RKru5#%oa8gc9L^g3+z}Tp zM=VD!3%=#%XUxjgQJr&WQF-0hW%(JPb*)JEW|# zs46JxSYjx;Il(%{G`ND7kswWF zZw_ELrf53*z%w3|OEc|S9vUtXE#RfLqK1%2WsLU(Aba6?@gwz?Q}Hr;Yd_w5x>T0> zVm^b>uh61UMi`GK&9f{@XGw}udm{#(n;k)g@8x{Vv)MsE!xi!m5v`CHlQ-rRV3d^<22}Rf1BZoy)&jM0b-Kq1ce3x!I-@Vk zqiJprD-zl*?EUk7onL%p;mb>Wc@+U8dPj+Eu2YRuZZ7mt9gGCeM8s~v5hRLOd_)}- z_jb1kZu&x?9Hp>1-P2s9qEJmBa8~GM+{001!%5@Yf62mtecdGOVJinz6TRp?1vbhW z$+CfS0Zs&GfOec|2b()!=3>4hd*BEciRUwa791?FZ;%Q-Jd2_B@)WPEG0Tsn&=l=Z zJepyqN|#Mg$L6s6!^6Yg=H;t>~GxT19_bydXb&k7v1#*WZYE|7215e;5U_ z7=Lj2heKd%29b1lsmSRhvGVzbmYi zSqJ1Jx@7?)&(?#AQ)7Az=m5KsgB!t%OO4{%b|MO$A?h!*q;Q5K`xN1nJx5d*eNO;7 z|j|pv&{fqfnJiD%}`YlQF`KR>D|fbzpW1aUushqYc#tmp(@$G zQfB^Xp5!*XN>LQv<$Kj$^|Fj1zCu>*IgVY>&9?ut>^Z#VeJ*60F>8Z9HeHhPvU9s6&M$n?EffiDe<)A{cmHEn^+52(sZT^$ZL`?!x}(HR#+ z??9`2r%wRcc>g@MQ67d=|ByzCIH9d4z|>Cf6QG|;-z-}XLQQ0D(*odzIj&sL+WY)# zXRhzB4D7>VxUK zu#muRxc-F0?wxgO9$hneq5DyI`va`D3zj>E2fi{|9$T|oFua9MmZ{`wRs_Iz7_9Y& zWoH4Y!A4>hB4KZ`FGH{=Od6P1Ep^>)y~?g(Z@Z|UQeRS~3%xxC@V~0aCWxvICH5KX zYHS6e!qJxq1pl>u`%hD%?Qc8{zqSDXOiuW(TblZuqzbC^J~vptk|tn*XB^F0nZ0bMed84nXfJ3P(@b74w600APGf7 z5w+V67~2hz-4hGL!>en7zY%9y;A)c6FfJ4wB$J(UERtQ)y8?gJ;HZNycd2& zkX%$yo1tm1dAz4c6fxEA&@X}`jqE=PmvAE(V#5kT(f?dF{LaP{m4;Vb`W|*ILg0KWa2WROj2l#Rug%lhkF61uyn^ z#c?#Q-#(DjYBtj*7B3br@llT5R<`U6*)_N@sqa;{Ta^yfIDKSPRj9#9$*8&GgCcDo zH|9W1`%VWTrF>! zwFkZmFO;cP>}Q)yw`aOdR`xM3@SMRB$(e2lM&iEkdSOXj#cG?Vzb09vefzW4<)Sy& z8ZgbDR|0%Rl-7z$p-irahH&3_n{}=&P!W|JT!Q(a5-|WPehz>v_cq&e$$MB4T7dQLXbGc?ua#TTc1osN%c5UL`2MI}J4MO9I4*+IY}1I4@J1jU zwSruxM>)3L+qDRBu3kXMdzINC9T>}xV?^%!KHa_m(tR9NW2X$91+{nil@68|NbQ^Q zoUBwJIc6s>>rUvH2DA6floB7TqZXXcW_pKSbpg|U{Gj#Gi~gtvCgI``I6?M@QR3d2 zZ{Y3mAW@kGN`sUKfkZA4iI7fMQe!#QjkpJq-va*dMgb|%rjma9{({`VToiOJ1st@UY zuuQsqc@O8-)?^D=~^})wP0~hVbb1ONJm8k#YI876)c(2 zhRG$BgMzb)Ke8(c98QSnH0WrfGn_^*+H;J3$UJ@uFLC4zKbo4g&CKyUwybj2H*HYm zc%Y4)jQ)c(3k;aIBP$>y#J-=RZNMb6^8<(d!K+NJyDto z`QQq}A+zz23EbZ)z+j555L@*!|lNWJ#GxOlo3AXw82zO3PVi zF;C%ld1la7aV~1&z*;6R==rjEj9gA}#6e{+RrXcP=AOPI6px2U;)LF;__~@D zA`!7%2kWo-AY3~#`Fh&0dgIG$4QGlNEA~CY2bEji8_H)$&HTXe8A>Fp z>Hkhr+kE{TA1BB21wo4-rbOj5yvniY7@)LRF0(oU0XC4A3vLkGD3#!FZfUNTnOXwN zKk{9xcAidNuoU~s$P)nJEkyHelOguWK+`Ag;+DoBH+-z&27YFo2a3?N9~~sVKf{u~ zCT;BIuujs>;A@cJl}YcQ$=#`+-RiHkr2jC>rgc}vx5wg(NCv7fWGeMhzFa++Pxr`~ z^kQ7yYw9X8w)}+R6AL$`-Q`ZFGpt0>VDNCBXORQezDh&b`JAX?CDW&hLzJhJ6rGWP z{pxjXl@tJZ+j@8XZN@0C(+bLHamIxYsP2s$RWz3t64Q?n^UD2*bIZC1*@QsHRjR&WEjX-Sp#P%M-`Btq~>dPlU za#Wf1nYAKXlA#z=Z5jS%vT(JEKoyPoyE`fn;JfJX8A?8x7e0{pVJTR-3H){=+N6TH zzAfg>*p(fZZgOLGipGbEbA*?YB77glC(9)=&Q5dJ;ocP46#meZ_xTKx`1wtzdFMpG zkL;sF!kj2+vR2?j+?lga2DXvE%Jk*9Fx0-wr%k>j*>%r&#w=0Nobxs_pY?9Q;#w`l zE(mVhY8Q=RGk|@``n}@otO8B-)4L!LzteSxiZ)R!6h0 zLx;=zXWb+y$tK{@RjN!$*UOI%D9YD+Kpd4-m<$pgGPO}b>eoVNXu8)xD(lt8KjJVu@_@^YQcm)z%qas!sW~~Pu3ccdGYIaq z2>%b@c*Clxl=}i5)o0^CW+T01ETOS*bdWUaJ85F-5KE=sRJ9 z(G0)J*l%B`PGaIw#sj&x@#)+AD}dbNk-dkfjKbq$L!KnpMNkt3h5g`4@i;8253*kq zng=P`(1tYOAMwhHe%oP=jO#-sw{Yvt%JF3VcHn|R{-Hw{z5H;%i{k5zSX?Us#Zp!$ zPn!!cN&pd%eLVTM4wLDeNb7u089i%qCQ(LH9mOeL)LhJIuR&|`qD9^N+94_rRJGBT zy}!iPb6B8VxJ}2;!IU3)eA3**C%JRLI8=Xd(cEamUs+j6E#ZYA*HR$;k)>aat-Mal zuFaI$RY;EUQ(>ZY-s?IH(7KQ)cQHPT4#qTnR4wYFHqP1Z)iYpyolTB(f3L&`v?stQ zH(1p(xu3=rktnBxDoV@l?klEGCEF7q)}-{rCK;+5RIQ;&9Y^0T%&M?j)%|f3P{U|D z16JolQJqQbA&jcomwbLY_}r9SMHqpw=JW(lx6UiU9S4UjV9d4aN-`~DjK$`Xk(;*a z*0w*OJ6aN~>a@=EAwNh3xEO8MPtPEHYf`OXAwJfQNTqV^E+W%A^WFgF{p_JMrMixJ zz|F_z9A$QmY)v_3T_(`I7Pi7!WD(A-p{WpyZPMTaiPjUKCUpEVfF0Tpx74Ov)UGSN zs3Naw?o97Q=Ld4Zmvfmyh$P5vRV*%(Z~NfYu^qTw%+;|yeA_G9|23!@c7K~% zko1yC0D2%m1iJgeV7c)nd81JGd~pAC{*f}AAF9LjX~SbxRkKJFPmdG#G7^yu+M?a- z?#f|OzH9vXm~^XilD7rLC+qUS3zRK+R_q7T>43#?w)zWdD5md7kFAc36AV zU?!v;MCPQ{E36-NSqKocx_6SLYH8lJBch89vxM0Od#Sd#=VPD(rSJLk=0J9%4;~3! zn+i}>XP-BQ51#V4&FxuuserhB3iX8=RoYL%5@{aT46Rt<%_CRYqp4DC5K?U5dzIYG z3y`I+6EJ_&(2&@5S+m$94DaC(9pN=jn9$GJ&FMowLUWQjLdzJPFiq}j_nhmvG2=Rg zUe8nqIZ3;_vsaYg3ms|R>oBdIT(+mn?(>$VY>?h3NrLs>vfTJ7YAMvgd*GbLUC+ZW zFK92Z`{;S*nDC{a~hgml>+c>b{j%(%0@M?)UUjc>!{J?NKNt zX@eSCn#PY{S-yI8FdGdGno=i4CnZ*0yzKrLa>RQ-88Dox^knhk!7|cD%3e`>Yh0rD zTBf?pt9y8PiXTS_3Hm_cD9d-KUs{K-quABZ@V!fmef@Fw=JwF~K{l$^rjgPN_iD7% z%%}GLBov*CT0fQFc@P$;DNOfI4MZTR-3O`k+jem-V{6DSTFjc&MX=`E;c>Qr{A770 z-X=zU{?yZqp-}6?hd0(MpYfhkpYOYwwN~5>8Q^&%>fh_y|BJ$^a)+8?B^2fsfIjvD!OrdO+W5>In+}Y7pp<+9aG8`uC((Vx&gRQEf^)fh zttMW7%H}5CMnd`iZTS$r3i9PalfH|kzd_?0Myo58vZD#3NYR^YO6>OvQwBKN%*;A? zKm&>o!9o#uWdu6)`|Yr2OMEoQRBu(^IH~sM9m~C7=k1zaq6bm6H)Uaxo?QH2}ykR}a-=3?(@L444loo<^2)n#dLbO6;qjf@es@ zGl7VmMql0@TJyvhe$3{40uY*>O&qP`6&M&N`SOj|5Ek3pi_u> z`$mWK><<44P%NOp**ngru0Hz&7-@;@ytBl8IO#DfMNsfbhTZ4a_$xX zQ#ps9+uoZHRfun$mANBiv}8r70M`SDk=;zvv%i7>pwG}>pw)7-UCzUh{5@gS&+y=Y zq$F5pv0{3=Zm9Z|&T6Y}3Os<2?>flyy-XZ-LA(jxBJ3 z;O9j$?uAG0`sX?R2O>`+C@!bfH#YdNY|?c;qWJ_!EB#=@%BF}>$UTv%0r_b$qGizO zVH18$fF`xHX^QH51N#+63h1ENEP`VMlW$TY(QuAMC)rV>p#lKbe1uWPxLD~by9xXp zty6PjSHtss9(P3(-=Adl&aR5>JK@M8RGRT@R;39tuw_Fzp4@>43Fy?D@7x98rP{}v6kjFA_Jwy;RQ z-8{h*t*ZcFIDLPEj{NISJ)fXs!Z7!*{CS6cFN6ILi$X4hmCkkaA1@FlE`7xPtnhiI z6v;+tJi=Sp8siDX&#sn^N4*VpW~5|n^8#O?3>S8iy#e!Msu52-@RQ_64pSGd_MZ)- zfyfFd)*1Ww|Zw6~w^nYtrpKeJ3e){WdNGmk%X(@3j9+B80%&N7qZPA~ z&DK;pSVQ)L@eJhe`E2bLp}skNb}LbQTAqlZ`;tpBd@CXMCR5Geof6_&=IKZ`X%HU4 z7tO#65F4X4PHL1_O@jv9G`zE8ce!(cZ%Rm9EJHaoW4+n3)G~5fXRdycOEE}Z|qs9#?3o~SHygTmX zyhsjJXCA{Er|RcRjw$Rr`_|`(C9?RHj$LE&;H9*=0J1D|wPRr;x`wkZ2TxTc?|OOa$YT$5tzrfDzi#at(C-vp1}2~A!ZB9 z@>M{q07FnzF@JU4#X}9Yp3U6VZC1C)$gy1NmSmJsP?=#+*Txb)z! z^FeLeZ?)p9or67^7{EQ(Fp&%mc5izq@axEdX?j{P_vkn*2!0eh{c7dvd2aH+%6)iW zb59YluHX3w6x;x4?~E1fpW=wy%<+UqR76&OpuaTJsfLtYj0bZAJC+3+XPnVS2ehw;(?SiaC5;e#wC+r zRoVL;Cv8Pyr?X9JWCeZdccIzXUn3pTQm)fHchH#dgu{0-SEY*`QQlMl*jv@>d`G-a!LGd0FO$${;Bh zeX_VBMO>Pv3`vU(&jo*#683NwEwSgr4)!|QB&wYoiVcaSuOwtwM}TtIig+gc#Lb4F zfg-NNQkH{xdhF%i;~`!^oT+R24@LL?Z@=5*UV6$48vr`}TccdL?@w;KX7bn^CS5%# z`rh6m^B?0wDMh$jRaI6^axz?li|y@owzdqout0;7_LdNR^HexXFDJ<)Y*3zQ(u=Yg z@^dlgjHQuRG@O%?tCy@@!v`{(CLCGiTAMuE%8*Lp&^fL1=#axqAAslN&m`H3&*> z%CP~PqI}lN67X#C+?6$=3sRAdQ*}4!giDI}N+zJ}?h9^Isv0e7%-j?NdrZh|J6yS> zd)F*YlzsIsHXar=!rl&)pic41XLA45LS97B{E`yk9+nny|J9N64~T5(*_s{wNj24` zOZQ!|UjKt}W%u^sE+k`j9k05hzvP=K&qvYGiwJW>6n;HwkhfVBak`s!)VPk{wz62N4T6t&G9oc-CZOxdissU$BD=-V!ik`sd(SYLBzvIygn-j0i`i8?7$wA;Ere%Txr!?4v&Czd_bTERYsP8}>&I+XXE$V}vb zby~TszS&Ie%h4ZDWad(Z4O=llxdA>RCAzh1_oADi;tSy@bf>3AUnD`$;z*q=?`uCK zylYtaTR89UGQBRH9g>!ajQu(<-F!_ExcqZ0rlI0<~P6 zRm?2UrU{20jE|yczO&X8ZdUEU)(2c`pM2XA9*4<9u-bS!j?P1;?1d)~k5DMDex*HO zSefV-=Wk!Uyq_G+K<4t&Ga7td>~;*^U+Z_HO|)O&@bwp;PF&Y-tj{?SGK*EdR1aSS zhBdu zw>m~O6=f2u#pztdAJwGUHyu=7-^O2vooKTC9q!kG@QSXlCL& zs3U?pRY}K%{luKwvR*T5a`4tGJ$XeP;Y&!=T=!mA!j9+bm>))Ht*V35UK1RXeodiQ zL0vhW+ye&*g0EX_MpvHUFX)~csaw%kc|>_l$_2T~ws^_h7|4-MxWjL#-zGVxYX#W) zOH`rYRxm2S0?dUNuN`}!UL3HBZ1yADmfXzLLu&!~o@f$i5n$-Hq(Qf=l$Yt4HPZ@T z@~yUwc1H|6)IV2}@`$oJc?}}PVlrDgHmO%FYZ1k>d$6~X@Qc;ePqWWr;{p%j$XUDG zJ;trQd1POxz^GtJt0jc}p$at`r3(^##+)o$U^?!6NIOa@$SS-sIP@bw?tyjL zp^ouIXvRNoJXc;z2}-mz+t?S#*>7PeaOzJYYH7XDX`xK5XYdx8*7o|e>4mvZulRk8 zTV~U2Q&BmSM>5zsTDquw-E`9Rn?JQDB_dYG@f~O?^RfoWg{6OB1o91U%TeFBC#f-p z6g!Jv-1|Br3ZqdIP?{kFhgHY6u;+B5Q9nOxG2^+g5vuL*lyDg#4LwX5o|$7Gx5`al zB&(k*58Gx#zZ>*mFnjwGpQybg!abp{eI)e`brg7$Yi6Nq(6Clj-LqV>r$O+z@42rFacRw@3c9) zCpwSb`DOWRlKxiL5aeIdhwIKIFma+iY*RL>{#yQ6Pe^(=)6dEpQT-e7Xc3`WSefKV zYWPLtt4rCUtVHR`?2D#3Sq1Ish}SPR=baZ3SjJj6vP%fDSj#{>62Ev_!uLrK$k=i$ z+Kv%tBtu)rr%nP~Q=LzXX(#$OH>zbWC(YpNx%EKfBHXZ~Mn}{z_1uc{hkK5udo2TkWi0ednHO`(Z9tRun5*p!~=43F?!@ zz@u&oZGQN#iRd~SV0u?5Iw91ASMKWKynRusn6;RH57-)p6Jj0}CAq z_rCU)*|56Fd50^;VsCGic$&mv8tcu}C8|D?H@3TL`NJxETEQ|7H*zb?2Ldx_qYtPJ z1Q?F``V$>dhfBiepZx6&J)rm6)alzH(JOGn_cM^o5mP^Og(;zqLThVWZ`={7ZAy)b zq!5lSjU=iiq1PrLuKeg=C#3{G%L=WvwHL3W$WzO}sHq20{noXsU;Xz*JNt&hj1tK7 z+fsFq2)_}(Zs|TtNU5=}Y8$YRQQKb||DuS_g zUPbTjbwNtpTnLIyQ}6~I^^X*}hLfK@)qyFl8vOS^(j9Y5aSHUn>p- zu9p>dZdc&86{b~h`)H#AtxhA%zP^3NEriPKfiVIsw<6R7B_Auvm~6ODC1Y;FGE0Lt z)+<;m`Xtl1Z>NHO623A`J?U#-b;T*fadh1h!pJ`NJb=DKQAo>3?W!i0#QYgn!jz!= zDJp2Y((VEYe{kl!7i-rV`dzWU|5E~~(|b9S9jR+Y(?8bTp5pHQO10;&Z#Em%bj^4v zl}O*%%mY2yb&{9bOF}=3upcbDLn@^`X~D8HalaQSoEjKK8b$T$+ntO?e0px3a>cza za!J8r+O^Qm^hutw$@_y#SDI!>d@V1Rs>k-jeN4G{av{pYfF6d0;rc$JKwB{p#Ez1O zQv3V)xY4~!WOW)DX*XxeVo;s#ptjgw)y_a^E@Oy8#PE*_a_9k+7Jk;#Fj2$xrFq^9 zCQaCLYBEYgd=%rrK>tggn7-_~K1Lb4A7&ss5KqVhU_g1L1+eS#LH&xdojbp|m7+E5 z1&6$?<3O<&vRk4X+$^!@-2C$)6dEs=^zFA|^Z4iFUsod3l%C74b=UB)Us1P^C%@UM z=izT$HC4oq&$43`vUT!)qdj|c5MAb53obV7QzAGVY)sOad(z^w)Y&DRCk6Nv0b7fO z%f!ThM>|uPo&~OMiqtPOwn_c1YVM1c%(%{r4vpkrPnzt^#n%sT3GW`EN65@^ZxIic z4;4k4U8T@vFCddzYK)qx;GKl70yeM^O88(CbeTC%?R z8P5n)Zp6nx;gg`DmHMId3cam)SB{O^Wx@qKOL#6H8HcLt-kpn!{3^@WiwT!9lU{*w zo-$953d4Sg5xQf@v-7GgmkN_?x@^aWpj0=)JI-;yQEFM<@vV-g-K|R6;=($-nC^88 z)-s?;LBJ%Lag!!}HpQ-PWPd?ho6~#~XN@RnYdu8rBx`V^0}36EV+bDcU)H!~fA;{) zWMn3Ei?~#-*(p?Ow@W>8Ov0M*aC^UHQ3XU``<9Cw{$Y(?O9O+&=2p zh^ooTOg@(Rvnux%Kedkm3~5KioQM*act06Ul zT8i*x1-&c2VNQ?3{byum*IJ8Q_3@<{hVN>2iWU^>Bt-4IcVi27+_fBcA?fc&Eq4F@7Mginf&%ovDr!P`B1^xlo>l{?&EkddSs zW-M1(SsF_88Jh`TAf$W+#2H;YCaad-bdRTojl|M_q#2d-V1D$G z;bhqAMX5L`Sd&_$rEn= zq_RF=l=f*CC0s4>=MY!;Yl9|fidWc#rlh%y!nu{QW|CHB!2hb+mTzXJJm!#OXl8lMeQIF+jDnt!C)x#Sf_;%#W1~|+Jqc5UKK8jo!{XRRdlcaw4G`5`E+@KY zHl71(Hp0h(=*oloHKc~XqDj5hQb}IwQu)aP$6;<@zl=W?(7i!!BMGfEG9Mu?Vby z4?1>3qh*ZRB+vWZ1`S&M;(m&s==4>jFiYQ|q4wxRABPHLR#!cFs@6kQ9I2Mi@WdCx zvfHk_mpoX!s;VDxZ|MupGIY1yc=_#jp(T6>ZLb3DTh-S)U`#Qw$nx0OLzplRIUdjDvysWdUgR`4O!hSZuY2D1?D0hOEP$a@(jTwpPQIl zq_jWqWovd$9~n|n=rl!4T5bp?eM&3q8+c=~;AbOMZC}gppBuR30`DztmcbfuFAD0n zgwH#3(b=EQ1mqeH+*MmjoODrL{C)hOk47_9CHA(yXaz+W;d*F$G8WNAnIRmu4D4X$ zbC9`H_SEC_`NQDWU5Y7`a@sbOm)w`@)#N4z!dK1pM(;hsGC-qNzKr#lm~lhIml2xA zZ~ekkxC-mCXueIeK(EhlC&sQGw!o?+d(0mv6Sl6OH^4FE&Ovuqw{-!((w23a!wt5T zoyHW#nDFdgOo1g!sD;V~$1#^3qdXx4%?tdeHG^E-)X}&{Mt_;ou!V)2Q0K{S`l?U4 zIrz?fh-B4?&ISg6?y7vxHXP&o(@IBG$N-A=^1B*SI;DU63@F5O=5=Wi@@5>6R;2k)D$CjA@d>Nk3_obzI`bPDG`VS#AZHQujfY%zkwC4c z0IR(DpN+4LodT!nrT=cqiJ%4X94>2LKocZYO|~@ zCh!P@zozHX;=nHnZzUGeW`hRo-qAP+o(<3;F`NB9uC{X$AM20f8x{d}@kQ!W7Pmie*`ba?c9%hI*4 z{LPbwIy7~MG(e9fwr&Z|Ea5U~FRjuOxaFpN68qzl6Q(tY_v&x)Whr#W^UkBccz(4Geq`W^YQ@zKV{MS9m+esqqb@ zm5`_0vKl$i`*~YM3cq(}32-sIR5N*huMeoE}~LecXNuo9^KdY3LpoD<&%j z3bpF)pCTh}+8JleQz{;o42UQ>4iO?yb!HBiP#Lk2Af`c=gc^L+ZsAgJaxX0wybaZF zgC%vBmsY7s3S4f#uq=;!dn_lLeDI9K{XQLr@G9L04eUBPH9OqRr`sLD79Jc2xl23z zGnrb65!_1Xa7VpOF7?RE0XF)xI{lBoJpfuExmh1!6SX3l&MzoH0d>?FIwo~?Y8V>p z{~-cAV6K;@GmG!EOp{hT z28iS!seaU&%WdHwC9E*ppk2L28J@)(>n3#j=*=?`Bw4Y7WT9T$$sqKw%B6DC$VmZ) zt<_-_CtVJQ=hJ-$10(fUD|<@;2b^n0uU?O^S8+LRKWZn(qWq+m^3n3kYM>^=10}#X z<~Iu~e_9^kn2s#EwyYp?xFq8p(T3<*N3D{Lj1?mYVu*xkt~ZQC$J?XwI5rgK$V-Y6 zN97*m5DYaVIZ!I8^nVZs^)Zmd;$R~itnL87hGG8P6C8iMKNdEJdNWP9=s?Nkq~vCJ zPdU=0zpcv}*7*jN@foY2t5}AMTIgM!PM|ZEgU5pR(~){KeAOQaT>7ZMnP)*3ANc=8 z3?P6{Jq>I3rb^1aME4=ba*m$JMsdy%CU-{8U`cZVLX(sKb;4+x8E{e&fBb*sSNxar z@9_x@yrd;^l#IlLkHJqPqo4ja?FsKz@E?$p+589jj^CNwKuCiobkM}gvRUtE`Fo8) zndEdfSeS3e=XGKs(EyRIg11Tf;}8W3cbr7(P&*5HrU$q)dio2*=dlh}g*n7Dlp_Y43quxUkD zzp&Y|BEg!&x2kwAiI@WQdGJV3~Eyiu&a@r?|dBo6(`MnfK5Y1&i!`aR3n*CB9JPR2LfCTkE z5h3S(bOdG;H$CyK^DZ=WotVATtqh`_vTt#(A+A_+ub_M4B6%HUHNDh%qO%|*{tKPj zI&rMN^M3YDRY_s$M1n7=l+v=wMuaO28V$q7=g>UvbjSH=+3Io3JpQ2aM$GC+&RAiO zym%q^>pjcLAJCjJ)MYSqy7m4$!wI&HSH2~umMjM3HPbg`@4&iI`ZDx4LIcx}>iKA` z46ijFC`BB|^8?yH-YB>J0U=sH{t#uYvTncOb&c512FtJusPAJSBeCIRTU(uiO3sPX$4Ws8JsQ(Q9~2iTAO1Y><6Kq zn2ME4#9Yc88~xeugmekI{oaY>rq1e)3_aXXc#8!Ku#ou+ku?3bnvt9=dN@{VG`ld5 z4H|0ApMG1iXXpA-lkILMx}sl@0%zZ71XiY|@Cx^Ch$A+dy+DeVy)OSpIch?y)rpSK zZb_NLiiCoRl+(UmL=EHccpT?&Cb;A^#~E)r96DQNbgu|#5|GTBdCpL_n9qL9e2~r? zm3{WlC|tvBNKA~ng|`{2N8*ZBvGM$UbzeCOgtpJ+z?Y8&q&4xd7|0(JJOhspYSrzk z3WaI%()v_|Z3UJ;qAJ3Yb=ROoh2ZAiNfl55&M*s?!=E^BLzG3~Yv0<2nKhp>*lM-& z<%tpR6PIKxs5p>5mKK zEZNhJcwVQIwTAS!gXuRKZOl-2S~rU0h!R#!x(;LX2l;a$5=vJjW9_Yz4oA#9nDSm- zng3j@sC~TprGzZZ#d&@cRP&TCcA-B3699TTg}dr}CX!al3g(28!w0HgqxOY^-(Mk# zmVSp|=@}Wl+KVTyS+Fe(@uh2ycr!!TU*1Me>Ptn(0?aEdMh60$tm zcZ-LNGb-*H>BF4Voz4E`Rg9GKb$i1+C3&~B+NvyRPt(_0VR?jVyS~}-0MK{V)EE~;bALfXALP-?A z4{|Q0*oj!?W8fABakBm-VXJy70?lp4gSOKJ(mNgvl% zc`uW8mCp+fo!s=@pM(RNWOpD`3hGe|6R`rMUy;ELqC_AxI5QIQ%)8d0Tp)|QhIppT zut8Ja^gF#9=U4jjF(TmuIRfZU$99XCC6&M3v#99yzxYn31}nN#%GmBt=$8Gw*6XMK z^bm&u>$R)cJLI#NSVA%sC3_^bR@`RcLq$I29&R`=CCt5sLOF*@7TMti`Rng0I5T-H zE|_IsX}!ecs>C|v1WU_Lg{9}&o^DB=WM7x)YEdq?zEK0(DIJ2&ldPbO#;}N()qM1M zk#Q<23UjpDoi4~n+n!7Bw1p|EDzn*Gl8$n@t$TBR_b$kqGoiOX0jxr$fzL|n$1ASy z!|tdG@-y!x2FS$=y4W7fd9e+h&R4*xhbs?jtoJtBOdkB-{=ar8Z4-F+sWF`X86Q& zNl5_kUh}UWsOEfbs)m5^ckuB;eD|rxCf^XNfE?_FAdnz9bk0>Aed3CdR+BM^#);ZQRq=8^_RbSzqw}MFIz78*Fc4dKxL&~*}e3NGuHwIjlXa>+W7jTZO7OGQ5|R z0D@-ewLD5zj;1Zf%6YFSVg^x`mH1x&RBijYOE~>gURyg>8g8 z)WaUiQ zPdlib+;%~CS*Ig#rbKeB5c#hM5nz@7>JR^~sPumUqk7!06B`VNV4pd9ncq<7UR8v_ zvi&Wr52{y(NVe1)o){&fK6tLU%yBIYm(l_T+UPovGsNql8Io+Yd@xC+qT9?D6)A>( z+6rPYHDzBwGq2mQHR%h zR1(Ww+_%~b_fpp&-W-M@f7j_WE*`L^&i=qM75)KCd(e%j$ddwaQ)0AWLd@#fR;*k3+LNfstKRK`QI-TK|zChTqb5Gin>BUdXXG7UVWi z{$Pf-PBEw}9Y>~2GcqF(O+_DRdnE>@IHJ7!R;MFAQDiI>SSP5gL>5_&b*vRcD<{s# zo@AwXgvx*$$pRrG2u2av0Akm18e`7o}wFG*$Scwecr`xE64u{C05Mm8v5`KibJ3N7CV)g^l_%pp>-@$a5a2YnQu&PN zsQ^ilF&tq78q-Pz%Y@rTD3GCsa#J@;IUY5=CZW0SjRKW5$T){mF6*}0`>tXbP$u_! z<8sz7v;nh7b=ui76}8=c8hw?s7BWLrdqub)2t_;9#T#QmLI!5(`iRN^w+T%n0(5Tf z4mCMFMf^)}uGvFfxiCV^m1%+gaOo|V$bjxL=rBv#wrCrpcs=j5oLRjs_o!nz1oJU= zJYPjir@K!7f4Q=;+B%|FnF|QH9LuJ)o|Al!c6rctiHw04+gm1LTNB=Hl))z19Z@Cs z_3@#Pvr(JIt47r$rcK$`Cnj#R7az5<{jJ@Lqowia7c7E?h;uftCpsGbe~Toyi=5XS z`7~IYx=xWiv{QuQ0zv?mDm-4`Su(nW%TU-S+gt}~ zzahrcQ%ly2hIY5Q%2Y=$@L#3X|3`@V-+rT8qvEA?{%`5KMckh&;~t5x9&3^*OiNt7 zi+bV&tY2#U?aHSD1gGNJLeoB?Dd4e7>|j8GXnCE21OyU!D|Oq0I=Est zG&NxWiFti9EAsrnTe*}$IGoVyT;#ZLnF(MTVe&X$P0_Bpw}c_`j#zg>?H`9R42@Ks zDOEkW*C86888HG)Lp2Gz!7{cJQN}W7Y}mU#1WsT0!n({l^ytGOUGf|>FW?^ei7`q| zqPU6tc#U~m>Z!y&6U;KNcUIyS(l?FmX4yoA?#Ba&60T!8Q{FCJd}_O4F55=~o7f0# z$1${pzM?)k@9;lGN9}iM>GeTr40Y*h@)A9KYV|0B_`uu$+;~JnlMvEi1}m@0x;lCd?5xI4O^ z5$zm!UptvPJcRsCTXUnzZl-CW*5o0`xuO;ixD1{scYr+M{wRxZxm8SQE{(gd!8lh9 zlbf37wWOaXndZYh^Sg#Zy5^qSbdMnNi3f_)3n`bESWNfVKBT_jENIPQV-VlU|JHjpcO>wTyCAYUd@O@%l5&*c)hhwpNqk7S#2r z@c_-{-dNRqhWE|OzTf~u2+!7)Q_E%ymwSF;xyB0(l<4A5uHA*h^hLrAc4D!AK%i%u zPv4nP9J)G%cv>mn(^Oy8%siMM-E5}vwd*WhDc0OIi%aa09Dr36%er)6T<(ntrtEk^ zD6GMH`S9_A@j?B=hjusa&$g?s%(B{pTP+!hpY7L=N|{^`WEUb$c{LVxG#v5QnUrnx znqB4)P(C*r-G@EV&0QcA=%Zfrj%6atik8gI55e1E%!1_0eAOR|C0#WRsHxHO57NWQ z?FL_{7JnMV$mLOb0|T&ct1%->QuwuDu7bJv&R&=WMt*KF3%s0QjgGdwdA?tU%6hLiYIH?Q<1?364Xng(7yFpcA9rjj*KL!x1RAc3MJmN=W(Q+brs zh}Yg&U}e?s8F-q4i;_py?PYh;SpC?Bwo!(j`rC}vkt;nfQ6dfR7fYd-ke>u^Sc~H^ za)`!KR!cGqg?<(G^B(k?01+UszBy`jOy3Cq8WmA5x5T+&UKHxt~_|<^d~LqHpMnOkU?P9S>+j3W;d&(9fBp zerlixsAc*2BB!!jvn_g6@;Wq;D(dBcG9|q`5Nx7TYv7b}-Nb%?Y|amCGvac%X*qPP z`G*xkw;zalGPvQ@lyK7jL^t}l9LN$j>T;WUcCl{I^>T&l59ntyK7v#2_y0iEE&hYW z1G=db_{_gwWdXlStF=J5p#H^ER!Kx zH)|R9<+W4D>u%MiJP!OX)0H+pT-plOR^7`Mrkp=3LJD$A96rcQRjT$po!QEV+guLn zu?%*=1T{wz7y}x0(Q7{AYvbm3&fp{VnB9xtb&70(Mej=kh04YWz^StWSrxb;FNoa# znK(n#_UW8jBniKMOdZ{jApMY^EgwAojNqcqkB=!S2M#(GBa|>k9K`#Y@94cCFpZWI2uEx3I>HO!_$u zIH!<-g+v&}t?Q}q>mo{UcwW4#h`o78$7WdR35Kb20MQ(FU}&SQ&nt4C;ynCWxZzJ# zerN6&-O0ldDY#MA6x4K+Koo~GWf20L!6j!e zi{9V{>i$j%!4IdBFK}8UD+yne*6D@}Cn7r04e#Kq&C|56ue#PZ%Y#t<6=mBHC zl7&}cb=_LLIml9Ra)%hpoqg1RgX%1od8NKdQW_MP87{5i9MQ?1Bj0+RTiYh>Kz58m zntTLW%xIzM%U|qvm4b;|!?6-wT1xxNRIn;Yc-}VCXq{DY&aZhsh)}4`J6p66r?d-M z>fkA-m#9bg$s6W?E9uu9hEo54RMiXN41awQ6)B&=%C7dDQf-4e-*dTVvUOlSg*-bM z=bEXGGaXN=r7MfG5Y%DdYuzrvgU~C(s?Re;%X?SO#0nTlcAdOpkAr6W<0GqPf1kJG zJ1|MbR4wpz+kY&?F@Bi%ZBTB@472B1 z9tNwwF;}K(uSne8{i4jn>`v0?YS={=GkU!NxMWqvqD@Ain!1+upvPaByjiy0G3&$F zVEJUQS43rRMwq)RKqEJICyiQrm$J0(Hcq1iQa|NqPoO4-yUZaX#_<$f;IC$@aqAZI zMVrfQy}IfAt9>ky0#yc*76W(8@Z}$U%j4qGe?ZgEbcHL;S&C3kHI<@?n`#%4CtWSn z*z;o(U@wgpEe(`EAh{0!r)N%dv&>g14D1)+iVxbJ_2J>wo1yEb*S>7kOPDeS+OkEG zBXQ_9W*>45y=WYZ{Xxy63Gn%qO8lTDZfPhR2F8TC(y4?Pm32LLv9zV38bjMlwl~2vD)ZK_ z$UecyECxfC*_Zdc1}W6$5G73p?AYb{7GTi%>LW;|?ZkUGZXO<`3|_m2EyGB1(y^|W z9om7Eh}_GfA4Y=B{j-URKZ1K(Pw%Tky1fJHlGZ0!R&iuwi7Dnr?vDk)F&95NT9(-z zo~0ByUX|U)A%GMp?sRthO3J!fUaAD`FZ_Q%#BuJ>n|F~5dQx)_b)VC0wXi@+LkK^u z4=4Tj-1pe2Yp3T6E%UTN0}dJXx=j^deP#g}rauqG!xIP+p5~k{5?oYUdb{&K**&Uw zRXR%c{?DB6f8k)nH|UbE{_>0mwqA)(mb3lq4u_j6d2uZzZybE42j;491DP<4j7fq~ z@j4y0S)T6wEkJ>T<^~`Rfv~X2gYuP+S<678^h+j;i^J7Zh@3?u()!V;HsgJgF0*@$ z2D^G3U%^hbS{hI*|U(brV``E|zT1V~Q z_7w>?Bc!q@+Fzh{Ouwb4n{M>+jlf{rk=Aa*U?3c;OtMbg zrt^mP7;FC{|LOhv1D4G{prYIEo0@O~;F$aUM%hZ2f?%d*6bJ~Td-KKoU3sR+Cq;-^*^DoAyp#WOI^z2E>JDGHmaO08rFiY*!KxzTK|6f=>fwc) zFxpNb@vml44V~A+)2(sAWB@GbyasA=~0>n z2%lv{Ot2Kh!H_sESo$xv%m4kIFVx|t9iE!dGN1LYrt*fw`Coqf(p(n<|a=C z3s!GCi*9gc<3$~J)iXmS-)kf)a}y|-_9yN8Af}v5RZ-{$QkowdJXV7xUp2 zK{&8);Qwt8{%?@>A1hvf0+9kVYyaYB0a4C>I=KFRVDY5YHc}>=J71+Ti*p)?rq(92 z*)DO^ElhnZKaLk9^`YHt{n_0WFi;}Ki*8qz=(KRO^M@L~X|r`zHM=r{pJ+Vltn+Tk zyTsZ2}PFP9CFs){|he4dLD9Hr!^*HX=v_@MYAF8i!n5Ww$1irk6=A~Phf1ZC` z$ubB`&(OX{7dF@qRJ*v;JaKYrh54A~6sEo^C@4qNGL;WP@qlg~bk#HIs5|q-+X4sw zU`S5GzEUrhb8@-}ErHwjHFX?hgr3-i;%+LM08hrOp=>E3h4}BgjL5l(&s&&eGVUW6 z^2HJ0M#-0aas7NSzM+^P?xGf0W;hC{rEKDu6d!X{4d0yrOAvuVK=zFrX_n$B0pMx8 z82|EnBL^+}Q3f$*D#sT`O@jidPz)lB$MzU6c97*x6Uyo{A=$SXF0U3Msu;^4o?9c) z7k%RiPxnaW1&K@$FDAKyLn!IGGPV3IcA@;b;^Z|&l_y_VxR~(K<6#P$3iO08xx7U; zGCgw{B?E+WzeTqk9UjrYmOEEi?tg?mp#tRwo|MBySxLYj(Cgc;w`~16s1usyr~w#KfJkB4nyz_HgtA4e zr11EeKs9>Pr|ziPhse&iak+`QQ;Ixl-&3d0F*6x}3$n*(&Ju516`4N#3cvO8cTo!J z3|y>kR@RsNS)#tcMM$a?y(-OauW%f$Z&nR*E`pcc*d%OvKZ0b~J_qM7=v<}b~ zmK%FlRJuLHIg3e5n>~#FvcWXLghVtsUE1FKd_5$*`D0|7bjwt8IOM7ApiXtzRA`KF z9P53uK$=-G=aakFC@p79aLmgdJx3Z2fwKt(n^yl|+HxU`) za@hx$F-+{bZ|lwNixXdRmOfa8bGwrm%R3HV)mMDNrEj3p01nFr%4$ejfV`1}6W~NI z`RhdQdej_kZ-L{^-0yq>Ex z@`Ya65f73QX@!%Elk;y*z-9xu!|86Km%Ty62W8Hnft=kxphxz0RXHx|yBOUDA~xAz z<)HpRVAVv0O~LP8s(YvGJE5KRo2G9;(}HGaazMn2ZXvV6-v|T{6iNmn2nJdG&oeiG zP_*Ol`=2eXqA~4hkFwq>KZPSrgOEmUr*QU{vaj6b0B>v2yFfJoj^@EcbMvcZZ3 zZOSECRH;KR)}8fm-!4ZTrg0h-5H#{h6NP*3O!$-+?6fi#&*J)ThU%py*D0{Y>!Oxu z&c$K*p&dt80AsbUV&rv#R{~u8a*$JnUZ{MOZ9b58gy|IFblw=9qVTx^29acobrge0 zNyuRUa^&A`57od*kYtLxh2TT6-kt03?Vqxtb=>X@=hwyq!!xqjA8b#y19PA+y%lCV zV!=8jpNE1`R&vU>mb7K5p>th zxs^Yfy&kenieV$iT%|%Dcq4<^k+@!K9{?C)Dcq8FRd+N0*#KortFk@87L9z+Bx-`U zIRE`f9d1$SchZiokU?mvLB{j^bB44x=aD4RFLSu=*~}NzJ%8+zG?YVM*}O#*cwhSt zwC6yd`nnnd1JQh~$|J?w6s_*S7dR|QA2VplPISSvk+*=N)py=%JIwjmr~3S+BEhvv zMOyTMg7t0vEKL>Z6z)r)SUD^Jw`F0s=ie7dz<3c6=aT-w=Fw^$Yw(IlCrPU`m2N1N zvck8P`(kbaQDI~-?x#OlsY(K-W1ENZUzt<6HYuk?HmAQ1VIy(B*f5nr1-S}5{!1iJ z{A4`d??~XS41!T%(8{lFq<`q-0%TGA zY7vS5r0*cM4H6i4{E4!SVt{ms!ZXdIMA-d3nb8oL_adR%osBjJ?pz9w2P}*VY+iSR zAr3Rd4X)2H?T@TsQ}U(LpEuJKDZ|XvEoMsO-?<=t<9DCuM{#Y+V`!=C>N?UB@39>W zY_^;+6Aio2|G0<;>uAVSNfv(ibZuE)BrtP+=E{J9iojMo@0$m83$y`HTPht&gr{VeD2BI#Qgd^M85aoEE@IX*$UGmcznz9xhnMMvHegjOQ*Efz{z()*)$km;Ne zFq5)NZVmb%?(ds0jnr2@&+X4r6(ey9tzt$lQw^f{R6f~2oi?G~_PooIM~Rt#LfZuql(h=zqL_wySx3mh`7Bxzq`QudQ+4B@Ob*`5^49%l^)cgDx_Fnu`BBup?W&#R~bCnvVi9 zy3XDX{r9?wM$%qa*DVFU=+I*?gB6d|vx`H}K1A2Rkk}6UBk++)55aZZKOp78^|8~H z!lj`&9j^C|90L{fQBmv5=%pVDhB)YQ9gFTVnCRi|(CNm38X5)i_AHr@?r=!@o?mma zn=NyDcT>E>xcW1WM9q(W?^G9ELL>&dOsXW54D|XB_=6_&g0HC48v! z(^u{!UtJHlv_PYbL}NYYkbX=4-~Xfb{~!4D$G`7A$${OeZ<8;Jl7RT*%x>d|ze|%W zPQL^Pu7(o+{6QPkulMZQYTWF?p>FxXr0@?Yi_dBm<#qEEN7C0p7Gdlzu6ODdF-W+d zZ;(_hMuKXi27#oJ&(MP?4^GI?*tfQ2qd`34fku0T!+ffSz(%Wsb=tGoAuB;J!z_ut z*GZWQfIa_4QI`wsWuwRn!uHeAl8Bb&BK0nnJ53TMJKS|#FrBepPZ=+BPqz8Eq^iW8 z(21oy>WHj*sb8AMO78BrlQ~jlcBqk6?)LfxvOM;m7>7LzH*XQBSR`v|YZ+ohBfVix zjR6Xx_m$8!q-ZKL{QZvtkk|)T#VWtIhtY*k-GJt7{=WXqmKh)Vt+tKVHH*TJtz735 z3t|7sFO-&bve$_w6@n!?r?6K{d4dd(a`c&MNL=4B5IHx@_(tjEd@15C6Br%f^Pv-K zPHuWSC>BKJouRYBO4P#jk z+CeQQuSl4L10i|Y2=bX>w9yxCt7zq@u`>=Ldfa3+l`kVj?px^&WRnJ=xac{nk**)f z!lG{Db<6Olm%%NPKR*}BZWGm`Y2_p&sHZ`yTwbj7q+??nU@;JIUh7!4l8g!wDX(QD zDHIy@;ozKkl>}~v{0EkK^2XP}9&4VKLlDKUjCLv+!!?M9NNx^YdTCS4-;q@}0(H|P*(w3|5J79K®*AA+ZOJ zYPh*9F90v@5+v+`)ich~?~#h+Ahf|kd?EAg|HIx}2G!YhX~IZw2u^T!_h7-@g1fuB zd$8ax0TP0{1a}K=3GNa!KydfW&hx(A{nd2$)6-w|kNGjFqRz>=&n;)~z1F_gwe0gM zl7eF2oWzxO6$NLES`!+9i?zJT!M)IY=9xRCn>mDJ#aMmLvIWD*we3k%(flio>k{H! ziAb3oX5rFP?7{qk63W<+e8h6P64G1rFuJmZL0jA?^=vmKUbMawMKcUGU44y7lT920 z(j?hI%FrZl3@@@{XSMI#>~tDdeG#~@D{vZ;_v+mgB>!nhEeM(T`v8fmzO~IYzWXF{ z)oN-k4wTsB|f4`dE(2eE}ksur}D2{H;JhIwCMK3`$IBg-q<_N2{$ zdQ;==H=R>lRvKvgjcdETI09r}>NHoeIOZ*WMc3iUFe!$SPGt}gHmrQR^5%<+6ro9C ziSmye)Y+(lxi#wv)UT~!O+=$Z7lXs`wdI&M({M`%_vV+Kv4tb@mplC^9=IH!R+e2Y zBU^nn@L&GrPuOg8->iv~SWKm6FPND|Vl6-#wD8=5s@+J2- zgqv}vojPUf?4e~7&RK6jR3SWrv3nCNG7K^LMk;ZMMrf?cTQqxGq3w}Bo-I^!4;FHE z_@eibTXLanHOrN#cIZHYb3L7z{%Qw!6qy?bjb=m}K=ErBV|xEPP zc5UIuM$<`s!zM*9dL)(9t_J1fUJ1LdNT0*pz%H~#ih8HY@@PWhgt zU#ez$$MT%jN(0~KS||wi$cI-+Y=h`kG2E?ZG8eqcLrB9q?Lrg5&mvCW@h>Dlw%|J( z*l)fX_)umb)K`>>L$}pl`G`qS9r-@Z9oo6SP**17iLY!{Ic}D6+Ky8LIXB%&Lga44 zGebe3t&9YTKmLw$q0EfKf(V!$c5|%{V@KFe^~xAtG_!agm=vISn^&egVBw-AXE(jg z^cBRu^%RgVdKTY*TQ(jV5SWx4iaV$zBg0BSLSs0MyDd`{d|$F!R&ig^h2kM?q9k%q z!IK%=YVsQ*&mD7K8w8mQS_$cw8^|xNiE$LDmcDT$be(Z1^(iSJkB<7{s&Z0 z83eQuZ0|p*xED2e$Ye7^IUJ-E32?a-*oIk9<0WF)9eukwx-~Ir3mo>cB!~?hVm_2< zw2(4*dF;|>nI)uUNAsoBpBdFL*f0LJKQS;Hz2&A^{v|FHuvmW;m;Eygh zqA8H(HY@Qi534ftaf8(oq3yh`dCGrf+NQX|oUvsVgKBD6l&VjsY-%D2 z4Tni%hhLTw5(iRmSJRU*%G>O|hQRc)zr{`COXVU6E|r>8KFYCWS3wc*Bjd3iv@s)vLoY&g)TX~| z3qO3LZ-dkkDs}br7?+;yfT`++?_B&15ln;r#1!}&LPPiDmY?N;VL)e9zXvt{p86uv z(sZ~Ib=hQ~zEx;Es@%ZfD|6)r2mDm{#*ob`=tJ^pSJlon+{TaR zCP*K`0xY3chMirJBU6jc=(Bx81 zQ10v?!SjwZsmlqg|4h@A*lNoyb^$ISA$lc&m!#X2IrE5&$(+ztPFXxtGSYf|OKVr? zv>9S}m)hK8x&n#GtEMw0(V!lX6a8v)2fEQ(Yx^y9pS12xo!W+KvfoJO;4(4Wch*h~ z$)-yn4B-bMxhyxpuR}FoAV+sEYLQlx4IHb8K^qvJkna%q`-MRvVQ(S^n`hkLKJPR9 z6`2{IG4y=i|Motq>CvIt6yl?J-cD*^@xWwo+1op^Xp%u}!U&(N#RR%ABg|_PB*_~|))80{9a$t81ac^Sx_R^r%=a(w# zmHp9gh#31Q!