Add comments referenceing Brockwell's 2002 paper with respect to Gumbel dist.
authorW. Trevor King <wking@drexel.edu>
Thu, 2 Feb 2012 15:27:35 +0000 (10:27 -0500)
committerW. Trevor King <wking@drexel.edu>
Thu, 2 Feb 2012 15:27:35 +0000 (10:27 -0500)
src/sawsim/discussion.tex
src/unfolding/distributions-single_domain-constant_loading.tex

index 777e50c14c36589870c675ea73687d8b43cc40f3..ec276e8393f9c4221ff1f3b8495b5afa55102476 100644 (file)
@@ -118,6 +118,8 @@ and and average
                \p[{-\ln\p({\frac{N_fk_{u0}k_BT}{\kappa v\Delta x_u}})
                    -\gamma_e}] \;,  \label{eq:sawsim:order-dep}
 \end{equation}
+% This is discussed in brockwell02, p465
+% consolidate with src/unfolding/distributions-single_domain-constant_loading.tex
 where $N_f$ and $\kappa$ depend on the domain index $i=N_u$.  Curves based
 on this formula fit the simulated data remarkably well considering the
 effective WLC\index{WLC} stiffness $\kappa_\text{WLC}$ is the only fitted
index 902896e6842e6c682be027d6670d4d6f11b870c6..d9456e8891f57a9f068d0cf9383656f4a59e989b 100644 (file)
@@ -129,6 +129,8 @@ $\alpha=-\beta\ln(\kappa\beta/kv)$, and $F=x$ we have
 So our unfolding force histogram for a single Bell domain under
 constant loading does indeed follow the Gumbel distribution.
 
+% Consolidate with src/sawsim/discussion.tex
+
 \subsection{Saddle-point Kramers' model}
 
 For the saddle-point approximation for Kramers' model for unfolding