--- /dev/null
+--- a/src/CUDAMarchingCubes.cu 2018-03-30 18:52:25.467189457 +0300
++++ b/src/CUDAMarchingCubes.cu 2018-03-30 18:52:02.387136244 +0300
+@@ -10,7 +10,7 @@
+ *
+ * $RCSfile: CUDAMarchingCubes.cu,v $
+ * $Author: johns $ $Locker: $ $State: Exp $
+- * $Revision: 1.30 $ $Date: 2016/11/28 03:04:58 $
++ * $Revision: 1.32 $ $Date: 2018/02/15 05:15:02 $
+ *
+ ***************************************************************************
+ * DESCRIPTION:
+@@ -25,14 +25,17 @@
+ //
+ // Description: This class computes an isosurface for a given density grid
+ // using a CUDA Marching Cubes (MC) alorithm.
+-// The implementation is based on the MC demo from the
+-// Nvidia GPU Computing SDK, but has been improved
+-// and extended. This implementation achieves higher
+-// performance by reducing the number of temporary memory
+-// buffers, reduces the number of scan calls by using vector
+-// integer types, and allows extraction of per-vertex normals
+-// optionally computes per-vertex colors if provided with a
+-// volumetric texture map.
++//
++// The implementation is loosely based on the MC demo from
++// the Nvidia GPU Computing SDK, but the design has been
++// improved and extended in several ways.
++//
++// This implementation achieves higher performance
++// by reducing the number of temporary memory
++// buffers, reduces the number of scan calls by using
++// vector integer types, and allows extraction of
++// per-vertex normals and optionally computes
++// per-vertex colors if a volumetric texture map is provided.
+ //
+ // Author: Michael Krone <michael.krone@visus.uni-stuttgart.de>
+ // John Stone <johns@ks.uiuc.edu>
+@@ -48,7 +51,7 @@
+ #include <thrust/functional.h>
+
+ //
+-// Restrict macro to make it easy to do perf tuning tess
++// Restrict macro to make it easy to do perf tuning tests
+ //
+ #if 0
+ #define RESTRICT __restrict__
+@@ -171,6 +174,11 @@
+ texture<float, 3, cudaReadModeElementType> volumeTex;
+
+ // sample volume data set at a point p, p CAN NEVER BE OUT OF BOUNDS
++// XXX The sampleVolume() call underperforms vs. peak memory bandwidth
++// because we don't strictly enforce coalescing requirements in the
++// layout of the input volume presently. If we forced X/Y dims to be
++// warp-multiple it would become possible to use wider fetches and
++// a few other tricks to improve global memory bandwidth
+ __device__ float sampleVolume(const float * RESTRICT data,
+ uint3 p, uint3 gridSize) {
+ return data[(p.z*gridSize.x*gridSize.y) + (p.y*gridSize.x) + p.x];
+@@ -592,6 +600,30 @@
+ cudaBindTextureToArray(volumeTex, d_vol, desc);
+ }
+
++#if CUDART_VERSION >= 9000
++//
++// XXX CUDA 9.0RC breaks the usability of Thrust scan() prefix sums when
++// used with the built-in uint2 vector integer types. To workaround
++// the problem we have to define our own type and associated conversion
++// routines etc.
