FFT_tools: separate function defs with 2 blank lines (PEP8)
authorW. Trevor King <wking@tremily.us>
Sun, 18 Nov 2012 22:25:55 +0000 (17:25 -0500)
committerW. Trevor King <wking@tremily.us>
Sun, 18 Nov 2012 22:25:55 +0000 (17:25 -0500)
FFT_tools.py

index a80d1d97bc00e8e1d080b04139f25de22fbe6628..a60777ba9753f2d3e2e4f72baac657431ad3bc82 100644 (file)
@@ -50,6 +50,7 @@ def floor_pow_of_two(num):
         num = 2**_numpy.floor(lnum)
     return num
 
+
 def round_pow_of_two(num):
     "Round num to the closest exact a power of two on a log scale."
     lnum = _numpy.log2(num)
@@ -57,6 +58,7 @@ def round_pow_of_two(num):
         num = 2**_numpy.round(lnum)
     return num
 
+
 def ceil_pow_of_two(num):
     "Round num up to the closest exact a power of two."
     lnum = _numpy.log2(num)
@@ -64,6 +66,7 @@ def ceil_pow_of_two(num):
         num = 2**_numpy.ceil(lnum)
     return num
 
+
 def _test_rfft(xs, Xs):
     # Numpy's FFT algoritm returns
     #          n-1
@@ -93,11 +96,13 @@ def _test_rfft(xs, Xs):
             "Mismatch on Parseval's, {} != 1/{} * {}".format(
                 timeSum, n, freqSum))
 
+
 def _test_rfft_suite():
     print('Test numpy rfft definition')
     xs = [1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1]
     _test_rfft(xs, _numpy.fft.rfft(xs))
 
+
 def unitary_rfft(data, freq=1.0):
     """Compute the Fourier transform of real data.
 
@@ -144,6 +149,7 @@ def unitary_rfft(data, freq=1.0):
     freq_axis = _numpy.linspace(0, freq/2, nsamps/2+1)
     return (freq_axis, trans)
 
+
 def _test_unitary_rfft_parsevals(xs, freq, freqs, Xs):
     # Which should satisfy the discretized integral form of Parseval's theorem
     #   n-1              n-1
@@ -164,6 +170,7 @@ def _test_unitary_rfft_parsevals(xs, freq, freqs, Xs):
     if _numpy.abs(lhs - rhs)/lhs >= 1e-4:
         raise ValueError("Mismatch on Parseval's, {} != {}".format(lhs, rhs))
 
+
 def _test_unitary_rfft_parsevals_suite():
     print("Test unitary rfft on Parseval's theorem")
     xs = [1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1]
@@ -171,12 +178,14 @@ def _test_unitary_rfft_parsevals_suite():
     freqs,Xs = unitary_rfft(xs, 1.0/dt)
     _test_unitary_rfft_parsevals(xs, 1.0/dt, freqs, Xs)
 
+
 def _rect(t):
     if _numpy.abs(t) < 0.5:
         return 1
     else:
         return 0
 
+
 def _test_unitary_rfft_rect(
     a=1.0, time_shift=5.0, samp_freq=25.6, samples=256):
     "Show fft(rect(at)) = 1/abs(a) * _numpy.sinc(f/a)"
@@ -218,6 +227,7 @@ def _test_unitary_rfft_rect(
         freq_axes.plot(freq_axis, expected, 'b-')
         freq_axes.set_title('freq series')
 
+
 def _test_unitary_rfft_rect_suite():
     print('Test unitary FFTs on variously shaped rectangular functions')
     _test_unitary_rfft_rect(a=0.5)
@@ -225,9 +235,11 @@ def _test_unitary_rfft_rect_suite():
     _test_unitary_rfft_rect(a=0.7, samp_freq=50, samples=512)
     _test_unitary_rfft_rect(a=3.0, samp_freq=60, samples=1024)
 
+
 def _gaussian(a, t):
     return _numpy.exp(-a * t**2)
 
+
 def _test_unitary_rfft_gaussian(
     a=1.0, time_shift=5.0, samp_freq=25.6, samples=256):
     "Show fft(rect(at)) = 1/abs(a) * sinc(f/a)"
@@ -267,6 +279,7 @@ def _test_unitary_rfft_gaussian(
         freq_axes.plot(freq_axis, expected, 'b-')
         freq_axes.set_title('freq series')
 
+
 def _test_unitary_rfft_gaussian_suite():
     print("Test unitary FFTs on variously shaped gaussian functions")
     _test_unitary_rfft_gaussian(a=0.5)
@@ -275,7 +288,6 @@ def _test_unitary_rfft_gaussian_suite():
     _test_unitary_rfft_gaussian(a=3.0, samp_freq=60, samples=1024)
 
 
-
 def power_spectrum(data, freq=1.0):
     """Compute the power spectrum of DATA taken with a sampling frequency FREQ.
 
