\avg{V_p(t)^2} &= \frac{\pi \sigma_p^2 G_0}{2 m^2 \beta \omega_0^2}
= \sigma_p^2 \avg{x(t)^2} \;.
\end{align}
-The scaling parameters cannot be independently fit though, so lets
-condense the power spectrum of the right hand side of
+The scaling parameters---$G_0$ and $m$---cannot be fit independently,
+so we condense the power spectrum of the right hand side of
\cref{eq:DHO-ddt-Vp} into a single
\begin{equation}
G_1 \equiv \frac{\sigma_p^2 G_0}{m^2} \;. \label{eq:Gone-def}