We will show that, for any $(a,b > 0) \in \Reals$,%
\nomenclature[aR]{\Reals}{Real numbers}
\begin{equation}
- I = \iInfInf{z}{\frac{1}{(a^2-z^2) + b^2 z^2}} = \frac{\pi}{b a^2} \;.
+ I = \iInfInf{z}{\frac{1}{(a^2-z^2)^2 + b^2 z^2}} = \frac{\pi}{b a^2} \;.
\end{equation}
First we note that $|f(z)| \rightarrow 0$ like $|z^{-4}|$ for $|z| \gg 1$,
(a^2-z^2)^2 + b^2 z^2
= (a^2-z^2 \colA{+} ibz)(a^2-z^2 \colA{-} ibz)
\end{equation}
-And the roots of $z^2 \colA{\pm} ibz - a^2$
+The roots of $z^2 \colA{\pm} ibz - a^2$ are given by
\begin{equation}
z_{r\colB{\pm}}
= \colA{\pm}\frac{ib}{2} \left(