From 3a8f753ce2299da09b0c073951a9d6be13a81f0b Mon Sep 17 00:00:00 2001 From: "W. Trevor King" <wking@drexel.edu> Date: Wed, 29 Jul 2009 09:00:41 -0400 Subject: [PATCH] Added Week 5 recitation solutions. --- .../Young_and_Freedman_12/problem24.53.tex | 35 +++++++ .../Young_and_Freedman_12/problem24.56.tex | 48 ++++++++++ .../Young_and_Freedman_12/problem24.57.tex | 95 +++++++++++++++++++ .../Young_and_Freedman_12/problem25.17.tex | 15 +++ .../Young_and_Freedman_12/problem25.24.tex | 24 +++++ .../Young_and_Freedman_12/problem25.36.tex | 84 ++++++++++++++++ .../Young_and_Freedman_12/problem25.53.tex | 53 +++++++++++ 7 files changed, 354 insertions(+) create mode 100644 latex/problems/Young_and_Freedman_12/problem24.53.tex create mode 100644 latex/problems/Young_and_Freedman_12/problem24.56.tex create mode 100644 latex/problems/Young_and_Freedman_12/problem24.57.tex create mode 100644 latex/problems/Young_and_Freedman_12/problem25.17.tex create mode 100644 latex/problems/Young_and_Freedman_12/problem25.24.tex create mode 100644 latex/problems/Young_and_Freedman_12/problem25.36.tex create mode 100644 latex/problems/Young_and_Freedman_12/problem25.53.tex diff --git a/latex/problems/Young_and_Freedman_12/problem24.53.tex b/latex/problems/Young_and_Freedman_12/problem24.53.tex new file mode 100644 index 0000000..7715ea1 --- /dev/null +++ b/latex/problems/Young_and_Freedman_12/problem24.53.tex @@ -0,0 +1,35 @@ +\begin{problem*}{24.53} +Electronic flash units for cameras contain a capacitor for storing the +energy used to produce the flash. In one such unit, the flash last +for $\frac{1}{675}\U{s}$ with an average light power output of +$2.70\E{5}\U{W}$. \Part{a} If the conversion of electrical energy to +light is 95\% efficient (the rest of the energy goes to thermal +energy), how much energy must be stored in the capacitor for one +flash? \Part{b} The capacitor has a potential difference between its +plates of $125\U{V}$ when the stored energy equals the value +calculated in \Part{a}. What is the capacitance? +\end{problem*} + +\begin{solution} +\Part{a} +The total light energy released is +\begin{equation} + U_\text{light} = P_\text{light}\cdot\Delta t \;. +\end{equation} +That is 95\% of the total energy released from the capacitor, so +\begin{align} + 0.95 U_C &= U_\text{light} \\ + U_C = \frac{U_\text{light}}{0.95} + = \frac{P_\text{light}\cdot\Delta t}{0.95} + = \frac{2.70\E{5}\cdot}{0.95\cdot675}\U{J} + = \ans{421\U{J}} \;. +\end{align} + +\Part{b} +The capacitance is given by +\begin{align} + U_C &= \frac{1}{2} C V^2 \\ + C &= \frac{2U_C}{V^2} = \frac{2\cdot421\U{J}}{(125\U{V})^2} + = \ans{53.9\U{mF}} \;. % typo in book solution, reported +\end{align} +\end{solution} diff --git a/latex/problems/Young_and_Freedman_12/problem24.56.tex b/latex/problems/Young_and_Freedman_12/problem24.56.tex new file mode 100644 index 0000000..0becb66 --- /dev/null +++ b/latex/problems/Young_and_Freedman_12/problem24.56.tex @@ -0,0 +1,48 @@ +\begin{problem*}{24.56} +In Fig.~24.9a, let $C_1=9.0\U{$\mu$F}$, $C_2=4.0\U{$\mu$F}$, and +$V_{ab}=28\U{V}$. Suppose the charged capacitors are disconnected +from the source and from each other, and then reconnected to each +other with plates of \emph{opposite} sign together. By how much does +the energy of the system decrease? +\begin{center} +\begin{verbatim} + a-----+---------+ + +|+ +|+ +Vab C1 === Q1 C2 === Q2 + -|- -|- + b-----+---------+ +\end{verbatim} +\end{center} +\end{problem*} + +\begin{solution} +The initial energy is +\begin{equation} + U_i = \frac{1}{2}(C_1+C_2)V_{ab}^2 = 5.10\U{mJ} \;. +\end{equation} + +To find the final energy, we need to find the final