In the following analysis, we use the unitary, angular frequency
Fourier transform normalization
\begin{equation}
- \Four{x(t)} \equiv \frac{1}{\sqrt{2\pi}} \iInfInf{t}{x(t) e^{-i \omega t}}\;.
+ \Four{x(t)} \equiv \frac{1}{\sqrt{2\pi}} \iInfInf{t}{x(t) e^{-i \omega t}}\;,
\end{equation}
+where $\omega$ is the angular frequency and $i\equiv\sqrt{-1}$ is the
+imaginary unit.
+%
\nomenclature{\Four{s(t)}}{Fourier transform of the time-series
$s(t)$.
$s(f) = \Four{s(t)}
- \equiv \frac{1}{\sqrt{2\pi}} \iInfInf{t}{s(t) e^{-i \omega t}}$
+ \equiv \frac{1}{\sqrt{2\pi}} \iInfInf{t}{s(t) e^{-i \omega t}}$.
}\index{Fourier transform}
+\nomenclature{$i$}{Imaginary unit $i\equiv\sqrt{-1}$.}
+\nomenclature{$\omega$}{Angular frequency (radians per second).}
We also use the following theorems (proved elsewhere):
\begin{align}
\begin{equation}
\PSD(g, w) \equiv \normLimT 2 \magSq{ \Four{g(t)}(\omega) }
\end{equation}}
-\nomenclature{$\omega$}{Angular frequency (radians per second)}
\nomenclature{$\abs{z}$}{Absolute value (or magnitude) of $z$. For
complex $z$, $\abs{z}\equiv\sqrt{z\conj{z}}$.}