++//
++
++// XXX workaround for uint2 breakage in CUDA 9.0RC
++struct myuint2 : uint2 {
++ __host__ __device__ myuint2() : uint2(make_uint2(0, 0)) {}
++ __host__ __device__ myuint2(int val) : uint2(make_uint2(val, val)) {}
++ __host__ __device__ myuint2(uint2 val) : uint2(make_uint2(val.x, val.y)) {}
++};
++
++void ThrustScanWrapperUint2(uint2* output, uint2* input, unsigned int numElements) {
++ const uint2 zero = make_uint2(0, 0);
++ thrust::exclusive_scan(thrust::device_ptr<myuint2>((myuint2*)input),
++ thrust::device_ptr<myuint2>((myuint2*)input + numElements),
++ thrust::device_ptr<myuint2>((myuint2*)output),
++ (myuint2) zero);
++}
++
++#else
+
+ void ThrustScanWrapperUint2(uint2* output, uint2* input, unsigned int numElements) {
+ const uint2 zero = make_uint2(0, 0);
+@@ -601,6 +633,7 @@
+ zero);
+ }
+
++#endif
+
+ void ThrustScanWrapperArea(float* output, float* input, unsigned int numElements) {
+ thrust::inclusive_scan(thrust::device_ptr<float>(input),
+@@ -639,11 +672,9 @@
+ }
+
+
+-///////////////////////////////////////////////////////////////////////////////
+ //
+ // class CUDAMarchingCubes
+ //
+-///////////////////////////////////////////////////////////////////////////////
+
+ CUDAMarchingCubes::CUDAMarchingCubes() {
+ // initialize values
+@@ -713,9 +744,6 @@
+ }
+
+
+-////////////////////////////////////////////////////////////////////////////////
+-//! Run the Cuda part of the computation
+-////////////////////////////////////////////////////////////////////////////////
+ void CUDAMarchingCubes::computeIsosurfaceVerts(float3* vertOut, unsigned int maxverts, dim3 & grid3) {
+ // check if data is available
+ if (!this->setdata)
+
+--- a/src/CUDAMDFF.cu 2016-12-01 10:11:56.000000000 +0300
++++ b/src/CUDAMDFF.cu 2018-03-30 18:56:44.352937599 +0300
+@@ -11,7 +11,7 @@
+ *
+ * $RCSfile: CUDAMDFF.cu,v $
+ * $Author: johns $ $Locker: $ $State: Exp $
+- * $Revision: 1.75 $ $Date: 2015/04/07 20:41:26 $
++ * $Revision: 1.78 $ $Date: 2018/02/19 07:10:37 $
+ *
+ ***************************************************************************
+ * DESCRIPTION:
+@@ -28,12 +28,16 @@
+ #include <stdlib.h>
+ #include <string.h>
+ #include <cuda.h>
+-#include <float.h> // FLT_MAX etc
+-
++#if CUDART_VERSION >= 9000
++#include <cuda_fp16.h> // need to explicitly include for CUDA 9.0
++#endif
+ #if CUDART_VERSION < 4000
+ #error The VMD MDFF feature requires CUDA 4.0 or later
+ #endif
+
++#include <float.h> // FLT_MAX etc
++
++
+ #include "Inform.h"
+ #include "utilities.h"
+ #include "WKFThreads.h"
+@@ -588,6 +592,43 @@
+ }
+
+
++
++// #define VMDUSESHUFFLE 1
++#if defined(VMDUSESHUFFLE) && __CUDA_ARCH__ >= 300 && CUDART_VERSION >= 9000
++// New warp shuffle-based CC sum reduction for Kepler and later GPUs.
++inline __device__ void cc_sumreduction(int tid, int totaltb,
++ float4 &total_cc_sums,
++ float &total_lcc,
++ int &total_lsize,
++ float4 *tb_cc_sums,
++ float *tb_lcc,
++ int *tb_lsize) {
++ total_cc_sums = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
++ total_lcc = 0.0f;
++ total_lsize = 0;
++
++ // use precisely one warp to do the final reduction
++ if (tid < warpSize) {
++ for (int i=tid; i<totaltb; i+=warpSize) {
++ total_cc_sums += tb_cc_sums[i];
++ total_lcc += tb_lcc[i];
++ total_lsize += tb_lsize[i];
++ }
++
++ // perform intra-warp parallel reduction...
