</section>
<section>
<h2>Calibration: Equipartition</h2>
- <p>
- For a damped harmonic oscillator
- </p>
-
-\[
- -\kappa x_c
- - \gamma \frac{\mathrm{d}\! x_c}{\mathrm{d}\! t}
- + F_\text{ext}(t)
- = m\frac{\mathrm{d}^2\! x}{\mathrm{d}\! t^2} \;,
-\]
-
- <p>
- the energy in each degree of freedom is $\frac{1}{2}k_B
- T$.
- </p>
+ <table class="center">
+ <tr>
+ <td style="vertical-align: middle;">
+ <img src="media/build/calibcant-flow-hw-fh.png" />
+ </td>
+ <td>
+ <p>
+ The average spring energy is
+ </p>
\[
\frac{1}{2} \kappa \left\langle x_c^2 \right\rangle = \frac{1}{2}k_B T \;,
\]
- <p>
- where $k_B$ is Boltzmann's constant and $T$ is the
- temperature.
- </p>
+ <p>
+ where $k_B$ is Boltzmann's constant and $T$ is the
+ temperature.
+ </p>
+ </td>
+ </tr>
+ </table>
</section>
<section>
<h2>Calibration: Vibration</h2>
--- /dev/null
+// Flow chart for thermal cantilever calibration
+
+usepackage("fixltx2e"); /* for \textsuperscript */
+
+import flowchart;
+
+block V_var = roundrectangle(
+ "Vibration variance $\langle V_p^2 \rangle$ (V\textsuperscript{2})", (0, 0));
+
+real dx = 1.25 * (V_var.right().x - V_var.left().x);
+real dy = 2 * (V_var.top().y - V_var.bottom().y);
+
+block sigma = roundrectangle(
+ "Photodiode sensitivity $\sigma_p$ (V/m)", V_var.center + (dx, 0));
+block X_var = roundrectangle(
+ "Vibration variance $\langle x_c^2 \rangle$ (m\textsuperscript{2})",
+ V_var.center + (0, dy));
+block T = roundrectangle(
+ "Buffer temperature $T$ (K)", X_var.center + (dx, 0));
+block kappa = roundrectangle(
+ "Spring constant $\kappa$ (N/m)", X_var.center + (0, dy));
+
+draw(kappa.bottomright() -- T.topleft());
+draw(kappa.bottom() -- X_var.top());
+draw(X_var.bottom() -- V_var.top());
+draw(X_var.bottomright() -- sigma.topleft());
+
+draw(kappa);
+draw(T);
+draw(X_var);
+draw(sigma);
+draw(V_var);