From 2b7e6897bb83843024c55f87cc7724d66407d2db Mon Sep 17 00:00:00 2001 From: "W. Trevor King" Date: Fri, 1 Jun 2012 17:11:45 -0400 Subject: [PATCH] Fix B_P -> B_Q in Serway and Jewett v8's 30.61.c solution. --- latex/problems/Serway_and_Jewett_8/problem30.61.tex | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/latex/problems/Serway_and_Jewett_8/problem30.61.tex b/latex/problems/Serway_and_Jewett_8/problem30.61.tex index e760134..371e29a 100644 --- a/latex/problems/Serway_and_Jewett_8/problem30.61.tex +++ b/latex/problems/Serway_and_Jewett_8/problem30.61.tex @@ -85,14 +85,14 @@ The contribution from the $x$-aligned wire will be along $-\jhat$, while the contribution from the $y$-aligned wire will be along $\ihat$. The total magnetic field is \begin{align} - \vect{B}_P + \vect{B}_Q &= \frac{\mu_0 I_x}{2\pi r} \cdot (-\jhat) + \frac{\mu_0 I_y}{2\pi r}\ihat = \frac{\mu_0}{2\pi r}\cdot(I_y\ihat-I_x\jhat) = (2.00\ihat - 3.33\jhat)\U{$\mu$T} \\ - |\vect{B}_P| &= \sqrt{2.00^2 + (-3.33)^2}\U{$\mu$T} + |\vect{B}_Q| &= \sqrt{2.00^2 + (-3.33)^2}\U{$\mu$T} = \ans{3.89\U{$\mu$T}} \\ - \theta_P &= \arctan\p({\frac{-3.33}{2.00}}) + \theta_Q &= \arctan\p({\frac{-3.33}{2.00}}) = \ans{-59.0\dg} \;. \end{align} \end{solution} -- 2.26.2