From 53eb4676be48a2399e5e52775af66d22f8aca58a Mon Sep 17 00:00:00 2001 From: Jon Speicher Date: Sat, 27 Jul 2013 20:33:09 -0400 Subject: [PATCH] Remove old instructor notebook --- .../sw_engineering/instructor_notebook.ipynb | 1072 ----------------- 1 file changed, 1072 deletions(-) delete mode 100644 python/sw_engineering/instructor_notebook.ipynb diff --git a/python/sw_engineering/instructor_notebook.ipynb b/python/sw_engineering/instructor_notebook.ipynb deleted file mode 100644 index 06a8d89..0000000 --- a/python/sw_engineering/instructor_notebook.ipynb +++ /dev/null @@ -1,1072 +0,0 @@ -{ - "metadata": { - "name": "instructor_notebook" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Software Engineering Unit at LBL\n", - "\n", - "Goal:\n", - " \n", - "Write a utility that returns the mean number of a particular animal seen per sighting of that animal.\n", - "\n", - " def mean_animal(filename, species)\n", - " ...\n", - " return mean_animal_per_sighting" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "ls" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "README.md instructor_notebook.ipynb\r\n", - "animals.txt ipython_nose.py\r\n", - "big_animals.txt macguffin_animals.txt\r\n", - "dev_notes.md merida_animals.txt\r\n", - "dingwall_animals.txt student_notebook.ipynb\r\n", - "fergus_animals.txt\r\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "cat animals.txt" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "2011-04-22 21:06 Grizzly 36\r\n", - "2011-04-23 14:12 Elk 25\r\n", - "2011-04-23 10:24 Elk 26\r\n", - "2011-04-23 20:08 Wolverine 31\r\n", - "2011-04-23 18:46 Muskox 20\r\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def read_file(ifile):\n", - " open_file = open(ifile, 'r')\n", - " \n", - " time = []\n", - " date = []\n", - " animal = []\n", - " count = []\n", - " \n", - " for iline in open_file:\n", - " s = iline.split()\n", - " date.append(s[0])\n", - " time.append(s[1])\n", - " animal.append(s[2])\n", - " count.append(int(s[3]))\n", - " \n", - " open_file.close()\n", - " \n", - " return date, time, animal, count" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 15 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "read_file('animals.txt')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "pyout", - "prompt_number": 7, - "text": [ - "(['2011-04-22', '2011-04-23', '2011-04-23', '2011-04-23', '2011-04-23'],\n", - " ['21:06', '14:12', '10:24', '20:08', '18:46'],\n", - " ['Grizzly', 'Elk', 'Elk', 'Wolverine', 'Muskox'],\n", - " [36, 25, 26, 31, 20])" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def test_read_animals():\n", - " date, time, animal, count = read_file('animals.txt')\n", - " ref_date = ['2011-04-22', '2011-04-23', '2011-04-23', '2011-04-23', '2011-04-23']\n", - " ref_time = ['21:06', '14:12', '10:24', '20:08', '18:46']\n", - " ref_animal = ['Grizzly', 'Elk', 'Elk', 'Wolverine', 'Muskox']\n", - " ref_count = [36, 25, 26, 31, 20]\n", - " \n", - " assert date == ref_date, 'Dates do not match!'\n", - " assert time == ref_time, 'Times do not match!'\n", - " assert animal == ref_animal, 'Animals do not match!'\n", - " assert count == ref_count, 'Counts do not match!'" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 24 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "test_read_animals()" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 19 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%load_ext ipython_nose" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stderr", - "text": [ - "/Users/mrdavis/.homebrew/Cellar/python/2.7.3/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/nose/plugins/manager.py:418: UserWarning: Module argparse was already imported from /Users/mrdavis/.homebrew/Cellar/python/2.7.3/Frameworks/Python.framework/Versions/2.7/lib/python2.7/argparse.pyc, but /usr/local/lib/python2.7/site-packages is being added to sys.path\n", - " import pkg_resources\n" - ] - } - ], - "prompt_number": 20 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%nose" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_6f9af703139c456f96a60b847ccf532d = $(\"#ipython_nose_6f9af703139c456f96a60b847ccf532d\");" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_6f9af703139c456f96a60b847ccf532d.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "delete document.ipython_nose_6f9af703139c456f96a60b847ccf532d;" - ], - "output_type": "display_data" - }, - { - "html": [ - " \n", - " \n", - " \n", - " \n", - "
\n", - "
\n", - "  \n", - "
\n", - "
\n", - "  \n", - "
\n", - "
\n", - "  \n", - "
\n", - " 1/1 tests passed\n", - "
\n", - " " - ], - "output_type": "pyout", - "prompt_number": 25, - "text": [ - "1/1 tests passed\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def calc_mean(ilist):\n", - " '''\n", - " returns the mean of input list\n", - " '''\n", - " if len(ilist) == 0:\n", - " raise ValueError('Input is empty.')\n", - " \n", - " total = 0.0\n", - " for num in ilist:\n", - " total = total + num\n", - " return total/float(len(ilist))" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 30 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import nose.tools as nt" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 27 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def test_mean1():\n", - " m = calc_mean([1, 2, 3])\n", - " assert m == 2\n", - " \n", - "def test_mean2():\n", - " m = calc_mean([1])\n", - " assert m == 1\n", - "\n", - "def test_mean3():\n", - " m = calc_mean([3.4, 3.5, 3.6])\n", - " assert m == 3.5\n", - "\n", - "@nt.raises(ValueError)\n", - "def test_mean4():\n", - " m = calc_mean([])" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 28 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%nose" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_78c80018c7cf4f79834c36da78624ba0 = $(\"#ipython_nose_78c80018c7cf4f79834c36da78624ba0\");" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_78c80018c7cf4f79834c36da78624ba0.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_78c80018c7cf4f79834c36da78624ba0.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_78c80018c7cf4f79834c36da78624ba0.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_78c80018c7cf4f79834c36da78624ba0.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_78c80018c7cf4f79834c36da78624ba0.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "delete document.ipython_nose_78c80018c7cf4f79834c36da78624ba0;" - ], - "output_type": "display_data" - }, - { - "html": [ - " \n", - " \n", - " \n", - " \n", - "
