During the non-contact phase of calibration,
$F(t)$ comes from random thermal noise.
%
-\nomenclature{$\beta$}{Damped harmonic oscillator drag-acceleration
- coefficient $\beta \equiv \gamma/m$}
+\nomenclature{$m$}{Effective mass of a damped harmonic oscillator
+ (\cref{eq:DHO}).}
\nomenclature{$\gamma$}{Damped harmonic oscillator drag coefficient
- $F_\text{drag} = \gamma\dt{x}$}
+ $F_\text{drag} = \gamma\dt{x}$ (\cref{eq:DHO}).}
\nomenclature{$\dt{s}$}{First derivative of the time-series $s(t)$
with respect to time. $\dt{s} = \deriv{t}{s}$}
\nomenclature{$\ddt{s}$}{Second derivative of the time-series $s(t)$
resonant angular frequency and $\beta \equiv \gamma / m$ is the
drag-acceleration coefficient.\index{Damped harmonic
oscillator}\index{$\gamma$}\index{$\kappa$}\index{$\beta$}
-
+%
+\nomenclature{$\beta$}{Damped harmonic oscillator drag-acceleration
+ coefficient $\beta \equiv \gamma/m$ (\cref{eq:DHO-xmag}).}
\nomenclature{$\omega_0$}{Resonant angular frequency (radians per
- second)}
+ second, \cref{eq:DHO-xmag}).}
We compute the \PSD\ by plugging \cref{eq:DHO-xmag} into
\cref{eq:psd-def}