--- /dev/null
+ GNU GENERAL PUBLIC LICENSE
+ Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ Preamble
+
+ The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+ The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works. By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users. We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors. You can apply it to
+your programs, too.
+
+ When we speak of free software, we are referring to freedom, not
+price. Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+ To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights. Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+ For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received. You must make sure that they, too, receive
+or can get the source code. And you must show them these terms so they
+know their rights.
+
+ Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+ For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software. For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+ Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so. This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software. The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable. Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products. If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+ Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary. To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+ The precise terms and conditions for copying, distribution and
+modification follow.
+
+ TERMS AND CONDITIONS
+
+ 0. Definitions.
+
+ "This License" refers to version 3 of the GNU General Public License.
+
+ "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+ "The Program" refers to any copyrightable work licensed under this
+License. Each licensee is addressed as "you". "Licensees" and
+"recipients" may be individuals or organizations.
+
+ To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy. The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+ A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+ To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy. Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+ To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies. Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+ An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License. If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+ 1. Source Code.
+
+ The "source code" for a work means the preferred form of the work
+for making modifications to it. "Object code" means any non-source
+form of a work.
+
+ A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+ The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form. A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+ The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities. However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work. For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+ The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+ The Corresponding Source for a work in source code form is that
+same work.
+
+ 2. Basic Permissions.
+
+ All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met. This License explicitly affirms your unlimited
+permission to run the unmodified Program. The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work. This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+ You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force. You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright. Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+ Conveying under any other circumstances is permitted solely under
+the conditions stated below. Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+ No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+ When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+ 4. Conveying Verbatim Copies.
+
+ You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+ You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+ 5. Conveying Modified Source Versions.
+
+ You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+ a) The work must carry prominent notices stating that you modified
+ it, and giving a relevant date.
+
+ b) The work must carry prominent notices stating that it is
+ released under this License and any conditions added under section
+ 7. This requirement modifies the requirement in section 4 to
+ "keep intact all notices".
+
+ c) You must license the entire work, as a whole, under this
+ License to anyone who comes into possession of a copy. This
+ License will therefore apply, along with any applicable section 7
+ additional terms, to the whole of the work, and all its parts,
+ regardless of how they are packaged. This License gives no
+ permission to license the work in any other way, but it does not
+ invalidate such permission if you have separately received it.
+
+ d) If the work has interactive user interfaces, each must display
+ Appropriate Legal Notices; however, if the Program has interactive
+ interfaces that do not display Appropriate Legal Notices, your
+ work need not make them do so.
+
+ A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit. Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+ 6. Conveying Non-Source Forms.
+
+ You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+ a) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by the
+ Corresponding Source fixed on a durable physical medium
+ customarily used for software interchange.
+
+ b) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by a
+ written offer, valid for at least three years and valid for as
+ long as you offer spare parts or customer support for that product
+ model, to give anyone who possesses the object code either (1) a
+ copy of the Corresponding Source for all the software in the
+ product that is covered by this License, on a durable physical
+ medium customarily used for software interchange, for a price no
+ more than your reasonable cost of physically performing this
+ conveying of source, or (2) access to copy the
+ Corresponding Source from a network server at no charge.
+
+ c) Convey individual copies of the object code with a copy of the
+ written offer to provide the Corresponding Source. This
+ alternative is allowed only occasionally and noncommercially, and
+ only if you received the object code with such an offer, in accord
+ with subsection 6b.
+
+ d) Convey the object code by offering access from a designated
+ place (gratis or for a charge), and offer equivalent access to the
+ Corresponding Source in the same way through the same place at no
+ further charge. You need not require recipients to copy the
+ Corresponding Source along with the object code. If the place to
+ copy the object code is a network server, the Corresponding Source
+ may be on a different server (operated by you or a third party)
+ that supports equivalent copying facilities, provided you maintain
+ clear directions next to the object code saying where to find the
+ Corresponding Source. Regardless of what server hosts the
+ Corresponding Source, you remain obligated to ensure that it is
+ available for as long as needed to satisfy these requirements.
+
+ e) Convey the object code using peer-to-peer transmission, provided
+ you inform other peers where the object code and Corresponding
+ Source of the work are being offered to the general public at no
+ charge under subsection 6d.
+
+ A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+ A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling. In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage. For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product. A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+ "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source. The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+ If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information. But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+ The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed. Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+ Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+ 7. Additional Terms.
+
+ "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law. If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+ When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it. (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.) You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+ Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+ a) Disclaiming warranty or limiting liability differently from the
+ terms of sections 15 and 16 of this License; or
+
+ b) Requiring preservation of specified reasonable legal notices or
+ author attributions in that material or in the Appropriate Legal
+ Notices displayed by works containing it; or
+
+ c) Prohibiting misrepresentation of the origin of that material, or
+ requiring that modified versions of such material be marked in
+ reasonable ways as different from the original version; or
+
+ d) Limiting the use for publicity purposes of names of licensors or
+ authors of the material; or
+
+ e) Declining to grant rights under trademark law for use of some
+ trade names, trademarks, or service marks; or
+
+ f) Requiring indemnification of licensors and authors of that
+ material by anyone who conveys the material (or modified versions of
+ it) with contractual assumptions of liability to the recipient, for
+ any liability that these contractual assumptions directly impose on
+ those licensors and authors.
+
+ All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10. If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term. If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+ If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+ Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+ 8. Termination.
+
+ You may not propagate or modify a covered work except as expressly
+provided under this License. Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+ However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+ Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+ Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License. If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+ 9. Acceptance Not Required for Having Copies.
+
+ You are not required to accept this License in order to receive or
+run a copy of the Program. Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance. However,
+nothing other than this License grants you permission to propagate or
+modify any covered work. These actions infringe copyright if you do
+not accept this License. Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+ 10. Automatic Licensing of Downstream Recipients.
+
+ Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License. You are not responsible
+for enforcing compliance by third parties with this License.
+
+ An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations. If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+ You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License. For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+ 11. Patents.
+
+ A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based. The
+work thus licensed is called the contributor's "contributor version".
+
+ A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version. For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+ In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement). To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+ If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients. "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+ If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+ A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License. You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+ Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+ 12. No Surrender of Others' Freedom.
+
+ If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all. For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+ 13. Use with the GNU Affero General Public License.
+
+ Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work. The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+ 14. Revised Versions of this License.
+
+ The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+ Each version is given a distinguishing version number. If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation. If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+ If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+ Later license versions may give you additional or different
+permissions. However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+ 15. Disclaimer of Warranty.
+
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+ 16. Limitation of Liability.
+
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+ 17. Interpretation of Sections 15 and 16.
+
+ If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+ END OF TERMS AND CONDITIONS
+
+ How to Apply These Terms to Your New Programs
+
+ If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+ To do so, attach the following notices to the program. It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+ <one line to give the program's name and a brief idea of what it does.>
+ Copyright (C) <year> <name of author>
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
+
+Also add information on how to contact you by electronic and paper mail.
+
+ If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+ <program> Copyright (C) <year> <name of author>
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License. Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+ You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+<http://www.gnu.org/licenses/>.
+
+ The GNU General Public License does not permit incorporating your program
+into proprietary programs. If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library. If this is what you want to do, use the GNU Lesser General
+Public License instead of this License. But first, please read
+<http://www.gnu.org/philosophy/why-not-lgpl.html>.
+++ /dev/null
-PROG_NAME = temperature
-VERSION = 0.1
-PYTHON_SCRIPTS = temperature.py
-OTHER_FILES = README Makefile
-DIST_FILES = $(PYTHON_SCRIPTS) $(OTHER_FILES)
-DIST_DIR = $(PROG_NAME)-$(VERSION)
-DIST_NAME = $(PROG_NAME)-$(VERSION).tar.gz
-
-PYTHON_DIR = $(HOME)/.python
-
-GENERATED_FILES = $(DIST_NAME)
-
-all : # all scripts, nothing to compile
-
-clean :
- rm -f $(GENERATED_FILES)
-
-install : uninstall
- cp $(PYTHON_SCRIPTS) $(PYTHON_DIR)
-
-uninstall :
- rm -f $(PYTHON_SCRIPTS:%=$(PYTHON_DIR)/%)
-
-dist :
- mkdir $(DIST_DIR)
- cp $(DIST_FILES) $(DIST_DIR)
- tar -chozf $(DIST_NAME) $(DIST_DIR)
- rm -rf $(DIST_DIR)
-
-check :
- python ./temperature.py
--- /dev/null
+This package provides an object-oriented interface for temperature
+monitoring and PID_ control. The idea is that experimentalists
+interested in temperature controlled experiments should not need to
+learn the inner workings of their PID controller before they can
+perform simple temperature control tasks.
+
+Module structure
+================
+
+This package provides both a high level controller that uses
+per-device backend drivers. The controller handles auto-tuning the
+PID feedback parameters and changing system temperatures, while the
+backends communicate setpoint changes, temperature read requests,
+etc. to the temperature control device.
+
+Backends
+--------
+
+The only physicsal backend that is supported at the moment is a Melcor
+Series MTCA Thermoelectric Cooler Controller, which we communicate
+with via Modbus_ packets over a `serial port`_. That's all I needed
+for my experiments, but I tried to write a framework that was flexible
+enough to swap in other backends. By subclassing `Backend` for your
+particular device, you can take advantage of the high-level
+`Controller` code that's already written.
+
+Melcor
+~~~~~~
+
+Companies don't stay in business forever, but lab equipment does ;).
+Our controller is still going strong since 1999, but Melcor has moved
+around. According to their `2005 announcement`__ the Laird Group PLC
+purchased Melcor from Fedders Corporation, and by 2009 (according to
+the `Internet Archive Wayback Machine`__) they phased out the old
+website at `melcor.com <http://melcor.com>`_ in favor of `their own
+thermal site`__, and it looks like there is no longer support for the
+older MTCA controllers. There seem to be a number of them on eBay_
+though ;).
+
+__ `Laird announcement`_
+__ wayback_
+__ `Laird thermal`_
+
+TestBackend
+~~~~~~~~~~~
+
+To get a feel for driving a PID system, check out the `TestBackend`.
+For example, you can experiment with different feedback terms and dead
+times to understand why you're getting instability or other control
+effects. Here's an example that shows a reasonable approach with a
+bit of integrator overshoot::
+
+ >>> from tempcontrol.backend.test import TestBackend
+ >>> from time import sleep
+ >>> from matplotlib import pyplot
+ >>> from numpy import loadtxt
+ >>> log_file = 'pid.log'
+ >>> log_stream = open('pid.log', 'w')
+ >>> b = TestBackend(log_stream=log_stream)
+ >>> b.set_max_current(0.6)
+ >>> b.set_heating_gains(propband=2, integral=.1)
+ >>> b.set_cooling_gains(propband=2, integral=.1)
+ >>> b.set_setpoint(25)
+ >>> sleep(120)
+ >>> t.cleanup()
+ >>> log_stream.close()
+ >>> header = open(log_file, 'r').readline()
+ >>> label = header.strip('#\n').split('\t')
+ >>> data = loadtxt('pid.log')
+ >>> pyplot.hold(True)
+ >>> for i in range(1, len(label)):
+ ... if i in [1, 3, 5]:
+ ... if i:
+ ... pyplot.legend(loc='best') # add legend to previous subplot
+ ... pyplot.subplot(3, 1, (i-1)/2 + 1)
+ ... pyplot.plot(data[:,0], data[:,i], '.', label=label[i])
+ >>> pyplot.legend(loc='best')
+ >>> pyplot.show()
+
+Of course, you can use whatever plotting program you like to graph the
+values stored to `pid.log`. Matplotlib_ and NumPy_ are just
+convenient Python-based packages.
+
+Installation
+============
+
+Packages
+--------
+
+Gentoo
+~~~~~~
+
+I've packaged `tempcontrol` for Gentoo_. You need layman_ and my `wtk
+overlay`_. Install with::
+
+ # emerge -av app-portage/layman
+ # layman --add wtk
+ # emerge -av dev-python/tempcontrol
+
+Dependencies
+------------
+
+If you're installing by hand or packaging `tempcontrol` for another
+distribution, you'll need the following dependencies:
+
+========= ===================== ================ ==========================
+Package Purpose Debian_ Gentoo_
+========= ===================== ================ ==========================
+pymodbus_ Modbus stack python-modbus dev-python/twisted
+pySerial_ serial comminication python-serial dev-python/pyserial
+nose_ testing python-nose dev-python/nose
+========= ===================== ================ ==========================
+
+Actually, `pymodbus` may (depending on your packaging system) depend
+on `pySerial`_ via Twisted_, so `pymodbus` alone may be enough to get
+you going.
+
+The Debian package for `pymodbus` has not been accepted yet. `Debian
+bug #578120`__ tracks the progress of the prospective package, but it
+seems to have stalled out at the moment.
+
+__ db578120_
+
+Installing by hand
+------------------
+
+Tempcontrol is available as a Git_ repository::
+
+ $ git clone http://www.physics.drexel.edu/~wking/code/git/tempcontrol.git
+
+See the homepage_ for details. To install the checkout, run the
+standard::
+
+ $ python setup.py install
+
+Usage
+=====
+
+See the examples in the `examples` directory.
+
+Testing
+=======
+
+Run the test suite with::
+
+ $ nosetests --with-doctest --doctest-tests tempcontrol
+
+Note that you should have your temperature control device connected to
+your computer before running this command, as backend tests require a
+connected backend.
+
+Licence
+=======
+
+This project is distributed under the `GNU General Public License
+Version 3`_ or greater.
+
+Author
+======
+
+W. Trevor King
+wking@drexel.edu
+Copyright 2008-2011
+
+
+.. _PID: http://en.wikipedia.org/wiki/PID_controller
+.. _Modbus: http://en.wikipedia.org/wiki/Modbus
+.. _serial port: http://en.wikipedia.org/wiki/Serial_port
+.. _Matplotlib: http://matplotlib.sourceforge.net/
+.. _NumPy: http://numpy.scipy.org/
+.. _Laird announcement: http://www.lairdtech.com/NewsItem.aspx?id=953
+.. _wayback: http://web.archive.org/web/20090204201524/http://melcor.com/
+.. _Laird thermal: http://lairdtech.thomasnet.com/category/thermal-management-solutions/
+.. _eBay: http://www.ebay.com/
+.. _layman: http://layman.sourceforge.net/
+.. _wtk overlay:
+ http://www.physics.drexel.edu/~wking/unfolding-disasters/posts/Gentoo_overlay
+.. _Debian: http://www.debian.org/
+.. _Gentoo: http://www.gentoo.org/
+.. _pymodbus: http://code.google.com/p/pymodbus/
+.. _pySerial: http://pyserial.sourceforge.net/
+.. _Twisted: http://twistedmatrix.com/trac/
+.. _db578120: http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=578120
+.. _nose: http://somethingaboutorange.com/mrl/projects/nose/
+.. _Git: http://git-scm.com/
+.. _homepage:
+ http://www.physics.drexel.edu/~wking/unfolding-disasters/posts/tempcontrol/
+.. _GNU General Public License Version 3: http://www.gnu.org/licenses/gpl.txt
--- /dev/null
+#!/usr/bin/env python
+# Copyright (C) 2011 W. Trevor King <wking@drexel.edu>
+#
+# This file is part of tempcontrol.
