if deflection is not None:
time_axes.plot(deflection, 'r.')
+ time_axes.autoscale(tight=True)
time_axes.set_title('free oscillation')
# plot histogram distribution and gaussian fit
# Matplotlib's normed histogram uses bin heights of n/(len(x)*dbin)
dbin = bins[1]-bins[0]
hist_axes.plot(bins, gauss/dbin, 'r-')
+ hist_axes.autoscale(tight=True)
if power is not None:
freq_axes.hold(True)
freq_axes.set_yscale('log')
freq_axes.plot(freq_axis, power, 'r.-')
+ freq_axes.autoscale(tight=True)
xmin,xmax = freq_axes.get_xbound()
ymin,ymax = freq_axes.get_ybound()