(K)m>=h3Ad1j^}SZyc>40Qh8D{cC4X^ ze&LgJNHRsWAu?B(G|!W|Xvf(8YNjzqIvs!ujO=8&=4lv6n8)N?H*AmKtuDrjD(gCU z#C~)}-x-3gFFL;}Fjup@?}eprphqxxgG2&CiVn!>4u4U7pEcS>PV%Ejn)_(8nPU3( z^K_P6Oo4qLdp9lV%d*(Mm+k5*A>HVDsLuqoq;Soh0lQ7}AnbxYrt5U=v(EkeGs)Q` z$lhndDFbI_g6(A6ue#ePMQ`nH4S?~3-E4htk^O+fuPektT@c2im|E0 z-w;sE^wLvmRt1oWJsPSLAvL&Ke&ss@T>jjP-|w8u0S{IlRX%R->rR4az%w#ZI{=ji zLE)kVYMqoW;2%Zo9}GO7AM7gaAnKA)L_oro%n%>ZY-Bw$?R>tk*SZaCuWV%64EK?S? zbhY1T-U#v98`1tevlq>6;RWY}`CFr{o>f$~75l+TC+>C$N#~(5`A)$R(L_qq{tNH^ zwC;Lae9$VdgibhFVYibPD@YFR-h95+b`lIq9BbLB7Z~|q1#6J_K)jOEC1Y+Wl}HMoac1+pvB#}W`sr0q|%@gh=}zMeWm zc#vqWHOIV8qjQ-TMH+PZ*3+5qR4G|CHcljsorCM2g)NgilN*OBQsGGXBF$!*6?x1X zL(F%}c&13M)DrX-)R2&fOUxnDXhWMqbZ|Q1rZ2ST*Au0(DhNsn^khL>_PoUl|3g$C z{=trfA1vZ?ekudV0lK`Y53JMt+Z6 zeW$PVwgnY`D&^$el@N!vwzgQwlJg8xVN2BHc4I1@(#TiVzF?7DV-P!z_oaNSb>nA=|SE%X1^M}~Z7L0x}Z)6pkN}3m%@ujMN z^++`K<2z1&v$GSWCrLFutFv2`A}mE=7?mIKpuQhsnvG|y8&RMcHX~hI4izR{V$^G+ z+DYHVO$Kw7`W@2I8LLS62vde^{qI?35>_#AB9SX#6c`TZv2v(G=R!K^3fCIO%kOt>+G6<%^FEEL|KVA&l%&UrCYj_;(4+pxCU2#(> zQzUK5YP6+xX24)_O7MB6g=G>-LH@stcw~OFDLN|eLdLZC@a~UHx4Lh)gg`y zbPvgStC;H(O`0aT>xf$Gi(aY9MeGr#s9wKO&qvM2R;V+Ezc7;=RA`GD+1+W-GEIZu zKz}MF_lQY(&tgsJgKFfp}2tR&!5TWjXr?%d>7frYh+d+K6`=wZz$1+0M{7B-gp zfvs>^U~C#^CQZ2VFr`XdakH@~YuU}1Mq2vZ+)9rOvD$~z#HbX}-gxv)4qMN-xog&C ze#zF<8CE=;vaj4I9Micf!+3`1fVJj|aShswTKr9>O4+B8npe0#*VY4nP6t#ZEkN0=5A>=Ives2@S~Q2SH8}- zao(3#e?6WU@i<&om0BR1HmR?7K+dDTW+;KY_A#Diq12|Ci{BFGh>Wjkjdmt{l?cV~A?fwyp_TT>mU`PB8w*TntFZtt>GR`}(DoeQA znYPi|xlueRZFrQTkzcBh(Dhz}7Ukur%mypoKHrrv^aHY{FZY@1_p0W2(&oI$&{{+Y zm6NZ9k#`!u{^}qx{H!o@ba=!9)9@{ss9Z-+ZhU)2?$MQ|oWZ{D(O%imZx2vUNK~nv z`MWhlA&hfPXHIj6g$e16NsF5;*ur{#exS+lG_=8;oZ1twdAIu!1;}P%y6im`xZ^VJtQpY6LRwMVbMbfn9?uXzFTJ+DE2#Vw3!*@Cncw~4_?Y1}S`!@RfEE~01?YRNV?LEn2cvdhY?KG4#Cr+~YPyXsM^cqc zcO)xCI15?Vrq-n07VI6;cnx?|=rkx12+(r1C@qbOzYK6!+P%S6`p(p6qLm|}jhLvD zIN^Svz-Cx2T#=~wm2Mld14E2G*oxP=dVLz(^jT%PI=|U>bSM)yFG$Re3dY5}P$ZZ9{Y%TK!c2_>n^(>Z_!0S5!PQ?XB)SMOZlu%Mbd)lvG@WIY=$&7D zF6{2FQKK4esrw?N7ALnqsje(X>PZ>4J+{lW)F2f8iip_v4V-*K6LG^pl6?UL(Kc&I zoDEKK-_Up2X+HrFF2id5I=W1-lxsiH3{sq&G|W`P8$(e2EO~R;2i2#tK)W67EoFB> zdflkYo(DZ8r-Xpa3VEfK&qg>%k~d`Dx9SOMHbDvCFMq$*us8KlRlP2Adr5CuY24VU z2|jd!FU5;W=l0(9HHnWAs8OSliR?T~8h5Z^Po4TRsSo#w{JbXVZS?dN?Ke5}Z{eM| zC~o$Opoxxhldd|u7$Z00yMzG?_rz>jT5M0kZGeZv&yg3(#IxT{r!wYq=$%ggkh3z? zjvBx=VP)G`{DdDG`$+e`1yn)i&>0lCzNjIq%=iRRh+t+l?r~}-rCwwEpp;Nsa4JL8 z-}a>}lH8~_Rmi+^)RzzsI4M7iOk1@04x1QL?ihH@S&Ost1?3h5@eS-o!D#y;m%5GC z1bUY&t&q!k+GAJPoXwhE>S)TK_MbUA%@Sxjd;oq7v4l z(!_(Z8Jnv|D|U9LFot^b+Uh8e0FT-!3S_a+Mc|gblAAcJf1h#0oBZb07U^lM_A0q7 z%zUozBH(6jm2n9!VQu!zFp$t!T+fm zcm8cDfXSiyO?}YlX+n&5xFCsHj5>d{-Ga6?Y0F$yk*K`$at}VyZMFgh8%a3c-$k$e zCv}V)_)KfcCrtnMIFvA0Vk z*ljecyp1dK8nx`3frOQ}YmSte>PWPKY;LP(x3y{M;=!wFZGZjT8FQJ{9cE%0Ez>4W z2@Q;wtfeFvCJ4o=61%v?(#Oc~1;cLV6bJ|r;uI7!yXamn#h98V9&2UA&6w)Ja-RgP z$PMht!#3ex1WPg36R{dVwMJ`uN7lABhSMWb&V6Ul?CNV`jlb1X7ZcM)=*m>?*=ci8 z!k>=HLwS}9uGTlNYmLI7Of+#)R(MNZ6dVH4Z@i1^FGh3~!QKLFoC)({atNWbr=wKI zBHOgi;@RWN+YU>1nSrm$!&ygcATV}ivwSPG*V%mkTze7SlBk0#wsU^CixAx(vBWyh zEnJH2eoQmNJtj?U6VH=!8sk2@Q$aBw0+0n`@wchHCV_eGs&p9*SQxAjtvZtUA*&fR z>P?B?<|p-rvFdU9;e!(7V?@v|bU;GrGzyc7)sb=BM$1S^ImK@X4hUY7E{Irut*1)u z=V&jfU#g%9t}1za`AWzZp+@gB4fLNtMn-(a91vRSsyWbgrk}RXaw)%_$D%l1v5x*+ znfJ_KQw;oHCOB!|ZSka<)Ao`LTvHj}yf2CnLjKph-+#~VfKMd*zR+Y=A9F=wW6a^g zeyBan)z?~)LGfvE3@hz`AUc-;_LSR0ud%OVVNbEY&e~mJb9KoZacgM3Vai1M!}jGc zZ~w|th0_PfPZSD#5wkIfj-sKMndgYm5PZ}5pSxg9N(ee^6>733TCze@cKRr409CB4 zi!Nv}1)1Z$Fx3T9*&Enr!eb5YLp67K$A#+%-)Z$DcGgs%`>vCh=h0o)^@04u!zV|@ zw#!Z;MKX_mcc4Av1WK5&1nwB8ej4u|sngSuvrwDVu!xLCC0QA!eRPui&oaXQiZJ{4F=u~1 z(J21ge5!vt=}VEnPkch1v31|lzhLpO!v8(a6tk?3k}@= znQrX9$qXwD&exae9$Fz6Mrvy^U>kUs5z7x5%o@B?PbYHAe@NC4rR;lRoS5 zkwk{Dob_^l>#d#o>zWxRF5ER;sa*`B zX10o%zPnsR4lt;zFCM$m;B(J0eclZ9z70(;{)y!NrIcvs`fR z`g|nL>q^z>=ltFkFXii3sqw|-Vj&^z$!#UZ5vD z_7S}>b0q;Hhd}Y+<-&t+r3)qek}DSs1czu8-2|;F*`u@im&Jzulmy9WXF^X*r&o&S zP^MJ0eMt&h#9batJ2%0*v(;p=ChTo=kq}Tq@+p_kXnZPNirfh9%@mh;(fwG$y&4>j(z*+!%hFm;_LSc@APLayTE-u!w2#nZWWt2 z-OCu9Q%FS;%}=}4@yt#l@}Nh@--mDho1FYhD3y)dpg9Qq{;%>GRa!WsBd!Qy#S~j~ zJvz1KcFdw@OCzwgDFmjYojKPN7VJ|vTa4!_s*Wa+ajw&GYKO)jrp&!4#jXRGHf&C2 zzsv&)2F}~m-IdnM9Vwa%0-6xXK`r5JpT8Hi&B;~>aN8K}#fm*wd#<127+y=Ixal_1 ze=lFFqdw?oJV1DXAv7uQ5`TwKoe`gDP-C__YdTgaG&ldyz0(a$;*K9nDvcch)SbAQk}V8fqJ**daWS# zk{`(y#=Pl@cDM3il(Hy)O~W6(QK)bz|;o{flGQDaMsB3~Jjg%W^fK)-33R=ky za&T4?6M-J86R??*x+W}PYazy@jki7xdbmOl-2LlB+X6M)u=rlyR=Z|khSsJwtvkk>XF>XU*yDG~U9@ zt0i)6UW1iG=`AIHo!EFg&s$qX>duDW5Kn#8U5EMDqHmquju;TkV00X{=<)_Jnqy($ zM5X!-n)#(;(H%4(<&@cQw!SEpe~6$W0qG%&-I==Chv9CGkav=M?vQ zyMd_aIQpo%248FDPYbW-sM(_sm7K%@Uh6ihpm$`ns-Qh>Lxs&Yz263TtP{SA<(hXH z%g>a9*b4AfHmXRkMxOQH5~rE8vQH3s9~KA)N7l5NhW2q_+5^f#qZiyV3wVBL9rw}h zIUkFx;#YkB1vufdaF^uLcg~f(PEhq#2>&dYDaOWI{-=w$rXQ$G38vfpPo{!=J1FXC z%=D;<(`gi$Or0t+e@j>*>f?dl{CI$fsQsR zS<6W~Ca_kKgglt+Ug?BgxGfo0v|A{{xjr~w$!Vzb{W80)B0U|;r#WN(>*(Ff{HkP$ zDHH*N12PcNwG-Y_qm~9YSK0fdDcux5mspsbxb|m5WU+YIAU`$y~hJss>W(osMYybJN%2y()Ng?~h81bBOs(`E<+A zk}=%C;5I?!$eg?H_k)`$bOcG>!FHRo$_wi&%imINHIO_*LktSDH+`NKK;^doLYV%& zDfE9RUjHg*{};UZFXBi3e`%S2KQRBJpZuLe;eUo|{Fh{`|FQW2+~t1}G5tR}LjUcB z`|t1mf9Fyj!7h6GXHM{c%qaiAf&T9k>;LW5{{M8w|CnOT+Gd^P2C(_ zNZADiStPCP+{|5AB<+md%>Qvc7HM;9ODi|h*Szd3^5zbfZdRmhY+UTz>?{h#Zf@qf zY|N~r|NPTuQ8czUXVGF&RWNq7C4K$ZQ>nU}xOqF7v&h&RTbi?|{dueP*2Ko#)Qv^c z+6-I`JcOX&KYux*bmU>WrCqEcsJZT`_RB^GB^6h_K}^h$G#HJG{1LNUGDiIH3`)el zMzbKdCRinZ0Etp#B0?cSB~lxIGD6>`zG-Xi;rH(I=JwtC>~;0Z+*5#o0PlC+F4u1- zV<&gojA;Y01T<7s?ng_rX6)9#`!}41G%=Y9y5Egy~QpJv8 z(De8BCsAZbNJu25MIr8M+9AV+)bHO$o+C<(ye%kKFSodjT(nCggcRe(j~x=nM|jM` zLNKp(F`^haFF%mQCz8QOu$E<4H#Esa+O0fF2bGM(a>~0 zW^B5-~q;#G8)xAo(^rPaUSH-$GitE9A?e`mda{jlE zZHY{3RXbHqZ~^A9W}15}m{(U@InQuP36GC{Ege_%RJ<^m4na0QlHv^)-_??B zZEh-l79_&Mi>!~u0K*9;c{&!hD!4g2dNPpByi-i%jX z*uPL#9PJXav)3whU;E!)w4LD=rZt6~YfQ4ZnG4#6KC<})uH`kCu(+>;BU{iq?DA<{&DGnCdc(M&1wfu z{MCOPj?l=|C}RP)!1!`IA^UC;3}FJq&tLP^Jv}|9~Z-rI)dBa1riLoP{S^WD`p&jy>>JTO+$ zsj!-yZfF~CB_$>O`~+U0k2IU~M}?yhY#ub~RC3wONJ~q9U^A7JmyhW;Vat%;*w~B8g}mw2_sS6~#|{e-z$&oFHAe(Gq$lTY zM)o}>8wKUW7k&|_8`RHn1?(4llldqF+yw;%C9ygxDoKfn%34|rEv}X=y<{mrzkRZu zE$SQe3?#7P_CoMh>NYvdmSOk7>_bAsf(7zpJ4(r6z4Phe=A^^tDtHIX z;Y3QmNvS~xUmpWIyUW>Tzwh;7i}!^^SHKh6V9)dY)vt2R>f^b}<%JqkI8M0pP#*2~e-%#4zT zhC(0|YE$-IIqNj4c4@opmW=noOzC2sW%`-AOhnhv*qHcO$@~ZqhOIDO*Ijw@5RM4f z*8z`SLU&qJErGuUk2!4$NpoYxXtIgwRYcReS?<3NO z4J63S*Nz5STDW6Ib`3h|%=)bkt9<(~yc6i{-00~Yes|}C@gzL_R|m7Y4L0f?9@ovz zThDhtNxb6dm7=KR(gXq?d8nugt*48eot+a}+B{Fl>%1>^tq#71Az8uA=JMZ4p!>WR z6$yK|K0>++Nz0`}#w5z!F&|BHKUpI(uwQGx1Cw%_nlb2$d(>_BYp&7~jH}-*D{Qde zqvA&%^bStzsRHnI)}Ut-D8HRL*%nkp%fpxH;4o?G>YVv0OSc5PB>~^#-NP?CdzE zs7G`PN#P;15Yn}GkKoAR-Nn!51EGM&2v*CziQF%r`P}I_3j=>Yqos8C-sF)Vd+0s8 zNZ5WW#d$N!g6PxYyak(rgdf_Qz#=cIuD977Isyci-(bl0wIzSyiFibUc|aMTU~aZI6-beSb+uiLDc3 z80tPUFjWluU9`(uA6W19Kj?G=>=x8^vay{c>XuMiL^)j|DKj{cr-Fo`(z0 z&yRPfr%s$NHPJuk{i>*7BsAE*IbJ0&dEp*j--9O*u8giut&kZCfq49adBzbiOgT(B1q7AZ4~c9d=u=p^O3gU;Nap3c`;h!gRpdBj>Qvq@Iqw5 zeKs9>&P9TEz~=b7*6@anf8L&O@cXK+x0S8z*lb=Y>!!+lgf4?jQN6&7j@%OV8>X=B z7KvA*b!sLm&u8*jGO|=r8YO6C=Sr`X(Q!1Eo=%s%#~goF9hN<;Rkr;`j4G0{3xW&T3X~l(qJ{u&-T10SIZX8Ej9jg`)Hf9ub)qLGBBm3I$5=c7$JpP`? z_CTmMmv4BRGi(m`c9U3i8^;FKm6T3@yEofqJWdzLB(Kk=?m(nW;bUJc*;eoT{5k5| zr+lo->v6Kyq2K1A-|khTN6&E31yp5{6gM-drmE9$P^6GG5KqF=u_cNCxtI3svryo- zkG#^`cnMK7m>S#X!q16gYi3m#~jO-!tfBjm_J znM0&=JFXp4VAsGP;hgqhutr@)U?Lx^v~V1&M$^&_q03llf~p;dYuEnP1FExS$F zk10lEuD4V$5aG&cx!h=f()n;~RET3TH>{Y+Ih>0Oe(q=*(+^tGAK5E5tMaujJ0r!P z1D574Yf2qfTlYyXB4B%dX*=O_+tGg8Yz%nvp@Kw3u><-ZEYtlF4rg~&xg()kjQ&S! zezV&Bo$u!*0t@Fmqhd0tUq|4rwNWd6y;GlZXgwXkxPoY=3Tr zdY^`ioQK3nOv+v`C@|+wSy2`UygiW~eFtrkL+03i7EVP=ZIV30E*=n9YW7UI@xFEV zlaP;3cWHT5Yg80v>7#zV6}r3Yy8lh3Rt@=&IK8GdAKQ!F@xeHvWq>S5-EoI78Udim z2|*q?`m!`0dlNkeeT>Mfz9${ravPawTEk-VsKPbwE6vW~AN+t0*P3f~HVun% zh!=XkWvFf!MUdnS6}5-xWNAMY6{ky2<(3d#bN&8?n_BS)fL-%W4&Ze|5&DOEwN(0QI|5nm~b#$yt4lO3X(+>z*zuS%XA~h?TNkX|IN}Tpf zm$~nWF`|ZiRmcyn_NNCgs`T3me1Z}-w(L#babO^S+t$6zEl#4MH0~~Rn=n3JX<@gg z^ghyBDN&|?8d=BKkxg=>knnwJr`(_z3k~*@axmr)iM)`8SkxH%3cPxzge4n|;gL#$ z<|8SanOOB?n^QwE^MioR>bCnG^wDNvx&f5A zd<;(sS{#WGv#dpL^C)xMVcSXP=;$cL&Wq#(N+Yn89lCH}I-P#}s_rU+q?3iLq3{TMa1^iki)~+Vxu5U$HvBD-OFL>mPJcjqipYJxha{R!(wb`JBZG0B@_XZIN;Wp@7K@I zfkpfUdRPe-`+v?e6A(K_3KhqMU++lu@rzErGF0^Tk!^e$hoGmK;N=#ynjnpPN3qb)wUz2lC)gbY#S;FWW^IWm7j6(;{x#vJ&w2&6;m^D&nRSKta)698ZrI z-_Ooker7W;G6Llrf|x6QmaJn_nyRl0gr4xW#C%4@OOuZ+@aby4?i=5)F`io?jur=i zH@C4NskVlD-yu{N%mKK%=Cu`@L{H45-^#g^3z=%R3lL5+Z{H06Njt^#rl2a23UoIjL#SE z8o$au%vu61HA7Na><{4WY?*ppv{Ey!J(Ik^&yTL%DI83?jhv~YtPU&90Z;eN(2Z)O zZaA4v*v&l>tdSbYPFr=~1$}ojEH`;#YWam#R-x-c-$kC#zj#5y?@<8{G(w6{μX4}d0(9{YvqI^P}x zK7Gp-d*AADgg@vEWCFm$Rp&vXO+b^fW?ShsIehY^nn|#s@T+S@Qlds2no*HEipS-v zx1B$BEIw=^+Vo|4Drdp07&F@^O}su?H>r zp+C870evZbCEZ?v4;jg5PkL43wDEP6rR(De1gZ6PQI^Aq*_H)ULdQ;;E_3_oS0JyZ zD6f@zbqjKCcfWsTIY(0}RVh4}Eq`Cm7I=#n2!r=+Zv>k`11%_Gy+k?Rpu9Xnd%$>i}Yr1ax03VY68$x zFuDrxPpmy}+Ot@VMJsh0N_4uAa2UNV#$QXkeec-y1Yp7XT4gXbcd*abhe;`tNl&9P z%3muj7XY~k=sESkq$~lMySiR>T-Mndh-Hcz3TS{X!GMzgHB*X7Fptt1vVYy_`cn~A z7KZ4SWJ9*(C*!6kSPI{;(t&+h)bGTmT+;o9CYik`G(&0(I{$25c}dj3z+j5ZRW_MA zkm;3J8n8;thB5dt)_^fy(8}I0GZHIf1(Xr0QZ`O>A;So}nG30T%IDAPHKtO-3gPLC z$F0AZFGI0Wb2)3omTu+~T3mk~h*`nMZM=XPnUIaZX<<`gu$PdAn(KdMXcu0pTAarO zZ<0~}_O(8cGO%@?9)NvPNe;z*f2zMVxXbc8F{{mTCN;?K7qc_ur2 zJx7(p&V>fYg!4Ndj@!hm{5rX9>ygQwzHg_gV&~A%H#n>=4UFew2>a#quy3Nvi+lmV zL)c=8*30R$>E^{vMMkn5^*c3G6nxHZ!Ez;)$C_%AfZL73iVPYu={$Q8de^d&A1d{h zE_*mx3VRpxEq0FrV9RSL_lnSetm^m1D+z45b5fCG;^KDQ9h=Z7+#7K@9sW&W8x|H8 z|K=Lk#t!V9N>|>gH+ViLh)I}C;iU)Ut!a$(bCddt+ls&0}2Fuvm6e8dP=3Hv`np3 zbRe8tChybU+zOMGJX&%$6{8W>Cc}N7V@bgZ0!8w}(@_m|0g@#Wjxh2mHa8z&r!e=yP@O1nO9w3@c|_qpHd=H3*HvqsWeU5~ZFx z@~1#+jOa_n5oQQ@vnM1fo+?-Ba54UxJ6b1I&=%)Za^Y;Sw}#p{9oezNG8rrO%gSDHg!wzjr%a&ntuG}Ll6xTQL@ zj>;d4cGLT4MH3v*^GK%XXHMXX8A@SS;sccAESIDZz&}+nGqZxMEZtU}jH=vQOfoD5 zboPF1`ZOsX_Hh;}65zJq30WYelk>tX>grIBLWf+ZQ15L;3@Jz~gOCbw-AEcDp~=UIYaN zRTxlUOtTncuk~W;J4F&M;LYlT19XP5s zYG!P79if4zsHo_Ch;8Sp=p5N61yNo`M#lSmJMz<~Pirix7<6Q0?=)VL2HGWUL;oRYF{db%zMM}>h(9_P0;*%W)*90qB+uH)aT$&cGnYt77pJ4=xg{A7kJnHFS>9=y4qf7J(gqcBhFf4L z1NH_J6LY=8SBjsGZhthLB@F2mFn-*|Gr6qIoY9lUL9euhwsC~M*c>tziAGk_0c0T| zp@!-d$dn;VCFD{Nsl@Cf|AG%k(vSL+Y-M>2+hOAc75ogagh}4`)Vu$h%ae%aN< zprWMw$nRN|juVE6eLs!}zf-1OPDn&VL`W#lvCdiRHU??&?c@HhU*%SXZYdZTEwBw$ z=AN5iPdXKR<8!Ix^>*S%^eYw>6%{*sd+lqW>~?je9mcRqb#gq9kBEEGZ5%}L((pXRjO?VR@QI%$Fq9htG6aHU>7;B+;r^zQm1F^7kTU%q_#{QSJa|5SfI zp7ok%1Q0UVbSk0yfQ8EBw#R=w+}eVsagF|SLo_s}$6IH3!pf8zzGz{zNMl*q5dcr@U51D&;c>y#h6^ri;=3p z>`TICfEr>6URN1*b&5w~XwCQaiQm6@^TxGy*{vZ-@iK8dI-oQ)97@w`voG@Zqo{$S zlqmUkh`00_UxRGFssRNGcF1Y4r*P@S@BjSyo(fQ+FRMcqXKobj;X*}}F0z9GTOzUw zn6{tm@gzc`^E`8Je6O(>G~|(u7D%ThxM~HDK1jt}Nhnn$yz4 zYuji$?*M2aEM9pbV9f)BIhsP3ydMyd@1{K?;=IRq$;`#s_Gb>sjF2ls6DLys$lUSD zA0G3P)Fz(z&DUcXI5;H9omct{IbrOH&+k!5I>Dq7m{?jCi`fzrgT+1erKZN%e?`{H zs-&{g9;i{5u>GH|K!^|=0d4#MD2E9iez28)1Ai5jmG4mq22Q~20K0a?NIaqIhc^$& z`il;*GVmS4gm3TfYiEE|jixfZ=ljg-3Ts}WUakS02>{D|C*J+`Nw?k0c`eS}#m&vk zG(6VWAy`Ri*a+1*&ceb%_BZe(R2g(Ebp-~Jf1gwm=TeBtXegP|p=$G#o1Kg?hd&=$)Ve6lRQ1sEk9JAF-u;?bx|LCx zZ_L^<4}i!D$-PRo!5fTf@H=)!)8Er*6Gp$&X|S5y1i&0H>bPtsFM8vM_<`Oqc64+! zHxKK{tpTV?WYz2tOf}$nnmkVojOC!Aph!1>l{5~hoM9&_lD^#y06aAv7rsEoF9PZo z_&svrBenqSw5qpXz6Kmz2rP=I)6em&!4xo{bsazkYjm+#DJlQ3^1q)SSVlb#7ZPE- z`Kvo!b`Z&@YRyN1m*+FT=SzEYa+0j+O}^5&2<*h-WFwc9Au1_JX`t1s4ZGIrtySS^ zR^QN0QOnZRU=q<`1(zdZ{*FpPqbsZLXJt!zM4zEa3%lvFIru6}u7CUR;5si(DKU|P zJp7hB896sb$oHBNPcB=DSglM=X5t4hahVO;r3vUsf1=#Zl9NqWKCx5jCQkY6eQLG} z4AG$9m^CAO>&`j#2Hw3QrXaOKIM{fx&t`(6eFm_ok1&@=)gA{k*5}*9tOPSUjdt4N zv9Rr}w)4y`K?L`YcdqQo#2P^>r_RknW{Q3@_14qC9USYe4Vb)~o!n?Lcf7CXhGO5P5Th-S19e47_h+zQS1%duQv5IXn2$)puBznC)dWtD;5J*jGr#MV|WFKwFeWq(2gR9O67o_ zpTUHdb{|9}$4o)#PWEa778hxpC>{j`MXnVALDrWqtdk-8y?Dl#n_F81+;%)(r$%1H zkP@HpLa?GjLw~bxf%Ul$iMJVZsm&XlSGZ6~!; z2fUI7+uPeI+?FLyfE%v9>&M2@+}+)Mk-?a!;I$Y&1otAY>%-SyRu`j&X!zWX(uw4G z%_aizkF`)Jd>NyR7?HpOqdWo^V{E6iA^(vl5qGzpl|vi8bt|15QKY`EF8^gyQxnbi zVVwK3EZ|Kj9#GxWG*(ly(SJmewu`d2`IbZ_2Uy(HZLARB3Fzst z1u*2>%V`6=o_anHNlQ6A?OdT%&FA%T*S+1lx_j%B>U%8J?@X_qdzh zH!-R|U}15XDN%W$BI+q|{mPA(Pc<+lD=QjlYj$N9va<1URSQ_gP2CI0;!;`cJ?k8bK z(Uu3RMdShLfQn6y5YzWUz+>ONa&K?XOw98+q4Lagomp_|R@q0@cOQJq{gFA8x`xxZ zETuf|8J9QgEP>uKgVVMzT1SHa{aBsjF#Y!J^P~_&@sSMwqm37;T;mC@gVB90gg7{| zSzz#MYigjE^Rlz6kYg(iREF)W>8}*;GEU;wWxP)a$t@U)BYUG+$Z{^f0sde}ruFH| zXf4QtHs5=gc~l}ReNED9Av7SP41&xO;`BFn$@%&D+#oXy4|0uLa23tE{nJ-hGNI^5 zwS&l>_c1iyQ!tA^#eaPeqiGO~u1!K-g+54*Aqv6){A1&q6gDgvb=cHUPBZ9+5 zRIrl6WKKK5cZFY;nU+>#(S38a^BJ;8RthkMLiL^2C#7B-Bi!`gBy-doH5S*@#P@?h zO;5B>k2A>2${OX8%IYkt@*6VvPP59&%91Zo9<0mZVRM)IrtOr-nuvj3ia=sOh`~&@^LxKDR9gl29P-eKZ-7*Q zlM0MTLKFutk?qZgpnteOSNn}{79Se>=(@T0Nq+8GMC?S_ma|!LN=chh>&WIiLgSD{ zW_tG19Q|D01kntQeB(}A;Y}%7(bw0v`xZ^sB3(5>@^%}TYb|6x-@TbqYH=Sc1!o&{ z7GmF+;K@Ak%&)*?XnCFQPRoR$^71e;A|1K^zI1&NBTuaX_)73Qt4LUT((L%jw%5eg z4($hrED4t%1dJF5*V|snyiJcJF;;(r$G$4k@W@7G@UckGm~Qk}u6J~gZ7i8sNx4r68Xvr5RIAK9V)l((1ht{_ma^n+cvgC(b;w zzt|_N=%-^T%oX?T-Tus$YksXUMv}Zd`1%a0c<_9Ps&$NvvI+|R9k0nPAfTxdCa^S# zWM^mdEd2WR4yrVTa99D1L4X=4aZebzVc zW#RyXZL5XM{+2Erk7eC_@`>EsTqq=-t#l+ii(o2@B1o-SNF#>iD>ut61c1B)5*k5W zFmsa73UmGD^*ZNC3IG-d-`)x5x&xd5%KR#IN@}WgEm+G%>1?ZzZer-0ndRo>RmB`F=Rw&;S(x+bWQ6oHjxsT@$)flICGvE7w2iWAb@6~RRQ|X{cAVBBntxrgC=Uw zI3S|nj8YND1|vA%?YJC7$>i+_&<{zu#y@=$G{N|q2c_bL{I}zDJ#Nbnx1jofs$#>U3iT2m!WJAxf_OYH$pwJ3kLrIr|!mvEavR49-P$Vg7+b(kP$W0sVpu2fY~ z3HkZZtRq+vk5-E69&;erc6ZRyf@yrBdSq4wmyHbP6J|uFm8-P@G<4M#O$mZfW*-$M zMhS^rL-`#D|BMXtQ1>aG+@A00%F83qC|0wPO^$kWVmG!7rm@`6IiByRpxMk2o!A=` zHxE}W2+d~ERgy(C)y8TI==v-(mVfxucri&TZcKaq^fRtoL37v}^n|T`6P=^Ks8l@p zxojhb9{&QA^S9@I_(w1hBLpZZD4=jWcIEBu20ju>1Gz&7c+-BTc6xHkZ^|Yn)D7sk zxLzL=6cqHhE(8Yol11Ke+i=-+j`d$@lQ`!2-SK%u$jOMb7b9W;!NX|T|j!gSWxh%Z6Po$od zzSbjwA{?!4ZtgmBKSFl8zqeLiQ4y6kuj^hBa9G=LcVQO5LK?g7D1Q9nV9=}UQ)U*H zVUIoB59&*kmhIp-F-V+x-p~5PfMW0 z9^g;g{^>ML2*Ctf-{2mI-W6?8=asEQB79Odfzf?3db%ta2qbo!&ewy0yRDCsK zBa-i5V$r6mkX<9IFyJ5#N`&e(G9qG6|CFX}Li8^k!$yjFA6rdRZhz15VlD?UeZv0! zKCpy)-%e-(r&ZrHtspMF%5g8ljKFg`Y+xsjEz{Q3Jv-|8hw4vSghH&vrsmzidsF@Zp}#SO7Q&o^V+p_wop`#Pk$q(iA_0QMP|ypByFP8l0GUjq0mV} z7MyCG=rLhGuQS<$zbTS<5QU96RtQHkS=RKQj!}2Wo6x8<0}ffts&q^RQ?z!Y zwCOMG^Qsa3iCVRKY@v8ujA@t!eW zFe7M-{`Y|%Ckf_1*;bt*c-`2tyU(!^V=Bzv{Vrn6h+^lvtBMJCUEuB;BV>!5D67&x zVP>>LxC+USkk!WXe?SuZDB_7d|5^|?IwSi-b`z2(@bBrt`kk?6AqSyBMPX zVf{Vq0c;Qgt>rg#nOk1v9L{@f=;(2a-0lc(K?GHaDf?JeRkgqWWcL(G4n97<$;nAJ zZjkypIX|ws^GrH4|GB+YfBg7gDd(FvZyuU=5!2HC8{i^9mcd__^)$OqSAwGzxYn2$ zm7t(U{Z>z(R;Q<@CnhFFcc!pg7#i*z9VMb?1A8W;Offtt^W@3?#lhF2$+t?0+@@{n zPx#E&A3WMT-QYSC}iSZFtq+nP%eg^$5Ji;Ac5cvoR0{<`)*CJEAt=%mQ5w z6$OPJBeqn;jDm`)rnEFYBZH-aXT=Eu$}wNu(D>-6mZ4!3C&laaG~&-y8hYMES^nF>BKFOG5oXLkCpA3d}zU|Yc!hk)ML+Dh`) z4ItdhU*F=)vQttJ|DAr6jlQGz7W8y~oSeL} zVm3I@+beB111s3i-+#UT^3vzU)aWRis3?Uc{bS+~x&MAHN7;?T9VMrx&MPRuyMRp0 zJYMbU!20j%(1njYemE1Ib6t25*eW&U<%XuFarLk+K)QuRo|J4fvlWJh2U#43p@Y4B zU;l0Bi%}dL9H>6zk-+d(e*9QrM&kKCG2vFD?TEYYgr=%0pMU`Hy1n|ZUcCaP{pRK- zy0~KCR?&=G7?M+)2s>W1Y~oD1QrSX=w#WF$GUzgh<`l%l;miQveHD zJ04Pz-HYn#>NS}89;3+8%+BrUMfX!G}=LW2@sp&F^xocX{ zgfWD*zrg<WS*zGd&*5QU$XIQ9cEZhpmrY1WaObRx z5QEziLzkVG_u4rNq65}|Y(f^a^LRqpE7Dk8+z&zM^Jly~+ma6-XtV{uc>|^@^a%@k zDBWOmNoPtju4i_0GykTJg+)R~)Cpjx^y@J?@5{@};f7XMb3!Kq!`bDfVwb!<)g!-C zWJkkV6B2y+xhUW6W|Gv)8 zw>CG2ebv#`U8A;>3>OKP(dPI%H`kkf{7?^FO*V*wgM)nJD^Q3=Mn)50Z$rP7j< z2P+b=5@2WJ-zW{-a{WQUqDK$KmoGMpN%!o$TU9kRH4uz}!1walEp%Nk zp+&2prFu+E!)H6je$k`BAUTHjiY`E|3Hc0{C{_pgUy)8~k-DPd zcEH1+i+z1f&BUCXC5Win^ba3C1CAI<2z*jq<8xdT)7R0_Y!4r5s;dj|@bq%+9~?YZ zSJ$F7<`Wea<>#Lr7#NtJ*MHE?811}qz|_-45PF5>_vfY+E^u308=C^%%HiQ*Qxo69 z4%8Yy0&#bR1Wu1PhTI*-9eJ`hSZhrfcA!lV`zT> zk%=cjRyH&GN79bEH-IMnx{420c zy!z}L`I;jw_9^SXhgp$h3$I6pho#OM8X8{w_siVS@axo6Qe`XyRJAyochl8{A1D6pDnu?klDsploP_I3v;f?fC3_4VTFYN+NEs76Lc>W!O+7Z%7# z++CcU0I2fsGrNvJ)6MST=lOFM#HenSF>qV+B87+XJEoSSjSV86rG^IXh`Wc0$r2!8 z#}csLt)EB?gG+8pU!kR=6Y7g`H3v~cQxngzx~fW1NlDms$$MiMhcphQdJ^oR(L@dW zS=7#ytIAc)>e||$k0cr@Z5Y$nogr2Ag64}*Q%Mc;PS4WT)_K^t)6>a8eu063@S<%$ z&dC8@pPcmPSl|1|F%4P{8%+ z7Vwdg`bXd1MKwbZxwyO>zMMS5sagUB)qj{Jky=VZV&(gHi>v-ds%R_V`?QdJ0?B2j zlpaZIX-xrP?&9*G*@*r7N2GZE(g!q%Zm%7`fBjlsQi6ZJ&gHiwUB!0-n2XSE}p)6m4!bVISbyL*Z=knuhL?!f`X z`gLC!m%+0^^k1WE?hm-Qwzjswfkj0_gHvOwIXRhtM(Vrb@d30vkQcnr#`yj4_ZCg6 z*ZIhaca?aQZ?$YPbw?Iycwr@GhV^JZ9MTwI(jbA&|? z;_1^&lQDv>{sh)P-#+{u&{egoz4K?J`N%8Z>pJ)IwN$}Zzj{+cEv*Lda%Te1ceM{$ zM+k_CAup02E@b))d=;3g7ZYz%bi$Myb@mc5GljvP3XE%10%hU1QZWFJ}}T10yj)`yLY zD+42p+ywHKZ{NTLmqjQM1~1K0rHUdwElu9D@EDdM2r77z zaBe<)z+p=Fd=*ccXdWnV6+zRD_abzY5o-|rsqVFt{ZcctU5GnPSB<0_QZ0SNp~_h@ z5PvM;xv9Kg?yd;gmdMMih72WQKMo#+6hc+|GKIOICH5j|G&KfQZmui>EG(?Ip3a%J zs8Z~3#io%^v3v1!qS*JA+~B}>#4y9F0W71nscEK(kTV>K!ND~K)eZ{s0cVR3FSE1T zU6+SZ=pH`ABfq}7(%bjJAlzKDsJsU1FH(1f)Tzg72Y0vc2LVk;GV+%k$p9g82A-*7 zkkKIDK(sd_5gGXNbDqW z(wYh6c*b$J!3yHy;(QP`_*|C+z98l;-QJd)t&oC~tU%6`iwnKJV6&A(ytRJtt&sj} zN^fs3l<2%GOG`OuI%o;bObSNYJgTt?RHCx6yK*i9eD_76I}Vx&NQCiEu|I%%q8JMu zQ_@_vO7Y}>rOD~0S+oG zC)NOOq(b)+@YY*;9~v>H_I^L{kVezQq_ut>7KXIItlayFwX&_H#g6dT{X=5!6giQ) zPe>;3Uz|YZi4l*%8-JLl&^gv?|6zunfgzM=vFkZ!G^>PA!0r_N>Gj$GJTvoazpt3r z2g5oupb*I2S(z?BUif7(5#Lzr{O_nrve) zSnQNa%0ZLf1HKbaLQcFc5-n&}@BJ@0*utTCnZi4g+NiCtkPabMvrk=n?7zcBB*xXW zieanh#X@?gxVX6LEFYHgAn0X7w<5`(@DoOq^RP(0>{Ax=MlQN39uOu{Zm;r_s5M@tjaa=R5dgl=qmE0UinK) z_defJSpzq=SK=5NJqw8jC{Cy2$@33 z=-?poxfNcv!3sR`1giZGhu}xFw6q`EI5TO^$6kVNqCC0txuCHQat$aWytk`@P3>rk z?UliB1-TwAIVR-3HXJEEp3>o;2*Dcn4*Lkrq;?{rJBYKO%wN}so_)q#wN5){ePL+vp#)isqtQrBjg86W zu%_OCek)DIbF(|ms7^JXl~i$=_Vic=L4;9^jF{Le2Nj1hEiVseG7E<>vXNmM4%0^N z)G*ubk4)nBPu<+y+(Xb8*;gQ`XVrrvfkDEM`xo{xmi)SKQA}zo(U+9oT?Agh@jqtB z2u&jzhpuH?b#OpyV~QgKeLk2N(0>X%y2fy?JNn1^6)~fT*HETICLHwVCcW0fke*9^ z=#st+GJpPd=ULPw8O5K=aX(((Uh%To^@F$P&H(mJh+`hYb8?4xEGXnqWC#BHOFf{hT?)Jj(sPJ&1&&X|1+$kX@ySCz z7e|b%YpxMdxH&slj;M;Ds0QO2aP#vM`SM%$BTpewO zCx}MUyl`N3oIw-zs*#ylyrkU=E33N{#zO~LMFOBBaxoK&oUe*ilW#bD0(*B&+|=n?mtZ!lMljohDj&uY z%27|nrsM_X`pdk`g7uL6^~7G|S=peFN9?@mHA0@KOY^i!W4)zDi&}&iGM>8TiO+k! zb7DSN>vW0zcCl$=1@V` zyLSU{ay?AyTO_zY;1LJ%0CqX>XS{rTgyTF&_v9wR!;y>o??WRSh%=WUkqt@!qj}Gb zJu87C+&F1^d>pgb`ojWcZc{@;uOj4My!4g9PT{Uko^VXCTL*6gYk*-BdpN(NkditV zNW;s-&K}d9ifn0Vd0B1Yz|1@}9;xHyP@%LqzH7Vud)I56)=8+Li`%>bWgW^R7Z45&gVf_l+P#hIAG^Sw8|=1T_HoLiBS z&!q3rLM{`BR`wG}3}a)8140D7{iRmU+;vvcl!6JQa`{b@p0}Ls+BPOKynE@J_5c1b zPwQf;j_XA?o>sq9@uqyrVnAG`{($ud!#7LE(z@F(+FDw{rS^=l=tI9fPmocmbgob| z81M0F)*r$iC6$yC;xyQI)m_(F=00W2X7I-(jh;j-Gf_#~4fLp*nQuj^)@&u!^zVCW z=#o%s!>(*PTu4;wg3KACXJ;9s@5mA zc?s5}DHT?;&+GeH{4@*`6a4vZPD^*M>buG8?=azRYIcgyCw8Ser85rd8LxhRWvN&F zlcTX=pHp60*;8d>PkqY%i+`P^kh&r-HVy~RhHKgqd-~nICup&b-55A$t-=ev9P>RS zu3o7&r8?hAjIJ}8|CaRVt34f1{V6*B*E4PRAz3=lJOvG>0=ECNJbGk z`qQUu`g-~XddqdM3~F55*$sp!*bO+?*)jGSb>{pQZB}d2(yN4+58Cm|%J-iUlY|xZ zK=VB{sSY1ojF({zD2Y|Oau*UgZOujL5kKrp>*`D^JZdbWhB=C=yoGDvLIB^CQs)z> zs$%$PcB#R-V&I81yMY1YMH8?Gl|6D?`m}eS7VyV@tP-0(zYFIM;JWTasd#c2!db^M$}Gw9TjV|ytSo!%C!O9w&i&Nu}{8K5pG?%|)9 z*o~pFk)>sUMg6mki^f<&NhB+!+nh}tB6Mxsr=;c@$UT$ zX$^r%^O!wD=m&|48hD`01=0jY&n-t~IO$NaOwRFJ56QL-!)`?i`RH(8py?q;3LS55 zZua;C-GRF>$m80waWMUb9bdO6c_dQ9v>eE^tK1& zuY+XhO3erhVOiRcqeKD!Ah=q!lu#`MvBYn+Hw4g*-ZvmZwmr{+nJ+G3Q{fNLZQ}c^ zM7*}KNgY8N0eHU+HwwnVdn;RR=R(*&s=@!KVWYH<^Po*b(YLI{W z^Z*ht8ylO|@vg2eF!jU3!&OpQcw6E3sx`n}9F%(=AKDFxqM{-N0m0h-eyrJy70)J= z_0V<{73F1$K|e^it2$EF)6)ZWfsl|vt$|$Hg3{p?us5wHKLG*OvOPe6FoA6q!#T!g zb%96NSOi8J84zIvpGgnHYGuqc;d` zy{b1?S4>Py3o1>KIH3G-fpwjbV4y;0q9+w_Iq~hAJv`21WxXB(P=SrJ3uCCf6@!^D%p2lyo6 zu++VxJzi1%(xa&j|`LP8LYt`S_3o=#sI(+2bet(=?}w@nCRQ(UmFRp z73SyX*VS=np|`{O9Oi=c@~0B@+fYNtI97t`w9Yls%J?%f6eClgt`oO)6Juix+y2#2 zUIObEFRq|RLV>?XEo~?+{AL>4e!@ws_}#nvA43x=2K65(C@DpO$cB!T?i7D=;orTx zwZBgZzM!M23_ATKiiX7XoZyd%HS-uz2CT3{m}_%~DFEx(4-yC#CT8*5x7rWeLE_?i z@F1M5fd#D2at(zKW%Ez&dP#~n=`+Fb?teH%l%l)RFMdp^c#teDQPHO_qE>70HaLOp zEn)kMfCA(;%~2C{ZF)Z(9DI!R|3J`dpnMG`3^g@4mOLUgQJEY}&g<-$PQjctQ8DPO zHewawzX!_^O=9`PiYX%dNpQ5nvY?~rMA0#3YHF&dQ3f^w=L3(ehVX%Rge+q2tG&=K zf{26!t|17oR@s36$OQoz`&dJx?bpHS+1bIt0R)3%i$lZ`q>sJgMvla*jCgo>B5ESa z^qtrVa(b||!+2U-^~-0swzqA*0NDUK z2Y`PNwacDcM$Kt5)4L6kqPuhMYb$oIAP~ehE#PjH7eDv`)14X_GCFilj^viLouP>2 z;!?2i11Bda=pVF^7&X0n_pZ1YQN-^Dr|@{;T~&$)Lk-9+Y+nYy5D>u2VA)~Jq{q^B4XS4=z{@6wP=}NKU*KR0 z3k!2+mQXf?Pt&s${V%kffw08R{QrL4o%vKX!cLC=)Bir+ATu)2=(TK`0zTW&4=_mj~T|AO5&6U!~3;(oOwrO<1a4`454~}QtG2UtD>T^ti|1Q zCqB^c?1qAbQG4LfgvuX!bYP{P+i<54eJSKKr{4771!TAA&~+DCR2Btuo)kIn9C@y`fhs z!@H06Cj=NMF5r&^1tJtpsm%|RJuuv%ga#k>4(9?LnT*VFZI!&Oq{I#clB=&9w0TKM zQ{TS_0x#HV;yQFlxGwh{4MmQsqpPE1G;E`nV4vW$|7R=-=M<{Bd^k^n;@gn%p^z{^ z`SojP7Fk`jirxcq4ZPs<<6~tYlR{6lt)1tY5zd|)_%;6lZP^>GS2rfp~ zZO@vH@thtrSQ1;jhr{?WI6gMPJNQt-)L@~(A6=2LrI?VzhAY`7jzV6+ws0QP^<>>I z|8vKe?tf>RuMR6O7KSfE|8yQ5+?e;w{`vFw!}T>xs`$_M$E(czeC}$Y^Yil;_AC^X zlwvw|7jM!H>}J$nRg>-8UQ_QBAss^VA|;N(=Rh4xLyPdTMxb%8%yzm9+W zcy@Z)@6Olw_rudr&VQ>*sr*Dcrom-S#ox1+t#381KKDua+e`}p(}j;-Sl8bx0>-N}?3-nStIz0dSf zR6tsz7gVU$bcXTXt`+oOhMG=0!uUF2&$$8YdLnB}IYf>yU zxxVMGKXPmllr41~>zKmh!*Jk&oKO2=H3WjB5{+L;R~Mz@3C;*T-z=gquJ~cY0wL)7 z!vkPHhws)wS`|g(KgxxIg5sF>{LAyN=3keW1K`f67Un^ZW6A)uxBqTib|d<*0rDW> zZG;W;*Bt#?`V3^S`|5-#BpzUmIw2iA!>{lUqi}nzW+Wu`!~me zS96Flt5|%PDB^)5)V_BkO(2{!!I(G1iN=&2*!i%|^S!lsVTQq3c)tmhEX`?ip(t2W z)g_&Iw=zveB-C`2U1LAdZ{TkmdP5cbbA&cXBD8QxL*hh!>+j7$J&5)(1U450KRTAa zeS3Ae=-A%Ywp1g~;R%*(2`%dR3YT^Blv~dqA8yH$K_VZUZdg*r16IP6u8^=wFwrQm zCaH0E+CduvkT7mfo~-jXs(d(!(qP)k>fS4RBa3*_RQ&#QoRh5v%vETt->lkvu~kTb zV%X&mwDZjriO^JH{>WqFe%43Sb9$IEKi4~K6D7ZtRyDw|9@WF+W1jpiY=ctf>~vG} zeUbLgkmSWQHnSiYN%96~PWFMa&u96VnAYF0JA;m5XU)WC(f`el9*GfhGZ-PXS_@VL z(``W))8;#k=;;_55X;Gf6UFw~*eE5-JrELta0Zm9JO(F!c@p3s&kq#9U;|R2oJO3r zsotNgdEO~1e_@13pE%1CaVWj<^w~mTz62qkoueb|%i}&eT!uAta;J%e4HQFn)Qr&j zvq|x1j+G6cxU6vItdI})x}b7GGJPf~U+AqgDo6Lr2^*au?