++ // general loop version of parallel sum-reduction
++ for (int mask=warpSize/2; mask>0; mask>>=1) {
++ total_cc_sums.x += __shfl_xor_sync(0xffffffff, total_cc_sums.x, mask);
++ total_cc_sums.y += __shfl_xor_sync(0xffffffff, total_cc_sums.y, mask);
++ total_cc_sums.z += __shfl_xor_sync(0xffffffff, total_cc_sums.z, mask);
++ total_cc_sums.w += __shfl_xor_sync(0xffffffff, total_cc_sums.w, mask);
++ total_lcc += __shfl_xor_sync(0xffffffff, total_lcc, mask);
++ total_lsize += __shfl_xor_sync(0xffffffff, total_lsize, mask);
++ }
++ }
++}
++#else
++// shared memory based CC sum reduction
+ inline __device__ void cc_sumreduction(int tid, int totaltb,
+ float4 &total_cc_sums,
+ float &total_lcc,
+@@ -629,6 +670,7 @@
+ total_lcc = tb_lcc[0];
+ total_lsize = tb_lsize[0];
+ }
++#endif
+
+
+ inline __device__ void thread_cc_sum(float ref, float density,
+@@ -750,6 +792,92 @@
+ }
+
+
++#if defined(VMDUSESHUFFLE) && __CUDA_ARCH__ >= 300 && CUDART_VERSION >= 9000
++ // all threads write their local sums to shared memory...
++ __shared__ float2 tb_cc_means_s[TOTALBLOCKSZ];
++ __shared__ float2 tb_cc_squares_s[TOTALBLOCKSZ];
++ __shared__ float tb_lcc_s[TOTALBLOCKSZ];
++ __shared__ int tb_lsize_s[TOTALBLOCKSZ];
++
++ tb_cc_means_s[tid] = thread_cc_means;
++ tb_cc_squares_s[tid] = thread_cc_squares;
++ tb_lcc_s[tid] = thread_lcc;
++ tb_lsize_s[tid] = thread_lsize;
++ __syncthreads(); // all threads must hit syncthreads call...
++
++ // use precisely one warp to do the thread-block-wide reduction
++ if (tid < warpSize) {
++ float2 tmp_cc_means = make_float2(0.0f, 0.0f);
++ float2 tmp_cc_squares = make_float2(0.0f, 0.0f);
++ float tmp_lcc = 0.0f;
++ int tmp_lsize = 0;
++ for (int i=tid; i<TOTALBLOCKSZ; i+=warpSize) {
++ tmp_cc_means += tb_cc_means_s[i];
++ tmp_cc_squares += tb_cc_squares_s[i];
++ tmp_lcc += tb_lcc_s[i];
++ tmp_lsize += tb_lsize_s[i];
++ }
++
++ // perform intra-warp parallel reduction...
++ // general loop version of parallel sum-reduction
++ for (int mask=warpSize/2; mask>0; mask>>=1) {
++ tmp_cc_means.x += __shfl_xor_sync(0xffffffff, tmp_cc_means.x, mask);
++ tmp_cc_means.y += __shfl_xor_sync(0xffffffff, tmp_cc_means.y, mask);
++ tmp_cc_squares.x += __shfl_xor_sync(0xffffffff, tmp_cc_squares.x, mask);
++ tmp_cc_squares.y += __shfl_xor_sync(0xffffffff, tmp_cc_squares.y, mask);
++ tmp_lcc += __shfl_xor_sync(0xffffffff, tmp_lcc, mask);
++ tmp_lsize += __shfl_xor_sync(0xffffffff, tmp_lsize, mask);
++ }
++
++ // write per-thread-block partial sums to global memory,
++ // if a per-thread-block CC output array is provided, write the
++ // local CC for this thread block out, and finally, check if we
++ // are the last thread block to finish, and finalize the overall
++ // CC results for the entire grid of thread blocks.