+#
+# tempcontrol is free software: you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation, either
+# version 3 of the License, or (at your option) any later version.
+#
+# tempcontrol is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with tempcontrol. If not, see
+# <http://www.gnu.org/licenses/>.
+
+"""Log control and ambient temperature every 10 seconds.
+
+usage: python temp_monitor.py
+"""
+
+import time
+
+from tempcontrol.backend import get_backend
+
+
+b = get_backend('melcor')()
+period = 10
+
+with open('temp_monitor.log', 'a') as f:
+ last = time.time()
+ last -= last % period
+ next_time = last + period
+ while True:
+ time.sleep(next_time - time.time())
+ tstr = time.strftime('%Y-%m-%d %H:%M:%S')
+ temp = str(b.get_temp())
+ ambient = str(b.get_ambient_temp())
+ f.write('\t'.join([tstr, temp, ambient]) + '\n')
+ f.flush()
+ print('\t'.join([tstr, temp, ambient]))
+ next_time += period
--- /dev/null
+"""A modular temperature control library.
+"""
+
+from distutils.core import setup
+import os.path
+
+from tempcontrol import __version__
+
+
+_this_dir = os.path.dirname(__file__)
+base_url = 'http://physics.drexel.edu/~wking'
+
+setup(name='tempcontrol',
+ version=__version__,
+ maintainer='W. Trevor King',
+ maintainer_email='wking@drexel.edu',
+ url = '{}/unfolding-disasters/posts/tempcontrol'.format(base_url),
+ download_url = '{}/code/python/tempcontrol-{}.tar.gz'.format(
+ base_url, __version__),
+ license = 'GNU General Public License (GPL)',
+ platforms = ['all'],
+ description = __doc__,
+ long_description = open(os.path.join(_this_dir, 'README'), 'r').read(),
+ packages=['tempcontrol', 'tempcontrol.backend'],
+ classifiers = [
+ 'Development Status :: 2 - Pre-Alpha',
+ 'Intended Audience :: Developers',
+ 'Intended Audience :: Science/Research',
+ 'Operating System :: OS Independent',
+ 'License :: OSI Approved :: GNU General Public License (GPL)',
+ 'Programming Language :: Python',
+ 'Topic :: Scientific/Engineering',
+ 'Topic :: Software Development :: Libraries :: Python Modules',
+ ],
+ )
--- /dev/null
+# Copyright (C) 2008-2011 W. Trevor King <wking@drexel.edu>
+#
+# This file is part of tempcontrol.
+#
+# tempcontrol is free software: you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation, either
+# version 3 of the License, or (at your option) any later version.
+#
+# tempcontrol is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with tempcontrol. If not, see
+# <http://www.gnu.org/licenses/>.
+
+import logging as _logging
+
+
+__version__ = '0.3'
+
+
+LOG = _logging.getLogger('tempcontrol')
+"Temperature-control logger"
+
+#LOG.setLevel(_logging.WARN)
+LOG.setLevel(_logging.DEBUG)
+_formatter = _logging.Formatter(
+ '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
+
+_stream_handler = _logging.StreamHandler()
+_stream_handler.setLevel(_logging.DEBUG)
+_stream_handler.setFormatter(_formatter)
+LOG.addHandler(_stream_handler)
+
+_syslog_handler = None
+
+
+def _set_handler(name='stream'):
+ if name == 'syslog':
+ if not _syslog_handler:
+ _syslog_handler = _logging_handlers.SysLogHandler()
+ _syslog_handler.setLevel(_logging.DEBUG)
+ LOG.handlers = [_syslog_handler]
+ elif name == 'stream':
+ LOG.handlers = [_stream_handler]
+ else:
+ raise ValueError(name)
+ LOG.info('setup logging handler: %s' % name)
--- /dev/null
+# Copyright (C) 2008-2011 W. Trevor King <wking@drexel.edu>
+#
+# This file is part of tempcontrol.
+#
+# tempcontrol is free software: you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation, either
+# version 3 of the License, or (at your option) any later version.
+#
+# tempcontrol is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with tempcontrol. If not, see
+# <http://www.gnu.org/licenses/>.
+
+"""Assorted backends for interfacing with your particular hardware.
+"""
+
+
+def _import_by_name(modname):
+ """
+ >>> mod = _import_by_name('tempcontrol.backend.melcor')
+ >>> 'MelcorBackend' in dir(mod)
+ True
+ >>> _import_by_name('tempcontrol.backend.highly_unlikely')
+ Traceback (most recent call last):
+ ...
+ ImportError: No module named highly_unlikely
+ """
+ module = __import__(modname)
+ components = modname.split('.')
+ for comp in components[1:]:
+ module = getattr(module, comp)
+ return module
+
+def get_backend(name):
+ n = '%s.%s' % (__name__, name)
+ mod = _import_by_name(n)
+ for attr in dir(mod):
+ obj = getattr(mod, attr)
+ try:
+ if obj != Backend and issubclass(obj, Backend):
+ return obj
+ except TypeError:
+ pass
+ raise ValueError(name)
+
+
+class Backend (object):
+ """Temperature control backend
+
+ There are several common forms for a PID control formula. For the
+ purpose of setting heating and cooling gains (`.get_*_gains()` and
+ `.set_*_gains()`), we'll use the standard form::
+
+ MV(t) = K_p ( e(t) + 1/T_i \int_0^t e(\tau) d\tau + T_d de(t)/dt )
+
+ where `e(t) = SP - PV` is the error function, MV is the
+ manipulated variable, SP is the setpoint, and PV is the process
+ variable.
+
+ In this formulation, the parameter units will be:
+
+ * K_p: MV units / PV units (e.g. amp/K)
+ * T_i, T_d: time (e.g. seconds)
+ """
+ def __init__(self):
+ self._max_current = None
+
+ @staticmethod
+ def _convert_F_to_C(F):
+ return (F - 32)/1.8
+
+ @staticmethod
+ def _convert_C_to_F(C):
+ return C*1.8 + 32
+
+ def cleanup(self):
+ "Release resources and disconnect from any hardware."
+ pass
+
+ def get_temp(self):
+ "Return the current process temperature in degrees Celsius"
+ raise NotImplementedError()
+
+ def get_ambient_temp(self):
+ "Return room temperature in degrees Celsius"
+ raise NotImplementedError()
+
+ def set_max_current(self, max):
+ "Set the max current in Amps"
+ raise NotImplementedError()
+
+ def get_max_current(self):
+ "Get the max current in Amps"
+ raise NotImplementedError()
+
+ def get_current(self):
+ """Return the calculated control current in Amps"
+
+ The returned current is not the actual current, but the
+ current that the temperature controller calculates it should
+ generate. If the voltage required to generate that current
+ exceeds the controller's max voltage (15 V on mine), then the
+ physical current will be less than the value returned here.
+ """
+ raise NotImplementedError()
+
+ def get_modes(self):
+ "Return a list of control modes supported by this backend"
+ raise NotImplementedError()
+
+ def get_mode(self):
+ "Return the current control mode"
+ raise NotImplementedError()
+
+ def set_mode(self, mode):
+ "Set the current control mode"
+ raise NotImplementedError
+
+ def dump_configuration(self):
+ """
+ """
+ raise NotImplementedError()
+
+ def restore_configuration(self):
+ """
+ """
+ raise NotImplementedError()
+
+
+class ManualMixin (object):
+ def set_current(self, current):
+ """Set the desired control current in Amps
+ """
+ raise NotImplementedError()
+
+
+class PIDMixin (object):
+ def set_setpoint(self, setpoint):
+ "Set the temperature setpoint in degrees Celsius"
+ raise NotImplementedError()
+
+ def get_setpoint(self, setpoint):
+ "Get the temperature setpoint in degrees Celsius"
+ raise NotImplementedError()
+
+ def get_cooling_gains(self):
+ """..."""
+ raise NotImplementedError()
+
+ def set_cooling_gains(self, proportional=None, integral=None,
+ derivative=None):
+ """
+ ...
+ """
+ raise NotImplementedError()
+
+ def get_heating_gains(self):
+ """..."""
+ raise NotImplementedError()
+
+ def set_heating_gains(self, proportional=None, integral=None,
+ derivative=None):
+ """
+ ...
+ """
+ raise NotImplementedError()
+
+ def get_feedback_terms(self):
+ """Experimental
+ """
+ raise NotImplementedError()
+
+ def clear_integral_term(self):
+ """Reset the integral feedback turn (removing integrator windup)
+
+ Because the proportional term provides no control signal when
+ the system exactly matches the setpoint, a P-only algorithm
+ will tend to "droop" off the setpoint. The equlibrium
+ position is one where the droop-generated P term balances the
+ systems temperature leakage. To correct for this, we add the
+ integral feedback term, which adjusts the control signal to
+ minimize long-term differences between the output and setpoint.
+
+ One issue with the integral term is "integral windup". When
+ the signal spends a significant time away from the setpoint
+ (e.g. during a long ramp up to operating temperature), the
+ integral term can grow very large, causing overshoot once the
+ output reaches the setpoint. To allow our controller to avoid
+ this, this method manually clears the intergal term for the
+ backend.
+ """
+ raise NotImplementedError()
--- /dev/null
+# Copyright (C) 2008-2011 W. Trevor King <wking@drexel.edu>
+#
+# This file is part of tempcontrol.
+#
+# tempcontrol is free software: you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation, either
+# version 3 of the License, or (at your option) any later version.
+#
+# tempcontrol is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with tempcontrol. If not, see
+# <http://www.gnu.org/licenses/>.
+
+import struct as _struct
+
+import serial as _serial
+
+from pymodbus.client.sync import ModbusSerialClient as _ModbusSerialClient
+
+from .. import LOG as _LOG
+from . import Backend as _Backend
+from . import ManualMixin as _ManualMixin
+from . import PIDMixin as _PIDMixin
+
+
+class Register (object):
+ def __init__(self, name, value, direction='rw', reference=None, help=None):
+ self.name = name
+ self.value = value
+ self.direction = direction
+ self.reference = reference
+ self.help = help
+ self.needs_decimal = False
+
+ def __str__(self):
+ return '<%s %s (%d)>' % (self.__class__.__name__, self.name, self.value)
+
+ def encode(self, value, **kwargs):
+ return value
+
+ def decode(self, value, **kwargs):
+ return value
+
+
+class ChoiceRegister (Register):
+ def __init__(self, *args, **kwargs):
+ self.choices = kwargs.pop('choices')
+ super(ChoiceRegister, self).__init__(*args, **kwargs)
+
+ def encode(self, value, **kwargs):
+ for key,v in self.choices.items():
+ if v == value:
+ return key
+ raise ValueError(value)
+
+ def decode(self, value, **kwargs):
+ try:
+ return self.choices[value]
+ except KeyError:
+ _LOG.error('unrecognized value %s for %s' % (value, self.name))
+
+
+class FloatRegister (Register):
+ def __init__(self, *args, **kwargs):
+ self.decimal = kwargs.pop('decimal', None)
+ self.decimal_offset = kwargs.pop('decimal_offset', None)
+ super(FloatRegister, self).__init__(*args, **kwargs)
+ self.needs_decimal = not self.decimal
+
+ @staticmethod
+ def _float2melcor(float, decimal=None):
+ """Convert a Python float into Melcor's two's-compliment representation
+
+ >>> m = FloatRegister._float2melcor(-3.5, decimal=10.0)
+ >>> m
+ 65501
+ >>> FloatRegister._melcor2float(m, decimal=10.0)
+ -3.5
+ """
+ return _struct.unpack('H', _struct.pack('h', int(float * decimal)))[0]
+
+ @staticmethod
+ def _melcor2float(melcor, decimal=None):
+ """Convert Melcor's two's compliment representation to a Python float
+
+ >>> FloatRegister._melcor2float(65501, decimal=10.0)
+ -3.5
+ """
+ return _struct.unpack('h', _struct.pack('H', melcor))[0] / decimal
+
+ def encode(self, value, **kwargs):
+ if self.decimal:
+ decimal = self.decimal
+ elif self.decimal_offset:
+ decimal *= self.decimal_offset
+ return self._float2melcor(value, decimal)
+
+ def decode(self, value, decimal=None):
+ if self.decimal:
+ decimal = self.decimal
+ elif self.decimal_offset:
+ decimal *= self.decimal_offset
+ return self._melcor2float(value, decimal)
+
+
+class BoundedFloatRegister (FloatRegister):
+ def __init__(self, *args, **kwargs):
+ self.min = kwargs.pop('min', None)
+ self.max = kwargs.pop('max', None)
+ super(BoundedFloatRegister, self).__init__(*args, **kwargs)
+
+ def encode(self, value, **kwargs):
+ if value < self.min or value > self.max:
+ raise ValueError('{} out of range [{}, {}] for {}'.format(
+ value, self.min, self.max, self))
+ return super(BoundedFloatRegister, self).encode(value, **kwargs)
+
+ def decode(self, value, **kwargs):
+ return super(BoundedFloatRegister, self).decode(value, **kwargs)
+
+
+class MelcorBackend (_Backend, _ManualMixin, _PIDMixin):
+ """Temperature control backend for a Melcor MTCA Temperature Controller
+ """
+ # Relative register addresses from back page of Melcor Manual.
+ # Then I went through Chapter 6 tables looking for missing
+ # registers. References are from Series MTCA Thermoelectric
+ # Cooler Controller Instruction Manual, Revision 5.121900.
