From: W. Trevor King Date: Mon, 20 May 2013 17:23:20 +0000 (-0400) Subject: sawsim/methods.tex: Add WLC and FJC params to the nomenclature X-Git-Tag: v1.0~153 X-Git-Url: http://git.tremily.us/?a=commitdiff_plain;h=555fd0bb17d5256282f049dcd62092d1696fb8d1;p=thesis.git sawsim/methods.tex: Add WLC and FJC params to the nomenclature Also the hyperbolic cotangent. Thanks Mom! --- diff --git a/src/sawsim/methods.tex b/src/sawsim/methods.tex index cd8fd9b..3ea714d 100644 --- a/src/sawsim/methods.tex +++ b/src/sawsim/methods.tex @@ -120,6 +120,10 @@ $L$ (\cref{fig:wlc}). The relationship between tension $F$ and extension (end-to-end distance) $x$ is given by Bustamante's interpolation formula\citep{marko95,bustamante94}. \nomenclature{WLC}{Wormlike chain, an entropic spring model} +\nomenclature{$p$}{Persistence length of a wormlike chain + (\cref{eq:sawsim:wlc})).} +\nomenclature{$L$}{Contour length in a polymer tension model + (\cref{eq:sawsim:wlc,eq:sawsim:fjc})} \begin{equation} F_\text{WLC}(x,p,L) = \frac{k_B T}{p} \p[{ \frac{1}{4}\p({ \frac{1}{(1-x/L)^2} - 1 }) @@ -222,9 +226,6 @@ the polymer as a series of $N$ rigid links, each of length $l$ (the Kuhn length), which are free to rotate about their joints (\cref{fig:fjc}). \index{Langevin function} -\nomenclature{FJC}{Freely-jointed chain, an entropic spring model} -\nomenclature{$\Langevin$}{The Langevin function, - $\Langevin(\alpha)\equiv\coth{\alpha}-\frac{1}{\alpha}$} \begin{equation} F_\text{FJC}(x,l,L) = \frac{k_B T}{l} \Langevin^{-1}\p({\frac{x}{L}}) \;, \label{eq:sawsim:fjc} @@ -232,6 +233,18 @@ Kuhn length), which are free to rotate about their joints where $L=Nl$ is the total length of the chain, and $\Langevin(\alpha)\equiv\coth{\alpha}-\frac{1}{\alpha}$ is the Langevin function\citep{hatfield99}. +% +\nomenclature{FJC}{Freely-jointed chain, an entropic spring model + (\cref{eq:sawsim:fjc}).} +\nomenclature{$\Langevin$}{The Langevin function, + $\Langevin(\alpha)\equiv\coth{\alpha}-\frac{1}{\alpha}$} +\nomenclature{$\coth$}{Hyperbolic cotangent, + \begin{equation} + \coth(x) = \frac{\exp{x} + \exp{-x}}{\exp{x} - \exp{-x}} \;. + \end{equation} +} +\nomenclature{$l$}{Kuhn length in the freely-jointed chain + (\cref{fig:fjc-model,eq:sawsim:fjc}).} \begin{figure} \begin{center}