++ if (tid == 0) {
++ unsigned int bid = blockIdx.z * gridDim.x * gridDim.y +
++ blockIdx.y * gridDim.x + blockIdx.x;
++
++ tb_cc_sums[bid] = make_float4(tmp_cc_means.x, tmp_cc_means.y,
++ tmp_cc_squares.x, tmp_cc_squares.y);
++ tb_lcc[bid] = tmp_lcc;
++ tb_lsize[bid] = tmp_lsize;
++
++ if (tb_CC != NULL) {
++ float cc = calc_cc(tb_cc_means_s[0].x, tb_cc_means_s[0].y,
++ tb_cc_squares_s[0].x, tb_cc_squares_s[0].y,
++ tb_lsize_s[0], tb_lcc_s[0]);
++
++ // write local per-thread-block CC to global memory
++ tb_CC[bid] = cc;
++ }
++
++ __threadfence();
++
++ unsigned int value = atomicInc(&tbcatomic[0], totaltb);
++ isLastBlockDone = (value == (totaltb - 1));
++ }
++ }
++ __syncthreads();
++
++ if (isLastBlockDone) {
++ float4 total_cc_sums;
++ float total_lcc;
++ int total_lsize;
++ cc_sumreduction(tid, totaltb, total_cc_sums, total_lcc, total_lsize,
++ tb_cc_sums, tb_lcc, tb_lsize);
++
++ if (tid == 0) {
++ tb_cc_sums[totaltb] = total_cc_sums;
++ tb_lcc[totaltb] = total_lcc;
++ tb_lsize[totaltb] = total_lsize;
++ }
++
++ reset_atomic_counter(&tbcatomic[0]);
++ }
++
++#else
++
+ // all threads write their local sums to shared memory...
+ __shared__ float2 tb_cc_means_s[TOTALBLOCKSZ];
+ __shared__ float2 tb_cc_squares_s[TOTALBLOCKSZ];
+@@ -794,6 +922,7 @@
+ }
+ __syncthreads(); // all threads must hit syncthreads call...
+ }
++//#endif
+
+ // write per-thread-block partial sums to global memory,
+ // if a per-thread-block CC output array is provided, write the
+@@ -847,6 +976,7 @@
+ }
+ #endif
+ }
++#endif
+ }
+
+
+
+--- a/src/CUDAQuickSurf.cu 2016-12-01 10:11:56.000000000 +0300
++++ b/src/CUDAQuickSurf.cu 2018-03-30 19:01:38.777196233 +0300
+@@ -11,7 +11,7 @@
+ *
+ * $RCSfile: CUDAQuickSurf.cu,v $
+ * $Author: johns $ $Locker: $ $State: Exp $
+- * $Revision: 1.81 $ $Date: 2016/04/20 04:57:46 $
++ * $Revision: 1.84 $ $Date: 2018/02/15 04:59:15 $
+ *
+ ***************************************************************************
+ * DESCRIPTION:
+@@ -22,6 +22,9 @@
+ #include <stdlib.h>
+ #include <string.h>
+ #include <cuda.h>
++#if CUDART_VERSION >= 9000
++#include <cuda_fp16.h> // need to explicitly include for CUDA 9.0
++#endif
+
+ #if CUDART_VERSION < 4000
+ #error The VMD QuickSurf feature requires CUDA 4.0 or later
+@@ -130,14 +133,14 @@
+ #define GUNROLL 1
+ #endif
+
+-#if __CUDA_ARCH__ >= 300
+ #define MAXTHRDENS ( GBLOCKSZX * GBLOCKSZY * GBLOCKSZZ )
+-#define MINBLOCKDENS 1
++#if __CUDA_ARCH__ >= 600
++#define MINBLOCKDENS 16
++#elif __CUDA_ARCH__ >= 300
++#define MINBLOCKDENS 16
+ #elif __CUDA_ARCH__ >= 200
+-#define MAXTHRDENS ( GBLOCKSZX * GBLOCKSZY * GBLOCKSZZ )
+ #define MINBLOCKDENS 1
+ #else
+-#define MAXTHRDENS ( GBLOCKSZX * GBLOCKSZY * GBLOCKSZZ )
+ #define MINBLOCKDENS 1
+ #endif
+
+@@ -150,7 +153,7 @@
+ //
+ template<class DENSITY, class VOLTEX>
+ __global__ static void
+-// __launch_bounds__ ( MAXTHRDENS, MINBLOCKDENS )
++__launch_bounds__ ( MAXTHRDENS, MINBLOCKDENS )
+ gaussdensity_fast_tex_norm(int natoms,