+ _custom_prompt_kwargs = {
+ 'reference': '5.2, 6.20',
+ 'help': 'Setup a custom menu',
+ 'choices': {
+ 0: 'none',
+ 1: 'process 2',
+ 2: 'percent output',
+ 3: 'ramping set point',
+ 4: 'event input status',
+ 5: 'operation mode',
+ 6: 'auto-tune',
+ 7: 'auto-tune set point',
+ 8: 'set point 2',
+ 9: 'event set point',
+ 10: 'local or remote calibration mode',
+ 11: 'calibration offset',
+ 12: 'propband 1',
+ 13: 'integral 1',
+ 14: 'derivative 1',
+ 15: 'reset 1',
+ 16: 'rate 1',
+ 17: 'cycle time 1',
+ 18: 'dead band 1',
+ 19: 'propband 2',
+ 20: 'integral 2',
+ 21: 'derivative 2',
+ 22: 'reset 2',
+ 23: 'rate 2',
+ 24: 'cycle time 2',
+ 25: 'dead band 2',
+ 26: 'alarm 2 high',
+ 27: 'alarm 2 low',
+ 28: 'alarm 3 high',
+ 29: 'alarm 3 low',
+ 30: 'alarm 4 high',
+ 31: 'alarm 4 low',
+ 32: 'proportional term',
+ 33: 'integral term',
+ 34: 'derivative term',
+ 35: 'hysteresis 1',
+ 36: 'hysteresis 2',
+ 37: 'alarm hysteresis 2',
+ 38: 'alarm hysteresis 3',
+ 39: 'alarm hysteresis 4',
+ 40: 'set point 1',
+ },
+ }
+ _registers = [
+ Register('MODEL_NUMBER', 0, direction='r', reference='6.22'),
+ Register('SERIAL_NUMBER_1', 1, direction='r', reference='6.22', help='first 4 digits'),
+ Register('SERIAL_NUMBER_2', 2, direction='r', reference='6.22', help='last 4 digits'),
+ Register('SOFTWARE_ID_NUMBER', 3, direction='r', reference='6.22'),
+ Register('SOFTWARE_REVISION', 4, direction='r', reference='6.22'),
+ Register('DATE_OF_MANUFACTURE', 5, direction='r', reference='6.22', help='WEEK:YEAR (WWYY)'),
+ ChoiceRegister('INPUT_2_HARDWARE_ENABLED', 9, direction='r', reference='1.2, 6.22', choices={
+ 0: 'none', 5: 'process event'}, help='INPUT_2 option installed'),
+ ChoiceRegister('OUTPUT_1_HARDWARE', 16, direction='r', reference='6.23', choices={
+ 0: 'none', 1: 'relay', 2: 'solid state', 3: 'dc', 4: 'process'}),
+ ChoiceRegister('OUTPUT_2_HARDWARE', 17, direction='r', reference='6.23', choices={
+ 0: 'none', 1: 'relay', 2: 'solid state', 3: 'dc', 4: 'process'}),
+ ChoiceRegister('OUTPUT_3_HARDWARE', 18, direction='r', reference='6.23', choices={
+ 0: 'none', 1: 'relay'}),
+ ChoiceRegister('OUTPUT_4_HARDWARE', 19, direction='r', reference='5.9, 6.23', choices={
+ 0: 'none', 1: 'relay', 4: 'process', 6: '485', 7: '232'},
+ help='Retransmit option installed'),
+ Register('DISABLE_NONVOLATILE_MEM', 24, reference=''),
+ FloatRegister('PROCESS_1', 100, direction='r', reference='6.3', help='Current temp (input to INPUT_1) (mdbl)'),
+ Register('ERROR_1', 101, reference=''),
+ Register('PERCENT_OUTPUT', 103, direction='r', reference='5.4, 6.4', help="% of controller's rated maximum power/current"),
+ Register('ACTUAL_2', 104, reference=''),
+ FloatRegister('PROCESS_2', 105, direction='r', reference='6.4', help='Value of signal input to INPUT_2'),
+ Register('ALARM_2_STATUS', 106, reference=''),
+ Register('ALARM_3_STATUS', 110, reference=''),
+ Register('ALARM_4_STATUS', 114, reference=''),
+ Register('OPERATION_MODE', 200, reference='?'),
+ ChoiceRegister('EVENT_INPUT_STATUS', 201, direction='r', reference='6.4', choices={
+ 1:True, 0:False}, help='Whether EVENT_FUNCTION satisfies EVENT_CONDITION'),
+ FloatRegister('REMOTE_SET_POINT', 202, direction='r', reference='6.3', help='Or event set point'),
+ Register('RAMPING_SET_POINT', 203, direction='r', reference='6.4', help='Active if RAMPING_MODE not set to OFF'),
+ # NOTE: sometimes the *_TERM_1 registers blib to 10x the predicted value. I don't know why yet...
+ FloatRegister('PID_POWER_1', 204, reference='Not in manual', help='Calculated output current %, active when Factory->Diagnostic->Troubleshooting == 1, but no modbus register for Troubleshooting (6.24).', decimal=10.),
+ FloatRegister('PROP_TERM_1', 205, reference='Not in manual', help='(Tset-Tcur)/Tprop see temperature.tempControl.getFeedbackTerms(), active when Troubleshooting == 1.', decimal=1.),
+ FloatRegister('INTEGRAL_TERM_1', 206, reference='', decimal=1.),
+ FloatRegister('DERIVATIVE_TERM_1', 207, reference='', decimal=1.),
+ Register('SYSTEM_ERROR', 209, reference=''),
+ Register('OPEN_LOOP_ERROR', 210, reference=''),
+ FloatRegister('SET_POINT_1', 300, reference='5.7 6.3', help='Set-point for INPUT_1'),
+ ChoiceRegister('AUTO_MANUAL_OP_MODE', 301, direction='r', reference='6.4', help='Select control mode', choices={0: 'PID', 1: 'manual'}),
+ Register('AUTO_TUNE_SETPOINT', 304, reference='6.5', help='Set auto tune setpoint as % of current set point (default 90%)'),
+ ChoiceRegister('AUTO_TUNE_START_1', 305, reference='6.5', help='Initiate or cancel auto-tune. Active if AUTO_MANUAL_OP_MODE is Auto (PID)', choices = {0: 'off or cancel', 1: 'initiate', 2: 'set only PID 1', 3: 'set only PID2'}),
+ FloatRegister('EVENT_SET_POINT_1', 306, reference='6.2', decimal=1.),
+ FloatRegister('BOOST_SET_POINT_1', 309, reference='1.2', help='Optional, on back plate'),
+ Register('MANUAL_SET_POINT', 310, reference='6.3', help='If AUTO_MANUAL_OP_MODE is MANUAL (manual)'),
+ Register('CLEAR_INPUT_ERRORS', 311, reference=''),
+ ChoiceRegister('LOCAL_REMOTE_1', 316, reference='5.9, 6.5', choices={
+ 0: 'local', 1: 'remote'}, help='Selects active setpoint. Active if INPUT_2 is not OFF or EVENT'),
+ FloatRegister('SET_POINT_2', 319, reference='6.5', help='?boost setpoint? Active if both output 1 and output 2 are set to HEAT, or both are set to COOL, or if INPUT_2 is set to EVENT and EVENT_FUNCTION to SP'),
+ FloatRegister('ALARM_2_LOW', 321, reference='5.18, 6.2, 6.8'),
+ FloatRegister('ALARM_2_HIGH', 322, reference='5.18, 6.2, 6.8'),
+ Register('CLEAR_ALARMS', 331, reference=''),
+ Register('SILENCE_ALARMS', 332, reference=''),
+ FloatRegister('ALARM_3_LOW', 340, reference='5.18, 6.2, 6.9'),
+ FloatRegister('ALARM_3_HIGH', 341, reference='5.18, 6.2, 6.9'),
+ BoundedFloatRegister('PROPBAND_1', 500, reference='6.2, 6.5', help='Width of proportional band in PID control(mdbl)', min=0, max=9999),
+ BoundedFloatRegister('INTEGRAL_1', 501, reference='6.6', help='Set integral time in minutes for output 1', decimal=100., min=0, max=99.99),
+ BoundedFloatRegister('RESET_1', 502, reference='6.6', help='Set reset time in repeats per minute for output 1 if UNITS_TYPE set to US', decimal=100., min=0, max=99.99),
+ BoundedFloatRegister('DERIVATIVE_1', 503, reference='6.6', help='Set derivative time in minutes', decimal=100., min=0, max=9.99),
+ BoundedFloatRegister('RATE_1', 504, reference='6.6', decimal=100., min=0, max=9.99),
+ BoundedFloatRegister('DEAD_BAND_1', 505, reference='6.2, 6.7', min=0, max=9999),
+ FloatRegister('CYCLE_TIME_1', 506, reference='6.6', help='Valid range depends on output type. Relay: 5.0 to 60.0, solid state: 0.1 to 60.0. Not worth the extra call to automate this check.', decimal=10.),
+ BoundedFloatRegister('HYSTERESIS_1', 507, reference='6.2, 6.6', min=1, max=9999),
+ ChoiceRegister('BURST_1', 509, reference='5.16, 6.6', choices={
+ 0: 'no', 1: 'yes'}),
+ BoundedFloatRegister('PROPBAND_2', 510, reference='6.2, 6.7', min=0, max=9999),
+ BoundedFloatRegister('INTEGRAL_2', 511, reference='6.7', decimal=100., min=0, max=99.99),
+ BoundedFloatRegister('RESET_2', 512, reference='6.7', decimal=100., min=0, max=99.99),
+ BoundedFloatRegister('DERIVATIVE_2', 513, reference='6.7', decimal=100., min=0, max=9.99),
+ BoundedFloatRegister('RATE_2', 514, reference='6.7', decimal=100., min=0, max=9.99),
+ BoundedFloatRegister('DEAD_BAND_2', 515, reference='6.2, 6.8', min=0, max=9999),
+ FloatRegister('CYCLE_TIME_2', 516, reference='6.8', help='Valid range depends on output type. Relay: 5.0 to 60.0, solid state: 0.1 to 60.0. Not worth the extra call to automate this check.', decimal=10.),
+ BoundedFloatRegister('HYSTERESIS_2', 517, reference='6.2, 6.8', min=1, max=9999),
+ ChoiceRegister('BURST_2', 519, reference='5.16, 6.7', choices={
+ 0: 'no', 1: 'yes'}),
+ Register('SENSOR_TYPE_1', 600, reference='5.7', help='Sensor used for INPUT_1'),
+ Register('INPUT_1', 601, reference='5.7', help='Temperature measurement'),
+ FloatRegister('RANGE_LOW_1', 602, reference='5.7, 6.2, 6.11', help='Minimum SET_POINT_1'),
+ FloatRegister('RANGE_HIGH_1', 603, reference='5.7, 6.2, 6.11', help='Maximum SET_POINT_1'),
+ BoundedFloatRegister('INPUT_SOFTWARE_FILTER_1', 604, reference='5.6, 6.2, 6.11, ', help='Averaging to smooth INPUT_1 (positive only affect monitor values, negative affect both monitor and control)', decimal=10., min=-60, max=60),
+ FloatRegister('CALIBRATION_OFFSET_1', 605, reference='5.5, 6.2, 6.5', help='Offset added to INPUT_1'),
+ ChoiceRegister('DECIMAL_1', 606, reference='6.11', choices={
+ 0: 1., 1: 10., 2: 1., 3: 10., 4: 100., 5: 1000.}),
+ ChoiceRegister('INPUT_ERROR_LATCHING', 607, reference='6.18', choices={
+ 0: 'latching', 1: 'no latching'}),
+ ChoiceRegister('INPUT_2', 611, reference='5.8, 6.11', choices={
+ 0: 'off', 1: 'event', 2: '4-20mA', 3: '0-20mA', 4: '0-5V dc', 5: '1-5V dc', 6: '0-10V dc'},
+ help='For external control'),
+ FloatRegister('RANGE_LOW_2', 612, reference='5.9, 6.2, 6.12', help='Minimum INPUT_2 signal'),
+ FloatRegister('RANGE_HIGH_2', 613, reference='5.9, 6.2, 6.12', help='Maximum INPUT_2 signal'),
+ FloatRegister('CALIBRATION_OFFSET_2', 615, reference='5.5,, 6.2, 6.12', help='Offset added to INPUT_2'),
+ ChoiceRegister('OUTPUT_1', 700, reference='6.13', choices={
+ 0: 'heat', 1: 'cool'}),
+ ChoiceRegister('PROCESS_1_TYPE', 701, reference='6.13', choices={
+ 0: '4-20mA', 1: '0-20mA', 2: '0-5V dc', 3: '1-5V dc', 4: '0-10V dc'}),
+ Register('HIGH_LIMIT_SET_POINT', 702, reference=''),
+ FloatRegister('POWER_LIMIT_SET_POINT', 713, reference='5.4, 6.2, 6.19', help='Temperature set point for power limits'),
+ FloatRegister('HIGH_POWER_LIMIT_ABOVE', 714, reference='5.4', help='% limit when above PLSP'),
+ FloatRegister('HIGH_POWER_LIMIT_BELOW', 715, reference='5.4', help='% limit when below PLSP'),
+ ChoiceRegister('OUTPUT_2', 717, reference='6.13', choices={
+ 0: 'off', 1: 'heat', 2: 'cool', 3: 'alarm'}),
+ ChoiceRegister('PROCESS_2_TYPE', 718, reference='6.13', choices={
+ 0: '4-20mA', 1: '0-20mA', 2: '0-5V dc', 3: '1-5V dc', 4: '0-10V dc'},
+ help='The manual claims: (0: 4-20mA, 1: 0-20mA, 2: 0-10V dc, 3: 0-5V dc, 4: 1-5V dc), but I think it has the same sttings as PROCESS_1_TYPE, because that matches the results I expect when setting PROCESS_2_TYPE from software while watching the relevant display menu'),
+ ChoiceRegister('ALARM_2_TYPE', 719, reference='5.19, 6.13', choices={
+ 0: 'process', 1: 'deviation'}, help='Select alarm type. A process alarm responds when the temperature leaves a fixed range. A deviation alarm responds when the temperature deviates from the set point by a set number of degrees'),
+ FloatRegister('ALARM_HYSTERESIS_2', 720, reference='5.18, 6.2, 6.13', help='Set the switching histeresis for the alarm output. This defines a band on the inside of the alarm set point. When the process temperature is in this band, the alarm state will not change.'),
+ ChoiceRegister('LATCHING_2', 721, reference='5.19, 6.14', choices={
+ 0: 'no', 1: 'yes'}),
+ ChoiceRegister('SILENCING_2', 722, reference='5.20, 6.14', choices={
+ 0: 'no', 1: 'yes'}),
+ ChoiceRegister('ALARM_ACTIVE_SIDES_2' , 723, reference='6.14', choices={
+ 0: 'both', 1: 'high', 2: 'low'},
+ help='Select which side or sides the alarm setpoints can be programmed for'),
+ ChoiceRegister('ALARM_LOGIC_2', 724, reference='6.14', choices={
+ 0: 'de-energize', 1: 'energize'},
+ help='Select alarm 2 output condition in the alarm state. De-energizing is the failsafe behaviour.'),