#$ZZn9NgFXmUi1h%?~N z_a=KRWr^LwuzpjOU;Fzh?z8>LN;G3EtAZH8|Iu;v@p<%#xP>O=zlVF(kwVy)PW#wvZ5OeQn#x55Vm! zdL$p_U2<~z@u4A>dI>&TI(61()6dBt^$pD<%$UZXBa?kGNTc9)m@-b#k~?~ThAZ@b zw>Yk2r0je~30OcldW??N;~thl$>_GAKCW=lkK!~bk(!)LuLf^POgr*@%OccbTO4go z9Nb($VVjH|LEE7uta{v2t>OiOyqbN1HO5!5>c4RS!zk5SKdyy&RpRRzTJKEVIu$m$ zVTTpnGvjg&y)dmZ5AhN#(Q_j2tE#?sPWkC$9kwYTZm~N{3_z? zD_u#WLU{*dSWT>r(3BE*wL5_d2RG?<7@kzL{^AJ^hs$d#n~3MrXXui@y8pAN zvL^cwVgK*df8V083cIYAnecore*^_t(WD?)&|O!S=ljEOj5o_+0n^4tQ8m2OXzRiK zrudGyj_%+ozEf6s^-9tXDSme^g3Ka#*~~K*j}DzSW=LoS=X*9YDZ<0BjsfGrC{11z z4<#%swsDl@%ky(9hUHCFx5bg*U7C)?FrAP$7~ul=ae8kto)Ki5k_$NVtc!;KM<(M= z*y0)UXm z(AST+m*~&TVg5L6k0B@Su|MhLJ7O*d>PO0=IUh}n2=cX`mzeLeGFbbu28#9%E{?^XZd?@iP3N{ zJ&z=frRuIV13VTB*!`)G7;YQcClOcrIGQ6nV%JDIIhCk1|VlYCFTt zo!>`2cma|Eddos$VwiF8f~yG9(Q(s}&puoavuZLTWB_kec#rWZlo&=c-Z*CfFJKVK zJ%2I8Yo_8#VBDx=bcs1GiZzZe_Tt`AFY=WZvPZ~3@6wXVcv|W)RbfPBF!ij|2tunL z%{>szV`YV`0^mhXu4H);vU8GnLsqfck4ae>Ja9!&PLkqIDzS({+k0sxblfXQ zM>jeO=Mdhx#)byTbS)^{yQDt@DP9HRa~|dvo#U1IsFoLlLTJ9PuP=WV&)=bll+Lc6 z9?P!xB<#f)e6!EA5|g1|Q@zCe;w3=YL8#WWfq54EgrhoYH$Ro(iHpk|e=H&9{zDc* zlubv>$a+dkm#!_^jgNXD_{OX$P5vpBL~(i}nN)C6kpr}jj>lJX-=gi_bUv3Jnf@L= zDsoW{$prq?T~j<5OMo2F;lbQa(U+e8R@5HwmVu8qGOF`>B7k&tW!g(H?_kOVVE#Z? z3K*}QqRN!pBw?W#6WD018JD7!sLL^lSiV{8#c$<&=27uWc0`I_$jI{r zI6%uPTc}D^Bu*a}`7!S#9RFBlH5xma#=tRLH-4M*j*y7x6QTN_#R{IrzcVBrrFf65 zsa$+JTthhrFpV)e_8xAl(n+)1IXIx!oqv)wl!C!21P0zdJ~u)!l|UIGP(oR=3u!-| z7W4=VZ2Misd>bu=7A|k#RM7-h+pM$PZhm$j$}t@yB1_v_Z5q`<9zYvH;%BO>JD@Dz zfxA8q(2EGs$8^Mdf{-qZqRbWYe{TxIKRY|S=bVf5S?c$Lu9A&lcQrMvga(RAYwP2R z01wOydQr%TxJzYv86QCkj#5!@k8I=$FIC1L__F>N%kQ+W(lT}1tX(VR#A4M>2;7(= z-#0#FbN0ouVpU&AUM>i{8RLphj9qJc2NQZ8^(NrxkKiq!=h6!$+e^@qXk(b6j5gY; z7zqWt@x8uGs|H6u2$bQ#pexr_U}wax+!czTWUs{p=Koy|{T*YfYMwrHzkV zNvs#0L@KMTt%v{R@wad?l5lf*e82ky5z1QH1mRAydZgj$);b&h_*(<)K+5(oiBcHl_=9+C!@O^IHWI+ZP_+K=^h*u>y$@Ih`2^Q+AJhVdiwTqP7SEf* zQy)^^Hp(nm)G_-l-GB6wIX&D6`D9Np5Dzp`RNRzb5bsgTS>Fw$L%_1mKEWvv&>yrF2(%U+UFGsrY@Kqifr$#NHgTJL$iYW3P&}-P=!cnHjH4GAn_|l=*{YtA16<-3nM2c8x}D3^3Er* ztv7Cj5p+OYHOITqrZMp*y+#V1vr0Yy>v+A0&B{ps1==Tyh`*H)R``+8Uttt8v`~J^ znYDWHg8cXJcNmfqeXfjpt}A-{aXrjjgFq@F+?biWunh|lv~09!QO|}LsY+6KYr&Kl z$JKsCwt?Y%N;&CX%m~QQeS3wu#VyLbLYR#Tvf^T5S}rbR=%8xJk}q1ym>J^!RSl%Se9xbfypovG~W|WjPucW0+kg~--!HVWdL431dnir7FrFq3QQF!R)spbvs$@3)A~u73qr+k2(=54{T$o#4+-lU8=6dpFTH^ ziqZU2*y!lJ#L{98@{7TLXPe5)cfi7j7BV!isie9>u2g%OLZpK*yi&(HYYJ&#j6$|w z;M4F5;$sW$z64@^j&;SZiCi6F@CfGhD${5*w$1T?Js%cNt`mzkJVX>?`yB;F0;y+M zDn`+P8rl;60AK4%ROL62(Sd%mRsP%%^RqYgbQiD&s5(mSt*5IsnbcZaTf1PUmYx=A ztXjFF8WE9Wb_T|y2s;my7*W+x#1SkSC?-F3F2hbs6JQ#~Kh=xHai**9I83{GV5@vx zRQGSU<6w$cT(;SB5@jabw|9G0O5N53S&)a_3ac`ldiNSyo@I~%WsG7N<=SD85@7L- z8eqpPw>T61MHfI2X`>mW3vQTK;7@jweh-WS{DaNO*l?aWjgQd{(<;2Y_}g&J73Mvx z?NYL{RamF)H5FdBlrwYVA>8vNOfAnczEZ%2?psH*T!K1GG4k@5QKWIG|J6C&*SI)B z0C!oR1{k%@th2uZTge|FJ5(b#z@fVpnREcXuIIOa$R1LTV_(5sY><57eh;*U zFx?VIqL(8X&`ra96Aw*ky7v4`vKtU1)HYGNl4uf^{2*CYaR~TFa zc!+m&o^em$D;t}2Pz)OzjjBM8J0_)WYj2;$u9NA8XA-=p`Okw5Y?^)*54&!iF zv1wVW=MxY5gH5Vx?q&H&Pd#-djZ%8k42qTx3z7sXwbC_$8cr=H;zb`^4L z$`W}AxYYlK=ZwcF4E&1+bVHVYz&IQjnSI3`H4xIX{Na^&0`^hl(7@o(@bLP3x+PHg zkL8aEzN}J&(0#i7^XHCT_rPaZz_bC#2mFjaOJD}$`EijILD6+qFE|eiP0!2>6G{jf zvMG|wM^rU)gbr=0KD|@)hp40!qhZx0wr&wGRA!9`py8cOSakX1vvT2#WnD2J^T z%uD5$_%4KGj6zYh$#1y1<}*${T6Wg|!sju}esIy{lzF1ZR$%W!_pDNBrbkG37Ts8` zb^AMMF4d%UK!ErKxgdEfDGGVbrnjG%Ahp=v*OkpFXD)hb)MrxRZHFBhH553NKI*mw zMZVk@aFIdKfIg6yX?zn#7kg8@_igrT1ls1-aQYGeMty5S8aFiCIkAi{0BAA_GP1ma zf*&jA@0%NdC5Q+Kvp#&Gpl;?bn^dL#PPESiSk@Cz^FKM#L^Yg3HVC#BU|QdY z(M6qWYinU*l0o(S?B4Daud}MQ7+oA_=E%-pIi+`Rn=JE9P0nV8&1Le zg!Txi@GM4EHI^VExeA%OyEkYjc<*NEpP1InvHJauaC#2lJxoXf&Xs^WZb&xyS^M&I z-QeILw1MtFE||W1w19_4)aKtkE3+kybSTY4bN3dZ z0%ijm1`VoPOG{Dq0M=A-a&nTE4t8n(eolcy`o5)Q?(^q|f`aMegR^@bf=Ov0>D}D; zPr?LpBhY<;`?j)LwNrAF#hB?T8Newr-rEY%8c@Rgy}4=kjA-AO@TCEa`)*wRDeiN4 z+;*gvP_XFIw&+rWMAKYb%SBIb-SqtGbPJ2gyum8O+2z}dJh|VWjcx@=8EiWAfD&=O zWbHf=AJQl*f6a$-QLMh^D?YuJ&*RpZi_>jvLE>_kmfbrpq zv$OXmx$tY)#yeciY{^yV)lT+iSv&TiYcz#W6NJ1az{bcPK0FA{zWIkWzMwnn zD%yGcd0N6XLB(Sz=V3ShuIthLFRH>`MFj)1ATRIdB-d)dGvIc?mAad!Rb#Z)=D~{f zB_s{nq<^MLvN`;V>hf|6cU1Cm9r;0`~z8`ciq#WZay zcg70MOJ6v?4u1ZONdIN_vQWAdjBH=qb9CxPv{z29O{rK_aPt)r8rTKa0ePU|r#~#00@7Kl$ zzZrpsQF}O-G&B;#(bA73IXUl!bmWF)-&bDbHnvFZo1!42@&OSIMg)n_(e;kvTKp3t zT_<98T7iZhRtU=g>$WetK=*KH$vHkHpTX8)!tMU>NLsqW7A zeXN{mBWL)AIp-*gtGBIu4w+5m=GHc}x`7V_L-FFvLmhT?KtIsU0l-26FDqcLu~5L8Yao(@N{_T}rAPOH)xYp!bc3^ZmrvpFXooFp#Rz zWi~8hgum!f5s4k6kMj3p{lF9T4-10{*n=zqea?Gt>!&hM7ZS7$l&jBDiTm|?KTtYt z$UK*~S@Cg;y5SM`Rs!V&UsYV} z%KgUJJZ+lRzsqA|7`mlP5@V}RcVE_7${d}^k)@=ozY(ehsy>zFap=9@=XFyE~5S8u@r4an0t%8Mpc0~j68}2iKXYg9ojVS4-m~Ae*Lv0ypH?yn z#cm_mikvB=vzuR`-p@8#FuZ{apw^vQSmrA3$Hknsoc*_B#FEDVP8P5zj2ze{MSi4_ z=6*PW(w|{!ceTFQT311#&~Jyxu9IdMt(5A-Up~Y_QEB zzjaFiYzE{$=N6x~FOc7nb&c6#j4&SgOd|Kwyd<*?4EITTZu45?lp#$ML0*tcwG4Jc z>XLEBq&cjDilsM*godKRpuPhm=(qe|P6&e)Nu|E3U z(?k?3zx%xNQDI`oiUrx4XIk@bK4wQNDEtXJ&;8xXm`cB(xZG}B_?aa!U*<~9cNKQ{ z6+ajrnwc$uB_8ZV8&8e%#?{V1rABSGTcec;9C$h34aFCEWf~#wV$~arKYs;KWASov zMfSTs@?utvrjIglEA44-r_m1uT^8KzC7QHck2Y37V3Fc?->;BW+a!$=# z6rX^u1e~lA5gNSH=8Tk|-Pf0s&+E^$uN>Yz%>Qm&_~-87QMW64jD5o9m;+k4mYyC| z?{6@bvrNJ#1cm5wT{k8>gJwsm4j1k^X=g==1{URm?%TS|<1_RA~C-&)tk zv!uiPnygFQaoukGYc>m2?%U1TVI%??<{q%eV!uDBA|hC0#9YkPkiEPm!hdC+^kS-z z(9jo<2HD^P?eXP>#xD3dak2+XN?pOv z7Ei^IMA()0fl`rd}=- zSaDBc9&0UP=sSbmIKu3e;L&(riJS7CHtB65L7NN2M$I(X1Lfo__JoB5?tz)hgT1LZ zvuq|4xi|rnm6ca#mxv!~u?K)TK+opb*XuOdk7|=tqpPDM;!cKKo1>o0z;ScK$tGbYj;Z$V5-*#PEzP*AR7<8=-LRgXN)zojuaR_5?J~ zAd0MTec1SZ;|N97({sn8eQslV6KWOw1N)#SiHU;pZiBGLgxcEa591V}U z?I=5gm1=@B^P`sMACXqKNR}UDqLJocp_bLz(3Tj`(JV*qed>BFpr8;jlt@a3{xU>O zjHnE8cW?A^FKQQ8sZbFXjok2^-uVgl*BFpi?!x~lS5NbpO8{LU(&umqg>zs5$_7LN zau^h+wkfnS#zYXuBkr=ayLLEft;Rek)ddsG2A~CujA-g)5o4k8JHaU8Te%gziqgFW zkRXh&*^ci3cLx?3k}eAp3+E3{poxLI!VivPh5F|E6l&s}Fs-w*1uL%kah)7BVCfCJ9u9pjwKLeox^uvAiAekB#sjWyQ z0%>(D35aUriElMXnnba{rvDV%?A>Qri3h zb_iJC8G*CxcorR;%i-bSI(cNI8v=0~V>XISft6LcFe++2>MML}LkQ!r#GEPVx5Cst z6$7M$kiayD45k1)_Woc5Jy`K}0>8`Z^sjFcGJM3Kn1EIoLxC+W<>^z6!`ax6fscph z(+lC?-hxawkQF*A#-D+f1!j&-xY@wat)JMZ`p@OX&&*6RUgxZPuo(f46dmY#kaXj> zrZEv{rn}lNwgxsD`)*bQ=9ddQ`3YVeg&0}csVtg^G8%e$A*yom=wekpqK$uMCvIX# zGh-xilP0MWrioSzXY(j2dnL1Y)dUrLad~-AF8wvcX)kV>QG|7XK4CcFc0FifyYCUgpk&-LkI(*nP(w!H-BJ}Vr{KhT>%Y!joT zFG|%*t2Ulq4OLaZJ#nHdD=Ln2yjyiurShPzL+h-a!vi8A(^_M&eu{rHne!%R!Movd zURU3S&O_Is#i(38l0XoxX$G9w@#kkz9FUE02T>oZ0yO&8P}Sg_w}VKycUp8M3_yFa ztJY`i25)Bqk{|yyzBsw9b&g4ybTDKZ94u`i0a+w6L4~wkqVUE5iSu#4K~H(lh*lwG%Xp z!GOm^CN>6SinFNzm>UVfXL9LO%_0*4tM5W2k|P_TH3q0Nldl^>>&oG%!sUdXus=FA z75?*!9@LZmm(a<67#b364>h;VNK1p%pHslUK85^S4jo#6(*m`6qu~7f9DsCX+JPKh zuV){8l2qx=@a0EP9;5PJgFzck*TuhoIs`~NFS(2~6B`^wmy$77T6-Ys=H`Cc-kt|0 zHyk=zH|R$gJ+=I$%fqoYvb>rsTiif#ea`PQ5e(4BDUMq_-+}cy=+sL?ob(|TrVR*6B-`uG)Py>_l|zt} zoUAM>eJ|R{r_?-1d%If3O{rt+yE(Iddvm}|ZvJSG>80fOda^<=v%WxVjciI|ig!c6 zd->3F6s1TMz)#epX}=5`&w-*7>6xyd=j`ntO+s72kt6PhR@z4~N|4< zA0Z?F>7e=yOvLYpSEx>pjDXA+JJG7eO%IURQEXYoM3iQ4Q zd|H;F#RBIAn}mQt%!hqaNO#Q`JK$@Bi8XXQUoT+O0Ng{v2XFzF=oSb$V>RnURTuVL zzPy!x7_hCqGgjT58KV6zH+vyayYFu?m#|nk#f|jGx|KNfhxa?Pjudo#GuJk1C9Q;> z{57vKoO<8OYUr*rUu$12=3`{j!DS=ScPK=bEVI-)JGsM2MRLM1(g!m*{&#==}g1Ep8(;Brkc%xy$-l3 z=>nh#Jxc_j{3RtNAdF5j7zRwqyhZTYXYdh`4ESo;-rlWkN$pwr$p@Muwxp1bOh?#X zD;a^i{fo{xD@}(W;PkeZ>L&vS^o#e$H+q%qay#`Tv3pDDE?LHw`~)MVhYOhhEz@ zsHlnHo1c1R*Ezk`lV}!_lPe0o1`pNv{9KsHfiTV_=9OI;un;jzs~htf0n zvkBnF=QsEC!4O9*Y#i^DPc&8&De+eYNaaTB%0VI(D5%?Q&EY?gS)K5@fNO)Hr+Dz$ zSGbRr^N_tC7>I*$N(t5lyMVwExXGC6#_(1kTP325pKT-jIwA029oeSn2lLw=k%LG7|7!`F4o>jki?B?WaIRa4$ArI zO2eSh1sP|jGS{9dOcc{+f%(JsXFux>^^BtbvYYC}%uW(4mbl2>EqDsmU6L z(64X)nJyr|p?-!*5VZnLf@jV6l!GF%6e!zl_oEmtNDnZq zaJxVjW3v7CV5h2uYGd3sBQGF-ius+>D(KIUN{|&5+onWrO$nR!IszGRh6ANE02!g7 zp*tG>ykHT+$47Wm@fE^!frCuwSEJ=>XG^lr!j1Cylf~%)(lo8&m|A{R$dSD!S=_m% zk*mz%9h`XF-BFvrSCsF_YJ2L+tmtZD zz)eCc2M`xY1bTSq_fB`$;HQV(8)L$VW@zal5@uvp=jkeTDe)sk(quZr3WV*|JAhWf zp#io9cvL-bcy_^06;Y9_P|H9TuMm9t2~pX%v+#%b1) zI(wu#)s?-^9%SzaC{=5?T0YtCjaLtSVoHU+qi&I1UNAdQkt>)Tp~GR#=1%Lre}w;K z*NLj3g4qPcuHvfaqjhe^I3w^!!Y7y7(Y9znZAQ(@y zB|<`Mg*rOmGyFO`gCXnoLm9#jCD3f)6A`H^9d~-K2p`vh0K|WL`4T95&{7QIf4=?@ z9`s)ISH02Y&Qn$#V+zutL`?i>N&<0;*O>j$O5QAQ&YcKxUmrW2sga8b@f28SiVlCQ55ADi;BH==qT*|;^Jjr@w#yhE5#hC=Zvk(N&C|2aH{j(tB*&r7QSNkml|4seKm8s)HF8m6mqS?;A^V zg<-{NRpP>Ei@fC^n_@rDiW{G_ytP;wS`G1;D%wB1lEca218eCMPHA0g4!G)gH%#iP>fyD6c#*^PAuAwhhTRsBNvBXw;A(&z}Ic2Dl0x9vtwvyKeZz4QoBT zTX;bqGR=YaQunI1Tqu>TX;W4thP?+d~C9m6Q5=4liK81cKiNGZ%XXp7D@_)BWez{lT<3tzlVmIL%;Cr-k!O2WWSc!so14Cb_xUS6)bW0c6U3v zx{%%JJY`y13sw9z6c%?zE*)OshOvYQ^pZ4r>+rgqPi8rvuW1s$VPgZbQRelMAR6OU{?Cn3Vq7k$E{@J8CA1*3F>6e|gA`j+uGg0exwY3Z6 z!=wqoQ}q`}2*DRB>T&>@e<1Ql=z5Q(w{!TNL@+b!CFUg*^)`g8d83UT}AV|Dl+% zNyNM6cf*<}X{DmgcY%`RWH<~yqgJX`f;T zRVV<^)Iz^R?;E5?;;j#{Bk*ttpC~HyZ7{d0Pq*g2yFLT|%fH~_ZpPP1xnAGh4KLOn zoI5b$%+!f~2=oc)VSOJwn6IX76s&`ROECh7VWeZ=d}nTMZl|;lleH$%XE-k$G9Y4~ zhK7QHk&$of+s>QBkkYF$b?(QWa)M!A+K3x{UlkzN3gw*3_;ro)0PBNR-1}L$1$b|; zYOZFuD%{E(1JU0i4Emt>q}wELgnJ3F=p6|`LBqtxNVZfG%bqouT0m2-Ws}ym#Ssa^ z81X{s@Y{!7!E@g{f`1zpl&sbj3@ZWu1#k;!*a0Ho&jX!)5R9hu^z;l)FgF_-ra$9h z(9zcRT4`nX=*f_}!Y1L#VTLeOXD_z3FMiX8qUYw-MpEh{{xnH#W(l+1&zc#(WqfjO)yb{2Rg zb1zD^lsCYBRyQo}vcC)tqR1fhoMka4_}y_lNL)`gP!R7~QPCA_Z7nc%MT?qe(4|vO zzO8lr0oN2|6&3EiotN;#QfY+B06{I_ueJqT4PGRGn91)GGfEGcgM(mnR&I2UnN^cD zCL(HXte1RP>=;f0WK!zI37|v7mAW*0l2K)ODolm!1eRianDYuFlTvFX03mSem!BO2B$HJd zSYk+8q>OMY*pI@f46Dgc%}$Q;4(3Kiv+!93lW2xhQwe}>AG!scHP}d&CMSX$Ima-` zzUsGUVDNl9?O3~sS{kq`2MFc_V87(=TmadG^(x@8dTAQmTpsZY!c@)UH?U(i>;}ji zzY{On>XB{oas&^2>o|WBaEuGbceK=z&g2clSRWVX4BIR%N1FnANumG%P^`SK^#~0-h(Q%gGsFsjb1z^g z@)H_wND(RnkBo%i_^him4V2wyG^SL>I6~=s3u$DBaGbJTlm~G7+=NYG6t`G-X)eI+ zql^$L1_;KNYz6Qg(z9}L6)MZyt2}&6{si~I%4j?hsHYTx&Q@AFtOD>YCSmQol-7Nbf}eAdmnMN5sWq&e7u3WwG6q&LN;!09G@UWiK30xuDrXyPKcLq~-@@b%>a0k=dc>nWb+ZW#@$g2Ib}G`#eB z2b&Zb?YJtU{KCo5m#xi8EC-G;3uhlsAP1}NUMv}>g^^K|JQ0H=GVFssT0WUg%d0F^ zgFHidJ-JYe;B#3W02-`+GTQ+`QRH+H&v@d&LO4fkDa6M&IXa5lZ))X9AbtVOdxalC zhHIBv0AL%wcEDay3Y#JI!w`=A91)Pt2U|nv2okA-V}IS9EyJ8c7lK{=VE>}MM|v*+ z$favDSWA>tRAqjUkROaTwCH zv3YP<>#Y!RZDVEz_=elvyW`uC*#Sg0poZwq>c63|3i`e(HujKXIzl__ge6XTg%{jN zV81XEPmxgf_us#)q1FS{w2I705cC5}4I(ErmP{$l)0TT96s$n>>$P%EDjUY9vd8e2 zLWX2gO3Hiy^##P&K`R99@QrJ)tjbHPPQmUY_fziIY;?T+k*chk-{{_}qVqUikg7FZ zH$`dlE-PW`slKuhbUF(5DRI)Gc<^17RIZHUb%{{YaJ)qmNA7e;Z^FBgrnTxo{~uDG zQ~#V>rVHEtdzEk5vi?h15y}J;+%rc0{Y8h7rdHSg7UCk{N;}^fC1;3_ja`7v0MAa` z3t!O_65#5#7i3WEDxXm1Ckf?7WcP8^I>%e~j9BC{FEkFyTyl)J5zX6`TK!Snh&nzu%CB^1= z&hSpLbQ`%6D}Fh7AOF!cz{K56)7QTy-ar|>hKGvt7RL4^i1$QvJM>3Gl|+U^%0imC zLMhMY*IqsFxPhFZ$cCz#ni0WqGy}GEK${5e#QvqiEsl#1d|iopXJmmUR6^;+=+6|~ zTxQu3@;SEhlE6#27}IcsN>&CpZ*-3-V?k>ngC*%QD*O7Cc_ULN*?llikWEt<`Dir>ExR@6{!{>Zc-Y(N8Q=@PIo9HSD7Ji!f^AQ9BL1CyXw-4ItWAQP3S- z{Xk}+oOvQ~J23o8>4ZfQ_=G`bNGaAPhn+WCveMM76`_f8@Q+GpP?IC(;zOB>0ylAK zleliLXi}1C(U1$0P6HfzEa1()FpR^J;jhGTp6Az0q2M%#gGN5x`k*-(42W-W9P84f ztk7~$(kUEj=+&5F*+E;CZY7Uhn2i>nq6oEnM@kR2s>8l&N_X?~6AI_@o5}tB(L_Hhn!{CF7AzBx_ALO5RSW@5?)jr4E#$uW zg6tpcNR$&VRb4e@0qmL;-+@>!Z2Z!>bug!2;%X@==f4j)T9Wn8%bj-w;nNVULVlDx;INN%Jp2g%P z8jr{wl0i6>Cy)VuJJHxv_o#^LQ5JEW3!zSQEe|K1Qh2km+l^cF`(|U+A8@m8-jfZL zh(eV^{|>`L`)BL8JQ$^xR}bB`Kc6 zOb)h{t(lfb0|6J83@nq5R@)ANg9HIEg!8XM0BvOybWnsPK`hBz@0HB#>-MDPRa;slnP+-Ue+z#W_JOpQ9w{^nXZ3zoD?`I|$ zI587Maih#wsmIY0g&V!g7y>lMPR}~dAPlF+HT}M;*Ai<)(gd5P&54Ua$pAz#uAqiH z8Nz0OYD&g{#cWBx*Jzjg2&xox#$fS_|CM(ME50Rtb;>~RQFyEu5h5Ew_+nExv;c91 z^V^odH5lC{TMm`{v+AlG6TtHII?$2JW$IqM`9J4Xx`$ z^xd48X`eC7FpYAP9J9>rsC-{=8hg9``%gS0hgq8v{nnSgy`z;DPH>D2`aKr1O|jpF z;C7|e>iA&TGqV;w?fW6;w4uXzkp6svXubW{#!OWvnmN{$e$NlLAYh3AlQfUl(uuxt z!KU^}?WZ6f#XU_elfPSeE%=x8F{_)<5@BFthcrQWR1km?;35UD>@DL8t}fb^$VAo}{ivXpX=P4%&jXWJhR@ty+dhdeJPie%oxmgfgAavK7l637M+ zX#V%@Pts;2;04PZpF?A7&KR6&5Jiyr!d(~e$CRhZ^9|#?O|6mDIdiDVsIa#7i=K{n z%k{m9{1&K;kyBfflwSf~WuLrFQs6z_w&}&lehUskJIG+C?iXP&SOBi`?SFUhimP=2 zVe!qwc)@cRPm!_)sf5=cDG~ev8}~~)WtM*MUFG`7)uFxg?|rYV+Jqe>Z9v_D5qwT! zDn#>LCZWm9|9%sW&}>~2ll6+`wjcb2JMVwCW$v~6ZNIs97N%2l!_J*3q6a zrcMhz5{#)q;7JULp!UCQf&eOk=@q6Y*g>z^_Dz*!zs`cWIVCNv%}nZZyD@u*kD4%1 z63}&4rTKHkrvY!A7#%%HLztqFl{&6q&*p&3hc)Df04)NzHiS~b@Z1Msi3u*Z`|xNX z!Oj!5`@^uG1?~V$I}0}ZaD8)+L``e6BuG(3VK@}*@A=MlVC*BS1T8WT2ieAr3$U@Khjy zv8Uc52uldQToE83vas}bPR#LW44U}(lO$J1$HXl5USgWF9-c$ELb}Q;Aa1p4-tF&b z`B*5Et#{1313Ope;nWjHbeKeuaXf?UI=SE(ciQ7I%X(M_n)l^0cn}Ve!Hhyq7~T09 z8MAO^06d-mtOquq6}M17!TytE^$p%2yE!=b+TN@DqD?4u7Y~zrGsc@BpjcDJ7L+%e zc%c9AREeK=tFEjB(j)v;ACH8Zq=50IQEr5CccErezq~XRf^b#<<^wP!_;}bKRyM7E z+v;LlX&iifi5Q+zkmWnbnoS{K&6!zlt^liKaqnft_vfyHr=_MANw+>XM~gdy^^#y) z?4GaWvhlO8aKXa6gim;-@b4GXj`Ob%sF(k!RV*lFVuwvUgkAl)-MGH-J|8Dz|1W@6 zjH{d_w!k0vFnpgi)q2eKz2?G#@XOj76Mm!E3T3UT+UvjX+@>#!gTlKWh5hNe{MoYi z^hoye&%!;h_Ai_cvY+$b13R3-BpBT12X#v|5fH@m3MwdE1B6`ETS@m@xDpY^cq&3~ zB-R6+p%FUhR~6_vcRDi@gaBCxv8yt+X>#b70q>9FL1O1h@PKl6b*+`=75A87HWCVe z^PMwHkv**=@Gcud>zsxXfwg2vIXG7^<6xOuwJ()!97gdF35Bg|@+psq$t@=E#KyVNxRq4E&yESVqmA zg7r@IaE^bC;N@!DF48L)j$Pn{C@kFOWy}3Ph(=t8PQ#mw_M6K5Z?gX~yt8m9jeou| z_ebc4j{3T8W!8N{RHzlasTrbL#Bpox08jm)P1lqk1B5tWQ0fV*d=hz>lrM;lmcii* zP`Ahbd$=D2&1#J?IjE<+KB>}J_BFDvu)fVX|6K4?0br7+sl?(u{)kyIT>k}hfers( z&^|xgZK5O*vA%S|dVdN!G!9DbP6xL!SQo zgeH~rc7WtV-MeAfvnvh0=?F@E4n<07 zBfw1w1`YxMTCRgK^-eT7K6u$D$|ObwPApY&z0#rOw`v{Hx~PD6!)yUCq7jW-VXbg9 zVVW>ZPHd}C42XL>V59X`^{u?ttm#swCkpB**aBh0#lx?EdTTDqg~w>MLMv;W+HRAI zsNgO-<`1`|dv6U;c>O{y2Jm0@={jgSQ-{-Q$li`ZM=@|rQti<}%W>qPR^^GF#(Npr z15Qi%6`KrEm%t|oWSEP7F`x~7Yt3Ys-&ybV-@8a&rzKJQrgm&jqGQ{bWxFp6nUFP9 zb;|)@Eknb7TJ~5l-CI>p#unZ7;xB#a@dfeeM~W`KrLXO{-c(nIaK){ZKN} z=Cs^53|Cpe7YAx9AQj@dCLRkl85_0C8C=S^5vQY^r{v`7Nl#pl`-Np0@0aK94 z+{B_1+vjOVgDr6279WiBy)^;SNcd0`dCUt}FK-3#6*!jE(KHlw()~Uz&2PeGVfGgrWVN+DTqulME};Wm|#wpD#5Fmc~FDn~GH=RRbX zW*74sSeG(`Co7A^^TT6AZym;Mr?NR=o%OAKW?n zzHo4-c}5B2m=vF zPF*%(md6+1`Y6%2fh*B1M;8_?F+L*w-iXeUQ7X3IL(;(IqaTl<394TwNjyxn zo|O*bMT!JIJb&|IV2us!LMbHA;6f?xMB6udCrWbgJHk!i^rz~XUX4MEsZ*fW}p(^`ia1%fK8hy8iedVG{wCJkEggs zxQ%NMm*83f?oIo3Iw~_1!M{t^_bU&=QiK%|FOA2Hg{l|pF|h?XJlHeKk5$>Fl)@uF zz!xDX%vA!75I|fBJSh26!eom1EO97>M2u4(Hf@gY@?lf-n>f7f8z}jBU?6*faXa2m zu)c?&w{D&-WkH2&hyR%(r^SVbNkv(@mUdoHaKP3jDWb=(T}HEKFaWpOv*u9_oHH zH`TH%T!t~C#-h^gh>cmIZ*n^eq4p;72ssnx=X>(~{1|tto&ok!UozQsfJIa40CUGd zx7PxQghZZkku?LUCbgN$@6pJN=^8G92oGwD3T-|7xW0Y3g=mLC ztpP64KtCmVWf?FKi`!HQo^THNb&ZCl1IQE0B)bfwYRb}^X>J2!aZNve>fg$5IAPCMWNIJPuD%5i{Yp(FKEiN7|^M&&Wps|%8v0`1@0 zmOOaE8PnayCW<_XKqfK}hEeA`twxH5g5;K7EOtIA0=*JBgEnVa5x|5r#5)$*GPrh1 z>%;R*fGsmOcR0l_!iF#OQI$7EAR7-V^9Mcuu$!M!dv&rGK1F;xVD z$FpPpk5XN;pBtnM;7ZX=p9%T${)QfmxTc~$gUqIlb0 zgkKuq|_u1vxu{il}m2GG6t#7tP5x_|n&v$^! z6`<5Q1aUj*rNm6z|xnSUL4uYI@w39KU$?l8E_#O!R{ zIgVT^WPIq1u0zk=MQ647#>6Ntr*-IDfKJCv-Q=!omx< zz^)k*!QuA8jhPX;P>kPxHpALO`d0dKgP&L(kLsF?phxs-oqY4Z`q4l5`;%$(7jS7UHAI7~)SG z;q6L?(hG}qr#sHTY>^U!?90~Zxv=3;_Wy_SQ`0g?`Lm^#IF_4DipNrbW@`r~r~nWgM3gdFDcv;Y zm|G;h2hg36m>8^c#L8Iogx?RLM{CYr0y`OS17Gr_F5gYGpS}dJbx5dgS-}%#If%s` za-1DS$Co9&Q~FXf0fG*o9zliI9wZ(E6nRYI)Hr-s&BAEHqtK=IK!f6g zd%ld+LTUTjFcy}I>ey10c{ z2E47njVaT&pY`Qu+R&*mvLL6CO zN2^(q6YM&nZGL$&%Zpe^pL?^Cy{jN!ArB+dK>fzko!BzBs;Vi&yW??Bvx%N^l!Ky3 z3>X5cx~}Y0WQ%G;9+|VDsXTvJ=(2A60mUMw{u3@CA#gu9uw}vh{(7v?rX=|{Ll7Gy zR|($+F&}2!&cs9wm8B4J^jB2SeBW5g3H$n(YA0*;r%Z&;7FLSo!|<9$XhR`X@tDnf zV2$9Ge4*5d#C_V#lne~rur7ez0CMCMd&Q;|O3sho{L{F*erlfO-(2|d zA+$6~B1Go7T4oxpc`{8*wU4<_Ew#A_xL$`i5Z(U>s>L;tLQZhMd!S6xXDtwt^7+t-oWDm+UCVhzeUH+E?A`MM(@s_o*6STeqG0Y@JDK&qXQW*VQId>4KteSW7B zr8ZXbD?K?3B52&7u(Kjtph01|2R=98tWqO==ExHGFd(3{2H{3xyj*THLRUqp*7@i= z-PkYzjY_jLq()3-2Sw5~q9a1_Q?b0-)l#wU1;C6kqgO;i78U4?Z;fezL6Wt0tl%b*$-9=Y|kFwc}6E@BaxGR26QFZ7{6vfSj>7rcfg|& zR!IOR^q3hoh7!L~bgITtU&aNMzM;e9<%Ae8@JV(KX&M^7rBe*otk@gDW{JRMh|BuE z`PGR17NH!EZdw?7dFv|%*Yp$V&H>8rvIG{MP5DKO)oni|A?mQJ>mTe2{j3vNn2^B@ z?Shff{sYv!l%cVizT_egL0H}wfHW;qi3jEnD>pYc`1|mbstL0^jFD-|WXWdyV{T_h z)TBr}%{-DQc;^J~5@`1Cjy2kOu(s-+VK*sbgjghn03lznGp#T)9#{+ZsG%Ry=&{WN zmHyvRTH7ja+6g~T%|rn{PdHM9SPRzTxF$zLW3p(GWv zkND*NoOH86=D};o&|DMYL3nC%p}qVvqob$i9(zBpH}}^bYMu65(5#GjSv^lKp&s}_ z+sHf(Ab6hqSaF=Vn59V8_MVZtC;CJ2nJ@Gg2nR7s$CtYn&uia2*ydpOmr8s>J9*DG z#KQBZ#T6=Q_XeGM31rzo9;&D)MJYN%4L^Q}En2#|u*i&V zV&-OJQ+=-un_4^2%PP6pgcVh>t@a)$qIGVP_!QrHEoCtdWHM(gKnW2?0}(}#ATynm znhG{weLqfo!KKzL<8DRq!#$zy(u9NrX-8nW!rbRB9)Gp?5#(oSN}y`1xYt$Bit_hl zTLWJ7eTe|u7gOf`n}!?&|JA%U9m4d?D%ZrIJ}yKvdd$ zO>1?QrIo#Z6>w&8MXTi66ME4Mnp%i{DS4-ubqF%%OXeX|U5hFB%!T@JcS4#q44lEC zWoBCOeMMksAa-{NEN}jO#t#6z7MU&H*jioh`Y@2%<-hCq1{uVn{hnw72|We1$;rty zyGKVyGkp=VCT7xf1xbSG8d5k8FtSgn>ggofiJ7Kd^&;Abb@r#f3fz~Z^3&t{@!Y-~hHa5n_ znd7~Z61=5uoZnn3Er|Frteb^)l;1vCQeNM6+C8GjdbO}$zuQL?m|m+3_7gC$g@%Qp zR>D_vm-wciWmQvCV28K7TDy{?c;XfAZEFM{pWb@qbxwNr!shP;kFMar-FK_iD>31w z%g-5|MwyF9=PjH?HX|g|@7+W0>lnQjdFx+f+nQ^M5w1PnkB-07B|f5R%b4_tofIl0 zkkElP+H3pyV{|(If0ivB7W;;Vv>oZUhphr)`TlcMkz=d}o~WQ3J1ISV2rNOx2p65D zhqM`+5<$~KMM()iVDZ2I;K>9A1p&q4*VkE<;@6&S1rOyq|M_#7w12HRAVGjq)EX#6 zjErkzEmdwW-CXwytcY5FTXeayCz+a?LnISqszYq)<@|nY(B&2E;Wyfo}4CtYTFESAPx-enm6r+i4lkl6^a zHy{NB9^fXTs4PVPTMz*nF8hP^#SS5te^P%cdAVHS{vt#G^%{}pOE#qrfoGm7@~bXR9a1mf=Q+-?D* zF32l@rOUf_?_?exxHPlk9E348x8?gZ8zTx-I-?r9Aw^OotD?oi)4%RNXXRYoT?*7p zNIX%>2|WUg6lC!m6lPxdCvXdc19W603ROc@RTY$XQQ3-q19%gsr>4HpF~=t)0N;EW zM0Vi(g-g!ymF!X6q{nZMCWT6kwnt=(=s)nDm#(JWG~2%slIpq7&>J33uU2c4SggvH zRyClS#5$}it}f8+ApWy1Xq)|LwflI?&3nQ-Q0B&KIS+WHh#DELNG>a$T#M%~-p`p5RxhB9 z?H&j*_!afzfxP6+GXktjsEeRD)zlmTn5HK`m5(G9w&a1Pc6Rcx(*|wb2K{Zknjp39 zewQ9&j03SXZky$+K?SHQRJw6r} z6MG0k6aDDwA{);LzL5#=^Q|z1$Zf}f(I~4)h6H)@y(!X&^W##WOn|WnuTnAcnFs@;G2WmmgV$~lwG#0hNK)=n`_dr%m!edpKK80qMECPU55sn`C2$^Svj zH%xXUQE@RYpq7Dz8x;c+8=Jn$2{ppdU9ud19rBqhxP^pf&m|IgglZmCmX0!D41jt7 zndwC}+BsyHcd2Y+^9hJBz`6zzCm9*p@+=Q?`xwJqF&V<)*75YjL_mT9QNFZ*Uuy5h zSEQnQTZsm@%Jn{an~*yU5_7#$M<`eV43bqma7oOWuPm+`I3NB!<_-~HTlUPGSTs&Fu_N|LmMaJ zI+hKE4fH=o)WzE(nYY+sGP3c%hBa};9|aEQ+XX5NawUX;*n&q;<2Qb%AsTko-JHrN&O5+GgvIw|wtI85uN;^w4nlA9<~c<8X~5U;lkTVu>E$3|Ylh{QQi3^;I+p=|#C`|EBXiP+xWUP53i zowU=(g$30&>1+*{x(*o4*T28hcah%;kw%a`RR;P0E-WJ>9`s!h`h2oU3hH@v9Y7w6 zHQW!eXc&>%%H;|+EpBOE`wB9VgM)vDloVn8iLBk+bW~(&{tevnZg{C=WUOWT6HZV4t7@f2*VzSL=nJg?>on1MR*AkUu(Y*Z`~0~VCd;_DOz6f8A*VaI zTlm8u4_I8m_^{p^@pJ>qn85dR_siFgg*w*O^f@{jEGPZnb91SL9YJfIY9O3nFx`k+ z@$1(wh(`jmoc|-~ssf_Wx;0$_(%n6PNJ|SycQ?`nbxf#~*jI)4GeVHNdhWd?^p8hV3@3 z_8*lS^S6CzBNQa#Q`pzR!-??#kx9wm05Z)Z^Yrkf>oMDTDo;CI&X=B_Pn4o^AdK8l zYSVt)cG>~lfEjQ!b&Mak3f7uU7+2L%9CEzVn02|JkjYr7!6>{ea}adFweZj;EnxNsfOk&y{YHAuie5r`+B7VppAvn`#S z*|v$v$v0Ew!SPu|MfA@x7gIVoV`3r+Thk;if;p~~ZVkGS$II4cJp+3waR@IBx=p?9`!bAJkCv5mzYx3H3#t=`OA>YH9oQMlh10# zt5{U0u$%?LJ?I&x4qtVlMRhdOD9%0`It5w2mieOq5gDY0J9JR5!ItO%f z2mj1&uvjs1=ES#0501Ud0>7<{VYkGZEtSfvj*geSCwIcb!vUp384FA~x8r-bk-n-S%2#`RF^SXLG(9bQ@& z(``#WL#Squ%If%D@G7`z@t{&Aj`}BEMbO}5n~l{Q=_@w5NNJE&&bly5#Evxki*2r=I2Ra zYLs&rv~V5F3NqN}1k4udqiMZ}FhSZMJ!J#|&dp0@oKrQk`-%+A*UVB%srn;}i1EgW z;vZ{z)s2P_<~?s7Xof47yTf zot*aJiHc5__{B&o6;@V@+Uexzh}A}7xl{jBpc&mMCo*48+9B!b*BSqzWT3&mKs^s1 zaxbXzm?C7C;?`>?zQ=vE@vOl2Q(F#A^#v9xGcWJ3>ixTS?*xf1?X&SU)-1_3F^uIR z86`LfGo(FHl?U%gK$VNf-67RTMsy8|2?9n2Gz4=wjs++X+1S{`s2=e@zh^|8Y@?1% z_&{W!a-9ofgv5MOKYE5jQoSH%dJT1$?WuZkPILW-8-`P_3U+mdDu}jz{hAa7g;H8r zFwP1`$O`k8@Lvgap?0o_u8z)7W!qrbL*A-GmCsuakXnwm=^l!ezH|#Ufe?{WKWNWuHMfm;(Wo8kNv)U{oLn){Nu@7bwk7ES+(vLKm10fVDOy+=jYK5GDQIr8SA@SOvY%jZ!-*E zWQh+&aL)|RF_Thi*ks2Q>l|^=?`>x0%;=V@_?T5a#>0R`84Njf#EYc=eZYLN^la}Z z!%#*|z!7hapFTj>;ZFOHR{kaG=y9& zIl(yeEczANct}CavI-_bAEYC}6z9wP1Q~ZuN7%1ReM;Xcv9-*=$WyT>`>WhS-=oIy z{F|Ut+?&jA=dD`Ic7(@CeE#BRZ_0}5s*4+_FC`Iv5lDu*qFRo&ze!qPt$SI7p-G5fupwy%eP1&csz1|H z5PAVbHh2}a&smz8ityW)y{}=@b9^hOaV4*Cu35>k^wMitB^oJ~GEzRL#HlnKJgn5jY31+~S1u^iju4aDi2aql$#_QK#Dze3n)B}w zt7j!&)l72OG+EDcF)WZ!R;D~K+g+I)9JM25g8?#0|F3xfi(9Q<{fayaAJ5 zPrxZZKfl6m0(v2J)p2EEe*)!*c}!>x4f)Y!u#$*N#iPERKL#G4LX3&QV7dDW^rp;d zakReluPNr2zkGQQBF%&?)pBB)MK1ipMMBxj6Xh4A(dq5+8Im2;Cg|)<7|t6}^hzur zlL@KSR0spTG$aW0uP^$S+XzE5}t;}j;?kKTbyM_Mk7<_Gj;hQJnPa&EV z$e~hD`#Y*Mn;ZOp^t7}Epw*#S?rIy{{3*`7!hLmjyqgtCRx?9^FmwQsBq&jT#`~F% zOmho9W$%FH%XRCJ1Z87fQoN zOMdvRNwnd>$JWWF;&av9lSUMTMn-Jp*h!A3#@9MdOB)x z{7h9wnTFVIqo4O#B(UI5Ct#AO$3?S#pK7QOv$V9t=LKkU$uAfAmv=$j+HN6P?}NvL z^Xo69Mu>^!#+*vND3Z&DNU^XKpWW3@qsTK*%tf#5y>*~tWii)1#l9BVzhj*W+>lP-=tEVDg84`aJ|1YP}@e24&NIU~nFb^Ea zU`JiNO-A!!&!!ndKwY?&9zcV06QNKoW&vIhP~&0s`c_+&ph%9hX0!6{)H%gzK`Ij& z{k(wNnqX8q;;d{NT)9x_b(}3h;BT^za?>JC{QIEd`Q_w`{4w-S!WUi2--~u zW-QvBE4F>V7B6>?EL23xCTL64b>fp{+%w}%vAJ;)(TFE0R(H%N`#Ea`i5Z(NPrQzcN zEQJPS%GS`i6ut`;PFU)&pj_P#9G3(aTq2#aQ0%hzp3?RB+kTqApxl1@9DbsNr?X=~ zD`!gp(xPy1&Ww5)^_L_MoM2QbNhBfv{(0BpAsJ$CM_AfTs(sLSaC$l^mlUN#6$r+k6D$_0Qo(G>h?nLNNcfGdnr%Ey0=?xdW4!(e<8`KBAN7w*JI_f zAGnY;gL@6EqioytZv~7CuYZs|qHDM}fs4(f3hrJ=dxIJgK*MpsL0oA`PRY3O2kOYd>P{!(5f-Q} zmPU8o1(J~jk&v7lAbbIniBa)pY3T7k2PO|h{(*2s!7B-;7ksnw4yL9b!AI6?3m_I+ zVY;dfFWa0!QaPBWq-4MT4S?^~&#lm&M}`Vn^NE1*J#b>RfQFub0M$8M^01i}>tZc* zw)ioaiy!15l{u6klMk_7JuS7b!10q3g;OR2PT zTB%@vP&|(C{>D0C`PL3b+}Qc7EsReu6Rreypp04k+W=!86;BiAQSAaE^AP;M~b;`i@|06D^tEJ6>t zPab^_Z|I3Q`Lq=8YkuD>zZ~%db$(tW)-L?CA#rwGJN6CRlc!FE^ z7(Na7isk3mVQhG4nDJK}p=uV2`|$uf=)Y}C&TYgHL+Corx=O|LmVya6O;#|LuWa^x z+*5!GZo>6D?*KLqV8-knJTDU>6ECj=Gj2Jab9oa}Q*Hfu;h)JP^?XVeR!SkG_u+9M z+`=>`jFR0YURN>z=sZLUV$xGTN;=HYaOo##6+$dPRTWly?0c(A(3qEID-0wF_N1=; z0KL~rnB+AHdFoc&VangDg82$XOKUx5f9nU=*Fq0+8~xJ>w{?cUWW{*>7^$rBDv5!Wc!