From: W. Trevor King Date: Wed, 1 May 2013 23:12:11 +0000 (-0400) Subject: apparatus/cantilever-calib.tex: Move nomenclature out of paragraph X-Git-Tag: v1.0~273 X-Git-Url: http://git.tremily.us/?a=commitdiff_plain;h=d747de689463606291669dc13b24832e472352c0;p=thesis.git apparatus/cantilever-calib.tex: Move nomenclature out of paragraph This makes it easier to read the text of the paragraph itself, which had previously ended a paragraph with a sentence (fixed now). --- diff --git a/src/apparatus/cantilever-calib.tex b/src/apparatus/cantilever-calib.tex index 2633d5c..68143b5 100644 --- a/src/apparatus/cantilever-calib.tex +++ b/src/apparatus/cantilever-calib.tex @@ -15,7 +15,14 @@ The basic idea is to use the equipartition theorem\citep{hutter93}, \end{equation} where $k_B$ is Boltzmann's constant, $T$ is the absolute temperature, and $\avg{x^2}$ denotes the expectation value of $x^2$ as measured -over a very long interval $t_T$, +over a very long interval $t_T$. Solving the equipartition theorem +for $\kappa$ yields +\begin{equation} + \kappa = \frac{k_BT}{\avg{x^2}} \;, \label{eq:equipart_k} +\end{equation} +so we need to measure (or estimate) the temperature $T$ and variance +of the cantilever position $\avg{x^2}$ in order to estimate $\kappa$. + \nomenclature{$k_B$}{Boltzmann's constant, $k_B = 1.380 65\E{-23}\U{J/K}$\cite{codata-boltzmann}} \nomenclature{$T$}{Absolute temperature (Kelvin)} @@ -23,12 +30,6 @@ over a very long interval $t_T$, \begin{equation} \avg{A} \equiv \iLimT{A} \;. \end{equation}} -Solving the equipartition theorem for $\kappa$ yields -\begin{equation} - \kappa = \frac{k_BT}{\avg{x^2}} \;, \label{eq:equipart_k} -\end{equation} -so we need to measure (or estimate) the temperature $T$ and variance -of the cantilever position $\avg{x^2}$ in order to estimate $\kappa$. To find $\avg{x^2}$, the raw photodiode voltages $V_p(t)$ are converted to distances $x(t)$ using the photodiode sensitivity