Add pyproj post.
authorW. Trevor King <wking@drexel.edu>
Thu, 19 May 2011 12:27:32 +0000 (08:27 -0400)
committerW. Trevor King <wking@drexel.edu>
Thu, 19 May 2011 12:27:32 +0000 (08:27 -0400)
posts/pyproj.mdwn [new file with mode: 0644]

diff --git a/posts/pyproj.mdwn b/posts/pyproj.mdwn
new file mode 100644 (file)
index 0000000..9a10e40
--- /dev/null
@@ -0,0 +1,160 @@
+[pyproj][] is a Python wrapper around [PROJ.4][].  Here's a quick
+walkthrough.
+
+Initialize a [geodetic][] converter:
+
+    >>> from pyproj import Geod
+    >>> g = Geod(ellps='clrk66')
+
+where `ellps='clrk66'` selects [Clarke's 1866][clrk66] [reference
+ellipsoid][rell].  `help(Geod.__new__)` gives a list of possible
+ellipsoids.
+
+Calculate the distance between two points, as well as the local
+heading, try
+
+    >>> lat1,lng1 = (40.7143528, -74.0059731)  # New York, NY
+    >>> lat2,lng2 = (49.261226, -123.1139268)   # Vancouver, Canada
+    >>> az12,az21,dist = g.inv(lng1,lat1,lng2,lat2)
+    >>> az12,az21,dist
+    (-59.10918706123901, 84.99453463527395, 3914198.2912370963)
+
+which gives forward and back [azimuths][] as well as the geodesic
+distance in meters.  Not that longitude comes *before* latitude in the
+these pyproj argument lists.
+
+Calculate the terminus of a geodesic from an initial point, azimuth,
+and distance with:
+
+    >>> lng3,lat3,az3 = g.fwd(lng1,lat1,az12, dist)
+    >>> lat3,lng3,az3
+    (49.26122600306212, -123.11392684861474, 84.99453467574762)
+
+Plan your trip with:
+
+    >>> pts = g.npts(lng1,lat1,lng2,lat2,npts=5)
+    >>> pts.insert(0, (lng1, lat1))
+    >>> pts.append((lng2, lat2))
+    >>> import numpy
+    >>> npts = numpy.array(pts)
+    >>> npts
+    array([[ -74.0059731 ,   40.7143528 ],
+           [ -80.93566289,   43.52686057],
+           [ -88.48167748,   45.87969433],
+           [ -96.61187851,   47.6930911 ],
+           [-105.22271807,   48.89347605],
+           [-114.13503215,   49.42510006],
+           [-123.1139268 ,   49.261226  ]])
+
+To plot the above New York to Vancouver route on a flat map, we need a
+`Proj` instance:
+
+    >>> from pyproj import Proj
+    >>> awips221 = Proj(proj='lcc', R=6371200, lat_1=50, lat_2=50,
+    ...     lon_0=-107, ellps='clrk66')
+    >>> awips218 = Proj(proj='lcc', R=6371200, lat_1=25, lat_2=25,
+    ...     lon_0=-95, ellps='clrk66')  #x_0=-llcrnrx,y_0=-llcrnry)
+
+    #llcrnrlon,llcrnrlat are lon and lat (in degrees) of lower
+    #    left hand corner of projection region.
+
+where `proj='lcc` selects the [Lambert conformal conic][lcc]
+projection for the x/y points, and `ellps='clrk66'` selects the
+reference ellipsoid for the lat/lng coordinates.  The other
+coordinates are LCC parameters that select the [AWIPS 221][awips221]
+and [AWIPS 226][awips226] projections respectively (`lat_1`
+corresponds to `Latin1`, `lat_2` corresponds to `Latin2`, and `lon_0`
+corresponds to `Lov`).
