From: W. Trevor King Date: Wed, 11 Aug 2010 13:11:36 +0000 (-0400) Subject: Oops, correct my faulty interpretation of leastsq's 'diag' argument in fit.py X-Git-Url: http://git.tremily.us/?a=commitdiff_plain;h=ad1d75adfdae863cfe0c58148665a550cf7f7690;p=hooke.git Oops, correct my faulty interpretation of leastsq's 'diag' argument in fit.py --- diff --git a/hooke/util/fit.py b/hooke/util/fit.py index efea018..1360677 100644 --- a/hooke/util/fit.py +++ b/hooke/util/fit.py @@ -42,7 +42,7 @@ class ModelFitter (object): Store any extra information useful inside your overridden methods. rescale : boolean - Rescale parameters so the scale of each is 1.0. Also rescale + Rescale parameters so the guess for each is 1.0. Also rescale the data so data.std() == 1.0. Examples @@ -76,14 +76,13 @@ class ModelFitter (object): ... return [float(self._data[-1] - self._data[0])/len(self._data), ... self._data[0]] ... def guess_scale(self, params, outqueue=None): - ... slope_scale = params[0]/10. - ... if slope_scale == 0: # data is expected to be flat - ... slope_scale = float(self._data.max()-self._data.min())/len(self._data) - ... if slope_scale == 0: # data is completely flat - ... slope_scale = 1. - ... offset_scale = self._data.std()/10.0 - ... if offset_scale == 0: # data is completely flat - ... offset_scale = 1. + ... slope_scale = 0.1 + ... if params[1] == 0: + ... offset_scale = 1 + ... else: + ... offset_scale = 0.1*self._data.std()/abs(params[1]) + ... if offset_scale == 0: # data is completely flat + ... offset_scale = 1. ... return [slope_scale, offset_scale] >>> data = 20*numpy.sin(arange(1000)) + 7.*arange(1000) - 33.0 >>> m = LinearModel(data) @@ -93,7 +92,6 @@ class ModelFitter (object): >>> pprint(info) # doctest: +ELLIPSIS, +REPORT_UDIFF {'active fitted parameters': array([ 6.999..., -32.889...]), 'active parameters': array([ 6.999..., -32.889...]), - 'active scale': [0.699..., 202.071...], 'convergence flag': 2, 'covariance matrix': array([[ 1.199...e-08, -5.993...e-06], [ -5.993...e-06, 3.994...e-03]]), @@ -107,7 +105,7 @@ class ModelFitter (object): 'initial parameters': [6.992..., -33.0], 'message': 'The relative error between two consecutive iterates is at most 0.000...', 'rescaled': False, - 'scale': [0.699..., 202.071...]} + 'scale': [0.100..., 6.123...]} We round the outputs to protect the doctest against differences in machine rounding during computation. We expect the values to be close @@ -156,6 +154,33 @@ class ModelFitter (object): return [] def guess_scale(self, params, outqueue=None): + """Guess the problem length scale in each parameter dimension. + + Notes + ----- + From the :func:`scipy.optimize.leastsq` documentation, `diag` + (which we refer to as `scale`, sets `factor * || diag * x||` + as the initial step. If `x == 0`, then `factor` is used + instead (from `lmdif.f`_):: + + do 70 j = 1, n + wa3(j) = diag(j)*x(j) + 70 continue + xnorm = enorm(n,wa3) + delta = factor*xnorm + if (delta .eq. zero) delta = factor + + For most situations then, you don't need to do anything fancy. + The default scaling (if you don't set a scale) is:: + + c on the first iteration and if mode is 1, scale according + c to the norms of the columns of the initial jacobian. + + (i.e. `diag(j) = acnorm(j)`, where `acnorm(j) is the norm of the `j`th column + of the initial Jacobian). + + .. _lmdif.f: http://www.netlib.org/minpack/lmdif.f + """ return None def residual(self, params): @@ -188,18 +213,20 @@ class ModelFitter (object): initial_params = self.guess_initial_params(outqueue) if scale == None: scale = self.guess_scale(initial_params, outqueue) - assert min(scale) > 0, scale + if scale != None: + assert min(scale) > 0, scale if self._rescale == True: - self._param_scale_factors = scale - active_scale = [1.0 for s in scale] + self._param_scale_factors = initial_params + for i,s in enumerate(self._param_scale_factors): + if s == 0: + self._param_scale_factors[i] = 1.0 active_params = [p/s for p,s in zip(initial_params, self._param_scale_factors)] else: - active_scale = scale active_params = initial_params params,cov,info,mesg,ier = leastsq( func=self.residual, x0=active_params, full_output=True, - diag=active_scale, **kwargs) + diag=scale, **kwargs) if self._rescale == True: active_params = params if len(initial_params) == 1: # params is a float @@ -215,7 +242,6 @@ class ModelFitter (object): 'initial parameters': initial_params, 'active parameters': active_params, 'scale': scale, - 'active scale': active_scale, 'data scale factor': self._data_scale_factor, 'active fitted parameters': active_params, 'fitted parameters': params,