From: W. Trevor King Date: Fri, 24 May 2013 16:23:59 +0000 (-0400) Subject: calibcant/theory.tex: Add 'm' (mass) to nomenclature X-Git-Tag: v1.0~135 X-Git-Url: http://git.tremily.us/?a=commitdiff_plain;h=5c9ea02dc84b95889da14a2cc43f01e9c0a9f429;p=thesis.git calibcant/theory.tex: Add 'm' (mass) to nomenclature Thanks Mom! Also add back references from some DHO nomenclature entries to important equations involving the symbol in question. --- diff --git a/src/calibcant/theory.tex b/src/calibcant/theory.tex index a387935..cfd035e 100644 --- a/src/calibcant/theory.tex +++ b/src/calibcant/theory.tex @@ -20,10 +20,10 @@ where $x$ is the displacement from equilibrium\index{$x$}, During the non-contact phase of calibration, $F(t)$ comes from random thermal noise. % -\nomenclature{$\beta$}{Damped harmonic oscillator drag-acceleration - coefficient $\beta \equiv \gamma/m$} +\nomenclature{$m$}{Effective mass of a damped harmonic oscillator + (\cref{eq:DHO}).} \nomenclature{$\gamma$}{Damped harmonic oscillator drag coefficient - $F_\text{drag} = \gamma\dt{x}$} + $F_\text{drag} = \gamma\dt{x}$ (\cref{eq:DHO}).} \nomenclature{$\dt{s}$}{First derivative of the time-series $s(t)$ with respect to time. $\dt{s} = \deriv{t}{s}$} \nomenclature{$\ddt{s}$}{Second derivative of the time-series $s(t)$ @@ -211,9 +211,11 @@ where $\omega_0 \equiv \sqrt{\kappa/m}$\index{$\omega_0$} is the resonant angular frequency and $\beta \equiv \gamma / m$ is the drag-acceleration coefficient.\index{Damped harmonic oscillator}\index{$\gamma$}\index{$\kappa$}\index{$\beta$} - +% +\nomenclature{$\beta$}{Damped harmonic oscillator drag-acceleration + coefficient $\beta \equiv \gamma/m$ (\cref{eq:DHO-xmag}).} \nomenclature{$\omega_0$}{Resonant angular frequency (radians per - second)} + second, \cref{eq:DHO-xmag}).} We compute the \PSD\ by plugging \cref{eq:DHO-xmag} into \cref{eq:psd-def}