+ const float4 * RESTRICT sorted_xyzr,
+ const float4 * RESTRICT sorted_color,
+@@ -217,6 +220,8 @@
+ for (yab=yabmin; yab<=yabmax; yab++) {
+ for (xab=xabmin; xab<=xabmax; xab++) {
+ int abcellidx = zab * acplanesz + yab * acncells.x + xab;
++ // this biggest latency hotspot in the kernel, if we could improve
++ // packing of the grid cell map, we'd likely improve performance
+ uint2 atomstartend = cellStartEnd[abcellidx];
+ if (atomstartend.x != GRID_CELL_EMPTY) {
+ unsigned int atomid;
+@@ -296,7 +301,7 @@
+
+
+ __global__ static void
+-// __launch_bounds__ ( MAXTHRDENS, MINBLOCKDENS )
++__launch_bounds__ ( MAXTHRDENS, MINBLOCKDENS )
+ gaussdensity_fast_tex3f(int natoms,
+ const float4 * RESTRICT sorted_xyzr,
+ const float4 * RESTRICT sorted_color,
+@@ -363,6 +368,8 @@
+ for (yab=yabmin; yab<=yabmax; yab++) {
+ for (xab=xabmin; xab<=xabmax; xab++) {
+ int abcellidx = zab * acplanesz + yab * acncells.x + xab;
++ // this biggest latency hotspot in the kernel, if we could improve
++ // packing of the grid cell map, we'd likely improve performance
+ uint2 atomstartend = cellStartEnd[abcellidx];
+ if (atomstartend.x != GRID_CELL_EMPTY) {
+ unsigned int atomid;
+@@ -550,7 +557,6 @@
+
+ // per-GPU handle with various memory buffer pointers, etc.
+ typedef struct {
+- /// max grid sizes and attributes the current allocations will support
+ int verbose;
+ long int natoms;
+ int colorperatom;
+@@ -561,18 +567,18 @@
+ int gy;
+ int gz;
+
+- CUDAMarchingCubes *mc; ///< Marching cubes class used to extract surface
++ CUDAMarchingCubes *mc;
+
+- float *devdensity; ///< density map stored in GPU memory
+- void *devvoltexmap; ///< volumetric texture map
+- float4 *xyzr_d; ///< atom coords and radii
+- float4 *sorted_xyzr_d; ///< cell-sorted coords and radii
+- float4 *color_d; ///< colors
+- float4 *sorted_color_d; ///< cell-sorted colors
+-
+- unsigned int *atomIndex_d; ///< cell index for each atom
+- unsigned int *atomHash_d; ///<
+- uint2 *cellStartEnd_d; ///< cell start/end indices
++ float *devdensity;
++ void *devvoltexmap;
++ float4 *xyzr_d;
++ float4 *sorted_xyzr_d;
++ float4 *color_d;
++ float4 *sorted_color_d;
++
++ unsigned int *atomIndex_d;
++ unsigned int *atomHash_d;
++ uint2 *cellStartEnd_d;
+
+ void *safety;
+ float3 *v3f_d;
--- /dev/null
+# Copyright 1999-2020 Gentoo Authors
+# Distributed under the terms of the GNU General Public License v2
+
+EAPI=7
+PYTHON_COMPAT=( python2_7 )
+
+inherit cuda desktop flag-o-matic prefix python-single-r1 toolchain-funcs xdg
+
+DESCRIPTION="Visual Molecular Dynamics"
+HOMEPAGE="http://www.ks.uiuc.edu/Research/vmd/"
+SRC_URI="
+ https://dev.gentoo.org/~jlec/distfiles/${P}-gentoo-patches.tar.xz
+ ${P}.src.tar
+"
+
+SLOT="0"
+LICENSE="vmd"
+KEYWORDS="~amd64 ~x86 ~amd64-linux ~x86-linux"
+IUSE="cuda gromacs msms povray sqlite tachyon xinerama"
+REQUIRED_USE="${PYTHON_REQUIRED_USE}"
+
+RESTRICT="fetch"
+
+# currently, tk-8.5* with USE=truetype breaks some
+# tk apps such as Sequence Viewer or Timeline.