+ ChoiceRegister('ALARM_ANNUNCIATION_2', 725, reference='6.14', choices={
+ 0: 'no', 1: 'yes'}),
+ ChoiceRegister('OUTPUT_3', 734, reference='6.15', choices={
+ 0: 'off', 1: 'alarm'}),
+ ChoiceRegister('ALARM_3_TYPE', 736, reference='5.19, 6.15', choices={
+ 0: 'process', 1: 'deviation'}, help='Select alarm type. A process alarm responds when the temperature leaves a fixed range. A deviation alarm responds when the temperature deviates from the set point by a set number of degrees'),
+ FloatRegister('ALARM_HYSTERESIS_3', 737, reference='5.18, 6.2, 6.15', help='Set the switching histeresis for the alarm output. This defines a band on the inside of the alarm set point. When the process temperature is in this band, the alarm state will not change.'),
+ ChoiceRegister('LATCHING_3', 738, reference='5.19, 6.15', choices={
+ 0: 'no', 1: 'yes'}),
+ ChoiceRegister('SILENCING_3', 739, reference='5.20, 6.15', choices={
+ 0: 'no', 1: 'yes'}),
+ ChoiceRegister('ALARM_ACTIVE_SIDES_3', 740, reference='6.15', choices={
+ 0: 'both', 1: 'high', 3: 'low'},
+ help='Select which side or sides the alarm setpoints can be programmed for'),
+ ChoiceRegister('ALARM_LOGIC_3', 741, reference='6.16', choices={
+ 0: 'de-energize', 1: 'energize'},
+ help='Select alarm 3 output condition in the alarm state. De-energizing is the failsafe behaviour.'),
+ ChoiceRegister('ALARM_ANNUNCIATION_2', 742, reference='6.16', choices={
+ 0: 'no', 1: 'yes'}),
+ ChoiceRegister('UNITS_TYPE', 900, reference='6.18', choices={
+ 1: 'US, use reset and rate', 2: 'SI, use integral and derivative'}),
+ ChoiceRegister('C_OR_F', 901, reference='6.18', choices={
+ 0: 'fahrenheit', 1: 'celsius'}),
+ ChoiceRegister('FAILURE_MODE', 902, reference='?.?, 6.18', choices={
+ 0: 'bumpless', 1: 'manual', 2: 'off'}),
+ Register('MANUAL_DEFAULT_POWER', 903, reference='6.19'),
+ ChoiceRegister('OPEN_LOOP_DETECT', 904, reference='5.21, 6.19', choices={
+ 0: 'on', 1: 'off'}),
+ ChoiceRegister('EVENT_FUNCTION', 1060, reference='5.8, 6.12', choices={
+ 0: 'none',
+ 1: 'switch to event set point',
+ 2: 'turn off control outputs and disable alarms',
+ 3: 'turn off control outputs',
+ 4: 'lock keyboard',
+ 5: 'switch to manual mode',
+ 6: 'initiate an auto-tune',
+ 7: 'clear alarm',
+ 8: 'lock everything except primary set point',
+ },
+ help='Selects response to INPUT_2'),
+ ChoiceRegister('EVENT_CONDITION', 1061, direction='r', reference='5.8, 6.12', choices={
+ 0: 'low', 1: 'high', 2: 'rise', 3: 'fall'},
+ help='What behavior triggers Events'),
+ ChoiceRegister('RAMPING_MODE', 1100, reference='6.19', choices={
+ 0: 'off', 1: 'startup only', 2: 'startup or setpoint change'}),
+ Register('RAMP_RATE', 1101, reference=''),
+ ChoiceRegister('RAMP_SCALE', 1102, reference='6.19', choices={
+ 0: 'minute', 1: 'hour'}),
+ Register('SET_POINT_MENU_LOCK', 1300, reference='6.21'),
+ Register('OPERATIONS_PAGE_MENU_LOCK', 1301, reference=''),
+ Register('SETUP_PAGE_LOCK', 1302, reference=''),
+ Register('CUSTOM_MENU_LOCK', 1304, reference=''),
+ Register('CALIBRATION_MENU_LOCK', 1305, reference=''),
+ ChoiceRegister('CUSTOM_PROMPT_NUMBER_1', 1400, **_custom_prompt_kwargs),
+ ChoiceRegister('CUSTOM_PROMPT_NUMBER_2', 1401, **_custom_prompt_kwargs),
+ ChoiceRegister('CUSTOM_PROMPT_NUMBER_3', 1402, **_custom_prompt_kwargs),
+ ChoiceRegister('CUSTOM_PROMPT_NUMBER_4', 1403, **_custom_prompt_kwargs),
+ ChoiceRegister('CUSTOM_PROMPT_NUMBER_5', 1404, **_custom_prompt_kwargs),
+ ChoiceRegister('CUSTOM_PROMPT_NUMBER_6', 1405, **_custom_prompt_kwargs),
+ ChoiceRegister('CUSTOM_PROMPT_NUMBER_7', 1406, **_custom_prompt_kwargs),
+ ChoiceRegister('CUSTOM_PROMPT_NUMBER_8', 1407, **_custom_prompt_kwargs),
+ ChoiceRegister('CUSTOM_PROMPT_NUMBER_9', 1408, **_custom_prompt_kwargs),
+ ChoiceRegister('CUSTOM_PROMPT_NUMBER_10', 1409, **_custom_prompt_kwargs),
+ ChoiceRegister('CUSTOM_PROMPT_NUMBER_11', 1410, **_custom_prompt_kwargs),
+ ChoiceRegister('CUSTOM_PROMPT_NUMBER_12', 1411, **_custom_prompt_kwargs),
+ ChoiceRegister('CUSTOM_PROMPT_NUMBER_13', 1412, **_custom_prompt_kwargs),
+ ChoiceRegister('CUSTOM_PROMPT_NUMBER_14', 1413, **_custom_prompt_kwargs),
+ ChoiceRegister('CUSTOM_PROMPT_NUMBER_15', 1414, **_custom_prompt_kwargs),
+ ChoiceRegister('CUSTOM_PROMPT_NUMBER_16', 1415, **_custom_prompt_kwargs),
+ FloatRegister('AMBIENT_TEMPERATURE', 1500, direction='r', reference='6.23', help='Always in deg F, regardless of C_OR_F', decimal=10.),
+ Register('AMBIENT_A_D_COUNTS', 1501, direction='r', reference='6.23'),
+ Register('CHANNEL_1_A_D_COUNTS', 1504, direction='r', reference='6.24'),
+ Register('CHANNEL_2_A_D_COUNTS', 1505, direction='r', reference='6.24'),
+ ChoiceRegister('TEST_DISPLAY', 1513, reference='6.23', choices={
+ 0: 'off', 1: 'on'}, help='Cyclic display test'),
+ ChoiceRegister('TEST_OUTPUT', 1514, reference='6.23', choices={
+ 0: 'none', 1: 'output 1', 2: 'outptut 2', 3: 'output 3',
+ 4: 'output 4', 5: 'all outputs'},
+ help='Turns onn specific output'),
+ Register('LINE_FREQUENCY', 1515, direction='r', reference='6.24', help='AC line freq in Hz'),
+ ChoiceRegister('RESTORE_FACTORY_CALIBRATION', 1601, direction='w', reference='6.24', choices={
+ 0: 'no', 1: 'yes'}),
+ Register('DEFAULT_SETTINGS', 1602, direction='w', reference='6.24'),
+ ChoiceRegister('OVERLOADED_CALIBRATION_1', 1603, direction='w', reference='6.24, 6.25', choices={
+ 0: 'no',
+ 1: 'thermocouple, 0mV',
+ 2: 'thermocouple, 50mV',
+ 3: 'thermocouple, 32deg',
+ 4: 'ground',
+ 5: 'lead resistance',
+ 6: 'RTD, 15 Ohms', # RTD = Resistance Temp. Detector
+ 7: 'RTD, 380 Ohms',
+ 8: 'process 1, 0V',
+ 9: 'process 1, 10V',
+ 10: 'process 1, 4mA',
+ 11: 'process 1, 20mA',
+ }),
+ Register('OUTPUT_CALIBRATION_1_4MA', 1604, direction='w', reference='6.26'),
+ Register('OUTPUT_CALIBRATION_1_20MA', 1605, direction='w', reference='6.26'),
+ Register('OUTPUT_CALIBRATION_1_1V', 1606, direction='w', reference='6.26'),
+ Register('OUTPUT_CALIBRATION_1_10V', 1607, direction='w', reference='6.27'),
+ ChoiceRegister('OVERLOADED_CALIBRATION_2', 1608, direction='w', reference='6.26', choices={
+ 0: 'no',
+ 1: 'process 2, 0V',
+ 2: 'process 2, 10V',
+ 3: 'process 2, 4mA',
+ 4: 'process 2, 20mA',
+ }),
+ Register('OUTPUT_CALIBRATION_2_4MA', 1609, direction='w', reference='6.27'),
+ Register('OUTPUT_CALIBRATION_2_20MA', 1610, direction='w', reference='6.27'),
+ Register('OUTPUT_CALIBRATION_2_1V', 1611, direction='w', reference='6.27'),
+ Register('OUTPUT_CALIBRATION_2_10V', 1612, direction='w', reference='6.27'),
+ Register('OUTPUT_CALIBRATION_4_4MA', 1619, direction='w', reference='6.27'),
+ Register('OUTPUT_CALIBRATION_4_20MA', 1620, direction='w', reference='6.27'),
+ Register('OUTPUT_CALIBRATION_4_1V', 1621, direction='w', reference='6.27'),
+ Register('OUTPUT_CALIBRATION_4_10V', 1622, direction='w', reference='6.27'),
+ FloatRegister('HIGH_RESOLUTION', 1707, direction='r', reference='6.23', help='High resolution input value', decimal_offset=10.),
+ ]
+ del(_custom_prompt_kwargs)
+ _register = dict((r.name, r) for r in _registers)
+
+ def __init__(self, controller=1, device='/dev/ttyS0', baudrate=9600):
+ """
+ controller : MTCA controller ID
+ device : serial port you're using to connect to the controller
+ baudrate : baud rate for which you've configured your controller
+ """
+ # the rated max current from controller specs
+ self._spec_max_current = 4.0 # Amps
+
+ self._controller = controller
+
+ # from the Melcor Manual, A.4 (p96), messages should be coded
+ # in eight-bit bytes, with no parity bit, and one stop bit
+ # (8N1).
+ self._client = _ModbusSerialClient(
+ method='rtu',
+ port=device, # '/dev/ttyS0' or 0
+ bytesize=_serial.EIGHTBITS,
+ parity=_serial.PARITY_NONE,
+ stopbits=_serial.STOPBITS_ONE,
+ baudrate=baudrate,
+ timeout=0.5,
+ )
+
+ self._decimal = None
+
+ def _read(self, register_name):
+ register = self._register[register_name]
+ if 'r' not in register.direction:
+ raise ValueError(register_name)
+ if register.needs_decimal and not self._decimal:
+ self._decimal = self._get_decimal()
+ rc = self._client.read_holding_registers(
+ address=register.value, count=1, unit=self._controller)
+ assert rc.function_code < 0x80
+ value = rc.registers[0]
+ v = register.decode(value, decimal=self._decimal)
+ _LOG.info('read %s: %s %s (%s)' % (register_name, rc, v, rc.registers))
+ return v
+
+ def _write(self, register_name, value):
+ register = self._register[register_name]
+ if 'w' not in register.direction:
+ raise ValueError(register_name)
+ if register.needs_decimal and not self._decimal:
+ self._decimal = self._get_decimal()
+ v = register.encode(value, decimal=self._decimal)
+ _LOG.info('write %s: %s (%s)' % (register_name, v, value))
+ rc = self._client.write_register(
+ address=register.value, value=v, unit=self._controller)
+ assert rc.function_code < 0x80
+
+ def _get_decimal(self):
+ return self._read('DECIMAL_1')
+
+ # Support for Backend methods
+
+ def get_temp(self):
+ return self._read('HIGH_RESOLUTION')
+
+ def get_ambient_temp(self):
+ return self._convert_F_to_C(self._read('AMBIENT_TEMPERATURE'))
+
+ def set_max_current(self, max):
+ """Set the max current in Amps
+
+ 0.2 A is the default max current since it seems ok to use
+ without fluid cooled heatsink. If you are cooling the
+ heatsink, use 1.0 A, which seems safely below the peltier's
+ 1.2 A limit.
+
+ Note to Melcor enthusiasts: this method set's both the 'above'
+ and 'below' limits.
+ """
+ max_percent = max / self._spec_max_current * 100
+ self._write('HIGH_POWER_LIMIT_ABOVE', max_percent)
+ self._write('HIGH_POWER_LIMIT_BELOW', max_percent)
+ self._max_current = max
+
+ def get_max_current(self):
+ percent = self._read('HIGH_POWER_LIMIT_ABOVE')
+ above = percent/100. * self._spec_max_current
+ percent = self._read('HIGH_POWER_LIMIT_BELOW')
+ below = percent/100. * self._spec_max_current
+ #setpoint = self._read('POWER_LIMIT_SET_POINT')
+ assert above == below, 'Backend() only expects a single power limit'
+ self._max_current = above
+ return above
+
+ def get_current(self):
+ pout = self._read('PERCENT_OUTPUT')
+ cur = self._spec_max_current * pout / 100.0
+ return cur
+
+ def get_modes(self):
+ register = self._register['AUTO_MANUAL_OP_MODE']
+ return sorted(register.choices.values())
+
+ def get_mode(self):
+ return self._read('AUTO_MANUAL_OP_MODE')
+
+ def set_mode(self, mode):
+ self._write('AUTO_MANUAL_OP_MODE', mode)
+
+ def dump_configuration(self):
+ for register in self._registers:
+ if 'r' in register.direction:
+ value = self._read(register.name)
+ print('%s\t%s' % (register.name, value))
+
+ # ManualMixin methods
+
+ def set_current(self, current):
+ if current > self._spec_max_current:
+ raise ValueError('current {} exceeds spec maximum {}'.format(
+ current, self._spec_max_current))
+ pout = current / self._spec_max_current * 100.0
+ self._write('REG_MANUAL_SET_POINT', pout)
+
+ # PIDMixin methods
+
+ def set_setpoint(self, setpoint):
+ self._write('SET_POINT_1', setpoint)
+
+ def get_setpoint(self):
+ return self._read('SET_POINT_1')
+
+ def _set_gains(self, output, proportional=None, integral=None,
+ derivative=None):
+ """
+ (output, proportional, integral, derivative, dead_band) -> None
+ output : 1 (cooling) or 2 (heating)
+ proportional : propotional gain band in amps per degrees C
+ integral : integral weight in minutes (0.00 to 99.99)
+ derivative : derivative weight in minutes (? to ?)
+
+ Don't use derivative, dead time.
+ Cycle time?
+ Histerysis?
+ Burst?