#-TK14~&#V`JlgP~68xo}(aw5zunn`WO%yoU&~* zZA)JooV^pt{_{~Ur!Mc;KM=ujKLf|rqGo#Ht@|=e2 zPY(#DizahoexcAk3<-u)TWMuobEn?c_&ZC3(o&TW$E3$LxKsoL1PZuRo<%c`UFPj+ za@nc#Q|e5D)qP@6EqugS0O^A#IRSc&Y6~+DVIxuO;Mz96o15DRDWk*XP+esuM#gL< zfXBv~3rETaV738oL`+q5r;zG#o`k4W&oMX{=bbLHLKVsO8E2H)c~dkRkYZJDz{~e2 zp~}6sk3kdTA9#x~%ywnz$ntd%N0Vz9DI$a66;oujYr*J`T4-tFxv}YAm#x`b6Opnw zSAHtkx~P##Ws;MgnO31={6I#=RtA#~w+E*rktf1E;(%!!pWNJ5PT5cf8$(&%H|?p^ zY<&4+5&=I0XM>Q{{oVig?(!H21Zf66>4@#{lO!Jo!_Bh9Y2E9>FQ=O7>a4dJVvr0< z`Q^4D0TFJq>X7hV3=(-_OBdgknMt0MxF=)n>FjoVBN>BJiI+E?Q(RL~5#7Tmkb0}_ zww|u!G^}Vn!%T!lBwb;kIFEHVlZd{>4ti-!OsJ-C=qGlH$G)AW^`$C}B%rB24}VI0 z*VsS~nL@urH?FO%l`W%4BA^8vtO&PK@-1i;I^BGjc`86-ouDtJQ)l=YdRjlm;4~xXC zwZnl=UaFJupre@}36eeRf$b35gzNv-B~QqsR7dDYLQIT`zyl+z!IQhU{8@z-%DYO6 z%~|~UGPb!d=^?$X4Gs7bn|BGzTq_4n^Zn##j95yP*X6>YZuOo~6Osht+ozxVv%e49 zrPS0sFml83Pq+UU0K?DEKqwyqO=7<2s(*lv;Cv2W0cCYuwl_My8%c%Ne*<;k`wI9f zb{r==NJ`vrX%xPlm^;qgvyx%m-QC4oW3FrLBQn^k@1wuQ*z7pZ8&mxI(<+d|t7>pD zs%Da?anY1NQu?3M2Ds<1`?sz(iC%UCz=b%q(mQ(3OD=2sgVkH=v8}{p8qN`*^)Cua zwWGI?hEgTpBdxw@`@`X2(3ACXvpp>|tS$k!^IOjb=ihu$G|h6@MP1n4Qh#%!yaQ`W=Nekng0M2$xTarQxk#Vr@-a8G8eJ} zb@w0;KfqNQhh)QmfAWF@Tp*A-cmW1xrS|G}M&LP$@K=oki~n36+eF1{nf`SuW|ay& za|HB=;A5SIP$C`cCl-B-D@CD4FkZuFFLraR^VI05Wx z*<0K9$V7Z5jTEErVwwZ_TcyDR$MM-+mRQ;zT2aCC+UTZ zOS-iVheT>K=IZKrie8|n`8oK^O^3bKl+}YbZeeydOqE7wWn}f$yEF$}DQ_-Q4p#${ zeohhJgB%(JngxV^l(D_U>94NFe#*|m!tuU((~4LqCW&x!^bKy%)fr;n9UKl!l{U&FIP`IjJ;}f})mdPsra~!vV+Q zX!~?H8jx4D$9rDueQrKNeosAdqO{Y(LFm{POsBT~@mWj5##tJ^Svy$Ca$zxOqUFz3 z2>ykH$6%rS+Tz8G;*Sxk7)5%}vdfTmIe>&B&nWlE+|!hZB!f5I%4ZALvyz^3lhG#o z0)WGiRRR#_l%s+q`rXlYrF!emOB2T@tK*JXIm>}iYa@HHQ=vKQdUu6 z8f#gHC>du*yI9PBqtZwoe9$rGy292_tiYSB1(qOvQ-c{N$@Deju|%u zo4hkxMh9!+a2=;9TaJ#ea1g%rrRfnqDTX5WuzQwI58&-Fm!@DN?p>l8ju!XJ1t?1@ z^y`s8TuSE{1p*bTnuHNw*4Si|o#_505|sd14SYiLHavIPUR)fWU9ZXpO~Nxm}`yB;4itQyd{PtdJ!}jUltcrb;D=#&f!719#Y1CUlpS z_QJ6C7>hENj1@)2af$a!$WNyS+C+x4j!SE@ag?(%GKS~5LWgWvi#`Lz@r0y-L#_y;=;J0z~rcjUU|oB0qlofU_X4Tbwd3y7L0~zZz@N zPjVE9*eVusX3Ww-|(CTrNSb&Fr(>%5=JY53fa# z@I^?NQXT^;)(r~M9NYJ65@yEAuz0^{10yG=YR4DS_{I7U+}2o%%Ay=yU8C;TQ8gZ6 zi$#xf8$e4A2Sa5=xY-t>Zj*4@IvXkRHAZ8P#>0qMITMnl(r(%fb=&_==VV*aN6dGN>O<(P)@K)(;9_-{+dmuiHclD|Lrlp1mW z_4A)$WmxR*ROZPfuno>AGn=-mo3ad7*sCbq(WOsF-52KP3GOonjGF>+xQ+8G^`Tab zrpJ$i1Ew%_b@e?et)YCKpaH5Wjq}nug|$(|0CfMkfd?4lT$T-Q-k9Q$+7eEsLES-f zM?IZdEk`x$tf9KR0()jcR>j;T--_2htubwZBXC!c(d1C2s3xJ!W#<$$@mKpUEm+W+ zEx9QSawEUGiRJZpw`|{g%Ul)C!Z`5=&pwPwqV%}|>*kxyLo1|Rc(v5V52qJaSC#Kl z#hNw*qX@~d6D65?41WM36;LD`3yKNd@akg4ox3Lq!iIF4DM~EbM*kR->T1T_fDjri z{#IAfKMBQJU!ueUcdDaQS6G5{*tDB>2_;daY892yiNz3>vI(vH1+680T#X=X3IeA> zC5@21D{tOh)*!V}S~*U9=Mb$WT4WrfVbOcVyL>x{_<}SaPLfhFN;Okf?*N>pxO)f6 zNKxF@6cQ2EO-^&A^01~E%3+OW6KgWuPsh97Bx*e-HI_4r_Uz^!(qAHz*mtQ{;3VBn zRlO4Ozk5%;%(#J5R!kqgbad}*k$Om^z&P12(o=cNC6ww5bTo*AkGWi`{=T~$+rLzL zJ0r>j!dghND~q=zI16`&XsAblxEM05))eIA>>D;}5T!U?7XGx%?R+N~*S&`2i4$5{ zZD~43W8YNJ)rUwkJNXwI7V(|?QhRJSaTmA~4{|(;jf|l}MxLY^yVth?ZR{XErSBNX zF0yf4u1EZ=(P!=H63IwnJ{b+q7AefR{ye|k!0r3b0dtZ>@Eq^j)S%nu#&l$_@p4yn zg%41R>Z+3xM1QFgn}V612}iqS=BK=q$uo^?f^e56%HWKzgC zZH&M=x;hR=ew|SBWaX;8&A0H{(}_Rj)=^YjhqwPD_!nDXj?mGeQ8ev3IPM=!qV%S4 za0b8VXVTYJ70ny!BD>86S6ki&_r3Z`%iD%G3T$dpB?fO{RLB?cWQwSZ`VPk$o_>f2 zITEk8Xjy>spPrg3EgKidPDd9*RUzYktpR~=dU~05zpfwde@H?I)CrOy7D{Z4D0|#K z_xu6zT^bHKzQ;c{2Z%;dINZ`UG<9f=@C3lt1}Rwot8Ibb?MAsS^PTtpJgZSoQPC~? z-(0>=aQX6Z9lo0kQGGUwk+;v`$&MV&`7Ai}#qwnDQQzLt!*b;)6_w}-Js4uEM#dHhoo2IVp?X0N^@WK4oAP>@2n4bg+1iVCzQ*pMqLzrtSt1bYB^ z{ODz;`}$6W4%vO`@tsokVV3e|2U)|IQw{ViVMMhc8<_(v^wF!w#QaHNx=!3?ogNTj zhg!&f+x`R8`QO!!?p6QyMcTtS^YhrlRAIq7!LM#5Ejky<{XbqH+wKAe06|!Lr+>hI zCrItWGRTP?!FjeHO@)EGv;;!V?)<_obvl zK-?sU;rMlT7xEXx6>f_Ddi__w|8eV5tUvNasZ%YFeof}*%rn_1oSbWCMCD4dH25s<941Je|ksP>0;E{$?I`GL~BQh;NUm{y8 zht@{bm{dIxWY(ww)&wi{BETG1|D!{#&aOdc=$W)1h`2yxBa?`Pn5=^K_6m&Bt@ogrQEwhPg|7$X z=Y?)ia6O2)8wQqimy#znL9h$MWgb~gODEGeWEB?z@VJ_8eX=Q^MZ_<)qpeUaEdpe; zgE!sXfWrZEOf&TIzxBvQ;6NBvcnFDXkKnffakAM1VCN-a=-?Ik@M(Qrt$*Y>RGF&G z`piDfTG@Y-mf%ALFxBbr-`^5Mr$Sv7eiFWCe09>_s6AxX%U8!`?wnvz7g@=6=6S=A zeOc_MC}w!zWcgkta=)Zi=2+!Jd%{A2XN6SPFDYqd5LW^i#%ph6L@`NdChHfb2cYqW z1Jq(1@zmfoPi(-5rI1X67+myQhc*WQH8AKNi6V4fmL@-cZZ`-=&#XU$R+C!;GXX>Z zDf~lLq|&iPoj8B)b*A^v$`y<0#1#t(3Nrj$$2&ps9DOgx!*;}4WFu}(m1zo9Y!J|hx-&=u}@KduNaZ_aeszQ3FOI%m(w;ty!3dbZe~QN{oM zbLtSHtoqXrj`*Ww-cXCOy7JQ4F0TzX-;x1iAx5%OzIaepriihiJpY8?YOkb47xfI9 zFIR>dUbcqj;u9HfQ=K^`^MdduMC_01{(g)kXgYzIi-=M^>g}%eKj>W z7s#ps_WWCWFp$e-xm*0G%3p`i1?q=>oL3??u38_>Si9sS?=Ukl$qfMUHY^TITEs{E zyIwFp0QF#m#2^&n#(1gnOHhq|vh%a9a_TPE>*V43rCj`9s?chCEt;Q|ogHW6uHN+X zr#sUC9_RZ_ML8xKx0M}RsGZ$aRzzlm$bCZ7z>=e*BhZ-k*`Z)6tE!gSj%Xf+*o3js zdClFnQ#L}jm?c{5xsw_|U=U+U?uOA1D`?E`+oqf;^Q+h#fnw_AEFQs=j5Q}`=hD%D z$}7-&aBnG0VYUDddmIc1>H7LQBQ}4R3>Daakg(dyw1k&BtcEd^%n&NXmYkj}!XoG# z;!J{J+<<7y2yYuw_|Y341U0V#aoV{B2tAs;jg1YYvH_q6@D$QOM1@C18x5o##r!D6 zMi4`JOM+QCx}Dz(5Vd^+F^mFSZ{(3!wc*e) zurbOOKn<8U=!Xi4(Pa$#A&Moj^B?jVtPtjL2PFSx%P|RD(3Iu0O~|l8)MzQ?Uwajx z@#!hZ&nRCk=fkEurd$eEsK zKgan_61!73<*YK?b- z8j5HRo20Q3DGY4CvoIDP4NDhe@oNWK3H)s6?JcluFlvry+Qa--3hoaDzbI7?Xy9hm z*m8sJw5XXtahKwog(nkCUUyB{9kp0oKd-J*($c=e%HBR&X5j-zG1zeqRrKvhYxRI z3|3jD?Dy(+6iY-|M3oQLqWmuY(4e$g4pEZWBlv3wv81y*q<;@>Yl7v^N3=c7dv+;UIs$?2<)!H@;5O5 zsxfQvYp6(Po>7b}*NY%@jzMB8*bKFDGK2G5^G)hG{OAv)iEeZuH97C^O(K|m9Z?jOENDPWJQoEqeY z5#v1v%u>YbYB~5gk|pQ%4s?qCSmagbz7|II5EZgG26ZsHn!KFck)fO0J?0TDju>nh zy&w{_O!6z`0i!#J^g=YG{D1XTi_T3-aiQ71#A)An_sTOW};YZ@#-p|sKB}=8TG94X##5lLf8f+ z0^Mrs#}7#s8M3&ImpHNq&`xud^er`0E2#vb@`yMvMs*j1HK`jJ4U1Mb@-Yex*4?`f zZ{X4e8c^qhVlqv*ak*&>hqg4VD<2{&|EpG@v2W~+YZcZ-3uCjS;okLy{VkPQ_QL>VEd0aI&4P?W}pWu>O{kiZb0*R+O{fAFV*) zN5jhIq5GUk7DQQ?q^z-h6N3H;kxF;eP3^w0DQqD75gMpcY+m~b0uPG+RrMq$q1 zowudBR+``)dYfk7BD6a04B5_Yb>`;gmq>>E$*94y{UcmAjV7-XMt}X@RJn6+^`+CW z*}fOES(wD?%Kx^24PN)fIrvcass=-es9DoTvhY$ytTHEp;z3`z0gPGfW?Ba(H+xk8}f}8r3RsQd0DO4Oa*cUVu!#Gm1r&q&N5RAV|H*{>82 ziWis0V)>s+Wbo&d>u)?VQB05hN$6k%i&sY``zkA9P-Zc!`Sm)(_Ex;V-E|$xwu94k zq2=czP6g)plaNv40O@qU`iaCT*df|^=2anHS+Xf=_& z#_)q(S#DSmaL5XFP^5=&LKr#U#vi*NuW@N*wCEN)tmxb!&UA5eL$5}g-lRntqUpxJ z?VEf?%Ic}Rp0_IvIeAHD0=e6fcL8w{&5|Ia0N+et!_gsi1AH9)#)|bq9@uv3P z6{#39Ui1!&C^GU7R;@h-ucVFCglR^{6H=19`o4aCk6w^QRlUev{xXGdDnXyAb?+1r__I&fZWNuf+FG61I7V~HS zw!Q)(BtR1`UnCg6!$jf4TOi+*Y8!(=XJaRolWF6MneC{xFnIrBSKRAh=Z9K<^+WYW z6;mYV*so$~7T3e~S6_C|^(1vSp8q$|*7Gw$O8@k`c+Gv~^*vf9*M#B9>bT)a0-RU+ z1_rR&>fU%6!{v>A3A_ABM|ruNJB?>#5Drz3_f2Y|7SbT}Wk62Z?mN5qgcXb$EEjmS zaQwtiUKgJSy|ryg@BR6?S5-kK464gHmzZ{03UrY9Hh@H1nWhMn?cpz5fd7X%+|j{L z_o+sUpJ&bA&uNN9Ds1oX6Y5uw{biCpAU$o8TQ=)(r~OqLzStK{7vp66g06kE)|qj{ z$=#jI;KUf=i+v+!GgC+-JJ0?-R#)x2$CQ^qvTklx7VDq*&|0-1BWIxXZ@Z#3ZFNiD zYjy0ED{{*r#Tgf8s6~=Ssay{sj$d7-J_Sn!YRnr}?08!Jl~UG*LCX+ygHCLt!SuUg*?>$jql}kmgi@zr_Jj zXb=OL(;_>x0iufd6_DbQt&cyhudfFe56DbflDu8W4D9D#IbNh1=Q`ySe@=as9_ReZ zj^)QyZ#IW-!cxwgTw64PjToJ{j)B`$M_A}p6h{9=JOgUsTvA{&kPFLF@V^lB5z;#D zN?E2ph5&p!!bKa4t3T+85!7qJW-;1ogS7cc$`s5iLrQdWmMp^*!$Ev6dssz9S8p~K zTkC&W8#J;lES_LffdYKuerTj@f4?Bqhd{|?!i>Ei- zH);y2+O4I)Er~m5iZn^TfMFeQuVdJ{o|X)Z=#_qf8^n^S7!)-NN%#;k@&kS)F7u); z@kH%}GmTRTk+m&Id_Z)d$Z&pyz2pL#TBNI=WS=eXJM-9gnemLyZsZ>Q@W)Z7z}8xc zZe)89X9ck1@9eln6BCn_f{M0-Gq=K{2U%xVa*joI3yhT=!Tf2`# zWG4d~?;i6-f`ctNV_Ks`S1i$rao?#&nk`krc&h6sRrck%FI;wZ9uCu1cH`*oSUn`} zB#LxzUp8j07&fIdu`;}$8cUDwj<(A*9|;in_>vC>=6@|*A{}9gNgqgUg<2Z~xkM0U z-%XW@8{i<+)kQJag-IgeUxd?*E1709p^ZKF@lx5hMfy90QXPrrphE_Zl_Xi^uP5a8 z&E%4RQ?T3%39ecnBpN;C@rWgz=DX_qDrRrY*+B3m;dqPKH|;T#n`2iuR13qIOB}qg zBXghUec0WIsN7xt<N121LE8wPjB_U^a2reS! zuyU8Z<4uZUvlhTJn3|b^P*Lio=g)4NET2953#y1Sp&WdKNbC{5#&I9F#zWtqa3(lL zGQYEhfp!^Ub>)n;a0xU`e)4P4Quw?s6-v90cvUwuiKTib9ADiM*J#7=#Sb#2zyk>p zlyb#nVkh?n-Uyr<#_}u5)W+7a*ym=cTG-hsv6N(sB)uPux_WMLGekROE~s4|mOVPE z5Ps)4gDz)k0aoW(;NhenqFzq1Q*0TiswOVVB}LKdFhL3^*DMDP7mSpet4oWEXg3&d z-aeHjSVqg$c`%2h*@AFGgmN>#p7ok%=~U#iMyCi4RzGg|G%c&VU6`*>|AC~;WEWcp zJ@Z8Av4mF8QMQPj-!ZC`RRv8-7|$JIh=OZ@zkO$?NS-dlc92B5w#0W<{V85| z#vBaGX+7+gTJW?^-T%I@ftwXZMH3a6nrwlDR*v>kPId!5i`%d1c}j`{Zh`%~%ZDAd zVS;T9ZMsD@Z4C3W(>M|@@lhf+(*h?Ba7>4|!^_&DFF*0D?CM-8#jo!wJ!8REF0KQ- zMG=4qFx9<7B-4oE$l`MivmKX^P$dvOsq}w%LQz)o`9%BiK64)Zhm`60y7x*taXgG1 z0TCkVG<%8emA2VqjK7ywcgfQl+3MO*rum)%=m!a2Ffsq98}Z_{^;=cS#MeK+*ojh& z2MdE^vyyMbe5X{>$_0gu5z5g4<93KVPX%L9%K@akCndzt8X^civhZIR8wR^)+^Wqt z^q|7lbF%Me$hIg#V@uQS)AgpK0MTa(~CkBY-=R#BtiTecA)<+`uJEx z8l|R^5RJ@=`jyG5N_U6Y^yibYr!0&BcfmIXV8PyA-!BVb=sNlcxoR$5w5rqp+$Ior z2S%_V*ffEv#ABfJ}${M0WLDlG!?GQdt9&3$rz1tB-JngE^NM zayqyH#g&4X2GCFG>gonPS?K#$Uwo_Oo&Eb(WMMGc$@_BcPBDj%%pnV5UuhYQZ9DBeS=P?Q^L2@gk9%DKOtFbBNd{F zlNi@@Z2+7=amU#Cn5vXuh7}ju1XqU3<;bqrJ-EXl2AIxx49*S5`W_?(BP;jXrWbnr znTj2iklBGB7^JX#T3Hc+qqB}h@RntuATx6$AZ(i^9-Qu8oHtP)sWjlIlXww2L8lU+ zJ5!3c@4*Sg9}(H8v}9=Pgg=07z>fKb+bPn9H6m;0j|XS5@#mpSI8hJW39AsSP-gH) z=zik^E+~lsaeh7kKRRTR&#u~vi=`z9WDJNtx;Q&S?R%VtR@jGd6^haQ1T3z9(#yrg zHm_ZkHECL$DS_%6nluk3wR6 zjjEcnyZfkl2AlejuihIkPLW<3Y>d;)C-3C$ZvPiaV<3i8-)Riv&idK@xrC^35X z3A(ohRaIFNm*V3eKer+3w!0sH5z<+=LKIN+nD6l)N8iWv59`i~lThS4!h~R=WWd?1 zf(Uox1d8Z_%Eq31qMlo54L=#VnpXunVFx{}@eC2ob}1(C|oBR#rtN zA%Ipc-N*n|llz=+HmoZHrh5!G_5ny%3b!oUAr0m~`1f<(qQBZ7>49m?8uf2C%0KD4 zC;voo`8UmR*I~qS#=!|IJ1n~xIq?Il!UgIf7M;L(o2^&2g=b)GCu;HX@={CAj>8t^ zBDL+7!qm6!+*yL@Da1MrldIQFU^vZ7_a>0W*SKbiT(5^H+VR8kGSSF5A66Fd6D2as zn_gW?mpMij7Vp2nkQDSW7;5J0>bS9}!yym9S64@mg>Ud{o1)+|JR$x(_y+sw=nBt;lHPr=v;c{xB@TGq`T z`hWI2@Bgk;43fXWKi~!*k4uBh25@vUrqx-PrR1e1k1c7pRXu_<9{>8M6fD1LsJt>|5%Ja=0Uu~ABQAU zd=*8VQgANU)j`9qTV`E4s)p`ZK9`-$J25f1Lg7OuY(VSt@PgnUyG%+AvL+$XWW1b$ zhie*}<>ntF)TI3^P2m%%y}Vj7bK5_;8Q^`45hAtWpcOp_Zeb-&s?ZDq=L19_?$vZjF&evq-`hH(E1vz~ zCh|MwsasNBR9e@D=SjN(ke0=(`#Mrl?(z(x3y7$Fm^#3N^v~wpK=vkQ#0>?lstBZ* zUFRD=z+)-I39CU~Vs$$9j0EK=?qJad`=s_yae1uqyS5X{MsWnFZ>BBs84%MP7IqQ@ z4L(a*4YB$Sbu~4m8_03c{?(-gN8jiTv|ZqYw6R=|)3oUTcVwL*{gDO|6GRVEp(|_7 zKdJN(UVH+=>Tlk>fta%nNW*l-J@1O8zvfG$6iWG0Aqh=5fw&n2tv(DY7+oYQ zVcuALebFf#&le5r{=xikX+qO(gK39G9qm)*yy$Qmbu;Igwk$MT6pOC<8HNOFQlg@; zDk+tQ9iH1CE++@Ms{SGaG}6>%P~3XO zIkxP?Y6UJ+j|*IFG`;=22^|ji_8^y0xUB`8=JqJ+@MTPT^k9QMt>Uw^JaDqwPmV|% zb|$dQ;x%#vozmH2EXi#L=Q6p>mr^g>Vu_G48>8aqWv@okdReN`C?QYeGD^VBkCG>h za5f8;m@=LrlfGQs!?O}U>a+u>KKKKj7LXhq{m@QVQY7!@&;>wGENtww5$Ymw*wIvW z8IIo~F=^b3dUDKreyV4BpN`W0Oj$<%`fO=dVdjDfJQqvc%tf z2MOOEraYlzl?yX-dVYkX))tdUAP!pw@ID>E?r1-{HX4>_)#K8yGPoxG)>Ks$JOBMb z_f;6o1Cg9mN$4D5D3r=dN@1$wfOyH1jZfYr!op_sc@g*729rM*Xe|ra*9T z6iINrr8b3@?*b?!%Wx-u zN`P(Y-nN7t!5Q0N`J>BXuhIP@6@m)Qy_`oyd#x?g-;~#3CL65%^0@T&Rjy+BQFhJ` znTG2wjAf`u5Cx7Hn(A$tXWM|^pcvcNJkZe_1$z|P{m0X`{6%YY4743Bs}{o)6PUeU z!z4Dss&-0^A4OLg->SMNje6zPm8FEPpnSu{$G1irdG>Xh@;Y*?2~VO()SJ!KE0OL7s1C{=tA$oM9({YJ_e;2+beN#Se(SlNQNH} z_m$W>O+=UoYijo^+bgEAp%%=H$NO1@z|q42+Sh|puz4>Ex9|tZ$KUD4a&YQJ!)!+Q z-k%%OKKm2x6#TZMl8<77=77VB&ppHAFNuYCz)AUTPO4fT1japVshi%pubd5RhZfJp z`T1Pz7&ebyL%A!S{Fge98-Bf4`ET2O3FZ|SW^~ZQuJy$;YHv{cd zs~#R6rr99%y?YX2zupI{6S6}|3~;cXY$`vQg*g4RhzCYV%y=}AH_8Hhhb$g->#(`d z3Q=wAD@^2OQaUo#)zsETGF7K;9zswIZW|~Gv0{jF@o#uvr`M$ zcfJ~aR9>nmO)n<8W)78+sU`sQCn7F@n)Qu*SO_LFs6Wq1z!X8aYUYZEfF%wa?;E^J{;!|x~P z9c*X^IkfR0_F7F@xui5MIoZJ9Fdn(pvPrtzDgGgKOqS^9{!?tdevi!|2(1WUHTwJa zZ&V6<1fhVBMo`dy;1PvS8U!@(!o987V!9bh0%eIe`D>g&`59oss|J@-G{{c#4Ru^_ zk)^%%!Bu8UYcNr*u9e09Gg^m|-9|K`iX|IGCu}kY66} z4~>tBpPSF7AKf`eoe~xl413Q>r`~F34;_t`FCVJ5tr$#tkfDCHz4xE`z2YK}f&4Sp zK`M_sPS}@~m2qd-+sAR{;-?3BMdD`v<(EQ>*Pg-CjLZ#1B#ZKlmYx+1Ly-6Ym@>le zI4+S}TVyo~(Xj%^OOcdjwgxf(@uCvFLQUbtQ)M~kEyNxvn5a|07*Y(5;K<9%o71{h z(r96Ls#7X0twqs)g!7z;R(F5JXazDw5^^-!_Z;JyZaNA~Xle!QgiPsbSU zW@GoZna0Uvkn%U)jb`1n@Qi2C;e7-DcBHTpFPbb=>_W;18k%py0tJWw-c3)V<$Bx~ zSzcbou$95%NIUl9_UnhpMF1C&Hfr>1ZM7afsU1)!+;p|EmOyz`Rka7Jb4ytjk-BQ@ zc&w-83n(l_*U^T;vw5gr=%jVgc!C5iV3NR7aK=!`TGIVldAdk+oYh*1U| z93HOb$|kap#13s?QCxR4?(gfp$i1$Z*%Wzke|bxAm)l#{_jOOM-~)qq1}Qn}MAFzk z<^QcE(L3p~{(+BQFby_RDeQwd{>bDZvFUGLytHPzy{%0EqBK#g)jrsMXd8YCqCm(=m}Z ztr_nv3JTfpKKyx+U%23Xkbm{-%kaeK|LS^|pWH4#d4^eHVsFFy7{SaOX^J_);01)( zOu`X<;~h_|{f#ELhC!?|BF~@wZF*G6l{{nW9^>ta+$57}Bl+@dPkKo1hDvrIKn53r z@sh=rRI(AyV@sbW!m~_!>GkkAxmcCX^wqd>r(a&ZxM*LC_Lx0l!`|d{>&kI+2(BYF z=NljvZBG`T-BJlEi7W{tMGAqH1JEq$>ihbn`wheik*FNw#Z4Lmvwwn(68~Kbo?=KM zdQA3Y?$(XXqU-!frN}@22)Wv;2NRE=VNS58BHi6hq>!e<-5_<0wkSMxhnf2eh#Oj9 zw-Ya7JUt5996}#n4oSVkjs1(_9tKVXsKXqvPrl{$NA+NR-bD@IVJ7{mTAxJ5q$N=y zQ7I|>!9nY-;my=+RO~_M|FLx4@m#K9-`;!gz4yur*?W_fy$Stnp|T@;@4Zz*2-zzu z;}=3Ddlebw2-SOe-}ijZALozGr+VDa{an{~lK-I<Q^BUjp%=xRX}a#)@hN?^Vo5c4J&xdc^C9Ci@oSUj+SXr&aa! z3Ex}=*Ql59g4XEF8tUsKL+yDSIGdG4NPD&VX-&|{^&p`4AtKEgawvI&lG-j@n0(f6 zHL`LES&TH5S6gsA9DIW#l`bj#jM~IZ%~EGXV}i4@;VdxBap@z$fmO1(nxx)#h)kG{ zw0J`1=PLi|iDlZZ^>vU=0EOG>^F?-K>=~Wh7`~Xp{YHuRuY|o@$52#05L{x*T8wQr zn%D&JnOg}V@xmN@t96tZA;%Zur#Nf9K&QBanuzL3kS}=2$)-_%*eV}!Oe+& zrKm1K`p<6?v#*I}sADbdv|@u@P3yB*!t+IA7X7(=+#y1ILRr=T6Rwfq(-A-(V1i%g z*E?FM)>$3I!a?8DwcQ;Q^9r8oZN!YRe1Mss= zQsd=eDjuVMmg7h4Lf3B*6SwphR^mHl%PIBakTMNB`ir!U-QmAaA%Q8)xVXs4obZoz zNb}QQf|9adx2)Dp;BQ4~7Q&Z>>5r=hX@fwHLiN)q>FbC$Uydt&eK>rHhfnj5_2yUE z$Y-rcg`;!?GzR#EgLc-{bq7Qyf{k9{F$~G)A_u`cl~>viYMtsf#$x9N_cID7W~q%2 zk^lR@ibi1WYenL8-ulZ-0(pHqJs39eAmRkLiSc&O1rGIv{@64u9j~Dc4KOiz`5u@X zSM?`$m1XTxP>f)uGBy1PhpWH8KO!Om>NcUA;C%nXyQV#44>&pxR(r1O1RWmajbxjJ z$Y=E#erzh25d1SPDA*9D%iU>QbLtq@7jm)zbUmzQKkezXb!cp`Sp(mzM4W?ki%(b> z)H>(^GC)_sNVM$x<1wige9#c62a(fiedMT3X!G=UhKGe3TR6v^2Goxq=dRq$9y46G}i&(9raBbW9di6toZaxy;#E z!KMO1XiTofzBZ20Cr<5%nJ%pZcy5q=9qqQp&pKClMGAVyA0 zTl?|jAAsm^z*-z>u2R(D)Dh$1DZ5(4d*ex2zNoL)!exE8@!_NW>q*Sw7taJVv<7#K|W1c38mwDR;Yo4W{VFdX;925O--dJB-Al`2esb|OgyD0!{?>XFD zTyZaSmm9i@DX7dt`L+z}=!`8mdTfnDOVHti z_#EcP5=grBAC537l6#xx?J^ z=+9-~tN;f`%;0K=FZx()-}koG3Iew#oA$eXhPT!Y6|*6bt8;N(K}$NpW+vsc!gV$k;`afg^yZ?$6KQEihU z5&|^Rq@cv^6!;I2kIb+zqhRa8_SVH^LgYU)6;5774g zpNUv=z9xbt z8WNKJcF^iT0-LexrX5|x_<(_0*10yH38aGFggG3xG;E@*dkjLqRT@^)jlHLnCrkUD zFQ*{iCId8AGj?}}_INt^i*gmEZsLN;fQ$JqKsJ`BH>T8I zcEgk04@vV+#v(Vt)u~uynSdM>D;)h=vn}0CBX!Luz`MaeM_$!g=B-65(rx&j8b41O z1Ox9@hT4ABQ2C_Ld7M6UbhR#LF3WVBN@!K^72q0ZC}#c5!__vpq6?~0rYuopW&{+{ zc8@9RTk7lUdwMqfFwNe40ua&hfY#*&p%Nzq`10@uqL1_5LelY5)6?TCt_%If??H_p zsEW^oJ6Y-8tSYcl_c3O54wv}bh!)ADNEsQEN7itk_h*CgV=D+CN|;O_Ie(~7405So z<;y@xf`+0G$Knvxxq?3=c7QN)A0e(8J!izz3~z$*%Z3KDR#A5dElE?zifW>A$vUB- z(lvox^+Yyt9w#6nU-7HWb@?#i`bD@SocVquk;d-v_(7djRTw@Q+Fi8I1gsxz!v)UM z2+0h7uu>)(gkSyyp)Q4%7=2qTL-T_qhyT*wg_C~9E8URYjwtl3(-#UZRk-JA$)r?hdOjsZGah@`kc%lsW?f zPgO)of`~-ak)&u7!?UQiJN(Wi>(kTKBmG+O!Z0emz%M3uYxVES&pZsjo3HD(YxZcz ziK9+gvtsn9y%05*Z5suTu)(T_dCJ^1U{XnPA2NhW?y+kBEnXsorDTcXUZw#uEuvP0G$dE~x$uf+#o~5z4u%U7QQ#rK0 zv%8C5W{-qV|9}~SlTec!70q1TCgoc*6wJc+;8&HlQeuK{-G@5Ph~O+DB{J5)*u(jF zWFn6=@)oG2#c=0^p+0bl`$4Zr=*jy1ec)JBzQGhHL2&2MrNoce(C7fAED8=^v!n?w zqdWB}ZHF}E%Uw!=T%+rX9xTNBRk|Bd>Bc?<#wU;z8rtE?&=YQfHdmg1xUq~WKAkZl z+k9H=znm zpxWd40x~dNBA7W|ozh^}bN4g%yHVSIeyvl)pIC2F4HUcSj;lfGO-bBtXc&=pBFM_gx3lvj(GxHGbhJ zkKg#*6U>?YRpqzsgIE7Bn$=C`jN2k9>wT-KH*Ln^Sj|V#FiKSbqA{mV+IXO(gc^JS zia*dd4Wj-|ljn15kQS0F8!iG}0uL|menN`oGzIaGH{d(%=vay+g_|vrnw5*D=uPU> zGIX8fs+qnjTr-U{3S(L9M=ir$M<+i?px2=rxCQ{SyhK1w{z?B$FK|Q>_2Ks@SvF4s ztg+L`8kok0D)zKv=y!4Ytb0Q5qLDLUaLff6jSrkc}Kp=2l_UB#QJc)8fFPip=k3>_yYV!IR^?LPdyV>fYoL>7p-V#qcK_ zz>I*QOZa1x=$LtlTVF8=&rG(lv@;`|>=Vd160lt`8pw|ULeygC@bL*S{{3N-y$pyL zcQ!D-Nxx?8Gq4Upr5MaBazf(sQ4LxEr~0B-@;{k^hdAlYDcu`d?2R%rdG-*ii2$K>8s(p z)ee_NsdQUzS!PwkpN+A{u_!{O2}h z$cpKY2y{fBxX>b;{f})hOE|cdtb1v7Edg*I6pu96?#2?%uFVbjZaPe zl+D-gHoSN5p0P2Se12hX*TLx12j?G)8S>RdNHCnsnKq?8)E!m&A*m?WfI<^;-2{Y$ z)OW?`MSQ9ijvM=^A~X%VJ<_3^ZwJQu&;+W~$j-%I#ng5%pf#Q;e=kd7k?x3NT6uAQ zBCC%CFF2#GhIz!~XJRJ>Yhi5O8arKxvN{3l<506#w#hqqp5&!bXGNdLzCGvHOeXKq zPisCqWz3vTdCVAdyYTtPaJ6{))E`9HIyGemrub&JS>=c*zfm?Or9NGEiT6aa-K1Cn z4%@2DGkf(1JXhD5l0$NZZo7Ww@g2@{k*lv8Jh2Kk=}Gdy_cS;A0#wJ5%w$nkUhV+U zgNQ3b8F}LY3+P6rq32C)!eV83c~=yhx7+52%-wcx-EVzQxl#DR*kE zRUnmAVWEiOm|X8ijHsxz#wIh~J_ntXDw=qUMwqWOpl#cb;UP3`6*5Yv)ad2y{Rq?# zmFgP07})4Fpd=gheEgrHx8G!KYVEwof6MR0Z2Vm8a_<_wUkEk|tRDRKaw*E1cEzx{ zgoO6N=XkNL2_H+t)U+x16zuNo9C$+$Z1_hooZD#khxu zt$@f4ul9#MH2~s|Nzn<18GUk$smG();%{_%i0Y9|rXrn!-n?X$N6#@h3$GSzMl{|p z{!n|ndNj3Ks=BYnzW7)?wtVm|Wz-d3_v+3B3Bl9GUt8Z%sCov{_``gT?LmyZN5^dr zF~DG|d}`2xVaO@dXeuK}wfXA8$`LzSwG17XO?dDJ%I&ck;k6kT#jA+(coq--er)Ek zc)OZGjaD@kKVEKbH%KK)(BOIg@+Dvz0x^SpgHkKbaRxXN-Z6E1yHfJ(O~or^5E)1z#oweZ2og#bl#d93yF11^~}gW+(QbzyrV1^jW}uRGzE4ClMLPAHpgroVIFvz#H zrxj9oT9ur&>WE*b@xOK1D(~&>ZEiL~68Ne1MJyPqL!vzcG?fo<^I-8sDsgzH$)sid zBr3g$+S_3}BTyP}adX>DP0h;sn2%VC$I6O@x_pEdF&Ccw7<0^K(<<^RY8d@Pai_$=rKcs> zB;K~QgVn+0BmMOiT@g(2ru7OQg74S>0I8H%Ot)g+RD#%^DZP`-^ERA!J(gIo z)mCb$p}RXAU<7Eu`u^5WVv$_(A$=)-G}q~^u2f={gnOXngl!o9wKFsnfwuQ8u7qfF zrDq1RUWLzS1&EJ6qN3^+*L>`JMbc`cQ#2O!4jROTiy!1#)9%Q%qQ2?-!K7^iqjVr_ zNFV}5k8d2G3wUKd=M2&@4ClvQA6gZ9iVtLTDV#|zx<%4 z4jKwdb8;kEPzhXhj=R)H^5Ku-&q_X*{e)IMREh??imbzYj)*3|fAo*1GovQ&^78Wf zzP}IoKc~mXYrY{NGj_9bUE#YMKGuUAE z#DH}e6Jx63=;8dA%|}AeDmgzk2e&drXYnvQ)|0W*Nw{MS^v9i!1DqBR7zj<0w_pAI z^=n~q5i0ObD{Sc4zQcGoH#e8omTd6R?U^R|LoVs@vdYRzr~;FcqP}LJqYDM`h2`$% zCVE&)2Sld*CWXj*-zknB-w1EtqyhNdX#9oxLPl;3AyW`FFMXe{xH#kA;+po*y~qbQfgI4Qk(^LX<9XA; zSI5K8KZ&xB(+bv_2Vc6f7c*GoLVx05Kfb!K*}eQ*C8s(Sq)d_TaQPU+DP8)xZ16-PPwF{)*+8jiQKOfP4O=KoMv( z{%&h)YyW+)(^m-v(phC$`aR+3fR1)A$j!~odc-Z3-}3Xq!bmsIp-eCpN7hfOy5A=E zN1wc9;PbQ_J(Yd?Xo2q6EjhXGKYpYRz3!dX?zmaCPX$Mxs+Hb>LlKa8kp?Zz_9{Y* zHcA{$j*cAxOyFoiT?cK!moHv9Skkj#T_D6I9kW@osqnwu5#wZv-PR4P6gVN3i^1Cj ziBeDg{gEfNN86L*?cE`gTF0ZQRn3ddC8*nR>l$5|-&tB}#DlaD&0tHkY4{0|0 zVQRr;Ieh7$8N3w!ejwXSOtGc8`2@yoZvCRNljb+KLz4?J@n)x3C|UM*cG^Li53vIr z66j%J|2;wH1Y5K_hc7N03Kawj1J6&r=D6JAk^x2a5u*Ut7+t)O$l%WoG7d^xw70dE zk&wVpI%DIGG8()E0|rK>2wEPUJW7rv z?DR!Y&dgCp+)4c$2B%q3G2-as@{8jH6(yws_>IdrlGUTdCAtBHI#*-r4*hj-_rU|< z&mWhU6S`QMqNAg$mI0$E*Q6pD1!)c0DXj7CGF7COpbdAOY@x)(DrsVUs3ts~;MpcC zBa@$nKDsXj!YxEuV`GZ06H2KNBD=SPpeQS3dOSOdRWiW)gqD@fN@@o%+p)}W%5}z@Hx!QeHsS2 zBNw=S(*?LKpTKCv!b>*FfM9orAO)UQAj+;TFSXnBpWm0!*LQfNql2%SdKObaognBD zF*6aW@XYSMV&msrcgp3yo}NE2Ou_hq_ygob!aYaFioU+S9uzyp)RmhWvya%(* zXvF(`XI-)l^kF^9{t_yjn4wmzcK`Axy7|2>M2!-odz_$8*9)wCTKzR&+|fN7s;!I} z1FEqhleajT7O!7`j}MKNHCQaN;rrem)ZA{*rGzrQittgreLco*y}z-6rmZO3wT9a| z_~STAJF%`3eS`HD$(g|qgl^B|x)+`jq zrN1axUxAn$)&Tq$;)FKak%{@Rslr<2}X8;>+#H|1chVq}pP7+y z`(R&!b3Pou&$x5AyR9u-dFTB7t~SF>KnyW)Ez?~qUQOKo!DE((zd!;DSshh$!5AJB zZAhf21l=)4XCm>$$onaOE!^8Vzc*T7=pk{yHZSl%yA7{<8R0TNCs+M_mIeX#PpJ1! ziQ z{`l|T$9pJMlpJnY;r&nSwY&7sNFUR6_4;V_+KVp_`*7Oyqr`;dfRY8<7XNDx*cN7Kj@ ziOOfU1UhH)Pt{KhJ8z|H1!b|FxBT{W8ey>ZAZ1qwkdSaeF@nV6W1Jn76_)JCx{Su* zf5I=D(esJ5Q3l&Fup23*=;-Lu>VNvSO4{fC4qeh^r;GRBYK=mHT&j2y_yA~`cB|=& ztL$aLr z-7cF@5(N%XQBuVZ<_cb6+Y^+MF~gV7j`U`$DnW@B+{LAY;C$v{L77Lp{sc z#o4aG<8dJpbgy;N`Whsk6hlOrOiCXP@7eXYt*zm=A=7zUe;u)AjM(KsE;cCzk%>io zuZ=^fYx1YEhYt;2%5)$Z*qxL##b`w|maws~1`Ed~zkl~){}Jo#bN_y&D5;>g_tU`S zsKGOM?PMoF-gy<2b?N0AH?#6lF})1+3F@HuzLrO&uC&ecMg@o}akC(wMpxBjoV2bI z>d#4%$oC0>zAwnh!D@u@inHHYirClzIHZ79mlDNmHt zC4yB@&JGB#R-)LC9%ZvMRYy}7dz;#sdbyQ>Gi>e0q}Hi3{%jd)x);j1oPpREDzdCB zF2+oj1Xr_uY;q(+ru?b8WVSf*m|N(|nAV&=*CRqNtN{;9_@yu&d_^L_f!Me!9iY=5j;svW) zWBBjA`m@=3rjAcaz2dh37>$yIh=Q2(-WKRs3Mo>Tzij2y(*G|qhil#2;BE-!Uy}fe zl(On%#-=h{`i1~LN7w7!t4O2{nsmQ3t1`0xKEwRiuRnHo-+f^f-&4Y2%+-7g9q&PV zv#dO15mB9MhPF>-e-%&u{h2Kxz=d7PSWsBF@67AgPr~uhUE({IpSH(qtdqr0pLF!Q z-oE9JeGwoEk`s6VB?6+*yRynZ-I<=0|KiS{|Ei#iz1%)tfHZulw0ER?xf+t^g!a$??DwqqNrj7g-mj?GwN_VZn&JF^x_ zy~guC5x&2ati@!>{&h@A00$p`Gl-z9Em5P z@6^1x{5cN^axdOxS#HKZi6&)eNI-KyF|J?m6d^yDUq~~R4H+S@sXcmIH~aCQQ=hJ5 zMQFRoMwl1r&4t0a+7 z)}rvOp+w;rQ54Zq6lkUA{=2F+sLOiuw%nt@XEuyV>c7R8>+>>qzXtc3zv|d=`dX<) zcVx7zuBxiJT^~j?_olraZ3pgCsJ-}n!h1S^z4OatBBpE)W~^~KFSIOZaLs%HqbfvO zp2ku@%V;z|m`af_?qzH$!nN@dP@BX&#pFn(6^Ev}3)N(6zj%J+B=8JYNWTqS-dgJRi{Kop0(WEr)0 z>(ONr!dcAMu{*~~ofCcmWwFmAlQwMolMqybUK36DoJxYOEck4H+{+~xuYTew@vHBc zbZDWLb+B%+8D;R-`~T_KIiUJ>*f=4%uKH`=;)kWA*6R+W9T#??n}Gpw+66Qr8V10Y z9T9PI#abKQ1GYj4aWefi$y4}#@$=^?##)SpgoWb+Ow@<73ZNf=T!N_Mu77JXBJ|YM z|Lx7O%azLZo=4XES$U8*`$q5cXl5%>xsQVqV4SxalQ&Lwdm~M011s;{=%{veE7(8s zVnxupn|8sN1o_ZzDvB2AQAC3XZJ1F(vJ{h7_xg3F3MPByeGAOxItuJ$kf}d>Cb6z3 z=N722KQyvCtgLup;IInbsClW(O$HShw#xy(3(H+9M*75Pvr?9`*56ftbC5y>X zB|i6K|HPS|a&I(!mQWjIdG6kzQbZ*2{lEA%a#WmHuMCP3Hc{XhSQ37&WBwkRoULn4 z8)FWMjBJrTjQf*w5|f=5Sq0%*#{kl@#X8SH4LqxyQ4Me@y&~$CiX930z6or*unFnv zAJw&munjEn63uGrAP`L%ey}P|MMPyTTUgZ@Zm`o=6%OmIC-661zVjK)v#uxp7d%h# z$;vf9Rd1gzwKIdC9eZg*+q~xdhz}=?^caUB(!6Hy9_{gDCQ*YL2kv&yF}or)B_$`y zq%vG>n{3xh3X_Rtr4hBK+C)jRa**;G!9AhrP*#pw+#AgJ$Fvd~TV)sR17e-`AsJN` zsiVf_CPyjC?I#`-2^>l4?8UUJFqG_kP&NqC3-j|k1;aqn*AH%FXz-$eib#yRA&pxr z^1h*k7pult`J)z?o-gU}begNFD^W;6E$ zO43M4o;_e>WDFl=GPZ>Kv30*D-P4PfQfl^@AW<9s;^v zE3r)xm_Q1XNbR*t;EGFNH`!es=1UEA_0#3AUx`u61J<-Lz8Ax-X{r5&7j z|Na&iPI*d~R)^v^C#Cv+S=auA4q>p|KhH9cczzq+79G)gNL;#4cfSiiv`ddHsTRjJ zQ~Z(&I8sG*Xb0w8sqy%A5fWRg8y37U(8?%ZlKG!QO`d7=le-U(-3m=mg5O1G@Wu%? z2E4;TOA7k7D7X}pH{?5;oJPc>A)+=CCwOqxHWs8Efd3|b?n z6Z@W~$-EO;1#bB9rG(4+emlxh+30UcEG%A8?&R3NU$h3Pdi40ll_-uR#EG}C{{_Oa z)x=L)tao}x|7n;#ldekx!(XP?0o%;3Oysog#4Pu^kdHQxV4nH!*Ds}qY_C{UqtNR) zxww=cB8s%|>J3yrl*H9gV?^nyx`yh{8w6jBEKH?*vs(TyM`j@a)O6r*f#vn%OoB%l zbtl=&VL5W`x{>U^LBnD{Km@5EUi~r2Nb&WcWB%0+MHnm$1m;Jd-WYTsdHF4^_o-iZ zoDz#C@(aG6O677Sv1ZJTjye6wm)H!ZGPr-Ct_B9AjQRkx461iQsd~E;`vy^b?Q!ys z3PE>ga@SF!jX%`|+sR6{*Na!aeRsQ_7zZcMtnqRQRC!ZkcM6EKouWJKUpc%J>NIQx zK^G{znB+nXM+<~1uQJ~{32<*oM|Y5Y+usK`%mB_UF78S78$LT2OF^3hauk%BRvh2W z!rQkpQuU%FMMM;5!LH^ddC$#_J9`OyG%1X?p&5AV0rnqwn9BgS{%ii!Va>ZcV1h09 z`n!Q-Bp2@&`3^4l8Gt4U{3m|9T%oQ}zh!rkgUUFB1J?wFLsx04wIN>e3Gr|NnF{9`}=WIaTDI z00;*Nog5G{^ERTz+FL^G5`asEq^6{-LTUlzy>V}~qnw&bCq1t#zoDBq?bR9ZiHMjO z7^;Bqv@u6ql$}@K{-O4Y7!jU#hQJBOc_7qtt1I*efWAtOT~k!bp8n_P`CN#GVJkASm<-T-MqkOeinxzOYO zZ$)o)U^x~Yaf+DNg(_kn;kGH5iH7X}>tRhl6AIuI>_P~&5mFau(uLNMgYoQ0V zD*#z(*u=zeM8kUzmN{S$lgCB@4uZ@EFHnIFW?Q?3?rd#Y1TQ-QgZB;)gn#0mPCr{a zkb3Nf_UvM)$6L;j?Q~mC?z4x%00!mV0qnj+=_5w!fvrTdC(g|)s z!Q={@iP0xCMV{UuGu)7r_i&)jsVho?i!HD+=J|^kTPP+|8X6k^oTO^ydGS$sJi~rt z^kQLScSirMo-8S0x_*}o63NI`SjnOL^6^g%UEgYBhM}P7WnMM+?