From: W. Trevor King Date: Tue, 25 Aug 2009 06:29:00 +0000 (-0400) Subject: Added topic tags to some S&J-4 problems + minor typos X-Git-Url: http://git.tremily.us/?a=commitdiff_plain;h=6bf6d0685d7e852b12464f40aef9ccf0b3f905ff;p=course.git Added topic tags to some S&J-4 problems + minor typos --- diff --git a/latex/problems/Serway_and_Jewett_4/problem23.01.tex b/latex/problems/Serway_and_Jewett_4/problem23.01.tex index 3280163..449a496 100644 --- a/latex/problems/Serway_and_Jewett_4/problem23.01.tex +++ b/latex/problems/Serway_and_Jewett_4/problem23.01.tex @@ -1,10 +1,10 @@ -\begin{problem*}{23.1} +\begin{problem*}{23.1} % induction A flat loop of wire consisting of a single turn of cross-sectional area $A=8.00\U{cm$^2$}$ is perpendicular to a magnetic field that increases uniformly in magnitude from $B_i = 0.500\U{T}$ to $B_f = 2.50\U{T}$ in $1.00\U{s}$. What is the resulting induced current if the loop has a resistance of $R = 2.00\Omega$. -\end{problem*} % problem 23.1 +\end{problem*} \begin{solution} By Faraday's law diff --git a/latex/problems/Serway_and_Jewett_4/problem23.02.tex b/latex/problems/Serway_and_Jewett_4/problem23.02.tex index df069ac..959c80a 100644 --- a/latex/problems/Serway_and_Jewett_4/problem23.02.tex +++ b/latex/problems/Serway_and_Jewett_4/problem23.02.tex @@ -1,10 +1,10 @@ -\begin{problem*}{23.2} +\begin{problem*}{23.2} % induction An $N = 25$ turn circular coil of wire has diameter $d = 1.00\U{m}$. It is placed with it's axis along the direction of the Earth's magnetic field of $B = 50.0\U{$\mu$T}$, and then in $t = 0.200\U{s}$ it is flipped 180\dg. An average emf of what magnitude is generated in the coil? -\end{problem*} % problem 23.2 +\end{problem*} \begin{solution} The flux before the flip is diff --git a/latex/problems/Serway_and_Jewett_4/problem23.06.tex b/latex/problems/Serway_and_Jewett_4/problem23.06.tex index 6e6618a..4b12081 100644 --- a/latex/problems/Serway_and_Jewett_4/problem23.06.tex +++ b/latex/problems/Serway_and_Jewett_4/problem23.06.tex @@ -1,10 +1,10 @@ -\begin{problem*}{23.6} +\begin{problem*}{23.6} % transformers A coil of $N=15$ turns and radius $R=10.0\U{cm}$ surrounds a long solenoid of radius $r=2.00\U{cm}$ and $n=1.00\E{3}\U{turns/m}$ (Fig.~P23.6). The current in the solenoid changes as $I=(5.00\U{A})\sin(120t)$. Find the induced emf in the $15$ turn coil as a function of time. -\end{problem*} % problem 23.6 +\end{problem*} \begin{solution} Because the solenoid is long, we can pretend it is infinite, so all diff --git a/latex/problems/Serway_and_Jewett_4/problem23.07.tex b/latex/problems/Serway_and_Jewett_4/problem23.07.tex index 57fa317..5cf3b0c 100644 --- a/latex/problems/Serway_and_Jewett_4/problem23.07.tex +++ b/latex/problems/Serway_and_Jewett_4/problem23.07.tex @@ -1,11 +1,11 @@ -\begin{problem*}{23.7} +\begin{problem*}{23.7} % induction An $N=30$ turn circular coil of radius $r = 4.00\U{cm}$ and resistance $R = 1.00\Omega$ is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies with time according to $B = 0.0100t + 0.0400t^2$, where $t$ is in seconds and $B$ is in Tesla. Calculate the induced emf in the coil at $t= 5.00\U{s}$. -\end{problem*} % problem 23.7 +\end{problem*} \begin{solution} The magnetic flux through the loop is diff --git a/latex/problems/Serway_and_Jewett_4/problem23.10.tex b/latex/problems/Serway_and_Jewett_4/problem23.10.tex index 2ce4c19..4b7aead 100644 --- a/latex/problems/Serway_and_Jewett_4/problem23.10.tex +++ b/latex/problems/Serway_and_Jewett_4/problem23.10.tex @@ -1,4 +1,4 @@ -\begin{problem*}{23.10} +\begin{problem*}{23.10} % induction A piece of insulated wire is shaped into a figure eight as shown in Figure P23.10. The radius of the upper circle is $r_s = 5.00\U{cm}$ and that of the lower circle is $r_b = 9.00\U{cm}$. The wire has a @@ -7,7 +7,7 @@ A uniform magnetic field is applied perpendicular to the plane of the two circles, in the direction shown. The magnetic field is increasing at a constant rate of $dB/dt = 2.00\U{T/s}$. Find the magnitude and direction of the induced current in the wire. -\end{problem*} % problem 23.10 +\end{problem*} \begin{solution} Pick a direction for the current to be counterclockwise in the bottom diff --git a/latex/problems/Serway_and_Jewett_4/problem23.12.tex b/latex/problems/Serway_and_Jewett_4/problem23.12.tex index 7a3f495..649d182 100644 --- a/latex/problems/Serway_and_Jewett_4/problem23.12.tex +++ b/latex/problems/Serway_and_Jewett_4/problem23.12.tex @@ -1,4 +1,4 @@ -\begin{problem*}{23.12} +\begin{problem*}{23.12} % rail guns Consider the arrangement shown in Figure P23.12. Assume that $R = 6.00\Omega$, $l = 1.20\U{m}$, and a uniform $B=2.50\U{T}$ magnetic field is directed into the page. At what speed should the bar be diff --git a/latex/problems/Serway_and_Jewett_4/problem23.13.tex b/latex/problems/Serway_and_Jewett_4/problem23.13.tex index 8d9bff2..2c776a3 100644 --- a/latex/problems/Serway_and_Jewett_4/problem23.13.tex +++ b/latex/problems/Serway_and_Jewett_4/problem23.13.tex @@ -1,4 +1,4 @@ -\begin{problem*}{23.13} +\begin{problem*}{23.13} % rail guns Figure P23.12 shows a top view of a bar that can slide without friction. The resistor is $R = 6.00\Omega$, and a $B = 2.50\U{T}$ magnetic field is directed perpendicularly downward, into the paper. @@ -6,7 +6,7 @@ Let $l = 1.20\U{m}$. \Part{a} Calculate the applied force required to move the bar to the right at a constant speed $v = 2.00\U{m/s}$. \Part{b} At what rate is energy delivered to the resistor? -\end{problem*} % problem 23.13 +\end{problem*} \begin{solution} \Part{a} diff --git a/latex/problems/Serway_and_Jewett_4/problem23.22.tex b/latex/problems/Serway_and_Jewett_4/problem23.22.tex index df18844..28d9896 100644 --- a/latex/problems/Serway_and_Jewett_4/problem23.22.tex +++ b/latex/problems/Serway_and_Jewett_4/problem23.22.tex @@ -1,14 +1,14 @@ -\begin{problem*}{23.22} +\begin{problem*}{23.22} % induction A rectangular coil with resistance $R$ has $N$ turns, each of length $l$ and width $w$ as shown in Figure P23.22. The coil moves in a uniform magnetic field \vect{B} with constant velocity $v$. What are -the magnitude and direction of the total magnetic force on the coild +the magnitude and direction of the total magnetic force on the coil as it \Part{a} enters, \Part{b} moves within, and \Part{c} leaves the magnetic field. -\end{problem*} % problem 23.22 +\end{problem*} \begin{solution} \Part{a} diff --git a/latex/problems/Serway_and_Jewett_4/problem23.53.tex b/latex/problems/Serway_and_Jewett_4/problem23.53.tex index 0bc23c2..d494e12 100644 --- a/latex/problems/Serway_and_Jewett_4/problem23.53.tex +++ b/latex/problems/Serway_and_Jewett_4/problem23.53.tex @@ -1,4 +1,4 @@ -\begin{problem*}{23.53} +\begin{problem*}{23.53} % cyclotrons A particle with a mass of $m = 2.00\E{-16}\U{kg}$ and a charge of $q = 30.0\U{nC}$ starts from rest, is accelerated