+
+ See 5.10 and the pages afterwards in the manual for Melcor's
+ explanation. The integral with respect to t' is actually only
+ from the time that T_samp has been with T_prop of T_set (not
+ -inf), and
+ """
+ if proportional is not None:
+ max_current = self.get_max_current()
+ propband = max_current/proportional
+ propband_name = 'PROPBAND_%d' % output
+ register = self._register[propband_name]
+ if propband > register.max:
+ # round down, to support bang-bang experiments
+ _LOG.warn(
+ 'limiting propband %d to maximum: {:n} -> {:n} C'.format(
+ propband, register.max))
+ propband = register.max
+ self._write(propband_name, propband)
+ if integral is not None:
+ self._write('INTEGRAL_%d' % output, integral)
+ if derivative is not None:
+ self._write('DERIVATIVE_%d' % output, derivative)
+
+ def _get_gains(self, output):
+ propband = self._read('PROPBAND_%d' % output)
+ integral = self._read('INTEGRAL_%d' % output)
+ derivative = self._read('DERIVATIVE_%d' % output)
+ max_current = self.get_max_current()
+ proportional = max_current/propband
+ return (proportional, integral, derivative)
+
+ def set_cooling_gains(self, proportional=None, integral=None,
+ derivative=None):
+ self._set_gains(
+ output=1, proportional=proportional, integral=integral,
+ derivative=derivative)
+
+ def get_cooling_gains(self):
+ return self._get_gains(output=1)
+
+ def set_heating_gains(self, proportional=None, integral=None,
+ derivative=None):
+ self._set_gains(
+ output=2, proportional=proportional, integral=integral,
+ derivative=derivative)
+
+ def get_heating_gains(self):
+ return self._get_gains(output=2)
+
+ def get_feedback_terms(self):
+ """
+ """
+ pid = int(self._read('PID_POWER_1'))
+ prop = int(self._read('PROP_TERM_1'))
+ ntgrl = int(self._read('INTEGRAL_TERM_1'))
+ deriv = int(self._read('DERIVATIVE_TERM_1'))
+ return (pid, prop, ntgrl, deriv)
+
+ def clear_integral_term(self):
+ # The controller resets the integral term when the temperature
+ # is outside the propbands
+ _LOG.debug('clearing integral term')
+ cp,ci,cd = self.get_cooling_gains()
+ hp,hi,hd = self.get_heating_gains()
+ sp = self.get_setpoint()
+ small_temp_range = 0.1
+ max_current = self.get_max_current()
+ p = max_current / small_temp_range
+ self.set_cooling_gains(proportional=p)
+ self.set_heating_gains(proportional=p)
+ while True:
+ _LOG.debug('waiting for an out-of-propband temperature')
+ if abs(self.get_temp() - sp) > small_temp_range:
+ break # we're out of the propband, I-term resets
+ self.set_cooling_gains(proportional=cp)
+ self.set_heating_gains(proportional=hp)
+ _LOG.debug('integral term cleared')
+
+ # utility methods
+
+ def sanity_check(self):
+ "Check that some key registers have the values we expect"
+ self._sanity_check('UNITS_TYPE', 'SI, use integral and derivative')
+ self._sanity_check('C_OR_F', 'celsius')
+ self._sanity_check('FAILURE_MODE', 'off')
+ self._sanity_check('RAMPING_MODE', 'off')
+ self._sanity_check('OUTPUT_1', 'cool')
+ self._sanity_check('OUTPUT_2', 'heat')
+ self._sanity_check('AUTO_MANUAL_OP_MODE', 'PID')
+
+ def _sanity_check(self, register_name, expected_value):
+ value = self._read(register_name)
+ if value != expected_value :
+ _LOG.error('invalid value %s for %s (expected %s)'
+ % (value, register_name, expected_value))
+ raise ValueError(value)
--- /dev/null
+# Copyright (C) 2011 W. Trevor King <wking@drexel.edu>
+#
+# This file is part of tempcontrol.
+#
+# tempcontrol is free software: you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation, either
+# version 3 of the License, or (at your option) any later version.
+#
+# tempcontrol is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with tempcontrol. If not, see
+# <http://www.gnu.org/licenses/>.
+
+import threading as _threading
+import time as _time
+
+from .. import LOG as _LOG
+from . import Backend as _Backend
+from . import ManualMixin as _ManualMixin
+from . import PIDMixin as _PIDMixin
+
+
+class TestBackend (_Backend, _ManualMixin, _PIDMixin):
+ """Test backend for demonstrating `Controller` function
+
+ The underlying temperature decay model is exponential, which is
+ often refered to as "Newton's law of cooling"
+
+ dT/dt = h (Tbath - T)
+
+ where `h` is the transfer coefficient (with some scaling terms
+ brushed under the rug). To make the system more realistic, I've
+ also added a dead time, so temperatures returned by `.get_temp()`
+ actually correspond to the system temperature `dead_time` seconds
+ before the measurement was taken. Finally, there's a
+ `drive_coefficient` `d`, which gives the rate of temperature
+ change due to a applied driving current `I`, so
+
+ dT(y)/dt = h (Tbath(t) - T(t)) + d I(t-L)
+
+ This model is often refered to as a FOPDT (first-order plus dead
+ time) or KLT (K: static gain, L: time delay, T: time constant/lag)
+ model. Translating our model above into process-control jargon:
+
+ * Process variable y(t) corresponds to our T(t).
+ * Manipulated variable u(t) corresponds to our I(t).
+ * Process gain dy/du (often denoted K_p). For our parameters
+ above, K_p = dy/du = dT/dI = d/h.
+ * Process time constant (aka lag, often denoted tau or T; the
+ exponential decay timescale). For our parameters above,
+ tau = 1/h.
+ * Dead time (often denoted L or theta; the time delay between a
+ change system and that change being reflected in the process
+ variable). For our parameters above, L = dead_time.
+
+ The response function for a FOPDT process is
+
+ G(s) = K_p e^{-Ls} / (1 + T s)
+
+ For interesting experimental evidence of exponential cooling, see
+ Kaliszan et al., "Verification of the exponential model of body
+ temperature decrease after death in pigs".
+ doi: 10.1113/expphysiol.2005.030551
+ http://ep.physoc.org/content/90/5/727.long
+ September 1, 2005 Experimental Physiology, 90, 727-738.
+ """
+ def __init__(self, bath=20, transfer_coefficient=0.1,
+ drive_coefficient=1., max_current=1., dead_time=1.,
+ process_period=0.01, log_stream=None):
+ """
+ bath : float
+ bath (ambient) temperature in degrees Celsius
+ transfer_coefficient : float
+ between the system and the bath, in inverse seconds
+ drive_coefficient : float
+ for the applied current, in degrees Celsius per amp
+ max_current : float
+ maximum current in amps
+ dead_time : float
+ time lag in seconds between an internal system temperature
+ and the corresponding `.get_temp()` reading
+ process_period : float
+ time in seconds between process-thread temperature updates
+ """
+ self._bath = bath
+ self._transfer_coefficient = transfer_coefficient
+ self._drive_coefficient = drive_coefficient
+ self._max_current = max_current
+ self._dead_periods = int(dead_time/process_period)
+ self._process_period = process_period
+ self._log_stream = log_stream
+ self._setpoint = 0
+ self._i_term = self._d_term = 0
+ self._p_cool = self._d_cool = 0
+ self._p_heat = self._d_heat = 0
+ self._i_cool = self._i_heat = float('inf')
+ self._manual_current = 0
+ self._mode = 'PID'
+ self._temperatures = [bath]*(self._dead_periods+1)
+ self._start_process_thread()
+
+ def cleanup(self):
+ self._stop_process_thread()
+
+ def _start_process_thread(self):
+ self._stop_process = False
+ self._process_thread = _threading.Thread(
+ target=self._run_process, name='process')
+ self._process_thread.start()
+
+ def _stop_process_thread(self):
+ self._stop_process = True
+ self._process_thread.join()
+
+ def _run_process(self):
+ if self._log_stream:
+ line = '\t'.join((
+ 'time', 'setpoint', 'process temperature',
+ 'measured temperature', 'dT_bath', 'dT_drive', 'current',
+ 'intergal', 'derivative'))
+ self._log_stream.write('#{}\n'.format(line))
+ dt = self._process_period
+ next_time = _time.time() + dt
+ while not self._stop_process:
+ T = self._temperatures[-1]
+ dT_bath = self._transfer_coefficient * (self._bath - T)
+ current = self.get_current(_increment_i_term=True)
+ dT_drive = self._drive_coefficient * current
+ if self._log_stream:
+ line = '\t'.join(str(x) for x in (
+ _time.time(), self._setpoint, T, self.get_temp(), dT_bath*dt,
+ dT_drive*dt, current, self._i_term, self._d_term))
+ self._log_stream.write(line + '\n')
+ T += (dT_bath + dT_drive) * dt
+ self._temperatures.pop(0)
+ self._temperatures.append(T)
+ s = next_time - _time.time()
+ if s > 0:
+ _time.sleep(s)
+ next_time += dt
+
+ def _limited_current(self, current):
+ if current > self._max_current:
+ #_LOG.debug('limiting current to maximum: {:n} -> {:n} amps'.format(
+ # current, self._max_current))
+ return self._max_current
+ elif current < -self._max_current:
+ #_LOG.debug('limiting current to maximum: {:n} -> {:n} amps'.format(
+ # current, -self._max_current))
+ return -self._max_current
+ return current
+
+ def get_temp(self):
+ return self._temperatures[1]
+
+ def get_ambient_temp(self):
+ return self._bath
+
+ def set_max_current(self, max):
+ self._max_current = max
+
+ def get_max_current(self):
+ return self._max_current
+
+ def get_current(self, _increment_i_term=True):
+ if self._mode == 'manual':
+ return self._manual_current
+ elif self._mode == 'PID':
+ T_pref,T = self._temperatures[:2]
+ dT_s = (self._setpoint - T)
+ if T > self._setpoint:
+ p,i,d = self._p_cool, self._i_cool, self._d_cool
+ else:
+ p,i,d = self._p_heat, self._i_heat, self._d_heat
+ dT_t = T - T_pref
+ dt = self._process_period
+ if _increment_i_term is True:
+ self._i_term += dT_s * dt
+ self._d_term = -dT_t / dt # = de(t)/dt with constant setpoint
+ return self._limited_current(
+ p*(dT_s + self._i_term/i + d*self._d_term))
+ raise ValueError(self._mode)
+
+ def get_modes(self):
+ return ['manual', 'PID']
+
+ def get_mode(self):
+ return self._mode
+
+ def set_mode(self, mode):
+ self._mode = mode
+
+ # ManualMixin methods
+
+ def set_current(self, current):
+ self._manual_current = self._limited_current(current)
+
+ # PIDMixin methods
+
+ def set_setpoint(self, setpoint):
+ self._setpoint = setpoint
+
+ def get_setpoint(self):
+ return self._setpoint
+
+ def set_cooling_gains(self, proportional=None, integral=None,
+ derivative=None):
+ if proportional is not None:
+ self._p_cool = proportional
+ if integral is not None:
+ self._i_cool = integral
+ if derivative is not None:
+ self._d_cool = derivative
+
+ def get_cooling_gains(self):
+ return (self._p_cool, self._i_cool, self._d_cool)
+
+ def set_heating_gains(self, proportional=None, integral=None,
+ derivative=None):
+ if proportional is not None:
+ self._p_heat = proportional
+ if integral is not None:
+ self._i_heat = integral
+ if derivative is not None:
+ self._d_heat = derivative
+
+ def get_heating_gains(self):
+ return (self._p_heat, self._i_heat, self._d_heat)
+
+ def get_feedback_terms(self):
+ return (self.get_current(), self._setpoint - self.get_temp(),
+ self._i_term, self._d_term)
+
+ def clear_integral_term(self):
+ self._i_term = 0
--- /dev/null
+# Copyright (C) 2008-2011 W. Trevor King <wking@drexel.edu>
+#
+# This file is part of tempcontrol.
+#
+# tempcontrol is free software: you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation, either
+# version 3 of the License, or (at your option) any later version.
+#
+# tempcontrol is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with tempcontrol. If not, see
+# <http://www.gnu.org/licenses/>.
+
+import time as _time
+
+from aubio.aubioclass import pitch as _pitch
+from aubio.aubioclass import fvec as _fvec
+from numpy import array as _array
+from numpy import exp as _exp
+from numpy import linspace as _linspace
+from numpy import log as _log
+from scipy.interpolate import interp1d as _interp1d
+
+from hooke.util.fit import ModelFitter as _ModelFitter
+
+from . import LOG as _LOG
+
+
+class Controller (object):
+ """PID temperature control frontend.
+
+ backend: tempcontrol.backend.Backend instance
+ backend driving your particular harware
+ setpoint: float
+ initial setpoint in degrees Celsius
+ min: float
+ minimum temperature in degrees Celsius (for sanity checks)
+ max: float
+ maximum temperature in degrees Celsius (for sanity checks)
+ """
+ def __init__(self, backend, setpoint=20.0, min=5.0, max=50.0):
+ self._backend = backend
+ self._setpoint = setpoint
+ self._min = min
+ self._max = max
+
+ # basic user interface methods
+
+ def get_temp(self):
+ """Return the current process temperature in degrees Celsius
+
+ We should expose this to users, so they don't need to go
+ mucking about in `._backend`.
+ """
+ return self._backend.get_temp()
+
+ def set_temp(self, setpoint, **kwargs):
+ """Change setpoint to `setpoint` and wait for stability
+ """
+ self._backend.set_setpoint(setpoint)
+ self.wait_for_stability(setpoint=setpoint, **kwargs)
+
+ def wait_for_stability(self, setpoint, tolerance=0.3, time=10.,
+ timeout=-1, sleep_time=0.1, return_data=False):
+ """Wait until the temperature is sufficiently stable
+
+ setpoint : float
+ target temperature in degrees C
+ tolerance : float
+ maximum allowed deviation from `setpoint` in dregrees C
+ time : float
+ time the temperature must remain in the allowed region
+ before the signal is delared "stable"
+ timeout : float
+ maximum time to wait for stability. Set to -1 to never
+ timeout.
+ sleep_time : float
+ time in seconds to sleep between reads to avoid an
+ overly-busy loop
+ return_data : boolean
+ if true, also return a list of `(timestamp, temp)` tuples
+ read while waiting
+
+ Read the temperature every `sleep_time` seconds until the
+ temperature has remained within `tolerance` of `setpoint` for
+ `time`. If the stability criteria are met, return `True`
+ (stable). If `timeout` seconds pass before the criteria are
+ met, return `False` (not stable).
+ """
+ _LOG.debug(('wait until the temperature is stable at {:n} +/- {:n} C '
+ 'for {:n} seconds').format(setpoint, tolerance, time))
+ stable = False
+ if return_data:
+ data = []
+ start_time = _time.time()
+ stable_time = start_time + time
+ if timeout < 0:
+ timeout_time = None
+ else:
+ timeout_time = start_time + timeout
+ while True:
+ T = self.get_temp()
+ in_range = abs(T - setpoint) < tolerance
+ t = _time.time()
+ if return_data:
+ data.append((t, T))
+ if in_range:
+ if t >= stable_time:
+ _LOG.debug('temperature is stable')
+ stable = True
+ break # in range for long enough
+ else:
+ stable_time = t + time # reset target time
+ if timeout_time and t > timeout_time:
+ break # timeout
+ _time.sleep(sleep_time)
+ if return_data:
+ return (stable, data)
+ return stable
+
+ def is_stable(self, setpoint, time, **kwargs):
+ return self.wait_for_stability(
+ setpoint=setpoint, time=time, timeout=time, **kwargs)
+
+ def estimate_temperature_sensitivity(self, num_temps=10, sleep_time=0.1,
+ max_repeats=10):
+ temps = []
+ last_temp = None
+ repeats = 0
+ while True:
+ temp = self.get_temp()
+ if repeats == max_repeats:
+ last_temp = None
+ if temp == last_temp:
+ repeats += 1
+ else:
+ temps.append(temp)
+ if len(temps) > num_temps:
+ break
+ repeats = 0
+ last_temp = temp
+ _time.sleep(sleep_time)
+ temps = _array(temps)
+ return temps.std()
+
+ # debugging methods
+
+ def check_feedback_terms(self):
+ """Check a backend's interpretation of its PID feedback terms.
