of a damped harmonic oscillator exposed to thermal noise
\begin{equation}
\PSD_f(V_p, f) = \frac{G_{1f}}{(f_0^2-f^2)^2 + \beta_f^2 f^2} \;.
+ \label{eq:psd-Vp}
\end{equation}
In terms of the fit parameters $G_{1f}$\index{$G_{1f}$},
$f_0$\index{$f_0$}, and $\beta_f$\index{$\beta_f$}, the expectation
= \sigma_p^2 \avg{x(t)^2} \;,
\end{align}
where $G_{1p}\equiv G_0/m_p^2=\sigma_p^2 G_1$.
-Plugging into the equipartition theorem yeilds
+Plugging into the equipartition theorem (\cref{eq:equipart_k}) yields
\begin{align}
\kappa &= \frac{\sigma_p^2 k_BT}{\avg{V_p(t)^2}}
= \frac{2 \beta\omega_0^2 \sigma_p^2 k_BT}{\pi G_{1p}} \;.
= \iOInf{f}{\frac{1}{2\pi}\PSD_f(x,f)2\pi\cdot}
= \iOInf{f}{\PSD_f(x,f)} \;.
\end{align}
-Therefore
+We can now extract \cref{eq:psd-Vp,eq:Vp-from-freq-fit}.
\begin{align}
\begin{split}
\PSD_f(V_p, f) &= 2\pi\PSD(V_p,\omega)
% = \frac{\pi G_{1p}}{2\beta\omega_0^2} = \avg{V_p(t)^2} % check!
\end{align}
where $f_0\equiv\omega_0/2\pi$, $\beta_f\equiv\beta/2\pi$, and
-$G_{1f}\equiv G_{1p}/8\pi^3$. Finally
+$G_{1f}\equiv G_{1p}/8\pi^3$. Finally, we can generate
+\cref{eq:kappa}.
\begin{align}
\kappa &= \frac{\sigma_p^2 k_BT}{\avg{V_p(t)^2}}
= \frac{2 \beta_f f_0^2 \sigma_p^2 k_BT}{\pi G_{1f}} \;.