extension (end-to-end distance) $x$ is given by Bustamante's
interpolation formula\citep{marko95,bustamante94}.
\nomenclature{WLC}{Wormlike chain, an entropic spring model}
+\nomenclature{$p$}{Persistence length of a wormlike chain
+ (\cref{eq:sawsim:wlc})).}
+\nomenclature{$L$}{Contour length in a polymer tension model
+ (\cref{eq:sawsim:wlc,eq:sawsim:fjc})}
\begin{equation}
F_\text{WLC}(x,p,L) = \frac{k_B T}{p}
\p[{ \frac{1}{4}\p({ \frac{1}{(1-x/L)^2} - 1 })
Kuhn length), which are free to rotate about their joints
(\cref{fig:fjc}).
\index{Langevin function}
-\nomenclature{FJC}{Freely-jointed chain, an entropic spring model}
-\nomenclature{$\Langevin$}{The Langevin function,
- $\Langevin(\alpha)\equiv\coth{\alpha}-\frac{1}{\alpha}$}
\begin{equation}
F_\text{FJC}(x,l,L) = \frac{k_B T}{l} \Langevin^{-1}\p({\frac{x}{L}}) \;,
\label{eq:sawsim:fjc}
where $L=Nl$ is the total length of the chain, and
$\Langevin(\alpha)\equiv\coth{\alpha}-\frac{1}{\alpha}$ is the
Langevin function\citep{hatfield99}.
+%
+\nomenclature{FJC}{Freely-jointed chain, an entropic spring model
+ (\cref{eq:sawsim:fjc}).}
+\nomenclature{$\Langevin$}{The Langevin function,
+ $\Langevin(\alpha)\equiv\coth{\alpha}-\frac{1}{\alpha}$}
+\nomenclature{$\coth$}{Hyperbolic cotangent,
+ \begin{equation}
+ \coth(x) = \frac{\exp{x} + \exp{-x}}{\exp{x} - \exp{-x}} \;.
+ \end{equation}
+}
+\nomenclature{$l$}{Kuhn length in the freely-jointed chain
+ (\cref{fig:fjc-model,eq:sawsim:fjc}).}
\begin{figure}
\begin{center}