+
+ Some backends provide an interface to read out their PID
+ feedback terms, but the interface is not always well
+ documented. This method reads out the terms, and compares
+ them with our own calculations (when possible) to test the
+ backend's interpretation.
+ """
+ c = self._backend.get_current()
+ pid,prop,ntgrl,deriv = self._backend.get_feedback_terms()
+ T = self.get_temp()
+ Tset = self._backend.get_setpoint()
+ if T > Tset: # cooling
+ p,i,d = self._backend.get_cooling_gains()
+ else: # heating
+ p,i,d = self._backend.get_heating_gains()
+ _LOG.info(('pid(read) {:n} =? sum(calc from terms) {:n} '
+ '=? cur(read) {:n} A').format(pid, prop+ntgrl+deriv, c))
+ _LOG.info('read: p {:n}, i {:n}, d {:n}'.format(p,i,d))
+ _LOG.info('calc: p {:n}'.format(p*(Tset-T)))
+
+ # tuning experiments and data processing
+
+ def get_step_response(self, current_a, current_b,
+ sleep_time=0.1, stable_time=10., **kwargs):
+ "Measure a step response for later analysis"
+ _LOG.debug('measure step response')
+ if 'time' in kwargs:
+ raise ValueError(kwargs)
+ kwargs['time'] = stable_time
+ kwargs['sleep_time'] = sleep_time
+ mode = self._backend.get_mode()
+ if mode == 'manual':
+ manual_current = self._backend.get_current()
+ else:
+ self._backend.set_mode('manual')
+ _LOG.debug('set first current and wait for stability')
+ self._backend.set_current(current_a)
+ temp_a = self.get_temp()
+ while not self.is_stable(temp_a, **kwargs):
+ temp_a = self.get_temp()
+ _LOG.debug('stabilized at {:n} C with {:n} amps'.format(
+ temp_a, current_a))
+ _LOG.debug('set second current and wait for stability')
+ data = []
+ start_time = _time.time()
+ self._backend.set_current(current_b)
+ temp_b = temp_a
+ while True:
+ stable,d = self.is_stable(temp_b, return_data=True, **kwargs)
+ data.extend(d)
+ temp_b = self.get_temp()
+ if stable:
+ break
+ _LOG.debug('stabilized at {:n} C with {:n} amps'.format(
+ temp_b, current_b))
+ if mode == 'manual':
+ self._backend.set_current(manual_current)
+ else:
+ self._backend.set_mode(mode)
+ return data
+
+ @staticmethod
+ def analyze_step_response(step_response, current_shift):
+ rates = [(Tb-Ta)/(tb-ta) for ((ta,Ta),(tb,Tb))
+ in zip(step_response, step_response[1:])]
+ # TODO: averaging filter?
+ max_rate_i = max_rate = 0
+ for i,rate in enumerate(rates):
+ if abs(rate) > max_rate: # handle steps in both directions
+ max_rate_i = i
+ max_rate = abs(rate)
+ max_rate_time,max_rate_temp = step_response[max_rate_i] # TODO: avg i and i+1?
+ time_a,temp_a = step_response[0]
+ max_rate_time -= time_a
+ dead_time = max_rate_time - (max_rate_temp - temp_a) / max_rate
+ t_data = _array([t for t,T in step_response[max_rate_i:]])
+ T_data = _array([T for t,T in step_response[max_rate_i:]])
+ model = ExponentialModel(T_data, info={'x data (s)': t_data})
+ tau,T0,T8 = model.fit()
+ gain = (T8 - temp_a) / current_shift
+ return (gain, dead_time, tau, max_rate)
+
+ def get_bang_bang_response(self, dead_band=0.8, num_oscillations=10,
+ max_dead_band_time=30, sleep_time=0.1):
+ orig_cool_gains = self._backend.get_cooling_gains()
+ orig_heat_gains = self._backend.get_heating_gains()
+ _LOG.debug('measure bang-bang response')
+ mode = self._backend.get_mode()
+ if mode != 'PID':
+ self._backend.set_mode('PID')
+ i=0
+ setpoint = self._backend.get_setpoint()
+ self._backend.set_cooling_gains(float('inf'), float('inf'), 0)
+ self._backend.set_heating_gains(float('inf'), float('inf'), 0)
+ start_time = _time.time()
+ temp = self.get_temp()
+ heat_first = self._is_heating(
+ temp=temp, setpoint=setpoint, dead_band=dead_band)
+ _LOG.debug('wait to exit dead band')
+ t = start_time
+ while heat_first is None:
+ if t - start_time > max_dead_band_time:
+ msg = 'still in dead band after after {:n} seconds'.format(
+ max_dead_band_time)
+ _LOG.error(msg)
+ raise ValueError(msg)
+ _time.sleep(sleep_time)
+ t = _time.time()
+ temp = t.get_temp()
+ heat_first = self._is_heating(
+ temp=temp, setpoint=setpoint, dead_band=dead_band)
+ _LOG.debug('read {:d} oscillations'.format(num_oscillations))
+ data = []
+ heating = heat_first
+ while i < num_oscillations*2 + 1:
+ t = _time.time()
+ temp = self.get_temp()
+ # drop first half cycle (possibly includes ramp to setpoint)
+ if i > 0:
+ data.append((t, temp))
+ is_heating = self._is_heating(
+ temp=temp, setpoint=setpoint, dead_band=dead_band)
+ if heating is True and is_heating is False:
+ _LOG.debug('transition to cooling (i={:d})'.format(i))
+ heating = False
+ i += 1
+ elif heating is False and is_heating is True:
+ _LOG.debug('transition to heating (i={:d})'.format(i))
+ heating = True
+ i += 1
+ _time.sleep(sleep_time)
+ self._backend.set_cooling_gains(*orig_cool_gains)
+ self._backend.set_heating_gains(*orig_heat_gains)
+ if mode != 'PID':
+ self._backend.set_mode(mode)
+ return data
+
+ @staticmethod
+ def analyze_bang_bang_response(bang_bang_response):
+ t_data = _array([t for t,T in bang_bang_response])
+ T_data = _array([T for t,T in bang_bang_response])
+ amp = (T_data.max() - T_data.min()) / 2
+ freq = Controller._get_frequency(x_data=t_data, y_data=T_data)
+ period = 1./freq
+ return (amp, period)
+
+ def get_ultimate_cycle_response(self, proportional, period):
+ orig_cool_gains = self._backend.get_cooling_gains()
+ orig_heat_gains = self._backend.get_heating_gains()
+ _LOG.debug('measure ultimate cycle response')
+ mode = self._backend.get_mode()
+ if mode != 'PID':
+ self._backend.set_mode('PID')
+ # TODO...
+ self._backend.set_cooling_gains(*orig_cool_gains)
+ self._backend.set_heating_gains(*orig_heat_gains)
+ if mode != 'PID':
+ self._backend.set_mode(mode)
+ return data
+
+ @staticmethod
+ def analyze_ultimate_cycle_response(ultimate_cycle_response):
+ amp,period = Controller.analyze_bang_bang_response(
+ ultimate_cycle_response)
+ return period
+
+ # tuning rules
+
+ @staticmethod
+ def ziegler_nichols_step_response(gain, dead_time, tau, mode='PID'):
+ r = dead_time / tau
+ if r < 0.1 or r > 1:
+ _LOG.warn(('Ziegler-Nichols not a good idea when '
+ 'dead-time/tau = {:n}').format(r))
+ pkern = tau/(gain*dead_time)
+ if mode == 'P':
+ return (pkern, float('inf'), 0)
+ elif mode == 'PI':
+ return (0.9*pkern, 3.3*dead_time, 0)
+ elif mode == 'PID':
+ return (1.2*pkern, 2*dead_time, dead_time/2.)
+ raise ValueError(mode)
+
+ def ziegler_nichols_bang_bang_response(self, amplitude, period,
+ max_current=None, mode='PID'):
+ if max_current is None:
+ max_current = self._backend.get_max_current()
+ return self._ziegler_nichols_bang_bang_response(
+ amplitude, period, max_current=max_current, mode=mode)
+
+ @staticmethod
+ def _ziegler_nichols_bang_bang_response(amplitude, period,
+ max_current, mode='PID'):
+ """
+ amplitude : float
+ center-to-peak amplitude (in K) of bang-bang oscillation
+ period : float
+ period (in seconds) of the critical oscillation
+ max_current : float
+ "bang" current (in amps)
+ """
+ proportional = float(max_current)/amplitude
+ period = float(period)
+ if mode == 'P':
+ return (proportional/2, float('inf'), 0)
+ elif mode == 'PI':
+ return (proportional/3, 2*period, 0)
+ elif mode == 'PID':
+ return (proportional/2, period, period/4)
+ raise ValueError(mode)
+
+ def ziegler_nichols_ultimate_cycle_response(self, proportional, period):
+ """
+ proportional : float
+ critical P-only gain (ultimate gain, for sustained oscillation)
+ period : float
+ period (in seconds) of the critical oscillation
+
+ Microstar Laboratories has a `nice analysis`_ on ZN
+ limitations, which points out that ZN-tuning assumes your
+ system has the FOPDT transfer function (see `TestBackend` for
+ details).
+
+ .. _nice analysis: http://www.mstarlabs.com/control/znrule.html
+ """
+ if mode == 'P':
+ return (0.50*proportional, float('inf'), 0)
+ elif mode == 'PI':
+ return (0.45*proportional, period/1.2, 0)
+ elif mode == 'PID':
+ return (0.60*proportional, period/2, period/8)
+ raise ValueError(mode)
+
+ @staticmethod
+ def cohen_coon_step_response(gain, dead_time, tau, mode='PID'):
+ r = dead_time / tau
+ pkern = tau/(gain*dead_time)
+ if mode == 'P':
+ return (pkern*(1+r/3.), float('inf'), 0)
+ elif mode == 'PI':
+ return (pkern*(0.9+r/12.), (30.+3*r)/(9+20*r)*dead_time, 0)
+ elif mode == 'PD': # double check
+ return (1.24*pkern*(1+0.13*tf), float('inf'),
+ (0.27-0.36*t)/(1-0.87*t)*dead_time)
+ elif mode == 'PID':
+ return (pkern*(4./3+r/4.), (32.-6*r)/(13.-8*r)*dead_time,
+ 4/(11.+2*r)*dead_time)
+ raise ValueError(mode)
+
+ @staticmethod
+ def wang_juang_chan_step_response(gain, dead_time, tau, mode='PID'):
+ """Wang-Juang-Chan tuning
+ """
+ K,L,T = (gain, dead_time, tau)
+ if mode == 'PID':
+ return ((0.7303+0.5307*T/L)*(T+0.5*L)/(K*(T+L)),
+ T + 0.5*L,
+ 0.5*L*T / (T + 0.5*L))
+ raise ValueError(mode)
+
+ # utility methods
+
+ def _wait_until_close(self, setpoint, tolerance=0.3, sleep_time=0.1):
+ while abs(self.get_temp() - setpoint) > tolerance:
+ _time.sleep(sleep_time)
+
+ def _time_function(self, function, args=(), kwargs=None, count=10):
+ "Rough estimate timing of get_temp(), takes me about 0.1s"
+ if kwargs is None:
+ kwargs = {}
+ start = _time.time()
+ for i in range(count):
+ function(*args, **kwargs)
+ stop = _time.time()
+ return float(stop-start)/count
+
+ def _is_heating(self, temp=None, setpoint=None, dead_band=None):
+ if temp is None:
+ temp = self.get_temp()
+ if setpoint is None:
+ temp = self._backend.get_setpoint()
+ low_temp = high_temp = setpoint
+ if dead_band:
+ low_temp -= dead_band
+ high_temp += dead_band
+ if temp < low_temp:
+ return False
+ elif temp > high_temp:
+ return True
+ return None
+
+ def _select_parameter(self, heating_result=None, cooling_result=None,
+ dead_band_result=None, **kwargs):
+ heating = self._is_heating(**kwargs)
+ if heating:
+ return heating_result
+ elif heating is False:
+ return cooling_result
+ return dead_band_result
+
+ @staticmethod
+ def _resample_with_constant_dx(x_data, y_data):
+ f = _interp1d(x_data, y_data)
+ x = _linspace(x_data[0], x_data[-1], len(x_data))
+ y = f(x)
+ return x, y
+
+ @staticmethod
+ def _get_frequency(x_data, y_data):
+ x,y = Controller._resample_with_constant_dx(x_data, y_data)
+ dx = x[1] - x[0]
+ yvec = _fvec(len(y_data))
+ mean = y.mean()
+ for i,_y in enumerate(y_data):
+ yvec.set(_y - mean, i)
+ fake_sample_rate = 8000 # aubio is built for audio
+ p = _pitch(mode='schmitt', bufsize=len(y_data), hopsize=len(y_data),
+ samplerate=fake_sample_rate, omode='freq', tolerance=0.1)
+ freq = p(yvec) / (fake_sample_rate * dx)
+ _LOG.debug('pitch: {:n}, sample rate {:n}'.format(freq, 1./dx))
+ del(p)
+ del(yvec)
+ return freq
+
+ @staticmethod
+ def _check_range(value, min, max):
+ if value < min:
+ raise ValueError('%g < %g' % (value, min))
+ if value > max:
+ raise ValueError('%g > %g' % (value, max))
+
+ def _check_temp(temp):
+ self._check_range(temp, self._min, self._max)
+
+
+class ExponentialModel (_ModelFitter):
+ "Exponential decay model"
+ def model(self, params):
+ tau,y0,y8 = params
+ x_data = self.info['x data (s)']
+ x0 = x_data[0] # raw times in seconds are too far from the epoc
+ a = 1 - y0/y8
+ self._model_data[:] = y8*(1-a*_exp(-(x_data-x0)/tau))
+ return self._model_data
+
+ def guess_initial_params(self, outqueue=None, **kwargs):
+ x_data = self.info['x data (s)']
+ y_data = self._data
+ y8 = y_data[-1]
+ x_mid = x_data[int(len(x_data)/2)]
+ y_mid = y_data[int(len(y_data)/2)]
+ x_start = x_data[0]
+ y_start = y_data[0]
+ tau = (x_mid - x_start)/_log((y_start-y8)/(y_mid-y8))
+ return (tau, y_start, y8)
+
+ def guess_scale(self, params, outqueue=None, **kwargs):
+ return (1., 1., 1.)
--- /dev/null
+# Copyright (C) 2008-2011 W. Trevor King <wking@drexel.edu>
+#
+# This file is part of tempcontrol.
+#
+# tempcontrol is free software: you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation, either
+# version 3 of the License, or (at your option) any later version.
+#
+# tempcontrol is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with tempcontrol. If not, see
+# <http://www.gnu.org/licenses/>.