}vw+5fBRTGg4eY z8#VRW7N@v)CX|$M*=JUuxnM`ZtpcVjqLIi?JbHN)#Vw8_c*hg_4iFVDASeh@o;~Ld z<237|`WL4_(}U0kXy}4@j7JwE4p7Chb9r_{9{gK*?`!qXk5hdQbcHsChHHGGwxY(% zNThOtrZ2vZu_n;Q)vsQq{><+niyU2u$k^iXJ7D3BN4`5AJCH0)=KBVe$-d5A8;Vh4 zHFYByuI;7wNbM0XLpn`5MP5oeh50*%sz(2mFn+OKktD04KcXl{!>vfuR%4@+c+Wa3 z=I1%vI<;CC@|4-F$0um_b6C%RJ<;bui%*ASu3o(UPxk(+KXTt#$uvcvkS`OY0r*uP z%t^|J*#*hN2-$qo-t|!a3)JiK9n!5I%0{K*tr)0e-wq#$_<6v9$erBgZ3aQ-5P3IQ zaTHHk)mgHcJfFe5{`)ki9K8QL!&@6DFm zZ(H&`lYv(su3=0O+ANecOxxzyKm7=lNxuJr=C99IDZmJt47=X+&xJaa^qVZ zAC#$+?p1bKbiq{ko@aUX&FGEhGS+P>ZOMkG` z#40OmbuphAyYcmI$;)ZKXv9+_& zB+}EQ!>F5=Xu@R4u#u)D4p#x0p%v%yjT>!87vbL_W)T5XL&eZr;J-ZizAV1vf3g7{DF%iWCJDMR133&Xj_Ek z2;=y0J-Y~G?aeq95@$(D*9Eob95{B9F$B;}*6&b;9{WQge``sx@voI0X0# z+Wo7q$KWRfxhvmMEmSk_5#Fldl{8|{(TcGnNDd7!NG$NbUD&u8uEjp0zR7J;j!+xT zz-v!p{|%(j&}RkRhD7rSVqZT9Uf||43Cam8Ai>&S%zGMUJ1+khfL;nd>;q8DY%XB^ zvpR=t3eUT@m~7=3K~2Vyh9@8_T$@p^P7>iNee2fUnWe7O$=` zyuo@!9Oy1<|A3qr^=gmy`Cq8^m_19CDpp2Yid3Cj5#24(mgSrF0%I* zAX|t0qkRSr<&CFrV`)cXFa>_?_10`t|V98)xx5~h?KR+gZwBcQe0n?0Li-!oiAFU z9>OOg5W9}~i=|JXZ-_fd{4Vfe=I5ko>wJ_v-ZKAD(3FIWjYu$dx`K`ukZME0&5{{2|+wOLP9$W z7#_zs9q=M!uyh|kRc$UGv1h)t)t667D7uD<)|Z$8S|bfFq5_qRn<&R&Rwc60%)rK! z*49S2yv6l{K@8&z@Saen2%U}$8}+lnOQh0e`2l@QU^ev^?3yZsV)xK7HYIW}S z*(do`Z?AoNk{niSc%5wc<(qTu?(7k|l-3!pQn)ywXGAc@3svv(1e&KG*KqLA$;u_c zn6+UrR7LySR! zrEmTU-4K5v|Ef7gEsHsIEng37FXX=1J; zUF=ii%{W(jQ(XfCbKY!Io&Da2XIOb?8-vV(k}!jTRrs|(rVTg%ocVE6laGG<&|pA? z2F_aUNPe(7gkuYFQc=`dW#t~Q5hQ0&v_4yB|L){&(SS#TxR{jaNCiVcFFah%4%gr$ z)wJFn>`l6toPBKb%Uf>-rFwY%rl>0&x0|FPEt+>NgFg@VF@R-q7ai3)s(yXH?guh~{`|t)yZo&LAjif01V3NYWE`$6Sl3 z3Vj3x(-b5eFWkxb%yJCH+<@;MA0JnUhGT`AjG0Z;TwdFj67;= z6q==+RX0_Za?b=VSf}&AOKl}P)cBTwM1#Ga2o=?Ft1LYrffxVPom@$ai&vr7iVWVR ziRn)=su?bZxXbLnw=1B9iXl@NgT8nfGSJfP_8Ek)aEaKEO7y7uHo( z2bE7a5k(@D_i!~bt7Bqf#w*q3;?x!SSd;eT>Sn%k>il!cj7lfV2-7M!c$YQ4_)S94 zgCHh&o=SS_mcx4}&=EWJ2i~nebEimkduInKdJkp^JtIBN8T@pC51Y+~^%CDPPK{#k z=?YD(_9&^+%{s!%8<~V582Bev#lT=Dky;o!YXy3Gx)*lm?>%}lgnszDC}}|HMZ8}O z`FNor#|Z2mIDb{-r)KVAq&w`G@FY#ggoRK&$@n)Uu}*5MWI%vyE>d_z_xIP})%R(5 zXoM!-N^Y6DP99tuLG>D3O3b`y%5R}|M(i;Lc8uWW6w5Uy@3sbwk%lg6rM?58BO2zH z*^0OO$?^mmvI;!;1n$)sRG?)R-&Mk5d^7Z7>?iXZZY4~onW`hN`k*iG#jBG(Xmb(G2Sj-gLi4 z9V^*Q7^L!`fUc%#_lA+Cwk8QOCWD2moTCxINd!jzF1cLiY49_KZ0BP&(OBA!gS86N~LaA9?d zBp{XK+TXm1{%3z1>Xz6Wqt2vXShexpD7grc$q&zuzVJ^C%CWUwFm#dL8fJ;Y$szqR z%+8NDsj8+%N;4fVHimB$M=U^2OFKRlvJpYgK8!o?>%afrS_>8Z;Uk{Q=F7C!!jY=j z7ua723ya-S4yW?WG#{NoYRQLcmHFXQnO|}WAy(f!V7A_0{MwlMox+v2SuXUS@7w9S z`*fN7fuyoKGbuXE8+lGjqF+0a_5Pd8=aUkWH68eyXQAHSb82miKJ$yQE4gF~E80=2 zB&-~s57;mgI5`w7qHze7*wXPhFO{h03(R8J>Z%(8l%8w1)!d~x`76flvvVl6;;}pJ z{^Peu=ULw;|CxV9yD~G(al$-2(Em0Xv_2h^uV!sn2ZfG3w!+A0>LK}b2MTQRVYZqC z{&bFz5~n%d&uQ0ww?D=^ZM?$4rmoZgjwTSPZ90{=M?v)BfF-N1>tFEOb}F{q2?@4D zDoih{?-b?KUrm2S$yR4^!*liogGJkC#}8)BD~7Xt{O#RetlS;$4~Ph#b$akoC8zNh z`r(+@0#@@jn3y}ZRY{tMv2P1IQf29I*AybC$Y;EwI&~x z)SAslN6qwUZ&PeG9SJzE4Dz^DQ*btqdWcF|KM72~YiIspuzL?huM zdESRP`fxVRL9n%scUBvxPtr>Oqnb`cu)vCEqw$3)9cvQtMYg9G!_Vp67cd@xk=82F zqdeAIUGP!0{s(PAFJ9-a*OJe$@Dn5+uqn)Od_@)KjZD%SUihgd{ zoPQ$md*NEKRecRM#I{&gXB(W%Ux2NES3+X3XA`~f6sK18ugVEd2;^hr>Zk4wQ@h1iM1de>&|DL z>UcErj1qJ+go6(Tk0*TF(kN2TKeAfJqHMua2E!ZJs;t_*>hm-(Y4}0^48RuXmO*0! zoC?C;z6`Gp7S$6RfKD*z*^aiiW9x4m-GKcU7u&#bQ5vfOc^WnbMn_kd60C#erI4qf(oE$Rh>g+5pgn=8Lvy>IC71`sn9la+{o&*O6CvMd9_N((L zDpRHxfpt9EyFUW8pv_~c?3yR;-!(3|`9wqmUDGJ3a(T?WAgx*4Ln1HMQluThA;6Dq zm~vdoHMhpOv7^jr*XKFHZJ#Y3tLvt<;JCo?hlDr~hx~Pouxxdo1I6gK=x41(pxcK3 zyePX7z8=iuhDb;k-2wBykWCkld4*nHxJZ0!t4a*Pag zH~oX93R-N$UYyRKfEyXk{~K79B_y(ZqAXX%~t5 zdrzrQJk}Tq*r(^mM#kkhBQ5E}#R@h2dzxH0k?)EKyjReeHtRfv);M_*DQTE|YgxcF zJB#_bNMEh9iV;HHVd?br;-rxwBO^noFC}-et$%<(xf|f)G8|3lrZY$oOB_>V}eQHa6vg!H^G6=r>?QIZh4XB)V~}OKY&zG zB{ozN8k(hY73^aXwOM>tR@T7-zJ7Pv6WHFCfA)D+Ctt99BBs+LvJaGqM=jZj!r*b$ zoLXIF$_Ne$GOIDnFLJ@3*U)+ApbnDpEl|tcey^tdGxQGtt>ZNN8^YFjdcIRAGq37U zU30PYHo zZx((}tU+JhWp~N`uMhzNEZ_1jT>zO;)_Z;F#Hh zD2hkn;qG|D@ocKm7V83x$rfP`A6D1YR2X`-R{ew@4RU{C_0M1OQ{0>}K|@-akP8hJ z-8>Q0gqiVir48Q>ymqW757=>Dw`IsyZ8_s1TU-7r5sH7A(`%)a(AO>x9>3Qnp=ox4 zHv1RCECUEvE}jrBe*pGG=_Nr0m(XTq)k$ozX*?XlG$~?YVzRO4Cra*|1S~QXCix{L z`WX-svS6?RVn$Y;)x^%dkFQFrFg3xZy$8A9{DFt6M}WU=!{t7Qe`a{1zQ_0@8m*-q z%*C{{w7?;~`%zX>zCV(lOe3l+NzLIU|AD<< zak`e0g2H}#R=781uzy)pNh^*X(Vtn|6Ld(2b>pzqbq~=+s&Qd*KcRIW2mF#nMZ)dwYy+$WUatpsLa-pLSE#HwVl^Vp&t-!``n?vyhhNN^XvRX2x z2Q%qs%aOtInB#}_px>V2J}-LAw6)tTM^w`|PalFrU;@OtU)YVCm%6sLw!k;ugwMB| zLkQNjy zod1AaHj&1r;c$k)4{4%0N|%^dF;R|AFart1(e~aH9s}u6pK6vtKF&lLE9OVS#3a<7 zs|O5=s??{p`?ca#!LWM)OK}JU*6TYCqha5e$LxUQtAmewB|&DHe9-r$2sqP3jCdha zjCNaVYyCm!dHP22W70FvQpM5ZKHp1FqcqEUT}Az{;(p$&Di5b&9dJEpuMVDfTKuMr zwxkc~P6Y1rLjAce--C$qiMfXX6 z>OUoG9+iJ>67u-*;|2ZGWHHlOZJVCm3Uy}Z1lCN)oeqfM1aP;701vNX;CYSt&eDy= zC@zjo<)E@U`zD(NJQ8r(X&1A7dXFi=;`od~(FDjoxY0pxpBAgmH8%{dx{#8j|KaE= zqpHlhFx?;^-JMEa#Zb95bMnS=Z%g*oLT*}Cjg~bq`0>`=|bL8gj7yK&Q|B@&!{;~R? z<<$9eZHde?#ip2_#F%5HMph6>t1=@bh*l7?8FOW_Uh|-Q(G=oA2pmEcOAF#{ghfsW zHv=6Aq=Jrk*%p2jjb}nAwHE2=YE550@inYEbtT5>JTF;K)+O*7W60fl^&=L6-hOM( zKi-PtqpGP+;*vA7W#ihhIi~gyg4(Q1?jc7MZDnpo2A|7fv(t#WKh1qn$f+T}(Nj<@ zm(GQ*y_=hx@hL2Wng1GuMMZ)9B29S-Y0mNkHIg&4LzI^K=CvU` zfkQY*d*37TD66aEsSPt!yvKUo5)+4(K?iAchCVDK0K2Sk59SV+uO|`((lou9PcOJQhzg= zy}1Im7hJ5H-RC-i^L20E=2wXV<~W^| zGRbmbT>A?uKusC&ni}&hx6^!|icP0X!Gl(K3A|Y94 zBgaTQQYC-ZU79u zz1q4_myoC>hpSws37|sVt-FH*9RjX))#T=UQn8*P_g@fw?PyeK6#v#Ao)HYBJcgit9w7NstcQ#p+%cyIN(1u>qWkA+Zq67XEZbGR1QX2}jaJDGGL^EL!n zC$~lkTF@{sh=1so>n5X>A0KXmj?@Oj78$JiXT1*!ccm&c>n^VTCd~d-!}JyxkKpSP z9cCxE{*TdVKT!InB4E#b@#H%v9o5bUbl1V-9Hbu+Db2|O{Ypt|tGJ?0HH@H@9w2R( zgz)VOkcy)OQHlCEz_uhqV1`hX9xKVsJ$;e)X3gve%xjlMMn;%V2YgQsVKOG~f5M1;1+f#S#0|C zQKn1$F)=J=?cr?R%hjDx)@F1$NLH%b#f{n(6^pz*D=~=B5!t>s-g$4_VNhXZwM-xH zM~Xu;B44x@gsNLE0p1lC6El_&JELAGjHoP=z=w=^7c5UgL=>$I|5rS>VMci&_Qd>I zR8-YOI+<#P)Zz>tUOK)(!=!@l@e2Ljt>>zy)0&s4r}X`96)NV`_~k=V50l`+J*fqON6;Emlw4bF*o_=~` zwjkSRRw-fGv&Wu$8iK7zab z?){dlmYc1hm=vzf&7c%y|IFXLZVr4H01a;-5KOYGSmbyV*Z>%f|;;D4Fht1J_ zT$zI-oT!-g z&{LGXeNjkp+Ozxw+7f{=9Vv|JUCp4s9 zpM4LVs=^0Mb&HFOZ{EBy|1Ma_ay=o)*G0@NHGP~@R?hO5oB0cM;X4tWo+yjKhZX@g z=BIB1_8ZGe^3~q${iR$RBE%{V3Nwr;h58#+c=;>}GE= z_ei(}egahe{4K|SuHj5Hg|&e7nXQ1z)H>}_!FmHf<7G-en2HPUPloE zX#!=rTySwfWB`mZNdY#1^dP72-_mnj!kPy6p^%`UbP*)QQ9W`q@%0tl&?;AmiHiei z&pkA*eQcdI-;FQ&QXQXA5J^<8Z`Hn|VgO2DTx)X={jo&(5x zfaShOMd3(G#4wZouB!d&>-o)2><7T=Akc`IocvO?Q7rV@A2i~32#5H@`1bsEoUaYCW0?Adt(m{q3EDoZueL)`q6!}2ZO=9%VS!Qm5s4uWDUR+$9IP1%jsc>%nJRtg{KUVr2R&dB(oT>MI z^F$R#Bh2 zm;=jN3)ACg`xk>awU|TxkVC8g4CIvf!pQS!Tm14Q#KfMDAO&7E(NDIq+g)_g6yqaA zn7oYpQw@Nhd@RKEB#r6(LUBJLWUVYOk4lN>^ezAD4_Zse%v1|-}v$?RTlyf-vNktGk7u@VF1D~jGJg7BW|KXu{DiP1ihXc3cy!_qBReKvqmT0 zGD>l3<=wWJ`*G{*yOQ-k`lGGnahiE1duVAn|MQFNb>U2(5{#aM)R2vJ#}8kB&x#j}orx|s*o!+i z`AVLT`2I(V!`=OBTJrX;kX(@#)M3?+LQ0x~PCpw=*uA#dSOl;FYtL^bWTXZDrE7pf ziUNL+OGx@`<7>3Wjb~DRf3eJ?T!sb>E(Y*K{x<+_4gnDmWz93!I@1Q}Uo* zLFTz&s-DGldK}7Vq?-FFA#U*SbO=SnFP50g;UWk5@#W9;kExH~U0(^@dnow**E5fb zUhpTA>NSzU{CU@L&gad{Qr4b(wdCA{$h`DxGLIkL66|_I3@(t?EgG4c{JUsgmQ$TF^-1=p#4u-}y?IhD-1D(ZsA=OoyuB zyqgP%a9v%Y1+`_mgTWGVhj*~XVmtH3MU?mj9apJ4uv(B3mOj~9 z6p9OBbd=mD4Y8sPiw+8R1C3&;d&MHPnEwp7`M;wHZkLI5d#+;N-pDNg)cPfIv*Kuv zzbjH6J*TXGQt(0_L%=NN`m5{J{goKfeP~{LuSmf}@megG8~L-H&64-DI66O^84rMw z5$1uph=5T6;~%g;yq!3~e}8q97bl@`mBz@N{pwhOmB&cx>-`8JxrJr<@inl<&#;(s z@SoCP#aU8V$ELq%mD$kcsJ{`Hb@V=!MdT5!KgvC^!4Xl5e}C6EiAN*W+2Oi0OB;G& z35jbzzA|yA#=x=yenSuyqCIXQLoG`7o!Cu1y`Vb}KxJGYO> zOxBS6ck(CsWP&3!(-i1&h*J}ZPCX^FOg%$hIworZpTbPVwcwP&p~<}$`ofy|zKM+a zt5k{HJtu_4_5po;=wf%l+v?kY;64+(?;n9N@ZkZ zY;3Go{s_)k0QB^5$g<*S8CkW|)v1`WzDimFZNs-HY85xj7gk9CwIGnQw2WB8J?;DA zRXe#c5?eHlMNDHit_eplHWwY5L4#pBXXH~_Cl4liE#<@nZs|>eMM$&7wm6AL1@5K= z@<2lo>QhQTJpGK5V-_jp0nBC2V^r$)+M~q(*D? zI+~l`kUbOHI^hsPUmfY0u>hbGT3#7uw0)7|?s!f?!C4mD*AHJ+{ijp}!$t%WDqbQ{ z&-sk4g5Lp#JEa zY{9cII557pIe&p_Vf{|RL|Op1bN@l9000FK&~shTQk!|FzuZ(a)0 zRFI&2RPDl%t;7w5`f)RsyFMkvihuwU&6R(R#XT(z+8Tgs{ibo4+;a{NbteqVv;$PDdnQTt^9HW zm9s+sQ-e?o2J@j%2~yHpXFkU{rouVa$1UFt%tN+No*0KKH4IVyrp88J;|LQ}I?FJb)Mk!9{zn=OtYxY4v>CXz3vpw| zMmzaEHGEh&YbiB)ovpgE{9z!Og92IcdFu>w)BZQ0->>gI%FX!zzxbz~$H%O!R8smp zU44mBJYMCcM~z4jg07UJuA53xM($?tn@;fY!7B<0JO;pt>K{+yB-OTj(elXJ)0En# zD}Vi32m6;EmG+XHZB%%f%M*DiTDh1qi~A>AztMSr>~M#m($a>)y$I(^=;c-pGa?r{ z;C3{kK1wuBzS{8{u7z-0O|6}tp2GWuC-A$S|JOZN=HDT0PbyMq#OpZkD>6(FuCF`ORFweb;JEk&3V5l+h$lE=@Y z?=3gs0Jn#GEX$Dnbqs;_2SQ)V3n;wTW zdK=t3&A=hU>rQt52aVAY9V4N7>D#yZ`ueuLXEOeaWd5kWmM;~@BgLhwzFH?LM!9TI zdjrG&_iXHvVEd)sQ_Op>TU3t+dO|va1nF--rkb#z3@7ymAYv^%>nwXlfwWHEf{nEP zE$zkkbs|a^hzs>nq7OZ*lr|JX;g5~n_PY5 z84}_l*DDyuqjE}=T{l_*yd1hoa8%I~JDSNjNoSRq21h&$Me}?n1 zS}iZb?L^)@_|GsjX#TC>{O1WPOjq!+lw@p-Hk(aO5Oc0#$2$VOKN^cssga1T9&ND? z&mKnv3A(R+h*#w?usK3do{A75{Dt=UO#d&klUUjnXZg<>4_i$1TWH854edRidW=|P zQ|{IcwUs&22Q`fG^Gi!u50SH0f5AyU6W!bMMty3xWPhwj-0s}|r=xv)+`*Y?NGpf4 z_HvA$5(T6cRmcu(32hU}pt0mnHQSb_HesCH@$ARHKLU?4@WwzvgPFR&aP zDcbK@4x`H|pGR8j%*U`gVw1(_h1mI@AGtlLf;u9R<^RaEI_RF_qPSg{uE1%Ky2^)#hWlIP@u!SZRE_nGOxOk(&+i z3@&0Fw|0-G(=U7FAcgya43*eAu}AK{byAt6|dllz!`C=p)1LdU#Yv(GhKtD4g z{@?q%qAEHVUoiILb92&{mzRMEhZ_z+5@4bu(qZd|;w#Y6XzjwP3TK4O%cQ8uq^L`= z#DEBg&JQ8sc^G7Bxb8QVtZMasUx$JTg-i(t(g-1jdE#=Q%tBO@~X62~IJQtzTas_m znKyP0LDbWbT#*G^NAAc&nI)tB#P8{AFHY_s)oW{;I2OBVGQ7a*z>lB#J0j|q2`xGE0wI@gd4zfvt~hkgDQ*Iv zPLH^s$8wzTmz{^N89H=DAZNVonp>YnKCFd#;Nio{3Yt__E-pL^_um!9wiln@%CIeX zQjbtDs}?2({AWOchnG0>)_Wnd5}MSQIXUYAkW;7O75_b?i?&YCCTdnTBPDL@fK$Iw zCpIjYhtBbC}<*f2L}gyF~6>( zX~r~GFWG^F$j_+Fr>_z?i9d-{bhE?>k_Q!UMR)qf+{?f=_`TFNF`j+qtCQq@J>@C7 zUqCiKU&BIRRq5X|b)^&fi9e(!20;}=#MsGpY56uZ=1>c6E7*$Q44}PiQ1(0>=zUXmarTRna>>hhDOre0^f3yS$j)==2EQjJV`|h?GT#Ry zf}gKwa;e>nb09T-8Ok1t#iaxptg~rMr|#?uF_y`%!?rk5b@1H)WrxB&-!WTtZ+56ONjPbl7i4yFTJr1*FP(mhtzfB>OfD-hBpvH>- z3AaG{Go|KvU7Mo_KOlG(;K7AJ`|PA%e6MZjq9BUM@0SJ}xCwyL$F0#qqvUTvS#t@X zW9=9?IA6I z^>uX)k~qUqQP<$k^7QZwGUM(zXEkzZuS2w$%U#aUoS7O=H2N*r?C%tWZ+RcC9Hwso zaSeDrcW=hPU1Qa3Nz{)4TI1g!X^KZDBmzE zD3?L3Sj{(h+IJSACwCFs_XqfgkvA1TGhQ=feuI+$@OuP?=6QFO(H+nT0|*bGMa3cGk>X%Ma9(WH7H+L;YLfK+p=M>Z4(0Tm92^qC7YP1d z;2y?tLdcK2GLi0rOV!@iR$A}Llw5V_8TNxMq($(9Y(nP=@IrD4x}J;XGdExZhYyJ9 z(KdozwQ5Y4nh80ZO{=eC($l}uSpdbTeu3^XQ%SsW1FI~y{AJ>o%F_C;OvXqa<;Vm9 zMFk(_Y^KL2c#3Q2cO%81!h&55C7Ush&6Md~ibk=hFIK3WSNIx$p&vLh5JnJf)oB^% zlFgsXNA3an0k=`XhHN{5YTHK?SE;9HdU9L_LPDDtlED}F-t=rv*3UL)JUIYwW5*Ig zB9F|hh}-GcybynEgF34Lvb+kUE#X*;gZ1G=*ssVUPM8p92<@YbMwE_n2oa60QAKLC zZEcy~<}WFLl8}WN(~|ig_cwIr(}NXS4iFK9(@N_ql~z@uX+oV&G)K|=P)EFC)<7Kqsxu~J!~1!7c)29T&tf!~jE`4L*Z48jpko*W^_ zgK#W3xO-$H!7!HS5Dr6p0XdKzPASG@^lK|4yu{H)?0&19Am!l{t~vSOb9fiq6l}#M zWIR~yo_S#5|$5s`vOJZrBLQ9Ke_7QrO?nU5o~5 zc}iX@lz(FwVba#Y=onO0|0>-;E&?BLc4%fQ__jA$;N_sli*UbW{pgHSjUQ+KX;o9ee2B;l0H$;LkZEJR+&5?!cSI+0C}(@FRW z@f!%s-NPpH?rNp@W%BD7u>F_Z$7y4~?Dc@v07RriirXC*0!EgiACkzU%$RRsOYApl z?m|$q$&a8C{%_IHBz3KvCYty1&|qGWf&4^jO_7dVydM6u8xK}h@QFyF&j*hAWvi%i|sTb|JGeWG>qfuGF;f88%{-Y_DV`-i#_R}Cw?ZFd{ zvpp&iauxj)s^p&xigBQE@8T8Xl;&82t!r6PkRp!Ug+}=*omcb!U z*oo?15?)A6a!1y-wRtYr2q90s0lj2Y)$%n1K8peWi_vf%Of2eVXLG~b^`{)$aQo$*g;r3Xn#46AhDU%s2@w^zYhl< z1kILs75y66BuLerR*jAS4oQ3PH-FLm^X|<8e2F<1mI2isYKe{&&>v<(*{1JfVH7qb zY@kWvolmba{%vQ zI!9}fl`OTxC}O=ZSKQt?eek}rhQ{snCI1VlQ-E~Iq~2R!N8RHsz{^s;7TP80hVkYG z1V)MLGFC!(!H^PvQ}I}*dF}1l*)u^FvEgrXIt=)aw7LMLFT zB8io>)7IIREsye-jHjx$$51!&;30SPt0grFd+haO3c3akNx}Xu&R5qCm60<}wwiQ) zK+OV2Y=MR~080}L?cxK)z)6Dy!4~G|jVd&?HtN0=yHb zaB+DaV@ESg-v!;s0c#MgQ7G)#3)vfJS)X9W8+<&IhV0&-cH#_Qq#gHokO0Qp@DFQP zxg;bq6{CJAsxPU%^78Ya^OM87CQPN@*51DG<%`Z7aIY9ufgqD(8Z;x4*-zy4$zN0s z*!Zl{Nswao{oc1Aa|y4_Q6O>?GI{ZHX0ZoNu zk)$K!>;}g*S+}PVqB<8DgiJ!YpM6cD0J15f{S#4_<<9i`iawgb-?i-Jyz;XD@Pr|z z@{T=xrC=7-ik~@(s;#{ndw)@jm{G$B-_J8qi6DZiBk&Cy>7)lU0tm44hBB9rFpnEP zRJ78(=EbbFVyF32b&J$re`D4mJh*7sab^DLXmr|c?yr)yxOU7cPI{kf{B;yh<_diN z1K&jX*)%<%voZ)EbsOMKsoC$1>}mo3EJk-UQrvkCv?~nCY)Hyjwtv+9{LaBXS*b(c zk?dX3)h||jMS@wv#k|5>+tQN0Skh9tUx6&&`&l67F#;W@PuwodaXCE}NcePQ<+LlbVt{k(;hnDmq_^9oG9Y6*oq*#grBGFq@<+49GV*7hqncT zaUsSn9~$owVMCTusV~@CU?!@|M$kq)M)Fb?c)k{q_b7V5(jk<5Y6SE8pr+4p-!c*S zr~B^0X}muLS0gJsiR&{dsMuH^gO-?vz#k=Cohm9If=%AmKiYe~v()68=(zB4*w9}l zyi~X~6@5jWJlA8E#G6w5vu%fN^8-zD(+wsL`()`tDnF0&A~fFl?v0Gd%VbIH?d&MN zyjKU8?bzt3RIKhe1heVu>ZToRN;u*n>)gVS_?~{vLm2%zK2Sie|Gm|#=JuZ^MIvyt z_zvU4&Jo>M+EczVSEp9F|58}5$#m3b)bCW#+A*!NsWaRznCC1^Oc(x>-?~v8!lzk} zFpZT{Ww#Lcy;T=HCIV({m6q_4c8ei6)&19+e?H4Wk{{#2FSyt+b1k-d8ykOt_Cgo0 zkSKJ}lq~jXr|pw<{0<(*fU--gNj;5#ya)qP&|Bh?#N&J|_YX!6mwHvo| zcIBw5_PoG85)L*&h10n#oYZC{tTO72{H!cF?49fUz)sUAm4w%zD&2O3lC{r*-RK*D zYrNO8`*PQ|P%3P_aDa~4F>xEq$zqUp+^J0HNce%177IM4wB=NWHBpWoZs(YyF*D#u! z4S+aQ*V2-HmN2VT=NM!vX~TvovTrE%?)xW+mW&P~$ zVbSmif*fQy3oz-p8)X*D{}9Go&?+8Y zn1m>+vWewZRTGoKNrjNb7-dJDBW{6TRw=UXJV?n{ixDK-v z(}=AqclvYr&pGr0fM+T6IaGDZ{EbIS)#S8GLpbRvDWO}ug@$GjjbULk#6MsQGR$O& zN0cd-i9FRJvBQ5rZa1$&O+|Z@AjB@uZ|A8$r$KYkD1VNK1W0xww1Fjwxg>?N< zQzE#k+_|80+al1%|l3lA4;0^fMc2U4;b(Hdxd7 zo?exqsr*adsXk#uARjQ6iILaj5)28h|G@@MH4va1KFYrtCQq2$QcGa8QyQIzFxyG? zi_WDW=c@)S*)NOy*T)#E0BOSX77!3%X}m&NIq3fI!GmiA2EDak=A5{`hK)WZtaMHg zGZQZ#6!f>hA3;KHiO&0^ro0^4QYMfoQfxiMu2a20D47$~TSvsn_c}1S)E>zl3=$7- z*1CBLb3?Hg(;-Q}K&sg+`Jb%Q{4T+#xqNg)c-Z7>oC3@nhcH3_JOiO@AN?t)8^f+;=m=u!{!R#9I)x#8`PUn*~%iMenl_)<_gcMe!DZ6iM{E`iEy7wxB|A0%I z*Yqnh+jNk@@ozV~`BsrW5}EJB`_hVJFzGyPwvhJpY&q?Y8J0uFO~LR+5+WdpwBb6e znzPDShwUEnb70XpYk2s8g(C8^$~OZA8mIGyZ>*0M#798WfB2@NVyLJM{-;cW&Ej`6Bo_{~9BT5mnq6gkJtkLR7XI{VvSgxzy_ZY1nRh9H@p zEgyYXAe)<;dy8W^h#uVk}Z>@y~@fTT1L4{`r3-PEyCiOyn1cEEGudDnT9uvA!3Zkvj!9 z6+sX{wOJQT<@*jCVBk4qt!Ru(x&>5sLDxA-Jghe+`DaOq2No0I0|vDE?ECi@)-tgR z4cy%ifRlgmE*{E=&%9IKRae`?ZWG~f-|^f0d{$;=lu0a)I{qGTs4xP;EkQCpI=T&V zJT|uG3TjKk#=`LJg98Jz)Go62Tq_iC2o17OGGRkV{s5u zLuZJj%{%maYJ!oSK?CYMZ-(--K2a2z{`6dtfg3l~LEINLtntrDX3&(UyfA6{CJU(Z@0)}@?xd8|cdW`64XI1ZZD z=$IHIL&G=DU({bDM8E=j9|4Kk5ZZOR;WEr&*HPe+{tJcA6l7#L6aqDi$~(T$tA~yr z7at#=l!ViHDI07VY+zuZsn=*MXtWBP*&5>{>c?48eMpBbSN;4b>^u2L$BYsmd zIj{)4MtQibqk#ag-N0wSC^APY?e4zrh=^O$y*lozBhrV#&cWC#)8n`AzRZwj8|P&| z{Irx37W$B*OAg@M8N@F6Z862`-A ze6op^W=mOstv`a0nWUOkdm^+3IcF)t6E#O$|kPtPX{0k4L% zuOSOax#QP{NqXE@=9p+FvG=-NetNvmN_yNwYTp##Q6Jv}nCSq$djp(wBExiiewUsIM7#Xj@P&UsK*Ve9N)^Xh&5~(u zp)?^$3VPLYZefs96*M+J{129g>wo`vHQ`AbU{Tuwd8>@9Y@29g1|YZLx}Obn2_F7x ziGXasm?%U34CNkBdj3WSN5QwW{MtaP-sb0a@2F80-82SE#*;4)XH zQ)|W*JixH}^?-C|hSqxGS7h2@QTM=Foq*e8nKP&h39fOQ1L3ytJ;3HGnwqtDD(x$K zx3N*vi5||q)@HxeBsHp9UfgPL(zdTPWMn+|FrJe-ISZqpf45Mp!#aOQFR4{uKIefq zB&`?r6ev2c0M11v`UH?`tb6zFD(G=BjzIW9##Rz#2@eDw}6&5^X03-j|{#UDaHrN7>%vpp5VN{7 z%w_FAl1$kFpCPQ4zyRDa1`q?0O>k$Sgd<+PM$B^^CE18h1brKD;2bhAf-V6M3xB`y zBsHjp8s)aPgMRrFUq8Q*-OyvPZFtD)-)dg;=za>mx~%PjN#C06%~IAr_aR@F{eIT15pZNyFYKm1*D5Xh&?a@ z|Fznxg8BwTyNGOy^1BJeDzVgjHlvT|mAFIy@ZFAiK|;ft;3^=L@1R*h#Wk!>w|0Gd zd(;b*sY$;gb&@Frk!m3uN2UyZk|^Zm8X0D_6*!9!BQ}c{4F$i&{bJBk3FXm5NW@Vx zwm|tL=(?nv`J`^03qfuUaCdNS@Y#+(Fz;QSo}T{r5jT(zqjwJ4!CgvL4S)0OqbhCX z@W2b3Sy1q;)pi0-sr2vCQD}cSlN0Pgvg1NB?V<@MlbE=;;Ktb0)GNal281W7s>lni zI|62J9MWTAP#ChyH=YSGxzHl za+;pqGVp4+DYTMP>ENpR2aFhy$*f*a+Rvz$Z!bZQD=Aqfz z79uRlE&)C-<(|UOY`r_DEIqbCE=8~^>@?5D`$evZ_X0kgkG*Phm_-VYme)Ko_d3ie@2DS1e!+IA4!%Kn83<554bX4gqzHgr~;F+f z{jRjWk$iA=4<=YVB15mSM1U;f_m9ZL!S4*mAHMQTGeAr(*eIA782x7q71$&X!tYY( zO2qlK%ew?Ba+S&Bd|Uea`=ykmbq^`1!hgV=rY{P7GpK8k1;0AKLKJv$A@~t*VG{Hp zHNzt#_BJ*=6k^%s1K}Kk)i&CnzZ67ue-?ESKp;sPteCTf&_`H~m`o~J*t1Kh29Qv9 zWX_?1y0W@D(=cK8U{}U&k)m1k`}Szk4AywRgsr!utW_y8wIvp5EGSK3t{5%5U?}l` zD2`lg$qC_#{2u*UPn^|J$#e9pIqc5nzWFrtl!)I(3`|=>@_1hZ&*TF*n{s^s5@umx zfk(V5*3Kki(I{TcFLKS_gJ|n9>Ix3SboBE?8!1S?1if#{3@Gmxv*5J%s@V*z((Byu zRPi+$liQ~jS^GWI%=6{_`-m$Lw-cf@p!{KyhKcFY6+2(QA(&nMRnt-OsCUcxPxB@l zJ39sfhX)NdYZyu(QEhB!Sb(}5+(Pqk$ef6Dmipi+3SjbZ7<~bRP0IX%8+9$G`YoL_ zPgXuSIp|d`SjhZ93B@)jF3H4%(j^r zMyD&`dzdf@9+KA0!ZFT7<&01^b`e~?Zay;)dXrD=4t7NsyrTlFcLuKp z<<>b0#t9WXksn!kRW)n0lm#L#E;bFxEw(OptzYGsAMiI=8WM@Rl(NP!y;QPQ+UXB% z5-;xZYpNc+KWH$0dQ<+N>9p^~@)zI#iog7%CMK@@MT}Cdv`U?To}%N~axbZDh5=!m zf1rGq41BNEfAD{Tj(t<@vC{V(eyb6G?myiP@|TML4RDyaFTD#>WUlPxPz?tArPD&m zbUhTv{7x%uvFN@59G-n=Y!MF+Pxn7Mw89o*0W0F#&!sd*=YR_dShZdVLMn7loQ6%7 zjWL=PJ`WP0{D`;+*tfYbBR~v7;E96^b!}?inBDv>bb*p7sNt(x(2^{rk0>!|c_J1`LX3{yFtBG%Sz8FiaZ# zNO~mXu-va;()sa7qpzE9ZOyEuUMxB;ZsOEJrd`IH0f)&hgJ(Kgj^)v|A*PSgLBGtq z=mypFeg$dqxyQ^{#MoW=kv6ks^84AEID@0)j-(k=ZzgcGR~@s9NV@#l?5YS?sU6pB z{-o}s*?*MQVbxq5m3oGGe`KoP#Q0T#&nh&0tBG~HLt47IqKyqxN139&SMTJ9>mQPy z_=f+%NdYMXj?zbT-cD0l69}RrK9GBKvxRu0z3I?oHxn}YGPJr?{$(u3;LhQ+pYlg< zSU+|@z((Sw*Rc7`K%0-0mi>hspPE6hHqBcGM{{C5IjAQCm+eOqWyXSV+bEMXHX)%G zLrBym2q6eFV2kng@?w&g9fa-WhL0qR=Y@+HU|VT%|0SlTvVM&e*+(e4E8Y^;!N6v- zwz7&&x=>+padOHB(k5TfnJgwD%Eupn6ocK6h%EiMly#FCCo)1V96|qxbTa+J@H2wC zwa51ZP)iumIk*6od)h&ftPsrk9pzwoIT&43G$Ba#T3ykSv zy$=Uz>R15jE^Z@r+(aL&hc@T^env)leSNpU#v>yk(Peex@p7qOZhkXp-ZlF@I>;5fJQ{^esLHxvEc| zFe}-u8m_S@-a)bU_CIM86_u68yiP||qS!OHC%l})s}`{g6F}UCKqMsHUen$Vim%EF zO+rEO7LgNpVd>Z0p?(?Ad!H)m-*SqI#|XH0g@-T%8#Y@Yj*(og4&;)2n_FI{A|{q! zDh5+E<|Qx2{>jsK5n)dBaF3(FX4!YAl@hboph}s z6k9hGMNU*PKsxZ^;!iAi1Q})Uh|u3c&J+D#5ab%=D~JMcOir3G@?LFC?T;Hwo*?jJ zl$@yF@!J8@fCsw3Ml)S+DfZ(}*^8SXPvpOZQ?OS2&9m>3PAIxvZ{LoW4ROaRy$kIY zd{Nh-u4p*+cK@M5w%`1cAV0GzLe=iBlL`whE$wrBDYTh8X;gXGzKR#hOSA_H8O9FK zZw_zh%TTKoH7nnM7_h}b8lv7lbr+rKJbn5NmH>#lT8yK8m)9KxU2W3Rh^l+%)de?1 zl7)EhuJ(FSBZOJ4^ok2I=FI7bRlL)iK%SyB-z{8}9>yD```79{Q)#*g`+h0$*uvMZ zd9D>PcyF2w3?I4>e29wx9CCp1W8OFu+Dp_=&kUF3=UxxKwhLye9mjvjLto!)C$y>4U}7K^Ps5dQ2P7(UpEhbqK#nw z^0b~AN3zA51kFxw#TebOtuThQ{y+O)Hw6bpTThqP`1f5;Yvwy_F*zHb993?YeyV2* z01r4!C$RlcC6dz8u5|e6dDn)C;#c<4N%X+{_|T+N(_Gk>Q9}C_ZBBDzV{!{V@D~f+ z$YJjynrPb4KG~~>u`u!0y=$zfh4gbyOP>Gm;nFyr?>WjI^KLSO9PU35RRbS#?jv_I z_mLYvn>A@?xAQNG74sv^{h|O@-$}er_w2_iBQxNW2Dz+4c{)9SLi06%EFEzcA97}b zj}mU$w*$C z>KBRnLWKvGxnn}9v#aY96%{0JFbjj8jGc??nU@#E<7W*?A4f;o9zKNKEgodi5L-61 z@1sug5W*nF$033*ucxQyee^0s!og~-Q6Ti>QiWN|-KbW(CR+)oTslCZa)sH2j)g!U zlH|>TZO{EuIrB3!0c${-CE+$x<9O%0r*CLTW@A$aTPCRZYFR){EFdI=hKBY`l>Qj9 zfx%-4UooY)QPJv$}5*Cx?04MZgg> zY4Dl8nO|7A3oD1?4qlqw8_tBlJ6HDLT~7ZS-Lp~_zv_7f4O)MSP>d3>er^f zi$8;KtU;A!W~OY)8~A-#>yJ#kLFNa$*$MZ92b<*j&x=D~a{^!#=5l-Z5#3rdlv<8b z_efp2KOu2X<@i`C+Y>6mzy;H{k`jg^ie`IT8-XFHH3I@f`lbpV9jt`i{<6zxXlMXr z2hvVXwlT7@CQ&&7rvY@2MZNH@)^rTtjlCS8usevxYWO*L2-7~kF|Ry~iVDVn5H;4A47RF(K-+h~6f$;k<73a=^9n6}vxVbD!`;7K(5H$cqP zIBd?+L4`<8zP-MlZ+K=9GqHYp%8~lw_D|G^U4u%jBPeQ#XlQ<}tXQpF(eYMre}#>( z2y_O(JPf4T^6O2ypI!xk=Y>Gf-*jMxfUg47XdltRF4xnsqIyXO4Mkd7CSH{D6h+HTI9}->@^dQKuNyP9{gYg{PiaX zsZngSuGkrqFE4|RNKS;_906Pi6M&$li0NACizSUKgK|WjTp%45&OOP+o}P!#0>OPs zTYDV1;_b4V55>m@u6jV#4=e*h*$Q2e&6pixm@o+i93bRapFVy1`y!8L|Cm1XKA^N2 z4@BJ;MS|l@4T=@DguU05oUZM)0|UjR^DEXU1Hk3x03@JtIimiDmbY);R{AzNdI&J) za;afSzVb+aMSD2S?+(FThdWUfAs4?cn;hOdQfGn0Y%$Zb@%D)1=e~3W;$0@ zRQv?o2fDrJ9)k-6#zka9RTcgoAItSBcT@n7%SU&B%DDlk-n=Q)qGG+$i#j1yw!9?? zuDv;fAP;2?6Zv^vYhh2P_r#1$YKd}tjH(~qp`4L}?>#32S3akDOg}n%{)^sBnmD#nNXk16f8Px{pYPHjdd(rndF1+r#{aYIQ>)38g-En2=3M0w) z>;Ik|)X&sr!IFd)d&qJBIucqw!DxY5+s;DnjA)F%u)Vqh3A_43*sO0$75)&IZbBzjK zrkY0mfFPAiL_|mkc9I04aF#Qk%*~<+dci0xZw<(IGrq|bNl5S$nI5bp5{M9> zp5LfpszpRZB1d4IeE8LVS65FjR{=o2B8L7qwBj{T!|!BsnKXEo^AZc+^rHc~^Rc=4 zWYMiga8E4>o~9odJm{M$+XA#m=my(j3vw1dPbL;d+G?4^3e)CsSD{i2hv-w-XOxgd zXq7h+K2)X_0Z};yu@*U$-5*cgkvZ8?;~I5fm=qY3P=BJhW6>T&C;RU=D)qd}>oXp@ zsiz;8;@HSk`tF}inyqP0C$NIp1d`&or!XQH&PQgaNMXO+`lG>wQiDpE?VQWemzuO& zCz9JjBjTAuMMk;Kf(&^>dS>S9NAI-$X?c0w$5!3M#K8&I9?1}`g?!Hbqo@DtC6u4{ zVa>C#fl$upChAZlS3DkkcV9k6*H_}#oo4umd87XDQ6o>S1|mx^aR6RKxZGn-V%I`q$&7IXRZ#uHcp$;|UM}qOy{wASDpjo0nZoAMDk^ z)E;BBqOWW!E8~=sx(1P!*`|uXOHV3nGAb%6N=ldXW|1zCIwx&zoskDV#=xq@*n5d6bRzH}he)qCS_Ijc6Asb8Ej$!L8o_ zP$qH&n#%5ISu4jhLcufo83865hh>e8PqefM@T|Z_w^eX9PSZi9fhgNK4@3=;u!R6_ z;?o#NC@f_Dj^>f5_w95^a1SkwyqTet}5m!I5ua5GoRB!VJ`gg%Tg zlF%Jio{%@1M$S992!yWHqUPpQ+N5z+#sxqhZMk&fDB`~mmtPVOTZc6<3EqEWzqiyO zHPYGD6&kJ^?AmDsz?hM2)!FH3RW!l5_`NqOuYRXPIB? zLvsimwu~Ts;9XJi#w{hwg>*+2MhvK0YgMpLIu(dOu6PF*S7=y;kcg$_xaNV<9J(1; zqui8CgGg^V4XZxc_F+TX0O-GhP2kg~L`V(IHPF={EKKTgNUWxK`-mQc=?huD6j(ug z#T^Mn$FZj4{F1XyU$8096+PZv?i))#X&a>=_|@3T7W1(k^O%yNl7;wyMVuEK>C;Oh zms$Se#aKbT1>&NYhfgvp{>o+XyCUM_Wj4y%`5$GKK-95l@$DNK@c{ZMsnhJ^jne|O zz_1Ak>3`!KhK~YENi9pJ1v2FZ^J0-_Yv zYY+?pd;k~R22(>^YB5`j6z;u}^Dm0|k=j>F?k|Q@+XxjZ1RCym9~d(qQx#VLpO%h5 zFfH2Fv~Ga~*4EY*m;}OU3PS^001E)2Tc)ogF(Rj|ES8v*h$xSn;M(;Z?3)coU=yh@ z7q?KiBxzfyYpts`$WRwge0Xn`q15|9@an7T7a!x)6`~(?x@eG{Z|OHkyL)1zYl&&r z;(oS3DrFfdfD|W(0|YX#`+$Mm=b$Y1Z+LmfU_vUt{duj8aA2*4Art-6SF8Qcqo0>v zFAV(qmyHxjOGmc?OP7A)bnbtP1^5962UHj^mS2#S-3%Af(D*q@VyeJFQX_6Sh5Ynq26H*0kx?(zN$++xkVg zu*f@EN+~!kxf1R^B_$0u*u61oj@QdC|(1^ zErP=!B0PNV-;wDMSf)V-hUe${XnLa6--m}eBirj)*Y13Fy1C*AS0lh z628K(l6XQu(MG1=q)e>5OpcawH&o(92UlG0aAWBF>sJ;PntK8@Z>qjT$t&ca8 zABzJ*bSd@eE8>g3Oo9GciH{8)vYV=F4i@43HqM)JOI#L_u|i zetn(uiG=fU;H-vGW*MfS0I`7|pO16JrJZI1{^LIC67Pp{a(TaV<~@X)uiTIysYRjT z;81SGalGd1&2K)Mk(F#uenCMYg|)VD|H`A^I;_>e%vojFC0lp8XjiO>NxcmwWH-b^Sf}-LB5s@up-7cYL z$sB?L^Rh^ zH-Uq$6N(jh)bP~fvH{}(V9oQMEhzy3GU}aI?Ql{>tg8%9FV>ztQcjt?rAnUWbE`i+^XW76&tHC#zA{)d>jD`NF$r zjDo}uidTpY{=C``vlQ~Ypcdwn0|6E~Cadx-n5Ohq0?0_CRS0RvzKmZu}etOyOP_~MXlT*zhd_w2kC0v!R`?L2Qz~oZR zq0Mi5qBrdYBLb-c-mjS0IT(S&$H&{Id^VCF0v3cx?$(>tiQ$J>a5#;9Pu0rVQhWn{ZLrFd|dLYW|r9uqR049hURW~)A-n1k-40nfN%!h`C0zdaS z8bNJDt32a7oxxBkjvVdg(9bwXE01ag1rxklP*m_@$sbMbp6Cw`V#8kOoCWu{Y>B54 z1@R=#s*9}wJ^(p>R^d`D0I1?O3{=Iz#_o2cV@S1!H3rWEvL|elYnKF^rGn!|<^Q^+ zAnHz0_vltyNl6-((5tGt+FE|JOGD_{m6i@U`TnSHj4|?NxFTf!etv!d0cX%w?Vl;^ zk>%!ar`%SS^R`N0KtTK|829UJv1Rr4m+*D~{|LYr{!<27)FeT`j9MnxM)s8to+Q6bYkW#PN%Q2kuD%e01(~0G(Y{+D04f?eT z(}U1!