+CDEPEND="
+ >=dev-lang/tk-8.6.1:0=
+ dev-lang/perl
+ dev-libs/expat
+ $(python_gen_cond_dep '
+ || (
+ dev-python/numpy-python2[${PYTHON_MULTI_USEDEP}]
+ dev-python/numpy[${PYTHON_MULTI_USEDEP}]
+ )
+ ')
+ sci-libs/netcdf:0=
+ virtual/opengl
+ >=x11-libs/fltk-1.1.10-r2:1
+ x11-libs/libXft
+ x11-libs/libXi
+ ${PYTHON_DEPS}
+ cuda? ( >=dev-util/nvidia-cuda-toolkit-4.2.9-r1:= )
+ gromacs? ( >=sci-chemistry/gromacs-5.0.4-r1:0=[tng] )
+ sqlite? ( dev-db/sqlite:3= )
+ tachyon? ( >=media-gfx/tachyon-0.99_beta6 )
+ xinerama? ( x11-libs/libXinerama )
+"
+DEPEND="${CDEPEND}"
+BDEPEND="
+ virtual/pkgconfig
+ dev-lang/swig
+"
+RDEPEND="${CDEPEND}
+ sci-biology/stride
+ sci-chemistry/chemical-mime-data
+ sci-chemistry/surf
+ x11-terms/xterm
+ msms? ( sci-chemistry/msms-bin )
+ povray? ( media-gfx/povray )
+"
+
+VMD_DOWNLOAD="http://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=VMD"
+# Binary only plugin!!
+QA_PREBUILT="usr/lib*/vmd/plugins/LINUX/tcl/intersurf1.1/bin/intersurf.so"
+QA_FLAGS_IGNORED_amd64=" usr/lib64/vmd/plugins/LINUX/tcl/volutil1.3/volutil"
+QA_FLAGS_IGNORED_x86=" usr/lib/vmd/plugins/LINUX/tcl/volutil1.3/volutil"
+
+pkg_nofetch() {
+ elog "Please download ${P}.src.tar from"
+ elog "${VMD_DOWNLOAD}"
+ elog "after agreeing to the license and get"
+ elog "https://dev.gentoo.org/~jlec/distfiles/${P}-gentoo-patches.tar.xz"
+ elog "Place both into your DISTDIR directory"
+ elog
+ elog "Due to an upstream bug (https://bugs.gentoo.org/640440) sources"
+ elog "file may get downloaded as a compressed tarball or not. In that case"
+ elog "you will need to ensure you uncompress the file and rename it"
+ elog "as ${P}.src.tar"
+}
+
+src_prepare() {
+ xdg_src_prepare
+
+ use cuda && cuda_sanitize
+
+ # Compat with newer CUDA versions (from Arch)
+ eapply "${FILESDIR}"/${P}-cuda.patch
+
+ cd "${WORKDIR}"/plugins || die
+
+ eapply -p2 "${WORKDIR}"/${P}-gentoo-plugins.patch
+
+ [[ ${SILENT} == yes ]] || sed '/^.SILENT/d' -i $(find -name Makefile)
+
+ sed \
+ -e "s:CC = gcc:CC = $(tc-getCC):" \
+ -e "s:CXX = g++:CXX = $(tc-getCXX):" \
+ -e "s:COPTO =.*\":COPTO = -fPIC -o \":" \
+ -e "s:LOPTO = .*\":LOPTO = ${LDFLAGS} -fPIC -o \":" \
+ -e "s:CCFLAGS =.*\":CCFLAGS = ${CFLAGS}\":" \
+ -e "s:CXXFLAGS =.*\":CXXFLAGS = ${CXXFLAGS}\":" \
+ -e "s:SHLD = gcc:SHLD = $(tc-getCC) -shared:" \
+ -e "s:SHXXLD = g++:SHXXLD = $(tc-getCXX) -shared:" \
+ -e "s:-ltcl8.5:-ltcl:" \
