calibcant/overview.tex: Expectation value for V_p^2, not V_p
authorW. Trevor King <wking@tremily.us>
Fri, 24 May 2013 16:17:13 +0000 (12:17 -0400)
committerW. Trevor King <wking@tremily.us>
Fri, 24 May 2013 16:17:13 +0000 (12:17 -0400)
Thanks Mom!

src/calibcant/overview.tex

index 08004f32b23cbb45f05c9f6e723970deeff01d34..6ce3f06d5e9cb95623b9b135b28944f0f2a79aff 100644 (file)
@@ -45,7 +45,7 @@ of a damped harmonic oscillator exposed to thermal noise
 \end{equation}
 In terms of the fit parameters $G_{1f}$\index{$G_{1f}$},
 $f_0$\index{$f_0$}, and $\beta_f$\index{$\beta_f$}, the expectation
-value for $V_p$ is given by
+value for $V_p^2$ is given by
 \begin{equation}
   \avg{V_p(t)^2} = \frac{\pi G_{1f}}{2\beta_f f_0^2} \;.
   \label{eq:avg-Vp-Gone-f}