|MLijQu!4(^GSRGFwf9~U1!Rvs~vwmWmIeKw#R-vCqzBt7vgJ8GMM;jzJPQ{5T!g+jHv zTOL%hPK18^c-f+$ii(WHNaqP3w_xh&m(n)AjCBa{0#c%T3briEVZ*+FkB<-7*1?FL z`JzYnE(tZ*7#ZbbR(gyGe%Ppn-B^~woJIEuJnfo~jC;^#2fq|2sM{E5onpGvX0ZN; zs@ZLrqyAk#-?j?^TH+3&Bv0sWX=wp$1_+&jWJvCLhws~bF~p@SzA0FsB`V-Bq8U2s zVU@D;@p;2X?C)SRV(3x1owR9w$hGL=Wh9m2r>4CeB?Z|z_ah67B>-ogz3K&Ze%W$b ziH9+fIts;6<$^vaZY-#4Pv;I0?bM>)`5he{!%2e;n;#MLI)p~hq>Scb1ZZBx_G$5R z=!mcy=SleaV|*_|7CN)6tgJLOHQ&-m3|`y}r;?EP25B6ZmCc?aifmIpy_5fOX8#VhKkV0Wx`>Ws1GpG=t-)U zJU?T!AgX~m8FYxzekJWFnygOB%v4vnaZ7_`7}X>VQ;&zC*BAV&;?mMupuUHKuJNpe z^H!_alb@U$5XRw{4G#-@#}Zm|PxZ-7N)Aet~?=&lyFNs5ZC!Kt0u>lr7EImw^}=ag!diO6`DC{ zT|r+ZOoq)E*Sbw?;zT~7m=7;K{spiX#||3o zX6nX`?$pkDntwC&Lss-x|Q* z+XnNO`&w}!$<7Cq__kn!$I=@a=+-pipMrYPyyMyHcuQkQBf-eiUI;tXKn;zRpT)H6 z2)d$*S^HUe)63+ZJd01B zUI*R1(WXIo0%@f(xh;$urVnXGbapWdH#Oo?bFx0zkmHAnCbRxWkod6x@q+E z2SsefhF35iJ0c1sJc9As)adYWDHxST&=X z@ZW6hJo+zEYSD;&j%I!EhwtHWo2`w;>!q)ZykBQp#x^mxrkrCAyNSxvpL0?{7l_l)F zTz>}@ZBpk1Fqo-|{bED{spVkvo?p|@kgPJtqMj6vz%G)?WBdhvitKD`x#pBdLySg^ z6&1r^(6Ry&Zri5xbV|RkhLCEW|6U2gdK6eAVV^GIwF+gEUfI9frJ?j+5)k{`h~Zf| zc!1o8H-!^ae6a1olM97U7X&7^zA&!s1$5g(bAOOu+L-DZ=D z0*j~WXZ2njGP#I2pfw&*kU7DS@WZ7?-}LmMC{P@9R_50bIQBoTQD zq^d!TfZw?R;^0Tk;S&HptgWtsDA^XRAvT{r4G@`oyq3~{6oa!2a6RRwA;_q>@E`;Z zQ;-zK+d0f^_+&l=+iUFud>#O>JU;RInkCwX3FTR|1xnNe_4d`rtv6U+{fcrHw6}w; z{mo4=)*wHIR56iReFunM;1x7AM**`2Z3CwFGK4Scp? zEkSv^t@I%mflh(vEL5jmI}+D$d;dvpKp z{-gnLz%eL*g8%-cmVo970Q{AlVQvV}8lHJIWs>}<)_kdk`H(V=S9VbFj?#{*fFPvD zvH=yl{8A_PudlZ2^>6A1hLuOTf~hAEO97UHUJ7Wo{W3Cg0QC?oY4@3m%xB45CsF$B ziY4+BLP9;+=l;jqyL!tK(y4F082`Y*tfJa{S&Z z+W%GCP?cTykEG|av;sJ$ZT$EFS^PYEsnH7TG;ogTiojWWoiKHDOsbE9{!iQzUy1A~ zW64#y*m&5eiFjl3$G~{PA#D-)vhr9*43+foVm<;I&$fUxfz%`vnTRAU z^1GEdG?}YbfYU#$qWkgB*6Tq}nji#a0Ov~wY)s5;7`TNx+7FiKamnIfBb2-T^w%ny zP{WNNTA>5=JHO?pJDz++(r>I7>c=%lEN~wN1IhRe8rM6n|4~v=sbRi$bf2$_^4Wib z$GwR0I78GYVgVxF6PWZj4{$T64%AdsUiz^XY{`p3{8K`}qtIRf0)g$%W+2q#fFtu5 zR)xrW@9d`q50jo8W0xhFT|6)G&eilXBPW`o?`n+(q8}5=bQd~Pr#!fatzq- zDS7~PlH?$-gnkD*K#+kgg<dcZj4S~Gz@ED*wQyK@NL5V?B1{&yufLqP)5BUb38RM5%mF=QH}hWN|Ci=)lwqnbeJ)l zN4127`g_EYHro_Ttw#hcUwp;Krk2W#b_6dP#t-J2i+2k28y52K6-7m?ig9po^jV!_ z9zne)P|Oc8>$NrLbi7Q=%wDf1_9;m@V;z7jPN6m^D8ckdl$KVymBnV3S}`FDeCZZB z82ic{H=wx;qL`cG#u9pLsAhF8LLFmg0ctsnn~A7U<#=msFG1%AwDW(nt?8b~?SXI$w`#guvO`a%sfLC`qhPFWPs-f<`EEMa{G zaA-Km+gxV2w`CN;@(so#wgcA%2-{$m!~CG7gN0E8fybO0M z!qzOMqV(@r44L8q-aromfPjUG85JGN$9LSzUkBnD*&GwIN;$ORL;+1zIenNm0k*P^;11o6^f~Bo895VXMBmIb=05v(G#qmcJo&WiPx^Ryt%(ECFf^@;WgX?HUvYTO5=(mB#haM^XL# zU80r;_mn#l#7U++xCA1|e`&xb!nv_DgO?>hx-obq zBqhx=UIvC2a-5u$6_~Pwo&@Gru55gu*>3y5ev}HaT9N9u2MhX>{9@GHNs0u~+ebwf zD*FaLSuN>tTzcV!jjjU4nNUxS!LG($20lXK9%8DoK3YethfC$+uN}V}M;no*CV)i$ z&Ttoyzr6j8G@1waI{*r4?Ef0xc>$9Mel2LjxI8AOAsh)bDTo44fV6mjX_56Wud{ z@)bly?nD=V7pt|nyC1Yd77Oe2dL4B(;?J}1Tx;Kl5W$+hdG>2TaQ&%gT8;8H$F zU!;C1C8mtdy4l}E;I!fX(A~V%pFqxZk~bJ1;{45w3y9TFIbH&A35}dLBLg5W>}@y# z)hR?q6|K^{^dAY*PDu!Wlz;XxUHdKlXwT{}(a4u9k#+bPt>Rho4kp~#nckv%PgiIC zjl?N0Y#x|ZhC$mqu)@o#VJ0|qkL}gB-?HO#IaA5_{pSSZqufL zszf8VEPhEKP-;+LfvX#dUf}uhHi*SnEw12@0pbLV({2VD0g5HsfPhbU3KKbvbrmD% zovW$yOl@~T>lD8Rf9v%mtyD|2Y}xlM)#Yr*b}Ht?wPrS+h@Z_|9(jZn5$d`zC-Uce zLb6)V5?<-YZ|!myQztT25ARFnFI4LP)Vx$(V;&vS4~)$Ku^%0C6U2G2wqa@saOGGF zp3mj{*79-pur6LD(3bjpmh!?-Zu#JXiTlMpj=Ce)@`?V9M@1Lv?l#8QPN}`*?=*_; z2OobUTkx=dQly`i+ET%g0xu^PZxyiP8?^Lo??=fJ)UmeR28(UK$6o6_-_X>)y9(`^ zj8GZ9$~d}w#rYer&eTdh-8^Ef|IeR~muM6H-&B6v&qqFDp?RChVWjimo$qzufVwLs z1?BGI3j=e$eVuJ;eRCP^((Av=y4)2{OW}{|6GK&wXrfj* z?Xnh&0%6x5Lys%MH~6=?{m&H!8uCApi>Py?kWN)8YP43k%={UcuOo4>pcvpWckruX z4X^cG)vsu_j|e3u9d;GsxGU;XB(<#R)`*yHL88jqZ>VufGqmwIxrJ=mE9AD}D@M(A zJcRh=Kdd;=CZdcq{C2~Jk_*IWF=UBYqq>;q7dirf{!YE8%PLhII+rah0u)k|MJgBYs%;; zbQ+(;L<&WC6f_ee)e(l|&ege(_1ADt&<)%cQs<|5-4O5$smdk2p{8PY>~p_EJz+?f zPmO*W2Xf9MXS-^Q4Q~!%E*>N*8n~)>`7KLFq4IQn6kY)nSG!id2?0AJ_cLN-%c4O9 zQe5LVeUwit_YF`MR&hV&j;mOjEFz2Orax;e{lGp@v*pCZ>*^t=5C8BvxrOwfI|yk7O>GTl z9U)SnTG2$GZ9+{k0;vj~=*_49-gYJ<%gJW+c=U<5cG+?}|wkBy{e2 zzSqe}pK8=N)RT}jFWu~1FFkTElHi(f=bjnxt3uv)AnxlHWq*jq)aoxliQyR{M7{&6v9Tz(;x+Ku^yoIUIi3TgMH5aSbE5BSZcF{egwDIS{@q_O(Vv$sZ-LLafI6 zuihh&91gnS{k#~3t4#cVUpJqd_1wg%I1Jf)rAsBaJY&eddPxs8l(1ZlvLbk^e-IJA zix$#FQeeXGV~qKU_vSriw!?>Smil-*Sy&CV2kkiYzzzDY(2l=yGX|$cE!FG*ApV? z-|YLFdoh{oKa-uuLqdfs#WmI-dgxQW-9xslx_Q6<=j-M@%ZTk*WYZz-={wu0WWnZ6 zF3>L=tGNjSH?I<|6ybC=4*!j`@m2QrykZv=7CY@LX zA;)xp7ntt;97f1uN}G4TKlOMp{^cl(VH~UF6_3Y{x5fdMOHNdCQt3lCarO+TrG8sJ zqaQr#<+=(;8hc9LT2Kv4>KK3H<~pSvH(g3@qy4f8jP-xryH?l1IpC|bFm!tVrHJvV z)P>#XXIku@WpfGt8GLjsoUp^4eAg@mZ`J~r>`I~|@(P=m#LWj6UQ|B+z@7(_17+v@|U{Xf{9#w?&@n^*;_wdLhJj z!)!9^L|h&Z!!Yge@pKybekI||l#X35Y=nVOrKRpU`CP z%QAe9S$-MXp6W>_d5i76yuh!+4WG|00uIZ2HE!Yqm{YM2*x#S$Es#=OptX(s(pj+x zpZSo)uAcDMMOsmdSp5#?;UHS}?GWC8$J;L1N-r@4rG9RWwKQN-^;_hV$=x&1yj4ud zF&BZ9k8aFDv7eNep3j%kJF>)8XR82gz?%^r4`g&Cq+#4noI7^zwm!bzc2;gU@NXX0 z&Nza!ytFs}6c^`FaB}sv^X5@-weq!-x3lrEwc}B5ipn;-dcwRY7ya+a}l7ThtiAwKfgG{b=RoxixW z+EezsNSr|;3>i%Q3j$d!L1}a9W@;j=a^JPx7kd< zm?SyTid^Kt?a}#i=v(J}FZ!{?^XLsZg#eXD52ss3OrBXat* z`Cs`wC%4%fd(74PhELZw^KX=lOS|Gt&}cZrencR20O!jB&b=RecQ7rAJ z;K!f*fA#XKVW#lEp$of{kDR;cMU~p~;r(;~A7_`Vx5tX-C(^2@nu6{&^ zO?fKnns|@y6%ah0%Q)0bm5vVU^|sEpz{H~{=zX;t?&W0tLS&QQi)|;2B+CXjALm{* zM)QtRk5)ThN!agZ&lVJLXfV`%XLtwe9If)U)M{i$MBdW4>th-|urfXErpz^2C-~6u zh>$`*FWwO=h~{PEp$HG5RXhGWBuDj9Q+lphGpJOB-PGkRrbkl zcoLl@&i#DxMtiun`tHAW)ZIs1(p({7atF%D+?Jo}*#rp~hiR9p*ys6E{vu0xR#mV5 z!mdqYGB4fN)=muc&FY@JtSco+($h})S`uyev~lCaZ1s<@n>wkk+Xs^7-n-N34f~nt zyCTHiZchV~FYSWbo|FB_{!%K|lKiDXk7OP5B}L(fK&QkX7p=*Zr;OUa4eT5Jt?KXn zG4^Bo(P6SWKR$?e*7Vb`(MaY;`Sm1;S@7MA`prP=z2?atK?8S^qH{mYS1z^b!O?#A zJVaKzh=mBg6S#Ba?;o{ak$~;yS#u@Ina>=#9+Q7y5$pH>2miLKQ>N-8#TsPTSIPK zdpt9Y>|j-SoFfOGjAW~&eae0c-8ZxP!C{~7E!5imo)AW4kYW-CEm+4Fhf$3@FLost z70oYgVGlCorgC!kU+c{&{dxLj^}FO27uDjP_oIIiP5hMw9*mtAQSWojzKb|b2~QJv zXE8QCcM&$I5AR&`+00_Ul1&=H_t4QWiuxu$!z6Sz-Fr4%=li=*GF-&%YXJ?)Bme&0 z%6AFVw22~@yIbD39n1r0c0c9q`V6;X*ZFg4o`%bR5i}M&uM~9h&N26tx>d(BFK$4h z7W|w^fHCaDd{J#leT{8*8GRcL3TBsm*XF7o3mJn;=Wayd}n9?)y5q^z$C{)wPem*z!{q zJ2D$qv>Nlps$GR|`N`1ESu_lOOd6fjO^G<+I@RDw&Pj4T36Y+Utk1YWLHUVKYyb1d z++_<35()x2xX4^BR2so8dVQLoIW?rtMIC)1>(e_qL)g3V7=JeTaN%mN7yIYxqFKV% zTT%d#yVypCM;#Z!we9ip^hn++7mkulEp<1;9!3;L_wqM;NL6ewwL~qA=AEG?B7t5@4vrMmp%#eN7~d$vEWt)8 zkIs?3ujDZcSPJuRFL~ejXg>R=sAF8!WoQ58tiQnJnP3QU`7vGsQ#?AJ^&ke0-vjQ1^M|Zsp;C7ol*UuYpeyBH*n}diz^W4zbjBnX}Wa zJqFxDl9TJ%7M%v>-*~3HZTUN+=|a@r-8&3kJlbW zWhpN1J4zlbkIUMRU+1?PhorTPAGQ@s?=sviN+NuLG&XsMjW#zL!=8SHga$o@o>lNA zA%-$-)U6o&Xt!cL4EgDNO-y-Br*M@3OfK4~$KhNUbglFlF=R9ew#iQd!rGd}>uMi7 zsC}~8@k8pz<!k-jF7Gu;HkFnzM5M^g*-TKoqO!JJv2;<+4;4Knz}9mz+gSV^ z^rOhEs2g3cwq!^&Vjqo1_rWvkH~mwuVjGq_TKP{Tw#hp>{IgTH&QCkBUnAx+p4B&CSdHD!@up|8piunr+Wg|ykH3|-4g6Rm6YS^zqLDvK zi?1x;=5{B|!a_aiV8VXT*AyudR+9hN^SN)p_q|GVD;}B$&(80N{YVS_x@&|Op$gRq z8?^d|BW=XLu4N=CwURk*Gqe9rvG~uY{I{9>6@(F5&lD0bSw>#1r%9Eh7o=DOj?CZF znq4|9J^Ui%{L+r(-x1Fqg&WdzuNZ%ybN^@lQk3{~>KaYOGyH&)QZpeU<-hZk?$c)` z!}-WDCJbk6)B{r0k1#!EcYfo1wGyA!>eT(t_41M7MCPA1bA^TOZ+Y)+r=RRGd@&MW z>-`gLGVxjQwyLAXImPeh;>hWj@u#`mkFOtGRK#4cutX-TW2@%AV%|<%V9+OcgV$iN znpDx;nB`)my-G|@e$5suH`fnHK$gHP!50E6Iy$z_V{a#eLt$bU&v&T4% z@7XVTf&DS>B2&N9e@!lqmUD8cq^ovI@vl01|F9RDy?>7VT+hhh)NHAw#M%d;zY}bJ z?HHuYc24kpe(Ck$OPLk*KeAX%9GRZpJ-IkZ-_7J0-}arC z9&M$n*tFy@P3_vX)r?1sw3?_l=NHVoGz$h~7BVw4{H(A}wGyig=VDx{PDT~9t2Y@L zWJ$$Q8&GwiA_;Y)YSvo!oPYOdZB+)1zT^;ZttTQzGTA~(C|N?d_Ry{D;qeI59n||+ z<7uR30nXt?mX(_#M}EpK9h*x3_{Iz7cx2yDwPp8VUT^l-D4h4#Iq=$UMNw;PuBBT2 z^L3IIVj<3dTg_)<5|2G{RbmPf{KJNvL45! zHq^{J+)`YUQxiik{a$_%iPmRzA!$Ng zK0cqgzBJx}V#__Gq|=f(@cG-lXeP$a@=KB&y&9Bv;={=k)TKlg*EwXCl=}JMdt}N= zu?GBz;Fn`5!7A|+U3TA@@EP9j8w`CweWriDl(l@%d5vHpM)0|>5p5RQ{trp%49=;* zLZ8jr+H0ZbhjT-BZ(rIA7J0p;FdC|Tyvr6-Swu3y!wZy)T3n(>y!uerDV5D9gyjnn=Sa zKahy=ku>QtQ86i}t#j``p+!&2llvTEKZ|ew_xiOAvIr8^Y^MP7_iz$5@{FM17jGZy z67wRxrVY$Zj}SsjLou12oi@U6&Q%P(S3W0Aj8!+&_Cg}AO8U0p%r7A=W8%R@-#>q8 zw~@b_y*#~Z|058~hgTN~(PvdtGH96ebWrqM6#dof&sO`I*$?m2zcUqrzK17Y=Z3$} zbt2mxY{foUcRk3-lR8^Ym)P7bugoKj?{G3(vaR_Naonly(s1t4i~2K|2rn}D0gZ&` zx7%C!jVn*rewprem2-zi2KfhNX;{ez#7EgGWskmIBk%Ri-g=_s*Z!-s37-g+NMx&% z2vzjHn!7*vj<_l$o+O+nTxWB&inh)~l{rocUdQ%paClhO^Xc zJvUBQw=I7fu<#)2lfTQ`mZq<2v!yFygu^n(Wj_nE9UjV*f6ultce|EADjKR${BOVn zq5lb(a9@O1m{0isg%kGlgZ*FsAn(Zb(e8V9u0*d}e(cN#ursM3Rq^3x-emn_ z2KqF?&(;xBqvLTHH976?>zI-#xKtd9liBr&Qiw5sA(-U7j{=4Rq_W;#WeF>KCqNJM zg~!av=AYJstHpzZf9=`5R>MJxUsUU$T0Brnl8Nr&!Q<1w?2I%4hU0H@9ZBco>xaSplWfXEf7W#B zu8J3$U5v(K>)0$8bOxjp%FVp{m{Lr=w@bH4rlfb12AVVe$A2we<0;1C6mcBW_GocF z{yaXSF*%$o5{=pRK<5I#C!!dY6@4<7yhlVxZ1hR7@X4*gU!k^vGmX2}@SHSQr6dV^57qFB z_4_YRyl<*wIUi-pDN7jMM;5gUgwb>c#zw4)5+93*2i^PUOS5$A+cRM;Qo~DRoct$F z52*7P4g;el^YW6^2OO!cva*T@s(url6Y!dqq$m1N;e39EbW-%w_uh#NjaZ6||97mg z3N1wzNp)(iOzzQE9{DR79VanPT)#hmbH=GDOYXVaj^DZ4Wj)6;t0WX5p}L`~VB*N| zx{x&PIZw;I`ezvb6m!IQtlMJee-?>pmvKzJ-}D$S6~LRm$a4=}{$WIcxhTJEKM@pU zr189i0NLJVhEL-4{J>FsERR|kqi3T3kD-yT<4P<3$>x_3vSK$ zRK1gyQdH}5*KM`;Do@jtEhmatRxHXkYJhMh0xQ8`_pf@c@-XP6MI@?)3dO-x@0UZz}y0aj9r zzZ1y5lGy=X>^Sn5X!##QhCUPT%e(2*^%6xc-@2svBK9WH()vS%7Mhq3;qSzl`PZKZ z|9o1P3YkJZW@ROpJldi@?Fj38ZB=f_$R~k*sW1PFLv4jOqi2cs=wXr^R-Bsi3dWm^X4D=X&Sv4cZF??5S&I+NS#ZXV^>yn)FgBM#ry-lnFhjlh^yds-dkd&f`R_0mhq zYkqt4ibeLb8o7Ejgr8a+x}g?;F*#uOfyJ>d9`BRM@93F3uk~+`qAM zGzXR(ns%n@ut+@!JRSYlc5pD;5HN9G&yn)OmZz`3UoAUZ@*2_XV?UC0Qgf=hBQVC@f zMgP8uE*-~}lRK|-Trig zU8({v8OG$yfH5-3whp4^vx&a>GgbXb=RCph>=t@@RbM^`?i%HM|MOd#w-|e2wV{sF zWNtB*7v)7uASN3>mla3ux@b?nNTt#=d&RprZMKr``x}C#JC`->^-_+va0Ws=bd38W zc~Lv1+l1SbOsF)sD8_jrebPWmM#BGBvrgqi<4QjemxUY$zj?jKkR& zK2&hbiuo4D19>Ek#m;g{wIY;&W#yshfTnPP;;W*bQwNlSvG8%fIMcwUa-)@p!>8RZ z>PZw^RE&^jkAC0n^KO$Wtm7irjx%1ry1i$LULmW?5X*mBT}{2j8PtB~pIi`|-gk-$ zna1@OqX+SEvq`e;rQ#Ut+G}_ul}ura6|D-RgjU)M@qsT3n`V#Gza+1E^mE{tL|}!} zHWTUNm``GVSby5j;ATF%xZ`5suq)^8QdNIAj7`e#RDLEF!Tsseo474E-O#1Gd4)q8 zIJrEI@ypjOOYg~ggBG>EVsm%pr?33$Aga*eoRyU>#3vw=p(71{u{>33%b(iG#TpT6 zdqSRF&TvbpbYGe03*_!qW*M$q=E3qc>F3%uUZ)Yd(Yz&i+B*LEj?4n0cwt!V zCOexsnzD7B&8s3FLT_Hv{)#yIe#uwWwl4hFIC`Wnc@ zqgBQd_Afum4D0J0`}^z3kMCQ~n0#)!Qsy(T>(Or2GuS5T)U!p=UtIKPJG!%wEXr;Y zaOcY^r{Y|%)R#8vb_+GaL;ByUhp&-UyXKnZbKiGo-};Hf|4q4H$8zr3a(=~yVdr>+>!Y}Y zkNFOxP%~prYfvm#hGk`Y4o{ZOMEDVvVMPDa;dgHiV%|Ab(C^*B&T7AxH<)8)8dzOL zmg12ucl+<&;J`qmw-1Ns$0!o=qBpJY_=5e8sM>{)XQtwd`1)^;4EZ}B&4;x$yvbqQ z&M`W_be}N3FKJ2XdO|?nVuU!#GW$wNFS;+E@bOlBnQ1A5XgR}~G~2V3c6zjgAM6Uo z4WCHd4Ye&c8thg(3R@y~dq~~fi>1g+{0wAe%0|RZd7rz_@3Bpk=C7Vyue7K%eQ2qu zBB1(T07*c$zi88Co2<6W4*#I5E7f+1Z3v)7aY)o8N)!c)8Y3Evpax}7gG9kRcz`kp z4^U7viUTTx=mQLc%z-EfL_rh*na6kU+54Q+eJ;3~cCj8j?mcIp{q5=djz7f~d-lfq ze_s7^*YYbm99mtIvFNjS(}pI_^IS6O>XJ-yXkiXR*5YIpGCB}-eLsh2w;{wB?PjCE zRVA#XmK=mpk9_jLy4J>%qv-fI+V2VZTji1tQr<5Ev@z6)GQlR2seFEcylEYIE5l+` z>h>oqWK|kWP>B`E=`_fh{8bT=o0_W} zcD6-;$m@B-QV#~e~41=g+5M$SXOXn4FDu=IyT zI^gn+4V_>)ru?qBKtE=BowD6A_7OA{Cj`vXQ5 zc#M~L=&)Q%l2O!*#Ox#h2;n^qG-^VHPz-dIgksF?>Fs)o znuG}Fx(uKxHY>tp=nm@O^#UNRah(uXo1I8K_!eoQHbO5`CW4YE7QycyuG2UVNTfi- z18;D=mmhU#Tws=y@5*a5b8fNa-5B1tnc;+^f5?}lFbk_#V6ZKN0AlV|m;}fcr&E2x zHRmz#>efy4=not=FAIwqK)jKTx)zg!Ns;ixn<+t(YE0o7dBiY?NEx)!{9J$v-lIF7 zu}G%2L~!2vUOo+pnF4Y*Sv58E_}JQ&qttBN&M#H9>jqUvfN{*(24%G#1bm&}E>FrT zYs-XFU(u40lpXW(Irl0g=h9Hz{;;gbBa3EE>zTf8^+rLvoKnKrb=I?ph4Uf#jHnaQ8@o zNHgF~zip!_qR>rHMk}RV^F~!}zY!Rz2kqlbFxMRk-!9Gsg^|O6a|H=UIUC0U7Jg5u zL;E%5)Q^;W;ZGvV!hEcy<=H_Le^D!1xd45YJDYier~8!0wXw(0_@YBQXBXPm~}wC8-&&Xdre!P_8_Op~ah2ufizM zGau?R_0f%#V{`&^dxb$cC#p6ToaB=j?XKH&R9sCOg;mM9;(7pSPNwUv*(`GzCHIBn zgPw`#RWH@l;f#g)Z_`vj$HHD6+DgSZVgK$RM}qiE{Qmlyr|Me{bdU_y>^Zo}@VQyRZ+p(ym6(=i0GJgV#D@q274k9Ju$ z9h5+^5yndSjyaraE<@9Elh2s`+J;cJg!u8*zj74ma2U_1d-lN%stYZ)ojqIHBt*6S zYKCpy>H^|L;YV8v+;OYJT^9iFh9FFw&+0p*aU5LKjy~sca7zux;|X1v@fx$P@qLOH zy>6z5|0U2A6LNegam&l$vrw|{#9&oe*sYtVVp&?kV=AgV3eLSViK#?fRC!J1w| zy{mWFjPjMUgz7Z#>QwXnO*NEgf?)m^$$3+WoN zs9N1m>BE$PVRcv2m2(8dJn5dvrUYrYv>6hQQljp#BLsH*vHo)yCNiz=IpI=Ci!6FE zOp8cA8BtWC_q?<_J@I-G>1dTl!*8|ZM~eAODj#x>ayp%ZsG%o{mhGZ#uQ#3i?`j9^ zYkp9gcRjaS8zYcVt?Y5tTwhNphmXq$I#QQS2e>j5u+lF)Yoy8DzjXjG^og8w_DbZKD1rZq>HaY(Pz zDDvtR!JRsc`TwJW8;9UF4+_(tyj?G0_&>{%9iw=~cBg|^p2AJ%L_OWD7u=VmOr0@< zt9fP|Vs}*k582fg6xEeQ1vF}zWNK0=YHDi!CYhvaK2!whrfC`w6^$r?aT=9J^9B`B zK|uwLs7OSOfFd9W1Smu_s1U^P6a{&S0p+1ad?Sc}piTF^=QaDB#*|g_L3h)A?>&33 zz4uycBXS7NAkZ3vY#t`7(!sAqL?O}Y&~JQRf%;010Nl$plazf+B##c5Xg+2zBryI^ zM3{UcOXC=i_dj^p+$9^ZzWx2ANIt-wCr@`cohHd{7;9}N$SKD%D42)cd;EHSDXEVe zo)S6Fpn6^=3@`s5+UIn5aROt8{>^*}p@vYCN4NTTY~BNm7TEhiX}+asUnhQiWJlqq z_*YV=zs@sZf*f&Khi)ksKSx`Y4x5g-1dow3OXE$kZC{B1vq-00EWfQh<*pi}nGU6l zy;{6vbMU4G`H+|VAvA6w@JHdziHGob)8Sh7nT$AlfMb-1WB{s_#29i`n*j_42~aR& z#KaNr*f&&Kp$f~&el&%o>eWZL1$3fnuY@#BI9!B#TtUI(oMOZ}MZThjbh}N3i;8<) zs_@9_Z3sCpC#=NbF{8^}vD~iOgPOz2crstnNLS9n*h}4kD^?u8s8#ioOm&f5qIa-; z_+$b$p5a=f45K2pRTC9j0>e@W9sb}{C?(|*N2odMt$A$DZb(s3JEVw@X~ROF!yrdH zJL<>~P=K%k@Uz6Z=q-FfXeD3@UrD@grhlI)&iXk0RTQ@=m9`GfIr3xcy%JvPja*jB zc&E1nTy_vFKaF#V05JPoZ&p?Jqd)Af%e~UUB~3^USKUS)YbdL>d%(z=mEaszN`fZY zYj`de#PlzKJVFTv;a2BJY_N%yP`FDM$#uywxRH3f210)Q8O6cL?4KA+G}6Bve)6!V zqobv{p|<>T$@$`bay_mH+HAaodl$iy#$pvMghn_v;?)|;>eaoB{%091 zGgcbdRPZDl;mZ%4X%6)SJwRW}Thz}-2Z~pOy<_xyxB3!$`{+CO)!M|P@_4NM;keKj zIMW3Lm3<9z5fTy+MGv3LJSUKA}Rk;4{B+0&f0-)xpB0k6B!mW2HNobRvIB5kiOpj7Qm8 z0FpjY+m7&R9Z*ye{6NtPcc!_(@OSz4o@&=K89#;-a5x0OxOTy{As+;~%iA7Rihbr5`>wQF-yH{QTT+25=)U zTmArk1l^~mM~&f*EQtH+PM^cQ z7+nk2_C~m?GcSZ6*96Mw_m$e_Z7zej#W5Jpu%y#4VKH>@P{c)%^A>^T6%zP4H#|ZB z#J&PO$ZsNIKHrOq{DaEQP*vQhyxyif3!~Jow^=I_Tq9Ewok`e2Ial$cL82(kx}4BH z>n51n9;aWVaZf)Z3AB4R7U`HfPP{aQ-P@P-;4G(Yrf6p4xUitGEx`dZ{e9NE`BAN9 zpznJBh@CO}k0+(1WoG5%m0Y}hrTVT!gf=ngTuLf{Y0YGKTVM>3@44E>qLz~s-L~H_ z;jQW-?*bMrdnTPy!UC|x7NPYvzrar?$mEYT5WWRR)WlG81shF6!P$&`0D_9v;+-jo zj;H^bxKI{%n4B%R6)KvJqvZbYr1uD=xk$3sOV7H#n@Y4Q#&H;BhorCX^U6V5I3R>z{=oKfe!KCz%3%9XjWn1DVZ7^eEI19-FD07rn>r? z^0J}}g=f<W9Q5NtUO6I-Q+aP+VGiwYK5LjhpRv9`-#Ok*JBJ_~Xr>jPS_}Gfd|q;U^?* zIp&_v>_a4?=NJ<=@Yb{_Ut?Ek0>w-+{>m0o63A;-qjG?vm#Q}y>K%VVBngxacW62p zIjx*Ro~i=E2GY>b@?gOPvoYVnFt4yq#>V$xJI02dynNbor>(8GrJreqlxMEZzXbht_w_LRPcrh(~n%Jh}Y3X0>$^8x>M zl8{jQY`N6o0K&Btd60B#XhvprAyUB{MEft&AOG^geG-LZ`DB!jJ{&D{wC!gF2%Fi3nGz zo%e5FWxc-5%4Xr24(|$UVXHagYlLXWW$6^|cSm#ZUl7R)l?zawe7;TU-p38!h z(l)UQSK%Gk!Xf={)Tc+w{_h=}o|(UHqClGC@2U4W-I`41x0yZ`YKyE)!w++EUt zb(IFTBXD&R{#)fIdj;)cfU@G@M9a%I`RQpsN$d~-yv)Ske{in+SP7i-j3b>`9BaXE zU+obFjJ!5b5=p2(YGJVc@7L{(aCR-oJ5U;+4r#Gk+zsC|8byVG;Z565?BC*-1MdIG zXrpc^Y)eXuom}f=5SeO)VaATd3Ykjeu9!b+U(P3oIT{SwWZc6Qx7`AuxVAXhX?_nC zOh%e6Q<}k$FyL0uL;G(xcaPatz`{?C42;-VNm&nn=e|n-AO@Ics*PEM*2mA-7#?|n zux4MaK6LA^eDLpv*l^vxJlXmHRP8jkVX;ksBhR?vvhhptYFeXJhhRx>H}k0_N?V9Y zhr>z)aMtW-L^xG*#vCYVe8!3uk%yqO^znD9UA+b5*|IxELm)#*@iWcR5$8}C zv-g*2$>FmIm(9<~ALqfA#>IB`r)XlNUaqLueGXaMvIe751oXqFQ_Bn1XjW1>Y_|mb zPQm?UYdnmav@!b%J{4HPE6O{xPUj&6#SOhL5hXmP(`I6Gy2H$+hm$p-j9T>G7BiL?7bvp@9m$%@n4-@&Jr*!%XP zuH7p=*LIxPyzS+f7bxg(SW?3Y5B)i8;_u$rk(`#iJ2$uJq6v2HL^d$#7ZVdouKtbi z@kq(K4W$Es82#c5A=qtjXavKC{tcO2feXu+i3D{^9X*I|yHENz*Z-^C|9hRq6=F4r z+~vr)foy1pM8aaka+i)D`3*2ew9<(L4|3akHLaAK=n^IA;qTGE>Dw`F26)}?_N_2F zDC%Ujn%LQ8;tFy!EM<_tyURWSci8VEr?hVY&_NJ9(%TnmMP6wTXm2 zhkYak#K0}FA`Zs@ls?fEXSZUMbq+SSLgwP+Bg)}b0I-;vh7pxsO5}3L!y)#lv6qqa zg~iGz1WRzdi(_C{?Sd#^ z?%VAbK6~VqIOWWXwq5$|JtA1-7rD*xteM;3hw8-^DDjjH>jaz&D4)hqdu@wJ@?DGj z8Xs8Bxu;h#{t3gCdk$_)`jPOy9YJ2PFZz5!{ao;;4y|==+Tib5g0_MrEUPY2x^(=s zL?2M;R7}PNtF+ihtXI45iHm@$Ps0tyTv2HAYW--rMYADw4vT(&>GToxBxwS^< zk}Jl2FsL-CeJRU>r9V@cdln{2zF<&ChqHoZ$0 z_&kIiq^NPugmjg-u`^#&O@GRuA_>oaT`*|dCg1td#g1hpX2q|K>LQZ9sQsDOYFss^ z*8D|@NCJ7}bhTVX{y_w-%D}zqL*V((6bBYi;_r^;Wm1~Hv~BjMKF9GzhfB10xrCXd z$vta41HyFI8n)Y|o_TJ-qd7?8=a78-1|Xe}P2W-E5W@Jk6@I=Rm7Ho^0^CzD%Tf{3 z(x_tNDU1Op)3q_;SlG}SgXePyNl~X2>2NlsAk3?YzN!`JRHu?W-4Bp{o{rIZSyXkD z)2}p0o5=XKAQJo6#mhADa8Rd{@9pO}Tt+KaV!AdNKej9GehvxE3d^EsomQHgMo4zR zqZ>E#=H9uazD5rCp%^6D<#sz|Af${=N7=esKw$>K(ISz!qEZBBKSw9%Qps6zOhw90~$#4%X?76$~yq0_BqHEF1z8My&;G)vZ)8^)i%71cR$uv#dnf8x1{jZZr zrzo;OJc~vrYK*9m2BUzLsFga6S~cQ<7aoY*AXm7&pkAP&%c4tAR`3E85R_v%RE}Nt z`2D_D-}^4eBF?naaaMM}@B7~Oec$&TpO4|`tve=SZZct$d1u{GpsDXcyCoF=Ax8sl zBl(M*uoU4rULsz&G2}BQz{Z0A88GPdWh%Yxm#!vwTj+V0+SNZK~yY&sh z)_HQ}k}9V4`_tFwwl46>Ix?!Kp&CE#GphIE8V(=JF!SsAKTi!NA78-D;FIe_BPUmXO0ruk>Gnk5OY7jzc0YU=C33q$QwLpn1osjqn+A=tVie8RMNoW=H*~=m+@PD#b3m1EhkF z71GvW@HuAp>xCEym0MW0N~XmVJ81dKQR2z6L5frtTEg^PP+;y11jSrr<#s2FM=0?EkH zIMWte&TBw>3`wWJ|62Eova_8}9X%mMjgl-5+XW;-dJ5tG&B+hdQ!DoS%e z%JbpObI8s@J7YwJ8N}3GrWMXYCUODE$HiBUEXoYYg?1yz=sv++#7IRAuP_%8^?(0* z2C1AoW~J4UaQP#SK~^EDf&{kLG?vw}v4RflLOq#%YJEZ(FMK5bv!5G6XybBzebgvG_vs!E* z#N)?u26=VF#`eee4Tc|YR$kU=Z(J!ZIr~Faq2B3g!$-3Ga=Nda4x}65$ZHX6)`o}e zjERRM-7GD2cN=Ejt*X$K7M(4~%SlR0PCgQI?D(NQd%ufZ8yXt2Iy`7y__smJ*N3i* zi1;=vEFvOu$JXu9hvE{FQ?hf5E?>M>ezT&=@Zhn2%yU6+gLCPgr(}LFjeL?}6mI#^ zi6@SKkeHsCU2tA|O{dr2(dlcSRMj>1b(#rDev3LY>{=g8N#guxM&YW$ojoJ~;n*%+ z1fnqf1`RW5?3Fp_c4R6s+3bA&hFYhp85Q?#iz-lw`BD>mo7jy(m*CA#W11d=d^b1aeGL!A!q8L@Ph1h!_cJ8>C$6d2YYm z#hSDYoEzS_K6pZ0v#)?Byne?91w3iqziGeM*&%2R{kag!z&Q%Qh@XV6yPaai*~t)j zQeU7FzvEUU2Bf=Yfb@O0$EaBDJiLFEipG?LODao_uZ~YBgJ%`L<>@}VW4|vX>|x~Y zh>P^}^tfg5RKMsiTVuU8?LXvGN}ZiTJkTp}!ZGlPN=W!K2Yh5$rC6;3zhISe2~+{X zQ38ztG;9;?)&VOsR^P`LfX#{+60Y4XcJVH+vk3Cado98P1lk_}OU;^T0jz~oBH=9C02eqA;6y?d7z}_Ge!)mZ(zyXz7Z7}1A^`J=zz`r?Q{q0N zonJ4Vx7TX^=T}=ax&SZDn)^>?PyKw_$ritodqEK-MibDo+q)4Q{Y~zi3sgI;YG}q$ z^^u>Fu~9AcVr+|-iFk)m%al|$J|;%21_^Tj{@BDX71iF~XR*~cJR&{ScdP5{#TUxz zO*uIksfvtAvk_wQF44}`ELa&bBScM`w~=8`T93=17|I|hEU8CO)zE>ciUH{If{ZLY{b?*{|tsn|o35+N)B!LDPMtE&6YS z6#CUv`=+WVHTN+n`7`S%(PZB9nHT(pulYsHmy5j_`+h!U-kZ32%84=ATPX1!BD6ut zL~J;59^NdwUV5eUI)XwsUJ{uOen7NnsRIRy*_qU0X|QuYpzunCNIw{jY6tI|~s z_U%Y%B%~!RMN3HWXG!POn%GRPo(c(CYnO;GerZtPG$VOM^+(cV^YeDcs71G9d5fUa5(!I?DZ_xDq2 z-c^dFM;$kDVT8rhmYUvL`@@h)2t+ zxG=KHzE~@`92Bb&92L~6fJ*^E6txUd)+!tp*|$_=k;rC1lr<(SNxpaa-nnl?PwV`U zgpm8)d*A21%kykJ3sW+2JER(V7z;{iS&#Kia?e#oq4n-=?8L+=tH#KT*)PCI*A=^0;T++li3TJP(s4SaL}bm0u|NEpC-Xj_ zsSMp4yyt1iYEIX@B#<>-n7!GW2?&(H8WEGJzuL!aoV*LN_ZuG*lRyG2?qt7>qoC08BwfS}5y zmtv0yF*=H{HDiuZ*YfV`sC&vk1~(jSYw4T|a)XH?Ag9cw43gjvQ#3Ug)4NWcuh!?1 zGS_wvr_!mMsHH8~&wthwJ864do9cXHAjq|#UhY$VLAp)z9!_Q!ZTH^Es7ZkGOVX^s zI=h2ZIJ5{;gdpnwEzLN4lReh_8=$ z1k{nr*pR{-nJrf`Z$Hgbj=yMB89x9^Ik5LR?}kr~?AK(lo#^ck65R11NqMkHKpwtX z*~hwQlVh_`8I%#3f?$Ex$-IqxC|C(IL0g6qpAOE^W>`t(RY9sGh8yDmYqoP_rl+u= z7Q^?VxUJW(c^yiYV5*uy8d#| zJ}rxhz#f|sW_I|rpU6t>RClE%l#bynYa|9|;<&8_@l`{Pw4AIJjagsuya2yT-q7_P1DG^s8g4RNp{MKEIqEv z%$yjzbn!AstmjuRbRg1D)40&lHUj$pBz`j~? zQUILU;W)!?j_!ygI6Z_mxYTPUO5wR<53B{NLAl!n0Z_BTT2FcW0%f1c0=XajbXVsi zm(-U?VC!zV{!DL@np-p^5J&r#)YbMKbwsc>@z%t-2jY#5FgQbF{)14iq_=FT)jyMN z&+SWl;82eO_Yjj!%jFhyARGZ5K>e+lF`?PMaW2j|OYiU3*17F@xWn06pIyyruN~PD zLxwcln6Oc#lzMe`M+7DarJmhGYt$sE?RWGIj8A+HYhbnM-vfJHYj~xg{Wa;bla&2Q8Vpmm2R9x` zI_ebH#p&9*BG=>xf|>f#OHUbSJW7K$Btv`tqGrYzG`O*I8(> zdu(*6!bq#*6+v+69bw$fV+K6kJBOBnU6eqUBzq99l6Qh2RLjrLn8MVQ{hbVc?;3Y4 z@$hlQEXmoQ(g)#jud`Q zg6~rcsuep{4E>+mHINe57zjS-=a8ORiE^$9YY5tveImZ&z3~1=YR;DNM4Q+EziUy+ zEU3w9r2nljOMl~>g7a?9jA$8CGp-WA(9mc(2d$s-!Hg|i&FRY63(gn&HQa7)z!J8g znDXJ8df=Ny+uX8IVVU@lGtjY_6JW7IO)Klu0%jhds))DUqwTG@ZaVJORye03jiDg>Aj_Jwvt zfG0<*v94oEByU>ZQm#}f_h1FTLn$pVvo^Bi%FrAKdLEMb{i&=p!;ly)HiKGQM0ude zpxQAoF`1{yDsg@sgZZCDG->43H`0#!yY=GY;Pf_ zyO1GX@ExOVon6yRg!=~U2bo37{UHvf$IKX8%O9p@`b2pvzSP6^T1ky?Rcndne{5H4 zP?YBtUarEZ$)wRtr=52CE7R$;e>;Cy*7TrhI#O>AO2Bk!=v% zxBxogf<^&F63l~C5+Z&O_slH>LYZj?77!RzR$#k@DpCXRfVU1#ASw_z8F>~CEj@*yPlfsn* z7{UI}$$)wiWFy7t3cnG20@I3j%JvorlU85w8KRc;bqPJ>l1XbtF6lUmtT7|7wO`@O zv*@lHW9N?XYhC8y*^m<;a3-7P&6V6nr)G_3Uw7HgxO^$OI07lz5pf z{LVvOcPSA4oz^eDY^cA`Kxy`AJf1I0it{4yIc*&t^Ql0~&@6=gk}9##?9}9h)nXpL zeXad!Q`4n}y1Lp^M-J@U^X~TT|JYKowe-!BEu|Gvf)3^jRE$KcRXH$0`7kYfs%<)g z*FizSI902z2sx(;knjk^#kme>RY>OhiJ;?gtbz%|nGRn6UufE)#%)wf7PdNN2xm%` zZxNRXrxGG?AP3V`pcSxIfI6@Z2-VQ+H-Heh%=7SL1}cP3{8pLT+y`V$?{(kpy>Gbx z7)c5nb>U&p4a1ju{iTNb`qLkMSh;&=S!uN;Z!1!G*@p^qJPyRq?U#F#iJ1%6{w?9QL@5M9&M*xamdYQC-2bG{si z$!wwi3})G4e^lz7ai_yEH#UZ2w+SB7DYHR+5pBqPEf)%46yJ8 zFVwh+M#S2{amiAcBPc2^pL!uNw6YZC(jEMs$bQ7DuvX<+FbWr;!pdZaZpVO9+hSQl^DS^RvaS;}KC1z|{?=sgz@~=u||Pf|KMAE9ysWkKqZWX#cMA z9p#lfs-Y!c$5T*M6!C@I)mYf$Te907=AO|p{MO$`_8>uRe1^YQT`rw>;h z+Ecc({QZ*MAC_&~{^r(y{%c41d;1SmpE*<4(CkDlnmEkbp79`)1!>dD^zXZCK{Y5v zD#{#!)g$Zk*Ld#w-tF6Vzf)FGR#slRyJFwIL;DY%IC$#QQ#G~c8!lYb>)X3}2L^^m z$1LMxk4J5uL>!2kz61r!uo6K&!CTH1B3)oreAR_)mgvo@`lhO&Cc<8-Am_5?o!p}OFX=*J7Zb+y%xi7u2skFF4_ zJhq3)i?5wa;l+Y!XF5e5sSPuEB)uDimyTnBt;yD%90W-mfzi`X`09fhsh_&Qs=bqO ztC$cudr|#!wwA$sB?}8Pld~|-Q0|3D9HvC)xpd2OkAu?)Kga)dVa_!_-=`h$ImvnW zaAW0=x8!qG2?DN#ckfwY~aNW$&2z&mzA;V(SW@ktd(TpT_qHT;s6e2W( zP3##f?6QBwKsQS5gugBioJ)f$y6CrcVeb^%dNAp&Erho`1HT7`IIV>)BCxU*tKmC+ zVWu@(LB`xaf-Ss;OTE%+F(b+cV52Ey?jEMx3j@!tv1n+onGAr0}o@gYC3#JWgh^cxFpo`ITdng>1N8_uxk2{U`%v|Icl8DQMu;Yuz3STa+NX>xzxA24{uLm>mVuXZMj=J(MhDYp0~39~TA@A_3S#kQ zu&X@@3mHm)D^fi@&9PIwO0Cx5gqvAYs8u>tk1Lc&eZ3Otg?Z;~!M$$|BthGtNtRO? zUjjz9ycQBP(n$C;d=T!-K$@9Rn#WQ%R1DtUZRn$so2~`h&4Z> zFr%V^+Ub`Qrd753z!iOPX$n_~ue?Cn0XvJGoY7pUU_P-n@f(XEXXAv+u?MnKmVqAz zeTM_S^BGB=r`-!ZzK&-MCJ?cHyKM<2Rso&2CJ4#`9>u)~P(>oqT*}b|p_Upa0GkGp zJmM1~Iks zjpMr}8J8=c%3weSASEDRLH6fRmiRy4)fyD#d4;)IF}CTbNyf=cCjF7=zy9j9f6{TL zPG>rqX*2!N*ce2C5HxDdXi_y}E*h+w3ZmQuGz!aA1Vun(LAmTMcbBW+e%$1;3oN@V z%ij0<-b>GUza<5Y{jsq7?SAifo^zga&hxOXm<`x`s=S9tP{H07l?9tD zq}u^09e+w;mg)5Qekuu938)fRQL&V`+Y)TLf0rrK9|A9;E!kP=moKNBYqy{*fyzY) z$Ffs#FHVn3gT|h&_Lc|tD+)E&u3k$|PrdN%$)lep#wWz=ia)gHFS`@=$HwnJcuU63 zxeAVnM8H~>L$ZUZ@StwUp%64qv!N@x{s=#|=3^hLCAe`6|c@y{!=% z4Ra99obQ5JyW+!2E79YIM@@~D0j(wLGjM0 zPZIb6H57S|xP~Q&L`Gs3+WusPx0W45X*vpRE-Vzp8xoa}1b_9d%DdGKO|2b$eN)}z z_5f=4ZSW^Zg+ru41q8K_%PbsigD{II52MlcsM-|%Y{zu`n1Rqsb(}Qnl(oL=DnQc zvq4nr;fkPE7=4Dr52a=#lFoqz1VjWrDt-cUgQ7h!