+
+"Basic testing for `Controller`\s and `Backend`\s"
+
+import time as _time
+
+from . import LOG as _LOG
+from .backend import get_backend as _get_backend
+from controller import Controller as _Controller
+
+
+def test_backend(backend=None):
+ internal_backend = False
+ if not backend:
+ internal_backend = True
+ backend = _get_backend('test')()
+ try:
+ sp = backend.get_setpoint()
+ _LOG.info('temperature = {:n} C'.format(backend.get_temp()))
+ _LOG.info('setpoint = {:n} C'.format(sp))
+ _LOG.info('current = {:n} A'.format(backend.get_current()))
+
+ _set_and_check_setpoint(backend=backend, setpoint=5.0)
+ _check_max_current(backend=backend)
+ _set_and_check_setpoint(backend=backend, setpoint=50.0)
+ _check_max_current(backend=backend)
+ _set_and_check_setpoint(backend=backend, setpoint=sp)
+ finally:
+ if internal_backend:
+ backend.cleanup()
+
+def _set_and_check_setpoint(backend, setpoint):
+ _LOG.info('setting setpoint to {:n} C'.format(setpoint))
+ c.set_setpoint(setpoint)
+ sp = c.get_setpoint()
+ _LOG.info('setpoint = {:n} C'.format(sp))
+ if sp != setpoint:
+ msg = 'read setpoint {:n} != written setpoint {:n}'.format(
+ sp, setpoint)
+ _LOG.error(msg)
+ raise Exception(msg)
+
+def _check_max_current(backend):
+ # give the backend some time to overcome any integral gain
+ _time.sleep(10)
+ cur = c.get_current()
+ _LOG.info('current = {:n} A'.format(cur))
+ mcur = c.get_max_current()
+ if cur != mcur:
+ temp = backend.get_temp()
+ sp = backend.get_setpoint()
+ msg = ('current of {:n} A is not the max {:n} A, but the system is '
+ 'at {:n} C while the setpoint is at {:n}').format(
+ cur, mcur, temp, sp)
+ _LOG.error(msg)
+ raise Exception(msg)
+
+def test_controller_step_response(backend=None, setpoint=25):
+ internal_backend = False
+ if not backend:
+ internal_backend = True
+ backend = _get_backend('test')()
+ try:
+ backend.set_mode('PID')
+ c = _Controller(backend=backend)
+ max_current = backend.get_max_current()
+ current_a = 0.4 * max_current
+ current_b = 0.5 * max_current
+ step_response = c.get_step_response(
+ current_a=current_a, current_b=current_b, tolerance=0.5, stable_time=4.)
+ if True:
+ with open('step_response.dat', 'w') as d:
+ s = step_response[0][0]
+ for t,T in step_response:
+ d.write('{:n}\t{:n}\n'.format(t-s, T))
+ gain,dead_time,tau,max_rate = c.analyze_step_response(
+ step_response, current_shift=current_b-current_a)
+ _LOG.debug(('step response: dead time {:n}, gain {:n}, tau {:n}, '
+ 'max-rate {:n}').format(dead_time, gain, tau, max_rate))
+ for name,response_fn,modes in [
+ ('Zeigler-Nichols', c.ziegler_nichols_step_response,
+ ['P', 'PI', 'PID']),
+ ('Cohen-Coon', c.cohen_coon_step_response,
+ ['P', 'PI', 'PID']), # 'PD'
+ ('Wang-Juan-Chan', c.wang_juang_chan_step_response,
+ ['PID']),
+ ]:
+ for mode in modes:
+ p,i,d = response_fn(
+ gain=gain, dead_time=dead_time, tau=tau, mode=mode)
+ _LOG.debug(
+ '{} step response {}: p {:n}, i {:n}, d {:n}'.format(
+ name, mode, p, i, d))
+ finally:
+ if internal_backend:
+ backend.cleanup()
+
+def test_controller_bang_bang_response(backend=None, setpoint=25):
+ internal_backend = False
+ if not backend:
+ internal_backend = True
+ backend = _get_backend('test')(log_stream=open('pid.log', 'w'))
+ # shift our noise-less system off its setpoint
+ backend.set_setpoint(backend.get_temp()+0.1)
+ try:
+ c = _Controller(backend=backend)
+ dead_band = 3*c.estimate_temperature_sensitivity()
+ bang_bang_response = c.get_bang_bang_response(dead_band=dead_band, num_oscillations=4)
+ if True:
+ with open('bang_bang_response.dat', 'w') as d:
+ s = bang_bang_response[0][0]
+ for t,T in bang_bang_response:
+ d.write('{:n}\t{:n}\n'.format(t-s, T))
+ amplitude,period = c.analyze_bang_bang_response(bang_bang_response)
+ _LOG.debug('bang-bang response: amplitude {:n}, period {:n}'.format(
+ amplitude,period))
+ p,i,d = c.ziegler_nichols_bang_bang_response(
+ amplitude=amplitude, period=period, mode='PID')
+ _LOG.debug(('Zeigler-Nichols bang-bang response: '
+ 'p {:n}, i {:n}, d {:n}').format(p, i, d))
+ finally:
+ if internal_backend:
+ backend.cleanup()
+++ /dev/null
-import Melcor
-import time
-import stripchart
-
-VERSION = "0.2"
-
-# buzzwords: 'integrator windup' for integral term built up during a slow approach.
-
-class error (Exception) :
- "Errors with the temperature controller"
- pass
-
-class errorMelcor (error) :
- pass
-class errorOutOfRange (error) :
- pass
-
-def _check1(functionCall) :
- (err, val) = functionCall
- if err != 0 :
- raise errorMelcor
- return val
-
-def _check0(functionCall) :
- err = functionCall
- if err != 0 :
- raise errorMelcor
-
-
-def melcor2double(value) :
- (err, doub) = Melcor.melcor2double(value)
- if err != 0 :
- raise errorMelcor, "Error converting melcor to double"
- return doub
-def double2melcor(doub) :
- (err, val) = Melcor.double2melcor(doub)
- if err != 0 :
- raise errorMelcor, "Error converting double to melcor"
- return val
-
-def check_range(raw_output, min, max) :
- if raw_output < min :
- raise errorOutOfRange, '%g < %g' % (raw_output, min)
- if raw_output > max :
- raise errorOutOfRange, '%g > %g' % (raw_output, max)
-
-class tempController :
- "Pretty wrappers for controlling a Melcor MTCA Temperature Controller"
- def __init__(self, controller=1, device='/dev/ttyS0', maxCurrent=0.2) :
- """
- (controller, device, maxCurrent) -> (tempController instance)
- controller : MTCA controller Id
- device : serial port you're using to connect to the controller
- maxCurrent : initial maximum allowed current (in Amps)
- Set maxCurrent = None if you don't want to adjust from it's prev. value.
-
- 0.2 A is the default max current since it seems ok to use without fluid
- cooled heatsink. If you are cooling the heatsink, use 1.0 A, which seems
- safely below the peltier's 1.2 A limit.
- """
- self.verbose = False
- self.setpoint = 20.0 # degrees C
- self.Tmin = 5.0 # setup some protective bounds for sanity checks
- self.Tmax = 50.0
- self.specMaxCur = 4.0 # Amps, the rated max current from controller specs
- self.T = Melcor.tempController(controller, device)
- self.Tstrip = stripchart.stripchart(pipename='Tstrip_pipe',
- title='Temp strip')
- self.Cstrip = stripchart.stripchart(pipename='Cstrip_pipe',
- title='Current strip')
- if maxCurrent != None : # if None, just leave maxCurrent at it's prev. val.
- self.setMaxCurrent(maxCurrent) # Amps
- def getTemp(self) :
- "Returns the current process temperature in degrees Celsius"
- val = self.read(Melcor.REG_HIGH_RESOLUTION)
- temp = val/100.0
- if self.Tstrip.status == 'open' :
- self.Tstrip.add_point(temp)
- return temp
- def getAmbientTemp(self) :
- "Returns room temperature in degrees Celsius"
- val = self.read(Melcor.REG_AMBIENT_TEMPERATURE)
- # convert (Fahrenheit*10) to Celsius
- return (val/10.0 - 32)/1.8
- def setSetpoint(self, setpoint) :
- "Set the temperature setpoint in degrees Celsius"
- val = double2melcor(setpoint)
- self.write(Melcor.REG_SET_POINT_1, val)
- def getSetpoint(self) :
- "Get the temperature setpoint in degrees Celsius"
- val = self.read(Melcor.REG_SET_POINT_1)
- return melcor2double(val)
- def setMaxCurrent(self, maxCur) :
- """
- Set the max current in Amps.
- (Note to Melcor enthusiasts: set's both the 'above' and 'below' limits)
- """
- maxPercent = maxCur / self.specMaxCur * 100
- val = double2melcor(maxPercent)
- self.write(Melcor.REG_HIGH_POWER_LIMIT_ABOVE, val)
- self.write(Melcor.REG_HIGH_POWER_LIMIT_BELOW, val)
- self.maxCurrent = maxCur
- def getMaxCurrent(self) :
- """
- () -> (currentLimitAbove (A), currentLimitBelow (A), currentLimitSetpoint (deg C))
- """
- per = self.read(Melcor.REG_HIGH_POWER_LIMIT_ABOVE)
- curLimAbove = melcor2double(per)/100.0 * self.specMaxCur
- per = self.read(Melcor.REG_HIGH_POWER_LIMIT_BELOW)
- curLimBelow = melcor2double(per)/100.0 * self.specMaxCur
- val = self.read(Melcor.REG_POWER_LIMIT_SETPOINT)
- curLimSet = melcor2double(val)
- return (curLimAbove, curLimBelow, curLimSet)
- def getPercentCurrent(self) :
- """
- Returns the percent of rated max current being output.
- See getCurrent()
- """
- val = int(self.read(Melcor.REG_PERCENT_OUTPUT))
- if val > 2**15 :
- val -= 2**16
- return float(val)/10.0
- def getCurrent(self) :
- """
- The returned current is not the actual current,
- but the current that the temperature controller
- calculates it should generate.
- If the voltage required to generate that current
- exceeds the controllers max voltage (15V on mine),
- then the physical current will be less than the
- value returned here.
- """
- percentOutput = self.getPercentCurrent()
- cur = self.specMaxCur * percentOutput / 100.0
- if self.Cstrip.status == 'open' :
- self.Cstrip.add_point(cur)
- return cur
- def setCoolingGains(self, propband=0.1, integral=0, derivative=0) :
- """
- (propband, integral, derivative, dead_band) -> None
- propband : propotional gain band in degrees C
- integral : integral weight in minutes (0.00 to 99.99)
- derivative : derivative weight in minutes (? to ?)
- See 5.10 and the pages afterwards in the manual for Melcor's explaination.
- Formula (from Cornell BioPhys El Producto Beamline notes)
- P_cout = -1/T_prop * [ (T_samp - T_set)
- + 1/t_int * int_-inf^t (T_samp(t')-T_set(t')) dt'
- + t_deriv * dT_samp/dt
- Where P_cout is the percent of the rated max current that the controller
- would like to output if you weren't limiting it,
- T_prop is the propband input to this function,
- T_samp is the measured temperature of the sample in deg C,
- T_set is the setpoint in deg C,
- t_int is the integral input to this function,
- the integral with respect to t' is actually only from the time that
- T_samp has been with T_prop of T_set (not -inf), and
- t_deriv is the derivative input to this function.
-
- Cooling is output 1
- """
- check_range(propband, 0, 99.9)
- check_range(integral, 0, 99.99)
- check_range(derivative, 0, 9.99)
-
- val = double2melcor(propband)
- self.write(Melcor.REG_PROPBAND_1, val)
- val = int(integral * 100)
- self.write(Melcor.REG_INTEGRAL_1, val)
- val = int(derivative * 100)
- self.write(Melcor.REG_DERIVATIVE_1, val)
- def getCoolingGains(self) :
- "() -> (propband, integral, derivative)"
- val = self.read(Melcor.REG_PROPBAND_1)
- propband = melcor2double(val)
- val = self.read(Melcor.REG_INTEGRAL_1)
- integral = val/100.0
- val = self.read(Melcor.REG_DERIVATIVE_1)
- derivative = val/100.0
- return (propband, integral, derivative)
- def setHeatingGains(self, propband=0.1, integral=0, derivative=0) :
- """
- (propband, integral, derivative, dead_band) -> None
- propband : propotional gain band in degrees C
- integral : integral weight in minutes (0.00 to 99.99)
- derivative : derivative weight in minutes (? to ?)
- Don't use derivative, dead time.
- Cycle time?
- Histerysis?
- Burst?
- See 5.10 and the pages afterwards in the manual for Melcor's explaination.
- Formula (from Cornell BioPhys El Producto Beamline notes)
- P_cout = -1/T_prop * [ (T_samp - T_set)
- + 1/t_int * int_-inf^t (T_samp(t')-T_set(t')) dt'
- + t_deriv * dT_samp/dt
- Where P_cout is the percent of the rated max current that the controller
- would like to output if you weren't limiting it,
- T_prop is the propband input to this function,
- T_samp is the measured temperature of the sample in deg C,
- T_set is the setpoint in deg C,
- t_int is the integral input to this function,
- the integral with respect to t' is actually only from the time that
- T_samp has been with T_prop of T_set (not -inf), and
- t_deriv is the derivative input to this function.
-
- Heating is output 2
- """
- check_range(propband, 0, 99.9)
- check_range(integral, 0, 99.99)
- check_range(derivative, 0, 9.99)
-
- val = double2melcor(propband)
- self.write(Melcor.REG_PROPBAND_2, val)
- val = int(integral * 100)
- self.write(Melcor.REG_INTEGRAL_2, val)
- val = int(derivative * 100)
- self.write(Melcor.REG_DERIVATIVE_2, val)
- def getHeatingGains(self) :
- "() -> (propband, integral, derivative)"
- val = self.read(Melcor.REG_PROPBAND_2)
- propband = melcor2double(val)
- val = self.read(Melcor.REG_INTEGRAL_2)
- integral = val/100.0
- val = self.read(Melcor.REG_DERIVATIVE_2)
- derivative = val/100.0
- return (propband, integral, derivative)
- def getFeedbackTerms(self) :
- """
- Experimental
- """
- pid = int(self.read(Melcor.REG_PID_POWER_1))
- if pid > 2**15 :
- pid -= 2**16
- prop = int(self.read(Melcor.REG_PROP_TERM_1))
- if prop >= 2**15 :
- prop -= 2**16
- ntgrl = int(self.read(Melcor.REG_INTEGRAL_TERM_1))
- print ntgrl
- if ntgrl >= 2**15 :
- ntgrl -= 2**16
- deriv = int(self.read(Melcor.REG_DERIVATIVE_TERM_1))
- if deriv >= 2**15 :
- deriv -= 2**16
- return (pid, prop, ntgrl, deriv)
- def checkFeedbackTerms(self) :
- pid, prop, ntgrl, deriv = self.getFeedbackTerms()
- pout = self.getPercentCurrent()
- T = self.getTemp()
- Tset = self.getSetpoint()
- if T > Tset : # cooling
- Tprop, tint, tderiv = self.getCoolingGains()
- else : # heating
- Tprop, tint, tderiv = self.getHeatingGains()
- print "pid(read) %g =? sum(calc from terms) %g =? cur(read) %g" % (pid, prop+ntgrl+deriv, pout)
- print "read: prop %d, integral %d, deriv %d" % (prop, ntgrl, deriv)
- print "my calcs: prop %g" % ((Tset-T)/Tprop)
- def setTemp(self, setpoint, tolerance=0.3, time=10.0) :
- """
- Changes setpoint to SETPOINT and waits for stability
- """
- self.setSetpoint(setpoint)
- while self.isStable(setpoint, tolerance, time) != True :
- pass
- def setTemp_funkygain(self, setpoint, dead_time, heat_rate, cool_rate,
- peltier_efficiency_fn, outside_equilib_rate,
- tolerance=0.3, time=10.0) :
- """
- Highly experimental, see diffusion.py
- """
- mode = ""
- T = self.getTemp()
- # full steam ahead
- print "full steam ahead"
- self.setSetpoint(setpoint)
- self.setHeatingGains(0.1, 0, 0)
- self.setCoolingGains(0.1, 0, 0)
- if T < setpoint :
- mode = "Heating"
- self._heat_until_close(setpoint, dead_time, heat_rate)
- elif T > setpoint :
- mode = "Cooling"
- self._cool_until_close(setpoint, dead_time, cool_rate)
- # coast
- print "coast while temperature equilibrates"
- self.setHeatingGains(100, 0, 0)
- self.setCoolingGains(100, 0, 0)
- time.sleep(dead_time*2)
- cool_prop, heat_prop = self.calcPropBands()
- print "calculated prop bands: c %g, h %g deg C" % (cool_prop, heat_prop)
- print "reset integral gain, and bump to predicted props"
- # pop down to reset integral gain, could also jump setpoint...