by a strong electric field, and is fired from a small source inside a region of uniform @@ -8,7 +8,7 @@ particle encloses a magnetic flux of $\Phi_B = 15.0\U{$\mu$Wb}$. \Part{a} Calculate the speed of the particle. \Part{b} Calculate the potential difference through which the particle accelerated inside the source. -\end{problem*} % problem 23.53 +\end{problem*} \begin{solution} \Part{a} diff --git a/latex/problems/Serway_and_Jewett_4/problem23.64.tex b/latex/problems/Serway_and_Jewett_4/problem23.64.tex index c87a321..015143f 100644 --- a/latex/problems/Serway_and_Jewett_4/problem23.64.tex +++ b/latex/problems/Serway_and_Jewett_4/problem23.64.tex @@ -1,4 +1,4 @@ -\begin{problem*}{23.64} +\begin{problem*}{23.64} % inductor energy A novel method of storing energy has been proposed. A huge, underground, superconducting coil, $d = 1.00\U{km}$ in diameter, would be fabricated. It would carry a maximum current of $I=50.0\U{kA}$ @@ -7,7 +7,7 @@ through each winding of an $N = 150$ turn Nb$_3$Sn solenoid. what would be the total energy stored? \Part{b} What would be the compressive force per meter length acting between two adjacent windings $r = 0.250\U{m}$ apart? -\end{problem*} % problem 23.64 +\end{problem*} \begin{solution} \Part{a} diff --git a/latex/problems/Serway_and_Jewett_4/problem24.07.tex b/latex/problems/Serway_and_Jewett_4/problem24.07.tex index 4112ccb..0b3e684 100644 --- a/latex/problems/Serway_and_Jewett_4/problem24.07.tex +++ b/latex/problems/Serway_and_Jewett_4/problem24.07.tex @@ -1,4 +1,4 @@ -\begin{problem*}{24.7} +\begin{problem*}{24.7} % EM waves Figure 24.3 shows a plane electromagnetic sinosoidal wave propogating in the $x$ direction. Suppose the wavelength is $50.0\U{m}$ and the electric field vibrates in the $xy$ plane with an amplitude of @@ -11,7 +11,7 @@ its magnidude in the form \begin{equation} B = B_\text{max}\cos(kx-\omega t) \end{equation} -\end{problem*} % problem 24.7 +\end{problem*} \begin{solution} \Part{a} diff --git a/latex/problems/Serway_and_Jewett_4/problem24.08.tex b/latex/problems/Serway_and_Jewett_4/problem24.08.tex index d3d54fa..4f35cc0 100644 --- a/latex/problems/Serway_and_Jewett_4/problem24.08.tex +++ b/latex/problems/Serway_and_Jewett_4/problem24.08.tex @@ -1,4 +1,4 @@ -\begin{problem*}{24.8} +\begin{problem*}{24.8} % EM waves In SI units, the electric field in an electromagnetic wave is described by \begin{equation} E_y = 100\sin(1.00\E{7}x - \omega t) @@ -6,7 +6,7 @@ In SI units, the electric field in an electromagnetic wave is described by Find \Part{a} the amplitude of the corresponding magnetic field oscillations, \Part{b} the wavelength $\lambda$, and \Part{c} the frequency $f$. -\end{problem*} % problem 24.8 +\end{problem*} \begin{solution} \Part{a} diff --git a/latex/problems/Serway_and_Jewett_4/problem24.09.tex b/latex/problems/Serway_and_Jewett_4/problem24.09.tex index bd71e29..1d62f72 100644 --- a/latex/problems/Serway_and_Jewett_4/problem24.09.tex +++ b/latex/problems/Serway_and_Jewett_4/problem24.09.tex @@ -2,7 +2,7 @@ \newcommand{\Bm}{B_\text{max}} \newcommand{\ctrig}{\cos(kx-\omega t)} \newcommand{\strig}{\sin(kx-\omega t)} -\begin{problem*}{24.9} +\begin{problem*}{24.9} % EM waves, Maxwell's equations Verify by substitution that the following equations are solutions to Equations 24.15 and 24.16 respectively: \begin{align} @@ -13,7 +13,7 @@ Equations 24.15 and 24.16 respectively: \npderiv{2}{x}{E} &= \epsilon_0\mu_0 \npderiv{2}{t}{E} \tag{24.15} \\ \npderiv{2}{x}{B} &= \epsilon_0\mu_0 \npderiv{2}{t}{B} \tag{24.16} \end{align*} -\end{problem*} % problem 24.9 +\end{problem*} \begin{solution} This is just an excercise in partial derivatives. diff --git a/latex/problems/Serway_and_Jewett_4/problem24.22.tex b/latex/problems/Serway_and_Jewett_4/problem24.22.tex index 16069e6..d0bd409 100644 --- a/latex/problems/Serway_and_Jewett_4/problem24.22.tex +++ b/latex/problems/Serway_and_Jewett_4/problem24.22.tex @@ -1,10 +1,10 @@ -\begin{problem*}{24.22} +\begin{problem*}{24.22} % power <-> EM fields An AM radio station broadcasts isotropically (equally in all directions) with an average power of $4.00\U{kW}$. A dipole recieving antenna $65.0\U{cm}$ long is at a location $4.00\U{miles}$ from the transmitter. Compute the amplitude of the emf that is induced by this signal between the ends of the recieving antenna. -\end{problem*} % problem 24.22 +\end{problem*} \begin{solution} To find the signal intensity at our antenna, we note that the power diff --git a/latex/problems/Serway_and_Jewett_4/problem24.25.tex b/latex/problems/Serway_and_Jewett_4/problem24.25.tex index dffb1c5..2455c0a 100644 --- a/latex/problems/Serway_and_Jewett_4/problem24.25.tex +++ b/latex/problems/Serway_and_Jewett_4/problem24.25.tex @@ -1,12 +1,12 @@ -\begin{problem*}{24.25} +\begin{problem*}{24.25} % Poynting vector, power <-> EM fields The filament of an incandescent lamp has a $150\U{\Ohm}$ resistance and carries a direct current of $1.00\U{A}$. The filament is $8.00\U{cm}$ long and $0.900\U{mm}$ in radius. \Part{a} Calculate -thte Poynting vector at the surface of the filament, associated with +the Poynting vector at the surface of the filament, associated with the static electric field producing the current and the curret's static magnetic field. \Part{b} Find the magnitude of the static electric and magnetic fields at the surface of the filament. -\end{problem*} % problem 24.25 +\end{problem*} \begin{solution} \Part{a} diff --git a/latex/problems/Serway_and_Jewett_4/problem27.15.tex b/latex/problems/Serway_and_Jewett_4/problem27.15.tex index 301f497..ed5d1fe 100644 --- a/latex/problems/Serway_and_Jewett_4/problem27.15.tex +++ b/latex/problems/Serway_and_Jewett_4/problem27.15.tex @@ -1,4 +1,4 @@ -\begin{problem} +\begin{problem} % thin film interference An oil film ($n = 1.5$) floats on the surface of a bowl of water. The film is illuminated by a white light placed directly above the bowl. Red light at $\lambda = 650\U{nm}$ is the most strongly reflected diff --git a/latex/problems/Serway_and_Jewett_4/problem28.04.tex b/latex/problems/Serway_and_Jewett_4/problem28.04.tex index 4010ba6..e3aa41e 100644 --- a/latex/problems/Serway_and_Jewett_4/problem28.04.tex +++ b/latex/problems/Serway_and_Jewett_4/problem28.04.tex @@ -1,10 +1,10 @@ -\begin{problem*}{28.4} +\begin{problem*}{28.4} % photon energy Calculate the energy, in electron volts, of a photon whose frequency is \Part{a} $620\U{THz}$, \Part{b} $3.10\U{GHz}$, and \Part{c} $46.0\U{MHz}$. \Part{d} Determine the corresponding wavelengths for these photons and state the classification of each on the electromagnetic spectrum. -\end{problem*} % problem 28.4 +\end{problem*} \begin{solution} \begin{center} diff --git a/latex/problems/Serway_and_Jewett_4/problem28.06.tex b/latex/problems/Serway_and_Jewett_4/problem28.06.tex index 910f1be..7e13f68 100644 --- a/latex/problems/Serway_and_Jewett_4/problem28.06.tex +++ b/latex/problems/Serway_and_Jewett_4/problem28.06.tex @@ -1,10 +1,10 @@ -\begin{problem*}{28.6} +\begin{problem*}{28.6} % photon energy The average threshold of dark-adapted (scotopic) vision is $4.00\E{-11}\U{W/m$^2$}$ at a central wavelength of $500\U{nm}$. If light having this intensity and wavelength enters the eye and the pupil is open to its maximum diameter of $8.50\U{mm}$, how many photons per second enter the eye? -\end{problem*} % problem 28.6 +\end{problem*} \begin{solution} The total power into the eye is diff --git a/latex/problems/Serway_and_Jewett_4/problem28.09.tex b/latex/problems/Serway_and_Jewett_4/problem28.09.tex index 8e98c14..7229afa 100644 --- a/latex/problems/Serway_and_Jewett_4/problem28.09.tex +++ b/latex/problems/Serway_and_Jewett_4/problem28.09.tex @@ -1,9 +1,9 @@ -\begin{problem*}{28.9} +\begin{problem*}{28.9} % photoelectric effect Molybdenum has a work function of $4.20\U{eV}$. \Part{a} Find the cutoff wavelength and cutoff frequency for the photoelectic effect. \Part{b} What is the stopping potential if the incident light has a wavelength of $180\U{nm}$? -\end{problem*} % problem 28.9 +\end{problem*} \begin{solution} \Part{a} diff --git a/latex/problems/Serway_and_Jewett_4/problem28.10.tex b/latex/problems/Serway_and_Jewett_4/problem28.10.tex index 50cafdf..0398dad 100644 --- a/latex/problems/Serway_and_Jewett_4/problem28.10.tex +++ b/latex/problems/Serway_and_Jewett_4/problem28.10.tex @@ -1,9 +1,9 @@ -\begin{problem*}{28.10} +\begin{problem*}{28.10} % photoelectric effect Electrons are ejected from a metallic surface with speeds ranging up to $4.60\E{5}\U{m/s}$ when light with a wavelength of $625\U{nm}$ is used. \Part{a} What is the work function of the surface? \Part{b} What is the cutoff frequency for this surface? -\end{problem*} % problem 28.10 +\end{problem*} \begin{solution} \Part{a} diff --git a/latex/problems/Serway_and_Jewett_4/problem28.13.tex b/latex/problems/Serway_and_Jewett_4/problem28.13.tex index 8d8a431..7931135 100644 --- a/latex/problems/Serway_and_Jewett_4/problem28.13.tex +++ b/latex/problems/Serway_and_Jewett_4/problem28.13.tex @@ -1,9 +1,9 @@ -\begin{problem*}{28.13} +\begin{problem*}{28.13} % photoelectric effect An isolated copper sphere of radius $5.00\U{cm}$, initially uncharged, is illuminated by ultraviolet light of wavelength $200\U{nm}$. What charge will the photoelectric effect induce on the sphere? The work function for copper is $4.70\U{eV}$. -\end{problem*} % problem 28.13 +\end{problem*} \begin{solution} As light lands on the sphere, electrons are blasted off into oblivion. diff --git a/latex/problems/Serway_and_Jewett_4/problem28.14.tex b/latex/problems/Serway_and_Jewett_4/problem28.14.tex index bc1032d..6009fc1 100644 --- a/latex/problems/Serway_and_Jewett_4/problem28.14.tex +++ b/latex/problems/Serway_and_Jewett_4/problem28.14.tex @@ -1,6 +1,6 @@ -\begin{problem*}{28.14} +\begin{problem*}{28.14} % photon energy Calculate the energy and momentum of a photon of wavelength $700\U{nm}$. -\end{problem*} % problem 28.14 +\end{problem*} \begin{solution} You should be familiar with these equations by now (after our time diff --git a/latex/problems/Serway_and_Jewett_4/problem28.15.tex b/latex/problems/Serway_and_Jewett_4/problem28.15.tex index e033770..327c157 100644 --- a/latex/problems/Serway_and_Jewett_4/problem28.15.tex +++ b/latex/problems/Serway_and_Jewett_4/problem28.15.tex @@ -1,10 +1,10 @@ -\begin{problem*}{28.15} +\begin{problem*}{28.15} % Compton effect X-rays having an energy of $300\U{keV}$ undergo Compton scattering from a target. The scattered rays are detected at $37.0\dg$ relative to the incident rays. Find \Part{a} the Compton shift at this angle, \Part{b} the energy of the scattered x-ray, and \Part{c} the energy of the recoiling electron. -\end{problem*} % problem 28.15 +\end{problem*} \begin{solution} \Part{a} diff --git a/latex/problems/Serway_and_Jewett_4/problem28.16.tex b/latex/problems/Serway_and_Jewett_4/problem28.16.tex index 62ef19b..b504bb0 100644 --- a/latex/problems/Serway_and_Jewett_4/problem28.16.tex +++ b/latex/problems/Serway_and_Jewett_4/problem28.16.tex @@ -1,8 +1,8 @@ -\begin{problem*}{28.16} +\begin{problem*}{28.16} % Compton effect A $0.110\U{nm}$ photon collides with a stationary electron. After the collision, the electron moves forward and the photon recoils backward. Find the momentum and the kinetic energy of the electron. -\end{problem*} % problem 28.16 +\end{problem*} \begin{solution} The photon scatters by $180\dg$, so from the Compton shift equation diff --git a/latex/problems/Serway_and_Jewett_4/problem28.25.tex b/latex/problems/Serway_and_Jewett_4/problem28.25.tex index 61564d3..16b3503 100644 --- a/latex/problems/Serway_and_Jewett_4/problem28.25.tex +++ b/latex/problems/Serway_and_Jewett_4/problem28.25.tex @@ -1,9 +1,11 @@ -\begin{problem} +\begin{problem*}{28.25} % diffraction, resolution The resolving power of a microscope depends on the wavelength of light used. If one wished to ``see'' an atom, a resolution of approximately $1.00\E{-11}\U{\m}$ would be required. \Part{a} If electrons are used -(in an electron microscope), what minimum kinetic energy is required for the electrons? \Part{b} If photons are used, what minimum photon energy is needed to obtain the required resolution? -\end{problem} % Problem 28.25 +(in an electron microscope), what minimum kinetic energy is required +for the electrons? \Part{b} If photons are used, what minimum photon +energy is needed to obtain the required resolution? +\end{problem*} \begin{solution} \Part{a} diff --git a/latex/problems/Serway_and_Jewett_4/problem28.56.tex b/latex/problems/Serway_and_Jewett_4/problem28.56.tex index 32ab154..1d82488 100644 --- a/latex/problems/Serway_and_Jewett_4/problem28.56.tex +++ b/latex/problems/Serway_and_Jewett_4/problem28.56.tex @@ -1,6 +1,6 @@ -\begin{problem*}{28.56} +\begin{problem*}{28.56} % photoelectric effect Figure P28.56 shows the stopping potential versus the incident photon -frequency for the photoelectric effect for sodupm. Use the graph to +frequency for the photoelectric effect for sodium. Use the graph to find \Part{a} the work function, \Part{b} the ratio $h/e$, and \Part{c} the cutoff wavelength. The data are taken from R.A.~Millikan, \emph{Physical Review} 7:362 (1916). diff --git a/latex/problems/Serway_and_Jewett_4/problem28.57.tex b/latex/problems/Serway_and_Jewett_4/problem28.57.tex index c3f374a..4804571 100644 --- a/latex/problems/Serway_and_Jewett_4/problem28.57.tex +++ b/latex/problems/Serway_and_Jewett_4/problem28.57.tex @@ -1,4 +1,4 @@ -\begin{problem*}{28.57} +\begin{problem*}{28.57} % photoelectric effect The following table shows data obtained in a photoelectric experiment. \Part{a} Using these data, make a graph similar to Active Figure 28.9 that plots as a straight line. From the graph,