@@ -294,6 +306,7 @@ def power_spectrum(data, freq=1.0):
     power = (trans * trans.conj()).real # We want the square of the amplitude.
     return (freq_axis, power)
 
+
 def unitary_power_spectrum(data, freq=1.0):
     freq_axis,power = power_spectrum(data, freq)
     # One sided power spectral density, so 2|H(f)|**2
@@ -327,6 +340,7 @@ def unitary_power_spectrum(data, freq=1.0):
 
     return (freq_axis, power)
 
+
 def _test_unitary_power_spectrum_sin(sin_freq=10, samp_freq=512, samples=1024):
     x = _numpy.zeros((samples,), dtype=_numpy.float)
     samp_freq = _numpy.float(samp_freq)
@@ -382,6 +396,7 @@ def _test_unitary_power_spectrum_sin(sin_freq=10, samp_freq=512, samples=1024):
         freq_axes.set_title(
             '{} samples of sin at {} Hz'.format(samples, sin_freq))
 
+
 def _test_unitary_power_spectrum_sin_suite():
     print('Test unitary power spectrums on variously shaped sin functions')
     _test_unitary_power_spectrum_sin(sin_freq=5, samp_freq=512, samples=1024)
@@ -395,6 +410,7 @@ def _test_unitary_power_spectrum_sin_suite():
     # test with non-integer number of periods
     _test_unitary_power_spectrum_sin(sin_freq=5, samp_freq=512, samples=256)
 
+
 def _test_unitary_power_spectrum_delta(amp=1, samp_freq=1, samples=256):
     x = _numpy.zeros((samples,), dtype=_numpy.float)
     samp_freq = _numpy.float(samp_freq)
@@ -429,6 +445,7 @@ def _test_unitary_power_spectrum_delta(amp=1, samp_freq=1, samples=256):
         freq_axes.plot(freq_axis, expected, 'b-')
         freq_axes.set_title('{} samples of delta amp {}'.format(samples, amp))
 
+
 def _test_unitary_power_spectrum_delta_suite():
     print('Test unitary power spectrums on various delta functions')
     _test_unitary_power_spectrum_delta(amp=1, samp_freq=1.0, samples=1024)
@@ -441,11 +458,13 @@ def _test_unitary_power_spectrum_delta_suite():
     _test_unitary_power_spectrum_delta(
         amp=_numpy.pi, samp_freq=_numpy.exp(1), samples=1024)
 
+
 def _gaussian2(area, mean, std, t):
     "Integral over all time = area (i.e. normalized for area=1)"
     return area/(std*_numpy.sqrt(2.0*_numpy.pi)) * _numpy.exp(
         -0.5*((t-mean)/std)**2)
 
+
 def _test_unitary_power_spectrum_gaussian(
     area=2.5, mean=5, std=1, samp_freq=10.24 ,samples=512):
     x = _numpy.zeros((samples,), dtype=_numpy.float)
@@ -493,6 +512,7 @@ def _test_unitary_power_spectrum_gaussian(
         freq_axes.plot(freq_axis, expected, 'b-')
         freq_axes.set_title('freq series')
 
+
 def _test_unitary_power_spectrum_gaussian_suite():
     print('Test unitary power spectrums on various gaussian functions')
     _test_unitary_power_spectrum_gaussian(
@@ -509,6 +529,7 @@ def _test_unitary_power_spectrum_gaussian_suite():
         area=_numpy.pi, std=_numpy.sqrt(2), samp_freq=_numpy.exp(1),
         samples=1024)
 
+
 def window_hann(length):
     "Returns a Hann window array with length entries"
     win = _numpy.zeros((length,), dtype=_numpy.float)
@@ -518,6 +539,7 @@ def window_hann(length):
     # so average height of Hann window is 0.5
     return win
 
+
 def avg_power_spectrum(data, freq=1.0, chunk_size=2048,
                        overlap=True, window=window_hann):
     """Compute the avgerage power spectrum of DATA.
@@ -560,6 +582,7 @@ def avg_power_spectrum(data, freq=1.0, chunk_size=2048,
     power /= _numpy.float(nchunks)
     return (freq_axis, power)
 
+
 def unitary_avg_power_spectrum(data, freq=1.0, chunk_size=2048,
                                overlap=True, window=window_hann):
     """Compute the average power spectrum, preserving normalization
@@ -581,6 +604,7 @@ def unitary_avg_power_spectrum(data, freq=1.0, chunk_size=2048,
     # The normalization approaches perfection as chunk_size -> infinity.
     return (freq_axis, power)
 
+
 def _test_unitary_avg_power_spectrum_sin(
     sin_freq=10, samp_freq=512, samples=1024, chunk_size=512, overlap=True,
     window=window_hann):
@@ -618,6 +642,7 @@ def _test_unitary_avg_power_spectrum_sin(
         freq_axes.set_title(
             '{} samples of sin at {} Hz'.format(samples, sin_freq))
 
+
 def _test_unitary_avg_power_spectrum_sin_suite():
     print('Test unitary avg power spectrums on variously shaped sin functions')
     _test_unitary_avg_power_spectrum_sin(
@@ -649,6 +674,7 @@ def test():
     _test_unitary_power_spectrum_gaussian_suite()
     _test_unitary_avg_power_spectrum_sin_suite()
 
+
 if __name__ == '__main__':
     from optparse import OptionParser