voltage or charge. +The initial charges are +\begin{align} + Q_1 &= C_1V_{ab} = 252\U{$\mu$C} \\ + Q_2 &= C_2V_{ab} = 112\U{$\mu$C} \;. +\end{align} +Flipping $C_2$ around gives a total charge in the top wire of +\begin{equation} + Q_f = Q_1 - Q_2 = 140\U{$\mu$C} \;. +\end{equation} +The charge in the bottom wire is $-Q_1 + Q_2 = -Q_f$, as you'd expect +since capacitors should have equal and opposite charges on either +plate. + +This yields a final energy of +\begin{equation} + U_f = \frac{Q_f^2}{2(C_1+C_2)} + = \frac{(140\U{$\mu$C})^2}{2\cdot14.0\U{$\mu$F}} + = 700\U{$\mu$J} \;, +\end{equation} +for a net decrease of +\begin{equation} + -\Delta U = U_i - U_f = \ans{4.40\U{mJ}} \;. +\end{equation} +\end{solution} diff --git a/latex/problems/Young_and_Freedman_12/problem24.57.tex b/latex/problems/Young_and_Freedman_12/problem24.57.tex new file mode 100644 index 0000000..69a0e37 --- /dev/null +++ b/latex/problems/Young_and_Freedman_12/problem24.57.tex @@ -0,0 +1,95 @@ +\begin{problem*}{24.57} +For the capacitor network show in Fig.~24.31, the potential difference +across $ab$ is $12.0\U{V}$. Find \Part{a} the total energy stored in +this network and \Part{b} the energy stored in the $4.80\U{$\mu$F}$ +capacitor. +\begin{center} +\begin{verbatim} + 6.20 11.8 + +--||--||--+ + 8.60 4.80 | | +a--||--||--+ +--b + | | + +----||----+ + 3.50 +\end{verbatim} +(all capacitances are given in $\mu$F) +\end{center} +\end{problem*} + +\begin{solution} +\Part{a} +Bundling down to a single equivalent capacitance, we see that the +$8.60$ and $4.80\U{$\mu$F}$ capacitors are in series, as are the +$6.20$ and $11.8\U{$\mu$F}$ capacitory. The circuit is thus +equivalent to +\begin{center} +\begin{verbatim} + 4.06 + +--||--+ + 3.08 | | +a--||--+ +--b + | | + +--||--+ + 3.50 +\end{verbatim} +\end{center} +where +\begin{align} + C_L &= \p({\frac{1}{8.60}+\frac{1}{4.80}})^{-1}\U{$\mu$F} = 3.08\U{$\mu$F} \\ + C_T &= \p({\frac{1}{6.20}+\frac{1}{11.8}})^{-1}\U{$\mu$F} = 4.06\U{$\mu$F}\;. +\end{align} + +Then we see that the $4.06$ and $3.50$ capacitors are in parallel, so +the circuit is equivalent to +\begin{center} +\begin{verbatim} + 3.08 7.56 +a--||----||--b +\end{verbatim} +\end{center} +where +\begin{equation} + C_R = (4.06+3.50)\U{$\mu$F} = 7.56\U{$\mu$F} \;. +\end{equation} + +These last two capacitors are themselves in series, so we can move +down to a single equivalent capacitance +\begin{equation} + C = \p({\frac{1}{3.08}+\frac{1}{7.56}})^{-1}\U{$\mu$F} = 2.19\U{$\mu$F} \;. +\end{equation} + +We use the capacitor energy equation on this effective capacitance to +find the total energy +\begin{equation} + U = \frac{1}{2}CV_{ab}^2 + = \frac{1}{2}\cdot 10.6\U{$\mu$F} \cdot (12.0\U{V})^2 + = \ans{158\U{$\mu$J}} \;. +\end{equation} + +\Part{b} +Stepping back out into our more detailed picture, we remember that +capacitors in series share the same charge (because the wire between +them remains neutral as a whole), so both the $C_L=3.08$ and +$C_R=7.65\U{$\mu$F}$ capacitors have the same charge $Q$ as the +single equivalent capacitance $C_T$. Similarly, the two series +capacitors that make up $C_L$ \emph{also} have the same charge $Q$ as +$C_L$ (which is the same $Q$ as $C_T$). Therefore, the charge on the +$4.80\U{$\mu$F}$ capacitor is \emph{the same} as the charge on $C_T$. + +Because the charge is the same on both $C_T$ and $C_{4.8}$, we'd like +to find a formula for energy that involves charge. Plugging the +capacitor formula $Q=CV$ into our usual energy formula yields +\begin{equation} + U = \frac{1}{2}CV^2 = \frac{1}{2}C\p({\frac{Q}{C}})^2 = \frac{Q^2}{2C} \;. +\end{equation} +Isolating the constant $Q$ and applying