From: W. Trevor King Date: Thu, 12 Apr 2012 00:49:28 +0000 (-0400) Subject: Update MetaPost to Asymptote in Serway and Jewett v4's problem 19.19. X-Git-Url: http://git.tremily.us/?a=commitdiff_plain;h=4bdb9abc6a1a83ea5d61b8a5c8e30488d448d889;p=course.git Update MetaPost to Asymptote in Serway and Jewett v4's problem 19.19. --- diff --git a/latex/problems/Serway_and_Jewett_4/problem19.19.tex b/latex/problems/Serway_and_Jewett_4/problem19.19.tex index dbccac1..b2daa7f 100644 --- a/latex/problems/Serway_and_Jewett_4/problem19.19.tex +++ b/latex/problems/Serway_and_Jewett_4/problem19.19.tex @@ -10,26 +10,33 @@ ring at \begin{solution} \begin{center} -\begin{empfile}[6] -\begin{emp}(0cm,0cm) - pair A, B, C; - numeric a; - a := 0.75cm; - A := (0,a); - B := (0,-a); - C := (1cm,0); - draw_ijhats((-1cm,a/3), 0, a/3); - draw_ring(origin, a, 0, 3cm, 1cm, red, "q", "x"); - label.bot("0", draw_ltic(origin, -90, 0, 3pt, 0pt, black)); - label.top("A", A); - label.bot("B", B); - draw A--C; label.urt(btex $d_A$ etex, (A+C)/2); - draw B--C; label.lrt(btex $d_B$ etex, (B+C)/2); - label.lrt("E", draw_Efield(origin, C, 18pt)); - label.top(btex $E_B$ etex, draw_Efield(B, C, 15pt)); - label.bot(btex $E_A$ etex, draw_Efield(A, C, 15pt)); -\end{emp} -\end{empfile} +\begin{asy} +import three; +import ElectroMag; +currentprojection = TopView; + +real u = 2cm; +Ring r = Ring(normal=(1,0,0.1), radius=u, // cheat with z component + axis_post=2u, outline=pChargePen, fill=pChargePen, axis=black, + L=Label("$q$"), + axis_label=Label("$x$", position=EndPoint, align=RightSide)); +r.draw(); +pair a = (0, u); +pair b = (0, -u); +pair c = (1.3u, 0); +Distance da = Distance(a, c, "$r_1$"); da.draw(); +Distance db = Distance(b, c, "$r_2$"); db.draw(); +Vector Ea = EField( + c, dir=degrees(c-a), L=Label("$E_1$", position=EndPoint, align=RightSide)); +Ea.draw(); +Vector Eb = EField( + c, dir=degrees(c-b), L=Label("$E_2$", position=EndPoint, align=LeftSide)); +Eb.draw(); +Vector E = Ea + Eb; +E.label = Label("$E$", position=EndPoint, align=RightSide); +E.draw(); +dot(c); +\end{asy} \end{center} From Example 19.5 (p.~616) we see the electric field along the axis @@ -38,7 +45,7 @@ From Example 19.5 (p.~616) we see the electric field along the axis E = \frac{k_e x q}{(x^2 + r^2)^{3/2}} \ihat \end{equation} -So applying this to our 4 distances (rembering to convert the +So applying this to our four distances (rembering to convert the distances to meters), we have \begin{align} E_a &= \ans{6.64\E{6}\U{N/C}\;\ihat} \\