\n", - "
\n", - "  \n", - "
\n", - "
\n", - "  \n", - "
\n", - "
\n", - "  \n", - "
\n", - " 5/5 tests passed\n", - "
\n", - " " - ], - "output_type": "pyout", - "prompt_number": 31, - "text": [ - "5/5 tests passed\n" - ] - } - ], - "prompt_number": 31 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def filter_animals(species, date, time, animal, count):\n", - " \"\"\"\n", - " Given a particular species, filter out the data for just that species.\n", - "\n", - " Returns four lists: date, time, animal, count.\n", - " \"\"\"\n", - " fdate = []\n", - " ftime = []\n", - " fanimal = []\n", - " fcount = []\n", - " \n", - " for d, t, a, c in zip(date, time, animal, count):\n", - " if a == species:\n", - " fdate.append(d)\n", - " ftime.append(t)\n", - " fanimal.append(a)\n", - " fcount.append(c)\n", - " \n", - " return fdate, ftime, fanimal, fcount" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 36 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "cat animals.txt" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "2011-04-22 21:06 Grizzly 36\r\n", - "2011-04-23 14:12 Elk 25\r\n", - "2011-04-23 10:24 Elk 26\r\n", - "2011-04-23 20:08 Wolverine 31\r\n", - "2011-04-23 18:46 Muskox 20\r\n" - ] - } - ], - "prompt_number": 33 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def test_filter_animals1():\n", - " date, time, animal, count = read_file('animals.txt')\n", - " fdate, ftime, fanimal, fcount = filter_animals('Elk', date, time, animal, count)\n", - " \n", - " assert fdate == ['2011-04-23', '2011-04-23']\n", - " assert ftime == ['14:12', '10:24']\n", - " assert fanimal == ['Elk', 'Elk']\n", - " assert fcount == [25, 26]" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 37 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%nose" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_d965cb31197d482394af98b11319a703 = $(\"#ipython_nose_d965cb31197d482394af98b11319a703\");" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_d965cb31197d482394af98b11319a703.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_d965cb31197d482394af98b11319a703.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_d965cb31197d482394af98b11319a703.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_d965cb31197d482394af98b11319a703.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_d965cb31197d482394af98b11319a703.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_d965cb31197d482394af98b11319a703.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "delete document.ipython_nose_d965cb31197d482394af98b11319a703;" - ], - "output_type": "display_data" - }, - { - "html": [ - " \n", - " \n", - " \n", - " \n", - "
\n", - "
\n", - "  \n", - "
\n", - "
\n", - "  \n", - "
\n", - "
\n", - "  \n", - "
\n", - " 6/6 tests passed\n", - "
\n", - " " - ], - "output_type": "pyout", - "prompt_number": 38, - "text": [ - "6/6 tests passed\n" - ] - } - ], - "prompt_number": 38 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "d, t, a, c = read_file('animals.txt')\n", - "filter_animals('Grizzly', d, t, a, c)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "pyout", - "prompt_number": 40, - "text": [ - "(['2011-04-22'], ['21:06'], ['Grizzly'], [36])" - ] - } - ], - "prompt_number": 40 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def mean_animals(filename, species):\n", - " d, t, a, c = read_file(filename)\n", - " d, t, a, c = filter_animals(species, d, t, a, c)\n", - " return calc_mean(c)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 41 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def test_mean_animals1():\n", - " m = mean_animals('animals.txt', 'Elk')\n", - " assert m == 25.5\n", - "\n", - "def test_mean_animals2():\n", - " m = mean_animals('animals.txt', 'Grizzly')\n", - " assert m == 36" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 42 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%nose" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_237eee0b04e94196a101b786319e18c1 = $(\"#ipython_nose_237eee0b04e94196a101b786319e18c1\");" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_237eee0b04e94196a101b786319e18c1.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_237eee0b04e94196a101b786319e18c1.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_237eee0b04e94196a101b786319e18c1.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_237eee0b04e94196a101b786319e18c1.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_237eee0b04e94196a101b786319e18c1.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_237eee0b04e94196a101b786319e18c1.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_237eee0b04e94196a101b786319e18c1.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "document.ipython_nose_237eee0b04e94196a101b786319e18c1.append($(\".\"));" - ], - "output_type": "display_data" - }, - { - "javascript": [ - "delete document.ipython_nose_237eee0b04e94196a101b786319e18c1;" - ], - "output_type": "display_data" - }, - { - "html": [ - " \n", - " \n", - " \n", - " \n", - "
\n", - "
\n", - "  \n", - "
\n", - "
\n", - "  \n", - "
\n", - "
\n", - "  \n", - "
\n", - " 8/8 tests passed\n", - "
\n", - " " - ], - "output_type": "pyout", - "prompt_number": 43, - "text": [ - "8/8 tests passed\n" - ] - } - ], - "prompt_number": 43 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -} \ No newline at end of file -- 2.26.2