the formula to both $C_T$ and +$C_{4.8}$ yields +\begin{align} + Q^2 &= 2C_TU_T = 2C_{4.8}U_{4.8} \\ + U_{4.8} &= \frac{C_T}{C_{4.8}}U_T + = \frac{2.19\U{$\mu$F}}{4.80\U{$\mu$F}} 158\U{$\mu$J} + = \frac{2.19}{4.80} 158\U{$\mu$J} + = \ans{71.9\U{$\mu$J}} +\end{align} +\end{solution} diff --git a/latex/problems/Young_and_Freedman_12/problem25.17.tex b/latex/problems/Young_and_Freedman_12/problem25.17.tex new file mode 100644 index 0000000..28a930b --- /dev/null +++ b/latex/problems/Young_and_Freedman_12/problem25.17.tex @@ -0,0 +1,15 @@ +\begin{problem*}{25.17} +In household wiring, copper wire $2.05\U{mm}$ in diameter is often +used. Find the resistance of a $24.0\U{m}$ length of this wire. +\end{problem*} + +\begin{solution} +We find the resistivity for copper $\rho=1.72\E{-8}\U{\Ohm$\cdot$m}$ +in Table 25.1 (page 851). The resistance is then given by +Equation~25.10 (on page 853): +\begin{equation} + R = \frac{\rho L}{A} = \frac{\rho L}{\pi r^2} + = \frac{(1.72\E{-8}\U{\Ohm$\cdot$m})\cdot(24.0\U{m})}{\pi(2.05\U{mm}/2)^2} + = \ans{125\U{m\Ohm}} \;. +\end{equation} +\end{solution} diff --git a/latex/problems/Young_and_Freedman_12/problem25.24.tex b/latex/problems/Young_and_Freedman_12/problem25.24.tex new file mode 100644 index 0000000..9e058ac --- /dev/null +++ b/latex/problems/Young_and_Freedman_12/problem25.24.tex @@ -0,0 +1,24 @@ +\begin{problem*}{25.24} +You apply a potential difference of $4.50\U{V}$ between the ends of a +wire that is $2.50\U{m}$ in length and $0.654\U{mm}$ in radius. The +resulting current through the wire is $17.6\U{A}$. What is the +resistivity of the wire? +\end{problem*} + +\begin{solution} +Juggling the resistivity/resistance relationship (Equation~25.10) +\begin{equation} + R = \frac{\rho L}{A} +\end{equation} +and Ohm's law (Equation~25.11) +\begin{equation} + V = IR \;, +\end{equation} +we get +\begin{equation} + \rho = \frac{AR}{L} = \frac{AV}{LI} = \frac{\pi r^2 V}{LI} + = \frac{\pi(0.654\U{mm})^2\cdot(4.50\U{V})}{(2.50\U{m})\cdot(17.6\U{A})} + = \ans{1.37\E{-7}\U{\Ohm$\cdot$m}} \;. +\end{equation} +This puts the resistivity between that of tungsten and steel in Table~25.1. +\end{solution} diff --git a/latex/problems/Young_and_Freedman_12/problem25.36.tex b/latex/problems/Young_and_Freedman_12/problem25.36.tex new file mode 100644 index 0000000..ba63780 --- /dev/null +++ b/latex/problems/Young_and_Freedman_12/problem25.36.tex @@ -0,0 +1,84 @@ +\begin{problem*}{25.36} +The circuit shown in Fig.~25.37 contains two batteries, each with an +emf and an internal resistance, and two resistors. Find \Part{a} the +current in the circuit (magnitude \emph{and} direction); \Part{b} the +terminal voltage $V_{ab}$ of the $16.0\U{V}$ battery.; \Part{c} the +potential difference $V_{ac}$ of point $a$ with respect to point +$c$. \Part{d} Using Fig.~25.21 as a model, graph the potential rises +and drops in this circuit. +\begin{center} +\begin{verbatim} + 1.6 16.0 + +---a---/\/\/---|i---b---+ + | | + 5.0 Z Z 9.0 + Z Z + | 1.4 8.0 | + +-------/\/\/---|i---c---+ +\end{verbatim} +Resistances (\verb+ZZ+ and \verb+/\/\/+) are in \Ohm. Battery +(\verb+|i+) voltages are in volts. +\end{center} +\end{problem*} + +\begin{solution} +\Part{a} +We're going to use Kirchoff's loop rule: the sum of voltage changes +around a loop is $0$. +\begin{equation} + \sum_\text{loop} \Delta V = 0 +\end{equation} +The book doesn't name this rule until Chapter~26 (see Equation~26.6 on +page~887), but we've been using since the capacitor chapter (see +page~821 ``Capacitors in Parallel''), and this resistance chapter (see +page~862, ``Potential changes around a circuit''). I think it's best +to just