Convert poisson assigment.pdf to XHTML.
authorW. Trevor King <wking@drexel.edu>
Tue, 14 Sep 2010 15:39:13 +0000 (11:39 -0400)
committerW. Trevor King <wking@drexel.edu>
Tue, 14 Sep 2010 15:39:13 +0000 (11:39 -0400)
assignments/archive/poisson/assigment.pdf [deleted file]
assignments/archive/poisson/index.shtml.itex2MML [new file with mode: 0644]
assignments/index.shtml

diff --git a/assignments/archive/poisson/assigment.pdf b/assignments/archive/poisson/assigment.pdf
deleted file mode 100644 (file)
index 5cd8a3c..0000000
Binary files a/assignments/archive/poisson/assigment.pdf and /dev/null differ
diff --git a/assignments/archive/poisson/index.shtml.itex2MML b/assignments/archive/poisson/index.shtml.itex2MML
new file mode 100644 (file)
index 0000000..f0193c7
--- /dev/null
@@ -0,0 +1,55 @@
+<!--#set var="root_directory" value="../../.." --><!--#include virtual="$root_directory/shared/header.shtml"-->
+
+<h1>Assignment #8</h1>
+<p><em>Due Friday, November 20</em></p>
+
+<h2>Purpose</h2>
+
+<p>Learn how to solve PDEs using parallel computers.</p>
+
+<p>Note: Please identify all your work.</p>
+
+<h2>Solving Poisson Equation</h2>
+
+<p>You are to solve Poisson equation in a parallel code. This elliptic
+PDE is typicaly used in demonstrating how to numerically solve
+PDEs. It has the advantage of being time independent. In 2D, it takes
+the form</p>
+
+<p class="equation">\[
+    \frac{\partial^2 u(x,y)}{\partial x^2}
+  + \frac{\partial^2 u(x,y)}{\partial y^2}
+  = S(x,y)
+\]</p>
+
+<p>where the field $u(x,y)$ is solved for in a domain in $x$ and $y$
+with specified boundary conditions and source term $S(x,y)$.</p>
+
+<h3>Steps</h3>
+
+<ul>
+  <li>Use finite difference approach on an equally spaced square lattice to solve the PDE.</li>
+  <li>Start with the serial 2D Poisson solver code
+    <a href="../../../content/2D_Domain_Decomposition/src/poisson_2d.tar.gz">poisson_2d.tar.gz</a>.
+    Use the physical set-up as in this code, namely use the domain,
+    the gaussian source, and the Dirichlet boundary conditions as
+    specified in this code.</li>
+  <li>Parallelize the code.</li>
+  <li>Use the parallel Game of Life
+    (<a href="../../../content/game_of_life/src/parallel_life_game.c">parallel_life_game.c</a>)
+    and the 1D Poisson equation solver
+    (<a href="../../../content/domain_decomposition/src/poisson_1d/poisson_1d.tar.gz">poisson_1d.tar.gz</a>)
+    codes as guides.</li>
+  <li>Use MPE or a pipe in the Python graphic code
+    (<a href="../../../programming_strategies/src/plot_image.py">plot_image.py</a>)
+    to display the solution.</li>
+  <li>Compare your solution (map image of $u(x,y)$) to the serial code
+    solution as a rough check of the code.</li>
+  <li>Replace the solution back in the Poisson equation as a further
+    (more precise) check of the solution (as is done in the serial
+    code).</li>
+  <li>Make sure your code works for arbitrary lattice size and number
+    of processors.</li>
+<ul>
+
+<!--#include virtual="$root_directory/shared/footer.shtml"-->
index c9a0e27fd8b026a394a71b288ec39d6fd84ac96f..00e8190dea923b566513c0489106a7f31b74bc2e 100644 (file)
@@ -10,7 +10,7 @@
   <li><a href="current/5/">Assignment 5</a></li>
   <li><a href="current/6/">Assignment 6</a></li>
   <li><a href="current/7/">Assignment 7</a></li>
-  <li><a href="current/8/assigment.pdf">Assignment 8</a></li>
+  <li><a href="current/8/">Assignment 8</a></li>
   <li><a href="current/9/">Assignment 9</a></li>
 </ul>