@mE=_Tjd`{$_3ypR7@MV{3Pc6 z)MF9|Tp}z8z9J|Z65;V81az6h;i%(9tz=-KAgb^@FF}V1$7BGr)`43cURxLS&%l0}hKcIM8Ek@6t6iR6VS%y8XlT zGEHvo)r^eHi)W4>I~W(A_;JF%{RiR??@LNdIQZF#FTXmQnRzKsb9+Ig0(d~f1S=R( zt=2T)Omq^VJEPE`sPl$_K!GGu{ zUv>Y7(vs@>h8Df9t-HrKykJ@O!F|}C5a7>&D(Xg2X%)rM zL#Gg-dxy`+qeq62jORp@c+5Y|G#E0p;sjiJuJxycn3Kmh5@+hgj8X?gum~3l@%KR? zBaW?j&?P+t{Sn5B5d))Z?n5^xGWq;{$EViZw+xTg{_kE?J867$Rc6@5%BKT3TF*TR z$sU|jkjF*P^loVxii|dcDfS7%Z183CdI&U?k0YxHGT_3A#(Wx#LlT$-D1We-Qe57^(j^#k1oorWu7Xl6CONoRe(`Z zv`b5f8o(uKO#nDtRahbdW@5a<4O|kxfbQqp7k)L84a9nGg+eLNH&U^2AuCTp0`!GwEDi7*o1XA3?in}U;To7@Tv;~G z83Gi*W0bB`r4Naa)r}!JK@F+46TW&1-mx(NAAijTZfY)c!ljkcd+pjXiBf;rpvPm- za29-A=VLt3mZLB=E;08pVJ`_Qg3Z7U;X`J|-)5aPqa{wpy;o-M7`?80qtt4^tSc>` zaVN`}nyqUc^L*2CO>q(BGg(<95^DW?t=>k-JHwsSZ@SWL*A-3ToN4YORW5u}ItQAe z0R%HC8X)tc;`*Pcmxz_u$r#FQI~y-0^kMtrLa~3j92V{q2c$1>Gr;6>6B9|w*JC8# zy?dYWU{Vu-NSIA>%+z$r?^O7q&-G32T9;T%!JB57U@)WgAeQ*Bo)GCqkj}w_baLvBj=`6&yE|F}-n;!{y^Z}ram!qpW|kH~Xk2vHn$W~d5uvRV)jp_f zS03A;YJ)YVPQcZ#D}hl(EMsW%`le~e@M>tKt@D_h-MPW?AsI%u5+-)iXM4dl#3q~~ z)W$cC<_$>Wo%cQ4Tbp}(8b_$9<(a8p+h`_`wsF(E54A=lTX4hdt_Zb#C@^Td0%&k+ z?JX^k?8*fT#Rz}tG{eT3Tx@tQ+=GPRoiNz)DKeq4@aN*t3*6ILJcSc`RHG z{Lbff+NQ>adO8iAhPwsjw~Mc3od3_c@4i0#Nqo#l`;+z@`SN&LN=kZaW?DvW=IOMr zuBPSWRmfsmP>8idkTkF^;raX(YEA&fIbjftc!kNr*dp!bq5NUc$8RW-Vr*C3)gJ16 zI5P6cAGqgc?mi*}$b?~q8HK!_064m83*Y=-wyQKK%KMD7tb}NdHXSnQhvs9ybvl#j zhbAT_Q!}QSN!5;>m}sH`Vle{YP!l$yNTb$(R{mR(R`<%-;g z$c+mu`@a9P&+}glYVv^{*!Sf*e$Vy$6)vfutl^(t08DXXu2HrB(033kOfr43HFU$~ zu<*?>o5DhaKV2IV_S%;4?Q!u*`~H`5BrWSyPTq}cl{NO3#s=4rhHS$tUh)xmG5e{_ zZlAMHcXc-Guy z{c2Dz@g?ozherTtYhm+!2xI<~)#hxt-_kzA2HCFRn z2eF97svWT?IPl=68@q=W=J(5mI!wa7Po~MGs}$MSluzs^iAvQEl|HVFSGED3*dRnP zM>rrv@lJK`MZ!m7Pe06Aiy?yM)h7qN6COGMs7_rxb-tVemkU7ussu3mK}hO3c|6?T zG1_CVzw5A;T83CRqF8jgM=s=~bXP*LPbEQAiU|FvF#2Txd|i4HY{+;A_)P^D^M}JX z#hCUb?yS(g;FYSh`5%dAY@nl|xv$PuU)^}m;k4Tx080cJAK&pTuv|GtYm2p;xHjYRo<0T`4`@B+DV4Vfg8Sn3N=#10{Mz zKbHevK?Pugz@Ago6HsKR6#q;MvobQ$pvTfOQ}eE*mlhXPL(@8|ZBB>7S!=geTCJAa zJFb@2{=Olv1~vOV{2yKc+%+f$h|-!!(o|TE)HXm015&hJDEjOV?|08dmI~{!pdK_z z=T6F|FED9_C&Oxy)TPy{w@@uIxI}}hp#r$-1#pG4487ow#8((mXAq{ip{@i&*V9fU zn-9YwNxZG`uueQwknZc4WhEx5VGmqMkL^z+t^qd+J;MCT#amHj4m^3=k z8^?|{AQFTJ&axdPPJIIba|Uk&awScDd)W^h`>RFZlNZ16l+(#9B2K|`$*&YYhD%F0*mq#R-Rf3)Ivo?TGaAgEeJ4`>yJhi3aYvPsu z4=YFYXOTFlKsNM#sSI2LMI&%0@JU2RCrp#Z2gTh$=0Id_-Z2J$HXX1)Jilh7H4ck^ zAHL|5s7Armv^2UqaVevmQilCt(7{$@)DYNe+PYZGX{?H_p?El?2#|a{PN>TGHzcr0U=1hBsR|9YHUlz5UuinA?q)({0iEA$BTZk!L!Q8fVwRuH`eDY zx5S%g6y&i7L>M2+y5W&-IgfpDbOxj4&EMVfN&^kYlQt;l7w6&P#L3{?k8tK6hJyul zz!Kpw5cyi43Epwo`J|)OdBanC<^kn7rA!TjVkQV|z{HUsw&$8K*eEu6@ZD1dE7LnZ zs}^l(95P95S;6v>G0p9i*KTF{o6{_+o!vEyCmr`(B9xO!X{fA*VvE9v+fWH3o3eyp zDn_vux2VCA2Olh?N4{b`0o_X|)2Xfz#8ZgR8DtSKbFQDXw@yP2ul8DX;sGlGi=Lluz6$2Wn0u(dC#!3}X#p zoG)WEvWGb`f1b+O9Hcnm+XoulcmJ_2ZyUf~w6+Kmy0{t=;#bPK+U$};9Xyh$roqLw z=rg=N$Yb!B=bwX-VZpd*VN#};-XVlX`l)6Oa+(Fp+?CLLc~$K0b(uTX*cjUat2N-T z`6x?12_p{OFAY-lGiH)9&`n#CfVk6d&WnIAb)+qou-Y=-!yT&yT`pu|9_viTwE4!n&aH?EiPrRtPa4fj zkK5P8YrQFR)t)^#P;Dc>l;TxMiwAe66>Tx{o7Z7KNd5xyBS;c1W8^RlyxTiI%rM{U zCA{@kS5}!P<2=k=9O4nkn?vKcD+K&53gJWRm)dieAF294$jVF&lMhvR(5#tN6%|8J zx!-^XetA%^y#J!FpnGX_M-`cvrjb_tP=;2TNq8K<@;eecO8!c5#NhxEZA@n)hD*r+ z&UiRK70%cU{r)R%4QBevT5+|2j{(h%xwEpwaR+;1*91vlcKycR%=VAg^gS}+DDe9I zds7h{8q3I?+Q+?J(p)1oES{aGrAjw&kMF89%&-K6w4{ z%%7NaoWRo(sg8lr-EUL8+L8p`b5p(GIDQ>ebApFgGmxnfRW#*@el?3x69U7dxN8HU zmC^rly|wDYZGZ99tT#ko24H5^v*G29?l|pOa9`fqpBmpgB1#GsFiCq$_MRq4rxx!Y zqP8D99y$BHZk@Xmab=f9kp0cD-HptIr_3mNk3YX2U`$G2001D+r=TJiiqaB6X?gqn9Bf9uz>D`g*u^#t4+SzT4&v3G&u;&p?kaz(`nuw5qBN7lII;Pm z|3RniOgn8FmuX{KGj-e&F-8*`MUA6|xC>Urq6P>S5fH=TN@P>C;6}s+Srq}19b|bt zHU)ev58iuxzxUpAZ_l|8TchbPGWeGJ{oKzv=W{-vKx=SH!>q9SHGwsIGXZwHsG-mE zfSyVRwbtG9Am@+B4HqEtl!Sdw>`Y%rayH+1M^9Ry5C>yK+wa-%uca!E*R8dV+}qCu zyS{<{oAFDVBbo!Ye{*<;c$oB2C3f2M#t3nHH+P&gwiX%(4~-=q80Vqnc&3>Lm7d{GkwO`O4k-6p?^sz?eMxCk-Mvbgm&R?V*;?zS%BU{#*wSr2 z*dA)Erh|zOD8PC1Zw|L0uIg>6FUZUb{7uGf`D`46F7fvu6*?AYd>dT4;7>RGZp^;$ zbe049iX`zDb>=$=8$$jp?Ml@}BCPr}vGN+PZ(x7yhUj=WoeZ#N1nE=Ea~CeuH)U~} zlKx8l^R9?F0TArO&YcwWZ2SWoXqB?@*hta$F0kJy_3)_X?h`Dgnx6aJx}d5UQM$aH2gd6!urr>1S z$}M{y3R6wSwnfu0h8IE75+O8F6hyGl5b4K$JHTcS@S!{u+3C{uWh2{yevgw}2wu|+ z@N^|o_uvf7uRtl~Gn^{=1SB655Na1gSPT&Tfg(>6l#h#P1%se`5qq4A-A+Z(U=sgF zXUrE^*f-_oA*=u5f=#~+3;R`wsEVV}-A%nWz4KVrxx_I@h%Md0<{3O;b>obt&u`;p z%A=`I-ry84fNYBp|00tzEjBeV0%LCEq6Bll;3dIh+2Nk28c-?Zr;Yl9c=%=i3}K^e zMdnBLwT|HiMGp%2o_xhdxe4n%$M$5k8z>`F(7xc*g~SNWShD=fbqZ%|lQD7rj)^}H zz(_8gG+hoZH0|M-*s|^qexG~kae{EA>^+Q>m8ZalEZm#yJ)4S6f}|*b?Sm32gYxC6 zyGpY3JQkjWg7?Gj%$Z;K;gV_ybW`Rd8lwXaQ$ucZj5k#kYd|8`&nX?4oAtkG{+m6rW$&f~!z)Y!`+aL=6-d z%^AgoXC}Cb%Kee+y@-+{77e4OQZwLJnCTSU49nM?l%A2FW-vAiAxF6%pXoGbIyk$A z4}81!OEWbQ*!rB=As-*wzUpIhYgXu0WaQCFUc90@>ulA`<29cwD_*gnNQ7IF5nr$+ zm)y$HJyL!`IjnXJL>SiqHV`4cQrr!;e>Q-qilWlm_xo_VFlt@OGs9VbB zxYqVF>*|47#_~>Np*jJ0*Of|hptftg%jz_lDGs&EK^-FmPOz7(%tYOx#47@6`%MyU zfg2l5Dp+`YtMHES5Bt367P;?dO-OIJ~u)vq?csi&?EWV*iE@jD%# z+j!gRgdO%JTwI=ib78^^OtZcNQe!^0F+VO>;^qsbc9_yq>;T{4OU+zeMe# zA1rK3=@9Ci1OvmO7xTx*DCvb~*{M!cxpDUkc&d}qj-+%aRTa_&@&~*b1v7myJ<0EM zWVAlYGvLuWSSIF}{OR29{Vh=eMcODd9YGerixdSTfTYK!OS)HhXmC4@NBOoiXA9@{ zX0ylI>B5S%1>|6O+rM}Sy0yDyFdvh2POw z81@#*otNI))MzF?(UXgpuwd|&|3&hZKqNhi2G)i76c;yT93>s%{{zx9XJW_XU|*jP zj&(pUHm*dvNf6Loleqnia*|j@ZUVnf5z0;+a4CH80kkT{=?%O$6^X1k_71*dD)JZO zxmX!$Km3PBc#?mng#f~!6$-V=%jm$r^D%Jsy$ninv~I$U$sK1VFnQ8*Jp$-FDK#b+ zK6wfV*TbCjgtRAk3>Y+$LLm#}=n#zfAF6^>TvkeNIftVCPf+S;am79T5f<84ge6)f zxWlWiAJ_Muf;Kbh0_wysfHC7p#)HRC?mb{a zuMg?wO_E*nBzNJh>qK`_-j4DgV1QokRK9F@(18~IDXLU|S!M}3bnnrYUZA0Bx@{QG zt2zN1qS2;!Q^MssA8|cIx>U-PbYmra^y4{ACKj1!)kIIx7mz%Vf)DuU+K#E$q3IIt zLHiXO*WaREqPB8__SK*#Q1hZ5s52=TBCCG;&mE{)9FVzjTjOz^^r z-ZDWbOK)*QUBZW%x}#o3T8$rZI1nt+!nKepJ-{&H;%J}=CapwwGfSMjw7@KD08nO$&i5jgYN!6Ok5IEr6PoZOY&shuCTidKCV+6fE&S*a8!o!TK zd@OHN)L997QHl6z=+UTN3cPL%%4R(7b-}w0fS&6YOA5+uFsuyahwR|2@Vk9LfCsCj zTg26b@UXpHb}PTTm5%D@^9B<8+ zFx99k0@w8(%bgy&&#hYVyb*A6o4P^Z((zTA!ji&-ijv#3VMY zADl_rX=gI+r~DKB(3#qFrnVhL(TdijiPg~-yV0U4G z1wmlhMPOlXfUqp=!d}jKZ+)Kk;HBuN&M22XhjX6a^FGh-;v%8iSwfYSW- zMVGOsmduMSQ6~)>1|Rj5^+R)f{k?uXT~_Q5i3A3gT~PQW0PFFx zF_93p#@rEV7rc#!RJFYh_Mtu+A zU4wAb!b4&eKbmNWs)Ytg(qssh6NWJ=-c{Pv8Anx!MQY&+HBc@$U0OaFBWXI7CW1(2 zhB;jfNWEA``&v}^?tlq3-!GtAt6jGhtJp{#ZqUAo=I>!Sm`LL4LLVGss z5wfa$S*+R~MaGUpo_vlb0^QApDOL0Y=4)yW3IsIjkXappMpjJ|Qfa|yW!6$Z!GYf7 zAEdLRdP<`Z7{ttwG!iixbU~|q6Pqbqfx?uL;)gJ?j0Ht3!#1qvq^fk8%eHf8K0w%j zeSpJ^pvELII%JIy&57X}GacaiIgNz9SW{hBQh4j;{lXhpFMsv<@xT4! z95mn=H%sn zUshhzY&3LqclTKxuIXS1OxzlE$^;eTqa#Qs<1iFd3ZJh@<$yG3;Nr)uHB5|V6=$*j ziAn+iwA}!exMw3apWfOy1?MMh8q}C9NSldtsJ-=(V}-FNa`EFZNHM-y#Y6>U5e-Hc z9Rs~R0K=^Y#V^^>PxkHl)Anu2d;hX?$Nt@^$38uN?ELx6+*`Lx%k}LBlc}fgku8dX z&rp6Cx;%m%3Q0mP(zx^)plsx4#bSrg9Ps+M>GG!-{Mg7KMNDm0E`Guvo2u^lP>8v) zR$unR!}<^is|tp&t8`|{N#;EGd{8_e$^w@Y2|SvM`i7>1@plC#3vGREB|gwrWxU`0SdKKxdYXww3J zB4Q#StqF>MKCB{-@fAOuC`LdPC?MDC7$ArPMw`W|3V;TW%5>;#*c}dI_}+L$K|xMd zR_2Yo@2+0Gk(qJ%%DHbZpEz>j+}Sf{(@vea@c9=PFZC~pH|on9+f2r;-eKpoKbR2Z z@|?iotV6oRPJz}Bz>N2;tv(mx7xS3Hd}(;tIxyzfu}Q$wW@(+HSg)g+Ib|neu^ZA+ zzJ*o_>>d1$u1>|g^uC~ro~KT0e`%+wrm?Q}Zb@ZvQGQ0+xi8P2I&$!{;~yPJ-jkA= zf)mT~2{eC;^WG0-bxp<&bH}LN;aUzWTxt=z=ykZI@NZEIUvyQbupCK>8#NE1v1Jwj z(&6sB3}_{@?tXTG-ZC=jnAfQQh>f>SAaBNze!T?r3p{MH=yXk42Q0mv=FXO;^6GoH zGSe=7b>Y;>V;>*>unbW>IC$`r!>9i9&9~`U*KXuozgbk)Sf_7pH=2xnw(*(yutH_v zg$GuLU^)pR z8!jdyZW39T7)t6e8mcPFiz@CEseqzqNAlKRZ~Ob!9Xt2$+mo_4_2{7!XHH+fn11zI zW>$7qMpbp?g9hso^aL~pxQ}hd_=m{=94&rFxKj`s^9yc#mwx%!(Y>jA_a^W9&7c2}a^%?Y^GO#o(sJ{1 z3QOu60J4?~*9mRPIN!j;vmSBTEjUjYE&LIjChilLRfXjy5&2@lSI5&2tK00v&F8S? z1PrzrlPohx`@3dVp-fZSt?Y_Bbxr1Bi`~T{3UW0}CMHl8BYgl=R3dPHS6iWb@lu#Q zwD7UC-C-BVDi~{gq7$y@*SrhjP#%1p5dpjj{>%@;-Zf;$9xh4)kI(JIsKJe|srC8a zFF}Y}0IaRUeDr_+xC6ev7UmT^D$eX6?zk%G5u`(aJMmOGUYx*jYk$PO@Jy=6q^5&| zHeo@~@F8gJdL{=FkNf|40fsL;v6!xI@aXflm){Z3)MXA#tmDJt4eIsIN2q+yD^0ko zEdx@scC5(Q4lG@>f|>dfJfcWOi?S*7f;^5aMk)Gk0v1?t zTnG^o_7at1I?+Zi2yCbNM*G?xG`9|e>b<@o?foH{7AZ<4x(OX~fH7Qk(x90yS0*T$ z@>qK-s5`Px5@$6NDytqq7!>q}A{d=ew2hE2fSs z4TYjuC$(8sVkwFuV8SB|Z5wVYK%`6VNR0;|vhMUCKzwQl*=?TsWmv#Bxrp|ac8;oK z>VbDbVMvY3BevyNF!D;&VojR`)lgDTakf!aFx-JXh=or_;M19!UU%;#lo~JFpvo$M z;&4C%K>)klFbxl;@q|XE|I2r^KSg<7;e`dfRE?9U$+XjUrZX{rM*Bl*+R04Yq|=(H zNRW#OCX=ZKtF3WNy<{{>T2K(=VgyuF0;mY0Ty`Ps4VLA8TNVLXV0T$q_V#`6?dv)3 zVmg{kXLfh^*mvLeocBEEInSd)=TTq*@QL6eV3^U(L{U{GGSTf)moD3f41R2G51x5IH?#UP(*oULUuoN>QfXBr11gm2k&#cDhkn#)zr4nJDZuzmD!uz!7(Lb zo{Y>cLq$Set_b8jt%Hbx=H%$m^uyoG!P#*%JPO{f-hLlsxEASkb7~nu z9)PEf!rSg5i<7EvFhu%8;N@nlz<;1vxc0+=l_>EE?=@_)gfPb#L;CUL4+IjzUCROn z-#W44Q5c!=qT`C1VXO&W^zd=pF345O^NiP-9fw3wLWP z%9mA213i?=!{U5*XpAL*5cy(tK#f#4Q4OVMqU;#tSseXIVkCDE8%kTx%B(JP)14~? zrGar+wRC%?z(-(K-t{ej6X9$*%7ouKV(wj`EB!+Q6BII!n9R2R@!6#ae=+kaG?Yj* zA}KJ zUO`NVXPGlc$>W>j>RhYWRAB*d1iPW?Nw^JH$|={Q48U1nd+chcD|O)kQK?KIYXW~H zx-BXm3ruc*P;<{P><1O-($+qWa_+0XZeox*zeT*-Hm-4hOI0W2<+4nLDOcSt4{CX2 zwy?(&K}Gsv@})o%-A+WAzr3Hg;tb0pfYXGqeLhMA<_L-eNC`R?2@QnNR&H`LbrKSe z3%q=LPm8sl0Aj4S3!$H0d^SPiNef?u6|X}#IeOF(#=VQQi67K)@vC8HJ>Bwr%X5ht^C`cjusLZX-16ctX%Sa8#Q-@hasa zCLvaUTt=OY-D%}L+Ip!&8EO%ZZH{Y!QBcwUf(M{GFgEGO7*_(O>8E3k?slWq)NX{y z{)SLb96osF=z#;7yZ7wMJg`3_BkSYr?7ts7ekLck@bcxN%9e&l2IK6D*KrlwrHe>f z;p}#iKStvlg~c6NbPe`7MyDXBpcKwhUqNm3F~j+?Wu|XdCDb>nMnT8S8p}c~rd@F% zT$aMO%+)?@j5u$2n6G&(`fX2?20Ow25gk)`;zil-NS#y?coJmhEuDt?qZ~m;D+hxP zr5hX=N7NNyZpBV~Zp+o+vh7~kIj7M2^Rh>dU%h<7WgPB=BJzNT#we73`6oAmmFp#bb6 zl{az&&WDlPu;gX2GVqjvyXp0#wBU{>^))eF2F1fV{*=+Pm%6Hrop%*Z4PBOcfKQ-V zT^<}IfE+z5M0_zR3gFG45Won?7@M3oqo^#9KO{lGsRGhKtA;Ke&@UI?@Z26RsgbdCbPB2-Z?Nc7os$ZR|3=k=oS*; z_*Q`JW9AivmJT2n59j^JP3e`!dHBy-bru30ZK(s%H36+VX@Vul-U*CgyKp^1#I5Or zUpqJsn9ZEJ5lJfNgKleCn1j1fwAc8Y-50R7-y%pJiu#q(D(Nik2g%K0lwEn^$_R`cD0( zhNjlG4wHFuc>2kdU$!38gYo1=TFL+NDM!%Rrg%*EuI=jvRod3p&t+1i3yO^Ur(srXT+2v7^T?oXsoDy^@<(eYN6NeN&^s*bxCl$FnaXxwQaU*py4D4ovsO z3pD_2^e?g1{)>yzF(ti8i?&NpgOHNMNlaiHv@>ouBK|xV*b!Bax!H$QnM-vd^UmUj)y$QMqp~u=FMK%2^6>`;K0R{oe9pfwRbFpu?=ahk#-hl~g0Kx} z%W#wfR2Z5s*fk{Q{V05*@6&)Xq|BE`umyPus+6dj7=8Y*Drun-V}UYoCDOqnzv-le z)^P`{7(nMD(*eE_vf^^bRS@XlisSZyri1LM#|s^wAR#>b{8>3#zRaA zwKt4qK0~K46HRM{uOe`V=I1wTUNuQSvSmPv+w)(#tNl63@(O3k67Ew)TWzP#Sf`i& zra$ORbqoc9XwlZ{w1P9OU<*ohl!z4+0ttZt0YW4RAs50eA>_7_gk%FDY<6>DceA_M z?0xt9-fN%pe%p#V{b7@x-TmJ8oadbLoaaG?rOImX+U7u|OU1;8zT$~DDEZFo$~n?W z8N>0J_Lwtice_Y^Qo;!sLz-3#*s;}6MPSo=T}@+Tjy8cf%cSrh#RM~0SOhMjCypeG z*Km{wazfaFU{)Md-H@V6()T1uYIlka6nNUIo9WB(^4tsaf&@yyM02{zH% z0M^!vRRi8T_)*D*2%UIwh_jA7cOv4At)ueWh~(h;gOy+P$Z7qA%p93Qf8IEYT^14A zzBDOJM85vvdk>Z@C!$4!!P%pY;lWwdbtbU8dYO^C#J43zgj1PQFa$S_er>1vItRZT zg}C;`f?-J->UE^JQpx0@lql@YP&cjM19eH7$T{i|1KR0ZDHdwx)B0y}uzCD0W9<>H z5-o8#aV76GJzmp#RbeVD>_RM%Lv5%x{)<{Q1qEU$QQEvSL1LoK$|GBe>`4NwRYetI zhKPb+W{BY@Dpen-^Vs>oz3#*4IG*;|h8wi&ZE51a-Oq%-8Wg!Ab83=nvzMrP#SG*^ ziU-?rNa+_ub!w*ep#|G^K5NU{R|>2vfR@nUJafC_VhOxe7Gz{9G(BMz6H>*5YR!hk zL%6X-x?vpSati8ziNN^XxD!9rrynX-nNX-ZizADXSRZM)J3c70jSZduxClA7Fqxor zt6deSiL019u3QCQ_>c)to4~d1@g@r?L%3-})((JzSX2;rq-T)>Ni5&Bf}GROEDqvJ z(RNMB%RG9t!!z4CCnBfo7o|Zth{6gRt!5X%U81S0cO;B;0PPMYe581_x=ci_)mGo3 zT(j<0rOqhI)vDR|?-SLGN=U8)c*y`6$B~#czT-PNXAGuKNY4O+tch0p(w$ev8B0Vb zGmi4vVPu6S5zguVGD26Z<94(@o$#F;Wx{amlO1?R3~qF)ph0!)f@wi!KyZ<4Dw9** z#h?X_|LMcZf>x=<5Wf%CIz5-lw^?%Wvj3b?vp{&h|30(211Kf%$Yir|C`h3%;3V4t z;(xP$La#(E_goES$P1O+b$gV34p6LB-N(bsK3|}mjqxSVQKBBAG1CW@(3}agUybrM zl8USx*H0_#Ue2yfi*$>a_F7ie$r;cS4@Df$`W96W8kgBDp5t)l@Dz=1s3? zj@iC>NO;pSVO;2n%^`6$(ldJd3KCxvtifssbj#qGJZ@h#17^y1buQN(j>OTq8XP`g7h98V1hw@|H+vTfLVijmFp27{q6i+hAdAd9e~K819`oO~kZn zY!qlN%>q+kq%xh?^AF~4&hZ#11q7r5LqQ@Joboj=_&yG>vdUKBGimHGk!*2u(eDQe zD{?W(y=`&B!ouhXiAJ=u;4W|}<2~b23=G~~V1<*Dir+uU^Kzx574X8jIsKGO!07si zeYfNGolNL#U78+DOr-%;Ij~yPYg2K>TV@E#={a=3^4@xHu-%UpjZ-3|XWT z3;U{liH=cnXx=U4)dW%|TarCBH=8P&M$_R^M)i8`xiQ0*#yD$A^D3(_SvPD{uT(DS z@RZ6rbfDt>lasPAJaMh%9=cj&$HLSYFF4ua-1PA@e#h#Al&!b3sWmC6`yxhh(bT*7 zt#fH4Rc1aQ@uJjvnj1kX&*(~gYBNfFC4ONi7Gt4oUjOR;+1i@JRmVTwwey{Se)RsI zH*WarwoQM0WlKeQ`JRur|K+{E@BQH8FTPwT5f=eR?t75bK%&jY`pEk5rkq<@T>{eZ zM^a=j)L(CjbGn@Po3LO9les8dN#GJso*i!vUtDltqH}DGRlwlgIPV*pJd*;eTT?*_ z+$}a0r9XU4;sp9p^HKD!I|;^ssiIXGztUHr^n?L_8Ab^TTK;mh`*M4GYklppBUSr9 z`{ez1wr$?Bv3zs+=2u?dwzXo*Yj5s&Z`aPgynZ}-y|;g)_2RhST1wwf0V>Gm@MJ9hX&Lu>PmtNjCBe=L(@hPT(yCB}&;E^?>l@tX>#9ewhD!N2=dms!D%h>A9M9mrGEDj; zVIg`mqHR&K5h=Z+hwvp9{t?tjGb8c7l^13SueS3bWJG8&LF!A5}B-qdjVbnVG+K-udg`@`0X-*0+#%b(uez3YRg_kH@w{>r^a zj?|rM?CkF8?Hl&{7vUHMOKUn+!#feVv|uU-h?HJ#5hjW|9fPXd15%eYMh$vyF*Yqt z%C&Q*+AA76QqCPDek~f`e{%FftvcWCmYVS2O(S5DdWZrl_1T>&!k-^~@CTH4rEr`J%V-VgtoDJafsDMbYAM_k+T%s1jA`j{3a!Xp*PxbZ*CPPgN zR7I8U6ILP-pZ9r(hx+;hV8P#L>1}PUuRc_@Z~yMyAAVf#LhLZm8J0?Ep&Q+K`npuYZmO6HO%n4u`lCiv9?2BjKi0h+3BD87z+rBNWSVq(ZwT z@tss^bm@O6ulA=X&nvvRq7Y(iCrLAzPTKyI{?dP?olM(ljWvQdlC)`)snh)f_Euok=-LDK?y);y1< zQr-xW0)_Cpj#ZR@URv_msj`yOpBy{(;o*1pzgb+kx3KWgo;QEK>t}E5+V!iwyFW%# zye_AknwwiX1EaGmt3uB7QAJX&LsB}LL?2fyg0oFl?cnh#Z0XGf2m8xID>uxvaW+7@ z8z8I9_lc?<8WYaa(n5Hs@%G*7E0->u`}FVczqh~O7eD>=zBhikdsp$hzh6n2AI0x9 zR@F9jwRd&(42_OP6DwJyOffOA_2L#xbJuO*Pd=~CsiRntuiGMNqh_h6x0C!Nq%OG+ zm!v&hWb%eN%3!@&=|j95c-{N&6uw`)zo>BEACCO_qfblES6sVN)6~}1F&1~JQ}WnA zP*tXh_HeE#?A*@+M&L}nVafm$*-^#F7=T&_@Zr?A0D#bEA3+&!^TCeUwv#Ywg|GLIY*}>_;tYigPO#C)+C!YJz>h$7gTCvIp#M-;>Raa z_R$1Oqt}#8SL>WirxBK7O{t+6mK4a z8(YADaxLLGXPep?tLCh~2nPMMKW@nIvSQMFk%V;;Q!h_BH=E#XYn-5Y0pF!(5)KNr zqhoMNMu-ZW!C9iC=d{&5C3UblDxMwH|3I^q3huwroE)2n{D(yYLwIl?dr~RlzX&BD zT)iknX}=3RD$!qE*WMCXwBoU;TbW6?kzn&sg5e|saVy!>nUx!Go@vVy<}ti0!Eh-n z=!O6n&Kioy&+;8Nxzv!6`uddA3J;YO4y}QIR&wpuf^?g%bhPz zs&QCeXI06X+RA0%->TEyz4i>HRqGccql<}9G6V&f?jBj1uZ!8=46zS>rxiTx)T(d9 zNTv)2Bz>%7P%&q^7SV-PsIF;fK`|=>WBI5(-z+vT2EPag2fl7{8DsNTN;GGez;wVE z{<1dx#Js9kN3wc86cd3^$FKu$X=TLR@T$lvdn&g# zc`pWJATOcfx}X+-)sc zmTNJgX2R6%Wi1Ftx5pYP>w$<5WqWYt-VF6d#O!3LYuujkHOD!PB9EZUz<CG|PxV=dHkZ?05$C}$R z<*ER*y48r0sTMBHlZ@jijVho6dWh%(W8P@DpfWs!B(?$HR^P?$4atV_l{1grxqy&^ zL4hdGx6z^9J#~F-pdK?rsa)|WY)P5Lx{x{p*EMR-M)zEDXrvkz7_^{(rpcNeR>^{B zm~I}x*+n`4J6FcO=oITmkj5MNGPUf;)WfMP^6gi%88%LSdSQjV6EBKDWo~7do;oNc zcX>;uCp!XtDWjE3qy0^{D;>?@>bNP80~x6nhp}7dvgDaW3Wn-4cT>!CzG!&)BBlL7 zs42VBTNt< zp-dihbmR(z3Dmg50M^X+x-Kk>;p%EjD61{Zb2#-ytBZk6n%#KDN5OvC4i?%*(h24G zEE_qFcqU{ng6ER|w6HKVk9NDi^gGcJJ%aOZzjn2vd$Fe#8bn7;!CY0(ynM0<#H~U< z8$3+Rnrcq*5J!<4N4-2z{s`35(a|4&(sh1$EZ}4w%~{9~CS6rMOGQqmF)xwMfiO$E zuG2i|3RlGAq*?PurZdrD+aXDkBV>jq+~~1ENn9_TY>a#3rRs;^h4GABjd!)L3G!$y zjrJ4Ig!x%%z-zJ2(!?LgEXeRGa^P;{z^IFuVVzeHz^vo7&*PghzjEpnvLNe9n^v7{ z^(3j#Y5cOFCF_iv9w%ndC;B>be~@v z8C&jeOh}f?@~cYDrTocL_v-x--l5AWWWv4vwcxKD+ey~12^RF2Jy;ue3FBWFCSjD1 zwOmML$|e?=H?Qef3SS_hZYY?MlpMW44uF_SqhI`bIWnpHfAF}syRo+N^2G~f=g*ZK zKl<0h@BQ(EgZmC0cyCWp;eovsKJDe}sW{w%yKvi!Uu{DIe36gX=5VdRHvU%!AugPTS39cdoHN z6m)5Hs@$53EQV161zPpoNFi=_)gTqkm| zVqQu2wYPVT+`o16!o~9Pf1fJ-*U=+~-#)befIe7IT=aI)!NRwS-uXa-6Mv}c?$_5h zw03k3FNQ{EmRvSiV%>nU@%5Q=C?hsQtV1s06yldxm5$X+D=MVkHi;gbi0ZJ(l^CL^ zPyK@Isil?ZJV@yz>Bn+Ml`S4xYTOdCW|rJ6gdZxwZ?sxxj2|n#reu7;v64z<1}3w$ zXQRShwB{y(fC@x4Tw^^hSt1*pg;m>_#(@j9x`2Oq(y<~BD|**lEehBPF$9n7jCzjO zAYYV>>(Q5c`+B-so4&koy}Ycf#(M*W}%_W(h@6>Rfg?h~Ebi+sezFBiH9mf1kb#L1u>Q(Pce#F-o3l zoPuVb8?wiZf9yY8SNT(v=N(^JK(QXtMyL1ROD}uel*>a!85RH_+i$#0t%StM1oX#HG)4Go4avL$Hl*sLz zwwwS}b@<@nLr2e?{mJ>iU%q(x+O_Lgx7J7mYC0kklYjnrH<6ZUUvn z+s!m!4}ooHp&#?XaYGMR*^tr!E8(t{kUPVp^BMV;Fsh4&SQ;S^krayhVMkQWb2iYl z0yWG5$RG+M;J;aj2b>u)TR}5c=9iof_3A9;a0Zdb=+U+N>$n|RJVb$=U>9_hNCjs~ z`2A|_@;|>g|M|J&ht3>+@4XLlb5G_SK9={z#VfbYe0~1wi`UBvOYc4DRfUE(2r~W+ zRcnQ-fCg>2bNMABj=0+U2G5@DZlH;mLyL2Xv*V0na`ZodUs zsa4DuxN)G-B76!RGLRFx25DtP?bh8|GllBGw8DKj0q|tVUq~MBcRYX5^7u*VHzh^+ zh50uwUHI#{6CdUtJALKjqX&-vHuvn=_fMXf;oNF30?dQ*=1`}5cx*Nq$8E8jLY~x> zjOwtOus685|6uz45|JFMhKxIkzppC*#K^J?l>{@g?Y#a@Pb}HE43VWqDTS9T>Z}yo zq%i;DQz~h@*aqGM#=$Ox^01hESMbonthcM9-`>*J(AZE}Tzv0NL3#ewOMm<1MBcGu zN8Ueh=#R%gqK5pL;OqIfiwg>iACx!b*FW#>>KhpH&aVc-v8ZlfEdU%d@LHZ>F9smS z4uMShql;GZ9@k*sM@2B^|IuaiAFd0x^hYh&D|tc{v>23RlHz6L1|<<7okg zo`tBy;GK6Fb@lW=>$W%4lsqiIbN}}3YyY|Y<>#NB{^;bXlSgw8=l$-$!C(LRQ#;&F zW$oKf>YnxVI2cQ5zUR8qrz+Nk#02lJQLhKC(J* znG+TZ_Xn~dl#Mvd1Q`)ND^8tK@ zNB)$XcPRJhKmIGOZ!URMQTtt6w`bczh#&`sC`h3kJ zTl-iP(GM;_Zf{<2S9RWxkgltYLlY;}9-ENXnJ)$RAq5A}=5|5)I?FEKd^(8>L)jd4BKqkhZFJ`<^q#SXS(xfutq0G*%7)3b*t{xVLXN5M zD996#G~^;I0EU;b4GbT?WEB(Vm><_kqH+jd%u@V>uVZ5Y9sn6+zT2NZY@bFWlfVWN zUgR&`5#(c2HbZe?3Or#Kbr)1JHdrvQM7h7my$)0gq@e}4*PA}YtGEXx3a;4A+^9~8 zSTh`50$;{EfzVhNKjR_*j*!OY6vwKvH$2J_>_K0j57)xD+#_7&_LvBxS`tRjE3ct; zaX{|!R)ovK`h%hA)+jL9=+NB%-APv^AIDCK3JV_s&XBB{;iGc5N)&Ia<2*`dYIHg| z26$&h0g{qx>teId`62QwLF`ZkO=hJ2!h)DZqop?h2X?4C;Ix*aI_w^X_+n0L1VYH- z>unJq8J1gu6;qmnE_k3Pwl0s*_?+6eJR*guQs<#CR%z;3xiZEZD(Hx+x186hBNfR=q5F44&TvJem66u4@ zgB`&?6c`JwAB|y+c491uP3`4PRgZuS3Y-s2TsEcy?!l0@Ui z5|gvISf>`b)~^mmp?_?nZ1!2A`4M9S&KFB?cf{G96v@|T9JCJ`h=9chSevtYrK(O7<872x4K1}X9@!woZHYIp$ka&EHNy%MnY<7l* zp!JfE4IXZ*=+b0bK?M8&+HXX%n{@&S^LiBSt_=cexpa#dmKk;*ACW&7#@*mdi1$v? z@HfW9WN3V_gKl6FP8MN_4V2!|Q&C?$gQ|1-72*OepNuo8Y_|Hpr6S;(Ru1sD2sLa$ zgRVZ%4OAaUp126B6$oL?Lf{Ky5Y}G%{doKZ2|ZipV}p)vgU@?c$Jd!+7daHWjVh4E zOk#BAhA_8=1?J^mI!I_~09=;sN&wY-X5fKr2V{gc!AcsD8Ab&g2Ab*UHs!fF4Y{C6smkDP$ON zNq>~2uhwWw*GQ+2%{)xfp=rwLM!+e#pKEQ&{#M3^8+{~n-wUP#lacnSZUfxPV1HmC zxjpWT)lX`X9t2q+@^tfT1+L+$Q|-cVpf?1;Pa#4U z4pB1OxvU!`;+YB(gK3%$x{Kg^GF`qSwEvM^rC&{+S)3(ED7G{9IGvu(hn|@;r)U0x z`8eO4FS9S&ic9N?wo=Dxr)S3FjHpxVv5XZNqzVX%QV~#)Er4Oo!jeRU7!uYH5=bB+ zELq<7+2-CS;MC6HLvq6V-se8|{_gMoetz$y)z&{SXzJ3}RaTUieqD4e@ACQ2jvYR- zZ{O~nSv%j$+WVob1Tb+bs9K5dI_N|ciqWmEJ~DSb!(wnlh%8!ehJ*|LPeleBvn*M4 zPDsQBRhbxIq+21)9jX~DAGC4=BzSziCa)2vl`S_i+At^4CtYBsqK zS&|AHO)lkkP_x30h^upx(?bImQ*XPjx}vD~=GDTBXLC<{oc+OjyY}ugaV%5g@xLCw zaQ2-HdH%&nu7ogIs-572Tl zQlryPP3x!_$61bcK{^>caL4W&KM&=d5N{%TwMY5#AfXX8I+@s21M>_o2uBFS?~mZT z-les^FkPr!3cCjGSn(=u$4K7{0z5_CO_+2`3f%fl!P~6C{>GtY;5qO*J*@x(2u*?P zgqlg{dI^z9VW?ikB+ZyD5gKB;S{C@U{3Jo9OG&Z*DrbX`Ca z@iTZQ@AK2Sr@y$8S5jQBukW*2h7H|@p03VrgXOtYU%tsyBGq15WDbE06@&H?uk zg;WI@O~Y0L;n5_RFGf>zO)*Y?0-T^s*V_mgDH~T6T#0ci4Iq*ir@tjQJ{pD;N}=7A zrFqxBICtjM(L)Cg?0@%nJ9g~exogkC-A4``Jp9qgf1JORpI=zMBD za?fdzY>{z+wNeFcE1tIg02Dg~SCLRbAS5#>x_dW-?m7oSF*f7W3tkIl8&csR4K+ck zPoeZP(7FsdaXU`w!b1#d)EB_Zb!=QLv1XF^J?Y!hlnHchL}=Vj2%(@u;&QVIEG18r zDk%fe z%ioM4NxsdC|CM+4tGxddmDkocmDK7D{XO@aO!o2RrDzb50A>i43HIb5qnns49@HQ$ zVSx}$8u>xEM)q8a5;^Yz9f)*~^7?|Op#j4*6BS6}`tMqpGFYb(_@)_}fH*O^&^N;} zQvjAsjf8zpKJ>;ww@Kfut7*{ds%k3ll$75n$iIB);@zZM7OTNAw&&c5o;{-B*I%>Pf&DFX$eiXBIc#| zjl0zkbVg&ZalkbAY}jt@8#MRy7>uS~v)MZId|^onu7njum~gQr0a-aR2~h?) z1M211c}R9E%5&@sJ%(74kQ34fqW$qfrV)6jTHsb%`gZzn@h9g#%{j0q>-}wiI=plH zuH&apoxPY}dgFdgOY3Iyvp_h8>wys!RIUaOfpP(N@N^<4n6rMl$tBux(<%ZNgAWe= z9#$4$tk9E`CM>26eqIz#`NoS}5symL;SK_Zr8i1a3}D<3+T@^a_r_?C|6vh2fb5>5t;vGC`ybgkNafMp1C9FfSoF z!N4C7&V{tZa7AL!h>&M)wCRc{7ASY0V+#&P;9*D|1#$>OGE*(_O1BA+hJ4ZyEDBB< zb72aL0CNl)g&5?8m4u+BvTCou<8f<;1C|S56!Ir0R6Yi#3HdTe_!OR@RD`%i5|Ea* z3;-#tD)5YkPuGSa<&u}9QkKb?xq3lW{Jt26%gDTQDMo$f1G+2<%BU$5{nP?v%HmMm z3UibayOToHwYn+t?WnR(#Zbo0QDghnDPSV^Q%jVB^q0m~5{?_|cY2cfMGA|7yv*Q2 zZ|2ln9fzYBKGzW%M*Alx$#pA6{4H*vgWfUb6R%R-LEbs&Ix!f*Q#=w_$d`|QjZsg_ z?Bj@}zd0{F1v`tbA0Lp=Po-yEpwd%T%0rj|Y4kJF*3J_d(C9a07%uU8qT7qdfWlo`9j6$DGUg|`olMFahA zzjSVFY7Pw%P!|j=iV49{;b9{eT$9#$75i`|z!ue(u zTCTJ;ySxil1yZHmp*24ZI>S;7M6EGMHC^gk;Nn$)!J>80IvkC*8J9_S0E_v#mqVtJ z7Sl4vOwCoDEe+Q_FEXXYb7ZBSIz8^&1yiHNG3vE2EHS%eXa8lq+MlAl&hTf%PtGJEC?cZ z7TD#oH&^PW|sX*=x<%fKh;Mo^inwXKIuPcf=D#7Glob=`HdW8JE{{D`p! z#u`)f$k~fV65KbMT`CJ|iHfnd>aj{Dm{qT-eC~lqJkgR^?=axuROX4hXB?=(ZwNi_ zgRk^0FWMCK;n$h7%Fx8jfJ?|eu2{h`KSk>3n1B$vB;kUcaZ4EUmQ8}VVgZ#UErvC2 zoyNCy1631qcU6XNK%{NZj;Hk%W%z9bHYq&dM>jv>T`tDPI~Vxs{oyVnRDFHSx*=pN z!@o{k|L)qcG9XB;m?hUHvuA?2am_P2HVH5oEFrsb6|>*L^>)Tr)@D4Q{iR8|2caeHRWrZc7$6(tdt@U_axbuzg}-+G6Rkbab^flwK<qejT{#<^kccmh`Vp5sD zhgFalLIWOwNT)8{9ubcuCNK{zJ~;Y#m9c0Z*uY0`XbOhE7-2Kl${U^OHqI=wqoA|c z8y2kpx>$T1m~^`biE3O;vls_*&utTzGv&@`EWwA$ybG1gY41Yoq|Mr-=*ntx6T`9WV<6YLr%)5X-fIwnI4lLa{Ps zf%}`USc=CkIk_^oGE6!nu9;<@L(B6%Yr_guIf7$}rUr;x9Dy&1 z)@PLBK=7oyir+Oc_ISwJ{}d0t%d++yNd7Q6`Hz3twR6wD-N}F1f9Tlf|2UU+`Ra}0 zirU7uu5MGe*^Oh4;SsJT5u{b7U@`2&F-;ji$i&2uXL}CB@m;nVtIOD#TTSq_-j&aMKsKDh2kQyK$Ip`M2-!S$fNPC zhkE3%^ax))+^V0#teF-&Kp4{nlKNJ?cAIs4Gyn$_FFg6fG8rzn8z<4`CNk25HfmH; z--`sp{*|ebQQMGpu*cZhpsy^>%RifQHSNO1uf95Y^3cJ(CrDj*NhfJM$s^p7P^OFX zi^{8-+YBv+{yx*7eNp(gg)kpA6vXloRmHH>c%odedSW!5qM_589-Ty+P@_%U#m$l4 zJHcy*Z6S7t9P4~Z&6WC^_92_u#9U}TPU8W5yP57OpRvP92{=Sab~4|RmDkC!{XF7b zou7GvhDHX=UG2?H)uq=93(uvW`QrGIqG)o#|2xKgyLav1ckuY>FE4zPm6w^7Rdl_$ zytBBjv7@8A=aFq;HQ*zoAhxjE59L0TVEAS-M%b4D-tijAM?}OEH>h036Wy~o^irdd zR~vQW<(9~rPo?;^!GKwnBfRmq1j&*T2)G^YS=*R-;89<{xx2NzLSJ(af~@^=YX6>n zJO8x%&&hjI5B=@r>9grs*;#3qatg|B>DxOyjosG%c{nsJde+-8DU_>9v15e2SP3^^ zN2Lbvtxi4}U*AT4832*Pnn8$TQE-EkEyV84FSWv+w-PV847$aMw*l0|D9a!Y%#DxQ z`g;w{ZTBBCpO$Djm~!~g(f#6sx03&wx;HsB=A>t2UCv6&D$4k0TE;io`T2RTWkGdv()05R zif`72ec(@`Tb0O`P7t`@Jds8H1rmn5+e_Mvgek?shWnh!ie)|M8Zxx>{G7i>VO20@ zEq59_4ZS_XLAtKbq#b`cSYtV)1o<(rFU=TkQLKDICt9=#DboqvW%P+EH-vfmA3G+< zV-_v|c!D0m0;X?e9QeN$$i(lKu`iwr;RjT4qA(X=2oh7YL;{nSX&h>b4}ii+!YuH` z(UlN3i8aCEz))!9Kdw*r9L|I%(J>nGRB0UO!&OktcgtfSu1D*93U6a0-mqZtG$8B% z$z31mZN6Divh-qyXSb9`cOZmtuNHrwXnT!o zV!bOYt8nx@49hC`zu2zQ=BCaoY{{01p+iX1DoCNunrPG>sP5B-o#rlpe-2-qu`iXbDh0+;zXqA48`j zI*bK4>ZoqKJ2M@x0A#U7fnMh0Z!;2-7+Y?5T4Rne$>Lj!GAz1*8^pukm>q-lw817| zuIodbwe}%MCnzU4;U8S^=^YmJtEAKHRgt`O(E(TOleKxii;bC0b&KndlEjWpzCBBxl0h_wt)sm5rzvjCGYp)Gk5%5HiP&?c`NjE#9ybQ-PL z#_YV??jXdm7T{P^zamaU$Ux{wQ`ysrA0>MrI&LGF+=!Oc!8@2F$H`1> zUW4*}0jqyO{4GG$;5ec3ToB>ED;tX^eMWEdCgHYLvl{F75qHqK236<&ifsTU;;0NW zo?`oQfswX~>U9;jTY*w2NHjEPIz-^$yG624*$^{^|u71Su?*JA*T)t`7jIk|H#tmbt_ei7Rd!l8`zO z7cQR2YgbO4JbCE!