get the name out in the open :p. + +Anyhow lets travel the loop along the path $a\rightarrow b\rightarrow +c\rightarrow d\rightarrow a$, adding up voltage changes as we go. By +Kirchoff's loop rule, the total voltage change must be $0$. We'll +need to pick a direction for the current $I$ to be flowing as well, so +we know whether the potential increases or decreases going across +resistors. Let's pick the same direction (clockwise) as the path +we're taking. The total voltage change is then +\begin{equation} + 0 = -1.6\U{\Ohm}I-16.0\U{V}-9.0\U{\Ohm}I+8.0\U{V}-1.4\U{\Ohm}I-5.0\U{\Ohm}I +\end{equation} +where we used Ohm's law $V=IR$ to find the voltage change across each +resistor, and gave it a negative sign (drop) because we were traveling +\emph{in the same direction} as $I$. Now it's just algebra: +\begin{align} + 0 &= -(1.6+9.0+1.4+5.0)\U{\Ohm}I + (-16.0+8.0)\U{V} \\ + 17.0\U{\Ohm}I &= -8.0\U{V} \\ + I &= \ans{-470\U{mA}} \;. +\end{align} +The $-$ sign shows us that the current actually flows in the +\emph{opposite} direction to the one we picked at the beginning, so +there is $\ans{470\U{mA}}$ of current flowing \ans{counterclockwise}. + +\Part{b} +This just an excerpt from \Part{a}. Starting from $b$ and moving +counterclockwise, +\begin{equation} + V_{ab} = 16.0\U{V} - 1.6\U{\Ohm}\cdot470\U{mA} = \ans{15.2\U{V}} +\end{equation} + +\Part{c} +Another excerpt from \Part{a}. Starting from $c$ and moving +clockwise, +\begin{equation} + V_{ac} = 8.0\U{V} + 1.4\U{\Ohm}\cdot470\U{mA} + 5.0\U{\Ohm}\cdot470\U{mA} + = 11\U{V} +\end{equation} + +\Part{d} +Setting point $V_b=0\U{V}$, we have +\begin{align} + V_b &= 0\U{V} \\ + V_{ab/2} &= 16\U{V} \\ + V_{a} &= 15.2\U{V} \\ + V_{ac/3} &= 12.9\U{V} \\ + V_{2ac/3} &= 12.2\U{V} \\ + V_{c} &= 4.2\U{V} \\ +\end{align} +\end{solution} diff --git a/latex/problems/Young_and_Freedman_12/problem25.53.tex b/latex/problems/Young_and_Freedman_12/problem25.53.tex new file mode 100644 index 0000000..83d8d8d --- /dev/null +++ b/latex/problems/Young_and_Freedman_12/problem25.53.tex @@ -0,0 +1,53 @@ +\begin{problem*}{25.53} +In the circuit in Fig.~25.39, find \Part{a} the rate of conversion of +internal (chemical) energy to electrical energy within the +battery; \Part{b} the rate of dissipation of electrical energy in the +battery; \Part{c} the rate of dissipation of the electrical enegy in +the external resistor. +\begin{center} +\begin{verbatim} + 1.0 12.0 + +---a---/\/\/---|i---d---+ + | | + | | + +---b-------/\/\/----c---+ + 5.0 +\end{verbatim} +\end{center} +\end{problem*} + +\begin{solution} +\Part{a} +First we need to find the current. Going counterclockwise around the +loop from $d$ and using only SI units +\begin{align} + 0 &= 12.0 - 1.0I - 5.0I \\ + I &= \frac{12.0}{6.0} = 2.0\U{A} +\end{align} + +Power through any element is given by $P=IV$ (Equation~25.18, +page~864), and all the electrical energy from the battery is being +created by chemical energy creating the internal $12\U{V}$ emf, so +\begin{equation} + P_\text{chem} = 2.0\U{A} \cdot 12.0 \U{V} = \ans{24.0\U{W}} \;. +\end{equation} + +\Part{b} +The battery dissipates some of this energy into heat through it's +internal resisitance +\begin{equation} + P_\text{i} = IV = I(IR) = I^2R = (2.0\U{A})^2\cdot1.0\U{\Ohm} + = \ans{4.0\U{W}} \;. +\end{equation} + +\Part{c} +Similarly to \Part{b}, the external resistor dissipates +\begin{equation} + P_\text{e} = I^2R = (2.0\U{A})^2\cdot5.0\U{\Ohm} + = \ans{20.0\U{W}} \;. +\end{equation} + +Note that all $24.0\U{W}$ of electrical power from the reaction in the +battery is being dissipated into heat by the two resistors +($4+20=24\U{W}$). +\end{solution} -- 2.26.2