+
+Convert our lat/lng pairs into grid points:
+
+    >>> awips221(lng1, lat1)
+    (2725283.842678774, 5823260.730665273)
+    >>> x221,y221 = awips221(npts[:,0], npts[:,1])
+    >>> # xy221 = numpy.concatenate((a1, a2, ...), axis=0)  # numpy-2.0
+    >>> xy221 = numpy.ndarray(shape=npts.shape, dtype=npts.dtype)
+    >>> xy221[:,0] = x221
+    >>> xy221[:,1] = y221
+    >>> xy221
+    array([[ 2725283.84267877,  5823260.73066527],
+           [ 2071820.3526011 ,  5892518.49630526],
+           [ 1422529.71760395,  5967565.49899035],
+           [  775650.03731228,  6046475.43928965],
+           [  129946.46495299,  6127609.80532071],
+           [ -515306.57275941,  6209785.69230076],
+           [-1160447.80254759,  6292455.41884832]])
+
+Finally, you can convert points from one projection to another.
+
+    >>> from pyproj import transform
+    >>> x218,y218 = transform(awips221, awips218, x221, y221)
+    >>> xy218 = numpy.ndarray(shape=npts.shape, dtype=npts.dtype)
+    >>> xy218[:,0] = x218
+    >>> xy218[:,1] = y218
+    >>> xy218
+    array([[ 1834251.59591561,  4780900.70184736],
+           [ 1197541.13209718,  5028862.9881648 ],
+           [  542391.04388716,  5258740.71523961],
+           [ -131577.34942316,  5464828.45934687],
+           [ -822685.42269932,  5641393.59760613],
+           [-1527077.85176048,  5783597.16169582],
+           [-2239159.34620498,  5888495.91009021]])
+
+Another useful coordinate system is the [Universal Transverse
+Mercator][UTM] projection which slices the world into [zones][].
+
+    >>> p = Proj(proj='utm', zone=10, ellps='clrk66')
+
+Putting everything together, here's a route map based on digital
+lat/lng pairs stored in a text file:
+
+    >>> from numpy import array
+    >>> from pylab import plot, show
+    >>> from pyproj import Geod, Proj
+    >>> latlng = array([[float(x) for x in ln.split()]
+    ...                for ln in open('coords', 'r')
+    ...                if not ln.startswith('#')])
+    >>> g = Geod(ellps='WGS84')
+    >>> az12s,az21s,dists = g.inv(latlng[:-1,1], latlng[:-1,0],
+    ...                           latlng[1:,1], latlng[1:,0])
+    >>> print('total distance: %g m' % dists.sum())
+    total distance: 2078.93 m
+    >>> mlng = latlng[:,1].mean()
+    >>> zone = int(round((mlng + 180) / 6.))
+    >>> p = Proj(proj='utm', zone=zone, ellps='WGS84')
+    >>> xs,ys = p(latlng[:,1], latlng[:,0])
+    >>> lines = plot(xs, ys, 'r.-')
+    >>> show()
+
+Note that you can easily get lat/lng pairs using [geopy][]:
+
+    >>> import geopy
+    >>> g = geopy.geocoders.Google()
+    >>> place1,(lat1,lng1) = g.geocode("New York, NY")
+    >>> place2,(lat2,lng2) = g.geocode("Vancouver, Canada")
+    >>> place1,(lat1,lng1)
+    (u'New York, NY, USA', (40.7143528, -74.0059731))
+    >>> place2,(lat2,lng2)
+    (u'Vancouver, BC, Canada', (49.261226, -123.1139268))
+
+If you're looking for a more compact [[C++]] package for geographic
+conversions, [GeographicLib][] looks promising.
+
+[pyproj]: http://code.google.com/p/pyproj/
+[PROJ.4]: http://trac.osgeo.org/proj/
+[geodetic]: http://en.wikipedia.org/wiki/Geodesy
+[clrk66]: http://en.wikipedia.org/wiki/Alexander_Ross_Clarke
+[rell]: http://en.wikipedia.org/wiki/Reference_ellipsoid
+[azimuths]: http://en.wikipedia.org/wiki/Azimuth
+[LCC]: http://en.wikipedia.org/wiki/Lambert_conformal_conic_projection
+[awips221]: http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html#GRID221
+[awips226]: http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html#GRID218
+[UTM]: http://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
+[zone]: http://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system#UTM_zone
+[geopy]: http://code.google.com/p/geopy/
+[GeographicLib]: http://geographiclib.sourceforge.net/html/
+
+[[!tag tags/fun]]
+[[!tag tags/linux]]
+[[!tag tags/python]]
+[[!tag tags/tools]]