From: W. Trevor King Date: Thu, 18 Oct 2012 20:56:40 +0000 (-0400) Subject: spectrum.py: add a simple script for plotting power spectra X-Git-Url: http://git.tremily.us/?a=commitdiff_plain;h=f48766c4317d96742801e43ae6c72ef680ede490;p=mw2txt.git spectrum.py: add a simple script for plotting power spectra Sometimes you want more frequency detail than the standard calibcant-plot.py scripts will give you. This script plots a single (not chunked and averaged) power spectrum, which increases frequency resolution at the expense of statistical significance. Example usage would be something like $ spectrum.py -f detail.png -t 'Vibration 15' -F 50000 \ calibcant/2012-10-01T16-51-15-calibcant-data.h5 /vibration/15/raw/data --- diff --git a/posts/Comparing_velocity_clamp_experiments/spectrum.py b/posts/Comparing_velocity_clamp_experiments/spectrum.py new file mode 100755 index 0000000..c9c6d47 --- /dev/null +++ b/posts/Comparing_velocity_clamp_experiments/spectrum.py @@ -0,0 +1,70 @@ +#!/usr/bin/env python2 + +"Plot vibration data with higher low-frequency resolution" + +import argparse as _argparse + +import FFT_tools as _FFT_tools +import h5py as _h5py +import numpy as _numpy +import matplotlib.pyplot as _pyplot +import calibcant.vibration_analyze as _vibration_analyze + + +def plot_spectrum(path, group='/', frequency=1, title=None, filename=None): + with _h5py.File(path) as f: + data = f[group][...] + print('loaded {} points from {}:{}'.format(data.shape, path, group)) + dt = 1./frequency + time_axis = _numpy.arange(len(data)) * dt + vib_data = data - data.mean() # give the FFT routine an easier time + freq_axis,power = _FFT_tools.unitary_power_spectrum( + vib_data, freq=frequency) + + figure = _pyplot.figure() + + time_axes = figure.add_subplot(2, 1, 1) + time_axes.autoscale(tight=True) + if title: + time_axes.set_title(title) + time_axes.set_xlabel('time (seconds)') + time_axes.set_ylabel('deflection (bits)') + time_axes.plot(time_axis, data, 'b.') + + freq_axes = figure.add_subplot(2, 1, 2) + freq_axes.autoscale(tight=True) + freq_axes.set_xscale('log') + freq_axes.set_yscale('log') + freq_axes.set_xlabel('frequency (Hz)') + freq_axes.set_ylabel('power (bits$^2$/Hz)') + freq_axes.plot(freq_axis, power, 'b.') + if filename: + figure.savefig(filename) + +def run(*args, **kwargs): + parser = _argparse.ArgumentParser(description=__doc__) + parser.add_argument( + '-F', '--frequency', type=float, + help='frequency at which the data was aquired (in Hz)') + parser.add_argument( + '-t', '--title', help='plot title') + parser.add_argument( + '-f', '--filename', + help='filename for saving the generated figure') + parser.add_argument( + 'path', help='path to HDF5 file') + parser.add_argument( + 'group', default='/', nargs='?', help='data group in the HDF5 file') + + args = parser.parse_args(*args, **kwargs) + + plot_spectrum( + path=args.path, group=args.group, frequency=args.frequency, + title=args.title, filename=args.filename) + return args.filename + + +if __name__ == '__main__': + filename = run() + if not filename: + _pyplot.show()