-UDf=XAehY{u`z|%)XtIn_E&? zTKTxK)!5tDKR9Z4d%(27U_@O;a7-6Np!8*+zhty;dU3kRDul^~hq0%6-Js+x^{^>u z_45;K4#tzUZ8JD1uUTVQtPt*^H^4(6bl6LpFBpR1K`#UvoCPG>@E1Z+Q+Pe6%^o3v zgs$RZ>I-QHF{0fKir*9C`UpGu+p^?ccg`=5m8%)?0f;q=cwO*?q} z+{MfP%FfBZQ&3%1{j|e0Jp5wS>6M^nkg_uRMGO~=n~><+aRWkdXQT!E0|A-9ieGiU z6223n>XP8O#gZiu3(+LPt+nbT)X1dm1q9J$r>Z5qG$9L_!uU!kfO9X`}X|d*BNQQ z`|Sq@{<7!eLm6i>zC3j)``?B6<#qL~oxK5(Ns4m5=qE7`Wr$UqLMFPy5|yg3r6+J; z&8U&0Zq?Xj1uOk|5Cp9Tb;FKHry6nx7F>#mLB}>j;z+a{XCdP;_=Gl1gMZ+0o7EK| z$lN6f3k!nQD#szd-HhZvC@9Fzx>I;7_sTynfAf#;vcA1~_0r`_H}BpM4UYwtwSCIAf#nYc3$w=R~=c5nzo&3`$`_s}I0j!1{4gw)!Q(Zk~*T!5#R-pnJ z_yeqJbTtcn5;CU)@W5o1YH*rrAsRHi^ZaLLluV5+k85q1W)h;%#c+bpe6ldithAI2*Cpk~keRfe6@5 zMFZm`w7FrM9339&A2zjj)anc2C`t1bi4zNV$MrO&oDyM~ao$Sfkp?=}%A>=FPbC2sMWtDqr4e$ynP zkT`8H87Ms%Y|i7;Pu@z&5ja)~SA1vo(r#66O%8m&7J~8cDR}q`+VBcu{K0#WpmlNc z8r;NDbN%)6N8^S!uQ0r+agqObm!5&89Mf{sA&X*JfcI!=7`-hl4$vOZ+X+nna-~LP zx3^w=KECw7TvusRo7Wk|2rtNv-OkjFn||p`+wc7Y>2%trGfkQgP3slodK_7-K$6&zN1~06}Y!YU(0AYdIgal#{ixHbZLIQ+9LJQLS-mTAbiEF1H&!t49^eVaG&T^0NnL#13X|pJ*S6s}^T%ZOau}ZKvPdw8&Wat=IrryXW)E>!3^5UJUT}!b zDwIJjw9@FSPUkL;fGXD=lxY-RQ-iD*SVf>$MY;)qyGi761^7g*>jUYQaMUl7S?NDA z^k!RU@f-+h>duKW8S3)6Ip7)iochZBl;~IZ90)E}Y;}*3#kQQ{LD*soCO7bH^5oq| zKE|Ek)BXntb}=XXp3pK++hQ!>TTwVdV&jE;P;Nsw@eYqn`Ig6_BtZ#mbpe2p$HUOO ziR=WBxi6k5{pya}$ZX;jzoDP+CkpgLg7F4g9y-z+nB+TEamz;J==*N~C`9|9W^m{?Zh z_J&ShEWS3;r7!@xA`;^&$|c%tL!kT=0u5IniBp>q>271B|3Qc_2TtJEW?V%e6XJ$> zO2_JeJr|*8_>hD38NvliY@xzyUFAI4UL9pp*+81NvgzSyy;sBvtPCJO#_kS&3%8c5 z?X|0&AtF^4$`0nIFtZwmfdcX!-r+Ef&N~8rAi$_)m97BpWKSOyL8$e;688ykvsyOk z1>n6kAiYXISAppJrDK4B~6V2uAly;7*9Ucg+&jcNt zB(<#vfIG&!Y82so?0pqDl86MJFSf8~%PPxbmZjJ6J_+;z&SU}ZGEtO7{PYq6|O z%9eBuQ!&)J*f;?pq_W<^kn)LhD#U1_B@D3v%MwsX;KMkHa1x9K=S=2qQ&&@iL0^)7 zH$D66*B8#efAY|w)FbUQovk_na^#tS=wfOYki; za>wj1=%!$xcGB3SZQiNG0)(yknTU)nPfg<7L_j4vxd`i5N%s(>t9FoJv>*GHz^FQ| zuR;vU4E$Km0Y51KU{)j>@6926Z+?U`O?XWqaVb`l)^#id{zD}ioOeC%@9u4Fe^g!g zAU`iRJMHi1PyY4H$veP_KX!j~{Mh@aKRbIRC;fU+c4m>mP-!r>j!aD0-H|wrqrGF2 zqYGYXQVh4Xeki2IjhMcKKw^P{qeZI*r8d(pE~%ZBaeAkRL%`oBj^ZA+;$H@j$QKn6 zdpjdSHP-3kEU|fjV#rq@~-KF(Yw;Mkcc28XfMlSi4&rbuFtP?JgdD@9?3$`wr|&J$&qgGylANB|Y;_ zR!(VM-Lq$1R*TKynDGS_$i{ck6G@tawkGI{2&dpGaN!a8ss<%g!ONvzAX^-`j@f51 z6V6Sw_&Ehq)sU=Z=sT^yEJO?=)RPql-qJ8zwV#M>Ebat9Gch`8b`ezQaG3&IZO2L} zlrz*EkC>rt*t5xi*l>N;FE%r4vqb^|QAi^r@ij)bf`SCJ!2Sf;Hi5;!t+L_jmvZ{(pU?g)E$zmQ+qFTsd@~AO+!5-!9pqB& zz~Zq(N)s?h<(t)2GVD!!OfxZWa8sndEZckJ+zZNJCRX(eUJ@p zz`YEg#XL@rN>Th0wr=AD|B;Y8mr*b5Y1%epe~yWtoLCoQT#9@&ENRa{a5Kd_K4|ML zzFJyUoRgK2o^k!+m*Q(I?`-8tpjp##Fe z$ycQsNBu0rq##{T^}$gBiwo4A;+2pAVy4(e)~p~>XsC4s;BPFd_l7UgX`wMzqOj5O zrAf}MEwx6*9XJkL%C9X{@`_5ZchJnSsB?09)YaeJZM9gtI+}~B%-vSA$xzqaP^&A> zx|x-B<5Joq@PZq%MndAJ#B%n`7njnj?%&NRDJs&{8J@P9y9S4515Cxr%Z8+UL6QrF zVoQmD58ryZu?5c)+auF$RrBcj3XKdsU|Us7^$bWgRKMbNE>ZTc%0Yr*fxoDEhrl(D&nyR9blDw>I*DhT6@Z_;WM;fJJ-9`1sjvW8&i+^9w z$j-T)pI`o{>ao$(X)$;49<9qCLsY1>u#{Q0uq>=rdLS4r95k*G(%NCok(=j{qotpK zIpDYcPm5^$14}Sco4lDT5ZPK%SX~1~5gSpxVW}DY0Z~ZEGdJTl_YL&)4O-heoAtW# zvWKO0Dmu5iKc%GZIdJ^wsgJILPr7|8JGUV3LCHgXt**VNXT~$P5C$nFy=o#u3z-Oa z&WH`U&*l+;ZC%I5UjQma1BcLM_5|M)$4qjzoh~_gdj>j;PxSiwGU?G+<)MSS_oVJg zN&WrXd-w0&f8gMW56^u5)#q3KlbM-)`&NEwWpz_aKV*L^lWioUft+lT1Sl7n%uj+e z7YX0EG|+kLN3)RM+wIk&TN*Knoq!D>&+s1iOVJ6q%fv3`8nIeCOi!QW-b}l8>2D{F z96XS^=MV4hKk(X~l*2c^`t(9ZUS9cwGDuo7a3Rtn7+U1MEw~V%Z76R5!32%C2u~Lp ztA!VyRAoOhnjnXmNjibA6IBKLV#0sfuJWfQ^E*reind*kUE7_`tTUZyXaAP|xNV)) z%C1+{QOE7NyKQ%EcUx(zJC0S02U-O|L?Rx55|DUsgq)B-z(7I{NWztngxqiPzVG+w z=kpEQ(diESlFXaW`+Uyld656t9udy10%#xm`x>lb?b-9!>Tfo-^qU>_3Eyh6NCX36 zFjgfBfjT22+#uwsrNYUIdVytqA!>pSr_F|9qa@~tvDq~POUpim39#k*AX`?j=dU}F zb}p`bf}aLPgU1NOqo7$Js)=9((Hk6CI3^W@sagS&Q;DoY&$=djXi2=Wwj5gY1VS?w z=Vy?gF%=;^AcA-l+lpmDgV||7)gUGSUruGVq0D^nKLtX8(K-mLg|G|I?%ilTE)4UDgAOS=~37>X7hB8NIRAi#{ zC2!lsCS4S~1%ruD!I99S3_7|Jo1%z5G7M77UvZ709e>(w13cC0v%1l!GBNH2(j!Yl zZ4ahmhJNcDqycNYJTJpDuNfjPJZcnLlY>vgx|m2G)EaPfwJRhsEq z1~;-v9htt}8&2xlh6}1IkGv!Z3#%5rf9uJ;7$x8LmMWG{Nw9QUW^9dt7>&8dg??KX zz2DMRf_G_?x}pL(_!LrnI<5M^mlR+A+penNo=YiKbmeH6Z)G$LMvo=poLJ^dq+liZ zGEIr#bSa`g;Omyn1S8YX;6Q(BT5udLbedA=m z46#+HR6v9AYryRx;C49dQh-;HtZoMSSFHv?56<_H0N*5!jY@R37e0p@Oc5wz7K}ow z$KlMe@UTi{GB<`@9fcxnV9NsoCh2Yt?HgUaqk9ww(vBE_cB2ar)omupCs$gXA+TmV* zHkc)VfCqvH#>64oH1Ayu7d-*AIlh#;R0cmjtgg(^kQD~0G#N+mjyf0tModQQIipGe zd&b?}ng#5EQNV6X0Cuyf>-ZS3;L}W3QN9YmTx~ zK>%)y*|OBrk?#&G(a5~Ltoc`XWzJR4y zY#7bU5=64sF_wfUw^B0rFve&m23IgQMEVvni(HH%VS$u|TZvbD8=D@_&!!^X-q7Q$ zGBG>30%;IjK0G*Bg6&KpMD}~)PP5BlHd{xm7RN9;l!1Y+_NE)!%R{vJy90$;RS~bg z1S+qJGv6Z2(&kcg1j59c;+R0DDIEYImG;YpC0}Sc3bUlm1&e7&iL-4|iLH1G&IJ|) zd&!o(D|UO5U{>aZ{&lCOq zo*_fWt*aN#*Z-~d+gECd|C}`LIk@N0v3;K$IsVlb-~Ow){zmid_AbMVPRodC#PKSS z%4S!!pb_3oNY%xVUn_Y&1Y5n?{R~-XdQ8ljafTpuEkQxI&|E-?FHO#8BP)<LVmAnGy?|W{e?e%e)!PgV~1)!+IRH$iBrc<{P_=`etGKR#j6c>9(ME& z4D^qTxnC*3*YB#rJ5ekdN*=tVOc)&a*9x72gx*}173C6WCk?o8R4Y#v{G3m$!&c72 z*wqPCM>|~*{ zj;|?HVLkISFB0)?w!!m9$U+4tLBM?uJ+zI4qGjQBQ5W#w{Ws-RL?g`gYPlrCgC#-WIqp0bu6m_#Ob z#<1ox`ez1fAP%zeT{3(&1ezq4BQpg`S7Bq4q2wac z0f&1^pb9t|EUTMPxo{EUBU__(CbV4@E1aZ&_ZQiMe`adhW!1NIcRXy@HPqj{bm8-p zr~U+4?y0HSz3YP=yN=952}13yy@St(2Kp^OTnvVD@l+OVBG^LEHP}VbO*Je0Cyt4V zgF^)-4K{pKNIT3Mu;2k|fxN>HP-VhB(6He8c|5%t=7#SJ?odKS=pZ#{rb#bu+mBZl zNInLaOwkXlPGiHhR}8Yw zeTKGTJ3D-M=kGuL?62QkxODw)OQWt+-#28okDGk)R5}VAP=&r1Oce-YDon2f+D6$M z@VBs+HqaqfkJuMD@8j#?mj!1;m@y5qK!xaid7H2iR8!ur3S1c`tO%8tQ2=t#hH@gA zl&Md zUA}t#PFrWsfGGiIn=KrN;GFzG5eile9!h^oH@gO|o_ z+RpT2r~jqj`mKq_Hn?7hn{g&HZaSV!o6e+@rKw|&GmUNPCD<5)!DP&41GYfeW)(6B zu?dg_LP!FE_U+#LF1P1-C7g`=K_FdSz4tlKa-MUzCW|hOQwbv|b-GT#a*?c?ht9NO z6CgIdG$<|RuY?loT(pVQ2;+-(p6mBAT>u+J_^=2B@rw+5-xMNdE>{BOY9A!`)g@v%l=iD({`t${Z7O6&(Htm z(+ekR{(S2A!J|h`o_PP87xAT2M zZa4~Q$p@pF@=y$-0}yl?8==@kS4S7{3L(+_0}0TkI-R(YRzlG1#6G945UM)f-KXh% zw`<@t z>J0-Qi>@eXhLI-V<+@NUtx{Svrc_L`$iYJWTvFnQBCIOt(mJ4RcMW1SY#ZEw=4dLC zr&ZFt(NSqcXQ9k;oQl}cbXnAb)v+YLp_E|lFe^O>27%(5jvsK9G6X3sjK#Z^Y2rK+rj zh)1x!oN2m&X%beo@QX#KL|dpbe%!ldVl{9&ic1#NA*W2SpK9fH36t4VDlTHjFAx)I zgrM+HCR9)rN_9z6qiH%Adq9U{pr}|a<<26w3YLmN^`N3+U9mleWEP6ZsuE-t2Zxy| ztWkWLpF_&`%FMFsc|cz_4@PYyg?clvbj|5EV^W31IpwsC2qLt|KBfI|q;+ZawY0|c> zG&l*U0l5StW*~%k$KV3bxIIsrx@Oay#`c#gHr(ZFMwZ6hSW|%k)a`bW_+KNjlm>}G zL{J$eFE>Jiff$mha!*+!+kkBDma$T}B7#qOF^pwWe~)6s5oJZ9#DtAq4>MXlptEiJ z-5W6$#aDnVSv$OjsqU^^gGw+wH~A8r(f9*H&W7?1t?RoRJsUtR0*K#xbCHrf?S(je z(9!P<4mc3%?H^Ut4Lm**CTBsdn31bQN6w5+#X-1BW);`QqFfl$i#bj5Y;l@mP**H3 z*zznl=2nm^A}#A#U68Xhi=4s>1I+_>7!&*Qk8jLJqqu9Ik2QB4J(?q{Yd$v)}rLt~`BT0`Ovc;{I31<%b2=3FRX z2kjS6)-&-5F4ktLDWEI2`ZWb%m*H;_LoOg1bSoC+)WamOm$A74%|OFE3`pj0&il;+ zBHgzm`O-LgGcvEo&4gn9D*h@UW+p{`&1FzmiCUVXcrI&JI3770Vt7b3@441$v$uzd zSt2Mv{Tga=0Ib8LV>%I;AHI^8WM0YC1SM}W))z2YsSz~OA%jM$FBf_hl45R+Cf~Z` z5N`me;Oth=5DGx7InEV;$1YrWE7*&1ur1J~1JZZDSJNGSWO&=h2*IJk@JvDS$$)T8 zI2`NqjQpcGY2aKCQr0}Ig%&#$BbcmzT{rTn=THt6h0B}}u)ceK>1=#5x^Tar2|@s6 zF%;ve&fG+haWiV;K)@mq#y#T;NldffFKH=@VFa{GO+^T0e6160P;T;}QJhUo7&Oar zPd9OYm1NyPE;rh<5-|4jm(JDI!b}vIi7&^@B$S}n<(tcLXMjyV8_jQfb%Mb@2!pfV z=B#H?D&|DKg^?RxCJ!1lE#4+!R)_lIYl0OJRm1WMG)+&7VM}b?onc*R2&@GR!n$dl ztzVYn9Rutyc_vTV3!+ktPv&u;$(8;42@qj-Dj;Ggh&owxxo(zuIzdkm*Rc*zz{o_g z8rq{!V$*oJwdvDiZiPd*-7FYk&JCW66?k;4Ks(%8=OG+2_1^-CVZwpsGGt>V9R5CF zi-DMwV~RDxbRHI?P9A;na86&h>uEMSt`Uyk47nK7;v0#uH@G-H@~qoF)YI0~SpVI% z%U3R1>%W{WN$XNi$@^Q=VIkGRF{@1WBrU{hSK9>YVzED$m@Eduns6D(iTiOVx?hOw zIMaq=D?v6sH#+Id&Spp4J1Oj8)2POJSn%`kHlJFNbmWdRk;A|9X;mV}b8u?Pi@`Va zotAMOLdmi1eAVNNtuKtd7_|@C+HTxz zxOJ=9(9GY8%-NcgfBgNCnm-&ldHU=p7ykOy#V@a2|Gu&L?%kf2{$bnj%aH}E(<4d- zSI1)jJbV3z&DJnQ`E*NGN!}~CXO(li79yIyw}rNGO$y%CeQ(D7j49-k-Hea8M+ z700q!N5|&l@r`gwgJm!F$G zhVRXa@V%_jnFo@cF-;&lJu=HO@tLF)D=L zRoGnR+m3K%2^tmY@jI7=hy>DJU4&+294A}~0Q2v#b1-Zm`oHBcYFVfcu7`6PNwuQR z;Q5{Z(OsoMRi0NE(5h*QrW2F;!&cikolM6#R*S|p)iRlmHAX=oNKlpx3KbWMT7pXi z7gYAkj-YIc;1)Ikm3`l(A|R+BC|9_^1-x9o@7;RNcMHkv;6t1a+^+tkngP)(qLlKQXs*7{8e!O)x zF+T28RItC#k^SE}?6SAD+-9}O{O@1eeYM5f&U!}(1B&H*)}xB@h6k-r)kCxN4DBV% zf{e|9^uW1*6HFP!rA z{r-Tv+iow0ny;z{+5d#s28ISlL`Q|E-^{sJP*zph*r^}s)lE>G(j?G$i2DW1V5ki2 zO_=CaxdNvV&=4anc@@2QQ^N{+M#`uwKLHAVUtk*Wr>BZ?Hu+Smd?onr;6q}vmUKOP z)!E+F(NtZXQy61j8z z?iW;+ls7bY4H4Wrq86^qFg6Kpio&3jER0!LpNe7Upp=GG2)b4@aii$EsKI^{fb?T* zK~5Nv2Rj~jwA5FY)ZEWVyHTMPi!$tOzOu5l-LieVovqD|J$pPnJ-og@=NAwXdFlG? z?A)TFvhp?^20cT$56YejlhA4?(V2>wRc2h}bZ8o=86%zs4o0zvTu~4Nbvji2sKx+4 zK)}DWtF5Ud?{?mu)VQSBnCsXkA4l14bFtZK4NT&A@Sw+G?-OSNf`e2sJnoli@t3b; zGbp-l5Jfi4KrKc}5JrkQ=gR+{3ghVN9>bu=-^8Xkm}&S;x|qjx zc{vGj2@zodUT*t$?{apsw6Ooy$==p+wu7gie@Iw-LRv<4VbMc2hP4cUn-F9P7*L@; z0P+WD`UOa0voKC5%a{b8zDfT#y2zNUob;^X+77MewZeYNq=+zJRVz~$-VsKtOuI0- zFr|Db&xTD+;){5uVOONY(?W+d5`<4K=CgO6;CZ3&RPZ421pbD>?ta0$uTJJ13g5tU za0@1IBbjfjMFJmcSODV5gGCc;m?@I*xNcmdr$1eD@}1|>R1nzw=fydt`6;Xry!(Hn ze7j&`02dhXu6O-?(By(w*oN=}O~+8U!HuhN7^I4V48R&$B;)!2_ib%rBOQTHF-(ED zr^%Hv?!aC~AHCI527>?gZCL@g$$(KSIw)`l6rK*kzd@Hx*#w-bCs@d71ZIyJ>~xb~ zFaw79khh80o?tNpUZcV$F;B(xqKB2^)J|U66Fat#FSX|a?-o~yq=72OqY>g<07## zQwTa%+4H2#=)?h;PacN6Yk+)MVAnuW)0IgV>kEbiP$i@fg}0uFnFaRw5^YdXTt!1$ z8A3<9_la48-re{k6IV7+ILoF_VQ$!r_uF((7>){WQ;-{0z884O(i_5Jho3=dzt6QR zWhxEy>D$I&PZJiZ`0A34udwv%>CZ>m(V|4DNlAipeodq(RdnQ8AD_{|ok0ZM0>rr~ zDnULO!2ozhLDmT+CuuJ5|xG?gZxE zsro|Z!Ya=Zzh#3rR@s)6-dpJp&?&;2U`7ps20ad-L*Fi76E%qqdbus-ab{q_U|dN1 zM5k{MdwtN}K7xpvFLJ5)h`X9b^fUe9N!4y=`U z-#Hlo5H0OvqIcB!oMK0`BdUY~eVXx@LJqz-Oxy9KWE0d%mINe@Y!$kt-U^@&Od;`IoJqW>7Bu z(_E4rVxUVd9YMO8%dV-{%8wiXZW(wSPQsF7!j!s$4HEyV5MqL=vN@Z>GtNLyQmMcB zd3*DNiVg&2*n+Tm(h8_*roSd_Xej?Hz_w(7@}gZNS1+S4h6Ey@6U2PxpG^59b2TS7 z!T{Yh@GCjjkY%1rJCDhL$$kYB618Ek%XK23jMS`~!URKt&46S8$1L&tE;CyqzczCv zsjDv^Soe_LTCOd0_&kfbG|E{^Ew#>z zWA&>+4(4*NB{cael-Yr;lsWq_3B3amA0{4U7sKHsd8qAKdqZ7eRX>u?Lbg@|A^Y3| zK*-*np*GN)Kqzza+-=`p53lnf+2B11+|oR9B#r!+>?#k6@;<|`Dr%y&Gl@DT#Izj2!YLtYI%~+3ABZ9i7{3>R7H*a4ONp>eu`=WS~{PqM( z*ud&H{`H3c1=h0qCiMAr8u<|!9R$J-3#N2O`0#nwkqMjr+TjvH z?W7^~f(y%FzMzQLq-|p`9ia1Z)g8krQJfR%+#lC0$(~ zhcqTF{YS}{E2G*suSidM>)So+)?C}LXhj_guuba%K1heT$=$LwnwoZeF+faL;PCnJ zf%MQ#3^QR3*=bD7BA@odyenWnnQyczC>Ysg=U`trirmcqL=~{cZz!apUQ$ldnmMKc zev(!Vv5FTN+=pw$Zp3un_f9@#1_7#JeTBXRH6&~Hf*jBQN8J7?wxPq{oQ!CKx-imsF>{o8AJ$ts&dX74 zOx0Vcyad;vQDZ(FxehsyPdZH`ab!wg=s6$7Qp86$!r|r51e&j{m!b&nfMS8NM%UrN zUpcp_Z%1iH=mgLg`aK{RA3gyM!K24`$rRFT^cEBi=;mmcS;jI4*8OVkiE*m#_m0j{5O(-*mls{jt0HOe42Kj0XoFUP@!C${}L z1`j#{j3B_{J&QqlauqcO>y1cs7|rmTEkmOEMqrdVIL9qnE-r==2H1~Mu_3#-#awhT zpvpkou#rAAV)9eYtJUDsh&~@ue3P@%i#cT|+t?^`-5Q3d#O|!8v@u`eq9fMLe-soj)TK8ChZA>H+fYv>I0AXf>q^qm@je}GAHWyZ*bC_!-!j#R5PT&xcDL|1}MHV z?7zu45$i`d4GC_JS%A`)?xjD1SIqa+S{W+RoHXxvom_FL*zmZaL`5_Wi-VO1 zw+c?pN3F>qP@B;c+`T3$RghG-X(kX-~mk8+MO2MCHFr)fq0?Fx@>S zDc-WjFufq9GqcM9RehR=DoJXG{P^);m`eca>y!pmDCKeRnrWMi;#;ZpcUz~aY>nwnw?84L=|c_?H_xiyTn z6VxVq^^6(wWzwcoVQ6?rG$S-ySOxe%?9ldB2X=6Ly2oZ3h4}`D38kJysN|o@ zNY5pN8BW>ABtrAm^vsgm_l%VWQ+=Ohai`PiMkYqj0bS#$4v6}PQ&a>DJ1r>+L1)Sk zp)af;up-416$4N-%SQl`AEVZ|d=J!6V=BT8W{wk)R$w&^iZ0>zFt2JD(x?y_SV~kr z?EbrPdnmNA2lm1TvPKm_pZt&RDu0UlJmcVs=n&H*o&3^F`ww)czonfX(`(vH##&88 z1(6_ClbT6VHPca}6Q%K}sRxRsf;V!FTmp&;$g(KN0)j*ik#iN0!v&UQcfa57d-e0Y z3t6wu&cedJ@AEw0=lFa+51DNs9x$kpB#8kbkE+GW_d5atah1hSpZeO1YzP(AQ>LNV z>l_496H|)-0Q3joID=S(xIqSAkQ?&5`XjdjawX2sd zUmLS*RpQF%HCsOWV*8GLhmIUN{-3mrf-6@ql@^s(+3TD&&bHpCrYB(1O2Yu5kx~mS zA%}G&0zzMBP_H2_&>zl06Mx$XVLHwf%;Rgm(;scV2(o4eAG#2VO$IE0);yA&kXiGo zpjs2oiL<0waguyBnN(CBT5V8?i*A&UVn67y%1%M9%eN@;vo+~P_(NEYxH)H(uyf) z;4N`?Oo;B}vg=+L8p%oS?rx$nMAK#aMDUr|+< z6IT%nE(m)QYik)fUr;*D3!b+!ik}07pkhj@kwS~#nU-4kC=r4FvKWYH5&A%w9c4My zec=JfvA1N}5NqkibMp!jr1QcDY{KB414RM$Y6q+>H;XAFz0XWD8If${e%?VX` z{4;Cp^w2KcIr-9H{S?cs6+e+GM%No#1;T7EiYp!J(rNeSooAIru z^{h7u(uWI(iyu}GakYq5H8xNO+#8gF{w*I77ez=>cXIee*Gxssw2iYN=0k$C@4iYy zOw;KjBSp1b%)2p6gUBK*XJvrcP01d(w+a6*E((k;8=Q5{uALj@>J5xBq5rhq-+Qm^ zDNegPnZ(#C!!Pom^-ZXF3MU~`a4K^2tHcw#_8hfHmyJMLALnDKoX{lKjb{PXxzCJn zr^-=L9Y4QM>rOi_jO`-@7^#|sz@OM%1)uNt zPFl?V|H8q#_@`RN&A(TQ*>FaRxhDtVaGo2WaAsOhxVX^aJbt?krJFd&*@iY94ksug zHda4nd}eYG1m?)L*WD>ADlWKi@opeD7T9d;l#Xym$aB7liK{c$V3t11jsMq3{Z_dP{ri>`|Wi2g| z%?0H}>B&cu_Z|Fn@8>`HG(KU^#GjYt7 ziij*l%~xXoCo}-UW=@r(4Q;IbEJ`$=KX5)JB_sUQ(Al&)x%vkEEns$h=foR#H`2ajmxgmZP@QJ2T{RW6~r=te;F$Eg>Vx zbv2UnoYPRgp-9BNZU5L+NjLt?iIurwlG*@-NhBE^k`EI%5qVI4C^@CGIrK_n5Zok) z6>s`OzCVD0)+&?eibRf-mtgAx>dn9cgr3$t!9Nkgt~v(J4YwG8lyfInx^_0`m@}>K;okq(@v({iq%BOxL#h^V9)OPsV?0jShK2*o7$UJYnI8hpfJ^&`Q5+%q!=%064*DRvI3Znq7qy57vgZSCaa8Fq;_v+5c#-7T_wXGyHELJX&exB?>w|+D@(0TB%ZN zYp2u^Y#kI7ibTOwC{`SGI@(q$R*iwm8?cOU1R?f0L%3CX>e5-84@-Fx@nv;Y5{@BHU~e2FE99f$xO#O$n)>))ytg@mYE z)p%}e7*Te4Rgo#3H6g{J_u!fnjw{pws5=^0KdE!4FozHQ^>&2?@3pJ9?x;Jnp(1yy z%|Tn7nC}G04K6{x$-WdoS5fG?KMTNXkM((~3d$1pU&e3BMif$F=@@2TIvRTZ0aPrv zsJ)d|)z&KMmK=0EcSr5+W1hX*65jca3Bb8`l$;=wqnWTC&wrf6}PH=Yd1Av!>o;`-Ov{6`1+IOyIjxSxoGWi+flAWv*D7*MQ|sN+g3*w z#zR(qSFvgI7miyt)Qv*kQuxJ2*IQrVRhH~L=!peqIIgLpxz2gtQHcRZ{iiKx^bbm= zXK;4-*R~H9Mg|I?wlMK7sS}A1CyUCrAFMdEcHP2V>+?6Q&R8-(_rvt`$$yzRF>TVA z5hI6>et6_lqn=EeCJPhgqpsfJhpMnPkuKOzdgPt1_}H}@y7VPh0oQC zSxelh9||6_k8lR(b5JleOT}aa`-#O-adEBtAE>! zNSCB^5{Z=VSAKW7uK=-Flol4$i8G%RZMAe*`VRXNFM|VFu%2iT(w&v`>mv=QgvgH| z3i~<-@?me(A=+16+0&FCdM)$AGa8?-HwSfWz|%kK3Z9^zpS`;*Y<6nuFYMrVClT9oXnYN@4Wek z)TdL&jUAuz;E;j889HKg>e#1iPx)tbkZ1lrMd0E3yhg|AXsl*JY|d_rG;ggji9b(9 zX+Qgv99?ORM+N@d(yVEd-1)p?o3$e#>j=xE5PQusv|E%Z43;k7z3T8 z3S5Uk_oC()=tWaUvxq70W&M3h~?<9!l7_4e?^;CPvr}QH#EdiUk*1?Vmp7 z;xiZH_p5fjasx$+@K_xM&c``Ml)#^29vOSQd&J8wrG?at%N4otB3{C!MQ#Gom4ax8 zsF9=Axa0ra@wvsfvEMzS3_h4CW^tq)^@+Tnh36n3gg-;XN8(e8jw;!g?E;&5FQmDcU|a z+7are)fdSTz&+onLf2Sf%LL-akZDCMy{3>KG0cdx9Wz-ghUO%6Q@|xXML^w!TT$*A zam(ke;=pdU91U&>mApo{mf6%$d#)agSTe$jWz%h@1%nYY9Byhdac?x4w#KF=HXre% zZgYXw*Ywn)bq%vVwbCcU7);0Md(?+|({;G`ejR;Vk3Q5Z_`RO44My)^bjRq0(Y?*+ zrFC?tAJ852eT*N|o%A|Qr^8f3U(r!IMkg`;LmOxrjijgPUK&7m)9tW70CNY^AR3SH z0ewW(Mi-->@r2RM=t;+n-c(Mz=_Q(gx!=WgC-v7B`qGWm6XRPL-)I>sU53q9szPvdY_h7t2uR`N5 z^>be^-J@mP2_4fZ+vsKVHXb*I8Y#vwI!mW1k8A+DO~KB*PaC1XjIwD7rQz%O*stF~<5+qOmh_ZZ>3-txbpsKDjd@hf;jnwhkACT6A>66?ezjm@;$rbc7Y zm}uf2V#ftE5)3Gd4;2vvqlm^OxPzgr0gVzt7!hR?m7>7ovAyNqv-Ud=0!W;0bGeUu z|NH;v-~aO+LWv*^#%Ngm3vvTq9)e69WLAKG4lMa2@)ZvY%ZbAnP6Q-6QAgAWA{}@x zffYx{8Q33!DqKvKz{6N@AAwH2{tvM33r2tuXbgpPHE}|s1krkz{E|#VJ%u1=yCIPe zf3BgLJB<;>&x|(=!x&BO7zQ~_^5ES^l4XOkoO?e!4kygAju+^ z;BOOg8Y7{j8*kO1XCZfyWIl2;1K9~AOA(`Zl8mp}BnO!CF#5Dta&!Jy`?(=dwYVvR7 z9efQ&?QTN!?co0mYlNeJLQwxx(O1u*A10w|X5u{lptS@A%&T+J}D5F~0dW z4o?%1i{By6ACmWMBPV5>j4MVcvnG478+CSeI9eY)Y`j-jT~%38TJlYCL0)#|*^CoM zkEA9g?6$|n?A#d@5grk~bxT-i=%$Tg^YdX_J_(Q55gij7w>u&Ez`?ZiFHW4wICmi{ zr=aNa)oZ2YH!CY|*VNSBZD_dvps`UrRF5zkT39P_$Tqi=w95|MPNTg;I8{6EBpvrb zw4B2nEp2U1CvHz0b+S&?HMHB~HBF1L5sXsH^m?&Tx@4Dth;*tp>99R)X=#;?F1=`{ zt=-w)?(L*qmdo(Cn44qwR3@XGNlKYw-10X)o^BT~foWJ2U<%--N~4$C*iE|>*Knx^ z3|vt*tG(MTT_fCH(`!-_x-ChS>2CoMxNN^_;*|FyAL$l^bH=H(h{-+vZWs1&0EVt1 z*uoLr4%#&iBy93n1>R5wUJfh=B5oaOrciqdPzUI8B#w*3R^+y$RQ zbij-X0GLzwM)CO`o-g4`ld^Sk&D1J$dI4cC*#cHOsr+C_-Q!69l(Ly#Dh5!Qj|wm+ zYWs+UN%5t!Nt4NeL?MVgja5xv^BAj=XMn;Oul_e@od5Ldgm3%tN_$~+AK8#}|NpYk z9W0R1OFE2b@bAco>ErYs)3*XRp=|^aDazLTea0V3-keDl4@*wjd(i#v zcKcqE4$g-b_k|+5k1c-53aK26?R)mc)~rrQiX??#doY-dv#*zN^{`%wL)~po;oV0p zu+=}V7w0~~n6#@n}ejV*^R0tLJboi2S*g8NfTpNr_z78Vhdo7B}*SAFMpc{do< zDDFOy7;&AlmWZfrD_0n+8a+6qzQu&k*n11~;3-{?16oczBJWpW`E=K!rn&NG4iuiA zkHai4t8c2UuE+45l$U$qbb5L@O-^=Tx`{oJrA6<5xIT1Q7*7huxGI_z*%G)Va@MM( z;7q11Xk40WHT~thMfWWBFw;mZl6~i0+s)5-k0m#JmL$i(l7u8}$qjAEMI2C{(j!v9 zd9KDviUS@KCY5@WGiqUL>h^z7U(2|u)|ki6w?ROpMio?sZ&@3uIkpO^AN0N{FnWw6e0KXw~u3MapS)V6IfVHgd}f5p36t4$kf7 zxm%LIUPOyZVIb?Ce+d@kzUdXou~2U`0k?L)h_8wjPZ6tCa*thqI!i2U1}~{$+{kzIa_bT5K^d z94%1(GVYaCrCg2X4X<=#0^eW!`nPw_24!-to@VL4XWq|CEU9XOQfPfC_RL@JU#>S{ zopU|(Xvy+zN|~vXol2&h;0@j~7}$8?54mWWX?4^rpgeXn>N2~L)5*65OO27dY?j$| zgtf_v+jAH%zVWKX_`E~KVF=Hoyt{!lJWi@1vU;{|B?+_U9l##MYXd8I$m~D=7EvD0 zW$x_u;(e5Lu46nld%nA9zQtymNh%i2h@Bk(03PO;%tRAv53L|4_LtEjdP*TMhFH5y z2y5XA?V)tdsJ~E-s3{ipa#0xE25PwfZAQG6Un38iTc7t2;Q-LdIXJF=>r!yb%NXG)oJyX_&t_H%)E1?@V zd(+?`&s@xU9Hi3@qdr;2%P#iLBP$xD9|^YLwNLF%&d(g?mT6DoNinQ0m})?h>YKt( zWnqWmoFjv|n4d3l?Ox?q3*$MKS`;Nj&D2X65kJdX zs1w_CnQ6yq`>Sc2ADt%ExUer0MaKm(2`)qo(TXA%0TpF&mk6RLilAIY!4QJR1w|BD zY-HbxQPwCZ3IeiRwtK&`_Br3hscnb37x=z&-u->v=N(3~ahs5Hs$Ey8I-)FzxR_{Z z?J79_X-ME|WRtTD=%?ho59aoJKxn7-vHMjx*O>&^py}LVKr0MQi-!uV5ly_suXr;7iUa89Mmx3M9BEvWl#BF`@;W?R9`N(O% zO9hCdoWw@L?S4S&n5|bC`Vq+&p&(fXvaztF?0O{P??%}<@<3y|LZW>Fgy@F;^v#@1 zYX?{q>s3Aqw)!@$&(wxjBFD^$GS40snfrB>Z+;xN_-J$0q%k$C!BI$+oGPw{ zgL4v1YrRe~=OMYzXP0-69b4F`P=^z;FLbS01$5*<&(1GVjAOQr1Dxp-AWRLH<22!v zfyN~;(czCGCmHPN_nft_kTLLwrpkXQq8-l0b`G>c*09 zYa}h0Q`5dz=3@x{!`Vdgv1XrmqneF~>gbngo!^G^iRQJQQSh9}sSh?CJz?fo4TwVb z1&u{BR(7;2E~bEt=h5b}Nu!FOnBZfj{4n7VYA(a9-AX+j|F)lM^K1Mcl? z<3%>GriQbaV-C{Dgh$my>?zuMzRbqhkhB)^r-r)B9mx4^$mEa3kkLB1ubb zLQ&-*I0dIu&SCKVN&y&hGz~--W9+XBsV)0zvez~9 zj%2B4lFc3RUG;F(pq=sA{G(xg;6Ea_ZhQ58Yz?KUu?bq{mC&e00FEi`U=i44Lq(a9 znTiU{9o++(q8tb&S`5jjL{J+wk$#e9ApVOjYy_@Yqx;75f*k17vRF=I+VV^+ z5tk(D_wz>;t9(+9NBB1|HP61;uu_QT=lvxmZ7*sj*R^59>w6&=6DVK= zMbAOUzu3_(c35#`x0y%_vyiF`DTejG)we@so({&!e9FhU8~{j&iCpzB{#RnLI}BThpXkExXNvma z(3ka}9Li&pAv z_5S#;Taw~Z!uX{#`t~}6L)B_O#fK;XMzyPH$~ZWZU@aA+?2%MzVN*-6uwRcPz93x|)Qj?7^W>CFTJJIzO*&MX(fW^W#iQ(!JoGZ**D5- zA!7=s=1=@^aLh302(;O9x-=J3q%OpEj~S(W5Hi~2WbOHlOAW?yrewWKeDb-V&mv|m z_xCuzvJyAyVdH1ZP@8`su1+rrDNahQWvnIGdH30RLJPO~g@Qug34i%YS;O=SRfFJv zl$6YkNcQ#GO>`x_PQ#2>FNk`f(UH&@6Mt=bGtg7!xe(fOQc1B?wcwX~Mj6B8S)8X3}^_xDoHi>+>_c-$h!d}bK= zN!Ke#n7921>-iv?7e#iD={{SDQI#f!um3mg=c0S&UMWpYn^YGfhsep}vPNZ_?-MD~ z9sQ7+_XXWm%i3bMW&}ocX|-RhS+>{6V?9>TGP{`_^ea2(z<7^!{rt?wQ5M@m7Er`& zv)egF26In(IdqB?=WHpvX3p8PF7U(i@Qb`QO;HH;hIx~sV4f;ERv>>ys6r1gMvZGG zK&_^?p+Yq)AQ&7FAYRSprfG~kMI<~_05Q=u?h?o`cg z%s+D3$DxU*I9()Jqt3Hh+l|A>`7ggnR&idcpFW@efZuF(x1_57TN!L*1+*%xzu^8$^8 zX8A`35=}=3yW3kIRacjn78m4P%la79m#rq=eCZw7|U zgCn+({Ta+QQWBo8V6!2I23PEG(Mtr^rtq6n(L3gHehf^xxr--+xg;US2tV^0;cB9) zz=M!=*1VyjP{5hh!aWF-$}rwe@S*S{55-g}U<=;)&UYX@i&enDWsF!@oaW&7ee|hJ zlR{630*FWcT5u$Nu6F9<(K@UsCisb>9;6eU?_eD6*o-}$2rW}R1{Z1w>CozN&C*O5 zHR%*at&~Axvx&t#)cd@>^I>B{eQjlNe$M$H%fQcn!Id6Jlhwa#{aQr)nXi0iS>IQaY`K0bq+0LhBr_z|tu)a;yx@x8okQb|`z%jmBKT zyBYi72r5#GXQpU${Q5J+Mp;N$nJustDw2+SY1Ln&-y;<7F3Fx=M%MDBDas)Sw|QXP zr+vw{VRUuTnnOujJyz%7{#El-d4$Ln8lS~`Mr7O)w8S^tOaF{`sSOcH1Be*Qhd8QC zBgWC;SI^9JIwl-=kvNywVH;jualF;{UaF`g+sVIssyWqc8LD~Y!O*RvI+uEiK)B$ z_0z{~jdN>jDk{qg^UvpHrza*QC!IMJZ#WV6;)6a${_Yna5fO6miG=$NyN?HXkezImeg~;Hha>xYD`E>J%Hva)ZsMB#_6fOr?RKUsA6( zSGt}=BpQ$n-_tfTaz<%F9;z(Dp2ee{e*}w8Fb(q=4D$&4$=LE9XvbjB^Vcuh?>97b z)Kyhgl-#P!FT8#&D>E}KDJeEO>e~bR_lNig1qOQu289Odbl-UU>bwK|{5R=0@7{CZ z+c-l~T548$X5rPmqDv)JRWagX$~VCqqr`~xeE%+t$xaK)V4x<^=4o_dA%|OxQZ60 zT3FNv_RLdQ8A|sF>&Y9uBPW-xLjOPU0rjxp|0ssOZUUx z-d6*X1&c8RS`p7k#;4E8)&v=Iy=W428bh)ud<+Om1X;4-&{WUZ4~#zM=}G9=EqXBA zf^=rB${B<>qr*`M7poUVZePA&U4w(;{ImCT>$i1e#KfGkU`u62Za-XB=4MQhC75W< zQ2f#qK6i4Mv*lJ{0oq_iDV#rv^szc-V>FdnPwR)O_#>%2my*%Po4BbP+&$9XAxkDK zBSFMxgKom@<0C7tOw6g>r|{F-^{JR?u^7RufLjVrehMF_Cc(fW4jKa5%11Mkbufcg z%=i$;5j~pS7~eNS)2!r&kGDc2A8Y9eRsj0itb0u3dxk|bwdGL974vPdV%;}MiUJk@ z*>7EDuv#ZDo{52zkaix0YB=Mz=zugzC^Lgv&ULc+Zo&uIUvB5M%>^crLkwIBL2MNL zj*x!%$JzamAnOx$(nDa-_%1N?*S1B%Uxk%;lIH?M_p}{Sga=_|L434Rv)-N=(nvE%bk2mFNhG8MC60!*IlR zd8vEWCV=``l-yH$LRu1%=Hgx}KxBp$hAGVr<6|loUGdDAd;y!Pch+iEQK*;MH80VD zbEhLem&Lt=Ga2dkg3=88>w#NA4;^T}-!m>-2!Wrv(I<3gF`>O|@{>h6KnxH!EOd** zN8T{IO1H20(d3qDp+Ax| zj&ojFHmQ;k?oxQm0B84|-DGrJeKA!qk8uU|B>d$1^&2ywv-Gja74EA!13AIV-IOQBr%Pg1QYD)H6EC|FjuWIAkz+S6@IK{9nUrXbeAGa=4L7x$F|(+&1~LHg`fZcj5)tMKty>AhJC(;iL(*xNm59h% zl~leP?@}I@Ms_U?e~XhRsIjLd>I<0Na&zs1OzO=#>il_X;_29bYW5CDj6U)G+h?oR z#BJ9&wVzO|0TUjgQ~ica0ntYrfOov zKl3M*DrfS~jQZrkV-<`YjT}_v!A_r~CWl*z0leN%7yNr)OX2gv_-N zJ@4P?6v*VRy<JDvD#u1lq(M1k8pRn?BOf{Q7cCmz(i5Ug-dj?F`MFF(5@DXmBBcx`JDWXrw!^2)NZlH1Byx^vYD0bxAl z=flBRM%TGJ__bHei~!`m)o#|a2c9w3XM1mNciH+JjV0czzjin`D6Qyy{X!Fj*n0gc zZ0Fd@#|hG0QQxU8SV@gF_e|$Kk}nGRsh~wWa{nHCiAiIezh_jhaelD3JDp_TP&vaf z;775+@eJFrq&UyUz2(*-7vCbM95%vO8Ja25SKRi(q)n$jx@qbb#27^WnWecK&Ok(s7pt4|3key_3lF=% zgz0Ed*s?X8=1%k4gk^dhiwjQva=*zVm|yz*KwGpfJQLmESN`UE=Y(x4kAl*+B;llI zKZ_t|?WSJ|A6BV%qe7(}TqjIjW8gArXW0&JFOK%UX6 z;ecDE+4?W7fz!2mv1sP}`;bAFrPFqSyEe3@Ez?lUZ>4Z_VqTYX0C3yd1=AyQ9FDNH z%O2I}vsv=&=4YNk^y1`-!MS>wzkpt_zsz%%YE)>3^mA@!ftYR&5#PFB6Z6*7VIMU7JD{##54iJ5=P^#~1BE<% z#(Tk>BFPQzz8(owr0Q7b;)oo#laxZAOm%t|5b#PHXVn5nVwl5*emQ%hmp0?WN zbaaD56GBrtS>>orNn$L`_rdiW8B=av)?a1&y~$dl*`{|mr4V8hnM~50D~Q+X-*u-@ zexecK>cb?BaHlDHA#B&1dS{*H-%X^M`T;G`3u}%Q&C(eP2)IKEoD4B|I@cUhVPXt5 z(b;Y$Aba4=7M=TN`o-W)mKzuPZOo7_`6dI=ZRT>LAB)xXQf5MLv;?g&ESmU3Zw}qb ze|9=@z5)_sLiiTe`lh7Bj@DD)YYF$)ANgYfwodQZ6^*Wf&daa z=hZ;q9Am8^Ww0oYS;4tRPk?}US%5a#CN9rauqV|@IR`^u7n z!)s~!?(YY9={_T`E3apwyZojlGTd$8h!lI^v6Qb};m!eopMt+QlItj?LxPl%>)9TA zEo|}tA@|Xhaja{}U0SZ&fQ&Taq}KL@$M~CERyoHEQ4f9BRr}pF_5q}6CAxAtdTAYN z^>g(~Z1!~Cwr;ZSRKd!MZa=HTTPJ^wIv7 zJ}fftN2UNx{SeA6W%xsm2HZyR7u8`I!gF*YU5?_&XZipeOJNHb)Xj&m>n=GY!!W?? zeS15cE)2$f)>!58&7<-a6ies+z=c)3#6{=-)0VmV1EOw{VZ7bet5tT=#siy7o!u^C3W)UC5yTwm`q(ujFXK3+FGZ;ccotjkKo} zMoij+%``D+%9Q1CFT)%||LMJyt~$7AUV&B=5*|f=Ss$6yVS@anr6rd;cz;dxFGkZK z)dU-$z&oiVl8;qPmz${@&4t6Uhf>g5ex-}OHpv8^k1L8Y zRwx!ChAphXY(}m-Mq-`dShgv4eo2A!2?aPfA3{39lR&j!16E1r78x2CqOGG8GJ3bcw zy?Ctr0ha@YFdy=;489KH`W~DeQv6o18Z2#mgd}DJ<^U5Tq$HFIRBzt(EG>qvZL|s)FF6nRnzZ@Con6;yOXSS7<|67`pt(V2-tfNzg`ebd;9qy3@tEe@UcMn zXKfBJo=&4O5W{6@PM1q>1m!_IRB6r>rcTvb-66b5AgBUnZ9Z$Ma(!4*$SgQe059rT zHQ5efrG#jt4;YzwIaeZ}yzK3EnJQkdMMewOv?(D^^qXbCV%Qdf3--T}0a~OEp&iU% zzHKD4owmc$(qGR%m7^cIa=Pybe+uIf)5qj!sFeWH)oF6YM|x15D4Rw3p6w9hch;8e zdAR#5+{7`a?v^|C*Q+b;;_5M?;!DPJzTx8VJIhOto|@GV4ZYWf#&6ml8^1q0x5ccz z0T^%2PG;6#2oVFY3XaR;;C7{UI)UMB2k5MEZb7(NX2A6^%{(zIqX2^Pu27EUQ1ued zQqHxWE-wF|rAMs^2nq@HIth0l0?BDgTHofO{5OK^wIJh%Tj$1?NeG6Fk6-