\subsection{Evolution of unfolding modeling}
-Evans introduced the saddle-point Kramers' approximation in a protein unfolding context 1997 (\citet{evans97} Eqn.~3).
-However, early work on mechanical unfolding focused on the simper Bell model\citep{rief97a}.%TODO
-In the early `00's, the saddle-point/steepest-descent approximation to Kramer's model (\citet{hanggi90} Eqn.~4.56c) was introduced into our field\citep{dudko03,hyeon03}.%TODO
-By the mid `00's, the full-blown double-integral form of Kramer's model (\citet{hanggi90} Eqn.~4.56b) was in use\citep{schlierf06}.%TODO
+Evans introduced the saddle-point Kramers' approximation in a protein unfolding context in 1997 (\citet{evans97} Eqn.~3).
+However, early work on mechanical unfolding focused on the simpler Bell model\citep{rief97a}.%TODO
+In the early 2000's, the saddle-point/steepest-descent approximation to Kramer's model (\xref{hanggi90}{equation}{4.56c}) was introduced into our field\citep{dudko03,hyeon03}.%TODO
+By the mid 2000's, the full-blown double-integral form of Kramer's model (\xref{hanggi90}{equation}{4.56b}) was in use\citep{schlierf06}.%TODO
There have been some tangential attempts towards even fancier models.
\citet{dudko03} attempted to reduce the restrictions of the single-unfolding-path model.