+ -i Make-arch || die "Failed to set up plugins Makefile"
+
+ sed \
+ -e '/^AR /s:=:?=:g' \
+ -e '/^RANLIB /s:=:?=:g' \
+ -i ../plugins/*/Makefile || die
+
+ tc-export AR RANLIB
+
+ sed \
+ -e "s:\$(CXXFLAGS)::g" \
+ -i hesstrans/Makefile || die
+
+ # prepare vmd itself
+ cd "${S}" || die
+
+ eapply -p2 "${WORKDIR}"/${P}-gentoo-base.patch
+ eapply "${FILESDIR}"/${P}-configure-libtachyon.patch
+ eapply "${FILESDIR}"/${P}-tmpdir.patch
+
+ # PREFIX
+ sed \
+ -e "s:/usr/include/:${EPREFIX}/usr/include:g" \
+ -i configure || die
+
+ sed \
+ -e "s:gentoo-bindir:${ED}/usr/bin:g" \
+ -e "s:gentoo-libdir:${ED}/usr/$(get_libdir):g" \
+ -e "s:gentoo-opengl-include:${EPREFIX}/usr/include/GL:g" \
+ -e "s:gentoo-opengl-libs:${EPREFIX}/usr/$(get_libdir):g" \
+ -e "s:gentoo-gcc:$(tc-getCC):g" \
+ -e "s:gentoo-g++:$(tc-getCXX):g" \
+ -e "s:gentoo-nvcc:${EPREFIX}/opt/cuda/bin/nvcc:g" \
+ -e "s:gentoo-cflags:${CFLAGS}:g" \
+ -e "s:gentoo-cxxflags:${CXXFLAGS}:g" \
+ -e "s:gentoo-nvflags::g" \
+ -e "s:gentoo-ldflags:${LDFLAGS}:g" \
+ -e "s:gentoo-plugindir:${WORKDIR}/plugins:g" \
+ -e "s:gentoo-fltk-include:$(fltk-config --includedir):g" \
+ -e "s:gentoo-fltk-libs:$(dirname $(fltk-config --libs)) -Wl,-rpath,$(dirname $(fltk-config --libs)):g" \
+ -e "s:gentoo-libtachyon-include:${EPREFIX}/usr/include/tachyon:g" \
+ -e "s:gentoo-libtachyon-libs:${EPREFIX}/usr/$(get_libdir):g" \
+ -e "s:gentoo-netcdf-include:${EPREFIX}/usr/include:g" \
+ -e "s:gentoo-netcdf-libs:${EPREFIX}/usr/$(get_libdir):g" \
+ -i configure || die
+
+ if use cuda; then
+ sed \
+ -e "s:gentoo-cuda-lib:${EPREFIX}/opt/cuda/$(get_libdir):g" \
+ -e "/NVCCFLAGS/s:=:= ${NVCCFLAGS}:g" \
+ -i configure src/Makefile || die
+ sed \
+ -e '/compute_/d' \
+ -i configure || die
+ sed \
+ -e 's:-gencode .*code=sm_..::' \
+ -i src/Makefile || die
+ fi
+
+ sed \
+ -e "s:LINUXPPC:LINUX:g" \
+ -e "s:LINUXALPHA:LINUX:g" \
+ -e "s:LINUXAMD64:LINUX:g" \
+ -e "s:gentoo-stride:${EPREFIX}/usr/bin/stride:g" \
+ -e "s:gentoo-surf:${EPREFIX}/usr/bin/surf:g" \
+ -e "s:gentoo-tachyon:${EPREFIX}/usr/bin/tachyon:g" \
+ -i "${S}"/bin/vmd.sh || die "failed setting up vmd wrapper script"
+
+ EMAKEOPTS=(
+ TCLINC="-I${EPREFIX}/usr/include"
+ TCLLIB="-L${EPREFIX}/usr/$(get_libdir)"
+ TCLLDFLAGS="-shared"
+ NETCDFLIB="$($(tc-getPKG_CONFIG) --libs-only-L netcdf)${EPREFIX}/usr/$(get_libdir)/libnetcdf.so"
+ NETCDFINC="$($(tc-getPKG_CONFIG) --cflags-only-I netcdf)${EPREFIX}/usr/include"
