From: W. Trevor King Date: Tue, 28 May 2013 15:42:31 +0000 (-0400) Subject: index.html.itex: Add a calibcant calculation flow chart X-Git-Tag: thesis-v1.0~7 X-Git-Url: http://git.tremily.us/?a=commitdiff_plain;h=e2580b334af492fbe3c39700adfa27a628a00306;p=reveal.js.git index.html.itex: Add a calibcant calculation flow chart --- diff --git a/Makefile b/Makefile index 093da05..dc035c6 100644 --- a/Makefile +++ b/Makefile @@ -38,6 +38,7 @@ THUMBNAILS = \ $(DEST)/ants-fw-fh.png \ $(DEST)/cantilever.jpg \ $(DEST)/tip.jpg \ + $(DEST)/calibcant-flow-hw-fh.png \ $(DEST)/vibration-fw-fh.png \ $(DEST)/vibration-hw-fh.png \ $(DEST)/bump-fw-fh.png \ diff --git a/index.html.itex b/index.html.itex index 0ab7c76..e12c1e4 100644 --- a/index.html.itex +++ b/index.html.itex @@ -527,30 +527,27 @@ index 60741c6..e76b118 100644

Calibration: Equipartition

-

- For a damped harmonic oscillator -

- -\[ - -\kappa x_c - - \gamma \frac{\mathrm{d}\! x_c}{\mathrm{d}\! t} - + F_\text{ext}(t) - = m\frac{\mathrm{d}^2\! x}{\mathrm{d}\! t^2} \;, -\] - -

- the energy in each degree of freedom is $\frac{1}{2}k_B - T$. -

+ + + + + +
+ + +

+ The average spring energy is +

\[ \frac{1}{2} \kappa \left\langle x_c^2 \right\rangle = \frac{1}{2}k_B T \;, \] -

- where $k_B$ is Boltzmann's constant and $T$ is the - temperature. -

+

+ where $k_B$ is Boltzmann's constant and $T$ is the + temperature. +

+

Calibration: Vibration

diff --git a/media/src/asy/calibcant-flow.asy b/media/src/asy/calibcant-flow.asy new file mode 100644 index 0000000..5b5a354 --- /dev/null +++ b/media/src/asy/calibcant-flow.asy @@ -0,0 +1,32 @@ +// Flow chart for thermal cantilever calibration + +usepackage("fixltx2e"); /* for \textsuperscript */ + +import flowchart; + +block V_var = roundrectangle( + "Vibration variance $\langle V_p^2 \rangle$ (V\textsuperscript{2})", (0, 0)); + +real dx = 1.25 * (V_var.right().x - V_var.left().x); +real dy = 2 * (V_var.top().y - V_var.bottom().y); + +block sigma = roundrectangle( + "Photodiode sensitivity $\sigma_p$ (V/m)", V_var.center + (dx, 0)); +block X_var = roundrectangle( + "Vibration variance $\langle x_c^2 \rangle$ (m\textsuperscript{2})", + V_var.center + (0, dy)); +block T = roundrectangle( + "Buffer temperature $T$ (K)", X_var.center + (dx, 0)); +block kappa = roundrectangle( + "Spring constant $\kappa$ (N/m)", X_var.center + (0, dy)); + +draw(kappa.bottomright() -- T.topleft()); +draw(kappa.bottom() -- X_var.top()); +draw(X_var.bottom() -- V_var.top()); +draw(X_var.bottomright() -- sigma.topleft()); + +draw(kappa); +draw(T); +draw(X_var); +draw(sigma); +draw(V_var);