From: W. Trevor King Date: Fri, 4 Jun 2010 15:23:21 +0000 (-0400) Subject: Added explicit pickle test and fixed curve.Data pickling. X-Git-Url: http://git.tremily.us/?a=commitdiff_plain;h=7e1509d8fa1ff8f04cee628664c96bcc141edbc9;p=hooke.git Added explicit pickle test and fixed curve.Data pickling. I missunderstood how __reduce__ worked the first time. Now there's a doctest proving it works ;). --- diff --git a/hooke/curve.py b/hooke/curve.py index 1b30bfa..146acfa 100644 --- a/hooke/curve.py +++ b/hooke/curve.py @@ -60,11 +60,27 @@ class Data (numpy.ndarray): [ 20., 21.]]) >>> d.info {'columns': ['distance (m)', 'force (N)']} + + The information gets passed on to slices. + >>> row_a = d[:,0] >>> row_a Data([ 0., 10., 20.]) >>> row_a.info {'columns': ['distance (m)', 'force (N)']} + + The data-type is also pickleable, to ensure we can move it between + processes with :class:`multiprocessing.Queue`\s. + + >>> import pickle + >>> s = pickle.dumps(d) + >>> z = pickle.loads(s) + >>> z + Data([[ 0., 1.], + [ 10., 11.], + [ 20., 21.]]) + >>> z.info + {'columns': ['distance (m)', 'force (N)']} """ def __new__(subtype, shape, dtype=numpy.float, buffer=None, offset=0, strides=None, order=None, info=None): @@ -89,11 +105,29 @@ class Data (numpy.ndarray): # We do not need to return anything def __reduce__(self): - base_class_state = list(numpy.ndarray.__reduce__(self)) - own_state = (self.info,) - return (base_class_state, own_state) + """Collapse an instance for pickling. + + Returns + ------- + reconstruct : callable + Called to create the initial version of the object. + args : tuple + A tuple of arguments for `reconstruct` + state : (optional) + The state to be passed to __setstate__, if present. + iter : iterator (optional) + Yielded items will be appended to the reconstructed + object. + dict : iterator (optional) + Yielded (key,value) tuples pushed back onto the + reconstructed object. + """ + base_reduce = list(numpy.ndarray.__reduce__(self)) + # tack our stuff onto ndarray's setstate portion. + base_reduce[2] = (base_reduce[2], (self.info,)) + return tuple(base_reduce) - def __setstate__(self,state): + def __setstate__(self, state): base_class_state,own_state = state numpy.ndarray.__setstate__(self, base_class_state) self.info, = own_state