+ NETCDFLDFLAGS="$($(tc-getPKG_CONFIG) --libs netcdf)"
+ NETCDFDYNAMIC=1
+ EXPATINC="-I${EPREFIX}/usr/include"
+ EXPATLIB="$($(tc-getPKG_CONFIG) --libs expat)"
+ EXPATLDFLAGS="-shared"
+ EXPATDYNAMIC=1
+ )
+ if use gromacs; then
+ EMAKEOPTS+=(
+ TNGLIB="$($(tc-getPKG_CONFIG) --libs libgromacs)"
+ TNGINC="-I${EPREFIX}/usr/include"
+ TNGLDFLAGS="-shared"
+ TNGDYNAMIC=1
+ )
+ fi
+ if use sqlite; then
+ EMAKEOPTS+=(
+ SQLITELIB="$($(tc-getPKG_CONFIG) --libs sqlite3)"
+ SQLITEINC="-I${EPREFIX}/usr/include"
+ SQLITELDFLAGS="-shared"
+ SQLITEDYNAMIC=1
+ )
+ fi
+}
+
+src_configure() {
+ local myconf="OPENGL OPENGLPBUFFER COLVARS FLTK TK TCL PTHREADS PYTHON IMD NETCDF NUMPY NOSILENT XINPUT"
+ rm -f configure.options && echo $myconf >> configure.options
+
+ use cuda && myconf+=" CUDA"
+# use mpi && myconf+=" MPI"
+ use tachyon && myconf+=" LIBTACHYON"
+ use xinerama && myconf+=" XINERAMA"
+
+ export \
+ PYTHON_INCLUDE_DIR="$(python_get_includedir)" \
+ PYTHON_LIBRARY_DIR="$(python_get_library_path)" \
+ PYTHON_LIBRARY="$(python_get_LIBS)" \
+ NUMPY_INCLUDE_DIR="$(python_get_sitedir)/numpy/core/include" \
+ NUMPY_LIBRARY_DIR="$(python_get_sitedir)/numpy/core/include"
+
+ perl ./configure LINUX \
+ ${myconf} || die
+}
+
+src_compile() {
+ # build plugins
+ cd "${WORKDIR}"/plugins || die
+
+ emake \
+ ${EMAKEOPTS[@]} \
+ LINUX
+
+ # build vmd
+ cd "${S}"/src || die
+ emake
+}
+
+src_install() {
+ # install plugins
+ cd "${WORKDIR}"/plugins || die
+ emake \
+ PLUGINDIR="${ED}/usr/$(get_libdir)/${PN}/plugins" \
+ distrib
+
+ # install vmd
+ cd "${S}"/src || die
+ emake install
+
+ # install docs
+ cd "${S}" || die
+ dodoc Announcement README doc/ig.pdf doc/ug.pdf
+
+ # remove some of the things we don't want and need in
+ # /usr/lib
+ cd "${ED}"/usr/$(get_libdir)/vmd || die
+ rm -fr doc README Announcement LICENSE || \
+ die "failed to clean up /usr/lib/vmd directory"
+
+ # adjust path in vmd wrapper
+ sed \
+ -e "s:${ED}::" -i "${ED}"/usr/bin/${PN} \
+ -e "/^defaultvmddir/s:^.*$:defaultvmddir=\"${EPREFIX}/usr/$(get_libdir)/${PN}\":g" \
+ || die "failed to set up vmd wrapper script"
+
+ # install icon and generate desktop entry
+ insinto /usr/share/pixmaps
+ doins "${WORKDIR}"/vmd.png
+ eprefixify "${WORKDIR}"/vmd.desktop
+ sed -i '/^Path/d' "${WORKDIR}"/vmd.desktop || die
+ # Open PDB files with VMD
+ echo "MimeType=chemical/x-pdb;" >> "${WORKDIR}"/vmd.desktop || die
+ domenu "${WORKDIR}"/vmd.desktop
+}