From: Hakim El Hattab Date: Tue, 13 Aug 2013 02:42:14 +0000 (-0400) Subject: updates to mathjax plugin, incl more examples #531 X-Git-Url: http://git.tremily.us/?a=commitdiff_plain;h=69f7c0c69338a966841b3ecd4bd97df00bf28dbb;p=reveal.js.git updates to mathjax plugin, incl more examples #531 --- diff --git a/examples/math.html b/examples/math.html index 49d4952..67fa546 100644 --- a/examples/math.html +++ b/examples/math.html @@ -15,7 +15,7 @@ - + @@ -32,11 +32,12 @@
-

Reveal.js Math Plugin

+

reveal.js Math Plugin

+

A thin wrapper for MathJax

-

The Lorenz Equations

+

The Lorenz Equations

\[\begin{aligned} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ @@ -45,13 +46,13 @@
-

The Cauchy-Schwarz Inequality

+

The Cauchy-Schwarz Inequality

\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
-

A Cross Product Formula

+

A Cross Product Formula

\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ @@ -61,13 +62,36 @@
-

An Identity of Ramanujan

+

The probability of getting \(k\) heads when flipping \(n\) coins is

+ + \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \] +
+ +
+

An Identity of Ramanujan

\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
+
+

A Rogers-Ramanujan Identity

+ + \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = + \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\] +
+ +
+

Maxwell’s Equations

+ + \[ \begin{aligned} + \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ + \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ + \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} + \] +
+
@@ -78,6 +102,8 @@