- self.setHeatingGains(0.1, 0, 0)
- self.setHeatingGains(heat_prop, 0, 0)
- self.setCoolingGains(0.1, 0, 0)
- self.setCoolingGains(cool_prop, 0, 0)
- time.sleep(dead_time*4)
- # now add in some integral to reduce droop
- print "set integral gains to %g" % (dead_time*4)
- self.setHeatingGains(heat_prop, dead_time*4, 0)
- self.setCoolingGains(cool_prop, dead_time*4, 0)
- time.sleep(dead_time*8)
- print "wait to enter tolerance band"
- while (self.getTemp()-setpoint) :
- time.sleep(dead_time)
- print "should be stable now"
- if not self.isStable(setpoint, tolerance, time) :
- raise error, "Algorithm broken ;)"
- def _heat_until_close(self, setpoint, dead_time, heat_rate) :
- while self.getTemp() < setpoint - 0.5*rate*dead_time :
- time.sleep(dead_time/10.0)
- def calcPropBands_HACK(setpoint, peltier_efficiency_fn, outside_equilib_rate) :
- heat_loss = outside_equilib_rate * (setpoint - self.getAmbientTemp())
- required_current = heat_loss / peltier_efficiency_fn(setpoint)
- if required_current > self.maxCurrent :
- raise errorOutOfRange, "Can't source %g Amps", required_current
- fraction_current = required_current / self.maxCurrent
- droop = 0.5 # expected droop in deg C on only proporitional gain
- # droop / T_prop = fraction current
- T_prop = droop / fraction_current
- if setpoint > self.getAmbientTemp()+5 : # heating
- return (T_prop*10, T_prop)
- elif setpoint < self.getAmbientTemp()+5 : # cooling
- return (T_prop, T_prop*10)
- else : # right about room temperature
- return (T_prop, T_prop)
- def getMode(self) :
- mcode = self.read(Melcor.REG_AUTO_MANUAL_OP_MODE)
- if mcode == 0 :
- return 'auto'
- elif mcode == 1 :
- return 'manual'
- else :
- raise error, "Unrecognized mode code %d" % mcode
- def setMode(self, mode) :
- if mode == 'auto' :
- mcode = 0
- elif mode == 'manual' :
- mcode = 1
- else :
- raise error, "Unrecognized mode %s" % mode
- self.write(Melcor.REG_AUTO_MANUAL_OP_MODE, mcode)
- def getManualCurrent(self) :
- val = int(self.read(Melcor.REG_MANUAL_SET_POINT))
- if val > 2**15 : # convert to signed
- val -= 2**16
- pct = float(val)/10.0 # stored value is percent * 10
- return self.specMaxCur * pct / 100.0
- def setManualCurrent(self, amps) :
- if amps > self.maxCurrent :
- raise error, "Suggested current %g > max %g" % \
- (amps, self.maxCurrent)
- pct = amps / self.specMaxCur * 100.0
- val = int(pct * 10.0)
- if val < 0 : # convert to unsigned
- val += 2**16
- self.write(Melcor.REG_MANUAL_SET_POINT, val)
- def calcPropBands_ZN_get_step_response(self,
- initial_current=None,
- initial_wait_time=20.0,
- current_step=0.1,
- response_wait_time=40.0,
- plotVerbose=False) :
- """
- Ziegler-Nichols tuning, using step response for input.
- Process must be stable when calling this function.
- """
- if initial_current == None :
- initial_current = self.getCurrent()
- original_mode = self.getMode()
- if original_mode == 'manual' :
- original_current = self.getManualCurrent()
- else :
- self.setMode('manual')
- self.setManualCurrent(initial_current)
- Tarr = []
- tarr = []
- start = time.time()
- tm = start
- # get some stability data before stepping
- while tm < start + initial_wait_time :
- tarr.append(tm-start)
- Tarr.append(self.getTemp())
- tm = time.time()
- # step the output
- self.setManualCurrent(initial_current + current_step)
- Tlast = Tarr[-1]
- while tm < start + initial_wait_time + response_wait_time :
- Tnow = self.getTemp()
- if Tnow != Tlast : # save us some trouble averaging later
- tarr.append(tm-start)
- Tarr.append(self.getTemp())
- Tlast = Tnow
- tm = time.time()
-
- self.setMode(original_mode)
- if original_mode == 'manual' :
- self.setManualCurrent(original_current)
- if plotVerbose == True :
- from pylab import figure, plot, title, xlabel, ylabel
- figure(10)
- plot(tarr, Tarr, 'r.-')
- xlabel('time (s)')
- ylabel('Temp (C)')
- title('Plant step response')
- return (tarr, Tarr)
- def calcPropBands_ZN_analyze_step_response(self, tarr, Tarr,
- initial_wait_time=20,
- textVerbose=False) :
- """
- Analyze the step response to determine dead time td,
- and slope at point of inflection spoi.
- """
- i=0
- while tarr[i] < initial_wait_time :
- i += 1
- # find point of inflection (steepest slope)
- istep = i
- ipoi = istep
- def slope(i) :
- return (Tarr[i+1] - Tarr[i])/(tarr[i+1]-tarr[i])
- for i in range(istep, len(tarr)-1) :
- if slope(i) > slope(ipoi) :
- ipoi = i
- print "Max slope at t = %g, T = %g" % (tarr[ipoi], Tarr[ipoi])
- spoi = slope(ipoi)
- # find the dead time
- # find the initial temperature
- initialT = 0.0
- for i in range(istep) :
- initialT += Tarr[i]
- initialT /= float(istep)
- print "Initial temperature %g" % initialT
- deltaT = Tarr[ipoi] - initialT
- rise_t_to_poi = spoi/deltaT
- td = tarr[ipoi] - initial_wait_time - rise_t_to_poi
- return (td, spoi)
- def calcPropBands_ZN_compute_terms(self, td, spoi) :
- kp = 1.2/spoi
- ki = 2*td
- kd = td/2
- return (kp, ki, kd)
- def calcPropBands_ZN(self, initial_current=None,
- initial_wait_time=20.0,
- current_step=0.1,
- response_wait_time=40.0,
- textVerbose=False,
- plotVerbose=False) :
- tarr, Tarr = self.calcPropBands_ZN_get_step_response( \
- initial_current, initial_wait_time,
- current_step, response_wait_time,
- plotVerbose)
- td, spoi = self.calcPropBands_ZN_analyze_step_response( \
- tarr, Tarr, initial_wait_time, textVerbose)
- return self.calcPropBands_ZN_compute_terms(td, spoi)
- def stripT(self, on) :
- if on :
- self.stripT = True
- pipename = 'Temp_pipe'
- self.stripTpipe = os.popen(pipename)
- os.system("stripchart -u %s" % pipename)
- def isStable(self, setpoint, tolerance=0.3, maxTime=10.0) :
- """
- Counts how long the temperature stays within
- TOLERANCE of SETPOINT.
- Returns when temp goes bad, or MAXTIME elapses.
- """
- stable = False
- startTime = time.time()
- stopTime = startTime
- while abs(self.getTemp() - setpoint) < tolerance :
- stopTime = time.time()
- if (stopTime-startTime) > maxTime :
- print "Stable for long enough"
- break
- if stopTime-startTime > maxTime :
- return True
- else :
- return False
- def setFilterTime(self, seconds) :
- """
- Positive values to affect only monitored values.
- Negative values affect both monitored and control values.
- """
- decSeconds = int(seconds*10)
- if decSeconds < 0 : # convert (unsigned int) -> (2's compliment signed)
- decSeconds += 2**16
- self.write(Melcor.REG_INPUT_SOFTWARE_FILTER_1, decSeconds)
- def getFilterTime(self) :
- """
- Positive values to affect only monitored values.
- Negative values affect both monitored and control values.
- """
- val = self.read(Melcor.REG_INPUT_SOFTWARE_FILTER_1)
- if val >= 2**15 : # convert (2's complement signed) -> (unsigned int)
- val -= 2**16
- return val/10.0
- def sanityCheck(self) :
- "Check that some key registers have the values we expect"
- self._sanityCheck(Melcor.REG_UNITS_TYPE, 2) # SI
- self._sanityCheck(Melcor.REG_C_OR_F, 1) # C
- self._sanityCheck(Melcor.REG_FAILURE_MODE, 2) # off
- self._sanityCheck(Melcor.REG_RAMPING_MODE, 0) # off
- self._sanityCheck(Melcor.REG_OUTPUT_1, 1) # cool
- self._sanityCheck(Melcor.REG_OUTPUT_2, 1) # heat
- def _sanityCheck(self, register, expected_value) :
- val = self.read(register)
- if val != expected_value :
- print "Register %d, expected %d, was %d" % (register,
- expected_value,
- val)
- raise error, "Controller settings error"
- def read(self, register) :
- """
- (register) -> (value)
- Returns the value of the specified memory register on the controller.
- Registers are defined in the Melcor module.
- See melcor_registers.h for a pointers on meanings and manual page nums.
- """
- (err, val) = self.T.read(register)
- if err != 0 :
- raise errorMelcor
- return val
- def write(self, register, value) :
- """
- (register, value) -> None
- Sets the value of the specified memory register on the controller.
- Registers are defined in the Melcor module.
- See melcor_registers.h for a pointers on meanings and manual page nums.
- """
- err = self.T.write(register, value)
- if err != 0 :
- raise errorMelcor
- def getDeadtimeData(self, num_oscillations=10, curHysteresis=0.8) :
- orig_heat_gains = self.getHeatingGains()
- orig_cool_gains = self.getCoolingGains()
- if self.verbose :
- print "Measuring dead time"
- print " go to bang-bang"
- self.setHeatingGains(0.1, 0, 0)
- self.setCoolingGains(0.1, 0, 0)
- def isHeating(cur) :
- if cur > curHysteresis :
- return True
- elif cur < -curHysteresis :
- return False
- else :
- return None
- i=0
- timeArr = [0.0]
- temp = self.getTemp()
- cur = self.getCurrent()
- heat_first = isHeating(cur)
- start_time = time.time()
- tm = 0
- if verbose :
- print " Wait to exit hysteresis region"
- while heat_first == None and tm < 30:
- temp = t.getTemp()
- cur = t.getCurrent()
- heat_first = isHeating(temp, cur)
- tm = time.time()-start_time
- if tm > 30 :
- raise error, "after 30 seconds, still inside hysteresis region"
- if self.verbose :
- print " Read oscillations"
- heating = heat_first
- start_time = time.time()
- tempArr = [temp]
- curArr = [cur]
- if verbose :
- print "Temp %g\t(%g),\tCur %g,\tTime %d" % (temp, temp-Tset, cur, 0)
- while i < numOscillations*2 :
- temp = t.getTemp()
- tm = time.time()-start_time
- cur = t.getCurrent()
- tempArr.append(temp)
- timeArr.append(tm)
- curArr.append(cur)
- check_signs(temp,cur)
- if heating == True and isHeating(temp, cur) == False :
- print "Transition to cooling (i=%d)" % i
- heating = False
- i += 1
- elif heating == False and isHeating(temp, cur) == True :
- print "Transition to heating (i=%d)" % i
- heating = True
- i += 1
- if verbose :
- print " Restoring gains"
- self.setHeatingGains(*orig_heat_gains)
- self.setCoolingGains(*orig_cool_gains)
- def time_getTemp(self) :
- "Rough estimate timeing of getTemp(), takes me about 0.1s"
- start = time.time()
- for i in range(10) :
- self.getTemp()
- stop = time.time()
- return (stop-start)/10.0
-
-def _test_tempController() :
- t = tempController(controller=1, maxCurrent=0.1)
-
- print "Temp = %g" % t.getTemp()
- print "Current = %g" % t.getCurrent()
- print "Setpoint = %g" % t.getSetpoint()
-
- print "Setting setpoint to 5.0 deg C"
- t.setSetpoint(5.0)
- sp = t.getSetpoint()
- print "Setpoint = %g" % sp
- if sp != 5.0 :
- raise Exception, "Setpoint in %g != setpoint out %g" % (sp, 5.0)
- time.sleep(10) # give the controller some time to overcome any integral gain
- c = t.getCurrent()
- print "Current = %g" % c
- mca, mcb, mct = t.getMaxCurrent()
- if t.getTemp() < mct : # we're below the high power limit setpoint, use mcb
- if c != mcb :
- raise Exception, "Current not at max %g, and we're shooting for a big temp" % mcb
- else :
- if c != mca :
- raise Exception, "Current not at max %g, and we're shooting for a big temp" % mca
-
-
- print "Setting setpoint to 50.0 deg C"
- t.setSetpoint(50.0)
- sp = t.getSetpoint()
- print "Setpoint = %g" % sp
- if sp != 5.0 :
- raise Exception, "Setpoint in %g != setpoint out %g" % (sp, 5.0)
- time.sleep(10)
- c = t.getCurrent()
- print "Current = %g" % c
- print "Success"
- mca, mcb, mct = t.getMaxCurrent()
- if t.getTemp() < mct : # we're below the high power limit setpoint, use mcb
- if -c != mcb :
- raise Exception, "Current not at min %g, and we're shooting for a big temp" % (-mcb)
- else :
- if -c != mca :
- raise Exception, "Current not at min %g, and we're shooting for a big temp" % (-mca)
-
-def test() :
- _test_tempController()
-
-if __name__ == "__main__" :
- test()