\end{problem*}
\begin{solution}
+Lets take a vertical cylinder of this air as our gaussian surface.
+Because the electric field is directed downward, there is no flux
+through the walls of the cylinder. All the flux crosses the cylinder
+at the end caps. If the area of the end cap is $A$, that flux is
+\begin{equation}
+ \Phi_E \equiv \oint_S \vect{E}\cdot\vect{dA} = E_{500}A - E_{600}A \;,
+\end{equation}
+where $E_{500}=120\U{N/C}$ and $E_{600}=100\U{N/C}$. From Gauss's
+law,
+\begin{align}
+ \Phi_E &= \frac{q_\text{in}}{\varepsilon_0} = (E_{500}-E{600})A \\
+ q_\text{in} &= (E_{500}-E{600})A\varepsilon_0 \;.
+\end{align}
+This gives an average volume charge density of
+\begin{equation}
+ \rho \equiv \frac{q_\text{in}}{V}
+ = \frac{(E_{500}-E{600})A\varepsilon_0}{A(h_{600}-h_{500})}
+ = \frac{E_{500}-E{600}}{h_{600}-h_{500}}\varepsilon_0
+ = \frac{20\U{N/C}}{100\U{m}}\cdot8.85\E{-12}\U{C$^2$/N$\cdot$m$^2$}
+ = \ans{1.77\E{-12}\U{C/m$^3$}} \;.
+\end{equation}
+Because there is a net flux out of the gaussian cylinder, the net
+charge contained by the cylinder is positive.
\end{solution}