@string{MCoyne = "Coyne, M."}
@string{DCraig = "Craig, David"}
@string{ACravchik = "Cravchik, A."}
+@string{CCroarkin = "Croarkin, Carroll"}
@string{VCroquette = "Croquette, Vincent"}
@string{YCui = "Cui, Y."}
@string{COSB = "Current Opinion in Structural Biology"}
@string{NNTint = "Tint, N. N."}
@string{BTiribilli = "Tiribilli, Bruno"}
@string{TTlusty = "Tlusty, Tsvi"}
+@string{PTobias = "Tobias, Paul"}
@string{JTocaHerrera = "Toca-Herrera, Jose L."}
@string{CATovey = "Tovey, Craig A."}
@string{AToyoda = "Toyoda, A."}
@string{PGdeGennes = "de Gennes, P. G."}
@string{PJdeJong = "de Jong, P. J."}
@string{NGvanKampen = "van Kampen, N.G."}
-@string{NISTSEMATECH = "{NIST/SEMATECH}"}
+@string{NIST:SEMATECH = "{NIST/SEMATECH}"}
@string{EDCola = "{\uppercase{d}}i Cola, Emanuela"}
-@misc { NIST:gumbel,
- author = NISTSEMATECH,
- key = "NIST:gumbel",
- title = "e-Handbook of Statistical Methods: Extreme Value Type {I}
- Distribution",
- year = 2009,
- month = oct,
- day = 9,
- url = "http://www.itl.nist.gov/div898/handbook/eda/section3/eda366g.htm"
+@inbook{ NIST:chi-square,
+ crossref = {NIST:ESH},
+ chapter = {1.3.5.15: Chi-Square Goodness-of-Fit Test},
+ year = 2013,
+ month = may,
+ day = 15,
+ url = {http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm},
+}
+
+@inbook{ NIST:gumbel,
+ crossref = {NIST:ESH},
+ chapter = {1.3.6.6.16: Extreme Value Type {I} Distribution},
+ year = 2009,
+ month = oct,
+ day = 9,
+ url = {http://www.itl.nist.gov/div898/handbook/eda/section3/eda366g.htm},
+}
+
+@book{ NIST:ESH,
+ editor = CCroarkin #" and "# PTobias,
+ author = NIST:SEMATECH,
+ title = {e-Handbook of Statistical Methods},
+ year = 2013,
+ month = may,
+ publisher = NIST:SEMATECH,
+ address = {Boulder, Colorado},
+ url = {http://www.itl.nist.gov/div898/handbook/},
+ note = {This manual was developed from seed material produced by
+ Mary Natrella.},
}
@misc{ wikipedia:gumbel,
\end{equation}
where $p_e(i)$ and $p_s(i)$ are the the values of the $i^\text{th}$
bin in the experimental and simulated unfolding force histograms,
-respectively. $D_\text{KL}$ is the Kullback-Leibler divergence
+respectively. $D_\text{KL}$ is the Kullback--Leibler divergence
\begin{equation}
D_\text{KL}(p_p,p_q)
= \sum_i p_p(i) \log_2\p({\frac{p_p(i)}{p_q(i)}}) \;, \label{eq:sawsim:D_KL}
where the sum is over all unfolding force histogram bins. $p_m$ is
the symmetrized probability distribution
\begin{equation}
- p_m(i) \equiv [p_e(i)+p_s(i)]/2 \;.
+ p_m(i) \equiv [p_e(i)+p_s(i)]/2 \;. \label{eq:sawsim:p_m}
\end{equation}
+%
+\nomenclature{$D_\text{JS}$}{The Jensen--Shannon divergence
+ (\cref{eq:sawsim:D_JS}).}
+\nomenclature{$D_\text{LK}$}{The Kullback--Leibler divergence
+ (\cref{eq:sawsim:D_KL}).}
+\nomenclature{$p_m(i)$}{The symmetrized probability distribution used
+ in calculating the Jensen--Shannon divergence
+ (\cref{eq:sawsim:D_JS,eq:sawsim:p_m}).}
% DONE: Mention inter-histogram normalization? no.
% For experiments carried out over a series of pulling velocities, we
% simply sum residuals computed for each velocity, although it would
The major advantage of the Jensen--Shannon divergence is that
$D_\text{JS}$ is bounded ($0\le D_\text{JS}\le 1$) regardless of the
experimental and simulated histograms. For comparison, Pearson's
-$\chi^2$ test,
+$\chi^2$ test\citep{NIST:chi-square},
\begin{equation}
- D_{χ^2} = \sum_i \frac{(p_e(i)-p_s(i))^2}{p_s(i)}) \;, \label{eq:sawsim:X2}
+ D_{\chi^2} = \sum_i \frac{(p_e(i)-p_s(i))^2}{p_s(i)} \;,
+ \label{eq:sawsim:X2}
\end{equation}
is infinite if there is a bin for which $p_e(i)>0$ but $p_s(i)=0$.
+%
+\nomenclature{$\chi^2$}{The chi-squared distribution}
+\nomenclature{$D_{\chi^2}$}{Pearson's $\chi^2$ test (\cref{eq:sawsim:X2}).}
\Cref{fig:sawsim:fit-space} shows the Jensen--Shannon divergence
calculated using \cref{eq:sawsim:D_JS} between an experimental data