From: devicerandom Date: Wed, 25 Feb 2009 16:34:08 +0000 (+0000) Subject: (pcluster.py) fixed indentation (ok) X-Git-Tag: 0.9.0~47 X-Git-Url: http://git.tremily.us/?a=commitdiff_plain;h=784cea290cf4cb6cd987d8556e307b67b19e05ce;p=hooke.git (pcluster.py) fixed indentation (ok) --- diff --git a/pcluster.py b/pcluster.py index 272f1b4..b3de929 100644 --- a/pcluster.py +++ b/pcluster.py @@ -16,266 +16,255 @@ warnings.simplefilter('ignore',np.RankWarning) class pclusterCommands: - def do_pcluster(self,args): - - ''' - pCLUSTER - (pcluster.py) - - Automatically measures peaks and extracts informations for further clustering - - (c)Paolo Pancaldi, Massimo Sandal 2009 - ''' - #--Custom persistent length - pl_value=None - for arg in args.split(): - #look for a persistent length argument. - if 'pl=' in arg: - pl_expression=arg.split('=') - pl_value=float(pl_expression[1]) #actual value - else: - pl_value=None - - #configuration variables - min_npks = self.convfilt_config['minpeaks'] - min_deviation = self.convfilt_config['mindeviation'] - - pclust_filename=raw_input('Automeasure filename? ') - realclust_filename=raw_input('Coordinates filename? ') - - f=open(pclust_filename,'w+') - f.write('Analysis started '+time.asctime()+'\n') - f.write('----------------------------------------\n') - f.write('; Contour length (nm) ; Persistence length (nm) ; Max.Force (pN) ; Slope (N/m) ; Sigma contour (nm) ; Sigma persistence (nm)\n') - f.close() - - f=open(realclust_filename,'w+') - f.write('Analysis started '+time.asctime()+'\n') - f.write('----------------------------------------\n') - f.write('; Peak number ; Mean delta (nm) ; Median delta (nm) ; Mean force (pN) ; Median force (pN) ; First peak length (nm) ; Last peak length (nm) ; Max force (pN) ; Min force (pN) ; Max delta (nm) ; Min delta (nm)') - f.close() - # ------ FUNCTION ------ - def fit_interval_nm(start_index,plot,nm,backwards): - ''' - Calculates the number of points to fit, given a fit interval in nm - start_index: index of point - plot: plot to use - backwards: if true, finds a point backwards. - ''' - whatset=1 #FIXME: should be decidable - x_vect=plot.vectors[1][0] - - c=0 - i=start_index - start=x_vect[start_index] - maxlen=len(x_vect) - while abs(x_vect[i]-x_vect[start_index])*(10**9) < nm: - if i==0 or i==maxlen-1: #we reached boundaries of vector! - return c - if backwards: - i-=1 - else: - i+=1 - c+=1 - return c - - def plot_informations(itplot,pl_value): - ''' - OUR VARIABLES - contact_point.absolute_coords (2.4584142802103689e-007, -6.9647135616234017e-009) - peak_point.absolute_coords (3.6047748250571423e-008, -7.7142802788854212e-009) - other_fit_point.absolute_coords (4.1666139243838867e-008, -7.3759393477579707e-009) - peak_location [510, 610, 703, 810, 915, 1103] - peak_size [-1.2729111505202212e-009, -9.1632775347399312e-010, -8.1707438353929907e-010, -8.0335812578148904e-010, -8.7483955226387558e-010, -3.6269619757067322e-009] - params [2.2433999931959462e-007, 3.3230248825175678e-010] - fit_errors [6.5817195369767644e-010, 2.4415923138871498e-011] - ''' - fit_points=int(self.config['auto_fit_points']) # number of points to fit before the peak maximum <50> - - T=self.config['temperature'] #temperature of the system in kelvins. By default it is 293 K. <301.0> - cindex=self.find_contact_point() #Automatically find contact point <158, libhooke.ClickedPoint> - contact_point=self._clickize(itplot[0].vectors[1][0], itplot[0].vectors[1][1], cindex) - self.basepoints=[] - base_index_0=peak_location[-1]+fit_interval_nm(peak_location[-1], itplot[0], self.config['auto_right_baseline'],False) - self.basepoints.append(self._clickize(itplot[0].vectors[1][0],itplot[0].vectors[1][1],base_index_0)) - base_index_1=self.basepoints[0].index+fit_interval_nm(self.basepoints[0].index, itplot[0], self.config['auto_left_baseline'],False) - self.basepoints.append(self._clickize(itplot[0].vectors[1][0],itplot[0].vectors[1][1],base_index_1)) - self.basecurrent=self.current.path - boundaries=[self.basepoints[0].index, self.basepoints[1].index] - boundaries.sort() - to_average=itplot[0].vectors[1][1][boundaries[0]:boundaries[1]] #y points to average - avg=np.mean(to_average) - return fit_points, contact_point, pl_value, T, cindex, avg - - def features_peaks(itplot, peak, fit_points, contact_point, pl_value, T, cindex, avg): - ''' - calculate informations for each peak and add they in - c_lengths, p_lengths, sigma_c_lengths, sigma_p_lengths, forces, slopes - ''' - c_leng=None - p_leng=None - sigma_c_leng=None - sigma_p_leng=None - force=None - slope=None - - delta_force=10 - slope_span=int(self.config['auto_slope_span']) - - peak_point=self._clickize(itplot[0].vectors[1][0],itplot[0].vectors[1][1],peak) - other_fit_point=self._clickize(itplot[0].vectors[1][0],itplot[0].vectors[1][1],peak-fit_points) - - points=[contact_point, peak_point, other_fit_point] - - params, yfit, xfit, fit_errors = self.wlc_fit(points, itplot[0].vectors[1][0], itplot[0].vectors[1][1], pl_value, T, return_errors=True) - - #Measure forces - delta_to_measure=itplot[0].vectors[1][1][peak-delta_force:peak+delta_force] - y=min(delta_to_measure) - #Measure slopes - slope=self.linefit_between(peak-slope_span,peak)[0] - #check fitted data and, if right, add peak to the measurement - if len(params)==1: #if we did choose 1-value fit - p_leng=pl_value - c_leng=params[0]*(1.0e+9) - sigma_p_lengths=0 - sigma_c_lengths=fit_errors[0]*(1.0e+9) - force = abs(y-avg)*(1.0e+12) - else: #2-value fit - p_leng=params[1]*(1.0e+9) - #check if persistent length makes sense. otherwise, discard peak. - if p_leng>self.config['auto_min_p'] and p_leng 1: - - deltas=[] - for i in range(len(c_lengths)-1): - deltas.append(c_lengths[i+1]-c_lengths[i]) - - delta_mean=np.mean(deltas) - delta_median=np.median(deltas) - - force_mean=np.mean(forces) - force_median=np.median(forces) - - first_peak_cl=c_lengths[0] - last_peak_cl=c_lengths[-1] - - max_force=max(forces[:-1]) - min_force=min(forces) - - max_delta=max(deltas) - min_delta=min(deltas) - - print 'Coordinates' - print 'Peaks',peak_number - print 'Mean delta',delta_mean - print 'Median delta',delta_median - print 'Mean force',force_mean - print 'Median force',force_median - print 'First peak',first_peak_cl - print 'Last peak',last_peak_cl - print 'Max force',max_force - print 'Min force',min_force - print 'Max delta',max_delta - print 'Min delta',min_delta - - ''' - write clustering coordinates - ''' - - f=open(realclust_filename,'a+') - f.write(item.path+'\n') - f.write(' ; '+str(peak_number)+' ; '+str(delta_mean)+' ; '+str(delta_median)+' ; '+str(force_mean)+' ; '+str(force_median)+' ; '+str(first_peak_cl)+' ; '+str(last_peak_cl)+ ' ; '+str(max_force)+' ; ' - +str(min_force)+' ; '+str(max_delta)+' ; '+str(min_delta)+ '\n') - f.close() - else: - pass - - - \ No newline at end of file + def plot_informations(itplot,pl_value): + ''' + OUR VARIABLES + contact_point.absolute_coords (2.4584142802103689e-007, -6.9647135616234017e-009) + peak_point.absolute_coords (3.6047748250571423e-008, -7.7142802788854212e-009) + other_fit_point.absolute_coords (4.1666139243838867e-008, -7.3759393477579707e-009) + peak_location [510, 610, 703, 810, 915, 1103] + peak_size [-1.2729111505202212e-009, -9.1632775347399312e-010, -8.1707438353929907e-010, -8.0335812578148904e-010, -8.7483955226387558e-010, -3.6269619757067322e-009] + params [2.2433999931959462e-007, 3.3230248825175678e-010] + fit_errors [6.5817195369767644e-010, 2.4415923138871498e-011] + ''' + fit_points=int(self.config['auto_fit_points']) # number of points to fit before the peak maximum <50> + + T=self.config['temperature'] #temperature of the system in kelvins. By default it is 293 K. <301.0> + cindex=self.find_contact_point() #Automatically find contact point <158, libhooke.ClickedPoint> + contact_point=self._clickize(itplot[0].vectors[1][0], itplot[0].vectors[1][1], cindex) + self.basepoints=[] + base_index_0=peak_location[-1]+fit_interval_nm(peak_location[-1], itplot[0], self.config['auto_right_baseline'],False) + self.basepoints.append(self._clickize(itplot[0].vectors[1][0],itplot[0].vectors[1][1],base_index_0)) + base_index_1=self.basepoints[0].index+fit_interval_nm(self.basepoints[0].index, itplot[0], self.config['auto_left_baseline'],False) + self.basepoints.append(self._clickize(itplot[0].vectors[1][0],itplot[0].vectors[1][1],base_index_1)) + self.basecurrent=self.current.path + boundaries=[self.basepoints[0].index, self.basepoints[1].index] + boundaries.sort() + to_average=itplot[0].vectors[1][1][boundaries[0]:boundaries[1]] #y points to average + avg=np.mean(to_average) + return fit_points, contact_point, pl_value, T, cindex, avg + + def features_peaks(itplot, peak, fit_points, contact_point, pl_value, T, cindex, avg): + ''' + calculate informations for each peak and add they in + c_lengths, p_lengths, sigma_c_lengths, sigma_p_lengths, forces, slopes + ''' + c_leng=None + p_leng=None + sigma_c_leng=None + sigma_p_leng=None + force=None + slope=None + + delta_force=10 + slope_span=int(self.config['auto_slope_span']) + + peak_point=self._clickize(itplot[0].vectors[1][0],itplot[0].vectors[1][1],peak) + other_fit_point=self._clickize(itplot[0].vectors[1][0],itplot[0].vectors[1][1],peak-fit_points) + + points=[contact_point, peak_point, other_fit_point] + + params, yfit, xfit, fit_errors = self.wlc_fit(points, itplot[0].vectors[1][0], itplot[0].vectors[1][1], pl_value, T, return_errors=True) + + #Measure forces + delta_to_measure=itplot[0].vectors[1][1][peak-delta_force:peak+delta_force] + y=min(delta_to_measure) + #Measure slopes + slope=self.linefit_between(peak-slope_span,peak)[0] + #check fitted data and, if right, add peak to the measurement + if len(params)==1: #if we did choose 1-value fit + p_leng=pl_value + c_leng=params[0]*(1.0e+9) + sigma_p_lengths=0 + sigma_c_lengths=fit_errors[0]*(1.0e+9) + force = abs(y-avg)*(1.0e+12) + else: #2-value fit + p_leng=params[1]*(1.0e+9) + #check if persistent length makes sense. otherwise, discard peak. + if p_leng>self.config['auto_min_p'] and p_leng 1: + deltas=[] + for i in range(len(c_lengths)-1): + deltas.append(c_lengths[i+1]-c_lengths[i]) + + delta_mean=np.mean(deltas) + delta_median=np.median(deltas) + + force_mean=np.mean(forces) + force_median=np.median(forces) + + first_peak_cl=c_lengths[0] + last_peak_cl=c_lengths[-1] + + max_force=max(forces[:-1]) + min_force=min(forces) + + max_delta=max(deltas) + min_delta=min(deltas) + + print 'Coordinates' + print 'Peaks',peak_number + print 'Mean delta',delta_mean + print 'Median delta',delta_median + print 'Mean force',force_mean + print 'Median force',force_median + print 'First peak',first_peak_cl + print 'Last peak',last_peak_cl + print 'Max force',max_force + print 'Min force',min_force + print 'Max delta',max_delta + print 'Min delta',min_delta + + ''' + write clustering coordinates + ''' + f=open(realclust_filename,'a+') + f.write(item.path+'\n') + f.write(' ; '+str(peak_number)+' ; '+str(delta_mean)+' ; '+str(delta_median)+' ; '+str(force_mean)+' ; '+str(force_median)+' ; '+str(first_peak_cl)+' ; '+str(last_peak_cl)+ ' ; '+str(max_force)+' ; ' + +str(min_force)+' ; '+str(max_delta)+' ; '+str(min_delta)+ '\n') + f.close() + else: + pass